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ABSTRACT   

 

EFFECTS OF EXTENDED POSTMORTEM AGING ON SELECTED BEEF MUSCLES 

INTENDED FOR RETAIL SALE 

 

 In order to mimic beef commonly found in retail supermarkets, paired strip loins (NAMP 

#180) and top sirloin butts (NAMP #184) were obtained from USDA Choice carcasses with a 

marbling score ranging from Small
00 

to Small
50

 (n = 15) and USDA Select carcasses with a 

marbling score ranging from Slight
50 

to Slight
99

 (n = 15) at a commercial packing plant. Samples 

were collected from 3 separate groups of carcasses in order to replicate each aging and display 

period three times. At 48 hours postmortem, paired strip loins and top sirloin butts were 

portioned into 3-inch sections, vacuum-sealed, and stored 14, 21, 28, 35, 49, or 63 days 

postmortem. For both strip loin and sirloin sections, once the aging period was designated, the 

sections were stored in a vacuum-sealed bag at 0°C (± 1°C) and in the dark until their assigned 

aging period was complete. Two steaks from each aged section for each muscle was placed in a 

styrofoam tray with a polyvinyl chloride overwrap and placed in a multi-deck retail display case 

equipped with LED lighting (Hussmann Model No. M3X8GEP) and set at 2°C for 72 hrs. A 

third steak cut from each aged section was immediately cooked, and Warner-Bratzler shear force 

(WBSF) analysis was measured to determine the effects of the aging period on tenderness 

without the display period. During the display period, each steak was evaluated every 8 hours by 

a minimum of 8 trained panelists for lean color, external fat color, lean percent discoloration, and 

L* a* b* color values.  A trained sensory panel for tenderness and flavor attributes, including 

off-flavors, also was used to evaluate steaks. As steaks were subjected to longer periods of 
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postmortem aging, WBSF values decreased and trained sensory panel tenderness ratings 

improved. A 72 h display time reduced (P < 0.05) WBSF values of strip loin and sirloin steaks. 

A minimum of 28 d of postmortem aging was required to improve the WBSF values of low 

Choice and Select strip loin steaks compared with the same strip loins steaks aged for 14 d, and a 

minimum of 35 d of postmortem aging was required to improve sensory tenderness ratings for 

low Choice and Select strip loin steaks. Strip loin steaks aged up to 28 d before retail display had 

little impact on display life and the incidence of off-flavors; however, there was no tenderness 

advantage over 14 d aged steaks from low Choice and Select strip loins. Thirty-five days of 

postmortem aging were required to achieve an improvement in WBSF compared to that achieved 

with 14 d aging for low Choice and Select top sirloin steaks, and trained sensory panel scores 

indicated that at least 49 d of postmortem aging was required to improve the myofibrillar 

tenderness of low Choice and Select sirloin steaks. Sirloin steaks aged 35 d and beyond produced 

undesirable lean color scores in as early as the first 24 h of retail display, and top sirloin steaks 

aged only 14 d and displayed an additional 72 h had relatively intense levels of oxidized and 

sour/acidic flavors present. Top sirloins cannot be aged for enough time to improve tenderness 

and maintain a considerable level of display life, and extended aging time is not a viable option 

for top sirloins intended for retail display and sale.
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CHAPTER I 

 

INTRODUCTION 

Consumer studies have shown that tenderness is the most important sensory characteristic 

for determining overall steak acceptance (Huffman et al., 1996; Platter et al., 2003), while the 

maintenance of fresh beef color is the primary factor in determining retail display life and is a 

major factor influencing consumer purchase decisions at the retail marketplace. Postmortem 

muscle aging is an essential and effective management technique to improve tenderness, and for 

most muscles, extended postmortem aging periods of 14 days or more are required to achieve the 

majority of the aging response (Gruber et al., 2006). A more definite understanding of the effects 

of postmortem aging on retail display life of USDA Choice and Select beef that are most likely 

to appear in retail supermarkets could lead to more extensive implementation of aging, and 

ultimately, decrease the incidence of unacceptably tough steaks sold at retail.  

Gruber et al. (2006) noted that extended aging times were especially needed for loin cuts 

that were of a lower quality grade (USDA Select); the longissimus muscle and gluteus medius 

required 26 and 27 days of aging to optimize tenderness, respectively. The foodservice industry 

relies heavily on extended aging times to ensure a positive eating experience. This is especially 

true for beef cuts that have a greater need for tenderness improvement, such as the beef top 

sirloin butt. The National Beef Tenderness surveys have indicated that substantial variation in the 

aging time of beef muscle cuts exists (Morgan et al., 1991; NCBA, 1999; Brooks et al., 2000; 

NCBA, 2006; NCBA, 2011) with the most recent survey reporting a range of 1 day to 358 days 

of aging time. Nonetheless, the effect of aging period on retail display life has not been well 

documented. Even though the concept of aging beef has been well received and is heavily 
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utilized by the wholesale and foodservice segments of the beef industry, postmortem aging 

practices are not commonly implemented in the retail sector.  

Beef retailers are seemingly hesitant to age beef for more than 14 days before placing it 

in the retail case because product “freshness” is reduced and a shorter display life may result. 

With this information and the increase in the use of growth promoting agents in the beef 

industry, retailers need supporting information to justify aging beef cuts to optimize tenderness 

and reduce the incidence of tough steaks without sacrificing time in retail display. With the 

ability to confidently utilize extended aging periods to ensure tenderness, companies supplying 

beef to retailers should experience fewer claims and account for greater customer satisfaction 

with beef. Therefore, the objective of this study was to identify the impact of extended 

postmortem aging times on retail shelf-life and eating qualities of beef steaks that are the most 

likely to appear in retail stores.
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

Meat Color 

Color is the primary factor affecting consumer purchasing decisions of fresh meat 

products at the retail marketplace.  Much emphasis has been placed on maintaining and 

controlling color, since this is the main attribute consumers’ use in selecting their meat at retail 

(Faustman and Cassens, 1990).  Consumers routinely use product color and appearance to select 

or reject products, and suppliers of muscle food products must create and maintain the desired 

color attributes.  The color of muscle foods revolves around myoglobin, the primary pigment in 

meat.  The lignand present at the 6
th

 coordination site and the valence state of iron determine 

meat color via four principle chemical forms of myoglobin:  deoxymyoglobin (DMb), 

oxymyoglobin (OMb), caboxymyoglobin (COMb), and metmyoglobin (MMb).  See figure 2.1 

for these relationships.   

Deoxymyoglobin is the dark purplish-red or purplish-pink color, the typical color of the 

interior of fresh meat or in vacuum packages that has not been exposed to oxygen.  Dmb contains 

ferrous (Fe
2+

) iron with no ligand attached at the 6
th

 coordination site.  In order to maintain Dmb 

state, very low oxygen tension within vacuum packages or the interior is required.  Once 

diatomic oxygen attaches to the 6
th

 coordination site of ferrous iron (Fe
2+

), oxygenation of Dmb 

occurs and a bright-red color will form.  Myoglobin oxygenation (i.e. blooming) depends on a 

number of factors including: time, temperature, pH, and competition for oxygen by 

mitochondria.  The competition for oxygen between myoglobin and mitochondria determines 

oxygen penetration beneath the meat’s surface, which affects the intensity of the meat’s surface 



 
 

  4 

color.  Deoxymyoglobin can form MMb by oxidation of oxygen radicals and reactive oxygen 

species.   Carboxymyoglobin is formed when a carbon monoxide attached to the vacant 6
th

 

position of DMb, producing a stable bright red color when the environment is devoid of oxygen.  

When oxygen is present, COMb will take either OMb or MMb forms.  Metmyoglobin is the 

oxidized tan to brown colored form of myoglobin and it contains ferric iron (Fe
3+

).  Water is 

present at the 6
th

 position of the iron in MMb.  Metmyoglobin is typically formed at low 

concentrations of oxygen.  Conditions that can delay MMb formation include: low temperature, 

high pH, antioxidant capacity and greater reducing activity.   

Ultimate muscle pH is important for color stability as it influences many factors and 

usually ranges from 5.4 to 5.8 for beef.   It has been found that as oxygen consumption rate 

increased, pH increased from 5.6 to 7.2 (Bendall, 1972; Bendall and Taylor, 1972).  Oxygen 

consumption rate is related to residual mitochondrial activity in muscle.  It is thought that high 

oxygen consumption rates deter the development of oxymyoglobin (Ashmore et al., 1972).  

However, many studies have produced results in which the muscles with the lowest color 

stability had the highest oxygen consumption rate (O’ Keefe and Hood, 1982; Renerre and 

Labas, 1987).  Futhermore, color stability has been found to be muscle dependent with the 

longissimus dorsi having greater color stability compared to the gluteus medius.  Faustman and 

Cassens (1991) results found that longissimus dorsi muscles accumulated 9.2 percent less 

metmyoglobin than gluteus medius muscles.  Slow-twitch oxidative muscle fibers contain a 

greater amount of myoglobin and possess higher enzymatic reducing activity compared to fast-

twitch glycolytic or fast-twitch oxidative glycolytic muscle fibers, resulting in greater color 

stability and red color (Renerre, 1990).  
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Ledward (1972) determined that the reduction of metmyoglobin in meat was the primary 

determinant in color stability.  Metmyoglobin reduction activity is unique to each muscle 

(Leward et al., 1977).  The enzymatic pathway for metmyoglobin reduction activity results in the 

reduction of the iron molecule in the presence of coenzyme nicotinimide dinucleotide (NADH) 

(Renerre, 1990). However, there has been much debate on the role of metmyoglobin reductase as 

a determinant of color stability.  Reddy and Carpenter (1991) determined that muscles that have 

traditionally been characterized as the most color stable had a high metmyoglobin reductase 

activity. Madhavi and Carpenter (1993) reported that the M. longissimus lumborum was more 

color stable than M. psoas major, and the metmyoglobin reductase activity was the main color-

determining characteristic that differed between the two muscles.  Even though these conclusions 

have been made, others have found little evidence to support that reducing ability is related to 

meat discoloration or color stability.   O’Keefe and Hood (1982) reported high metmyoglobin 

reductase activity was associated with more color stable muscles, but that there was no 

correlation between metmyoglobin reductase activity and discoloration.  They concluded that 

metmyoglobin reductase activity had little effect on metmyoglobin activity. Other studies have 

shown that the ability to reduce iron in metmyoglobin has been reported to be more dependent on 

the availability of NADH then metmyoglobin reducing activity (Bekhit et al., 2003).  Lactase 

dehydrogenase replenishes the supply of NADH in lactate enhanced beef by converting lactate to 

pyruvate and NADH (Mancini et al., 2004).  This supply of NADH restores MRA and increases 

color stability.   

Lipid oxidation is believed to be a promoter of myoglobin oxidation.  Numerous research 

studies have linked the relationship between meat discoloration and lipid oxidation.  Lipid 

oxidation is positively correlated with pigment oxidation (Liu et al., 1995).  Rancidity in meat is 
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primarily attributed to the oxidation of unsaturated fatty acids of phospholipids that play an 

integral role in mitochondrial membranes (Lauridsen et al., 2000).  More than 50% of the fatty 

acids found in the mitochondria are unsaturated and susceptible to lipid oxidation (Gutierrez et 

al., 2002; Lass and Sohal, 1998).  Lipid oxidation and myoglobin oxidation appear to be 

interrelated (Arnold et al., 1993; Faustman et al., 1998; Strohecker et al., 1997; Tang et al., 

2005).  Faustman and Cassens (1990) reported a strong correlation between lipid and myoglobin 

oxidation, but it is not understood if myoglobin oxidation catalyzes lipid oxidation or vice versa.   

Tang et al. (2005) reported that mitochondria containing a greater amount of α-tocopherol had 

less lipid oxidation than those possessing lower levels.  Faustman et al. (1989) found muscles 

from cattle fed Vitamin E had greater color stability.  Tang et al. (2005) later concluded that 

postmortem mitochondrial lipid oxidation and myoglobin oxidation were interrelated and they 

were both inhibited by increased α-tocopherol concentrations.  Also, oxygen consumption rate 

was elevated with increased α-tocopherol concentrations. Hutchins et al. (1967) found that 

metmyoglobin accumulation and malonaldehyde were positively correlated (r = 0.73).  In order 

to measure lipid oxidation in meats, there are a variety of methods used but the most widely used 

is the TBA test (2-thiobarbituric acid test).  The method is based on the spectrophotometric 

determination of the extracted malonaldehyde from the food product (Tarladgis et al., 1960). 

Objective Color Measurement 

 Two devices have historically been used to obtain objective color measurements: a 

colorimeter or a spectrophotometer.  A colorimeter only measures tistimulus values (CIE 

L*a*b*) and have a combination of illuminant and observer.  A colorimeter is used for detecting 

and measuring small color differences between samples that are nearly alike in color.  

Spectrophotometers are more complex instruments that offer several illuminant/observer 
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combinations for the calculation of stimulus values and supply spectral analysis in intervals of 1 

to 10 nm.  The reflectance color measurement used by a spectrophotometer is a more rapid 

approach that can be used repeatedly on meat samples.  

 McKenna et al. (2005) reported that L* (lightness) appeared to play a minimal role in 

color stability.  Evaluating his correlation coefficients between muscles, there were low to not 

significant.  McKenna et al. (2005) reported a* values (redness) to have the most correlation 

throughout the display period.  Brewer et al. (2000) reported a 92% correlation between a* 

values and visual color panelists ratings on pork longissimus lumborum.  The relationship 

between b*-values (yellowness) and color stability is not clear.  There was no significant trend 

seen and few differences were noted.   

Postmortem Tenderness  

  Increased time of postmortem aging increases meat tenderness (Goll et al., 1964; Gruber 

et al., 2006; Calkins and Seidman, 1988; Savell et al., 1981).  Numerous studies have reported 

that tenderness is improved during 1 to 14 d of postmortem aging (Savell et al., 1981; Calkins 

and Seidman, 1988; Koohmaraie et al., 1991).  Throughout these studies, it was found that the 

biggest increase in tenderness occurred during the first 6 to 8 d postmortem and with most of the 

tenderization happening within the first 3 to 4 days after death (Goll et al., 1964; Davey and 

Gilbert, 1969; Minks and Stringer, 1972; Gruber et al., 2006).   It is noted that tenderness 

continues to decrease but at a much slower rate.   

Numerous studies have tried to capture muscle tenderness within the first 24 h (pre-rigor) 

postmortem but have found it to be difficult due to varying levels of adenosine triphosphate 

(ATP) concentrations (Klose et al., 1970; Dransfield and Rhodes, 1975; Cia and Marsh, 1976).  

Goll et al. (1997) found that contraction of pre-rigor muscle during cooking increases toughness 
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and ultimately leads to extremely high shear force values.  Wheeler and Koohmaraie (1994) 

developed a novel approach to measure of prerigor ovine muscle.  They found that Warner-

Bratzler shear force values (WBSF) increased during the first 24 h postmortem, decreased 

rapidly from 24 to 72 hours, and then continued to decrease until 336 h but at a much slower 

rate.  Even though differences exist between species (bovine, ovine, porcine), it is generally 

assumed that meat toughness increases during the early postmortem period (the first 24 h), 

decreases rapidly from 24 to 72 h, and continues to decrease until 336 h but at a much slower 

rate (Figure 2.2).  

Disruption of Muscle Structure 

 The first observable change in ultrastructure of postmortem muscle occurs in myofibrils, 

where degradation of the Z disks begins.  Proteolytic degradation of proteins associated with the 

Z disk cause a complete loss of structure, especially to desmin and nebulin.  The degradation of 

the Z-disks and myofibrillar proteins (desmin and nebulin) are responsible for increased 

fragmentation of myofibrils during postmortem aging.   This is measured by the Myofibril 

Fragmentation Index (MFI) and has been determined to be highly related to meat tenderness 

(Davey and Gilbert, 1969; Olson et al., 1976).  Several other proteins of the myofibril are 

degraded during postmortem storage, which are thought to contribute to postmortem 

tenderization (Robson and Huiatt, 1983; Taylor et al., 1995; Robson et al., 1997).  Cytoskeleton 

proteins, including titin and nebulin, are integral to the structural integrity of muscle cells 

(Robson and Huiatt, 1983; Robson et al., 1997).  The N-terminal of the titin molecule is attached 

to the Z-line and the C-terminal is located near the M-line.  Where the titin molecule is bound to 

the A-band is thought to be inelastic, and where the titin molecule is bound to the Z-line is 

thought to be elastic.  Titin function is to maintain the structural integrity of the sarcomere and 



 
 

  9 

provide an elastic element that connects the thick filament to the Z-line (Robson et al., 1995).  

Nebulin is believed to offer stability to the thin filament and help anchor them to the Z-line.  

Nebulin is anchored at the C-terminal of the Z-disk and extends to the length of the I-band 

(Robson et al., 1995). 

 Degradation of nebulin and titin increase tenderness between 24 to 72 h postmortem.  

Taylor et al. (1995) found that titin was almost entirely degraded between 24 and 72 h 

postmortem and 25% of the nebulin present in the skeletal muscle was degraded within the first 

24 hours.  This degradation resulted in weakening of the I-band and the Z-disk (Taylor et al., 

1995).  It has been reported that steaks characterized as “tender” had more extensive and rapid 

degradation than those classified as “tough” (Huff-Lonergan et al., 1995; Anderson and Parrish, 

1989).  However, Fritz et al. (1993) concluded that there was no relationship between tenderness, 

determined by WBSF and titin content, which was measured 48 to 384 h postmortem. 

 Troponin-t degrades during postmortem aging, but does not play an important role in 

maintaining the structure of the myofibril.  Therefore, it is unclear whether troponin-t 

degradation impacts postmortem tenderization or just serves as an indicator of myofibrillar 

proteolysis (Ho et al., 1994; Huff-Lonergan et al., 1995).  Degradation of costamere proteins 

contributes to aging as shown by the rate of degradation within the 72 h postmortem time period  

(Taylor et al., 1995).  Also, desmin has been linked to the rate at which aging occurs and the 

detachment of adjacent myofibrils.   

 Even though not fully understood, it is thought that cathespsins, calpains and calcium 

ions could be possible contributors to myofibril degradation.  Cathespins are enzymes located 

within the lysosome.  They are known to work in acidic conditions and their concentrations are 

increased during aging.  They are known to be ineffective during early stages of aging since 
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there is little to no myofibrillar degradation early on.  The biggest debate against the involvement 

of cathespins is that all catheptic proteases degrade myofibrillar proteins including major 

contractile proteins (actin and myosin) (Koohmaraie et al., 1988).  Many studies have reported 

that these major contractile proteins are not degraded in muscle that is stored at 0 to 4 °C.  It is 

believed that if this tenderization takes place at all, it is from 7 to 10 d postmortem (Koohmaraie 

et al., 1988).  Calpains are endogenous proteases that are activated by calcium.  Calpains are 

responsible for 90% or more of the tenderization that occurs during postmortem storage at 2 to 

4°C (Goll et al., 1991) and is largely responsible for postmortem degradation of myofibrillar 

proteins (Koohmaraie, 1992; Koohmaraie, 1996; Hopkins and Thompson, 2002).  Calpains are 

known to not degrade actin, α-actinin, myosin, or troponin-C (Goll et al., 1983).   

 Since the Ca
2+

 concentration in postmortem muscle is too low for any significant m-

calpain activity to occur, μ-calpain is thought to be responsible for postmortem proteolysis 

(Boehm et al., 1998).  Calpastatin is known to inhibit calpain activity, and muscle contains an 

excess of calpastatin relative to μ-calpain.  Koohmaraie (1996) suggest that the ratio of 

calpastatin to μ-calpain was 2:1 in beef.  The difference in this ratio has been used to explain 

tenderness difference among longissimus muscle samples (Wheeler et al., 1990; Koohmaraie et 

al., 1991).  Some studies have shown that Ca
2+

 ions could contribute to postmortem weakening 

of the myofibril structure, but it proves to be difficult to separate the role of the Ca
2+

 and 

calpains.   

 Besides myofibril changes contributing to postmortem tenderization, some researchers 

have suggested other mechanisms.  Goll et al. (1995) attributed the large increase in toughness 

that occurs during the first 24 to 36 hours postmortem and the decrease in toughness thereafter to 

the weakening of the actin/myosin cross-bridge.  Also, changes to the extracellular matrix may 
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contribute to postmortem tenderization (Greaser, 1997; Nishimura et al., 1998; Takahashi, 1996).  

The mechanism responsible for the degradation of the endomysium and permysium is unknown.   

 The majority of research regarding the mechanisms of postmortem tenderization has 

focused on myofibrillar proteolysis.  As time has gone by, thoughts and theories have changed 

about the mechanisms causing the increase in tenderness postmortem.  This is no doubt a 

complex topic, which will continue to evolve as the mechanisms are more heavily researched.  

All of these mechanisms will continue to be affected as we are manipulating our preharvest and 

postharvest management. 

Aging techniques 

 There are two methods of aging commonly used in the beef industry, wet aging and dry 

aging.  Wet aging involves storing a meat product in a vacuum-sealed, non-permeable package at 

refrigerated temperatures (Campbell et al., 2001; Sitz et al., 2006; Warren and Kastner, 1992).  

This is the most commonly used method of the two used in the United States (Laster et al., 2008; 

Smith et al., 2008).  Wet aging commonly results in significantly higher yields compared to dry 

aging (Laster et al., 2008; Smith et al., 2008; Warren and Kastner, 1992).  Dry aging refers to 

storing product unpackaged in a controlled environment and can be utilized for whole carcasses 

or sub-primal cuts (Campbell et al., 2001, Smith et al., 2008; Warren and Kastner, 1992; Sitz et 

al., 2006).  Between the two aging techniques, when aging time is held constant, there is no 

difference inWBSF (Smith et al., 2008).  It is believed that aging to a certain point increases 

positive flavor attributes, but after a certain point undesirable flavors will be noted.  The point at 

which undesirable flavors appear has yet to be found.  Smith et al. (2008) thought this was at 21 

day of aging; however, steaks aged for 21 d resulted in the highest flavor level and beyond 21 d 

resulted in decreased beef flavor. 
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Aging at retail level 

 Numerous studies have reported the aging period applied to cuts in the United States 

marketplace.  The first National Beef Tenderness Survey (Morgan et al., 1991) reported post 

fabrication aging times (PFT) (days for subprimal cut to arrive at retail outlet from fabrication 

plant) for all cuts were a minimum of 3 d, a maximum of 30 d and an average of 17 d.  Results of 

the National Beef Tenderness Survey- 1998 (Brooks et al., 2000) showed a minimum PFT of 2 d, 

a maximum PFT of 61 d and an average PFT at 19 d.  Additionally 34.1% of subprimals had a 

PFT less than 14 days.  The National Beef Tenderness Survey- 2005/2006  (NCBA, 2006) stated 

that minimum PFT was 3 d, maximum PFT was 83 d and average PFT was 22.6 d.  The National 

Beef Tenderness Survey- 2010/2011 determined the minimum PFT was 1 d, maximum PFT was 

358 d and average PFT was 20.5 d (NCBA, 2011).   

 Many studies have tried to identify the ideal postmortem aging period for a beef 

subprimal (Smith et al., 1978; Eilers et al., 1996).  Texas A&M University researchers (Lorenzen 

et al., 1998) developed an “aging index” to assist retailers in managing postmortem aging times 

in order to maximize palatability and consistency.  They recommended that ribeyes and 

shortloins be aged for 13 days.  Colorado State University (Mies et al., 1999) developed a review 

of literature to identify the appropriate postmortem time to recommend to retailers and they 

concluded that the strip loin should be aged 14 days and top sirloin cuts be aged for 21 days. 

Additionally, Gruber et al. (2006) noted that extended aging times were especially needed for 

loin cuts that were lower quality grade (USDA Select) with the longissimus muscle and the 

gluteus medius requiring 26 and 27 d of aging to optimize tenderness.  It was also reported that 

tenderness in strip loin steaks could be improved a minimum of 14% and top sirloins could be 

improved up to 22% with more extensive aging.  Gruber et al. (2006) used these results to 
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classify muscles into aging response categories based on the length of postmortem aging needed 

for a majority of the change in shear force to occur.  They classified the gluteus medius to have a 

moderate aging response and the longissimus dorsi to have a high aging response time.  These 

classifications were based on high, moderately high, moderate, moderately low and low 

categories. 

Beef Sensory Attributes 

 Beef flavor is very complex with a variety of influences as well as descriptive terms.  

Lawrie (1966)  described the sensations of odor, taste, texture, temperature and pH all combine 

to create flavor.  Diet plays a large role in flavor development as it can undergo direct changes 

based on the feed type.  Flavors are different and all have an additive effect to the complexity of 

beef flavor. One of the more standard beef lexicons used today, developed by Adhikari and 

Miller (2010), focuses on major beef flavor notes and aroma such as brown/roasted, 

bloody/serumy, fat-like, metallic, livery, hay-like.  It assists in creating a standard for referencing 

back to a taste sensory panel for each flavor note.  Juiciness has contributed to differences in pH, 

water-holding capacity, fatness and firmness of the cooked meat product (Lawrie, 1966).  When 

evaluating juiciness, it is the combined effects of initial fluid release as well as the sustained 

juiciness (Weir, 1960). Tenderness is considered the single most important attribute in 

determining beef palatability and acceptability (Bratzler, 1971).  Weir (1960) described it as the 

initial ease of penetration of the sample by the teeth, how easily the meat is fragmented and the 

amount of particle left after chewing.  Tenderness and juiciness are highly associated.  Carpenter 

(1962) concluded that the lubricating properties of fat confound the sensation of tenderness.   
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Objective Tenderness Evaluation 

 Warner-Bratzler shear force (WBSF) and slice shear force (SSF) are two forms of shear 

force analysis most commonly used in the measurement of tenderness.  With WBSF, steaks must 

equilibrate to room or refrigerated temperature for 2 to 24 hours (Crouse and Koohmaraie, 1990; 

Wheeler, 1994).  A WBSF machine testing machine or a machine equipped with a WBSF 

attachment must be used.  A 60-degree angle, vee shaped slides through a 1.245 mm thick space 

on the apparatus for the actual measurement.  Cores (1.27cm) are obtained from the steak, and 

each core is sheared once perpendicular to the fibers with a crosshead speed of 200 mm/min 

(Shackelford et al., 1997). 
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Figure 2.1 Chemistry of Fresh Meat Color Triangle. Schematic of the interconversions of 

myoglobin redox forms in fresh meat color (Mancini and Hunt, 2005).



 
 

  16 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

6.5 

7 

7.5 

8 

8.5 

9 

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 

S
h

e
a

r 
F

o
rc

e
, k

g
 

Hours Postmortem 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.2. Postmortem changes in ovine longissimus shear force (Wheeler and Koohmaraie, 

1994). 

 

Wheeler and Koohmaraie (1994) 

Hours Postmortem Shear Force, kg 

0 5.07 

3 5.10 

6 6.53 

9 8.26 

12 8.24 

24 8.66 

72 4.36 

336 3.10 
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CHAPTER III 

 

MATERIALS AND METHODS 

 

Product Selection 

 Paired strip loins (NAMP #180) and top sirloin butts (NAMP #184) were obtained from a 

commercial packing plant.  Strip loins and top sirloin butts were collected at approximately 48 h 

postmortem from USDA Choice carcasses with a marbling scores ranging from Small
00 

to 

Small
50

 (n = 15) or USDA Select carcasses with a marbling scores ranging from Slight 
50

 to 

Slight
99

 (n = 15) (Table 3.1). Samples were collected from 3 separate groups of carcasses (2 

separate trips to the packing plant) in order to replicate aging and display period three times.  

These collection groups served as a block to control variance among different groups of 

carcasses.  Samples were then transported under refrigeration (0 – 2°C) to Colorado State 

University Meat Laboratory for further processing. 

Muscle Fabrication and Steak Allocation 

 Strip loins from the left and right sides of an individual animal were fabricated into six 

portions (excluding portions containing the gluteus medius).  Each portion was randomly 

assigned to one of 6 postmortem aging periods: 14, 21, 28, 35, 45 or 63 days.  Each top sirloin 

butt was fabricated by removing the biceps femoris, gluteus accessorius, and gluteus profundus 

in order to isolate the gluteus medius muscle. Once isolated, each gluteus medius portion was 

sectioned into 3 equal portions from posterior to anterior, yielding 6 uniform sections per animal.  

Then, each portion was randomly assigned to one of 6 postmortem aging periods: 14, 21, 28, 35, 

49 or 63 days. The sections for both strip loin and top sirloin butts were vacuum-sealed in a non-
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oxygen permeable package and stored fresh, not frozen at 0°C (±1°C) in the absence of light for 

their designated aging period.  Once the aging period was complete, each section was removed 

from storage, faced and hand-cut into 3 strip loin steaks (2.54 cm thick) and 6 top sirloin steaks 

(2.54 cm thick) with a maximum of 0.32 cm of external fat remaining. 

Retail Display 

 Two steaks from the aged section for each muscle were placed in Styrofoam trays 

containing soaker pads and overwrapped with polyvinylchloride film.  Each package was placed 

in a multi-deck retail display case (Hussman Model No. M3X8GEP) set at 2°C (±1°C) for 72 

hour period or until the steak was 33% discolored. Retail display cases were equipped with Light 

Emitting Diodes (LED) lighting that illuminated at an average light intensity of 900 Lux (±184 

Lux).  Samples were exposed to light the entire 72 h period they were in the display case. Every 

8 hours, samples were rotated to account for any variation in light intensity or temperature. 

Color Evaluation 

Every 8 h during the 72-hour display period, each steak was evaluated by a minimum of 

8 trained panelists for lean color, fat color, and percent lean discoloration.  Trained panelists 

quantified the predominant lean and fat color of each steak using a 15 cm unstructured line scales 

anchored at both ends with descriptive terms.    For predominant lean color, 0 cm denoted very 

dark red or brown/green, and 15 cm denoted bright cherry-red to very dark red. For predominant 

external fat color, 0 cm denoted dark tan or brown/green, and 15 cm indicated bright, creamy 

white.  Once the display period was complete, steaks were removed from retail display. After 

each scoring session, individual panelist ratings were averaged to obtain a single panel rating for 

each visual attribute of each sample.  From each package, one steak was randomly designated for 
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sensory panel evaluation while the second steak was designated for shear force testing and 

oxidation analysis (2-thiobarbituric acid reactive substance). 

Objective Color Measurement 

 Objective lean color measurements were recorded every 8 hours for the 72 hour period.  

Measurements were obtained using a portable spectrophotometer equipped with a 6 mm 

measurement port (Miniscan Model 4500S, Hunter Laboratories, Reston, VA) that was 

standardized before each use.  A total of nine readings of CIE L*- (lightness), a*-(redness), b*-

values (yellowness) for each steak were collected through the overwrap film and averaged for 

each package. 

Warner-Bratzler Shear Force Determination 

Upon completion of designated aging periods, Warner- Bratzler Shear Force (WBSF) 

was conducted on each steak (fresh; never frozen) at 0 and 72 h of retail display.   For 0 h shear 

force determination, after the section was removed from storage, the third steak cut from each 

aged section was immediately cooked, and WBSF was conducted to determine the effects of the 

aging period on tenderness without the display period. Once the 72 h display period was 

completed, steaks were removed from the package, and were immediately cooked.  Steaks were 

cooked on electric grills (model GGR64, Salton, Inc., Lake Forest, IL) that heated steaks from 

both sides simultaneously to a peak internal temperature of 71C, measured in the geometric 

center of the steak, using a Type K thermocouple thermometer (AccuTuff 340, model 34040, 

Cooper-Atkins Corporation, Middlefield, CT).  After cooking, the steaks were allowed to 

equilibrate to room temperature (22C) and 6 to 10 cores (1.27 cm in diameter) were removed 

from each steak parallel to the muscle fiber orientation.  Each core was sheared once, 

perpendicular to the muscle fiber orientation, using a universal testing machine (model 4443, 
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Instron Corp., Canton, MA) fitted with a Warner-Bratzler shear head (cross head speed: 200 

mm/min).  Peak shear force measurements were recorded for individual cores and averaged to 

obtain a single WBSF value for each steak. 

Lipid Oxidation Analysis 

 Immediately following removal from the package, a 35 g portion was removed from the 

medial portion of each steak designated for WBSF.  The 35 g portion was frozen at -80°C and 

then shipped with dry ice to Food Safety Net Services (San Antonio, TX) for further evaluation.  

Steaks were evaluated for lipid oxidation by measurement of 2-thiobarbituric acid reactive 

substances (TBARS) using methods described by Tarladgis et al. (1960) and modified by (Rhee 

et al., 1978). 

Descriptive Sensory Analysis 

 Descriptive sensory analysis was conducted at Colorado State University.  Panelists were 

trained to characterize sensory attributes for both strip loin and sirloin steaks using the standards 

outlined in the lexicon of descriptive attributes, developed using guidelines provided by AMSA 

(1995) and Adhikari and Miller (2011).The attributes that they were trained to identify included  

tenderness (myofibrillar, connective tissue tenderness, and overall), juiciness, and the following 

beef flavor descriptors: beef flavor intensity, buttery/beef fat flavor, oxidized, sour/acidic, 

livery/organy, and bloody/metallic.   

 Following removal from the display case, both strip loins and sirloin steaks designated 

for sensory analysis were immediately placed in a vacuum sealed bag and kept frozen (-20°C) 

until all aging and display periods were complete.  Samples (both strip loin and sirloin) were 

strategically and randomly assigned to a sensory session to ensure that all aging periods for each 

cut were represented in a single sensory panel session.  A maximum of 12 samples were served 
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during a single panel session, and a maximum of 24 samples were served to each trained panelist 

each day.  Also, sensory panel sessions were scheduled a minimum of 2 h apart.  

 Frozen strip loin and sirloin steaks used for each panel session were tempered for 24 to 

36 h at 2°C to ensure that raw internal steak temperatures were between 1 and 5°C and then 

cooked on electric grills (model GGR64, Salton, Inc., Mt. Prospect, Il) to a peak internal 

temperature of 71°C.  A Type K thermocouple thermometer (AccuTuff 340, model 34040, 

Cooper-Atkins Corporation, Middlefield, CT) was placed in the geometric center of each steak 

and the internal temperature was monitored during cooking.  After cooking, steaks were cut into 

sections (1.3 cm x 1.3 cm x cooked steak thickness) and sections were placed in a ceramic bowl, 

covered with aluminum foil, and held in a warming cabinet (60°C) for a maximum of 30 minutes 

before being served to a minimum of 8 trained panelists.  Each panelist received 2 sections from 

each steak. Panelists were seated in individual cubicles equipped with red incandescent light to 

mask color differences among samples.  Panelists were supplied with distilled water, apple 

juice, and unsalted saltine crackers, which were used for palate cleansing between samples. 

Panelists evaluated each sample and rated it on a 15 cm unstructured line scale anchored at both 

ends with descriptive terms.  For juiciness and all tenderness attributes (myofibrillar, connective, 

overall), 0 cm indicated extremely dry and extremely tough, respectively, and 15 cm indicated 

extremely juicy and extremely tender, respectively.  For tenderness, the mid-point of the line (7.5 

cm) was considered a neutral response (i.e., neither tough nor tender).  For beef flavor 

descriptors, 0 cm signified “no presence”, and 15 cm signified “very strong presence”. After 

each panel session, individual panelists’ ratings were averaged to obtain a single panel rating for 

each sensory attribute of each sample.   

 



 
 

  22 

Statistical Methods 

Analysis of variance (ANOVA) was conducted using the restricted maximum likelihood 

method (REML) in the mixed procedure of SAS (Statistical Analysis Software, Version 9.3, 

Cary, NC).   Data for strip loins and sirloins were analyzed separately.  Sample collection group 

(retail display groups) were included as a block effect in each model to control for variance in 

product and storage conditions.  The ANOVA model included fixed effects of quality grade 

(grade) and postmortem aging treatment (age) and the two-way interaction as fixed effects.   

Random effects included carcass and the interaction between age and carcass.  Random effects 

included in the model designated age and retail display period (hour; 0 h through 72 h) as a 

repeated measure.   When the dependent variable was measured multiple times during the retail 

display period, hour was also included in the model as a fixed effect. The Kenward- Roger 

approximation was used to calculate denominator degrees of freedom, and peak internal steak 

temperature served as a covariate when analyzing WBSF and sensory data.  A test for the most 

appropriate covariance structure (compound symmetry or autoregressive) was performed to 

determine the most appropriate analyses for each dependent variable.  The most appropriate 

covariance structure was selected using the lowest AICC value.  The AICC value is the second 

order criterion to the Akaike Information Criterion (AIC), which is a way of selecting a model 

from a set of models.  The AICC value takes into account sample size by, essentially, increasing 

the relative penalty for model complexity with small data sets.  In each model, main effects and 

interactions were analyzed for each fixed effect (α = 0.05).  

Non-linear regression (PROC NLIN: SAS Inst. Inc., Cary, NC) was used to characterize 

change in WBSF during postmortem storage.  There was not a significant difference between 

grades, so they were fitted to a single curve.  Within each cut (strip loins and sirloins) least 
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squares means (cut x age) were fitted to the following exponential decay model: WBSF= b2 + b1 

exp(-b0t) where b2 is the distance from the asymptote, b1 is the distance from the asymptote to the 

y-intercept, b0 is a constant rate of change, and t is the time (d) postmortem (Figure A1.2 and 

Figure A1.3).  Coefficients of determination (R
2
) were calculated as the ratio of the residual 

sums of squares to the corrected total sums of squares.
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RESULTS AND DISCUSSION 

 

 The beef utilized in this study was intended to represent the majority of beef destined for 

retail sale in the United States marketplace.  Least squares means for carcass traits for the 

carcasses from which the strip loins and sirloins were collected are presented in Table 3.1.  Mean 

marbling score for both USDA low Choice and USDA Select product was near the median value 

of the selection range (Slight 50-99 and Small 00-50), and all of the other carcass traits were 

reasonably similar and did not differ (P > 0.05) by quality grade.  Data for strip loin steaks and 

top sirloin steaks were analyzed independently in this study and results will be discussed 

separately. 

Strip Loin Steaks 

Color Evaluation 

 USDA quality grade did not affect the results of retail display, and all results are reported 

averaging over USDA Choice and USDA Select strip loin steaks (P > 0.05). There was an age x 

hour interaction (P < 0.05) for lean discoloration scores for strip loin steaks and the values are 

reported in Table 3.2. Surface discoloration was minimal during retail display, only 2 steaks 

discolored.  This observation was consistent for all steaks resulting from all levels of postmortem 

aging time.  Previous research has characterized the longissimus dorsi as having very high color 

stability (McKenna, 2005; Renerre and Labas, 1990; Renerre and Labas, 1987; O’Keefe and 

Hood, 1982; Bendall and Taylor, 1972).  The results of the present study support the findings of 

the previously mentioned studies in that strip loin steaks resulting from all postmortem aging 

treatments had extremely low levels of discoloration following 72 h of retail display.    As steaks 

were aged for longer periods postmortem, the level of lean discoloration increased, but only to 
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negligible levels with the highest discoloration scores occurring among 49 and 63 d aged steaks 

(Table 3.2).  It is possible that the strip loin steaks utilized in this study resulted from beef 

animals that had been supplemented with Vitamin E during the finishing period; however, this 

information is not known for the product utilized. Sanders et al. (1997) noted that supplementing 

Vitamin E to cattle resulted in increased color stability and extended shelf life of beef.  Zerby et 

al. (1999) suggested that strip loin steaks could last approximately 2.5 d for Non-Vitamin E 

supplemented cattle and approximately 3 d for Vitamin E supplemented cattle in a simulated 

retail display case before they reached an unacceptable level, where the product would be 

discounted.  However, the level of discoloration that was observed in the current study indicates 

that strip loins could be aged for extended aging periods and still be purchased within 3 d of 

being placed in the retail case with extremely low levels of browning and discoloration.  An 

unpublished study from Kansas State University that compared LED and fluorescent lighting, 

suggested that LED lighting extended color life based on visual color scores (Steele, 2011).  

These visual color evaluation scores resulted in an extended display life of 0.5 to 1 d for beef 

longissimus dorsi and the superficial portion of the beef semimembranosus steaks under LED 

lighting compared to fluorescent lighting.   

Even though metmyoglobin formation on the surface was minimal, color panel ratings for 

lean color and fat color suggested that lengthy postmortem aging before retail display influences 

the overall appearance of steaks. Ratings for lean color of strip steaks are presented in Table 3.3 

and ratings for fat color are presented in Table 3.4.  A significant age x hour interaction existed 

for lean color scores (P < 0.05).  For all aging treatments, throughout the 72 h display period, 

lean color scores decreased, indicating a darkening of the red color and transitioning away from 

bright, cherry-red colored lean.  Fat color scores also decreased throughout the display period but 
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at a much less noticeable level.  Fat color data for strip loin steaks are in Table 3.4 and an age x 

hour interaction (P<0.05) existed.   Similar to lean color scores, the external fat color scores of 

strip loin steaks were affected by age.   Aging alone (0 h of retail display) reduced fat color 

scores, indicating that the color of the fat was less white with longer periods of postmortem 

aging. Fat color scores decreased for all aging treatments over the 72 h of display, but were still 

indicative of a white colored fat. Nonetheless, considerable reductions in fat color scores were 

observed in steaks that had been aged 28 d and 35 d postmortem after 40 h of retail display, and 

clear changes in fat color were observed in strip steaks aged 49 d and 63 d postmortem as early 

as 24 h of retail display Objective color measurements (L*a*b*) for strip loin steaks are 

presented in Table 3.5, Table 3.6, and Table 3.7 respectively. Lean a* scores support the results 

of the trained color panel showing that redness decreased during retail display for strip loin 

steaks in all aging treatments.  With the exception of one aging treatment (49 d), redness, as 

indicated by a high a* value, increased in the first 8 h of display.  This data indicates that 

following extended periods of gaining in vacuum-sealed bags, beef strip loin steaks require 

longer than usual time to fully bloom.  In this study, steaks were allowed to bloom for 

approximately 2 hours before objective color measurements were taken.   A similar increase in 

a* was also reported by McKenna et al. (2005); their values showed that a* values increased 

from day 0 to day 1.  Steaks aged 14 d before being placed in retail display maintained the most 

cherry-red colored lean throughout 72 h of retail display, whereas 63 d aged steaks showed the 

greatest decline in lean color scores over the 72 h display period. Despite the fact that lean color 

scores declined for all postmortem aging treatments, all age levels maintained an acceptable, red 

colored lean throughout the 72 h display period. However, lean a* showed significant reductions 
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following 32 h of display in 63 d aged steaks and after 64 h of display in 49 d aged strip loins 

steaks (Table 3.6).  

Color panel findings indicated that extended periods of postmortem aging contribute to a 

reduction in bright cherry-red lean beef color, but did not necessarily shorten the display life of 

strip loin steaks in a 72 h period. Objective measurements of L* and b* were not attributed to 

any meaningful differences in visual appearance of the lean in strip loin steaks.  Similarly 

McKenna et al. (2005) reported that lean L* and b* values were of minimal significance in 

predicting color stability. 

Effects on Postmortem Tenderness 

The effects of age, quality grade, and age x grade on WBSF and trained sensory panel 

ratings for strip loin steaks were tested, and the effects of grade and the age x grade interaction 

were not significant (P > 0.05). Therefore, all reported and discussed differences for WBSF and  

trained sensory panel ratings for strip loin steaks are based on the main effect of age averaging 

over quality grade.  

 Warner-Bratzler shear force values of strip loin steaks are reported in Table 3.8 and 

trained sensory panel ratings for strip loin steaks are presented in Table 3.9. As expected, when 

steaks were subjected to longer periods of postmortem aging, WBSF values decreased and 

trained sensory panel tenderness ratings improved. The WBSF values of steaks decreased (P < 

0.05) following 72 h of retail display (Table 3.10). Even though the reduction in WBSF during 

the 3 days of display was minimal, these results demonstrate that tenderness is improving during 

the display period.  

Least squares means for WBSF of strip loins steaks at the different postmortem aging 

periods are presented in Table 3.8.  As postmortem aging time was increased,  WBSF values 
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decreased for all strip loin steaks.  It was most notable that 49 d and 63 d aged strip loin steaks 

had the lowest WBSF value, while 14 d had the highest WBSF value.  There was no statistical 

difference between 21 d, 28 d and 35 d aged steaks.  The least squares means for all steaks 

represented in all 6 aging periods, were under the ASTM tough vs. tender threshold, (WBSF < 

4.4kg) based on ASTM (2011) guidelines. 

Several studies have recommended aging times based on improvements in shear force 

(Smith et al., 1978; Weatherly et al., 1998; Gruber et al., 2006).  Smith et al. (1978) found no 

improvement in shear force past 11 d postmortem for the longissimus dorsi (USDA Choice) and  

Weatherly et al. (1998) suggested aging strip loins for only 13 d.  Gruber et al. (2006) reported 

that USDA Select longissimus dorsi tenderness improved up to 28 d postmortem, and USDA 

Choice longissimus dorsi showed no improvement in shear force past 21 d postmortem.  In order 

to fully identify correct strategies for postmortem aging management, similarly to Gruber et al. 

(2006), in the present study, non-linear regression models that were fitted to the least squares 

means were developed (Figure 4.1). Since the effect of USDA quality grade was not significant 

(P > 0.05), a single curve was constructed to represent both USDA Choice and Select strip loin 

steaks.   Gruber et al. (2006) classified the longissimus dorsi (USDA Select) as having a high 

aging response.  In the present study, during aging from 14 to 63 d, shear force values decline by 

approximately 1 kg.  Approximately half of the total decline in WBSF value was achieved from 

14 to 28 days, while the remaining aging response occurred from 28 to 63 days; however, WBSF 

did not significantly decline from 49 d to 63 d postmortem.  This data indicated that considerable 

tenderness improvement ceases following 49 d postmortem in USDA Choice and Select strip 

loin steaks.  
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 In agreement with WBSF data, trained sensory panel ratings indicated that an advantage 

in myofibrillar tenderness (MT), connective tissue tenderness (CT), and overall tenderness (OT) 

compared with 14 d aged strip loin steaks is not distinguishable until strip loins have been aged 

for 35 d, further suggesting that there is a minimal advantage in aging strip loins for an extended 

period to gain recognizable tenderness advantages (Table 3.9). It should be noted that 63 d aged 

steaks had the highest rating for all three tenderness attributes.  Trained sensory panel ratings 

were used to quantify the levels of off-flavors associated with oxidation of the strip loin steaks 

following 72 h of display. Sour/acidic, oxidized, and livery/organy flavors were affected by age 

and least squares means are presented in Table 3.9. Sensory panel ratings for oxidized flavors 

indicated that aging steaks up to 35 d did not significantly increase the level of detectable 

oxidized flavor in strip loins steaks when compared to 14 d aged steaks. Similarly, sour acidic 

flavors in strip loin steaks are not significantly different (P > 0.05) from 14 d aged steaks, unless 

they were aged for greater than 35 days postmortem. Oxidized and sour/acidic flavors increased 

(P < 0.05) over the levels of flavors found in 14 d aged product when strip loins are aged greater 

than 35 days. This was most evident when 63 d aged steaks are most tender but have the greatest 

amount of off flavors associated with them.   

An age effect was observed on TBAR values of strip loin steaks (P < 0.05; Table 3.11); 

however, there were no meaningful trends or associations with TBAR values and postmortem 

aging and the development of discoloration and off flavors. This was potentially due to the fact 

that strip loins were vacuum sealed in high barrier bags and at a very low temperature in the 

absence of light during the entire aging period, and all steaks, regardless of age, were displayed 

for the same period of time in a traditional, oxygen permeable package. These samples were also 

shipped to a separate location to be analyzed.  Even though they were froze in an -80°C freezer 
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before shipping, this could contribute to the inconsistency and low TBAR values that were 

recorded.  

Sirloin Steaks 

Color Evaluation 

A age x hour interaction existed for lean discoloration scores of sirloin steaks displayed 

for 72 h (P < 0.05; Table 3.12). Discoloration scores for sirloin steaks that had been aged 49 d 

postmortem indicated extremely low levels of browning throughout the retail display period. 

Sirloin steaks that had been aged for 49 d and 63 d, had very low levels of lean discoloration 

following 48 h of retail display. . Even though extensive surface browning was not observed for 

the majority of aging treatments and display periods, color panel ratings for lean color and fat 

color indicated that postmortem aging before retail display effects the appearance and shelf 

stability of sirloin steaks. Ratings for lean color of sirloin steaks are presented in Table 3.13 and 

ratings for fat color are presented in Table 3.14. Objective lean color measurements, L* a* b*, 

for the same steaks, are presented in Table 3.15, Table 3.16, and Table 3.17, respectively.  

An age x hour interaction existed for lean color scores (P < 0.05; Table 3.13). Lean color 

scores decreased during 72 h of retail display for all aging treatments, indicating a darkening of 

red color and transitioning away from a bright, cherry-red colored lean,. Lean a* scores agreed 

with the results of the trained color panel showing that redness decreased for all age strip loin 

steaks over the retail period. Steaks aged only 14 d before being placed in retail display 

maintained the most cherry-red colored lean throughout 72 h of retail display. Lean redness 

scores indicated that sirloin steaks aged 14 d, 21 d, and 28 d before retail display maintained an 

acceptably colored lean throughout all 72 h of display, while steaks aged 35 d, 49 d, and 63 d had 

lean color scores reaching a darker, undesirable level of red after 32 h, 24 h, and 16 h of display, 
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respectively. A number of studies have shown that the gluteus medius muscle has color stability 

issues  compared to other muscles such as the longissimus dorsi (Hood, 1980; O’Keefe & 

Hood,1982).  Based on a simulated 5 d retail display, McKenna et al. (2005) classified it as an 

“intermediate” color-stable muscle when compared to other muscles.  The results of the current 

study agree that the color stability is lesser than that of the longissimus dorsi muscle; especially 

following extended periods of postmortem aging. Sirloin steaks aged 28 d or less maintained an 

acceptable external fat color throughout 72 h of retail display. After that, external fat color fell to 

unacceptable levels at 64 h, 48 h and 32 h for 35 d, 49 d and 63 postmortem, respectively.   

Objective color values agreed with the lean color ratings of panelists as a* values 

decreased significantly during the 72 h display time for all aging periods.  Most notable color 

deterioration occurred in steaks that had been aged for more than 21 d.  For all aging periods, an 

increase in a*value was seen from 0 h to 8 h., the 0 h measurement was taken after allowing 

steaks to oxygenate for approximately 2 h.  As discussed previously in reference to strip loin 

steaks, this increase in a* values was also observed in strip loin steaks in this study.  It is not 

fully understood why this took place.  There was no meaningful trend in L* values.  McKenna et 

al. (2005) reported that L* values played a minimal role in color stability. In this study, b* values 

gradually decreased for all aging periods during the 72 h display period.  This suggests that b* 

values were moving from a more yellow color to a more neutral color range (gray). 

Effects on Postmortem Tenderness 

The effects of age, quality grade, and age x grade on WBSF, trained sensory panel ratings 

and TBARS for strip loin steaks were tested, and the effects of grade and the age x grade 

interaction were not significant (P > 0.05). Therefore, all reported and discussed differences for 

WBSF, trained sensory panel ratings and TBARS for strip loin steaks are based on the main 
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effect of age averaging over quality grade. Steaks represented in this study were USDA Choice 

(Sm 
00-49

) and USDA Select (
50-100

). 

Gruber et al. (2006) reported that the tenderness of USDA Select gluteus medius steaks 

improved up to 28 d postmortem, and USDA Choice gluteus medius showed no significant 

improvement in shear force past 21 d postmortem.  In order to fully identify correct strategies for 

postmortem aging management, Gruber et al. (2006) ran non-linear regression models that were 

fitted to the least square means of WBSF.  In this study, we also fit non-linear regression models 

to the least square means of WBSF (Figure A1.3).  Since there was not a significant quality 

grade effect, WBSF values by aging treatment were averaged over grade to yield one curve. 

Gruber et al. (2006) reported an aging response value that was determined by the length of 

postmortem aging needed for the majority of the change in shear force values to occur from 2 to 

28 d postmortem.  Gluteus Medius (USDA Select) was reported to have a moderate aging 

response from the categories: high, moderately high, moderate, moderately low and low. In this 

data, aging 14 d to 63 d postmortem there was approximately a 1kg improvement in WBSF, and 

over half of the overall decline happened after 35 d. These data suggest that tenderness 

improvement continues beyond 28 d of postmortem aging for USDA Choice and Select gluteus 

medius steaks. In accordance with the aging curves developed in this study, the gluteus medius 

will continue to improve in tenderness beyond 63 d of age. 

Warner-Bratzler shear force values of sirloin steaks by age are reported in Table 3.8 and 

trained sensory panel ratings for sirloin steaks are presented in Table 3.18. Aging treatment 

affected WBSF values (P < 0.05) and trained sensory panel assessments of tenderness including 

myofibrillar tenderness (P < 0.05) and connective tissue tenderness (P < 0.05), but only tended 

to affect sensory panel ratings for overall tenderness (P > 0.05) Even though WBSF was 
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improved by aging sirloin steaks, a significant (P < 0.05) improvement in WBSF over 14 d aged 

steaks was not observed until sirloins were aged at least 35 d.  It should be noted that for all 

aging treatments taken for sirloin steaks, the least squares means would fall below a WBSF value 

for the tough vs. tender threshold (4.4 kg) based on the ASTM (2011) guidelines. 

Trained sensory panel scores for myofibrillar tenderness indicate that tenderness was not 

improved over 14 d aged steaks until 49 d of age was accomplished. However, improvements in 

connective tissue tenderness over 14 d aged sirloin steaks were observed in steaks aged only 21 

d. In comparison to other middle-meat muscle cuts containing the longissimus dorsi (strip loins 

and ribeyes), the top sirloin has been shown to contain higher levels of connective tissue, which 

could contribute to the differences in connective tissue tenderness but not in myofibrillar and 

overall tenderness. When comparing top sirloin steaks and strip loin steaks, the difference in 

tenderness appeared to be due to higher amounts of collagen in top sirloin steaks and a tendency 

toward lower collagen solubility, shorter sarcomere length and higher (less tender) fragmentation 

index (Harris et al., 2006). The findings of the present study indicate that in order to reasonably 

improve the tenderness of low Choice and Select sirloin steaks via postmortem aging prior to 

retail display, top sirloin buts would have to be aged between 35 and 45 d postmortem.  Hour, as 

a main effect, was shown to significantly reduce (P < 0.05) WBSF values over a 3 d display 

period (Table 3.10). Even though the reduction in WBSF during the 3 days of display was 

minimal, this data demonstrates that tenderness is improving during the display period. 

Trained sensory panel ratings were used to quantify the levels of off-flavors associated 

with oxidation of the sirloin steaks following 72 h of display (Table 3.18). In comparison to the 

results for strip loin steaks (Table 3.9), sirloin steaks aged for 14 d and displayed for 72 h had 

detectable levels oxidized and sour/acidic flavors. Nonetheless, the intensity of oxidized flavor 
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was not significantly (P < 0.05) increased beyond that of the 14 d aged steaks until sirloins had 

been aged for 49 d or more. Sirloin steaks that had been aged for 49 d and 63 d postmortem had 

significantly higher (P < 0.05) sensory panel ratings for the intensity of oxidized flavor. 

Sour/acid flavors did not significantly (P < 0.05) increase over 14 d aged sirloin steaks until 35 d 

of postmortem aging had been implemented. Sirloin steaks that had only been aged for 14 d prior 

to retail display had the lowest intensity of livery/organy off-flavors. These results suggest that 

with as little as 14 d of postmortem aging, followed by 72 h of retail display, presents challenges 

to the acceptability of flavor and freshness of sirloin steaks.  

Even though relatively high levels of oxidized flavor were detected, an age effect was 

observed on TBAR values of strip loin steaks (P < 0.051; Table 11). However, there were no 

meaningful trends or associations of lipid oxidation (TBAR) and postmortem aging and/or off 

flavors. This is potentially due to the fact that strip loins were vacuum sealed in high barrier bags 

and at a very low temperature in the absence of light during the entire aging period, and all 

steaks, regardless of AGE, were displayed for the same period of time in a traditional, oxygen 

permeable package.  These samples were also shipped to a separate location to be analyzed.  

Even though they were froze in an -80°C freezer before shipping, this could contribute to the 

inconsistency and low TBAR values that were observed.     

Conclusions 

 Results of this study indicate that a minimum of 28 d of postmortem aging is required to 

improve the WBSF values of low Choice and Select strip loin steaks over the same strip loins 

steaks that have been aged for only 14 d, and a minimum of 35 d of postmortem aging is required 

to significantly improve sensory tenderness ratings for low Choice and Select strip loin steaks. 

Sensory panel ratings of off-flavors also supported that aging strip loin steaks for 35 d or more 
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postmortem for retail display and sale is undesirable as the intensity of oxidized and sour/acidic 

off-flavors significantly increased. These data suggest that strip loin steaks can be aged for 28 d 

prior to retail display with little effect on display life and the incidence of off-flavors, however, 

there was no significant tenderness advantage over 14 d aged steaks from low Choice and Select 

strip loins. 

The findings of the present study indicate that 35 d of postmortem aging are required to 

achieve an improvement in WBSF over 14 d aged low Choice and Select top sirloin steaks, and 

trained sensory panel scores indicated that at least 49 d of postmortem aging is required to 

improve the myofibrillar tenderness of low Choice and Select sirloin steaks. Lean color scores 

indicated a drastically reduced display life for sirloin steaks aged 35 d or more prior to retail 

display. Sirloin steaks aged 35 d and more produced undesirable lean color scores in as early as 

the first 24 h of retail display, which would suggest the need to discount the price of these steaks 

or even remove them from retail display. Additionally, low Choice and Select top sirloin steaks 

aged only 14 d and displayed an additional 72 h had relatively intense levels of oxidized and 

sour/acidic flavors present. With all factors considered for low Choice and Select top sirloins, it 

is not realistic to conclude that top sirloins can be aged for a long enough period to improve 

tenderness and maintain a considerable level of display life. Extended postmortem aging 

treatments for top sirloins is most well suited for foodservice where display life is a non-issue.
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Table 3.1. Simple means for carcass traits of the experimental sample stratified by quality grade. 

 Carcass Traits 

Quality 

Grade
1 

aFat (cm) HCW (kg) REA(cm
2
) 

KPH 

(%) 

Yield 

Grade 

Lean 

Maturity
2 

Marbling
3 

USDA 

Choice 
0.89±0.05 374.85±29.29 87.74±7.1 2.5±0.20 2.72±0.50 173±16.98 428±16.98 

USDA 

Select 
1.02±0.04 365.23±36.47 89.10±6.00 2.5±0.25 2.76±0.50 169±9.15 374±12.98 

1USDA Choice carcasses were selected to have marbling scores ranging from Small  00 to 50; USDA Select carcasses were 

selected to have marbling scores ranging from Slight 50 to 99 
2A maturity = 100 to 200 
3300 to 399 = Slight, 400 to 499 = Small
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Table 3.2. Least squares means ± SEM for trained color panel lean discoloration scores
1
 for strip 

loin steaks displayed for 72 h (P AGE x HOUR  < 0.0001). 

 Age (d)  

Display 

(h) 14d 21d 28d 35d 49d 63d 

0 0.01± 0.58 0.06± 0.58 0.09± 0.58 0.01± 0.58 0.01± 0.58 0.00d± 0.58 

8 0.07 ± 0.58 0.03± 0.58 0.15± 0.58 0.07 ± 0.58 0.05 ± 0.58 0.76c± 0.58 

16 0.00 ± 0.58 0.05 ± 0.58 0.11 ± 0.58 0.08 ± 0.58 0.06 ± 0.58 0.84c± 0.58 

24 0.12 ± 0.58 0.13 ± 0.58 0.16 ± 0.58 0.00± 0.58 0.13 ± 0.58 0.75c± 0.58 

32 0.18yz±0.58 0.07z± 0.58 0.10z± 0.58 0.09z± 0.58 0.04z± 0.58 1.11bcy± 0.58 

40 0.14z± 0.58 0.06z± 0.58 0.16z± 0.58 0.06z± 0.58 0.02z± 0.58 1.21bcy± 0.58 

48 0.08z± 0.58 0.18z± 0.58 0.12z± 0.58 0.10z± 0.58 0.11z± 0.58 1.31by± 0.58 

56 0.15z± 0.58 0.12z± 0.58 0.07z± 0.58 0.07z± 0.58 0.21z± 0.58 1.25bcy± 0.58 

64 0.06z± 0.58 0.18z± 0.58 0.34z± 0.58 0.02z± 0.58 0.34z± 0.58 1.84ay± 0.58 

72 0.14z± 0.58 0.12z± 0.58 0.27z± 0.58 0.03z± 0.58 0.27z± 0.58 2.22ay± 0.58 
1Panelists marked a fixed 15 cm line scale to indicate their response. 15 cm = 100 % discoloration; 0 cm = 0 % discoloration.  

a-d Within column, means without a common superscript letter differ (P < 0.05). 
y-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.3. Least squares means ± SEM for trained color panel lean color scores
1
 for strip loin 

steaks displayed for 72 h (P AGE x HOUR  < 0.0001). 
 Age (d) 

Displa

y (h) 
14d 21d 28d 35d 49d 63d 

0 11.05
av

±1.59
 

9.54
bcw

±1.59 8.94
bcx

±1.59 8.42
dey

±1.59 8.46
dy

±1.59 9.51
aw

±1.59 
8 10.76

abv
±1.59 9.80

bcw
±1.59 9.43

awx
±1.59 9.54

bwx
±1.59 8.66

awx
±1.59 9.39

ax
±1.59 

16 10.99
av

±1.59
 

10.22
aw

±1.59 9.25
abx

±1.59 9.90
aw

±1.59 9.36
bx

±1.59 9.03
bx

±1.59 

24 10.36
cv

±1.59
 

10.04
abv

±1.59 9.28
abw

±1.59 8.71
dx

±1.59 8.88
cx

±1.59 8.69
cx

±1.59 

32 10.66
bv

±1.59 9.73
bcw

±1.59 9.09
bx

±1.59 9.12
cx

±1.59 8.41
dy

±1.59 8.93
bcx

±1.59 
40 9.90

dv
±1.59 9.65

bcv
±1.59 8.14

dy
±1.59 8.64

dx
±1.59 9.24

bw
±1.59 8.94

bcwx
±1.59 

48 10.20
cv

±1.59 9.49
cw

±1.59 8.69
cxy

±1.59 8.29
ey

±1.59 7.86
ez

±1.59 8.92
bcx

±1.59 

56 10.65
bcv

±1.59 9.69
bcw

±1.59 8.51
cxy

±1.59 8.83
cdy

±1.59 8.40
dz

±1.59 8.77
bcx

±1.59 
64 10.50

bcv
±1.59 9.84

bw
±1.59 8.07

dz
±1.59 8.63

dey
±1.59 9.39

abx
±1.59 8.10

dxz
±1.59 

72 10.07
cdv

±1.59 9.65
bcw

±1.59 8.49
cx

±1.59 8.73
dx

±1.59 8.60
cdx

±1.59 8.05
dy

±1.59 
1Panelists marked a fixed 15 cm line scale to indicate their response. Higher values indicate a more bright, cherry-red color while 

low values indicate a more dark, purplish-red lean color. 
a-e Within column, means without a common superscript letter differ (P < 0.05). 
v-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.4. Least squares means ± SEM for trained color panel externalfat color scores
1
 for strip 

loin steaks displayed for 72 h (P AGE x HOUR  < 0.0001). 
 Age (d)  

Display 

(h) 
14d 21d 28d 35d 49d 63d 

0 12.70
av

±0.93 11.31
abw

±0.93 10.64
axy

±0.93 10.90
bx

±0.93 10.30
cy

±0.94 10.44
ay

±0.93 

8 12.00
cv

±0.93 10.81
cwx

±0.93 10.51
abx

±0.93 10.55
cx

±0.93 11.08
aw

±0.94 10.10
by

±0.93 

16 12.43
bv

±0.93 11.30
abw

±0.93 10.29
by

±0.93 11.55
aw

±0.93 10.84
bx

±0.94 10.22
aby

±0.93 

24 11.21
ev

±0.93 11.22
bv

±0.93 10.36
bw

±0.93 10.41
cw

±0.93 10.52
cw

±0.94 9.84
cx

±0.93 

32 11.61
dv

±0.93 11.50
av

±0.93 10.72
aw

±0.93 10.95
bw

±0.93 10.34
cx

±0.94 9.86
cy

±0.93 

40 11.21
ev

±0.93 11.33
av

±0.93 9.64
cx

±0.93 10.05
dw

±0.93 10.01
dwx

±0.94 9.73
cx

±0.93 

48 11.48
dev

±0.93 10.65
cw

±0.93 9.45
cdx

±0.93 10.31
cw

±0.93 9.71
ex

±0.94 9.48
dx

±0.93 

56 11.71
dv

±0.93 11.03
bcw

±0.93 9.61
cdx

±0.93 9.87
dx

±0.93 9.20
fy

±0.94 8.88
ey

±0.93 

64 11.46
dev

±0.93 10.91
cw

±0.93 9.16
dy

±0.93 9.30
exy

±0.93 9.64
ex

±0.94 8.69
ez

±0.93 

72 11.30
ev

±0.93 10.73
cw

±0.93 9.31
dx

±0.93 9.18
exy

±0.93 8.80
gy

±0.94 8.91
ey

±0.93 
1Panelists marked a fixed 15 cm line scale to indicate their response. Higher values indicate a brighter, creamy white color while 

low values indicate a more dark tan or brown/green fat color. 
a-g Within column, means without a common superscript letter differ (P < 0.05). 
v-z Within rows, means without a common superscript letter differ (P < 0.05). 
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Table 3.5. Least squares means ± SEM for lean L* values for strip loin steaks displayed for 72 h 

(P AGE x HOUR  < 0.0001). 
 Age (d)  

Display 

(h) 
14d 21d 28d 35d 49d 63d 

0 34.56
cy

±0.43
 

37.62
ax

±0.43 35.99
by

±0.43 34.51
aby

±0.43 40.70
aw

±0.43 34.80
ay

±0.43
 

8 35.31
bcw

±0.43 34.90
bwx

±0.43 35.62
bw

±0.43 34.25
bwx

±0.43 33.62
bcx

±0.43 34.68
awx

±0.43
 

16 35.69
bw

±0.43 34.52
bwx

±0.43 35.79
bw

±0.43 34.39
abwx

±0.43 33.41
bcx

±0.43 34.79
awx

±0.43
 

24 34.39
aw

±0.43 34.71
bx

±0.43 37.69
aw

±0.43 31.76
cy

±0.43 33.20
cxy

±0.43 34.74
ax

±0.43
 

32 34.07
cw

±0.43 34.98
bw

±0.43 34.86
bw

±0.43 32.26
cx

±0.43 33.82
bcwx

±0.43 34.04
aw

±0.43
 

40 38.54
aw

±0.43 35.01
bxy

±0.43 35.69
bx

±0.43 33.63
by

±0.43 34.37
bcxy

±0.43 34.44
axy

±0.43
 

48 34.18
cxy

±0.43 38.15
aw

±0.43 35.36
bx

±0.43 33.19
bcy

±0.43 34.04
bcxy

±0.43 34.47
axy

±0.43
 

56 35.00
bcw

±0.43 34.32
bw

±0.43 35.54
bw

±0.43 35.60
aw

±0.43 34.50
bw

±0.43 34.78
aw

±0.43
 

64 34.31
cw

±0.43 33.96
bw

±0.43 35.37
bw

±0.43 31.24
cx

±0.43 33.93
bcw

±0.43 34.17
aw

±0.43
 

72 37.51
aw

±0.43 34.66
bx

±0.43 35.47
bx

±0.43 32.01
cy

±0.43 33.81
bcx

±0.43 34.19
ax

±0.43
 

a-c Within column, means without a common superscript letter differ (P < 0.05). 
w-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.6. Least squares means ± SEM for lean a* values for strip loin steaks displayed for 72 h 

(P AGE x HOUR  < 0.0001). 
 Age (d)  

Display 

(h) 
14d 21d 28d 35d 49d 63d 

0 11.96
cw

±0.22
 

12.09
aw

±0.22 12.65
bcvw

±0.22 11.48
bcwx

±0.22 13.26
av

±0.22 10.98
abx

±0.22 

8 13.59
av

±0.22 12.50
aw

±0.22 13.59
av

±0.22 12.59
aw

±0.22 12.26
bw

±0.22 11.41
aw

±0.22 

16 12.80
bvw

±0.22 12.15
aw

±0.22 13.07
bv

±0.22 11.84
bwx

±0.22 11.41
cdx

±0.22 10.99
ax

±0.22 

24 12.87
bv

±0.22 11.94
aw

±0.22 13.14
abv

±0.22 11.44
bcw

±0.22 11.68
cw

±0.22 10.46
bx

±0.22 

32 11.93
cvw

±0.22 11.92
avw

±0.22 12.16
cv

±0.22 11.35
cw

±0.22 11.03
dw

±0.22 9.80
cx

±0.22 

40 12.73
bv

±0.22 11.36
bwx

±0.22 12.02
cw

±0.22 10.99
cdx

±0.22 10.57
ex

±0.22 9.44
cdy

±0.22 

48 11.46
dvx

±0.22 11.98
av

±0.22 11.77
cv

±0.22 10.91
dw

±0.22 10.53
ew

±0.22 9.35
dx

±0.22 

56 11.05
ew

±0.22 11.11
bcw

±0.22 11.27
dw

±0.22 12.24
abv

±0.22 10.24
ex

±0.22 8.87
ey

±0.22 

64 11.20
dev

±0.22 11.01
bcv

±0.22 11.30
dv

±0.22 10.24
ew

±0.22 9.54
fw

±0.22 8.63
ex

±0.22 

72 12.05
cv

±0.22 10.96
cw

±0.22 10.94
dw

±0.22 10.05
ex

±0.22 9.36
fy

±0.22 8.41
ez

±0.22 
a-f Within column, means without a common superscript letter differ (P < 0.05). 
v-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.7. Least squares means ± SEM for lean b* values for strip loin steaks displayed for 72 h 

(P AGE x HOUR  < 0.0001). 
 Age (d)  

Display 

(h) 
14d 21d 28d 35d 49d 63d 

0 13.66
cdxy

±0.15 14.03
abx

±0.15 14.64
abwx

±0.15 13.63
bxy

±0.15 15.14
aw

±0.15 13.19
ay

±0.15 

8 15.42
aw

±0.15
 

14.13
ax

±0.15 15.03
aw

±0.15 14.19
ax

±0.15 13.92
bxy

±0.15 13.34
ay

±0.15 

16 13.91
cwx

±0.15 13.55
bcx

±0.15 14.42
bw

±0.15 13.56
bx

±0.15 13.11
cx

±0.15 13.08
abx

±0.15 

24 14.54
bwx

±0.15 13.47
bcx

±0.15 14.69
abw

±0.15 12.83
cxy

±0.15 13.47
bcx

±0.15 12.61
by

±0.15 

32 13.34
dwx

±0.15 13.58
bcwx

±0.15 13.77
cw

±0.15 12.68
cdx

±0.15 13.14
cx

±0.15 11.90
cy

±0.15 

40 14.33
bw

±0.15 13.24
cx

±0.15 13.94
cw

±0.15 12.94
cx

±0.15 12.91
cx

±0.15 11.73
cdy

±0.15 

48 13.16
dex

±0.15 13.69
bw

±0.15 13.72
cw

±0.15 12.76
cx

±0.15 12.78
cx

±0.15 11.74
cy

±0.15 

56 12.78
ex

±0.15 12.94
cdx

±0.15 13.26
dx

±0.15 13.82
abw

±0.15 12.86
cx

±0.15 11.49
cdy

±0.15 

64 13.01
dew

±0.15 12.93
cdw

±0.15 13.28
dw

±0.15 12.30
dx

±0.15 11.92
ex

±0.15 11.31
dy

±0.15 

72 13.75
cdw

±0.15 12.83
dx

±0.15 13.12
dx

±0.15 12.25
dy

±0.15 11.96
dy

±0.15 11.23
ez

±0.15 
a-e Within column, means without a common superscript letter differ (P < 0.05). 
w-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.8.  Least squares means ± SEM of Warner-Bratzler shear force (WBSF) values (kg) by postmortem aging treatment and 

muscle. 

 

Muscle 

Age (d)  

14 21 28 35 49 63 Page 

Strip loin 3.86
a
 ± 0.15

 
3.49

b
 ± 0.15

 
3.44

b
 ± 0.15

 
3.27

b
 ± 0.15

 
2.99

c
 ± 0.15

 
2.93

c
 ± 0.15

 
< 0.0001 

Sirloin 4.08
a
 ± 0.13

 
4.21

ab
 ± 0.13

 
4.02

ab
 ± 0.13

 
3.78

b
 ± 0.13

 
3.48

bc
 ± 0.13

 
3.20

c
 ± 0.13

 
< 0.0001 

a-c Within muscle, means without a common superscript letter differ (P < 0.05).
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 Table 3.9. Least squares means ± SEM for trained sensory panel ratings
1
 for strip loin steaks that were displayed for 72 h.   

1panelists marked a fixed 15 cm line scale to indicate their response. 150 cm = highest level of each attribute; 0 cm = absence of each attribute. 

a-c Within column, means without a common superscript letter differ (P < 0.05). 
.

 
Sensory Attribute 

 

Age 

(d) 

Myofibrillar 

Tenderness 

Con. Tissue 

Tenderness 

Overall 

Tenderness 

 

Juiciness 

Beef 

Flavor 

Buttery/ 

Beef Fat 

Flavor 

Sour 

/Acidic 

 

Oxidized 

Metallic 

/Bloody 

Livery 

/Organy 

14d 8.88
c 
±0.18

 
9.61

c
±0.20 8.98

c
±0.17 8.00

a 
±0.19 8.31±0.54 5.81

ab
±0.15 0.84

b 
±0.23 1.54

c
 ±0.24 0.41

a
±0.07 0.18

ab
±0.06 

21d 8.63
c 
±0.18 9.88

c 
±0.20 8.98

c
±0.17 7.58

b
±0.19 8.40 ±0.54 6.06

a
±0.15 0.78

b 
±0.23 1.72

bc 
±0.24 0.21

ab
±0.07 0.07

b
±0.06 

28d 8.76
c
±0.18 9.75

c
±0.20 8.97

c
 ±0.17 7.33

b
±0.19 8.45 ±0.54 5.74

ab 
±0.15 0.84

b 
±0.23 1.78

bc 
±0.24 0.20

ab
±0.07 0.12

b
±0.06 

35d 9.38
b 
±0.18 10.23

bc 
±0.20 9.59

b 
±0.17 7.74

ab
±0.19 8.21 ±0.54 5.96

ab 
±0.15 1.11

b 
±0.23 2.17

bc 
±0.24 0.31

ab
±0.07 0.15

b
±0.06 

49d 9.68
ab 

±0.18 10.50
b 
±0.20 9.8

b 
±0.17 7.88

ab
±0.19 8.42 ±0.54 5.96

ab 
±0.15 1.70

a 
±0.23 2.25

b 
±0.24 0.39

a
±0.07 0.21

ab
±0.06 

63d 9.88
a 
±0.18 10.88

a 
±0.20 10.15

a 
±0.17 7.77

ab
±0.19 8.21 ±0.54 5.67

b 
±0.15 2.19

a 
±0.23 3.11

a
±0.24 0.17

b
±0.07 0.37

a
±0.06 

Page <.0001 <.0001 <.0001 0.0093
 

0.5495 0.1458 <.0001 <.0001 0.0357 0.0105 
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Table 3.10 Least squares means ± SEM for Warner-Bratzler shear force (WBSF)  

values (kg) by display time. 

 

Muscle 

Display time  

0 h 72 h Pdisplay time 

Strip loin 3.33 ± 0.05 3.11 ± 0.05 < 0.0001 

Sirloin 3.79 ± 0.07 3.51 ± 0.07 < 0.0001 
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Table 3.11. Least squares means ± SEM for TBAR values by muscle and postmortem aging period following 72 h of retail display. 

 Age (d)  

Muscle 14d 21d 28d 35d 49d 63d Page 

 Strip loin 0.46
ab

±0.04
 

0.82
a
±0.04

 
0.76

a
±0.04

 
0.48

ab
±0.04

 
0.47

ab
±0.04

 
0.37

b
±0.04

 
0.0009 

Sirloin 0.44
bc

±0.04
 

0.37
c
±0.04

 
0.82

a
±0.04

 
0.59

b
±0.04

 
0.48

b
±0.04

 
0.28

c
±0.04

 
<0.0001 

a-c 
Within muscle, means without a common superscript letter differ (P < 0.05).
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Table 3.12. Least squares means ± SEM for trained color panel percent lean discoloration scores
1
 

for sirloin steaks displayed for 72 h. (P AGE x HOUR  < 0.0001). 

 Age (d) 

Display 

(h) 14d 21d 28d 35d 49d 63d 

0 0.01
c
±1.32 0.02

b
±1.32 0.02

b
±1.32 0.00

a
±1.32 0.00

c
±1.32 0.07

cd
±1.32 

8 0.03
c
±1.32 0.04

b
±1.32 0.10

b
±1.32 0.08

a
±1.32 0.01

c
±1.32 0.21

cd
±1.32 

16 0.12
c
±1.32 0.15

ab
±1.32 0.09

b
±1.32 0.00

a
±1.32 0.01

c
±1.32 0.12

cd
±1.32 

24 0.09
c
±1.32 0.19

ab
±1.32 0.19

ab
±1.32 0.06

a
±1.32 0.00

c
±1.32 0.06

d
±1.32 

32 0.15
c
±1.32 0.30

ab
±1.32 0.31

ab
±1.32 0.05

a
±1.32 0.18

c
±1.32 0.11

cd
±1.32 

40 0.19
c
±1.32 0.11

bz
±1.32 0.19

de
±1.32 0.06

a
±1.32 0.09

c
±1.32 0.11

cd
±1.32 

48 0.11
c
±1.32 0.38

ab
±1.32 0.11

b
±1.32 0.08

a
±1.32 0.19

c
±1.32 0.49

c
±1.32 

56 1.26
awx

±1.32 0.30
aby

±1.32 0.12
by

±1.32 0.04
axy

±1.32 0.98
bx

±1.32 1.61
bw

±1.32 

64 1.57
ax

±1.32 0.11
bz

±1.32 0.59
ay

±1.32 0.04
ayz

±1.32 1.53
ax

±1.32 2.15
aw

±1.32 

72 0.80
bx

±1.32 0.57
ax

±1.32 0.39
abx

±1.32 0.40
ax

±1.32 1.83
aw

±1.32 2.10
aw

±1.32 
1Panelists marked a fixed 15 cm line scale to indicate their response. Higher values indicate a more bright, cherry-red color while 

low values indicate a more dark, purplish red lean color. 
a-e Within column, means without a common superscript letter differ (P < 0.05). 
w-z Within rows, means without a common superscript letter differ (P < 0.05). 
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Table 3.13. Least squares means ± SEM for trained color panel lean color scores
1
 for sirloin 

steaks displayed for 72 h (P AGE x HOUR  < 0.0001). 

 Age (d)  

Display 

(h) 14d 21d 28d 35d 49d 63d 

0 10.99aw±0.13 9.40 ax±0.13 8.72aby±0.13 8.04bz±0.13 8.43bcyz±0.13 9.22ax±0.13 

8 10.37bw±0.13 9.41ax±0.13 9.16ax±0.13 8.68axy±0.13 9.07axy±0.13 8.49by±0.13 

16 10.60abw±0.13 9.27abx±0.13 9.08abxy±0.13 8.60ay±0.13 8.48by±0.13 7.98czv±0.13 

24 9.37cdw±0.13 8.82bx±0.13 9.02abwx±0.13 7.72bcy±0.13 8.00cy±0.13 7.57cdy±0.13 

32 9.59cw±0.13 8.10cdy±0.13 8.70bx±0.13 7.83bcy±0.13 7.23dz±0.13 7.67cdyz±0.13 

40 8.75dw±0.13 8.28cx±0.13 7.56dy±0.13 7.46cy±0.13 8.12bcx±0.13 7.35dy±0.13 

48 8.97dw±0.13 7.71dxy±0.13 8.09cx±0.13 6.69dz±0.13 6.46ez±0.13 7.10dy±0.13 

56 8.84dw±0.13 7.82dx±0.13 7.93cdx±0.13 6.90dyz±0.13 6.54ez±0.13 6.27dy±0.13 

64 8.82dw±0.13 7.94cdx±0.13 7.60dx±0.13 7.39cdy±0.13 7.58cdxy±0.13 6.05ez±0.13 

72 8.82dw±0.13 7.76dx±0.13 7.73cdx±0.13 6.96dy±0.13 6.77ey±0.13 6.02ez±0.13 
1Panelists marked a fixed 150 mm line scale to indicate their response. 15 cm = 100 % discoloration; 0 cm = 0 % discoloration. 

a-e Within column, means without a common superscript letter differ (P < 0.05). 
v-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.14. Least squares means ± SEM for least square means for trained color panel external 

fat color scores
1
 for sirloin steaks displayed for 72 h (P AGE x HOUR  < 0.0001). 

 Age (d)  

Display 

(h) 
14d 21d 28d 35d 49d 63d 

0 11.74av±1.16 10.33aw±1.15 10.03ax±1.15 9.48by±1.15 9.33ay±1.12 9.36ay±1.12 

8 11.31bv±1.16 10.05abw±1.15 10.08aw±1.15 9.40bw±1.15 9.62ax±1.12 8.70by±1.12 

16 11.67av±1.16 10.14abw±1.15 10.03av±1.15 9.84ax±1.15 9.49ax±1.12 8.43by±1.12 

24 10.37dv±1.16 9.76bx±1.15 10.16aw±1.15 8.88cx±1.15 9.01by±1.12 7.98cz±1.12 

32 10.83cv±1.16 9.59bcw±1.15 10.10ax±1.15 9.28bx±1.15 8.50cx±1.12 7.83cy±1.12 

40 10.49cdv±1.16 9.88bw±1.15 8.89bcw±1.15 8.71cx±1.15 8.88bcx±1.12 7.37dy±1.12 

48 10.56cdv±1.16 9.19cw±1.15 9.00bcw±1.15 8.17dx±1.15 7.77dy±1.12 7.09dey±1.12 

56 10.24dv±1.16 9.28cw±1.15 9.08bw±1.15 7.78dx±1.15 6.87ey±1.12 6.66ey±1.12 

64 9.98dv±1.16 9.63cv±1.15 8.57cw±1.15 8.17dw±1.15 7.53dx±1.12 6.11fy±1.12 

72 10.12dv±1.16 9.18dw±1.15 8.50cx±1.15 7.16ey±1.15 6.77ey±1.12 6.59ey±1.12 
1Panelists marked a fixed 15 cm line scale to indicate their response. Higher values indicate a more bright, creamy white color 

while low values indicate a more dark tan or brown/green fat color. 
a-f Within column, means without a common superscript letter differ (P < 0.05). 
v-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.15. Least squares means ± SEM for lean L* values for sirloin steaks displayed for 72 h 

(P AGE x HOUR  < 0.0001). 
 Age (d)  

Displa

y (h) 
14d 21d 28d 35d 49d 63d 

0 37.41
dy

±0.49
 

39.65
ax

±0.49 36.65
byz

±0.49 35.45
bz

±0.49 43.19
aw

±0.48 36.54
ayz

±0.48
 

8 37.46
dw

±0.49
 

36.30
bcwx

±0.49 36.63
bwx

±0.49 36.03
b
±0.49 36.37

b
±0.48 36.73

a
±0.48

 

16 38.57
cw

±0.49 36.90
bwy

±0.49 36.37
by

±0.49 35.41
bx

±0.49 35.01
cwx

±0.48 36.76
awx

±0.48
 

24 40.05
bw

±0.49 36.47
bcy

±0.49 38.30
ax

±0.49 33.97
cz

±0.49 35.30
cy

±0.48 36.30
ay

±0.48
 

32 37.05
dw

±0.49 36.21
bcwx

±0.49 35.87
bcwx

±0.49 35.33
bcx

±0.49 35.87
bcwx

±0.48 36.48
awx

±0.48
 

40 41.53
aw

±0.49 36.30
bcx

±0.49 35.06
cx

±0.49 35.06
bcx

±0.49 35.20
bcx

±0.48 35.95
ax

±0.48
 

48 36.85
dy

±0.49 40.49
aw

±0.49 35.70
bcy

±0.49 34.19
cz

±0.49 36.54
by

±0.48 37.05
ax

±0.48
 

56 36.61
dwx

±0.49 36.27
bcwx

±0.49 35.89
bcx

±0.49 37.45
aw

±0.49 35.99
bcwx

±0.48 36.10
awx

±0.48
 

64 36.43
dw

±0.49 35.60
cw

±0.49 35.70
bcw

±0.49 31.65
dx

±0.49 36.03
bcw

±0.48 36.46
aw

±0.48
 

72 39.61
bw

±0.49 36.47
bcx

±0.49 35.58
bcx

±0.49 33.24
cy

±0.49 36.09
bcw

±0.48 36.93
aw

±0.48
 

a-d Within column, means without a common superscript letter differ (P < 0.05). 
w-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.16. Least squares means ± SEM for lean a* values for sirloin steaks that were displayed 

for 72 h (P AGE x HOUR  < 0.0001). 
 Age (d)  

Display 

(h) 
14d 21d 28d 35d 49d 63d 

0 16.23
bcvw

±0.24
 

15.74
abw

±0.24 13.92
bx

±0.24 14.77
bx

±0.24 16.87
av

±0.24 14.20
ax

±0.24 

8 17.79
av

±0.24
 

16.12
aw

±0.24 14.59
ax

±0.24 15.66
awx

±0.24 14.97
bx

±0.24 14.38
 ax

±0.24 

16 16.06
 cv

±0.24 15.29
w
±0.24 13.73

bxy
±0.24 14.39

bx
±0.24 14.00

cx
±0.24 13.08

 by
±0.24 

24 16.57
 bv

±0.24 14.84
bw

±0.24 13.65
bx

±0.24 13.71
cx

±0.24 13.36
dx

±0.24 12.34
 cy

±0.24 

32 14.47
 ev

±0.24 14.35
cv

±0.24 12.66
cw

±0.24 12.85
dw

±0.24 12.51
ew

±0.24 11.41
dx

±0.24 

40 15.23
 dv

±0.24 13.53
dw

±0.24 12.26
dx

±0.24 12.57
dx

±0.24 11.56
 y
±0.24 10.96

ez
±0.24 

48 13.41
fv

±0.24 13.78
dv

±0.24 12.08
ew

±0.24 12.09
ew

±0.24 11.46
fx

±0.24 10.28
fy

±0.24 

56 12.80
 gv

±0.24 12.46
ev

±0.24 11.57
fw

±0.24 12.74
dv

±0.24 10.85
gx

±0.24 9.80
gy

±0.24 

64 12.61
gv

±0.24 12.31
ev

±0.24 11.14
fgw

±0.24 11.02
fw

±0.24 10.59
hx

±0.24 9.40
gy

±0.24 

72 13.29
 fv

±0.24 12.07
ew

±0.24 10.99
gx

±0.24 10.38
gy

±0.24 9.85
iy
±0.24 8.87

hz
±0.24 

a-g Within column, means without a common superscript letter differ (P < 0.05). 
v-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.17. Least squares means ± SEM for lean b* values for sirloin steaks that were displayed 

for 72 h (P AGE x HOUR  < 0.0001). 
 Age (d)  

Display 

(h) 

14d 21d 28d 35d 49d 63d 

0 17.50
cx

±0.30 17.34
ax

±0.30 15.58
aby

±0.30 16.25
aby

±0.30 18.32
aw

±0.30 16.02
ay

±0.30 

8 19.04
aw

±0.30
 

17.33
ax

±0.30 15.93
ay

±0.30 16.77
axy

±0.30 16.43
by

±0.30 16.23
ay

±0.30 

16 17.41
cw

±0.30 16.60
bx

±0.30 15.28
by

±0.30 15.90
by

±0.30 15.77
cy

±0.30 15.29
by

±0.30 

24 18.20
bw

±0.30 16.40
bcx

±0.30 15.34
bxy

±0.30 15.30
cxy

±0.30 15.46
cdy

±0.30 14.92
by

±0.30 

32 16.23
dw

±0.30 16.07
cw

±0.30 14.51
cxy

±0.30 14.66
dxy

±0.30 15.10
dx

±0.30 14.23
cxy

±0.30 

40 17.48
cw

±0.30 15.70
cx

±0.30 14.18
cdyz

±0.30 14.65
dy

±0.30 14.45
eyz

±0.30 13.92
cdz

±0.30 

48 15.76
dew

±0.30 16.23
bcw

±0.30 14.21
cdxy

±0.30 14.48
dx

±0.30 14.53
ex

±0.30 13.61
dy

±0.30 

56 15.35
ew

±0.30 15.13
dw

±0.30 13.94
dxy

±0.30 15.40
cw

±0.30 14.19
ex

±0.30 13.32
dey

±0.30 

64 15.32
ew

±0.30 15.09
dw

±0.30 13.62
dx

±0.30 13.62
ex

±0.30 13.69
fx

±0.30 13.07
ex

±0.30 

72 16.07
dw

±0.30 14.84
dx

±0.30 13.60
dy

±0.30 13.49
ey

±0.30 13.44
fy

±0.30 12.45
fz
±0.30 

a-e Within column, means without a common superscript letter differ (P < 0.05). 
w-z Within rows, means without a common superscript letter differ (P < 0.05).
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Table 3.18. Least squares means ± SEM for trained sensory panel ratings
1
 for sirloin steaks that were displayed for 72 h. 

 

 Sensory Attribute 

 

Age 

(d) 

Myofibrillar 

Tenderness 

Con. 

Tissue 

Tenderness 

Overall 

Tenderness 

 

Juiciness 

Beef 

Flavor 

Buttery/Beef 

Fat Flavor 

Sour 

/Acidic 

 

Oxidized 

Metallic 

/Bloody 

Livery 

/Organy 

14d 8.17
b
±0.25

 
8.35

c
±0.28

 
8.49

b
±0.39

 
7.57

ab
±0.34

 
8.04

a
±0.15

 
4.92±0.15 1.53

c
±0.25

 
3.07

b
±0.33

 
0.86

b
±0.13

 
0.23

c
±0.17

 

21d 8.57
b
±0.25

 
9.18

ab
±0.28

 
8.80

b
±0.39

 
8.36

a
±0.34

 
7.98

a
±0.15

 
4.91±0.15 1.63

c
±0.25

 
3.36

b
±0.33

 
0.95

ab
±0.13

 
0.58

b
±0.17

 

28d 8.54
b
±0.25

 
9.33

ab
±0.28

 
8.83

b
±0.39

 
7.34

ab
±0.34

 
7.93

a
±0.15

 
4.83±0.15 1.74

c
±0.25

 
3.65

ab
±0.33

 
0.92

ab
±0.13 0.44

b
±0.17

 

35d 8.54
b
±0.25

 
9.04

b
±0.28

 
9.13

ab
±0.39

 
7.41

ab
±0.34

 
7.95

a
±0.15

 
4.92±0.15 1.83

c
±0.25

 
3.75

ab
±0.33

 
0.96

ab
±0.13

 
0.77

ab
±0.17

 

49d 8.64
b
±0.25

 
9.15

b
±0.28

 
8.83

b
±0.39

 
7.22

b
±0.34

 
7.84

ab
±0.15

 
4.78±0.15 2.37

b
±0.25

 
4.00

ab
±0.33

 
0.96

ab
±0.13

 
0.70

ab
±0.17

 

63d 9.16
a
±0.25

 
9.72

 a
±0.28

 
9.35

a
±0.39

 
7.16

b
±0.34

 
7.59

b
±0.15

 
4.72±0.15 3.30

a
±0.25

 
4.14

a
±0.33

 
1.15

a
±0.13

 
0.99

a
±0.17

 

Page 0.0075 0.0002 0.0910 0.0419 0.0379 0.0251 < 0.0001 0.0143 0.3696 < .0001 
1Panelists marked a fixed 15 cm line scale to indicate their response. 15 cm = highest level of each attribute; 0 cm = absence of each attribute.. 

a-c Within column, means without a common superscript letter differ (P < 0.05). 
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Figure A1.1. Experimental design of the study.
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 Figure A1.2. Least squares means ± SEM for Warner-Bratzler shear force (WBSF) for both 

USDA Select and low Choice longissimus dorsi steaks at 6 different aging periods, and the non-

linear regression models fitted to these points.  There variable “age” is the number of days 

postmortem.  The R
2 

is the maximum proportion of total variability explained by the model.  

The constant “exp” equals the base of the natural logarithm (2.718282). 
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Figure A1.3. Least squares means ± SEM for Warner-Bratzler shear force (WBSF) for both 

USDA Select and low Choice gluteus medius steaks at 6 different aging periods, and the non-

linear regression models fitted to these points.  There variable “age” is the number of days 

postmortem.  The R
2 

is the maximum proportion of total variability explained by the model.  The 

constant “exp” equals the base of the natural logarithm (2.718282). 
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Figure A1.4. Trained color panel lean discoloration scores for strip loin steaks displayed for 

72 hours.
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   Figure A1.5. Trained color panel lean color scores for strip loin steaks displayed for 72 hours.
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Figure A1.6. Trained color panel external fat color scores for strip loin steaks displayed for 72 

hours. 
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      Figure A1.7. Lean L* values for strip loin steaks displayed for 72 hours.
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 Figure A1.8. Lean a* values for strip loin steaks displayed for 72 hours. 
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 Figure A1.9. Lean b* values for strip loin steaks displayed for 72 hours. 
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Figure A1.10. Trained sensory panel ratings for strip loin steaks that were displayed for 72 

hours.
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Figure A1.11. Trained color panel percent lean discoloration scores for sirloin steaks 

displayed for 72 hours
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   Figure A1.12. Trained color panel lean color scores for sirloin steaks displayed for 72 hours.
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Figure A1.13. Trained color panel external fat color scores for sirloin steaks displayed for 72 

hours. 

6 

7 

8 

9 

10 

11 

12 

13 

14 21 28 35 49 63 

R
e

sp
o

n
se

, 1
5

 c
m

 

Days Postmortem 

0 

8 

16 

24 

32 

40 

48 

56 

64 

72 



 

  75 

 
    Figure A1.14. Lean L* values for sirloin steaks displayed for 72 hours.
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Figure A1.15. Lean a* values for sirloin steaks displayed for 72 hours.
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Figure A1.16. Lean b* values for sirloin steaks displayed for 72 hours.
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Figure A1.17. Trained sensory panel ratings for strip loin steaks that were displayed for 72 

hours. 
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