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TURBULENCE MEASUREMENT WITH A PROPELLER FLOW METER

By James P. Bennett

Abstract

There is a pressing need in much of the current Hydraulic
Engineering research being conducted today for an easy, reliable, and
cheap method for measuring longitudinal turbulent velocity fluctuations
in water flows. Hot-film anemometers can be used in clean water flows,
however, drift problems, fragileness, and expeﬁsiveness sometimes
prevent their use in sediment and debris laden streams.

The propeller flow meter is a rugged, portable, relatively inex-
pensive flow measuring device which can be used to measure turbulence
in large scale flows. It has two drawbacks when used as a turbulence
measuring device, however. These are 1) inertial averaging, and 2)
spatial averaging of the turbulent velocity fluctuations. These
factors can be corrected for in the power spectral density of a par-
ticular turbulent flow phenomenon if the propeller system function and
spectral recovery efficiency are known.

In this study, a propeller equation of motion is developed which
describes the inertial averaging characteristics of propellers. A
correlation function is developed which describes the spatial averaging
effect on a particular propeller in a particular flow field, if the
required statistical properties of the flow field are known.

Due to the complexity of the coefficients in the differential
equation of motion of a propeller, experimental means were used in

determining these coefficients. Similarly, the spatial averaging



characteristics had to be determined experimentally for a particular
type of turbule;t flow, rough boundary open channel flow.

The experimentally determiﬁed system functions were used to
correct field turbulence data f&r inertial averaging. It appears that
propellers of the size used in this study can be used in open channel

flows of three feet in depth with very little correction required.
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Chapter I

INTRODUCTION

Understanding of the field of open channel hydraulics
has progressed a great deal since the start of this century
with only the ability to measure mean flow parameters. It
is now possible, for example, to predict roughly the flow
regime and sediment transport of a given river or canal if
the pertinent mean flow parameters are known. A point has
been reached, however, where it becomes increasingly desir-
able to be able to measure the fluctuating components of
such flow parameters as velocity and pressure. A knowledge
of ﬁhese guantities would aid greatly in expénding the
understanding of such current open channel flow research
problems as sediment transport, bed form mechanics, pollutant
dispersion, and reaeration of deoxygenated streams.

In the measurement of air flows, the hot-wire anemometer
is "the" accepted instrument for making turbulence measure-
ments. This is because the hot-wire combines such desirable
measuring instrument characteristics as small size, high
frequency response, and stability of calibration. Unfortu-
nately, there is no universally acceptable instrument which
can be used to measure turbulence in water flows. The hot-
film anemometer, an instrument quite similar to the hot-wire
anemometer, shows considerable promise; however, in flows

containing suspended sediment or colloidal impurities,



unstable calibration problems have been encountered. In
addition, hot-film anemometer probes are extfemely fragile
and expensive.

Another instrument which shows considerable promise
toward being useful as a turbulence measuring device, at
least in large scale flows, is the propeller flow meter.

Its advantages are adequate ruggedness for use in field flow
situations, stability of calibration, and relative cheapness
and portability of the associated instrumentation system.

In addition, concurrent turbulence and mean velocity measure-
ments can be made with propeller flow meters, a feat which
cannot be accomplished with presently available hot-film
anemometers. The propellor flow meter does, however, have
some serious faults when it is to be used as a turbulence
sensor. First, the amplitude-frequency response of most
propellers is not adequate to follow the higher frequency
velocity fluctuations present in open channel turbulence.
Second, the dimensions of the propeller are generally large
with respect to the dimensions of the fine scale of the open
channel turbﬁlénce; this causes the propeller to register a
spatially averaged instantaneous velocity rather than the
true velocity at a point.

The main objectives of this study are: a) to evaluate
the system function of propellers subjected to rapidly
varying, spatially uniform velocity fields; b) to evaluate
the spatial averaging characteristics of propellers in a

rough boundary open channel flow; and c¢) to make field flow



velocity measurements with a propeller flow meter to deter-
mine the usefulness of the results of the studies of parts
a and b in evaluating turbulence in a large scale open
channel flow.

The systém function of the propeller-flow system can be
determined from the differential equation of motion of the
propeller when it has been excited using a sinusoidal input,
however, the flow about the propeller baldes is so complex
that experimental means must finally be used to obtain the
system frequency response. The spatial averaging effects
can be accounted for using a complex correlation function
derived from the equation of motion of the propeller,
however, again experimental means must be resorted to in
determining a spectral recovery efficiency, because the
evaluation of the correlation function involves a presently
unavailable knowledge of the statistical properties of the
turbulence field being measured. The system function and
the spectral recovery efficiency are necessary in order to
correct experimentally determined power spectral densities

for propeller frequency response and spatial averaging.



Chapter II

TURBULENCE MEASUREMENT IN WATER

There are two classes of methods for making measure-
ments in turbulent fluid flows. The first class utilizes a
tracer or indicator which is injected into the flow to make
portions of it visible. The second class uses some physical
device which is inserted into the flow and in which an incre-
mental change in veleccity produces a measurable change in
some property of the transducer.

The primary instrument for making turbulence measure-
ments in air flows is the hot-wire anemometer. This is be-
cause the hot-wire anemometer is a small, stable device with
a high frequency response. Unfortunately, because of bubble
formation, electrolysis effects, dirt and lint collection,
and low strength, the hot-wire anemometer cannot be used to
obtain good quantitative information on water flows.

7 There are several measurement techniques which are used
in water flows, none of which can, at present, be considered
entirely satisfactory. These are discussed in the following

sections.
A. Hot-Film Anemometer

The hot-film anemometer is quite similar to the hot-
wire anemometer used in air flows. The sensor generates

heat which is convected away by the flow, the rate of

convection being proportional to the flow velocity. The



circuitry consists essentially of a self-balancing

Wheatstone bridge. For work in air flows with the hot-wire
anemometer, the constant current method is generally used.

In water, however, the constant temperature method is used.
This is because this method has high uncompensated frequency
response, sensitivity to low frequency fluctuations, simpler
operation, and the ability to monitor both the D.C. and A.C.
levels of the fluctuations. The hot-film anemometer is prob-
ably the best instrument for use in relatively clean labora-
tory water flows.

The pioneering work on the hot-film anemometer was done
around 1955 by Ling and Hubbard (1956). The probe consists
of a 50 to 100 Angstrom coating of platinum fused to the
surface of a supporting glass head form. The head form may
be a cylinder, wedge, cone, or strip (for use on a flat
surface). The probe is constructed in this way because it
must be strong for use in water, however, if the entire probe
were constructed of metal, the resistance would be too low,
as would the frequency response. For use in water, the
platinum i€ generally coated with a thin quartz film.

The early hot film probes were not coated with quartz.
Researchers using these probes encountered difficulties due
to dirt contamination, bubble formation on the probe from
gases dissolved in the water, chemical reaction with the
film, electrolysis and conductivity through the water. The
addition of the quartz film has alleviated the last three

problems, but the first two still cause stability problems



(Raichlen, 1967; McQuivey, 1967). The collection of dirt or
gases on the probe causes a decrease in the output voltage
at a constant mean velocity.

Richardson and McQuivey (1968) have overcome some of
the drift problems of the hot-film anemometer by cleaning
the probe before each run. Another procedure used by
McQuivey was to use a pitot tube as a mean velocity trans-
ducer and to assume that drift in the voltage-velocity
relationship was equivalent to a change in overheat ratio.
If the mean velocity and the output voltage are both known,
the effective overheat ratio can be found. If the probe
has been calibrated at several overheat ratios, the turbu-
lence intensity etc. can be determined from the correct cali-
bration curve. The parabolic wedge probes because of their
shape seem to be the most drift free for use in dirty water.

The hot-film anemometer, then, is an ideal turbulence
sensing device for use in relatively clean flows. There is,
however, some question of its stability in flows with con-
rsiderable suspended material, and of the ability of the

probe to withstand the impact of sediment particles.
B. Flow Visualization

Flow visualization techniques may be used in clear-
water laboratory situations. They are most useful for ob-
taining Lagrangian infermation, and three-dimensional infor-
mation can be obtained if desired. The main disadvantages
of these techniques are the tediousness of data reduction and

the fact that they cannot be used in turbid waters.



One flow visualization technique is the use of dis-
crete particles which are insoluble in the flowing fluid.
These particles may be injected into the fluid or circu-
lated with it. If they are of the same density as the fluid,
and small with respect to the microscale, they behave as
fluid particles. The positions of the particles may be
recorded with a moving picture camera, or on short-flash
ﬁhotographs. Hinze (1959) states that for use in fluids,
emulsions have been found to yield satisfactory results.
Mixtures of benzene and carbon tetrachloride or of olive oil
and ethylene dibromide are especially useful, because their
density can be adjusted to equal that of water (Kalinske and
Pien, 1944). 1If the particle density is not nearly equal to
that of the fluid, appropriate corrections must be made.
Quantities which may be measured using this technique are:
(1) Lagrangian velocities and correlations; (2) Eulerian
mean and fluctuating velocity components, and (3) Eulerian
velocity correlations.

A second flow visualization technicue which may be
used is the continuous injection of a substance miscible
with the flowing fluid, but detectible in it, such as ink or
fluorescent dye. In this technique, conclusions about the
flow properties are made from the dispersion pattern of the
injected substance downstream of the source. Quantities
which can be measured using this technique are: (1) lateral
Lagrangian correlation, (2) eddy diffusion coefficient, (3)

the Reynolds stresses, and (4) root mean square values of



the fluctuating velocity components. It should be pointed
out that there is considerable uncertainty involved in ob-
taining the last two quantities from the centroid and the
skewness of the diffusion pattern.

There are other flow visualization techniques available;
some of these are mentioned by Hinze (1959). The hydrogen
bubble technique used by Kemp and Grass (1967) is particu-

larly useful in water flows (see also Schraube et al., 1964).
C. Electrokinetic Transducer

The electrokinetic transducer consists of two elec-
trodes mounted flush on a surface such as the wall of a
pipe or the tip or sides of a pitot tube-like probe. The
electrodes measure the streaming potential fluctuations
which are due to the turbulent velocity fluctuations at
the surface. The component sensed is the one in a plane
parallel to the surface and along the line of centers of
the electrodes.

Chuang and Cermak (1964) conclude that the spectral
distributions of turbulent energies and shearing stress are
directly proportional to the corresponding energy spectral
distributions of the electrokinetic-potential fluctuation
difference. This means that there should bé a constant of
proportionality relating the root mean square values of the
potential fluctuations and the velocity fluctuations.
Cermak and Baldwin report that this constant is a function
of the mean approach velocity. In the work reported so far

(Chuang and Cermak, 1964: Cermak and Baldwin, 1964; and



Chuang and Cermak, 1965) the proportionality constant has
been determined by equating the output quantity at some
point on a suitable nondimensional plot to the corresponding
output quantity from some published experimental investi-
gation in air. This inability to calibrate the electro-
kinetic transducer directly limits its usefulness in evalu-

ating the turbulence leveis in less well understood flows.
D. Electromagnetic Induction

Electromagnetic inductiom is a method of component
velocity fluctuation measurement in turbulent liquid flows
which is based on the induction of an electrical potential
field in a conducting fluid moving relative to a stationary
uniform magnetic field. The basic principle is Faraday's
law of electromagnetic induction, that is, an electromotive
force is generated which is perpendicular to both the
instantaneous velocity component and the direction of the
magnetic field. The magnitude of the electric field
strength at a point is directly proportional to the magni-
tdde of the velocity at that point. The sensor used in the
flow is a pair of electrodes to measure the voltage dif-
ference between two points in the flow field. The frequency
response is limited only by that of the amplifier used, aﬂd
the lower limit of the size resolution is the gap between
the electrodes.

Grossman et al., (1957) report on a study of turbulence
in a pipe flow in which the entire flow field passed through

the magnetic field. A difficulty was encountered here in
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the interpretation of the voltage signal due to the fact
that induced currents due to the mean velocity profile
cannot be differentiated from the voltages due to the local
velocity fluctuations. The size of the flow field which
can be investigated in this way is, of course, limited by
the size of the magnet which can be used.

A second approach which can be used is pointed out by
both Grossman et al., (1957) and Hinze (1959). This is to
affix small magnets to the voltage probe and immerse both
in the flow. This method avoids the induced current problem,
but the probes are too large to sense all but the largest

scale turbulence.
E. Impact Tube

The impact tube is a sensor which samples the total
head of the flow at a point. It may consist of a total
head tube and capacitance transducer as used by Ippen and
Raichlen (1957) or of a small piezoelectric ceramic pressure
transducer installed in the tip of a total head tube as
used by Eagleson and Perkins (1961). The high frequency
response of these devices is adequate for water flows, as
Ippen and Raichlen report a natural frequency of 240 Hz and
Eagleson and Perkins a high frequency cutoff of 1150 Hz.
The low frequency cutoff of Eagleson and Perkins device is
1 Hz, however, and this could be aproblem in some water
flows.

This type of sensor is tough enough to be used in

almost any flow situation. It is, however, sensitive to
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pressure fluctuations as well as to velocity fluctuations,
and this limits the usefulness of the device, as does the
fact that it is sensitive only to velocity fluctuation in
the direction of the mean flow.

Jezdinsky et al., (1967) mention a combination of
Prandtl and yaw tubes, similar to the above devices, which
can discern two components of the fluctuating wvelocity.

They claim a natural frequency of 20 Hz for this device.
F. Miscellaneous Techniques

Hot thermistor probes are used like hot film probes,
but are constructed from a different type of material. The
thermistor is a semi-conductor with a large resistivity and
thermal coefficient of resistivity. They are rugged enough
for use in water, and give good spatial resolution but as
Lumley (1962) points out, their low thermal conductivity
limits their usefulness.

Aksoy (1967) used the deflection of a cantilever beam
with a sensor mounted at the end as an indication of longi-
tuﬁinal turbulent velocity fluctuations. Hartung and
Csallner (lb67) used the vibration of a metal strip parallel

to the main stream as an indication of the magnitude of the

transverse velocity fluctuations.
G. Propeller Flow Meter

There are several factors which must be considered
when a propeller flow meter is to be used as a turbulence

and/or mean velocity transducer. These are: (1) the
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effect of the turbulence on the mean velocity registered
by the meter, (2) the frequency response characteristics
of the meter, and (3) the spatial averaging effect of the
meter. These factors have all been studied to some extent
in the currently available literature.

Plate (1967) has derived an equation of motion for a
propeller-type flow meter. The equation is first order
with mean-velocity and frequency dependent coefficients.
Using this equation of motion, he has shown that this type
meter will over-register the mean velocity when the mean
velocity has a small-amplitude sinusoidal velocity fluctu-
ation superimposed on it. This conclusion is confirmed by
the work of Chaix (1962); however, for Chaix's propeller
if the relative intensity is less than fifteen percent, the
over-registration is less than one percent. Chaix has also
done some work on the effect of vertical oscillations on the
output of current meter. He found that the effect was vari-
able depending on the meter type, some over-register and
some under-register. Here again, the effect is negligible
if the intensit& is less than fifteen percent.

Jepson (1964) has developed an equation of motion simi-
lar to Plate's. When applied to a step function input, this
equation predicts that the natural frequency (in the sense
of a first order equation) will be directly proportional to
the step height (the final velocity). He gives experimental
evidence to indicate that this is true. Iwasa (1967)

accounts for the frequency response of the propeller by
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defining an averaging time which is due to propeller
inertia. This averaging time.is considered to be the
amount of time over which the propeller averages the
instantaneous input velocity to yield a "propeller averaged"
output velocity. He states that a propeller may be used to
measure turbulent velocity intensities as long as the ratio
of this averaging time to the Eulerian time scale is less
than 0.1.

Schuyf (1966) deduces the spatial averaging effect of a
propeller in grid turbulence by comparing the spectra from
water with those from a similar grid turbulence in air. He
says that the averaging effect will be negligible for this
type of turbulence when the ratio of the longitudinal macro-
scale to the propeller diameter is greater than 3.5. This
figure may be somewhat in error, however, because the
natural frequency of the propeller used by Schuyf was prob-
ably lower than he thought, and the effect of this is present
in the spectrum. Ishihara and Yokosi (1967) recognize that
spatial averaging can be a problem by stating that it is
méaninglesé to record fluctuations with frequencies greater
than the ratio of the mean velocity to the diameter of the
sensor.

Probably one of the earliest attempts to analyze open
channel flow turbulence with a flow meter was made by
Kalinske (1943) using a Price meter in the Mississippi River.
One of the most recent was by Tiffany (1967), again using a

Price meter in the Mississippi.
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Chapter III

PROPELLER RESPONSE THECRY

The response of a flow meter propeller to longitudinal
velocity fluctuations is determined by its inertia and
spatial averaging effect. The inertia effect is a function
of propeller geometry, mean velocity, and the frequency of
the fluctuations. The inertia effect can be compensated for
to obtain the input from the measured output if the response
of the propeller to small amplitude, sinusoidal velocity
fluctuations is known. The spatial averaging effect is a
function of the propeller geometry and the structure of the
turbulence. In order to obtain the input from the measured
output, it can be compensated for by using an experimentally
determined efficiency factor for the particular type of

turbulence present.
A. Effect of Lateral Velocity Components

As in hot-wire or hot-film anemometry (McQuivey, 1967),
the effect of the velocity fluctuations perpendicular to
the axis of the propeller can be shown by an order of magni-

tude analysis. The instantaneous total flow velocity is

R= Y(U +u?2+ v2 + w?

where (U + u) is the total velocity in the flow direction
(U the average velocity and u the fluctuating component),

v is the fluctuating component in the depthwise direction,
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and w is the fluctuating component in the lateral

direction. Expanding and dividing by U,

(5% = 1 3 3 %oy

B
U

(5% + &2
U U

clle

Since the values of u/U, v/U, and w/U are seldom greater
than .1, the values of the squared terms are one order of
magnitude smaller than the u/U term, and the total veloc-

ity may be approximated by
NV 5
R = U= + 2uU .

Thus, the sensitivity of the propeller to lateral velocity
fluctuations is one order of magnitude less than its sensi-

tivity to longitudinal velocity fluctuations.
B. Propeller Equation of Motion

The two basic methods available for the analysis of a
propeller are the momentum theory and the blade element
theory. Glauert (1963) points out that the momentum theory
is concerned mainly with the motion of the fluid, and that
the forces acting on the propeller are those necessary to
impart this motion to the fluid. The propeller is treated
as an actuator disc, and no information is obtained about
the forces on the individual blades.

The blade element theory considers the forces experi-
enced by the individual blades as they move through the
fluid. The forces experienced by the blade elements are

computed using standard airfoil theory.
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The blade element theory is used here td write an
equation of motion for a propeller turning in-a time-varying
flow. Non-stationary airfoil theory as developed by von
Karman and Sears (1938) and simplified by Sears (1941) has
been used to determine the 1lift on a blade element. The
torqﬁe produced by the 1lift and drag on a blade has been
equated to the inertial torque of the propeller to give an
equation of motion.

1. Lift and Drag on a Blade

The lift on an airfoil in arbitrary motion can be
divided into four parts. The first, Lo’ is due to the aver-
age angle of attack as in uniform motion. The other three
as given By von Karman and Sears (1938) are:

a. The apparent mass lift, Ll;
b. The quasi-steady lift, L2;

c. The lift due to the vorticity in the wake, L3.
If the motion of the airfoil is sinusoidal, Sears

(1941)‘has expressed the latter three as

=T .2 9p "
e Bl (3-1)
L, = np2 RP (3-2)
L, = —[LZ l—C(\))] (3-3)

where p is the mass density of the fluid, & is the chord of
the airfoil, p is the velocity of the blade perpendicular
to the flow velocity R, C(v) is a complex function of v the

reduced frequency of oscillation w?/2R, which contains a
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phase shift between the vertical velocity p and the lift,
and w is the angular frequency of the wing oscillations.

The lift due to the average angle of attack may be written

L0 = 1pR2%q (3-4)

where o is the angle of attack (« must be small).

The assumptions made in the derivation of equations 3-1
through 3-3 are: (a) the fluid is incompressible and non-
viscous, (b) the flow is two-dimensional, (c) the amplitude
of the sinusoidal airfoil oscillations is small enough that
the wake can be considered to be flat, and (d) the Kutta
condition applies. When the non-stationary lift equations
are applied to a propeller blade, these conditions are not
met because: (a) the fluid is viscous, (b) the bladés are
of low aspect ratio, and therefore the flow is not two-
dimensional, (c) the wake is not flat, but spiral, and
furthermore the wake from one blade can cause interference
velocities at the one following, changing the lift on it.
Bécaﬁse of these conditions, each of the terms of the lift
eéuation for a propeller blade is modified by multiplying
by a coefficient which is assumed to be a function of U and
w.

The equation for the 1lift on a blade at a radial
position r is

d

o

+

dL = an{CO(ﬁ,w) R2q + Cl(ﬁ;w) %

t

}dr {3-%)

L“"-JQ..

+ C,(T,0) Rp[l-C3(fJ_,w){l—C(v)}
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where Co(ﬁ,u), Cl(ﬁ,u), Cz(ﬁ,w), and C3(ﬁ,m) are the modi-
fying coefficients for the corresponding lift‘equations
3—-1 through 3-4.

The drag on the blade element at r is
dD = pR2yg CD(EI‘,w)dr, (3-0)

where CD(ﬁ,m) is a mean-velocity and frequency dependent

drag coefficient.

2. Propeller Blade Equation of Motion

A radial element of a flow meter propeller blade may
be treated as a flat plate subject to mean and fluctuating
flow velocity components parallel to the propeller axis, and
a mean and a fluctuating motion perpendicular to the axis.
Figure 1 shows this situation from outside the flow field
while Figure 2 shows the flow situation with a velncity of
(—2ﬁnor) superimposed perpendicular to the axis, where ng
is the rotational speed of the propeller corresponding to
a mean velocity U.

The effective instantaneous velocity at an angle ¢ to

=]

is .

U/coss + u cosg + 2nnr sine (3-7)

s
I

where
2mn_r )
8 = tan 1 _? . : (3-8)
U

The effective instantaneous velocity of the plate per-

pendicular to R is

p = - (2rnr cose - u =£ing) (3-9)

(p is positive downward).
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The torque on the propeller is balanced by its
inertial torque, thus the equation of motion of the pro-

peller may be written

R
2wpm J g% = 5 f Or(dL_cose -dD sins) (3-10)
Rj
where P is the mass density of the propeller, J is its
polar moment of inertia, s is the number of blades, and Ry
and R0 are respectively root and tip blade radii.
Using equations 3-5, 3-6, 3-7, 3-9, and the fact that

a = (B-8), where B is the blade pitch angle, equation 3-10

becomes
irﬂ = 2 1 — 2 du'
gt + Mpm-M;m? 4+ Mu'm = Ms(u') + Meu' + M ac t Mg
(3-11)
where
n-n
m = =
N (3-12)
u* = o/U (3-13)
p
o' = _m (3-14)
]
) l SCl?r Ro
M, = °® {2p'T + > [ (2r coss)?2dr} (3-15)
n U2 R.
o i
21s RO
My = —— / pre cosa{Cz[l—CB(l—Cﬂ +
UMlnO Ri
2C

-;9 tanZe - 2C,(8-0) taneldr (3<186)
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R

2 0
M3 = i__lT___S. I g’rs sine{cz [1—C3(l—c)] 00528 =
U?M; Rj
CD
5o sin?¢ + CO(S—B) sing coseldr (3=17)
Ro
M, = 2ns f Lr? cossiC [l—C (l—Cﬂ cos2g -
A , 2 3
Un M Rl
o1
CD
2 sine[CO(B—s) coso - — sine]}dr (3-18)
R C
o
M, = B e [ arx cosze{Cz(B—e) cosp -2 sing +
2 Ui
n <M R.
o 1 i
cz[l-c3(1—cﬂ sine}dr (3«19)
R [
M6 = j fo Rr{CO(B—e) cosf - -% sing +
no Ml Rl
c2[1—c3(1-C)] sing}dr (3-20)
R 2
M. = = f © G gr sinp coss dr (3-21)
T n 20M, R, 14
& o, i
s Ro LY CD
Mg = o ﬁ £ ooy 1Cpla=0) ='— tanpldyr, (3-22)
o -1 3.
In equations 3-15 through 3-22 the coefficients C, CO’ Cl'

CZ' C3, and CD are equal to those with the same subscripts
in equations 3-5 and 3-6, with the U and u dependency
understood. Thus, the coefficients Ml through M8 are func-
tions of U and w, as well as being functions of propeller
geometry and density.

If the quantities R0 and l/nO are of the same order of

and M. will be of the

magnitude, the coefficients M3, M4, 5
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same order of magnitude as M, and M, and if u' and m are
small with respect to one, the terms containing m?, (0?3 =
and u'm may be dropped from the equation of motion. If this

is done, equation 3-11 becomes

dm , ., “ ; du’ x:
JE ¢ Mpm = Mou' 4 M, o Mg . (3-28}

Equation 3-23 is a linear first order differential equation
with the modifying parameters being functions of mean velo-
city and the frequency of the velocity flﬁctuationr. The
propeller and its associated flow pattern may be thcught of
as a linear system being excited by a sinusoidally varying

input quantity. The coefficient M, must be identically

8
zero, because when u'=0, n=n and m=0, which in equation
3-23 yields M850. The coefficient M7 in the second term on
the right of equation 3-23 represents the acceleration sen-
sitivity of the propeller as discussed by Schuyf (1966).
Equations of motion of the same type as 2-23 were found by
Plate (1967) and Jepson (1964).

C. Frequency Response of the Propeller

-
As was pointed out in section B, the propeller and its

associated flow system may be thought of as a linear system.
The‘response of a linear system to a time varying signal is
determined by its system function or frequency response .
function H(w). As is demonstrated in the following section,
the frequency response function can be determined analyti-
cally if the differential equation of the system is known.

The response function may be determined experimentally by
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exciting the system with a sinusoidal input and measuring
the output amplitude and phase shift. | .

The unit impulse function is defiped by Biacewell
(1965) as:

() =0 &5 0
o (3-24)
Jrdte)ae = 1 .

hand +}

The response of a linear system at time t to a unit impulse
occurring at t = 0 is the unit impulse response function,
hi€).

Following Lee (1960), the sinusocidal input and output
of a linear system may be written respectively Re[?i eth]
and ReIEo éiwt] where E; and E_ are the complex input and
output amplitudes respectively, i = /fT, and Re signifies
the real component of the quantity in brackets. The system
function is then defined as

H(w) = 32 | (3-25)
| 1

int

so that Re{Eoe' } = Re[H(m)Eielwt]

. Lee shows (p. 329)

that H(w) is the Fourier transform of h(t),

niwy = | hie) e ge, ' (3-26)

—-—c0

The derivative theorem for Fourier transformatibn (Bracewell,
1965) states that the Fourier transform of the derivative
of a function is the product of iw and the Fourier transform

of the function itself, that is
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n

[ £ (t)e Ot gt

=00

iw F(w) . f oa ' (3-27)

where

o0

[ fwe™t gt = Fla) . - (3428)

Using the above definitions and equations 3-26 and
3-27, the system function for the system described by
equation 3-23 can be found quite easily. If the.driving
function u' in equation 3-23 is the unit impulse §(t), then
m is the unit impulse response function h(t) and equation

3-23 becomes

dh _ ds _
at + Mzh = M65 + M7 3E ° (3-29)

If both sides of eguation 3-29 are Fourier transformed,

~equation 3-30 results.

® ah -iwt * ~iwt B
!_m a—{:' e dt + {wMzhe dt =
” -iwt ® ds -iwt : :
{m M se at + {mM7 =F @ dt (3-30)

Ll

Since MZ' MG’ and M., are functions only of U and w, they may

7
be taken outside the integral, and using equation 3-26 and

3-27, equation 3-30 becomes
iwH (w) +,M2H(m) = Mﬁ + in7 " {3-31)
or

H(w) = —— 7 ' (3f32)
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In equations 3-16 and 3-20, the quantities C,(8-8) and
CD/n will be small with respect to the quantity Cz[l—C3(l—Cﬂ 3
Ignoring the former two quantities and noting from figure 2
that tang = 2urno/ﬁ % wr/15B, it is seen that M,=M.. M, is

‘complex because it contains the coefficient C(v); it may

be written

M, = [M,]| (cosy + i siny) (3-33)

where y is the phase shift and |M2| the magnitude of the

coefficient M,. Using equation 3-33 and rationalizing the

denominator, equation 3-32 becomes

; w : W 2. .= w £
1 4 Tﬁz-l— (1+D‘17) siny + M.? (-lﬁz—l—) o TM;]_ (I“I—I, J_) COSsy
H(w) = .
cos?y + (siny + Tﬁ—r)z
2

(3-34)
It is often more convenient to have the system function
divided into its magnitude and phase components. In this

case, equation 3-34 becones
1

H(v) = |H(w) | el (3-35)

where H(w) 18 the absolute value of the system function
and ¢ is its phase shift. From equation 3-34 it is seen

that
(AR ) W oy 3 : W )
M ={ (—I—ﬁ-é—l-) “M%«F (-I—Mz-l-) 2M7 (].+M7) siny+ (W) 2 [( 1 I—M.]) 2

+ 2(sinZy-cos2y)M, ] +(TE§T)2(1+M7)siny + 1)

H(w)| = M/{cos2y + (siny + To—p) 2}
| H (w) | ¥ YT T
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3-36)
and TEET (M7—l)c057 (
b = bom r 2 =
1 + 4o (14M,) siny+( ) 2M
IER 7 [M, 7
If M.=0 and y=0, equations 3-36 reduce to
7 ki g
|H(m)] = l/JTITG7mn)2 and ¢ = tan-l m/mn . (3-36a)

Equations 3-36a give the system function of an ordinary
first order system in which M, =[M2|=wn is real. o  is de-
fined as the natural frequency of the first order system;
it is the angular frequency at which the amplitude ratio
has decreased to 0.707.

IF¥ M7=0 but y#0, equations 3-36 become

|H(w) | = 1//cos2y + (sinY'+ w/lel)z and
o (3-36b)
_ ~ THa[ cosy
¢ = tan 1 M2 =
1+ siny
M, |
and if yv=0 but M7#0, they become
1+ (M w y?
iy IMZf)
|H(w) | = and
. |M, |
e (3-36c)

-3 My
14 M7(TE§T)

¢ = tan

From equation 3-36c it is seen that if the coefficient M,
dominates the behavior of the system, the amplitude ratio
|H(w) | becomes constant for w/IM2[ large, while from

3-36b, if the coefficient ]M2] dominates, the amplitude
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ratio decreases with the first power of m/[le, for large
values of this parameter.

Although the differential equation of the system was
derived for sinusoidally varying input velocities, the
system equation can be used to evaluate the response of the
propeller to turbulent velocity fluctuations. This is
because turbulence can be thought of as consisting of the
linear combination of an infinite number of sinusoidal
velocity fluctuations of infinitesimal amplitude, each
varying in angular frequency from its neighbor by dw. This
is the standard Fourier integral spectral analysis approach
to the study of turbulence. The system equation can be used
to compute the input spectrum from the output spectrum,

since as shown by Lee (1960),
= A 2 g -
S, () [H() |2 5, (w) (3-37)

where Soo(m) is the spectrum of the output of the system
and Sii(w) is the spectrum of the input. Implicit in
equatién 3-37 is the assumption that the velocity fluctua-
tions are uniform over the entire width and length of the
propeller. The effects of deviations from this assumption
are discussed in the next section.

In summary, equation 3-34 is the system equation of a
flow meter propeller and its associated flow. The impor-
tance of the coefficients M2 and M7 in the system function

can be determined by examining the high frequency asymptote

of the absolute value of the system function |[H(w)|. The
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system function must be determined experimentally, due to
the deviations of the actual flow conditions from those
assumed in the lift equations (3-1 through 3-4). Finélly,
the output spectrum can be corrected for the frequency
response of the propeller if its system equation is known,
and if the velocity fluctuations are uniform over the

width and length of the propeller.
D. Spatial Averaging

Equation 3-23 was derived under the assumption that u'
was uniform over the length and width of the propeller blade.
In turbulent flow this is not the case, and the system
responds to a "propeller averaged velocity". The velocity
weighting function can be derived from equation 3-20.

Using a propeller averaged excitation u','and assuming

acceleration sensitivity negligible, equation 3-23 becomes

a
a% + My = ui (w > 0) (3-38)

where from equation 3-20

Wy = 5 'El / [f u'dx] rG(U,w,r)dr. (3-39)
ng Ml 1= Ri L/2

In equation 3-39,
G(T,u,r) = cz[l—c3(1—cﬂ sine (3-40)

and the r dependency is indicated because 6 may be found
for a given r and U from the mean velocity calibration curve

of the propeller.
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Because the output spectrum is quite easily corrected
for the frequency response of the propeller (£hrough equa-
tion 3-37), and because the spectrum of axial velocity
fluctuations is of great interest in the analysis of turbu-
lence, the possibility of correcting the spectrum for the
spatial averaging effect of the propeller is investigated
in this section.

The time autocorrelation of the propeller averaged

velocity is
T

[ uj(t) uy(t+r)dt (3-41)
="

lim 1

Rinlm) = phe 27

where T is the sampling time.

Using equation 3-39, equation 3-41 becomes

= s s B Ro 2/2 L/2
Ry (1) e o [ N Y
B M= k=l =1L =By I,°F ™ o B~ 5
Rkj(xl,xz,rl,rz,T)rlrzG(U,m,rl)G(U,m,rz)drldr2
(3-42)
where
T R R r' )y = lim 1_ f u'(x ro,t)ul(x.,x t+1)dt
o e R L W T 2T Lo R Vi J 2T 2L :
(3-43)
Rkj is the autocorrelation between the point velocities at

the point (xl,rl) on the kth blade and the point (xz,rz) on
the jth blade. The value of Rkj for X =X, and rl=r2=0 for
any two blades is the true autocorrelation of the point
velocities at the propeller axis. With the present state of

knowledge of turbulence, it is impossible to write a general

expression for Rkj'
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The spectrum of the propeller averaged velocity Sll(w)
is obtained by Fourier transforming Rll(I);

;) = [ Ry (1) e ar . (3-44)

—_—

Using equation 3-42, equation 3-44 becomes

Ro R 8/2 /2

S
Sll(m) = E—E—— = I
[e) =

=
~

r =R, r2=Ri Xl=~£/2 x2=—2/2
Skj(xllxzrrlrrzrm)rlrzG(ﬁ;w:rl)G(ﬁ:wrrz)drldr2

(3-45)
where

(=2}

_ -lwt _
Skj(xl,xz,rl,rz,m) = {mRkj(xl,xz,rl,rz,T)e dr. (3-46)

Skj is the spectrum of the point velocities at the points

(xl,rl) and (xz,rz) on the kth and jth blades, respectively.
The value of Skj for X =X, and r1=r2=0 for any two blades

is the point spectrum of the axial velocity fluctuations at

the propeller axis. Since it is the transform of Rkj’ it
is impossible at the present time to obtain a general
expression for S, ..
p K
Expression 3-45 may be written
Sll(w) = nl(w) S (w) (3-47)

where S(w) is the point spectrum of the axial velocity

fluctuations at the propeller axis and
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] ——

ny W) = &2z
o

s fig R 2/2 /2
j vy
1'% x -

it =~ ‘in

1 = 1Ry =Ry xl=-£/2 x2=-2/2

S (H R sle 0 sw)
% P A s - - -
S 7t = ] J,wX . =
Skj(0,0,0,0,m) rl:r_zG(U,L,r)G(L,u,rz)drldr2 (3-48)

A spectral recovery efficiency n(w) may be defined as
nlw) = nl(m)|M6|2 . (3-49)

n(w) may be obtained experimentally for a particular propel-
ler and turbulent flow field from comparison of the pro-
peller averaged spectrum to the spectrum of a probe which
is small enough to have negligible spatial averaging prob-
lems, such as a hot film anemometer.

Using equations 3-49 and 3-47, equation 3-37 becomes

(because |H(w)|? contains the factor |M_ | in the numerator)

¢l
8o (W) = |H(w) |2 n(w) S(w) (3-30)
or
1

S(w) = S0 () [HW) |72 07 (w) (3-51)

Equation 3-51 is the means by which the point spectrum can
be recovered frpm the output spectrum of a propeller meter.
Both |H(w)| and n(w) will have to be determined experimen-
tally, the former due to imperfect knowledge of the flow
field near three-dimensional airfoils with spiral wakes,

and the latter because of incomplete knowledge of the space-

time correlation of the axial velocity fluctuations.
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Chapter IV

EXPERIMENTAL EQUIPMENT AND PROCEDURES

The goals of the experimental portion of this study
are: a) to evaluate the system function H(w) for.three
axial flow meter propellers, b) to determine the spectral
recovery efficiency n(w) for several open-channel flow
situations, for the same propellers, and c) to use the
results of a and b to evaluate the turbulence in open
channel flows in the field.

The propellers were mounted on a special meter body
which produced thirty pulses per revolution. The pulses
were converted to an analog signal which could be recorded
either on magnetic tape or on a strip chart. The system
function was determined by axially oscillating the propeller,
with a known angular frequency and amplitude, while towing
it through still water. The output signal was recorded on
a' strip chart so the amplitude ratio and phase shift could
.be determined. The spectral recovery efficiency was
determined by dividing the system-function-corrected output
specfrum by a hot-film anemometer spectrum for the same
open channel flow. Evaluation of n(w) as a function of the
ratio of the longitudinal macroscale to propeller diameter

and an energy distribution parameter was attempted.
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A. The Flow Meter and Associated Electronics

The propellers used were standard Ott Minor propellers,
numbers 1, 1-3, and 2-3. The dimensions of the propellers

are:

No. Diameter Pitch
(in) : (in)

1 1.97 1.97
1-3 1.18 b
2-3 i s ) - 3.94

Pitch, here, indicates the advance of the propeller per
revolution. The 1 propeller is a component propeller which
senses only the component of the flow velocity parallel to
the axis of the propeller, up to an angle of deviation of
30° of the total velocity vector from the direction of the
propeller axis.

The meter body was constructed for the U.S. Geological
Survey by the Colorado State University Engineering Research
Center machine shop. It consists of a propeller mounting
shaft which rides in two stainless steel bearings, a thirty-
toothed gear fixed to the shaft, and an electrode mounted
in the case directly above the gear, see figure 3, Figure 4
shows the propellers and the meter body disassembled. In
operation, the meter case is filled with water, and as the
shaft turns changes in resistance are produced between tﬁe
.probe and the gear as the teeth move by the probe. This
produces thirty pulses per revolution of the shaft. The
resistance changes between electrode and gear amplitude-

modulate a twenty kHz carrier signal produced by a Mimosa
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apparatus which is manufactured by Waterloopkundig Labora-
torium, Delft, Holland (Waterloopkundig Laboratorium, un-
dated). The Mimosa converts the amplitude modulated signal
into a square wave with the frequency at which the teeth of
the gear pass the electrode. The amplitude freguency re-
sponse of the Mimosa is determined by the time constant of
the differentiating circuit which is 1074 sec. This provides
an amplitude-frequency response curve which is flat well be-
yond the range of concern of the propellér amplitude-
frequency response so that no correction is required for the
Mimosa amplitude-frequency response.

For all of the work described herein, except the step-
velocity experiments, the signal from the Mimosa was fed to
a Hewlett-Packard 5212A counter (Hewlett-Packard, 1963).

The counter has a frequency response range of 2 Hz to 300

k Hz and the display time is variable down to one milli-
second. The counter was operated in the one-period sampled
mode. The response of the output of the counter to changes
in frequency in this mode of operation is limited by the
period length (one to six milliseconds, depending on
velocity) and the display time (approximately two milli-
seconds). For this work, the longest time constant would

be about eight milliseconds. This is adequate uncompensated
frequency response for use with the propellers of this study.
The two parts per million error in the 100 k Hz crystal
standard contributes a measurement error of about % one per-
cent for the one-period mode, and for the frequencies

encountered in this study.
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When the counter was used, it was used in combination
with a Hewlett-Packard 580A digital-to-analog converter
(Hewlett-Packard, 1964), so the counter output could be
recorded on a strip chart or magnetic tape recorder. The
time constant of the 580A is 1 millisecond, and the accuracy
is 0.5% of full scale or better.

The strip chart recorder used was a Brush Mark 280.

It has a full scale response flat to thirty-five Hz, chart
speeds to 200 mm per sec} and a system accuracy of 0.5% of
full scale (Brush Instruments, undated). The strip chart
recorder was used in the portion of this study in which

the system function was determined, and in the step velocity
experiments.

The magnetic tape recorder used in the spatial aver-
aging portion of this study was a Consolidated Electro-
dynamics Corp. PR-3300. The tape transport speed used was
30 ips. The frequency response at this speed is flat from
DLC , tp five k Hz, the accuracy is * 0.5 db, and the full
scale signal to'noise ratio is 46 db (Consolidated Electro-
dynamics Corp., undated). The analog roo£ mean square
voltage meter used in this portion of the study was the
Disa 55D35. The frequency response of this meter is flat
above 2.5 Hz, and down 3 db at 0.5 Hz.

In the step input experiments, the counter and digital
to analog converter could not be used due to erratic be-
havior at zero frequency (infinite period). 1In this phase

of the study, the analog signal was obtained using a
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Hewlett-Packard 500B electronic frequency meter. The 500B
has a time constant of five milliseconds, which provides
adequate frequency response for the propellers of this study,

accuracy is * 2% of full scale (Hewlett-Packard, 1955).
B. Flow Meter Mean Velocity Calibration

The propellers and U.S. Geological Survey meter body
were calibrated to determine the relation between output
frequency in Hz and mean flow velocity by towing them through
still watexr. The curves obtained in this fashion for the
three propellers are shown in figure 5. The stability of

the instrument is shown by the points obtained from towing

tests performed after the experiments described here.
C. Determination of the System Function

In the case where the coefficient M2 of the first

order differential equation 3-23 is frequency dependent,

it is necessary to investigate both the amplitude ratio
|H(w) | and the phase shift ¢ to completely describe the
system function. This can be done by comparing the system
output to its input when the excitation function is sinus-
oidal. The sinusoidal excitation used in this study was
produced by oscillating the flow meter sinusoidally as it
was towed through still water. Prior to the towing experi-
ments, an attempt was made to perform similar experiments
in which the sine motion generator was clamped to the walls
of a flume and the flow meter was oscillated in an oncoming

flow. This type of experimentation proved unsuccessful due
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to the impossibility of distinguishing the low frequency
velocity fluctuations produced by the sine motion generator
from the turbulent velocity fluctuations of the flume flow.

When M, of equation 3-23 is frequency independent, the
system function can be completely determined by evaluating
the response of the propeller to a step input in velocity.
Experiments of this nature have been performed to compare
natural frequencies determined in this way to those obtained
from the sinusoidal excitation experiments.

A problem related to the determination of the system
function is the problem of determining mean velocity in the
presence of turbulence. The possibility that a propeller
flow meter over-registers the mean flow velocity in flows
of high turbulent intensity was checked by comparing the
output velocity of a propeller meter to the velocity of a

towing cart while the meter was being towed and oscillated

at a known frequency and radius.

1. Sinusoidal Excitation Experiments

To investigate the system function of a propeller, a
flow field must be produced which varies sinusocidally yet
is instantaneously the same over the entire length and
width of the propeller. This type of flow field is diffi-
cult to produce in water, so the sinusoidal excitation of
the propeller was produced by oscillating the flow meter
as it was towed through still water. This is an extension
of the usual flow meter calibration technique of towing

the flow meter at a known constant velocity through still

Al
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water. That this procedure is justified can be shown from
an examination of the basic ideal fluid equations from
which the differential equation of the system was derived.
The equations for the lift on a propeller blade were
derived assuming frictionless, irrotational, incompressible
flow. The equations which must be satisfied for this type

of flow are (Sears, 1960):

29 = 0 | (4-1)
38 J1 .9 .8 = =
5 + 359+ * +vs=p_ (4-2)

where 8 is the velocity potential, g is the magnitude of
the velocity vector, p the pressure, p the fluid density,
and v the body force potential.

The flow situations which must be considered are: a)
the velocity of the flow past a propeller which rotates but
does not translate varies sinusoidally about some mean
value, and b) the propeller moves through the stationary
fluid with some mean velocity about which it oscillates
sinusoidally.

For these two cases the boundary conditions on & at
the body surface are identical, therefore, from equation
4-1 the flow patterns are identical. The instantaneous
1lift on the propeller is the integral over its surface of
the pressure term on the left of equation 4-2. Since the
flow patterns are the same, the only difference in the p/p
terms of the two cases must come from p_ . Since p_ is a

constant with respect to integration over the propeller
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surface, it drops out of the solution for the 1lift on the
propeller, and the lift on a propeller blade is the séme in
both cases. Thus the towing procedure is justified.

The sine motion generator consists of a circular disc
tapped to receive a pin at radii variable from 0.109 to
2.000 inches. The pin drives a slotted yoke which is
attached to the flow meter support rod. The disc is rotated
by a shaft driven by a variable speed DC motor. As the disc
rotates, the pin drives the yoke and meter support rod
longitudinally in pure sinusoidal motior. The lateral
motion of the pin is lost in the slot in the yoke. The sine
motion generator is illustrated schematically in figure 6,
figure 7 shows the bottom of the disc and yoke, and figure 8
shows a side view of the entire generator.

The displacement x of the sine motion generator pin
in the direction along the meter support rod may be expressed
as

X = rlsinmt ‘ (4-3)

where r, is the radius of the center of the pin as measured
from the center of the disc, w is the angular velocity of
the disc, and t is time. The velocity v of the meter sup-
port rod relative to axes tied to the sine motion generator
is then

VO ks cosuwt, (4-4)

and the amplitude of the velocity fluctuation produced by

the generator is Zwrl.
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From an examination of equations 3-15 and 3-16, it is

seen that the coefficient M, can be expected to be highly

2
mean velocity dependent. If the ratio

R, ZCD
2rs [ ar2{cose C,(1-C,(1-C) + — tan29-2C_(B-8)tans}dr
R 2 3 ™ o
a |
SClﬂ Ro
{2p' 7 + — [ (ar cose)? dr}
Ri

(4-5)
is insensitive to mean velocity, MZ will be directly pro-
portional to mean velocity.

If the coefficient Mz is real, it is called the natural
frequency of the propeller. Jepson (1964) predicts from an
equation of motion similar to 3-23 that the natural fre-
quency of a propeller will be directly proportional to the
mean velocity. He uses the results of Higson (1964) to
show that this is indeed the case. Higson used step-
velocity experiments similar to those described later in
this chapter. Because of the expected mean velocity de-
pendency of the natural frequency of a propeller, system
functions were evaluated at four different mean velocities
for each of the three propellers used in this study.

Corresponding to the usual definition of the turbulent
intensity u' as the root mean square of the turbulent
velocity deviations from the mean velocity, a velocity
fluctuation intensity V', due to the sine motion generator,
may be defined as the root mean square of v in equation 4-4,
or

v' = mrl//f . (4-6)
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At large v' to mean velocity ratios, the propeller blades
can be expected to approach a condition of zero lift, or
stall. In this case, the lift equations used in the deriva-
tion of chapter three are no longer applicable. When this
happens, it might be expected that the measured system func-
tion would become, at least in part, a function of the in-
tensity. To evaluate the effect of velocity fluctuation
intensity on the measured system function, system functions
were measured for three or four sine motion generator radii
for each propeller and mean velocity investigated.

The system function was determined for a particular
mean velocity and sine motion generator radius by towing the
flow meter through still water at that mean velocity while
at the same time oscillating it with the sine motion gener-
ator at several known angular frequencies w. As shown in
figure 9, the towing tank was Colorado State University's
200 foot long by eight foot wide by four foot deep flume.
The towing vehicle was the electrically powered instrument
carriage of this flume.

As the flow meter was towed, the signal from it was
demodulated by the Mimosa apparatus. The demodulated signal
was fed to the Hewlett-Packard digital-to-analog converter,
and then to the Brush strip chart recorder. An analog
velocity trace was, thus, recorded on one channel of the
Brush recorder. The position of the flow meter was recorded
on the other channel by recording a voltage pulse produced
by a photocell and pulse generator. The photocell was acti-

vated when the drive shaft of the sine motion generator
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was at one particular point in each revolution. Due to space
limitations, the tapped pin holes at the various raéii were
located in different angular positions on the sine motion
generator disc. Since the disc was fixed to the shaft, the
position trace generation point was different for each sine
motion generator radius used. For this reason, the pulse
generation point was referenced to full forward position of
the generator for each radius used in this study. The loca-
tion of the position trace with respect td the full forward
position was determined by calibration. The calibration
procedure involved simultaneously recording (on the Brush
recorder) the position trace and a voltage which was con-
trolled by a microswitch which was on only when the genera-
tor was at the full forward position. From this recording,
the phase angle between the position trace and the full
forward position of the generator was easily found. Figure
10 is a typical velocity-position record. The assymetry

of the velocity trace is due to the fact that the quantity
recorded is inversely proportional to the flow meter fre-
quency of fevolution, while the velocity is directly pro-
portional to this frequency.

When the system function is written as in equation 3-35,
the absolute value of the system function |H(w)| is the
amplitude ratio, the ratio of the magnitude of the amplitude
of the output of the system to the magnitdde of the input
amplitude. In this case, the amplitude ratio is the ratio

of the difference between the maximum and minimum recorded
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velocities to Zmrl, the input velocity amplitude. The
maximum and minimum recorded velocities are determined from
the recorded trace by means of the mean-velocity calibra-
tion curve of the propeller being used.

The phase shift ¢ of equation 2-35 is determined from
the relative time positions (lengthwise dimension on the
strip chart) of the maximum and minimum output velocity
traces and the flow meter position trace. The time posi-
tions of the actual occurrence of the maximum and minimum
velocities can be related to the position of the pulse
trace (meter position trace) if the location of the sine
motion generator pin at pulse generation and the direction
of rotation of the generator are known. The phase shift ¢
in radian is 2r times the ratio of the time deviation of
the occurrence of the maximum (or minimum) velocity trace
in the output from the actual time of occurrence of the
maximum (or minimum) velocity in the input, to the amount
of time required for one revolution of the generator.

The system function H(w) is completely determined when
the values of ;he amplitude ratio and phase shift are known

for all w's in the range of interest.

2. Step-Input Experiments

Equation 3-23 describes a first order system in which
M, can be complex. If M, is complex in a linear equation
such as 3-23, knowledge of both amplitude response and
phase shift is required to describe the system response
function, however, if M, is real and constant, knowledge of

2

only one parameter is required.
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If M, is a constant at a given mean velocity, equation

2

3-23 may be written

%% + w,n = u'y (4-7)

if the acceleration sensitivity is assumed to be negligible,
where

Mz(w) = constant = w_. (4-8)

If u' in equation 4-7 is a step function such that
0 for t < 0

dn . (4-9)
a—E"' wnn
a for t > 0
the solution to 4-7 is
n = (1-e'”nt)nf (4-10)

where ne is the equilibrium value of n corresponding to a
step input of height a. Equation 4-10 may also be written

n_.-n

$
n

« g int (4-11)

£

From 4-11 it is clear that W is simply the reciprocal of

the time elapsed between the application of the step function
and the arrival of the meter output frequency n at a value
such that {n.-n)/n; = e™= = 0.368.

It was expected that MZ would be experimentally dis-
covered to be complex, however, since it is much easier to
perform step input experiments than sine function excitation
experiments, it was hoped that it would be found that the
complex component of M, would be small 56 that the behavior

would be essentially that of a first order constant parame-

ter system. In such a case, M2‘5|M2|émn and the behavior of
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the system for a sinusoidal input could be described by
equations 3-35 and 3-36a with Wy determined from step input
experiments. For this reason, step-velocity-input experi-
ments were also performed on the propellers for which com-
plete system functions were available from sinusoidal exci-
tation experiments.

The step velocity experiments were performed with the
flow meter mounted on the towing cart as described in the
previous section. The step inputs were produced by holding
the propeller immobile with a slender rod until the towing
cart had reached a uniform speed, then instantaneously re-
leasing the propeller. This procedure effectively produced
a step input with a height equal to the velocity of the
towing cart. Due to the eratic behavior of the digital to
analog converter at very large periods (very low frequen=
cies), a Hewlett-Packard 500B frequency meter was used to
produce an analog voltage output proportional to the fre-
quency of revolution of the flow meter. This output fre-
quency trace was recorded on the Brush strip chart recorder.
The natural frequency was determined as described above by
measuring the amount of time required for (nf-n)/nf to reach
" a value of 0.368. A typical step velocity output record is

shown in figure 11.

3. Effect of Velocity Fluctuations on Output Mean Velocity

A problem closely related to the one of recovering in-
formation about the structure of turbulence from the flow

meter output is the one of recovering the true mean velocity
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from this output in the presence of a turbulent flow field.
It is well known that a pitot tube registers a higher veloc-
ity than the true mean in an.intensely turbulent flow field
(Goldstein, 1965, p. 253). It is reasonable to believe that
a similar phenomenon occurs when a propeller flow meter is
used to measure the velocity of such a flow.

There has been considerable discussion in Civil Engi-
neering literature of the incorrect registra-ion of the
mean velocity by flow meters in turbulent flows. As early
as 1913, Groat reported on the relationship between flow
velocity measurements made with cup and screw (propeller)
type flow meters and pitot tube velocity measurements in a
power-house tail race. He reported an average of 6% over-
registration by a cup meter and 1% under-registration
by a screw meter; the maximum over-registration of the cup
meter was 25% and the maximum under-registration of the
screw meter was 4%. Carter and Anderson (1963) report con-
siderably smaller differences between discharge measurements
made with the same two types of meters on the Mississippi
River at Vitksburg. They conclude that the Price (cup)
current meter is not noticeably affected by naturally
occurring stream turbulence.

Two recent French publications show that there is an
over-registration of the mean velocity by propeller type
flow meters in high intensity turbulent flows. In the first,
Castex and Carvounas (1962) report discharges measured at

various distances behind a grid with 0.13 ft square bars
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spaced 0.33 ft on centers. The grid was located in an

open channel flow about 13 ft wide and 13 ft deep. An over-
registration as high as 13.6% was reported. In the second
publication, Chaix (1962) reports that he generated his
fluctuating velocities by oscillating a meter in an oncoming
flow. In this fashion he generated effective turbulent
intensities as high as 40%. According to his results, the
over—registration is less than 1% for intensities as high

as 20%. At intensities of 35 to 40%, the over-registration
is 5 to 6% depending on the flow meter being tested.

An analytical evaluation of the effect that the fluctu-
ating axial velocity components have on the reported mean
velocity of a propeller flow meter has been presented by
Plate (1967). He developed an equation of motion similar
to the one developed in chapter three of this paper and
solved it for a small amplitude sinusoidal velocity fluctu-
ation. His results indicate that a propeller flow meter
should over-register by an amount proportional to the square
of the ratio of‘the amplitude of the velocity fluctuation
to the mean velocity.

Tests of the type reported by Chaix (1962) were made
on two of the propellers used in this study. The equipment
was the same as in section one, except that the counter
was set to manual count mode. To determine the deviation
of the reported mean velocity from the true mean velocity,
at a particular intensity of velocity fluctuations, the

total number of revolutions of the propeller was obtained
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in two situations. 1In the first, the number of revolutions
in 100 ft was obtained as the meter was towed at a given
mean velocity but without oscillation. In the secoﬁd, the
number of revolutions in the same distance and at the same
mean velocity was obtained with the meter oscillating axially
at a known frequency and radius. The difference between the
number of propeller revolutions in the two cases was taken
as an indication of the deviation of the indicat.d mean
velocity from the true mean velocity forrthe intensity
corresponding to the known frequency and radius. Two mean
velocities were checked at three different radii and fer w's

running to sixteen Hz for each of the two propellers.
D. Spectral Recovery Efficiency

Recalling the discussion in section D of chapter three,
it is impossible to obtain an analytical expression for the
spectral recovery efficiency n(w). There are two reasons
for this. First, the present state of knowledge of the
turbulent flow field is not sufficient to predict the
values of the autocorrelation of the longitudinal velocity
fluctuation; at the various points on the propeller blades.
(Indeed, one component of this function is what it is de-
sired to measure.) Second, even if this autocorrelation
were available, the flow field in the vicinity of the pro-
peller blades is not well enough understood so that one
could obtain the lift and drag coefficients necessary to

compute the spatially averaged autocorrelation. n(w) can

be obtained, however, for a particular flow field and



48

propeller by dividing the system function-corrected ordi-
nates of a power spectrum of the propeller angular velocity
fluctuations by the ordinates of a power spectrum of the
same flow field obtained from a point velocity sensor.
That is, from equation 3-50

Soo(w)

nlw) = . (4-12)
- |H(w) | 25 (w)

Such an approach was used in this study, wherein the point
velocity sensor was a hot film anemometer. The hot-film
anemometer may be treated as a point when its dimensions
are considered relative to those of the significant scale
parameters of tﬁe turbulence and relative to the dimensions
of a propeller. If the low frequency portion of the spec-
trum of the propeller fluctuations is unaffected by spatial
averaging, then it is possible to fit an empirical spectrum
function to this low frequency portion aﬁd extend it to

the higher frequency portion thus avoiding the use of n(w)
curves. This approach was also used, but again, its
validity must Qg judged on the basis of a comparison of the
power spectra so obtained with corresponding ones from the
hot film anemometer. In a particular type of turbulent flow,
the spectral recovery efficiency would be expected to be a
function of the ratio of propeller diameter and/or length
to one or more of the standard length scales of the turbu-
lence, as well as a function of the angular frequency of
fluctuations w. The flow in which the spectral recovery

efficiency was investigated was a large scale rough boundary
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open channel flow. The propellers used were the three for
which system function information was obtained. They are

described in section A.

l. The Hot-Film Anemometer

The standard which was used to produce the spectra oI
turbulence for the computation of the spectral recovery
efficiency was the hot-film anemometer. There has been
considerable use of the hot-film anemometer recently as a
tool for the evaluation of turbulence in water flows, see
for example, Richardson and McQuivey (1968), McQuivey (1967),
Raichlen (1967), and Dell'Osso (1966). The general advan-
tages and disadvantages of the use of the hot-film anemore-
ter in turbulent water flows are discussed in section A cf
chapter two.

The hot-£film probe used was a Thermo—systems parabolic
wedge with an equivalent diameter of .004" and a length'of
.04". The self balancing bridge was the Thermo Systems
model 1050 Anemometer Module. It was used in conjunction
with a Thermo Systems 1051-6 Monitor and Power Supply Module
and a 1057 éignal Conditioner Module. The frequency re-
sponse range of the anemometer module is DC to 80 k Hz and
the output noise level corresponds to a 0.05% equivalent
turbulent intensity. The output of the anemometer was
recorded on the CEC PR-3300.

Because the diameter of a hot-wire sensor is small in
comparison with its length, the only dimension of the wirs

which must be considered when evaluating the spatial
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averaging effect of the sensor is its length. Frenkiel
(1954) showed that a hot-wire behaves as a point velocity
sensor for measuring turbulent intensities if the quantity
y is

the lateral microscale of the longitudinal velocity fluctu-

(lw/)y)2 is small, where 1y is the wire length and )

ations. This argument can be extended to the hot-film
probes used in this study. If local isotropy is assumed,

Ay can be inferred from the measured power spectrum from

2
53— =2 [ £2 s(par (4-13)
x U2 o)
and
A = V2 Ay, (4-14)

where Ay is the longitudinal microscale of the longitudinal
velocity fluctuations, S(f) is the normalized power spectrum,
and f is frequency in Hz. It will be shown in chapter five
that (lw/ky)2<<l for all cases considered, therefore, the
assumption that the hot-film probe is a point velocity
sensor is justified in the cases cited here.

The quartz* coated hot-film probes have adequate fre-
quency response for use in measuring turbulence in water.
' The manufacturer claims a frequency response to 70 k Hz for
the probes described above. Richardson et al. (1967)
showed that the tﬁrbulent intensities measured in air by a
0.002 inch diameter hot-film were the same as.those measured
with a 0.0002 in hot-wire; while the intensities measured
with a 0.006 in film were only five to ten percent low. The

equivalent diameter of the probes used here was 0.004 inches,
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and the frequencies encountered in water are lower than
those in air, therefore, the frequency response of the
probes used is considered adequate.

The drift problem mentioned in chapter two, section A,
was solved here using the techniques of Richardson and

McQuivey (1968).

2. Power Spectral Density Computation

Digital techniques were used in this study for computa-
tion of the power spectral densities of the velocity fluctua-
tions of both the propellers and the hot-film anemometer.
This was done for two reasons; first, digital techniques
make it possible to obtain reliable power spectral densities
at much lower frequencies than with the available analog
techniques. Second, digital techniques permit the transfor-
mation of the recorded voltage fluctuations into velocity
fluctuations before the computation of the power spectral
density whereas analog techniques do not.

When using the propeller output data, intermediate com-
putations were necessary before the power spectral densities.
could be computed, due to the form in which the raw data was
received from the digital-to-analog converter. Because the
counter was operated in single-period-sampled mode (section
C-1 of this chapter), the output voltage from the digital-
to-analog converter was inversely proportional to velocity.
Before the power spectral density of the velocity fluctua-
tions could be computed, this voltage had to be converted

to a velocity using the mean velocity calibration curve of
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the propeller. That is, the preliminary computation

required was

U=A+§—E, (4-15)

where A and B are the calibration constants of the propeller,
E is the output voltage of the digital-to-analog converter,
and K is the proportionality constant between E and the
period of the flow meter pulses.

The analysis of the autocorrelation and power spectral
density (power spectrum) of the Eulerian velocity time
series provides much of the background of the turbulence
literature of today. The autocorrelation of the time
series of output velocities from a flow meter may be written

R lim 1

T , |
0o N T £T u'o(t)u o(t+r)dt, (4-16)

where u' (t) = (uo(t)—ﬁ)/wu'Z and t is the lag time. The
power spectrum of this series Soo(m) is the Fourier trans-
form of ROO(T), that is
s__(w) = IF e 19TR  (1)dr (4-17)
oo L 00 e
The one sided physically realizable power spectrum function

written in terms of frequency in Hz, £, is written

8,0 (E) = 4 £ R (t)cos 2nfr dr,0<f<= (4-18)
The discrete data equivalent of Roo in equation 4-16 is ﬁgo
where
& 1 N-r
M et ' ' -
Roo(rh) e nil u o(nh) u o((n+r)h), < 0,1,2,...m,

(4-19)



53

where N is the total number of points in the time series, r
is the lag number, m is the maximum number of lags, and h
is the time increment between the points in the series. The

discrete equivalent of equation 4-18 then becomes

N kfc ,-. m-1
So0 (=) = 2h[Roo(0) 4+ 2 r-E—l

nrk

m)+

”~
Roo(rh)cos (

(-1 R, (mn)] (4-20)

where fc is the cutoff frequency and k = 0,1,2,...m.
) n

(Bendat and Piersol (1966), p. 292). SQo is a raw spectral

estimate, it should be smoothed by a procedure called Hanning

(Bendat and Piersol, p. 293)

A N fc
@00(0) = 0.5 5,(0) + 0.5 5, ()
kf "N ' n kf
A S k-1 C
Soo('ﬁ_) = 0.25 Soo(—ﬁ— £.) + 0.5 Soo(_ﬁ_) o
N
k+1
0.25 SOO(T fc) ‘k=0,l,2,...m
N wi-d ' n
‘éoo(fc) = 0.5 8, (=== £,) + 0.5 8__(£_) (4-21)

-

where goo is called the smoothed spectral eétimate, or the
spectrum. Once goo(f)' ]H(f)l and S(f) are known, n(f) may
be ccmputed using eéuation 4-12, 1In this study, S(f) has
been taken to ée the power spectrum of the velocity fluctu-
ations as obt;ined from the hot-film anemometer.

The values selected for the parameters, N, m, and H of

equations 4-19 through 4-21 are based on a compromise
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between the desired degrees of resolution and accuracy of

the estimate of the spectral density function and the iength
of record which can be processed economically on the avail-
able computzr, and on a cutoff frequency fc selected through
trial and error, or previous knowledge of the highest fre-
quency in the process. Oncé fc has been selected, the time
increment between sample points is determined by the require-
ment that to analyze a periodic function one must have at
least two samples per cycle of the highest frequency com-

ponent, that is

S |
h = 75 -

o (4-22)

The resolution of the estimate is determined by the equiva-

lent band width Be of the digital filter, where

(4-23)

o
-
2
oy ol

The accuracy of the estimate is determined by the number of
degrees of freedom df of the chi-square of the power spectral
density, at a c?osen confidence level. It is customary to
assume that in the interval Af=Be the power spectrum is the
same as that for a band width limited with noise. 1In this
case, .

d. = 2B_T , | (4-24)

£
where T is the length of record, and

T = Nh. (4-25)
Now df controls the accuracy of the estimate, Be the reso-

lution, and T is controlled by economic factors or computer
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storage limitations, and since they are related through
equation 4-24, it is seen that a compromise must bg reached
in their selection. References which give a guide to the
selection of these factors are Roesner and Yevdjevich (1966),
or Bendat and Piersol (1966). As an example, for a confi-
dence level of 90 percent and df==20, the true value of the
power spectral density can be between 0.54 and 1.57 times
the computed wvalue.

The equipment used for conversion of the angular veloc-
ity of the propeller into an analog voltage signal is de-
scribed in section A of this chapter. 1In addition, an AC
amplifier with a gain of 100 and a low frequency cutoff of
one Hz was necessary to bring the output voltage of the
digital-to-analog converter up to a level which could be
recorded by the magnetic tape recorder. The output signal
from the hot film anemometer was recorded directly on the
CEC PR-3300.

For the digital data processing, the recorded analog
, signals were converted to digital magnetic tape récordings
using the.Ahalog to Digital Data Conversion System ZA-31340
produced for the National Bureau of Standards of Boulder,
Colorado by Electronic Engineering‘Company of California.
The primary components of this system are the EECO 8-1024
SI Magnetic Core Memory and the EECO 760-10 BS.Analog to
Digital converter. The data were stored dn the digital
magnetic tape at six bits per digit, in blocks of 540

digits, using a format compatible with the Control Data

~



56

Corporation 6400 computer belonging to Colorado State
University. The voltages were read from the analog data
tapes to three significant figures, thus the CDC 6400 was
programmed to extract 180 data words from each block of
digital data information on the digital data tape.

The data were analyzed on the CDC 6400 computer. In
processing the flow meter data, the program consisted mainly
of four parts: 1) reading and unpacking the digital data
tape, 2) conversion of voltages to velocities, 3) standard-
izing, and 4) computation of the autocorrelation and power
spectral density functions. The hot-film anemometer data
processing procedure omitted step number two. The sub-
routine for the computation of the power spectral density
was built around equations 4-19 through 4-21. Figure 12

shows a simplified flow chart of the program used.

3. Computation of Spectral Recovery Efficiency

Once goo(f)' S(f), and |H(f)| have been obtained, n(f)
can be obtained through equation 4-12. The approach which
most clearly illustrates the distortion of the spectrum due
to the spatial averaging is the one in which the ordinates
. of goo(f) are multiplied by ]H(f)l-2 and then divided by
g(f). On logarithmically scaled paper, this is a simple
addition-subtraction procedure, see figure 13 for an example.

Another approach to obtaining a close approximation to
the point velocity spectrum from the sPatia11y averaged
spectrum which has been corrected for the system function

is one in which an empirical spectrum function is fit to a
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portion of the spatially averaged spectrum which is rela-

tively unaffected by this spatial averaging. This. procedure

must, of course, be justified by comparison of the spectra

' so obtained with point velocity spectra. An inspection of

the hot-film anemometer spectra obtained in this study

shows the -5/3 slope fairly well established over the range

of interest here. This indicates that one should fit a

spectrum function of the type suggested by von Karman (1948)
S(f) = 4Lx/§1°° (4-26)

X )2)5/6

(1+(2.546m—=—
U

loc
where ﬁloc is the local mean stream velocity and Lx is the
macro length scale in the flow direction. The macroscale,

formally defined using Taylor's analogy, is

L o= U, £ R(t)dr (4-27)

however it is more easily obtained from the £ = 0 ordinate
of equations of the type of 4-26 (Raichlen, 1967). This
approach eliminates the necessity of computing separate

spectral recovery efficiencies.

4. Flow Parameter Dependency of Spectral Recovery Efficiency

It is expected tha£ the spectral recovery efficiency
for a particular propeller is a function of the size and
shape of the eddies of the flow exciting the propeller. For
a particular shape of eddy, it should be a function of the

ratio of some characteristic size of the eddies to a
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characteristic dimension of the propeller. Because the
longitudinal velocity fluctuations are of concern, it Qould
seem that the characteristic eddy scale should have some
relation to the longitudinal velocity fluctuations. Char-
acteristic scales of the longitudinal velocity fluctuations
are Lx' Ly' and Lz’ where Lx has been defined in equation

4-27. LY and Lz are defined as

L, = (f) R (y) dy and L = £ R,(z) dz (4-28)
where
[ ] "
_lim 1 T u (xo,yo,zo,t)u (xo,yo+y,zo,t)
R (y) = — - dt
and = (4-29)
] 1
A, lim 1 T u (xo,yo,zo,t)u (xo,yo,zo,+z)t)
u T+ 2T

-T u*?

where x is the coordinate in the direction of flow, y is in
the flow depth direction and z is perpendicular to the first
two. Either the propeller diameter or length is a conveni-
ent length parameter describ%ng the séale of the propeller.
Their dimensions are generally of the same order of magnitude.

Assuming two-dimensional flow, a convenient eddy shape
parameter might be the ratio Ly/Lx' In an isotropic turbu-
lent flow, this ratio has a value of 0.5. The work of
Laufer (1951) indicates that this ratio is even smaller than
0.5 in shear flows of the.type in which it is desirable to
use the propeller flow meter. From this discussion, it

appears that an important parameter defining the flow
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dependency of n(f) might be d/LY , where 4 is the propeller
diameter.

Unfortunately, while a good estimate of Lx is easily
obtained from the system function corrected power spectral
density of the propeller, Ly must be obtained from a mors
difficult and time consuming measurement involving two
sensors for which propellers are not suitable unless Ly is
very large.

Hinze (1959) p. 105 shows that

(e + e )2 - (e - e )2
R ( ) = o Y o Y (4“30)
u'Y
4s é;

'
o
where ey is the fluctuating component of the voltage of

the sensor located at y = 0, ey the fluctuating component
at y = y, the overbars indicate a time averaging procedurs,
and the primes indicate root mean square values. This type
of measurement has been made in flows similar to the ones
of interest here by Dell'Osso (1966) and Laufer (1951).
Their results are presented in the next chapter of this

study. - k. '
p

Since LY is difficultfﬁd’measure, it will not often be
available as a basis for the functionél behavior of n(£),
so some more readily available scaling parameter should te
selected. One such measure is the scale Lx which is easil
obtained from the power spectrum. JFortunately, there is
already a small amount of informaéion available about ths

relation between Lx and Ly for the flow of interest here.

The use of L, as a basis for the functional behavior of - (f)
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is discussed in the next chapter. Another parameter which
might give a basis for the functional behavior of n(f) ‘is
some physical scale of the flow which is known, at least
approximately, to determine the scale of turbulence. Such
measures are bar size or spacing in grid generated turbu-
lence, pipe diameter in pipe flow, or channel depth or
width in open channel flow. Finally, if one is certain
that the scaling of the flow is such that the low frequency
portion of the propeller spectrum is undistorted by spatial
averaging, one can simply fit an empirical curve to this
portion of the spectrum and avoid entirely the need to use

a spectral recovery efficiency.

E. Conversion of Voltage Fluctuations
to Velocity Fluctuations

As explained previously, the angular velocity of the
propeller rotating in a velocity field is converted by the
instrument system into an analog voltage inversely propor-
tional to the instantaneous flow velocity. Similarly, the
hot—fiim anemometer instrumentation system produces a vol-
tage which is directly proportional to the instantaneous
flow velocity. Once this voltage has been recorded, or
analyzed, say by a root-mean-square (rms) voltmeter, there
remains the problem of converting the voltage fluctuations
back to velocity fluctuations. One method of converting
voltage fluctuations to velocity fluctuations is to assume

that the mean velocity calibration curve applies also to

the instantaneous voltage-velocity relation for small
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fluctuations. This method will not work, however, when the
voltage fluctuations are analyzed using a rms volt.meter.
In this study, when rms meter analyses or hot-film anemome-
ter power spectral density computations were made, the
method presented by Richardson and McQuivey (1968) has been
used to convert voltage fluctuations into velocity
fluctuations.

The use of the method of Richardson and McQuivey (1968)
for either the hot-film or the flow metef involves five
assumptiéns. These are:

1. The velocity vector U can be expressed by a mean
value U and the fluctuating éomponents u, v, and w.

2. The propeller (hot-film) is sensitive only to the
mean value and the fluctuating component of the velocity
in the mean flow direction.

3. The relation between mean voltage and mean velocity
can be used to convert voltage fluctuations to velocity
fluctuations.

4. The change in the slope dE/dU of the calibration
.curve is small over the range of the velocity fluctuations
encountered during a measurement.

5. The root-mean-squares of the small voltage fluc-
tuations e' and the small velocity fluctuations u' are
interchangeable with the differentials dE and 4U.

Richardson and McQuivey (1968) show that all these
assumptions are justified in hot-film anemometry. The only

arguments which must be modified for the propeller flow
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meter are those for assumptions two and three. That assump-
tion two is valid for a propellér flow meter has been broved
in section A of chapter three. Assumption three implies
that small velocity fluctuations are followed ideally by
the propeller. Due to inertial and spatial averaging, this
is not the case. Thus this procedure is incorrect when
applied to propeller flow meters to the degree that inertial
and spatial averaging effects prevent the achievement of
assumption three. This means that the intensities measured
using this method will be too small by the fraction of the
area between the propeller output velocity power spectral
density and the true power spectral density of the turbulent
flow phenomenon. As long as this is realized, it is per-
missible to use this method to convert propeller measuring
system output voltage fluctuations to velocity fluctuations.
As will be shown later, the loss of turbulent energy due to
spatial and inertial averaging is relatively constant over a
wide range in power spectral density energy distribution
parameters so t?at correction for the loss of energy in open
channel turbulence is relatively simple.

Richardson and McQuivey (1968) show that under the
above assumptions the relation between voltage and furbulent

velocity root-mean-squares may be written

o =& g, (4-31)

o |
mﬂct

where U and E refer to the mean velocity-mean voltage cali-

bration curve and dU/dE is evaluated at the mean velocity
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of the measurement. The calibration equation of a propeller
in terms of the digital-to-analog converter output voltage

may be written

B, | (4-32)
E

=

where Ep = 1/£, £ is frequency of propeller revolution,
and K is a proportionality constant between propeller period
Ep and voltage E. Differentiating equation 4-32 with re-

spect to E, one obtains

@w_-B (4-33)
dE
This is the relation used in equation 4-31 for conversion of
voltage fluctuations to velocity fluctuations for propeller
flow meters. The value of dU/dE used for the hot-film ane-
mometer is obtained by graphical differentiation of its
mean velocity versus voltage calibration curve.
The root-mean-square voltage meter used in this study
was the Disa 55D35. It has a low frequency cut off point
of 0.5 Hz, and a high frequency response flat well beyond

-

the range of frequencies of interest in this study.
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Chapter V

In this chapter is a discussion of the results of exper-
imental measurements made on and with Ott minor propellers
1, 1-3, and 2-3. One group of experiments was designed to:
1) evaluate the dynamic behavior of the system which con-
sisted of the propeller rotating in a spatially uniform
velocity field, and 2) evaluate the spatial averaging effect
of a propeller being used to measure a particular natural
flow field which was, in this case, a rough boundary open
channel flow. In the second group of experiments, the re-
sults of the first group were used to interpret the power
spectra and relative intensities of the longitudinal veloc-

ity fluctuations in several field situations.
A. Dynamic Behavior of the Propeller-Flow System

This subgroup of the first group of experiments was
designed to evaluate the dynamic behavior of a propeller in
a spatially-uniform but time-varying flow field. Sinus-
oidal excitatidn experiments were used to determine the
entire system function H(w). Step-input experiments were
used to see if the results of the sinusoidal excitation
tests could be reproduced in a simpler fashion. High
velocity fluctuation intensity experiments were made to
check the range of validity of the linearization assumptions
made in the derivation of the equation of motion. The

results of the entire subgroup of experiments are discussed
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with respect to the applicability of the model described by
equation 3-11, and to the design of propellers with a high

frequency response.

1. Sinusoidal Excitation Experiments

As explained in chapter IV, section C-1, the output
signal from the flow meter via the instrumentation system
was recorded along with a position trace on a strip chart
as shown in figure 10. These two traces along with cali-
bration information relating the position trace to the full
forward position of the sine motion generator contain all
the information necessary to obtain the system function of
a propeller if the recorder chart speed and generator radius
are known. The instantaneous output velocity is determined
from the flow chart ordinate using the mean velocity cali-

bration curve, that is

U=A+R—-§, (5-1)

where A and B are calibration constants, E is the recorded
voltage, and K is a proportionality constant between E and
the flow metler period. The absolute value of the system

function |H(w)| is determined from

Unax~ Ymin
|H(u)| . (5-2)
i
where ry is the sine motion generator radius, and
8
w = 21 L— (5—3)

in which S is the chart speed and L is the distance between

position pulses. The phase shifts of the occurrences of
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the output maximum and minimum velocities ¢ and ¢_. are
max min

determined from

= max _ i
d>max L 2w ¢p % 2
(5-4)
_ _min _ _ T
bmin = T L 27 o T2 ¢

where Lmax and Lmin are the distances from the position
pulse to the occurrence of the maximum velocity in the out-
put, positive from right to left (in the direction of in-
creasing time, figure 10) and where ¢p is the phase lag
between occurrence of the position pulse and full forward of
the sine motion generator. The true input maximum velocity
occurred when the generator pin was one-fourth of a revolu-
tion ahead of full forward. This is the reason for the plus
sign on the /2 in the first of equations 5-4 and the minus
sign in the second. The phase shift used in this study was
the average of — and dmin® The actual solution of equa-
tions 5-2 and 5-4 was computerized so that the data analysis
simply required transferring from the chart to IBM cards the
ordinates of the 'maximum and minimum velocities and the
abscissas of these points and the position trace. |H(uw) |
and ¢ were taken to be their averages over six or more cycles
of the generator. Their standard deviations were generally
of the order of 0.05 for |H(w)| and 0.10 for 4.

To determine the mean velocity dependency of the system
function, it was evaluated for four mean velocities for each
of the propellers. To evaluate the intensity effect, three

or four sine motion generator radii were used for each mean
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velocity and propeller. The results of the |H(w)| measure-
ments on the 1, 1-3, and 2-3 propellers are presented in
figures 14, 15, and 16. These same results are given in
figure 17 as IH(u/wn)l in comparison with the first crder
model given by equation 3-36a. In this case, Wy has been
defined to be the w for which the experimental amplitude
ratio of the propeller-flow system is [H(w)| = [H(uw )| =
0;707. This is in agreement with the first order system
definition of wy from equation 3-36a. Similarly, figures
18, 19, and 20 present the individual ¢ curves for these
propellers and figure 21 shows the same information in com-
parison with a ¢ defined by equation 3-36a with the w, as
indicated on the graphs.

The natural frequency defined here as the angular fre-
guency at which the experimental amplitude ratio has de-
creased to 0.707 is shown in figure 22 as a function of
mean velcocity. This figure will be discussed at length
later in this section.

Examination of figures 17 and 21 shows that the actual
system equations of the propellers tested here deviate con-
siderably from the first order constant coefficient model
described by equations 3-36a.

One factor which is quite noticeable is the systematic
increase with decreasing mean velocity of the ordinates of
the |H(w/mn)|curves of figure 17, at a constant value of
“/mn' This is an over registration of the amplitude ratio

curve with respect to the first-order, constant-coefficient
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model. As shown for selected points on figure 15a and d,
the sine motion generator relative intensity v'/U at the
larger generator radii exceeds 0.1 over a large portion of
the amplitude ratio curves. At a constant radius and u,
the intensity increases as the mean velocity decreases.
Referring to the work of Plate (1967) (discussed in chapter
IV) it is tempting to speculate that the apparent over
registration is due to the fact that v'/U is outside the
range of validity of the small amplitude assumption made in
simplifying equation 3-11. If there is to be an effect of
v'/U on the amplitude response, it must enter through the
term Ms(u')2 of equation 3-11. From equations 3-13, 3-15,
and 3-19 it is seen that Ms(u')2 a % (rlw)z. For w constant,
it is evident that a change in U from 2.0 to S.Of/s should
change Ms(u')2 to 0.4 times its previous value, while a
change of r; from 0.109 in to 0.969 in should change this
guantity to 79 times its previous value. Since the effect
of vafying ry at a given w should be much more pronounced
than the effect of varying U, it is clear that if there is
no discernible difference between experimental points ob-

tained for different sine motion generator radii r, at high

1
v'/U the effect of the term Ms(u')2 on |H| is negligible,

and the speculation of a significant ¥'/U dependency of |H]
is not justified. An examination of figures 14 through 16
shows that there is no persistent trend in variation of |H|

which can be attributed to the different radii, thus ¥'/U

is not an important factor in determining the behavior of
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|H| for the ranges of r, and v used. Furthermore, the work

1
of Plate (1967) predicts a v'/U effect on the mean output
velocity. As will be discussecd later, this effect is
actually present. The presence of a V'/U effect on mean
velocity does not, however, necessarily imply that such an
effect should influence the amplitude response.

The above described systematic deviations from a first
order constant parameter model for |[H| could also be pro-
duced if the differential equation contained a non-negligible
acceleration sensitivity inversely proportional to mean
velocity. Assuming for simplicity that y = 0, the vari-
ation of [H(w)| with w/|M,| when the acceleration sensitiv-
ity M7 is significant is given by

1 + M 2(w/|M,])2
|H(u) | = \J/ . : (5=5)
1+ (w/]M2|)2

(equation 3-36c). From figure 2, and from the calibration

equation of a propeller, and because the calibration con-
stant A is generally small,

2nnor r
tang = = = 158 (5-6)

Using equation 5-6, equation 3-21 becomes

2
_ (158,51 jRo _ r2r -
77 - 7 5, B2 + 7]
1

™

M

and it is assumed that the wvirtual mass coefficient Cl and

the blade chord ¢ are not functions of radial position on

the propeller blade. Note that equation 5-7 does not
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predict an inverse mean velocity dependency for the acceler-
ation sensitivity, whereas such a relationship is required
to produce the variation of the system function with mean
velocity that is indicated by the experimental results of
figure 17.

Using the propeller dimensions given in table I, the
calibration constants of figure 5, and assuming the virtual
mass coefficient Clzl, acceleration sensitivities as calcu-

lated by equation 5-7 are:

Propeller
1 _ M5=0.704
1-3 M7=0.786
2-3 M7=0.820. (5-9)

If equation 5-5 governs the behavior of the amplitude ratio
the M, values of equation 5-9 are the minimum values to
which H(w) should asymptote for m/lM2| large. As seen
from figure 17, the experimentally obtained values of |HI
at high angular frequencies are considerably lower than the
values given in equation 5-9. In addition, there is no indi-
cation in the eXperimental |H| curves of the reverse curva-
ture required for these curves to asymptote to some finite
constant value. This indicates that the virtual mass coef-
ficient Cl is considerably smaller than the value of one
assumed in calculation of the coefficients M, in equations
5-9 and that insofar as the propellers of this study are
concerned the acceleration sensitivity is negligible.

From the above discussion, it is clear that the devi-

ation of the measured system frunction from the first order-



71

constant coefficient model must arise from the complex

nature of M,. The system function behavior is therefore
described by equations 3-36b and not equations 3—36%. The
system function is, for a given mean velocity, then a func-
tion of w through the phase angle y and the magnitude [le.
The behavior of these parameters with w and U is not amen-
able to analytical prediction, so they must be determined

by experimental methods. Cnce the equations 3-36 have

been solved for y and [le, these quantities can be calcu-
lated from the experimentally determined values of |H| and 4.
This was done and these quantities are plotted for the 1-3
propeller in figures 23 and 24. The mean velocity dependeﬁcy
of [M2] is seen from figure 23 to follow the same general
trend as the w_ defined by the 0.707 value of the |H|
curves. The mean velocity dependency of y seems to be
restricted to the lower angular excitation frequencies.

The determination of [M,| and y from the measured [H|
and ¢ curves is purely academic. The real interest here
lies with the |H| curves because these are the ones needed
to correct the turbulent velocity. spectrum for the inertia
effect of the propeller. Before moving on, however, it is
interesting to discuss the general behavior of the functions
|H| and ¢. First, the |H| curves do not deviate signifi-
cantly from the first-order model shape until |H| is less
than 0.707. Second, the ¢ curves do not deviate signifi-
cantly from the shape predicted by this model until ¢ > 0.95

rad. There is, however, considerable difference between
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natural frequencies as defined by the ]H(un)l = .707 cri-
terion and as defined by a p(wy ) = .785 criterion (Forfa
first order-constant parameter system, the natural fre-
quencies so defined should be identical.). The Wy defined
by the first criterion increases systematically and consid-
erably with mean velocity (see figure 22) while that de-
fined by the second increases only slightly with mean
velocity, and the variation is not as systematic. There

is, apparently, then a much greater mean velocity dependency
in |H| than in ¢.

The failure of the experimental |H| and ¢ curves to
fit the élassical first order model makes the possibility
of prediction of system behavior from the step input be-
havior characteristics appear bleak. The behavior of the
IM,| curves indicates that it will probably not even be
possible to obtain an indication of the mean velocity be-
havior of a parameter corresponding to the Wy defined by

|H(mn)] = 0.707 from the step velocity experiments.

2. Step-Input Experiments

Step input experiments were performed to determine the
possibility of obtaining a parameter to describe the behavior
of the system when subjected to periodic excitations, but
without the necessity of resorting to sinusoidal excitation
experiments. As explained in chapter IV, section C-2, a
constant parameter first order linear system such as the
one described by equation 4-7 should give the exponential
response function of equation 4-11 when excited with a step

input.
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In this work, the parameter Wy of equation 4-11 was
determined as a function of step height (mean velocity) by
replotting the experimental results from the strip chart
(figure 11) on semilog paper with (nf = n)/nf on the log-
rithmic axis. This should result in a straight line plot
with the parameter W being the reciprocal of the time

=l Figure 25 displays

intercept at which (nf— n)/nf = e
typical experimental records so plotted for the range of
mean velocities used in this study. It is noticed that the
linearity of the results is good and without any systematic
deviation.

The natural frequencies determined in this fashion have
been plotted in figure 22 along with those determined from
the |H| = 0.707 criterion of the preceding section. The
natural frequencies so defined are seen to be directly pro-
portional to mean velocity, and considerably different from
those determined in the previous section. This discrepancy
is due to the complex nature of the coefficient MZ' Unfor-
tuhately, step input experiments do not provide sufficient
output info}mation to evaluate the behavior of such a coef-
ficient when the phase shift is as significant as shown in
figure 24.

It is unfortunate that the frequency dependency of the
propeller and its associated flow system is so complex, be-
cause this makes it impossible tc predict the behavior of

the amplitude ratio from one relatively simple step input

experiment and the standard first-order system amplitude
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response function 3-36a. Instead, use must be made of sine
input experiments which are more lengthy both to perform and
in data reduction. In part four of this section is a dis-
cussion of a method of presentation of data from sine input
experiments which allows prediction of the amplitude response

function with a minimum amount of experimental work.

3. Effect of Velocity Fluctuations on Output Mean Velocity

The determination of the true point mean flow velocity
from a current meter output velocity record is a problem of
considerable importance. Among the factors causing mis-
registration of the mean velocity by a current meter are the
presence of an appreciable velocity gradient and the presence
of high intensity turbulent wvelocity fluctuations. The
latter effect is evaluated here by producing an artificial
turbulence of known intensity using the sine motion generator.
The experimental setup was as described in chapter IV, sec-
tion C-3. The quantitites measured were: the time elapsed
in covering a known distance, sine motion generator radius
and angular velqcity, and the total number of pulses gener-
ated by the flow meter. The propellers used were the Ott
minor numbers 1 and 1-3.

Because it was impossible to set the towing cart veloc-
ity at exactly the desired value, the output velocity devi-
ation from the true mean was referenced to the calibration
curve of the propeller using the true mean velocity as com-
puted from the distance covered and the elapsed time. That

is, the percent deviation D was computed from
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no - nc
D= 100 (5-10)
c
where
Ucart = h
I e (5-11)

and ng is the average flow meter frequencyr To correct for
the small deviation from the calibration curve, the average
value of the D obtained from the w = 0 runs at a particular
mean velocity and generator radius was subtracted from the
results of the rest of the runs at that mean velocity and
generator radius. In figure 26, percent deviation D has
been given as a function of the velocity fluctuation inten-
sity to mean velocity ratio ¥'/U, where the velocity fluc-
tuation intensity has been computed using equation 4-6.

The results have been presented in this form because
it is in this form that they are most conveniently used for
correcting the mean output velocity once the turbulent
velocity intensity is known.

There is considerable scatter in the results of figure
26, especially for small v'/U, however, this does not appear
to be a fundtion of either generator radius or mean flow
velocity. The significance of this result will be discussed
later with reference to the work of Plate (1967).

Considering specific propellers, it is interesting to
note that both over register the mean velocity when sub-
jected to high relative velocity fluctuation intensities,
and that the larger-heavier number 1 propeller is consider-

ably less influenced than the number 1-3. The over
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registration of the 1-3 propeller does not exceed one per-
cent until the relative intensity v'/U exceeds 0.1, that of
the 1 propeller does not exceed one percent until v'/U ex-
ceeds 0.2. Relative intensities as high as 0.2 should seldom
be encountered, even in turbine outlets or in supercritical
open chaﬂnel flow.

Chaix (1962) who worked with heavier propellers than
the ones used here reports equivalent results. As would be
expected, however, the relative intensities producing an
over registration of one percent are slightly higher.

Plate's (1967) analysis using an equation of motion
similar to equation 3-23, except that the squares of infini-

tesimals were not neglected, indicated that

7 2
D(=,) = gl(w) (5-12)

<l

where g(w) is a function characteristic of a particular
propeller. The analysis involves a double integration of
the propeller equation of motion, once to obtain the in-
stantaneous valpe of m the nondimensionalized angular fre-
guency of the propeller, and once more to obtain the average
value of this quantity. A nonzero average value of the
nondimensionalized angular frequency indicates a misregis-
tration of the mean velocity due to the turbulence. If one
performs the same analysis on the equation of motion derived
here, 6ne finds that no misregistration is predicted, no

]
matter how large the relative intensity Vv /U becomes.

Thus, the relative intensity at which the output mean
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velocity deviates appreciably from the true mean indicates
the end of the range of validity of the small amplitude
assumption made iﬁ simplifying equation 3-11, at least inso-
far as the determination of the mean velocity is concerned.
Arbitrarily setting a mean velocity misregistration of one
percent as the limit on the range of validity of the small
amplitude assumption, it is seen from figure 26 that this
range extends to v'/U = 0.2 for the number 1 propeller and
to V'/U = 0.1 for the number 1-3.

Analysis of equation 5-12 indicates that plots of the
form of figure 26 might be an inappropriate means of pre-
sentation of meter misregistration data. This is due to
the fact that at the same angular velocity two different
sine motion generator radii produce different v' values,
while g(w) is supposedly independenf of sine motion genera-
tor radius. This should lead to a multiple valued plot in
the form of figure 26, unless g(w) is a constant. An exam-
iﬁation of figure 27 shows that g(w) is indeed constant.
In:figure 27, the experimental data used in figure 26 have
been presenled as prescribed by equation 5-12. These plots
show that for w above about six and ten rad./sec for the 1
and 1-3 propellers respectively, g(w) is a constant. Below
these values the behavior of g(w) is uncertain. Thus at
least for w > 6 and v > 10 rad./sec. for the 1 and 1-3
propeilers respectively, the presentation used in figure 26

is correct.
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It is seen, then, that the output mean flow velocity of
a propeller flow meter of the type used in this study is
probably within one percent of the true value if the turbu-
lent intensity is less than ten percent of the true velocity.
If the relative intensity is greater than ten percent, it
may be desirable to correct the mean velocity for the dis-
tortion due to the turbulence. This can easily be done
using fiqures of the same type as figure 26, if g(w) is a
constant, for in this case the correction is independent
of the amplitude of the velocity fluctuations. If g(w) is
not a constant, a correction procedure could be worked out
using the power spectrum to determine the amount of cor-
rection required for the turbulence in a particular band

width.

4. Generalized System Description and Propeller Design

It has been demonstrated in the previous discussion
that the parameters of the differential equation describing
the behavior of a propeller and its associated flow are
functions both of mean velocity and of the frequency of the
exciting function. The complex nature of the coefficient,

M, makes it impossible to define system behavior from a

2
relatively few, simple to perform, step input experiments.

A generalized description of system behavior which would
reduce the amount of the more complex and time consuming
sine function input experiments which have to be performed

would be quite welcome. Such a generalized function could
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become a part of the program for computation of the power
spectrum to eliminate the necessity for a separate correc-
tion for system frequency response.

A comparison of the experimentally evaluated system
behavior with the values of M2 calculated from equation 3-16
shows which factors need to be stressed in the design of
propellers with high frequency response. The ideal would,
of course, be a propeller with a flat frequency response
through the frequency range of interest in water, so the
frequency response of the system would not even have to be
evaluated.

Plate and Bennett (1968) found that the magnitude of
the coefficient M, can be presented in generalized form if
the term Il.*-’12|/'LT;i is plotted as a function of w/U. The
ratio /U may be thought of as a Strouhal number or reduced
frequency from which the length dimension, which is a con-
stant for a particular propeller, has been omitted. The
observed generalized relation can, for a particular pro-
peller, be written [le/ﬁ% = n(v) whereas the relation pre-

dicted by e€gquation 3-16 is roughly ]Mz[/ﬁ = K|C(v)|, or

|M2|/ﬁ% = T K|C(v)|. This means that 1) the 1lift coef-
ficient is inversely proportional to the square root of the
mean velocity, or b) the virtual mass of the system is
directly proportional to this quantity. The second alterna-
tive is unlikely, because the virtual maés is simply a volume

of fluid which must be accelerated when the system oscil-

lates; it is not likely to change with mean velocity. It
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is possible, however, that at the low blade Reynolds number
of the flows about the propellers used here that the lift
coefficient might vary approximately with the inverse of the
square root of mean velocity (Jacobs, 1963). The relation-
ship Ile/ﬁg’s = m(v) is given for the three propellers in
figure 28.

To completely describe the behavior of the system, a
general relationship for the phase shift y must also be
found. 1If instead of y, as in figure 24, the function cosy
is plotted as a function of u, as in figure 29, the depen-
dency of y on mean velocity disappears. This indicates
that the slight variation of y with mean velocity in figure
24 is probably more apparent than real.

T =

The use of the generalized functions ]le/ = m(y)

and cosy = n(w) makes possible the description of propeller
system behavior after sine input testing at only one mean
velocity. If the propeller to be tested differs markedly

in geometry or size from the ones used here, it might be
wise to check two mean velocities bracketing the wvelocity
range of interest to verify the generality of the functions
m(v) and n(w). Once m(v) and n(w) are available, the ampli-
tude ratio |H(w)| can be computed using equation 3-36. The
dotted curve of figure 15b was computed using equation 3-36
and figures 28b and 29b. It fits well within the scatter of
the experimentally measured amplitude ratios. It would be a

simple matter to correct digitally computed power spectral

densities for output amplitude attenuation by including the
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experimentally determined m(v) and n(w) curves in the
program for computing power spectral density.

In the design of a propeller with the most desirable
frequency response characteristics, one must maximize the
complex natural frequency M,. This éoefficient is given
analytically by equation 3-16 and is presented graphically
from experimental results in figures 28 and 29 for the Ott
minor propellers 1, 1-3, and 2-3.

The solution of equation 3-16 requires an expression
describing the functional behavior of coss with radius r;

this can be seen from figure 2 to be

U
U2 + (27n_r)?2 1
)

cos6 = (5-13)

Upon insertion of the calibration equation of a particular

propeller this becomes

cosg = e Bg 7 L = 15é158/W) (5-14)
l_{zs‘ﬂaf}2 + (S3% )2] [(—-)2 + rZJJ5
30 ™
Using equation 5-14, equations 3-15 and 3-16 become
| sC TTQ.Z RO 2 2
M= (2007 ¢ —E— E Sy (5-15)
U 2 Ry [E392 4+ 22
w. = 21sC(v)e Fo _ r2(15B/n)dr (5t
2

= 15B, » 2]%
MlU B Ri [(—?—) + r

where in 5-16, the effects of all terms in the brackets of
3-16 are assumed tc be averaged over r and included in C(v).

The solution of 5-15 and 5-16 gives
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(5-17)

where %, is the hub length and ty is the blade thickness.
The magnitudes of the terms appearing in equation 5-17 are
given for the 1, 1-3, and 2-3 propellers in table 1.

For a propeller of a given radius and pifch, and at a
constant mean velocity, equation 5-17 shows that if the
inertia term dominates in the denominator, the complex
natural frequency is directly proportional to B; if the vir-
tual mass term dominates, the complex natural frequency is
inversely proportional to ¢B. It is recalled that ¢ is the
blade chord and B is a calibration constant of the propeller,
determined by the pitch such that B is directly proportional
to the pitch. If overall propeller length is a constant, g
and B are related such that the product (B is approximately
constant. This is because dividing the pitch (advance per
revolution) of a propeller of a certain length by a particu-
lar factor increases the blade chord of the blades on that
propeller by approximately the same factor, if the propeller
length is constant. Because B appears inside the integrals
of equations 5-15 and 5-16, it is difficult to predict the
behavior of the calculated M, if both ¢ and B are changed
while the radius remains approximately constant. This is
illustrated in table 1 where it is seen that for the 1-3

and 2-3 propellers the calculated virtual mass term
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dominates. In this case, one might expect the calculated

M,'s to vary from the 1-3 to the 2-3 propeller as (zB)l_3/

2
(2B) ,_5, however, due to the presence of the calibrétion
constant B inside the integral, the variation is opposits
this.

The above two criteria provide design guides which can
be used in special cases. For example, if the virtual mass
ddminates, an increase in M, should be obtained at constznt
pitch and radius by decreasing 2 and if the inertia term
dominates, an increase in M, should result if the pitch is
increased. When designing a propeller, two other factors
which must be considered are: 1) the greater the pitch, the
slower the propeller turns at a given mean velocity; the
slower a propeller turns, the less information can be ob-
tained about the flow in a given amount of time. 2) The
less the balde area and the greater the pitch, the less
torque is developed, so that a point might be reached whare
bearing torque is important.

Taking from figure 28 mean values of ]Mz]/ﬁ% to be
about 11 for the 1 propeller, 11.5 for the 1-3, and 14 for
the 2-3, ﬁhe ratio of the measured average |M2| to the cal-
culated [M,| assuming [C(v)|= 1 is, as the mean velocity
varies from 2.0 to 5.0f/s, 0.731 to 1.160 for the 1 pro-
peller, 0.69 to 1.09 for the 1-3, and 0.68 to 1.08 for the
2.3. These results are very good, considering the uncertain-

ties involved in the fluid mechanics of the finite blade

rotating system.
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The natural frequency of a propeller can also be de-
fined as a cutoff frequency, analgous to the cutoff fre-
quency of a first order electronic filter. That is, the
propeller cut off frequency is the frequency at which the
amplitude ratio has decreased to 0.707 (The power passed
by the propeller at the cutoff frequency is then fifty per-
cent of the power in the spectrum at this frequency.). 1In
this case, the variation of the cutoff frequency with mean
velocity is given by figure 22. Thus for the propellers of
this study, at mean velocities varying from 2.0 to 5.0 ft/
sec, the cutoff frequency varies from 2.55 Hz to 5.58 Hz for
the 1 and 1-3 propellers and from 5.90 Hz to 8.36 Hz for
the 2-3 propeller.

From equation 5-7 and the fact that the acceleration
sensitivity of the propellers used in this study was negli-
gible, it can be concluded that the inertia term determines

the behavior of the coefficient M for propellers with the

qi#
same general geometry and size as those used in this study.
In this case, the natural frequency or cutoff frequency can
be greatly increased by simply constructing propellers of a
less dense material than the aluminum alloy used in the con-
struction of the propellers used here. For example, if a
plastic such as Lucite or Plexiglass which has a density

1.2 times that of water were used to construct propellers
identical in geometry to those of this study, the cutoff

frequencies at velocities ranging from 2.0 to 5.0 ft/sec

should range from 5.73 Hz to 12.58 Hz for the 1 and 1-3
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propellers and from 13.29 Hz to 18.82 Hz for the 2-3

propeller.
B. Correction for Spatial Averaging

At the present state of understanding of the mechanics
of turbulent flow, the spectral recovery efficiency as de-
fined in section D of chapter III cannot be determined ana-
lYtically. It can be determined experimentally for a par-
ticular flow and propeller by comparing the propeller output
power spectral density to that from a point velocity sensor.
If enough of the power spectral density is unaffected by
spatial averaging, it is possible to avoid entirely the use
of a spectral recovery efficiency by fitting an empirical
power spectral density curve to the unaffected portion of
the propeller output power spectral density.

The power spectral densities used in this section were
computed using the CDC 6400 computer belonging to Colorado
State University. The program was built around equations
4-19 through 4-21., The raw power spectral densities for
the various propellers and the hot film anemometer are
shown in figures 30 through 33. The flow conditions for
which the power spectral densities were computed were
established in Colorado State University's 200 foot long by
eight foot wide by four foot deep tilting-recirculating.
flume. The bed roughness consisted of 1 1/16" high by 1 1/4"
wide by 6" long wooden blocks glued to the flume floor with

their long dimension perpendicular to the flow.
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The blocks were placed at the nodes of two 12" square
grids, one displaced with respect to the other by six inches
along the flume and six inches perpendicular to it, so there
were staggered rows of blocks every six inches along the
flume. Flow parameters pertinent to the various runs are
listed in table 2. Correction of propeller output power
spectral densities for propeller frequency response was
accomplished using equation 3-36 and the generalized plots
of figures 28 and 29. The curves so obtained are given by

the dashed lines of figures 30 through 33.

1. Spectral Recovery Efficiency

The spectral recovery efficiency n(f) for a particular
flow and propeller is calculated by means of equation 4-12
from the output power spectral density of the propeller,
the magnitude of the system function of the propeller, and
the power spectral density of an ideally-responding point-
velocity sensor. As has been shown by Richardson et al.
(1967), the hot film-anemometer has a flat frequency re-
sponse over a wide enough range to be treated as ideally
responding in water turbulence. The work of Frenkiel (1954)
shows that if (1w/)\y)2 << 1 then a how-wire (-film) anemome-
ter may be treated as a point sensor, at least insofar as
the measurement of the turbulent intensity (or power spec-
trum) is concerned. Calculating i, from l/Ax2=4w2/ﬁloc émfz
S(f)df, assuming local isotropy of the energy dissipating
eddies, and hence calculating Ay from A, = /?Ay i ik 18

found that (lw/)\y)2 varies from about 0.01 for run 12 to
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0.001 for run 16. This should be sufficiently small to
insure that the hot-film anemometer behaves as a point
sensor.

The power spectral densities of figures 30 through 33
were computed for a sampling time T of 50 seconds and a max-
imum lag time e of 5 seconds. Using equations 4-23 and

4-24, these quantities yield an equivalent band width Be of

0.2 Hz and 20 degrees of freedom d The 90 percent confi-

£
dence limits of a power spectral density are defined such
that 90 percent of the calculated power spectral densities

can be expected to fall within these limits which are estab-
lished with respect to the true power spectral density of

the phenomenon. Bendat and Piersol (1966), page 139, point
out that for df = 20 these limits are defined by curves such
that the upper one is 1.57 times the true power spectral
density, and the lower one is 0.54 times this quantity.

Taking the hot-film anemometer power spectral density as

the true power spectral density, the 90 percent confidence
limits for the runs of figures 30 through 33 have been shown
on figure 34‘along with the hot-film anemometer and frequency-
response-corrected propeller output power spectral densities.
For this comparison the power spectral densities must be

presented in non-normalized form, or in the form of

St(f) = Erzsoo(f) , (5-18)

where U' is the root mean square of the output velocit
P g

fluctuations.
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It is noted in figure 34 that in all cases except two
the low frequency portions of the frequency-response-
corrected propeller output power spectral densities fall
within the 90 percent confidence limits on the corresponding
hot-film anemometer power spectral densities. This indi-
cates that the deviations of the low frequency portions of
these curves from the corresponding hot-film anemometer
power spectral densities are probably due only to sampling
error. For this reason, and because it is difficult to
imagine the spectral recovery efficiency being greater than
one, the frequency-response-corrected propeller output
power spectral densities, before the computation of the
spectral recovery efficiencies, have been shifted to coin-
cide with the low frequency portions of the corresponding
hot-film anemometer power spectral densities.

As mentioned in chapter IV, section D-4, the most
useful scaling parameter for describing the behavior of the
spectral recovery efficiency n(f) would probably be Ly' the
depthwise length scale of the longitudinal velocity fluctua-
tions. Unfortuhately, in most cases where propeller turbu-
lence measurements are necessary, it is impossible or at
least impractical to obtain this parameter. It has, however,‘
been measured by at least two investigators for wall shear
generated turbulence of the type that is of interest here.
Laufer (1951) made extensive measurements of various turbu-
lence parameters in air flowing in a rectangular duct;

Dell'Osso (1966) made measurements of the lateral scale in
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water flowing in a small rectangular open channel. Some of
the results of these investigations are presented ip figure
35. From this figure, it is seen that the measured LY
values occur in a range from 0.1 to 0.43 times Y the mean
depth (the half-width of the duct in Laufer's case). If
these results can be extended to larger scale flows, it
might be expected that an output velocity power spectral
density from a propeller which has a diameter d of the

order 0.05 to 0.1 times Y would be free of spatial averaging
effects.

Also given in figure 35 are Laufer's results in terms
of the eddy shape parameter Ly/Lx' where Lx is the longi-
tudinal scale of the longitudinal velocity fluctuations.

The value of this ratio in homogeneous isotropic turbulent
flow is 0.5. Laufer's observed values in the wall shear
generated turbulence of the duct flow varied from 0.24 to
0.52. Taking the lower limit of this ratio to be 0.25, the
output velocity power spectral density of a propeller should
be relatively free of spatial averaging effects if the ratio
.d/Lx is on the order of 0.125 to 0.25. From the measurements
listed in table 2, it is seen that the quantities 0.1lY and
0.251‘.x are of the same order for the flows of this study.

Another parameter which might be useful in describing
the behavior of the spectral recovery efficiency would be

is

an energy distribution parameter.- The quantity Lx/'ﬁ10c

such a parameter. As can be seen from equation 4-26, the

smaller this parameter, the broader and flatter is the
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power spectral density curve of the flow. The broader and‘
flatter the power spectral density, the more energy is con-
tained in the high-frequency, small-scale velocity fluctua-
tions. Relatively speaking, the more energy contained in
the small scale velocity fluctuations, the less efficient
would one expect a propeller to be, due to a mutual cancel-
lation of torque by different small eddies acting on dif-
ferent propeller blades at the same time.

In figure 36, the spectral recovery efficienéies have
been plotted for the Ott minor 1, 1-3, and 2-3 propellers
in the flows of table 2. The parameters d/L, and Lx/ﬁloc
discussed above have been listed on the figure along with
the curves to which they apply. Attempts to reduce these
curves to a more general form using the parameters d/Lx and
Lx/ﬁloc were not successful.

Figure 36 shows that, in general, the spectral recovery
efficiency decreases with increasing d/L, and with decreasing
Lx/ﬁloc‘ The behavior of n(f) with d/L_ is qualitatively
as expected, except for run 18 using the 2-3 propeller. For
this run, n(f) ;as considerably larger than that for the 1-3
propeller, which had very nearly the same d/Lx' This could
be due to any number of reasons that would cause the high
frequency portion of the raw propeller output power spectral
density to register high. For example there might have been
a loose ground on the digital-to—analoé-converter which would

have caused increased 60 Hz interference. Another source

of high frequency interference was the occasional operation
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of a fork lift tractor in the vicinity of the flume. The
dependency of n(f) on the energy distribution coefficient
Lx/ﬁloc is seen to be quite pronounced. This is illus-
trated by comparison of the n(f) curves obtained for the 1
propeller from runs 16 and 18. At 25 Hz, there is a four-
fold increase in n(f) with a 35 percent increase in Lx/ﬁloc’
while d/Lx is essentially constant at 0.34. The magnitudes
obtained here for n(f) show that even for 4/Y on the order
of 0.1 or less, the spatial averaging effect of a propeller
on open channel flow turbulence can be considerable. 1In
fact, at ten Hz, the attenuation factor on the power spec-
tral density varies from 0.32 times that due to inertia for
run 12 using the 1-3 propeller (d/L_ = 0.48 and Lx/ﬁloc =

0.163) to 3.11 for run 17 using the 1 propeller (d/Lx = 0.43

and Lx/ﬁ = 0.110).

loc
In summary, the spectral recovery efficiency n(f) can
be calculated for a particular flow and propeller by using
the power spectral densities of the propeller and an ideal
point-velocity sensor. Probably the best parameter describ-
ing the behavior of n(f) would be a lateral scale factor
d/Ly, but this parameter is generally unavailable., 1In the
absence of the parameter d/Ly, the parameter d/Lx' along

with an energy distribution parameter Lx/ﬁ can be used

loc’

to describe the behavior of the spectral recovery efficiency.

2. Empirical Power Spectral Density Curves

A second approach which can be used for obtaining

power spectral densities which are undistorted by spatial
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averaging is the fitting of an empirical power spectral
density curve to that portion of the propeller output power
spectral density which is not affected by spatial averaging.
Inspection of figures 30 through 33 indicates that in the
frequency range of this study the hot-film anemometer power
spectral densities of the open channel flows evaluated here
fit quite well the -5/3 power law postulated by von Karman
(1948). An empirical power spectral density equation which
becomes asymptotic to a -5/3 power law is equation 4-26.
The easiest method for fitting such a curve to a calcu-
lated power spectral density is to use the zero frequency
ordinate of the normalized power spectral density. This is

because at zero frequency, equation 4-26 becomes

s(0) = 4Lx/“r5 - (5-19)

loc

Equation 5-19 gives directly, without the need for a trial
and error solution, the parameter Lx/ﬁ'loc of the family
of curves described by equation 4-26.

In the case of this study, however, it is impossible
to obtain normalized power spectral density curves for the
propeller output power spectral densities, because the
spectral recovery efficiency is unknown. This difficulty
can be overcome by using equation 4-26 in a modified form.

Let a nondimensional frequency P be defined, such that

P = 4L _£/T (5-20)

loc ’

and equation 4-26 becomes
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BYE) 1
4Lx/ﬁloc 1+ (2pP)2 e

. (5-21)

This generalized curve represents all members of the family
of equations given by equation 4-26; it is shown graphically
in figure 37. All members of this family of curves have
the same shape on a full logarithmic plot. Because of this,
it is possible to obtain the parameter Lx/ﬁloc by matching
the curvature of the curve in figure 37 with that of the
low frequency portion of an experimental, frequency-response-
corrected, propeller output velocity power spectral density.
The parameter Lx/ﬁ1oc is obtained using equation 5-19 and
the P and f values from a section of the curves where their
curvatures match. In the use of this procedure on frequency-
response-corrected propeller output velocity power spectral
densities, it is assumed that the portion of the propeller
output power spectral density used for curvature matching
is free from spatial averaging effects.

In table 3 have been listed the values of P, f, and Lx
that were obtained by matching the curvature of the curve of

.

figure 37 to that of the one to two Hz range of the frequency-
response-corrected propeller output and the hot-film anemome-
ter power spectral densities of figures 30 through 33. Also
listed is an L as obtained from the S(0) = 4Lx/aloc cri-
terion for the hot film anemometer power spectral densities
of these figures. The discrepancies between the Lx's ob-

tained by the curve matching and S(0) techniques as indicated
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in table 3 for the hot-film anemometer indicate a need to
extend power spectral densities to frequencies below one Hz
for open channel turbulence. The fact that the curve match-
ing Lx's obtained from the propeller output power spectral
densities are greater than those obtained by the same
method from the hot-film anemometer curves indicates that
spatial averaging has increased the slopes of the propeller
curves relative to those of the hot-film anemometer even in
the one to two Hz range.

In figure 38, the following normalized power spectral
densities have been plotted for runs 16 through 18: 1) The
experimental hot-film anemometer, taken from figures 30
through 33, 2) The empirical hot-film anemometer, determined
from S(Q) = 4Lx/ﬁloc’ and 3) The empirical hot-film anemome-
ter and the three propeller output velocity, determined from
the Lx/ﬁloc obtained by the curve fitting procedure.

The empirical curves of figure 38 do not differ markedly
in shape or slope from the experimentally observed hot-film
anemométer power spectral densities in the one to 25 Hz
range. However: as can be seen from the figure, in the
range below one Hz, the empirical curves differ considerably
- from each other. This is due to the difficulty of matching
the curvature of the empirical power spectral density to that
of the experimental curve when the change in slope is small,
and it points out the desirability of working with the
strongly curved portion of an experimental propeller output

velocity power spectral density when using the curve fitting



95

.technique to determine the parameter Lx/ﬁ In water

Joc
flows of the type investigated here, this requires computa-
tion of power spectral densities in the range below one Hz.
Unfortunately, power spectral densities in this range are

not available for the flows used here; obtaining them would
require slightly different instrumentation than that used

in this study.

No really firm conclusions can be drawn about the use-
fulness of the curve fitting technique in determining the
parameter Lx/ﬁloc (and hence the empirical power spectral
density) from an experimentally-measured, frequency-response-
corrected propeller-output-velocity, power Spectral density.
Although this technique provided empirical propeller-output-
velocity power spectral densities with the same general slope
and shape as those of the hot-film anemometer standard, the
lower frequency (highly curved) portions of these curves are
considerably different from each other. Thus, conclusions
as to the validity of this approach must await further in-
vestigation where the lower frequency portions of the pro-
peller output velocity power specﬁral densities are avail-
able. The technique is worth developing further, because
its use avoids the necessity for extensive simultaneous
power spectral density measurement using a flow meter and
some point velocity sensor such as a hot film anemometer.

Its use might require trial and error least squares curve
fitting by a computer as the only practical way to obtain

reliable values of the parameter Lx/Uloc'
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C. Turbulent Intensity Recovery

In many cases in which turbulent flow measurementé are
made, it is only the turbulent intensity u' which is neces-
sary, and not the entire power spectral density. It is in-
convenient and costly in these cases to have to compute the
power spectral density and make inertia and spatial averaging
corrections to determine only the intensity, but this must
be done if accurate values of this quantity are necessary.
Because the inertia and spatial averaging have their greatest
effect at the high frequency end of the spectrum (whére the
energy is low anyway) it might be accurate enough in certain
cases to take without correction the turbulent intensity as
measured by a propeller flow meter to be the true intensity
of the flow.

. To determine under what conditions it is permissible not
to correct the propeller flow meter measured turbulent in-
tensity for inertia and spatial averaging effects equation
3-50 can be integrated numerically over all f for several
values of the parameter Lx/fJ'loc at several different mean
velocities. In this integration, experimental values of the
system function and spectral averaging efficiency can be
used along with equation 4-26 for the power spectral density.
The square root of the numerical value of the integral will
be a fraction less than one; this is the fraction e' of the
true intensity which is output by the flow meter. 1In the

case that e' is near unity, it will usually be permissible
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to treat the output intensity as the true intensity of the
turbulent velocity fluctuations.

In table 4 have been listed the fractions of turbulent
intensity output by the flow meter as computed by numerical
integration of equation 3-50 for several different values of
L /U and

at several mean velocities. For the Lx/ﬁ

loc loc

mean velocity range of this study, the recovery ratios
range from 0.77 to 0.89. These values are too low to be
ignored, but it is seen that for the lafge range in Lx/'ﬁloc
and mean velocity, the range of the recovery ratios is small.
This should allow one to make a reliable estimate of true
intensity from the propeller output intensity. The impor-
tance of the energy distribution parameter is again seen
from table 4, where it is noticed that for the 2-3 propeller
at Lx/ﬁ

P = 0.17 the recovery ratio is smaller than for

Lx/ﬁloc = 0.11, even though the spectral recovery efficiency

is much higher for the former value of this parameter.

D. Field Measurements of Turbulence

1. Power Spectral Densities

The priﬁary use for propeller meter measurements of
turbulence is in field situations where conditions are so
severe as to damage a hot-film anemometer probe, or where
water conditions are too dirty for its drift free operation.
Some preliminary field measurements were made using the pro-
peller flow meter of this study, both for comparison with
hot-film anememeter measurements, and to evaluate the per-

formance of the flow meter measuring system in the field.
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The only change in instrumentation from that described for
the spatial averaging studies was the substitution of a
portable Lockheed Model 417 magnetic tape recorder for the
CEC magnetic tape recorder.

The measurements were made on the Atrisco feeder canal
on the Rio Grande fifteen miles north of Albugquerque, New

Mexico. The average flow conditions were:

170 EE

Depth

width 56 ft

Q/A = 2.13 ft/sec

Mean Velocity

203 £t3/sec

Discharge -

Slope = 0.00057

Shear Velocity = ,177 ft/sec

Darcy Weisbach £ = 0.055

Mannings n = 0.024

Bed form = Ripples and Small Dunes

The vertical at which measurements were taken was twelve
feet from the channel center line. The mean velocity in
this vertical was 1.59 ft/sec, mean depth was 1.83 ft.

The field measurements were all made with the Ott minor
1-3 propeller. The propeller output velocity power spectral
densities for the flow situation described above are given
in figure 39. The frequency-response-corrected propeller
output velocity power spectral densities are shown by the
dashed lines of this figure. Table 5 lists the computations
for obtaining the frequency response correction of figure

39a from figures 28 and 29. Hot film anemometer velocity
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power spectral densities over a relative depth range corre-
sponding to that of figure 39 are given in figure 40. Table

6 lists the energy distribution coefficients Lx/ﬁ as

loc
determined by the curve fitting technique for the runs of
figures 39 and 40. Also given in this table are the local
mean velocities and the scale parameter d/Lx where
applicable.

In table 5 it is noted that for the field measurements
the energy distribution parameter Lx/ﬁloc of the propeller
runs varies from 0.172 to 0.248, while d/Lx varies from 0.26
to 0.35. Except for run 43, which has Lx/ﬁ'loc = 0.17 and
d/Lx = 0.35, all the field measurements have energy distri-
bution parameters considerably greater than those for any
of the curves of figure 36, and even for run 43, d/Lx is
smaller than the values for the curves of figure 36 which

have the same Lx/ﬁ This makes it impossible to estimate

loc”
the spatial averaging correction required, however, observing
the trend of the variation of the spectral recovery
efficiency with Lx/ﬁloc in figure 36, it is expected that,
with the exception of run 43, little or no correction for
spatial averaging should be required for the frequency-
response-corrected propeller output velocity power spectral
densities. That this is indeed the case can be seen from
figure 41 where the frequency-response-corrected power
spectral densities of figure 39 have beeﬁ plotted along with

hot f£film anemometer velocity power spectral densities from

the nearest available relative depth. The difference in
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the vertical positions of these normalized power spectra is
due to the exclusion of frequencies below one Hz from the
propeller power spectral density, and not to propeller
characteristics. For comparison with the spectral recovery
efficiency curves of figure 36, a reference n(f) can be
computed from the power spectral densities of figure 41. 1If
the one Hz ordinates of the curves of figure 41 are made

to coincide, and choosing ten Hz as the reference frequency,

the reference spectral recovery efficiencies are:

H.F.A. 1-3 n(10)

Run Run
12 36 .97
12 37 .60
13 .37 .72
15 38 .48
15 43 .58
15 42 .32
16 42 .46

In all but one case, the reference n's are larger than

the n(1l0) = .41 of the Lx/ﬁ = 0.17, d/Lx = 0.45 curve

loc
of figure 36, but it is seen that spatial averaging correc-
tion is still required even at these large values of

.
Lx/EIOC'

Using the values of the energy distribution parameter
for the propeller runs, as listed in table 6, empirical
power spectral densities can be plotted as was done in the
preceding section of this chapter. These curves are given
in figure 41. The low frequency portions of the empirical

curves in most cases agree quite well with the measured

hot-film anemometer power spectral densities, however, the
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empirical model seems to have a greater slope at the high
frequency portions than was measured in the field. .It should
be determined whether this phenomenon is real, or whether
the field set up of the hot-film anemometer measuring

system contained noise sources not present in the laboratory
set up which would cause the high frequency portions of.the
hot-film anemometer power spectral densities to register
high. If the phenomenon is real, an empirical model can
easily be designed to fit this slope, however, from the
mechanics of turbulence, it would be expected that -5/3 or
higher power on the high frequency portion of the power
spectral density should be correct.

The results of the field measurements are encouraging
in that they indicate that in large scale open channel flows
it is possible to accurately measure turbulence using pro-
peller flow meters. The large values of the spectral re-
covery efficiency obtained indicate that spatial averaging
is not a problem in turbulence measurement, using Ott minor
propellers, over a large part of the flow depth in channels
on the ordet of three feet deep. The major problem encoun-
tered in making these field measurements was propeller
stoppage caused by wedging of suspended sediment between
the propeller and the meter body or between the body and
the propeller shaft. This problem is solvable by making

slight meter design changes.
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2. Turbulent Intensities

In addition to the power spectral density measurements
of this study, several measurements were made in which only
longitudinal turbulent intensities were obtained. The
measurements were made using the propellers of this study
and a Disa 55D35 root-mean-square voltmeter. In several
cases; there are available simultaneous hot-film anemometer
intensity measurements made using the rms meter and also
digitally computed hot-film anemometer intensity measure-
ments.

The use of a propeller flow meter and an analog rms
voltmeter to measure turbulent intensities involves two
factors which cause measured intensities to be lower than
those which actually occur. The first factor is the reduc-
tion in turbulent energy output by the propeller meter due
to inertial and spatial averaging. The second is the energy
loss due to the analog rms meter which has a low frequency
cutoff of 0.5 Hz. MNeither of these factors can be corrected
for, because the exact shape of the power spectral density
of the turbulen;e being measured is unknown. Despite this,
it is felt that a brief presentation of this data is in
order, especially in light of the scarcity of turbulence
data on large scale rough boundary open channel flows.

The first case in which turbulent intensities were
measured was in the eight foot flume in the flows for which
the spectral recovery efficiencies were measured. The flow

conditions are described in table 2 and in section B of
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this chapter. The intensity information on these flows
has been included in table 7. The voltage root-mean-
squares were measured with the Disa rms voltage meter and
were converted to turbulent intensities using the method
of section E of chapter IV.

Another set of turbulent intensity measurements were
made, using the 1-3 propeller, in conjunction with the
Atrisco power spectral density measurements of the first
part of this section. The average cross-section flow con-
ditions are described there. In addition to the intensities
obtained from the rms meter, digitally computed intensities
(which obtain the energy of the fluctuations down to zero
frequency) have been obtained for the hot-film anemometer
runs of this set. The mean velocity and longitudinal rela-
tive intensity profiles are presented in figure 42. The
mean velocity used as a nondimensionalizing parameter for
the relative intensities was the local mean.

A second set of natural open channel turbulent inten-
sity measurements was made on the Rio Grande in the Bernardo
Conveyance Channel near Bernardo, New Mexico. The mean

cross-section flow conditions were as follows:

Mean depth 2,80 ft
Mean width 68.0 ft
Mean velocity 2.46 ft/sec
Discharge 468 ft3/sec
Slope 0.00055

Shear velocity 0.222 ft/sec
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Darcy Weisbach £ 0.066
Mannings n 0.028
Bed form Dunes and plane with

sediment motion

The measurements were made using the 1-3 propeller and the

hot-film anemometer. Both rms meter and digital intensities

are reported. The mean velocity and relative intensity pro-

files are given in figure 43. At the measurement cross-
section, the right one-third of the channel was running in
dunes of a height of approximately eight to twelve inches.
The rest of the channel was in plane bed with sediment
motion.

The last set of experimental field turbulent intensity
measurements were taken behind a trashrack on the inlet to
the number one turbine of the Gavins Point Dam on the
Missouri River near Yankton, South Dakota. The inlet is
completely submerged, 37 ft high, and 17 ft wide. The bars
of the trashrack are 3/4 in. thick and eight_in. long in
the direction of flow. They are placed parallel to the
sidewalls of the.inlet and slope back toward the top at
seven horizontal to 48 vertical. The measurement section
was 28 ft behind the center of the rack. The measurements
were taken in a vertical section on the center line of the
rack and ranging in elevation from the center to the top
of the inlet. Mean velocity and relative intensity infor-
mation taken with the 1-3 prcopeller are presented in table

The information of figures 42b and 43b gives an indi-

cation of how much of the turbulent energy is lost in the
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propeller and rms meter, by comparison of the digitally
computed hot-film anemometer and the rms meter measured
intensities. The ratio of the rms meter measured to the
digitally computed hot-film anemometer intensities can be
defined as an efficiency e" of the propeller-rms meter
measuring system. From figures 42b and 43b, values of e"
range from 0.05 at y/Y = 0.7 of the center-line Atrisco run
to 0.95 at y/Y = 0.2 of the center-line Bernardo run. A
comparison of the rms meter measured intensities of the hot-
film anemometer and the propeller meter for the runs of
table 7 and figures 42 and 43 gives an indication of an
efficiency e''' of the propeller in recovering the turbulent
energy above one-half Hz (the low frequency cutoff of the
rms meter). Values of e''' range from 0.1 at y/Y = 0.7 of
figure 42b to 1.8 for y/Y = 0.40 of figure 43c. (This dis-
cussion excludes figure 43a where the propeller meter mea-
sured intensities are as large as 3.5 times those measured
by the hot-film anemometer. This is because at large
intensities, the peculiarities of the digital-to-analog
converter cause the rms meter to give voltage readings
which are too high.) It should be pointed out that part of
the difference between propeller and hot-film rms meter
measured intensities in any of the runs of figures 42 and

43 could be due to bed form movement in the period between
taking the propeller measurements and taking the hot-film
measurements. This could be the reason for the e''' values

over the lower part of the flow of figure 43c being greater
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than one. It is seen that the values of e''' are generally
smaller than the e' calculated in table 4. This is because
as much as 40 to 50 percent of the turbulent energy of this
type of flow is below one-half Hz where the propeller meter
is most efficient in energy recovery but below the rms meter
low frequency cutoff. It is seen from figures 42 and 43
that the propeller flow meter is considerably more efficient
in the lower 0.4 of the flow depth than in the upper 0.6.
This indicates that open channel turbulence structure is
much coarser in the zero to 6.4 relative depth range.
Furthermore, the propeller was much more efficient in the
deeper flow of the Bernardo measurements, indicating an
increase in open channel turbulence coarseness with flow
depth.

A matter open to considerable discussion in Hydraulic
Engineering is the extent of the hydraulic equivalency of
geometrically similar open channel flows in flumes and in
the field. A comparison of the flow cdnditions for run
twelve in the flume to the Atrisco reach on the Rio Grande
and for run 18 an the flume to the Bernardo reach on the
Rio Grande indicates a rough equivalency in flow depths,
velocities, and slopes. Comparison of table 7 with figures
42 and 43 shows that these flow situations also have roughly
comparable turbulent relative intensities (8 to 10 percent)
at the same relative depth. In this case, at least, flume

and field information are equivalent.
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As phenomena of interest, with respect to the mechanism
of flow in movable boundary open channels, the measured
relative intensities of the Atrisco and Bernardo chanﬁelslon
the Rio Grande bear some comment. The bed forms on the
Atrisco reach were ripples or small dunes (with a height on
the order of 0.1 times the flow depth). The Bernardo channel
was running in plane bed over the left two-thirds of the
channel; the right one-third was in large dunes (with a
height on the order of one-third the flow depth). It is
seen from figures 42 and 43 that the relative intensities
over the ripples and over the plane bed are about the same
order of magnitude (8 to 10 percent) with those over the
ripples being slightly larger, while the intensities over
the dunes are about twice as large as either of the other
two (as high as 16 percent). This reflects the influence
of size of bed form in the generation of open channel
turbulence. -

The intensities measured behind the trashrack and
reported in table 8 are probably too low. However, without
information on the power spectral density energy distribu-
tion of this type of turbulence, it is imrossible to say
how much too low. The measurements were made in conjunction
with a study to determine the effect of trashrack turbulence
on the reported mean velocity of large Ott flow meters.

Even if these intensities are 50 to 75 percent low, the
work of section A-3 of this chapter indicates that the mean
velocity misregistration should only be on the order of

one percent.
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In summary, the dynamic behavior of the propeller-flow
system in a spatially-uniform but time-varying velocity
field is described by a system function H(w) which is de-
termined from sinusoidal input velocity experiments. By
solving equations 3-36b for |M2] and cosy, a generalized
system description is developed. The functions ]Mz[/fj!5 =
m(v) and cosy = n(w) are general for a particular ptopeller
in that |H| and ¢ need only be measured for one mean veloc-
ity in order that they can be computed for all mean veloci-
ties. The solution of equation 3-16 for M, describes, at
least qualitatively, the variation of the natural frequency
of a propeller with U, ', %2, and R, and R_. The natural
frequencies or cutoff frequencies of the propellers of this
study range from 2.55 Hz to 8.36 Hz, depending on propeller
and mean velocity. The natural frequencies of propellers
of similar geometry to those of this study could be in-
creased by decreasing the density ratio p'. The spectral
recovery efficiency of a particular flow is determined
from equation 4-12, where the point-velocity spectrum is
measured by a h;t-film anemometer. The wvalue of the spec-
tral recovery efficiency is found to depend on a propeller
diameter scale factor, d/Lx and an energy distribution

parameter Lx/ﬁ The need for computation of the spectral

loc”®
recovery efficiency is removed if an empirical power spec-
tral density can be fit to the low frequency portions of

the frequency-response-corrected propeller output velocity

power spectral density. Using the empirical power spectral
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density, the experimental system function, and the experi-
mental spectral recovery efficiency, the recovery of the
turbulent intensity u' is shown to be on the order 6f 85
percent for the propellers of this study. For the field
runs, the frequency-response-corrected propeller output
velocity power spectral densities compare guite well to
those measured with the hot-film-anemometer. The energy

distribution parameters Lx/ﬁ are larger in the field

loc
runs than for the geometrically comparable flume runs (0.20
sec as compared to 0.12 sec), but the length scales Lx are
about the same (0.35 ft). The field relative intensities
over ripple beds and plane beds with moyement are about
equal to those in the flume runs (eight to ten percent),

but those over large dunes are larger (as high as sixteen

percent).
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Chapter VI

SUMMARY AND CONCLUSIONS

As is well known to Hydraulic Engineers, there is cur-
rently a great need for reliable turbulence measurements in
large scale open channel flows. An instrument which has
the required ruggedness and portability for making field
measurements is the propeller flow meter. The limitations
of the propeller flow meter for making turbulence measure-
ments are its low frequency response and its spétial aver-
aging characteristics. The objectives of this study were
to evaluate these two characteristics of propeller flow
meters and to use this knowledge to obtain reliable field
turbulence measurements.

A differential equation of motion for propellers was
developed which gives a qualitative indication of the system
behavior when subjected to a uniform fluctuating velocity
field superimposed on a mean flow velocity. A correlation
function was developed from the equation of motion which
gives the spatidl averaging characteristics of a propeller
in a particular flow field if the statistical properties of
the turbulence are known. Experimental evaluations of both
the system functions and spatial averaging characteristics
of particular propellers were made, and the results were
applied to field turbulence measurements with encouraging

results.
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Conclusions which can be drawn from this study are:

1. If a propeller system function H(w), which
describes the response of the propeller-flow system to a
spatially-uniform fluctuating velocity field, and its spec-
tral recovery efficiency n(w) for a particular type of
turbulent flow field, are known, the input power spectral
~ density of the turbulent flow field can be found from the

propeller output power spectral density using

Soo (W) = |H(w) |2 n(w) Sqq (). (6-1)

2. The derived equation of motion

dm _ i du' ’
E+M2m-M2u +M7Et—- (6-2)

describes the behavior of the propeller-flow system when
the propeller is subjected to a spatially-uniform, time-
varying flow field. The coefficient M, is the complex
natural frequency of the propeller-flow system. Its magni-
tude is directly proportional to the mean velocity, and it
is frequency dependent. For the propellers of this study,
its behavior is given in figures 28 and 29. .The coefficient
M, is the acceleration sensitivity of the propeller.

3. Sinusoidal excitation experiments indicate that
the acceleration sensitivity M, in equation 6-2 is negli-
gible; thus the behavior of the propeller flow system is
governed by the complex natural frequency M,.

4. The sinusoidal excitation experiments yield gener-

alized functions Mz/ﬁ35 = m(v) and cosy = n(w) which can be
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used through equations 3-36b to give the behavior of the
systém function H(w) with mean velocity U and angular
excitation frequency w.

5. Equation 3-16 gives an estimate of the variation
of the quantity [M,|, which is the magnitude of the complex
natural frequency of the propeller, with propeller pitch,
radius, blade length, density, and number of blades.

f. Propeller design for high frequency response
involves increasing the magnitude of the complex natural
frequency Isz. This quantity can be increased by de-

creasing p'

the propeller to fluid mass density ratio, and
by decreasing the product 2B where 2 is the blade chord and
B is a propeller calibration constant which is directly
proportional to propeller pitch.

7. Propeller cutoff frequencies for the propellers of
this study range from 2.55 Hz for the 1 and 1-3 propellers
at 2.0 ft/sec to 8.36 Hz for the 2-3 propeller at 5.0 ft/
sec. By constructing these propellers of a plastic such as
Lucite or Plexiglass, with a density ratio p' = 1.2, these
values could be, raised to 5.73 Hz for the 1 and 1-3 pro-
pellers at 2.0 ft/sec and to 18.28 Hz for the 2-3 propeller
at 5.0 ft/sec.

8. Step input experiments, while not capable of giving
the entire system function, do yield a parameter which
appears to be related to mean velocity in the same way as
the natural frequency defined by the IH(un)l = 0.707 cri-

terion of the sinusoidal input experiments.
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9. The propellers tested here and those tested by
Chaix (1962) over register the mean flow velocity when sub-
jected to turbulent velocity fluctuations. The ovér regis-
tration is proportional to the square of the relative
intensity of the turbulence, as predicted by Plate (1967).
For the propellers tested here, the over registration does
not exceed one percent until v'/U exceeds 0.2 for the number
1 and 0.1 for the number 1-3 propeller.

10. The spectral recovery efficiencies of Ott minor
propellers 1, 1-3, and 2-3 have been found, for a rough
boundary open channel flow, to be highly dependent on Lx/ﬁloc
an energy distribution parameter of the power spectral den-
sity, and to a lesser extent on the ratio of the propeller
diameter to the turbulent length scale L.

11. The fitting of empirical power spectral density
curves to the low frequency portions (the portions assumed
" to be undistorted by spatial averaging) of the frequency-
response-corrected propeller output velocity power spectral
densities is a promising method for obtaining turbulent
veiocity power spectral densities without having to correct
directly for spatial averaging.

12. The recovery of the longitudinal intensities
using propeller flow meters generally exceeds 75 percent in
the open channel flows encountered in this study, even
without correcting for the spatial and inertial averaging
effects in the spectrum. This is due to the tendency of
open channel flow turbulence to concentrate large amounts

of energy at low frequencies.
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13. Field measurements of turbulence are relatively

- easily and accurately obtainable from propeller flow meter
measurements if corrections for inertia and spatial aver-

aging, as developed in this study, are employed.

The power spectral density runs on the Atrisco Feeder
Canal above Albuguerque, New Mexico, on the Rio Grande, gave
relatively larger energy distribution parameters Lx/t-J'loc
(0.20 sec) than those obtained in a geometrically comparable
flume run (0.12 sec), however these macro scales Lx were
about the same (0.35 ft). The field longitudinal relative
intensities (Atrisco and in the Bernardo Conveyance Channel
near Bernardo, New Mexico on the Rio Grande) over ripple
beds and plane beds with motion were roughly equal to those
measured in the flume runs (u'/U equal to eight to ten per-
cent), however those over the large dunes (Bernardo) were

larger (u'/U as high as sixteen percent).



115

Chapter VII
SUGGESTIONS FOR FURTHER RESEARCH

1. One fruitful field for further research would be
in the design of propellers for high frequency response. It
is suspected that reducing both propeller size and density
and increasing pitch should increase sensitivity.

2. It is necessary that the range of the energy dis-
tribution parameter for which spectral recovery efficiencies
are available be extended. It would be interesting to see
if the spectral recovery efficiency ever becomes unity for
the entire range of frequencies.

3. A further development of the curve fitting tech-
nique involving extension of the power spectral densities
to lower frequencies would probably be profitable. Using
this approach, it might be possible to avoid using not
only the spatial averaging correction but also the inertia
correction for certain propellers at high mean velocities.

4. Further work could also be done in measuring the
Reynolds stresses using two propeller flow meters or using
a rotation technique similar to that used by McQuivey (1967)
for hot film anemometers.

5. In really large scale flows, such as the Mississippi
river, two propeller flow meters could be used to obtain
lateral scales, or space time correlations as was done by
Baldwin and Mickelsen (1963), in a turbulent pipe flow using

hot wire anemometers.
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6. The extreme dependency of the spectral recovery
efficiency on the power spectral density energy distribution
parameter Lx/ﬁloc suggests that it might be interesting to
determine the variation of other turbulent flow quantities
with this parameter. For example, it is surmised that
Lx/ffloc might vary considerably with the bed form of open
channel flow, and that turbulent diffusion and sediment

transport might be highly dependent on this parameter.
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_ Table 1. Important terms in the calculation of the complex
natural frequency M,.
1 1-3 2-3
Ry .0152 ft .0152 ft .0152 ft.
R .0815 ft .0498 ft .0482 ft
2y <133 £k .133 ft + 132 £
) .294 ft .207 ft .134 £t
tp .007 ft .0062 ft .005 ft
B .00608 ft/ .00628 ft/ .012 ft/
cycle cycle cycle
S 2 3 3
2'3 4.08x10°%£t> 8.94x10° '£t° 4.55x10 'ft>
Ci =1.0
SCl'n‘ Ro < ~ -
— [ (1r cose)2dr 9.75x107°£t 3.26x107°£t> 2.09x107%¢¢e>
By
Ry -6.,5 Ly -7..5
EEEE % srleomsdr 1.79xi0 £t 6.14x£0 £ s.azxio ft
0t Ry 02 g2 U2
M . 21.30TC (v) 23.550C(v) 28.900C (v)
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Table 2. Flow parameters of spectral recovery runs.

Depth ﬁ- L
D y Slope Q/A local U,=/gDS X
Run (ft) D s (ft/sec) (ft/sec) (ft/sec) (ft)
12 1.33 .7 .00048 .98 1.26 .144 B b

16 1.33 .7 .00457 2.91 3.92 . 443 .49

17 1.33 .4 .00457 Z2.91 3.47 .443 .38

18 2.50 .7 .001l1e6 2.34 2.62 .304 .46

Table 3. Length scales from the power spectral densities
of runs 12, 16, 17, and 18.

o U 0cP Lo S(0)T,
Run X 4f X 4

Number Probe P at £=1.50 (ft) (ft)

12 Hot film 1.04 .22 .89
l - -
1-3 - -

16 Hot film .76 .49 1.10
1 1.65 1.08
1-3 1.40 .92
2-3 1.12 .3

17 Hot film .66 .38 .48
1 .98 Ty
1-3 .67 5
2-3 1.03 .60

18 Hot film LD1. .44 1.26
1 1.40 .61
1-3 1.32 .58
2-3 1.55 68
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Table 4. Calculated turbulent intensity recovery ratios.

Propeller ﬁloc Lx/ﬁloc s
(ft/sec) (sec)

1 2.0 + L1 o T
1 2.0 « X7 «79
1 3.2 13 «79
1 352 .17 .80
1 5.0 o L | .82
1 5.0 % .82
2-3 2.0 « 13 .87
2~3 2:0 «17 .84
2-3 5.0 o i <89

2=3 5.0 .17 .85




Table 5. Computation of frequenby response correction for U = 1.68 ft/sec,
1-3 propeller.

w i |M,|/0 | M2 |
(113) (£2d, (T?gt)- (5;7%63)% cos2y -siny (529) Tm,[ siny+ Tle Iilz
1 6.28 3.74 7.87 .979  .145 10.21  .615 .470 1.20
1.5 9.43 5.61 8.85 .965 .187 11.48 .821 .634 1.37
2 12.56 7.49 9.45 .946  .232 12.26 1.023 .791 1.58
3 18.87  11.22  10.28 .890  .332 13.32 1.416  1.084 2.08
5 31.40  18.70  11.62 .786  .462 15.08 2.080  1.618 3.42
7 44.00  26.20  12.85 .655 .587 16.65 2.642  2.055 4.92
10 62.80  37.40  14.40 .400  .774 18.67 3.362  2.588 7.16
12 75.40  44.90  15.60 .208  .884 20.22 3.728  2.844 8.34

LTt
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Table 6. Energy distribution coefficients and propeller
diameter-length scale ratios for figures 39 and 40.

Run P at Lx/Uloc Uloc Ly d/L
No. Probe y/D £=1.5 (sec) (fEt/sec) (ft) X
36 1-3 .94 1.06 .18 1.68 .30 .34
12 H.f.a. .87 1.22 .20 1.66 .34
37 1-3 .80 1.26 .21 1.63 .34 .29
13 H:f.a. .77 1.00 .17 1.64 a2l
38 1-3 .67 1.33 .22 1.47 33 31
43 1-3 .66 1.03 i i 1.68 .29 +35
15 H.f.a. .65 .62 .10 1.64 .
42 1-3 .58 1.49 .25 1.54 .38 - 26
16 H.f.a. .45 1.02 -y 1.56 .

Table 7. Turbulent relative intensities from a rms
" voltmeter, flume runs.

Run Depth U a'y/u
No. Slope (£ft) v/D (ft/sec) Probe Percent

12 .00048 1.33 .7 1.26 H.f.a. 8.1

1 3.1

1-3 33

16 .00457 1:33 « 7 3.92 HExa5 7.8

1 5.0

* 1-3 5.0

2_3 4.9

17 .00457 133 .4 3.47 H.f.a. 12.8

1 5.9

1-3 6.9

2-3 9.2

18 .00116 2.50 7 2.62 H.f.a. Tl

1 3.3

1-3 4.1

2-3 4.7
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Table 8. Propeller-rms meter turbulent intensities behind
a trashrack, Gavins Point Dam.

y/5H (ft/gec) a'/T
0.9 4.89 6.3
4.89 3.3
0.86 4.89 1.2
4.89 3.1
0.04 5.29 3.2
5.29 5.1
4.89 6.7
0.0 5.08 2.6
5.08 4.5
5.53 3.0
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Fig. 1. Flow situation at a propeller blade element.
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dD

Fig. 2. Flow situation at a propeller blade element
with a transverse velocity of -2mnngr
superimposed.



Screw ( Holds meter on probe)

Cable end

Section thru ¢ of body

G of teeth on gear

End piece Assembled shaft

section

Fig. 3. Meter body.

CET



o
. u

£
.

‘_ Figure 4.--Propellers and meter body.

|

|

i

‘




U(ft/sec)

| -3 Propelter
U= 008 +0.00628f

2-3 Propeller
U =003+00120f

| Propeller
U =0.14+0.00608 f

e | -3, Check points
s |, Check points

| 1

1 1 L 1 J
400 500 600 700 800 900 1000
Frequency (Hz)

| 1 1
100 200 300

Fig. 5. Propeller mean velocity calibration curves.
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___________ Fy 111

.

Fig. 6. Schematic of the sine motion generator.



Figure 7.--Bottom view of sine motion generator.

o

Figure 8.--Side view of sine motion generator.



Figure 9.--Towing tank and instrument cart.
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Chart Speed S =50mm/sec

Emin Emox Lmin_L mox

.

Fig. 10. Typical sine excitation output velocity-
position record.



C (m.v.)

— 1 (sec)

Fig. 11. Typical step-input excitation output record.
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Read tape
X(1)
L

]

B Bypass in hot film

ul)=A + TR X() anemometer runs

u»f”

o)°

=]
-

.

Fig. 12. Simplified flow chart of computer program for

spectral recovery efficiency data analysis.
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Fig. 16. Absolute value of the system function |H(w)|

as a function of angular frequency u,
2-3 propeller.
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Fig. 17. Absolute value of the system function |H(w) |
as a function of frequency ratio w/w
all propellers.
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Fig. 19. Phase shift ¢ as a function of angular frequency w, 1-3 propeller.
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Fig. 22. Natural frequency wp as a function of

mean velocity U.
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Fig. 23. |M2| as a function of angular frequency w.
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Fig. 24. Phase shift of the complex natural frequency vy as a function
of angular frequency w, 1-3 propeller.
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Fig. 26. D the output velocity percent deviation from
true mean velocity as a function of the
relative intensity v'/U.
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