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ABSTRACT

TOPICS IN ESTIMATION FOR MESSY SURVEYS: IMPERFECT MATCHING AND

NONPROBABILITY SAMPLING

Two problems in estimation for “messy” surveys are addressed, both requiring the combina-

tion of survey data with other data sources. The first estimation problem involves the combination

of survey data with auxiliary data, when the matching of the two sources is imperfect. Model-

assisted survey regression estimators combine auxiliary information available at a population level

with complex survey data to estimate finite population parameters. Many prediction methods, in-

cluding linear and mixed models, nonparametric regression, and machine learning techniques, can

be incorporated into such model-assisted estimators. These methods assume that observations ob-

tained for the sample can be matched without error to the auxiliary data. We investigate properties

of estimators that rely on matching algorithms that do not in general yield perfect matches. We

focus on difference estimators, which are exactly unbiased under perfect matching but not under

imperfect matching. The methods are investigated analytically and via simulation, using a study

of recreational angling in South Carolina to build a simulation population. In this study, the survey

data come from a stratified, two-stage sample and the auxiliary data from logbooks filed by boat

captains. Extensions to multiple frame estimators under imperfect matching are discussed.

The second estimation problem involves the combination of survey data from a probability

sample with additional data from a nonprobability sample. The problem is motivated by an applica-

tion in which field crews are allowed to use their judgment in selecting part of a sample. Many sur-

veys are conducted in two or more stages, with the first stage of primary sampling units dedicated

to screening for secondary sampling units of interest, which are then measured or subsampled.

The Large Pelagics Intercept Survey, conducted by the United States National Marine Fisheries

Service, draws a probability sample of fishing access site-days in the first stage and screens for
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relatively rare fishing trips that target pelagic species (tuna, sharks, billfish, etc.). Many site-days

yield no pelagic trips. Motivated by this low yield, we consider surveys that allow expert judgment

in the selection of some site-days. This nonprobability judgment sample is combined with a prob-

ability sample to generate likelihood-based estimates of inclusion probabilities and estimators of

population totals that are related to dual-frame estimators. Consistency and asymptotic normality

of the estimators are established under the correct specification of the model for judgment behav-

ior. An extensive simulation study shows the robustness of the methodology to misspecification

of the judgment behavior. A standard variance estimator, readily available in statistical software,

yields stable estimates with small negative bias and good confidence interval coverage. Across a

range of conditions, the proposed strategy that allows for some judgment dominates the classic

strategy of pure probability sampling with known design weights. The methodology is extended

to a doubly-robust version that uses both a propensity model for judgment selection probabilities

and a regression model for study variable characteristics. If either model is correctly specified, the

doubly-robust estimator is unbiased.

The dual-frame methodology for samples incorporating expert judgment is then extended to

two other nonprobability settings: respondent-driven sampling and biased-frame sampling.
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Chapter 1

Introduction

1.1 Design-based estimation basics

Survey statistics consists of selecting a subset of a finite population and estimating something

about the whole population based on that sample. Let us consider the finite population containing

N elements, U = {1, 2, . . . , N}, and let yk denote the value of a nonrandom variable of interest

for the kth element. We focus here on the estimation of the population total Ty =
∑

k∈U yk. In

the design-based approach to survey inference, all randomness comes from the random selection

of the sample. Let s ⊂ U denote a sample from the population selected via the sampling design

p(s), which is a probability distribution on the set of 2N subsets of U if we include the empty set.

The inclusion of the given element k in the sample is indicated by the random variable Ik, Ik = 1

if k ∈ s and Ik = 0 if k /∈ s. The probability that element k will be in the sample, denoted πk,

is computed from the design p(·) as πk = P(k ∈ s) = E[Ik] =
∑

s⊂U :k∈s p(s). The design is a

probability sampling design if πk > 0 for all k ∈ U . The probability that both of the elements

k and ℓ will be included in the sample is πkℓ = P(k, ℓ ∈ s) = E[IkIℓ] =
∑

s⊂U :k,ℓ∈s p(s). In a

probability sampling design, the Horvitz and Thompson (1952) estimator for the population total,

T̂y =
∑

k∈U

yk
Ik
πk

=
∑

k∈s

yk
πk

(1.1)

is design unbiased for Ty. The variance of the Horvitz-Thompson estimator is then

Var
[
T̂y

]
=
∑∑

k,ℓ∈U

Cov [Ik, Iℓ]
yk
πk

yℓ
πℓ

=
∑

k,ℓ∈U

∆kℓ
yk
πk

yℓ
πℓ
, (1.2)

where ∆kℓ = πkℓ − πkπℓ. If πkℓ > 0 for all k, ℓ ∈ U , the design is a measurable design and an

unbiased estimator of Var
[
T̂y

]
is
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V̂ (T̂y) =
∑∑

k,ℓ∈U

∆kℓ
yk
πk

yℓ
πℓ

IkIℓ
πkℓ

. (1.3)

This unbiased estimator or (more commonly) approximations to it are computed in standard soft-

ware such as the survey package of R.

1.2 Design-based model-assisted survey estimation

In many sampling situations, information about the study variable of the population may be

available before sampling. The approach that incorporates additional information and model in

the design-based estimation is called the design-based model-assisted estimation. We refer to the

additional information as auxiliary variables and denote xk for the vector of auxiliary variables for

the element k. For the elements k ∈ s, (yk,xk) is observed and we assume the population total

∑
k∈U xk is known. (That is, we do not need to know the disaggregated values xk for k ∈ U \ s,

but only for k ∈ s.)

Suppose the approximation of yk using the auxiliary variable can be written as some method

m(xk) where the method m(.) does not depend on the sample. The difference estimator for the

population total is

T̂y,diff =
∑

k∈U

m(xk) +
∑

k∈s

yk −m(xk)

πk
.

Under a probability sampling design, the difference estimator is exactly unbiased for Ty regardless

of the performance of m(.). The variance is given by

Var
[
T̂y,diff

]
=
∑∑

k,ℓ∈U

∆kℓ
yk −m(xk)

πk

yℓ −m(xℓ)

πℓ
.

An unbiased variance estimator under a measurable sampling design is

V̂
(
T̂y,diff

)
=
∑∑

k,ℓ∈U

∆kℓ
yk −m(xk)

πk

yℓ −m(xℓ)

πℓ

IkIℓ
πkℓ

.
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The difference estimator will have a smaller variance than Horvitz-Thompson if the residual {yk−

m(xk)} has a smaller variation than {yk}. When yk is exactly m(xk) for k = 1, . . . , N , the

difference estimator is completely error free.

In practice, it is rare to have a sample-independent m(.) that is a good approximation of yk. In-

stead, m(xk) is often estimated based on the sample data {(yk,xk)}k∈s. Model-assisted estimators

relax the condition that m(.) is independent of the sample by introducing a model for which

E [yk] = µ (xk) ,

where {yk}k∈U are now assumed to be realized values from the superpopulation model. If we

observe yk and xk for the entire population, we would get mN(.) as an estimate for µ(.). Since

only the sample of yk and xk is observed, we estimate the model µ(.) from the sample and obtain

m̂(.). Plugging m̂(.) into the difference estimator, we obtain the model-assisted estimator

T̂y,ma =
∑

k∈U

m̂(xk) +
∑

k∈s

yk − m̂(xk)

πk
. (1.4)

The model-assisted estimator is asymptotically unbiased regardless of the model quality. The

variance is asymptotically equivalent to the corresponding difference estimator

Var
[
T̂y,diff

]
=
∑∑

k,ℓ∈U

∆kℓ
yk −mN(xk)

πk

yℓ −mN(xℓ)

πℓ
.

The variance estimator is

V̂
(
T̂y,ma

)
=
∑∑

k,ℓ∈U

∆kℓ
yk − m̂(xk)

πk

yℓ − m̂(xℓ)

πℓ

IkIℓ
πkℓ

.

Similarly to the difference estimator, the asymptotic variance is smaller than the Horvitz-Thompson

estimator if the residual {yk −mN(xk)} has less variation than {yk}.
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An important case of the model-assisted estimator is the generalized linear regression estima-

tors (GREG) (Särndal et al., 1992) with the working model

yk = x⊤
k β + εk,

where εk is uncorrelated with mean 0 and variance σ2
k. All σ2

k are known. If we observe yk and xk

for all k in U , the weighted least square estimator of β under the model is

BN =

(
∑

k∈U

xkx
⊤
k

σ2
k

)−1∑

k∈U

xkyk
σ2
k

.

But we can estimate (1.2) using the sample data by plugging in HT estimators,

B̂ =

(
∑

k∈s

xkx
⊤
k

σ2
kπk

)−1∑

k∈s

xkyk
σ2
kπk

.

The corresponding predictor would be

m̂ (xk) = x⊤
k

(
∑

k∈s

xkx
⊤
k

σ2
kπk

)−1∑

k∈s

xkyk
σ2
kπk

. (1.5)

By plugging (1.5) into the model-assisted estimator from (1.4), we have

T̂y,GREG =
∑

k∈U

x⊤
k

(
∑

k∈s

xkx
⊤
k

σ2
kπk

)−1∑

k∈s

xkyk
σ2
kπk

+
∑

k∈s



yk − x⊤

k

(
∑

k∈s

xkx
⊤
k

σ2
kπk

)−1∑

k∈s

xkyk
σ2
kπk



 (πk)

−1 .

GREG estimator is also asymptotically unbiased regardless of the working model, and the asymp-

totic variance is

Var
[
T̂y,GREG

]
=
∑∑

k,ℓ∈U

∆kℓ
yk − x⊤

k BN

πk

yℓ − x⊤
ℓ BN

πℓ
.
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1.3 Dual-frame estimation

In sampling theory, we often assume the frame is complete. However, a complete and perfect

frame is often not feasible in practice. Multiple-frame techniques use two or more frames to give

complete coverage of the target population and thus deal with the imperfect frames. Suppose

every element k is in at least one of the two frames UA and UB, and two imperfect frames provide

the complete coverage of the target population U = UA ∪ UB. A probability sample is taken

from each frame independently, sA by a probability sampling design pA from UA, and sB by a

probability sampling design pB from UB. Let NA be the size of UA, and NB is the size of UB. The

Horvitz-Thompson estimators in each frame are T̂A =
∑

k∈sA
yk/π

A
k and T̂B =

∑
k∈sB

yk/π
B
k .

The estimators are design unbiased for their respective frame totals: E
[
T̂A

]
= TA =

∑
k∈UA

yk,

and E
[
T̂B

]
= TB =

∑
k∈UB

yk. We also distinguish three disjoint domains of the population U :

a = U \ UB, b = U \ UA, and ab = UA ∩ UB with sizes Na, Nb, and Nab. Domain a consists of

the elements in UA only, domain b consists of the elements in UB only, and domain ab consists of

the elements in both UA and UB. We give an overview of the combined frame approach, separate

frame approach, and multiplicity estimators. The approaches we describe generalize to more than

two frames.

1.3.1 Combined frame estimators

The combined approach combines samples from all frames into a single combined sample

with appropriate weights. It is closely related to the estimators in Bankier (1986) and Kalton

and Anderson (1986). In the multiple frame literature, this approach was sometimes referred to

as a single frame estimator (Lohr, 2009). We will refer to this approach as the combined frame

estimator to avoid ambiguity with the traditional single frame estimator. The inclusion probability

of the combined sample is

P [k ∈ s] = P [k ∈ sA ∪ sB] = P [k ∈ sA] + P [k ∈ sB]− P [k ∈ sA ∩ sB] ≃ πA
k + πB

k .
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The approximation improves as the sampling fractions in both frames decrease. The combined

frame estimator for the population total is

T̂com =
∑

k∈s

yk
πA
k + πB

k

,

assuming no element occurs twice in the combined sample. The estimator is approximately unbi-

ased if the sampling fraction is small. Because the combined estimator can be written as
∑

k∈s ykwk

and the two designs are independent, the variance and variance estimator can be derived from the

usual design-based variance estimation. However, there are some drawbacks of the combined

frame estimator. The estimator requires the inclusion probability for every sampled unit for all

frames, not just the inclusion probability for the frame from which the element was selected.

1.3.2 Separate frame estimators

The separate approach first computes estimates for each of the disjoint domains and then ag-

gregates all over all domains. It is the largest class of estimators for multiple frame surveys. In the

setting of the two imperfect frames, we compute the estimators

T̂A
a =

∑

k∈sA

yk1{k∈a}

πA
k

; T̂A
ab =

∑

k∈sA

yk1{k∈ab}

πA
k

; T̂B
ab =

∑

k∈sB

yk1{k∈ab}

πB
k

; T̂B
b =

∑

k∈sB

yk1{k∈b}

πB
k

and the estimation for the population total is

T̂sep = T̂A
a + αT̂A

ab + (1− α) T̂B
ab + T̂B

b (1.6)

with α ∈ [0, 1]. The estimator only requires knowledge about the frame membership for the

sampled unit and the inclusion probabilities for the sampled unit for the frames from which they

were selected. When α = 0 or α = 1, the estimator becomes the screening estimator in which the

elements in the overlap domain ab from one of the samples are screened out. The optimal value of
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α is chosen to minimize the variance of T̂sep and is given by

αopt =
Var
(
T̂B
ab

)
+ Cov

(
T̂B
b , T̂

B
ab

)
− Cov

(
T̂A
a , T̂

A
ab

)

Var
(
T̂A
ab

)
+ Var

(
T̂B
ab

) .

The variance and covariance are unknown and have to be estimated from the sample. The optimal

value for one survey variable might be different from the optimal value for another survey vari-

able. Alternatives to the optimal estimator include Fuller and Burmeister (1972), who proposed

a regression-type estimator by using information about Nab, and Skinner and Rao (1996), who

proposed a pseudo maximum likelihood (PML) estimator that has the same weights for all the

variables. These modified estimators are not considered further in this dissertation.

1.3.3 Multiplicity estimators

The idea of multiplicity was introduced in Casady and Sirken (1980) and described in Mecatti

(2007). Instead of creating the single design, the multiplicity estimator counts the number of

frames that include unit k: its multiplicity, mk. The estimator for two frames is

T̂y,mec =
∑

k∈sA

yk
mkπA

k

+
∑

k∈sB

yk
mkπB

k

. (1.7)

In the two-frame case, the multiplicity mk = 1 for k ∈ a and k ∈ b, and mk = 2 for k ∈ ab, so

that (1.7) is a special case of the separate frame estimator (1.6) with α = 1/2.

The multiplicity estimator does not involve the domain membership indicator that identifies

which domain includes element k, hence it is simple to implement. Like the separate frame es-

timator, it only requires knowledge of the inclusion probabilities of the sample selected. The

variance and variance estimator can be derived in closed form:

Var
[
T̂y,mec

]
=
∑∑

k,ℓ∈UA

∆kℓ
yk

mkπA
k

yℓ
mℓπA

ℓ

+
∑∑

k,ℓ∈UB

∆kℓ
yk

mkπB
k

yℓ
mℓπB

ℓ

,
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V̂ (T̂y,mec) =
∑∑

k,ℓ∈UA

∆kℓ
yk

mkπA
k

yℓ
mℓπA

ℓ

IAk I
A
ℓ

πA
kℓ

+
∑∑

k,ℓ∈UB

∆kℓ
yk

mkπB
k

yℓ
mℓπB

ℓ

IBk I
B
ℓ

πB
kℓ

. (1.8)

1.4 Inference for nonprobability samples

With the increasing cost and lower response rate of the traditional probability sample surveys,

the low cost of nonprobability samples of very large size through web surveys and external sources

like administrative data has been really attractive. Estimation involves nonprobability samples that

may be biased due to unknown selection mechanism. There are some approaches in the literature

that discuss inference for the nonprobability samples that combine probability and nonprobability

samples. We give an overview of four main classes of estimation: small area estimation, sample

matching and mass imputation, inverse weighted estimation, and doubly-robust estimation. To

apply uniform notation for these classes, let sA denote the probability sample with sample size nA,

and sB denote the nonprobability sample with sample size nB. The probability sample indicators

are IAk if k ∈ sA, IAk = 0 otherwise; similarly, the nonprobability sample indicators are IBk if

k ∈ sB, IBk = 0 otherwise. The auxiliary variable xk is observed (at least) in both probability

and nonprobability samples, and the variable of interest yk is observed in at least one of the two

samples.

1.4.1 Small area estimation

The small area approach uses the bivariate Fay-Herriot models to get the domain level point

estimate of probability samples and nonprobability samples (Ganesh et al., 2017). The models for

the domain are

yAd = αd + νd + eAd

yBd = αd + βd + νd + eBd ,

where yAd , yBd are the point estimates from the probability sample and nonprobability sample for

domain d; αd, βd are domain level fixed effects; νd are domain level random effects with νd ∼
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N(0, σ2
ν); and eAd and eBd are sampling errors associated with yAd , yBd , with eAd ∼ N(0, ψA

d ) and

eBd ∼ N(0, ψB
d ). The unknown parameters in the model are estimated by the maximum likelihood

estimator. The drawback of this estimator is it depends on the variable being estimated and needs

a different model for different variables of interest.

1.4.2 Sample matching and mass imputation

The mass imputation approach is a model-based prediction method (Chen et al., 2020; Kim

et al., 2021). Suppose the finite population can be viewed as a sample from the superpopulation

model

yk = m(xk) + εk, k = 1, . . . , N,

where m(xk) = E [yk|xk]. The method fits the model and estimates the coefficients from the

nonprobability sample sB, and the mass imputation estimator of the population total is obtained by

the weighted sum of the predicted values m̂(xk) over the probability sample sA:

∑

k∈sA

ŷk
πA
k

. (1.9)

The estimator can be viewed as replacing the missing response variable in the probability sample by

the imputed value from the observed covariates, so that we obtain predicted values ŷk for k ∈ sA.

The mass imputation estimator (1.9) performs poorly if the superpopulation model is not correctly

specified.

The sample matching approach uses a non-parametric approach without specifying the para-

metric model m(xk). The sample matching approach assigns sampling weights from the probabil-

ity sample to the nonprobability sample by comparing covariates available in both samples using

distance measure with the nearest neighbor (Chen et al., 2020; Rivers, 2007; Yang et al., 2018).

This approach resembles the donor from the probability sample to a recipient from the nonproba-

bility sample, and the weight of the nonprobability sample element is from the nearest probability

sample element.
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1.4.3 Inverse weighted estimator

The inverse weighting approach fits a model for the inclusion probabilities of elements in the

nonprobability sample sB based on the missing at random assumption. In the nonprobability liter-

ature, this approach was discussed by several authors, Kim and Wang (2019), Chen et al. (2020),

Elliott and Valliant (2017), and Valliant (2020). Suppose the selection mechanism for the non-

probability sample, referred to as propensity score, is πB
k = P

[
IBk = 1

∣∣xk, yk
]
, k ∈ U . Further

assume that the selection mechanism is ignorable in the sense that πB
k = P

[
IBk = 1

∣∣xk, yk
]
=

P
[
IBk = 1

∣∣xk

]
for all k. Suppose the mechanism follows a parametric model P

[
IBk = 1

∣∣xk

]
=

pk (θ), so that the log-likelihood is

l(θ) =
∑

k∈U

[
IBk log pk + (1− IBk ) log(1− pk)

]
=
∑

k∈U

IBk log

[
pk(θ)

1− pk(θ)

]
+
∑

k∈U

log (1− pk (θ)) ,

which involves the unknown and unobservable term log (1− pk (θ)). This unknown term is re-

placed by its design unbiased estimator based on the probability sample sA. The procedure leads

to the pseudo log-likelihood

l∗(θ) =
∑

k∈sB

log

(
pk (θ)

1− pk (θ)

)
+
∑

k∈sA

log (1− pk (θ))

πA
k

,

and θ̂ is computed by maximizing the pseudo log-likelihood function l∗(θ). The estimated propen-

sity score π̂k is then obtained from the fitted model and the estimator for the population total is

T̂y =
∑

k∈sB
yk/π̂

B
k . The variance of the estimator can be obtained by the joint estimating equa-

tion of estimating the total and the score function of the pseudo log-likelihood (Kim and Wang

(2019), Chen et al. (2020)). The drawback of the inverse weighted estimator is that this estimator

is sensitive to the misspecified models for the propensity scores.

1.4.4 Doubly-robust estimator

Due to the possible misspecified models for the propensity scores, the estimators can be im-

proved by including a predictive model. This approach introduces a regression model E [y|x] =
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m(x,β) together with the propensity score to construct the estimator. The general form of the

doubly-robust estimator for the total is

T̂y,DR =
∑

k∈sB

yk − m̂(xk)

π̂B
k

+
∑

k∈U

m̂(xk). (1.10)

The coefficients of m̂(xk) can be obtained by the standard methods such as least squares or max-

imum likelihood from the nonprobability sample only. The estimator in (1.10) is similar to the

model-assisted estimator. The doubly-robust estimator would remain consistent if either the model

for propensity score or the predictive model is correctly specified. Doubly-robust estimator have

been used in the context of missing data ( Kim and Haziza (2014), Carpenter et al. (2006), Davidian

et al. (2005), Bang and Robins (2005), Kang and Schafer (2007)).

1.5 Respondent-driven sampling (RDS)

Respondent-driven sampling (RDS) was proposed to sample and produce unbiased estimates

for hidden or rare populations. Some studies of such populations use link-tracing designs, in which

links or connections between units are used in obtaining the sample (Thompson, 2012), because

these designs can exploit relationships among the rare units. But such designs are subject to bias

because the search procedure or the design is not taken into account. The RDS approach allows

for statistical inference for the population by controlling the bias that is often associated with the

link-tracing design. Each individual is given a limited number of coupons to recruit acquaintances

who are then interviewed. Each new respondent is in turn given coupons to recruit acquaintances.

The process continues until reaching the target sample size. From each respondent, data are col-

lected on variables of interest and the number of connections of the respondent, or degree of that

individual. There is an extensive literature on inference for respondent-driven sampling, including

the overview such as Heckathorn and Cameron (2017). We give an overview of the most widely

used classes of RDS estimators: SH (Salganik and Heckathorn (2004)), VH (Volz and Heckathorn

(2008)), and SS (successive sampling; Gile (2011)).
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1.5.1 Salganik and Heckathorn (SH) estimator

Salganik and Heckathorn (2004) derived the SH estimator by Markov modeling and the infor-

mation about the mean degree (personal network size) of each group. Assuming that seeds are

drawn with probability proportional to degree, seeds recruit randomly within their networks, and

under additional mild assumptions, the probability that a node j will be recruited is dj/
∑

k∈N dk,

where dj is the network degree of person j, that is, the nodes in the next waves will be drawn pro-

portional to degree, and each relationship has the same probability of being drawn with 1/
∑

k∈N dk.

The estimator estimates the proportion of the population in two groups, A and B,

µ̂SH
A =

d̂BĈBA

d̂AĈAB + d̂BĈBA

,

where d̂A, d̂B are the estimated average degrees in group A and group B, and ĈAB, ĈAB are the

estimated probabilities of cross-group recruitment. The estimated average degree in group A is

d̂A =
1/nA

∑nA

k=1 dk1/pk
1/nA

∑nA

k=1 1/pk
,

where pk is the selection probability of person k and nA is the sample size of group A. Because

nodes are drawn with probability proportional to degree, the estimated degree reduces to

d̂A =
nA∑nA

k=1 1/dk
.

Cross-group recruitment probability is estimated by

ĈAB =
rAB

rAA + rAB

; ĈBA =
rBA

rBB + rBA

,

where rAA is the number of recruitments from a person in group A to another person in group A,

rAB is the number of recruitments from a person in group A to another person in group B, rBA is
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the number of recruitments from a person in group B to another person in group A, and rBB is the

number of recruitments from a person in group B to another person in group B.

1.5.2 Volz and Heckathorn (VH) estimator

The estimator was proposed by Volz and Heckathorn (2008) and is most commonly used today.

This estimator is similar to SH estimator but has a different theoretical foundation. Recruitment is

modeled as a Markov process (MP) and assumes the existence of a unique equilibrium to the MP.

The VH estimator calculates the selection probability and utilize the Hansen-Hurwitz (HH) type

estimator (Hansen and Hurwitz, 1943). From the equilibrium of MP, the selection probability is

estimated as pk = dk/Nd̂U , where d̂U is the estimate of the average degree. From Salganik and

Heckathorn (2004), the estimated d̂U is n/
(∑

k∈s 1/dk
)
. The estimate for the total is then

T̂VH
y =

1

n

n∑

k=1

yk
p̂k

=
1

n

n∑

k=1

Nykn/
∑

i∈s d
−1
k

d−1
k

.

The estimate for the mean is

µ̂VH
y =

∑
k∈s d

−1
k yk∑

k∈s d
−1
k

,

where dk is the degree of element k. SH estimator and VH estimator will coincide if the number of

recruitments from Group A to Group B is the same as recruitments from Group B to Group A. VH

estimator also requires some mild assumptions as in the SH estimator but allows estimation for the

continuous variable as opposed to SH estimator, which only allows for estimation for categorical

variables. Gile and Handcock (2010) conducted the simulation of VH and SH estimators under

realistic sampling scenarios which violated the assumptions like random seeds or sampling with

replacement, and showed that such violations can affect the estimates.

1.5.3 Successive sampling (SS) estimator

Gile (2011) proposed the successive sampling (SS) estimator that avoids the bias from with-

replacement assumption and the assumption of reaching the stationary equilibrium of the VH es-
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timator. The estimator is based on the sequential sample, and the idea about the successive sam-

pling is given the population degree distribution and the sample size, there is unknown function

fπ (k;n,N ) mapping the degree of the individual to its inclusion probability πk under without re-

placement sampling. The mapping function depends on the population size N , which is assumed

known, and the degree distribution N . This approach estimates the degree distribution N and the

mapping function iteratively. The resulting estimator for the population mean is

µ̂SS
y =

∑
k∈s yk/π̂(dk)∑
k∈s 1/π̂(dk)

,

where π̂(dk) is the estimated inclusion probability with degree dk. The estimator fixes the bias for

the large sampling fraction in the VH estimator and it performs similarly to the VH estimator if the

sampling fraction is small.

1.6 Overview of organization of thesis

We address two main topics in the dissertation, imperfect matching and combining probabil-

ity and nonprobability samples, with some extensions. In Chapter 2, we introduce the imperfectly

matched model-assisted estimator, in which the sample is matched with error to the auxiliary infor-

mation. The methods are investigated analytically and via simulation, using a study of recreational

angling in South Carolina to build a simulation population. The first part of Chapter 2, from sec-

tion 2.1 to 2.3 and part of 2.5, has been published in the refereed volume in Breidt et al. (2018).

Chapter 3 is the topic about the inference incorporating expert judgment sample. Motivated by the

low yield of the Large Pelagics Intercept Survey, a two-stage screening sample for a rare type of

recreational fishing activity, we have considered surveys that allow expert judgment in the selection

of some primary sampling units. This nonprobability judgment sample is combined with a prob-

ability sample to generate likelihood-based estimates of inclusion probabilities and estimators of

population totals that are related to dual-frame estimators. Consistency and asymptotic normality

of the estimators are established under the correct specification of the model for judgment behavior.
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Chapter 4 is the extension and application of Chapter 3 to other problems including doubly-robust

estimation, estimation for RDS samples, and incomplete frame inference. A brief summary and

discussion are given in Chapter 5.
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Chapter 2

Model-assisted survey estimation with imperfect

matching

2.1 Introduction

Let U = {1, 2, . . . , N} denote a finite population and let yk denote the (non-random) value of

some variable of interest for element k ∈ U . We are interested in the finite population total Ty =
∑

k∈U yk. As a motivating example, which we return to in section 2.5, suppose U is the set of all

recreational angling boat trips on the coast of the state of South Carolina in 2016. Further, suppose

yk is the number of anglers on the kth boat trip, so that Ty is the total number of recreational angler

trips on boats in South Carolina waters in 2016; or suppose that yk is the number of black sea bass

caught on the kth boat trip, so that Ty is the total number of black sea bass caught in 2016. Because

it is often impractical to measure yk for all k ∈ U , we instead estimate Ty based on information

obtained for a sample s ⊂ U , which is selected via a random mechanism.

In addition to observations obtained on the sample, auxiliary information may be available

from external records. Let A = {1, 2, . . . , A} denote the indices for this external database and let

aℓ denote the vector of auxiliary information available for record ℓ ∈ A. We write Ax =
∑

ℓ∈A xℓ

for sums over the database, in particular noting that the size of the database is A1 =
∑

ℓ∈A 1.

The auxiliary vector aℓ could be used to construct a predictor, µ(aℓ) of yk provided record

ℓ ∈ A in the database matches element k ∈ U in the population. We assume for the present

that the construction of the prediction method µ(·) does not involve the sample, s. We write

Aµ =
∑

ℓ∈A µ(aℓ). In the motivating example, we have samples from angler interviews and

logbook records as auxiliary information.
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2.2 Estimation under perfect matching

2.2.1 Notation for perfect matching

We first consider the case of perfect matching: suppose that every record in the database can

be matched to one and only one element in the population, and vice versa. We write

Mkℓ =





1, if database record ℓ ∈ A matches element k ∈ U,

0, otherwise.

The appropriate predictor of yk would then be denoted
∑

ℓ∈AMkℓµ(aℓ), to reflect the matching

step.

2.2.2 Difference estimator under perfect matching.

Under this perfect matching scenario,
∑

k∈U Mkℓ = 1. It follows that an unbiased estimator of

Ty is given by the difference estimator,

T̂y,diff =
∑

k∈U

∑

ℓ∈A

Mkℓµ(aℓ) +
∑

k∈s

yk −
∑

ℓ∈AMkℓµ(aℓ)

πk

=
∑

ℓ∈A

µ(aℓ) +
∑

k∈s

yk −
∑

ℓ∈AMkℓµ(aℓ)

πk
; (2.1)

this is simply a more elaborate notation for a standard estimator (e.g., equation (4) of Breidt and

Opsomer (2017) ), to account for the matching step. The variance of the perfect-matching differ-

ence estimator is

Var
[
T̂y,diff

]
=
∑∑

j,k∈U

∆jk

yj −
∑

ℓ∈AMjℓµ(aℓ)

πj

yk −
∑

ℓ∈AMkℓµ(aℓ)

πk
. (2.2)

The unbiased difference estimator will have smaller variance and mean square error than the unbi-

ased Horvitz-Thompson estimator (1.1) provided the residuals {yk−
∑

ℓ∈AMkℓµ(aℓ)}k∈U in (2.2)

have less variation than the raw values {yk}k∈U in (1.2).
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2.3 Estimation under imperfect matching

2.3.1 Notation for imperfect matching

In practice, perfect matching may not be possible. The sampled element k might have no

corresponding record in the database. It might have a corresponding record ℓ, but fail to match

it perfectly due to missing values or inaccuracies in the survey observation, the database record,

or both. Similarly, the sampled element might appear to match multiple database records due to

agreement on a number of data values.

Hence, we replace the Mkℓ = 0 or 1 by a possibly-fractional value mkℓ ∈ [0, 1], computed

via a deterministic algorithm that does not depend on the sample. We refer to these values as

match metrics. Assume that for any sampled element k ∈ U , the match metrics {mkℓ}ℓ∈A for

every database record can be computed. For example, sampled element k might match record ℓ1

perfectly, in which case

mkℓ =





1, if ℓ = ℓ1,

0, otherwise.

It might not match any records, in which case

mkℓ = 0, for all ℓ ∈ A;

or it might match three records ℓ1, ℓ2, ℓ3 equally well, in which case

mkℓ =





1/3, if ℓ = ℓ1, ℓ = ℓ2 or ℓ = ℓ3,

0, otherwise.

If
∑

ℓ∈Amkℓ < 1, then the matching algorithm has determined that there is a non-trivial pos-

sibility that the sampled element does not match any database record. This can occur when there

is potential non-overlap between the target population U and the database A. This is of interest in

situations such as the application we will describe in Section 2.5, where A is a possibly-incomplete
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set of recreational angling trips self-reported by boat captains, while U is the actual population of

trips.

2.3.2 Difference estimation under imperfect matching

First difference estimator

Under imperfect matching, an estimator analogous to (2.1) is

T̃y,diff1 =
∑

ℓ∈A

µ(aℓ) +
∑

k∈s

yk −
∑

ℓ∈Amkℓµ(aℓ)

πk
. (2.3)

This estimator is no longer unbiased. Instead, its expectation is

E
[
T̃y,diff1

]
=

∑

ℓ∈A

µ(aℓ) +
∑

k∈U

(
yk −

∑

ℓ∈A

mkℓµ(aℓ)

)

= Ty +
∑

ℓ∈A

(
1−

∑

k∈U

mkℓ

)
µ(aℓ). (2.4)

Its variance is

Var
[
T̃y,diff1

]
=
∑∑

j,k∈U

∆jk

yj −
∑

ℓ∈Amjℓµ(aℓ)

πj

yk −
∑

ℓ∈Amkℓµ(aℓ)

πk
.

The variance is small if the match-weighted quantities {∑ℓ∈Amkℓµ(aℓ)}k∈U are good predictors

of the response values {yk}k∈U . Under a measurable sampling design, an unbiased variance esti-

mator is given by

V̂ (T̃y,diff1) =
∑∑

j,k∈U

∆jk

yj −
∑

ℓ∈Amjℓµ(aℓ)

πj

yk −
∑

ℓ∈Amkℓµ(aℓ)

πk

IjIk
πjk

(2.5)

which, like (1.3), can be computed or closely approximated using standard survey software.
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The behavior of the estimator under three extreme cases is of interest. First, if there is no

matching at all, so that mkℓ ≡ 0 for all k ∈ U , ℓ ∈ A, then T̃y,diff1 becomes

∑

ℓ∈A

µ(aℓ) +
∑

k∈s

yk
πk

= Aµ + T̂y,

with expectation Aµ + Ty and variance equal to that of the Horvitz-Thompson estimator, (1.2).

Effectively, the estimator regards the sampling design as having failed to cover the complete popu-

lation, which is actually the disjoint union A∪ U and not U . It thus separately estimates the totals

for the database and the universe and adds them together.

The second extreme case is that of full matching in the sense that
∑

k∈U mkℓ = 1 for all ℓ ∈ A

(this is not the same as perfect matching). In this case, T̃y,diff1 is exactly unbiased for Ty by (2.4).

The third and final extreme case can occur if a rare characteristic appears in the population but

is never encountered in the sample, so that yk ≡ 0 for all k ∈ s. In this case, the estimator (2.3)

becomes
∑

ℓ∈A

µ(aℓ)−
∑

k∈s

∑

ℓ∈A

mkℓµ(aℓ)

πk
. (2.6)

This behavior may be undesirable, as for a non-negative characteristic with non-negative predic-

tions, the estimator predicts less than what is known to be present in the database. This behavior

is better than that of the Horvitz-Thompson estimator, however, which would estimate zero for the

population with such a degenerate sample. Nonetheless, other difference-type estimators are worth

considering, including the one proposed below.

Second difference estimator

An alternative to T̃y,diff1 in (2.3) is obtained by an additional differencing adjustment,

T̃y,diff2 = T̃y,diff1 +
∑

k∈s

∑

ℓ∈A

mkℓ {µ(aℓ)− yk}
πk

=
∑

ℓ∈A

µ(aℓ) +
∑

k∈s

yk(1−
∑

ℓ∈Amkℓ)

πk
. (2.7)
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The expectation of the estimator is

E
[
T̃y,diff2

]
= E

[
T̃y,diff1

]
+
∑

k∈U

∑

ℓ∈A

mkℓ {µ(aℓ)− yk}

= Ty +
∑

ℓ∈A

(
1−

∑

k∈U

mkℓ

)
µ(aℓ) +

∑

k∈U

∑

ℓ∈A

mkℓ {µ(aℓ)− yk} . (2.8)

Its variance is

Var
[
T̃y,diff2

]
=
∑∑

j,k∈U

∆jk

yj(1−
∑

ℓ∈Amjℓ)

πj

yk(1−
∑

ℓ∈Amkℓ)

πk
.

The variance is small if the matching is good in the sense that
∑

ℓ∈Amkℓ ≃ 1 for all k ∈ U . Under

a measurable sampling design, an unbiased variance estimator is given by

V̂ (T̃y,diff2) =
∑∑

j,k∈U

∆jk

yj(1−
∑

ℓ∈Amjℓ)

πj

yk(1−
∑

ℓ∈Amkℓ)

πk

IjIk
πjk

. (2.9)

Again, like (1.3) and (2.5), this estimator can be computed or closely approximated using standard

survey software.

We next consider the behavior of T̃y,diff2 under the three extreme scenarios described above.

First, if there is no matching at all, so that mkℓ ≡ 0 for all k ∈ U , ℓ ∈ A, then T̃y,diff2 reduces to

T̃y,diff1 by (2.7) and has exactly the same behavior.

Second, under full database matching in the sense that
∑

k∈U mkℓ = 1 for all ℓ ∈ A, the

expectation of T̃y,diff2 in (2.8) becomes

Ty +
∑

ℓ∈A

µ(aℓ)−
∑

k∈U

∑

ℓ∈A

mkℓyk

so that, unlike T̃y,diff1 under this scenario, T̃y,diff2 is biased. The bias is small if
∑

k∈U mkℓyk is

close to µ(aℓ) for all ℓ.
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Third, with yk ≡ 0 for all k ∈ s, the estimate computed from (2.7) becomes the full database

total
∑

ℓ∈A

µ(aℓ),

which may be preferable to either the zero estimate from Horvitz-Thompson or the reduced database

total of T̃y,diff1 from (2.6).

2.4 Multiple frames estimation under imperfect matching

2.4.1 Multiplicity difference estimator under imperfect matching

The results above assume one frame covers the universe, and this may not be possible in prac-

tice. In this section, we assume multiple frames cover the universe. Suppose the universe is

partitioned into subpopulations Ug, and the subpopulations are divided into three groups, indexed

by G1, G2, G3:

U = {∪g∈G1
Ug} ∪ {∪g∈G2

Ug}{∪g∈G3
Ug}.

If g ∈ G1, Ug is covered by one or more frames, but not the database; if g ∈ G2, Ug is covered

by one or more frames and the database; if g ∈ G3, Ug is covered only by the database. For

the sample drawn from ∪g∈G1
Ug that is covered by one or more frames, we apply the Mecatti

(2007) estimator to adjust for the multiple frames. Let sfg denote the sample from frame f , and

let T̂fg =
∑

k∈sfg
yk/π

(f)
k denote the Horvitz-Thompson estimator for the sample from that frame.

We define the coverage indicator as

Ffg =





1, if subpopulation Ug is covered by frame f,

0, otherwise.

The weights that adjust for the multiplicity are

ψfg =
Ffg∑
f Ffg

;
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for example, if subpopulation Ug is covered by two frames f1 and f2, then ψf1g = ψf2g =

1/2, and ψfg = 0 for f ̸= f1, f2. The unbiased multiplicity estimator for the
∑

g∈G1
Tg is

∑
g∈G1

∑F
f=1 ψfgT̂fg.

For g ∈ G2 under perfect matching, we could construct the multiplicity-based difference esti-

mator,

T̃ ∗
g =

∑

k∈Ug

∑

ℓ∈A

Mkℓµ(aℓ) +
F∑

f=1

ψfg

∑

k∈sfg

yk −
∑

ℓ∈AMkℓµ(aℓ)

π
(f)
k

=
∑

k∈Ug

ỹk +
F∑

f=1

ψfg

∑

k∈Ug

(yk − ỹk)
I
(f)
k

π
(f)
k

.

The unbiased difference estimator for
∑

g∈G2
Tg is

∑
g∈G2

T̃ ∗
g .

For g ∈ G3, we can only predict with the auxiliary data since no frame covers this part of the

population. Under perfect matching,

T̃g =
∑

k∈Ug

∑

ℓ∈A

Mkℓµ(aℓ) =
∑

k∈Ug

ỹk.

The synthetic predictor for
∑

g∈G3
Tg is then

∑
g∈G3

T̃g =
∑

g∈G3

∑
k∈Ug

ỹk.

By combining the three groups, the multi-frame estimator under perfect matching is

∑

g∈G1

F∑

f=1

ψfgT̂fg +
∑

ℓ∈A


 ∑

g∈G2∪G3

∑

k∈Ug

Mkℓ


µ(aℓ) +

F∑

f=1

ψfg

∑

k∈sfg

yk −
∑

ℓ∈AMkℓµ(aℓ)

π
(f)
k

. (2.10)

If the matching is not perfect, replace Mkℓ by match metrics mkℓ, where mkℓ ∈ [0, 1]. Because

mkℓ is known only for k ∈ sfg, we cannot just substitute mkℓ for Mkℓ in the second term of

(2.10) but the substitution is fine in the third term in (2.10). If ℓth record matches some element in

∪g∈G2∪G3
Ug, then

(∑
g∈G2∪G3

∑
k∈Ug

Mkℓ

)
= 1.

(∑
g∈G2∪G3

∑
k∈Ug

Mkℓ

)
can be estimated from

the sample, but we estimate
(∑

g∈G2∪G3

∑
k∈Ug

Mkℓ

)
as equal to 1 for simplicity. The multiplicity

23



adjusted difference estimator under imperfect matching is then

T̃y,diff,mult =
∑

g∈G1

F∑

f=1

ψfgT̂fg +
∑

ℓ∈A

(1)µ(aℓ) +
∑

g∈G2

F∑

f=1

ψfg

∑

k∈sfg

yk −mkℓ

∑
ℓ∈A µ(aℓ)

π
(f)
k

.

The estimator is not unbiased and the bias depends on matching and prediction error. The expec-

tation of the estimator is

∑

g∈G1

Tg +
∑

ℓ∈A

(1)µ(aℓ) +
∑

g∈G2

Tg −
∑

ℓ∈A


∑

g∈G2

∑

k∈Ug

mkℓ


µ(aℓ).

The bias of the estimator is

−
∑

g∈G3

Tg +
∑

ℓ∈A

µ(aℓ)−
∑

ℓ∈A


∑

g∈G2

∑

k∈Ug

mkℓ


µ(aℓ)

= −
∑

g∈G3

Tg +
∑

ℓ∈A

µ(aℓ)


1−


∑

g∈G2

∑

k∈Ug

mkℓ




 .

The estimator would be unbiased if G3 = ∅ and
∑

g∈G2

∑
k∈Ug

mkℓ = 1 for all ℓ ∈ A. Its variance

by setting mkℓ ≡ 0 for k ∈ ∪g∈G1
Ug is

F∑

f=1

∑

g∈G1∪G2

∑

g′∈G1∪G2

ψfgψfg′

∑

j∈Ug

∑

k∈U ′

g

∆
(f)
jk

dj

π
(f)
j

dk

π
(f)
k

,

where dj = yj −
∑

ℓ∈Amjℓµ(aℓ). If all π
(f)
jk > 0 in each frame, the unbiased variance estimator is

given by
F∑

f=1

∑

g∈G1∪G2

∑

g′∈G1∪G2

ψfgψfg′

∑

j∈Ug

∑

k∈U ′

g

∆
(f)
jk

dj

π
(f)
j

dk

π
(f)
k

IjIk

π
(f)
jk

. (2.11)
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2.4.2 Properties of multiplicity difference estimator under imperfect match-

ing

We describe some asymptotic properties of the multiplicity difference estimator here. The mul-

tiplicity adjusted difference estimator under imperfect matching (2.10) is asymptotically unbiased

and design mean square consistent provided there is not too much matching error or undercover-

age. To prove the results, we make the following assumptions,

(A1) As N → ∞, n(f)N−1 → π∗(f) ∈ (0, 1). For all N , minj∈U π
(f)
j ⩾ λ(f) > 0, and

lim sup
N→∞

n(f) max
j,k∈U :j ̸=k

|∆(f)
jk | <∞.

(A2) The study variable {yj}j∈U satisfy

lim sup
N→∞

N−1
∑

j∈U

y4j <∞,

and the auxiliary information {µ(aℓ)}ℓ∈A satisfy

lim sup
N→∞

N−1
∑

ℓ∈A

µ(aℓ)
4 <∞.

(A3)
∑

g∈G3
T 2
g = O(N δ) with δ < 1.

(A4)
∑

ℓ∈A

[
1−

(∑
g∈G2

∑
k∈Ug

mkℓ

)]4
= O(N δ) with δ < 1.

Remark. (A1) and (A2) are standard asymptotic assumptions in the survey literature (Breidt and

Opsomer, 2000). (A3) ensures that there is not too much undercoverage, and (A4) ensures that

there are not too much matching error.
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Theorem 1. Assume (A1)–(A4), then the multiplicity adjusted difference estimator is asymptoti-

cally design mean square consistent

E



(
T̃y,diff,mult − Ty

N

)2

→ 0 as N → ∞.

We prove the theorem by separately considering the bias and the variance in the following

lemmas.

Lemma 1. Assume (A2), (A3), and (A4), then the multiplicity adjusted difference estimator is

asymptotically design unbiased

E

[
T̃y,diff,mult − Ty

N

]
→ 0 as N → ∞.

Proof. The squared bias is

Bias

[
T̃y,diff,mult

N

]2
=


−

∑
g∈G3

Tg

N
+

∑
ℓ∈A µ(aℓ)

[
1−

(∑
g∈G2

∑
k∈Ug

mkℓ

)]

N



2

=

[−∑g∈G3
Tg

N

]2
+



∑

ℓ∈A µ(aℓ)
[
1−

(∑
g∈G2

∑
k∈Ug

mkℓ

)]

N



2

+ 2

[−∑g∈G3
Tg

N

]

∑

ℓ∈A µ(aℓ)
[
1−

(∑
g∈G2

∑
k∈Ug

mkℓ

)]

N




= b1 + b2 + b3
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By (A3), b1 =
[(

−∑g∈G3
Tg

)
/N
]2

≤ (
∑

g∈G3
T 2
g )/N , which goes to 0 as N → ∞. By the

Cauchy-Schwarz inequality and (A2), (A4),

b2 =



∑

ℓ∈A µ(aℓ)
[
1−

(∑
g∈G2

∑
k∈Ug

mkℓ

)]

N



2

≤
∑

ℓ∈A µ(aℓ)
2
[
1−

(∑
g∈G2

∑
k∈Ug

mkℓ

)]2

N

≤
{∑

ℓ∈A µ(aℓ)
4

N

}1/2





∑
ℓ∈A

[
1−

(∑
g∈G2

∑
k∈Ug

mkℓ

)]4

N





1/2

,

which goes to 0 as N → ∞. Because cross product term b3 goes to 0 by the Cauchy-Schwarz

inequality, therefore b1 + b2 + b3 goes to 0 as N → ∞.

Lemma 2. Assume (A1) and (A2), then

Var
[
N−1T̃y,diff,mult

]
≤

F∑

f=1

1

Nλ(f)

∑

g∈G1∪G2

ψfg

∑
j∈Ug

d2j

N

+
F∑

f=1

∑

g∈G1∪G2

∑

g′∈G1∪G2

ψfgψfg′

maxj,k∈Ug :j ̸=k

∣∣∣∆(f)
jk

∣∣∣
(λ(f))

2

(∑
j∈Ug

|dj|
N

)2

→ 0

as N → ∞.

Theorem 1 then follows by Lemma 1 and Lemma 2.

2.5 Simulation experiment

2.5.1 Constructing the population and database

In the US state of South Carolina, there are about 500 operators of charter boats who take

recreational angling trips with paying customers. Each boat can take multiple anglers, and over

the course of 2016 there were about 50,000 angler trips on approximately 15,000 boat trips. These

boat trips, along with the boat’s logbook data on number of anglers and number of fish of each
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species caught by those anglers, are required to be reported to the South Carolina Department of

Natural Resources, though reporting is incomplete. After removing logbook reports with missing

values, we took the remaining N = 10, 647 as the universe U of actual boat trips to be studied. We

then used a stochastic algorithm to simulate a corresponding database A of logbook records and a

set of match metrics, [mkℓ]k∈U,ℓ∈A. In keeping with the real match metrics used in South Carolina,

at most five of the {mkℓ}ℓ∈A are non-zero for a given population element k.

We simulated the database by first sorting the universe in space and time, so that nearby el-

ements in the population tend to be from the same coastal location and from nearby dates. We

then used a Markov chain to determine the true (but unobservable) matching state of the popula-

tion elements: no match, perfect match, high-quality match, or low-quality match. The transition
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probability matrix of the chain is as follows:

State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 ρ0 ρ1 ρ2 0 0 0 0 ρ3 0 0 0 0 0 0 0 0 0

1 ρ0 ρ1 ρ2 0 0 0 0 ρ3 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

6 ρ0 ρ1 ρ2 0 0 0 0 ρ3 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 ρ0 ρ1 ρ2 0 0 0 0 ρ3 0 0 0 0 0 0 0 0 0

where
∑3

i=0 ρi = 1. This chain determines that an element k has no match (state 0); or determines

that element k has a perfect match (state 1); or determines that five successive elements k, k +

1, . . . , k+4 are high-quality (HQ) matches (states 2–6); or determines that ten successive elements

k, k + 1, . . . , k + 9 are low-quality (LQ) matches (states 7–16).

In the event of no match, no database record is created, and mkℓ = 0 for all ℓ ∈ A.

In the event of a perfect match, a database record that matches element k is created, and mkℓ =

1 for k = ℓ and zero otherwise.
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In the event of five HQ matches, five database records are created: the first record matches

element k, the next record matches element k+1, and so on until the fifth record matches element

k + 4. Further, we generate five match metric values that sum to one by independently generating

Uk, Uk+1, . . . , Uk+4 as Uniform(0,1) and setting

(mk+i,k,mk+i,k+1, . . . ,mk+i,k+4) =
1∑4

i=0 Uk+i

(Uk, Uk+1, . . . , Uk+4)

and mk+i,ℓ = 0 otherwise for all five elements i = 0, 1, . . . , 4. That is, all five elements have

the same match metric values with the same five database records. If we sample one of these five

elements, we know that it (in truth) matches one of the five database records with non-zero match

metric values, but we do not know which one.

In the event of ten LQ matches, five database records are created: the first record matches

element k, the next record matches element k+1, and so on until the fifth record matches element

k+4. The remaining five elements have no matching database records. All ten population elements

share the same match metric values, constructed similarly to those for the HQ matches, but with

match metric values summing to 1/2 instead of 1: independently generate Uk, Uk+1, . . . , Uk+4 as

Uniform(0,1) and set

(mk+i,k,mk+i,k+1, . . . ,mk+i,k+4) =
1

2
∑4

i=0 Uk+i

(Uk, Uk+1, . . . , Uk+4)

and mk+i,ℓ = 0 otherwise for all ten elements i = 0, 1, . . . , 9. Thus, if we sample one of these ten

elements, we think there might be no match at all (true for half of the ten elements) or there might

be a match among the five database records (true for half of the elements), but we do not know

which one.

We consider two population/database combinations, determined by the choice of ρ0, ρ1, ρ2, ρ3.

The “Poor Match” combination results in simulated proportions of match metric values that closely

mirror those in the actual South Carolina data, while the “Better Match” combination has greatly

improved matching:
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Table 2.1: Summary for the choice of ρ0, ρ1, ρ2, ρ3 of Poor Match and Better Match.

Records ρ0 ρ1 ρ2 ρ3 No Match LQ HQ Perfect

South Carolina 11.0% 52.5% 36.5% 0.0%

Poor Match 6836 0.35 0.20 0.25 0.20 8.6% 54.4% 31.7% 5.3%

Better Match 9031 0.10 0.20 0.60 0.10 2.3% 23.3% 69.8% 4.7%

Under the Poor Match combination, there are 6, 836 logbook records, so that many of the N =

10, 647 population elements have no matching logbook records. Under the Better Match combi-

nation, there are 9, 031 logbook records. For each combination, we simulated the database once,

and each population/database combination was then fixed for the remainder of the sampling exper-

iment.

2.5.2 Estimation properties under repeated sampling for single frame

The sampling design used in our simulation study follows closely the design actually used by

the Marine Recreational Information Program (MRIP) in South Carolina. We stratified the popu-

lation into fifteen strata by crossing three regions (each consisting of contiguous South Carolina

counties) and five waves (March–April, May–June, July–August, September–October, November–

December). Similar to MRIP, our sampling design selects particular sites on particular days (“site-

days”) and intercepts all boat trips on those selected site-days. In MRIP, the site-days are selected

with probability proportional to a measure of size that is an estimate of fishing activity (“pressure”)

for the site-day. In our design, we approximate this unequal probability design by allocating an

overall sample size of n = 500 site-days to the 15 strata using a database estimate of fishing pres-

sure for the stratum. We then selected site-days via simple random sampling without replacement

within strata, and observed all boat-trips on selected site-days (there may, in fact, be no trips for a

selected site-day). We chose n = 500 so that the number of selected site-days with non-zero fishing

activity closely matches the 109 non-zero site-days for South Carolina in 2016. Site-days are thus

the primary sampling units (PSUs), selected via stratified simple random sampling, and boat-trips

are the secondary sampling units, selected with certainty within PSUs. Variance estimation needs

to account for this stratified two-stage structure.
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For each sampled boat-trip k in stratum h, the inclusion probability is πk = nh/Nh where nh

is the number of site-days allocated to stratum h and Nh is the total number of site-days in stratum

h, for h = 1, 2, . . . , 15.

For this setting, our vector aℓ of auxiliary information available for each element in the database

includes time, location, number of anglers, and catch by species for multiple species of fish. Num-

ber of anglers and catch by species are of particular interest for estimation, and are observed for

the sample of intercepted trips. The predictor µ(aℓ) for a characteristic of interest then simply

returns the logbook value of the survey response: µ(aℓ) = logbook number of anglers when yk =

intercepted number of anglers, µ(aℓ) = logbook number of black sea bass when yk = intercepted

number of black sea bass, etc.

For each population/database combination, we drew 1000 independent stratified simple ran-

dom samples from the fixed population and constructed the estimators T̂y, T̃y,diff1, and T̃y,diff2 for

several characteristics, including number of angler trips and total catch for red drum, black sea

bass, gag grouper, Atlantic croaker, toadfish, and wahoo. These species were chosen to reflect a

variety of reporting behaviors: in particular, they include species that are reported frequently in

the database and are common enough to appear frequently in the on-site interviews, and species

that are reported regularly but are rare enough to appear infrequently in the interviews. We also

computed variance estimates as in (1.3), (2.5), and (2.9), but using the standard approximation of

ignoring finite population corrections within strata. We present selected results here, noting that the

Horvitz-Thompson estimator T̂y does not use the auxiliary information and has the same behavior

under either combination.

Side-by-side boxplots for estimated total angler trips are shown in Figure 2.1, for estimated

red drum catch in Figure 2.2, for estimated black sea bass catch in Figure 2.3, and for estimated

gag grouper catch in Figure 2.4. We further summarized the results of the 1000 simulated samples

for each estimator with the percent relative bias, root mean square error (RMSE), RMSE ratio

(with Horvitz-Thompson estimator in the numerator), average estimated standard error (SE), and
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coverage of nominal 95% confidence intervals computed assuming approximate normality. Results

are presented in Table 2.2.

The Horvitz-Thompson estimator is theoretically unbiased, and both difference estimators are

also nearly unbiased under each population/database combination and for each quantity of interest.

Due to the low bias in all cases, the average estimated standard errors tend to be close to the

RMSE’s over the 1000 simulations, with the exceptions occurring for rarely-caught species like

gag grouper. The sampling distributions of T̂y and T̃y,diff2, which are nonnegative by construction

for nonnegative responses, are then highly skewed, with corresponding poor confidence interval

coverage. The sampling distribution of T̃y,diff1, which is not constrained to be nonnegative, tends

to be more symmetric and hence have better coverage with skewed distributions. This improved

coverage comes at the expense of worse RMSE.

Under each population/database combination and for each quantity of interest, both difference

estimators are better than the Horvitz-Thompson estimator, in terms of lower RMSE. The first dif-

ference estimator T̃y,diff1 is sometimes not much better than T̂y, but the second difference estimator

T̃y,diff2 is often much better than T̂y, and is always better than T̃y,diff1.

2.5.3 Estimation properties under repeated sampling for multiple frame

In the multiple frame setting, we create two incomplete frames that together cover the universe

and that partially overlap. We also consider two population/database combinations, “Poor Match”

and “Better Match.” The choices of ρ0, ρ1,ρ2, ρ3 are the same as in Table 2.1. The sampling design

used in the simulation and the total sample size are the same as in the single frame. We choose

n = 250 for each frame. We drew 1000 independent stratified samples and constructed T̂y1, T̂y2,

T̂y,mec, and T̃y,diff,mult for several characteristics, where T̂y1 is the Horvitz-Thompson estimator only

from the first frame, T̂y2 is the Horvitz-Thompson estimator only from the second frame, T̂y,mec is

the Mecatti estimator adjusting for multiple frames but not using matched auxiliary information,

and T̃y,diff,mult uses information from both frames and the matched auxiliary information. We also

compute the variance estimates as in (1.3), (1.8), and (2.11).

33



●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●●

●●

●●

●
●●

●

●
●

●
●
●●
●●

T̂y T
~

y, diff1 T
~

y, diff2 T
~

y, diff1 T
~

y, diff2

2
5
0
0
0

3
0
0
0
0

3
5
0
0
0

4
0
0
0
0

4
5
0
0
0

5
0
0
0
0

5
5
0
0
0

6
0
0
0
0

Angler Trips

Figure 2.1: Boxplots for estimated total angler trips, based on 1000 simulated stratified simple random

samples for each population/database combination. Horizontal reference line is at the true value. From

left to right: Horvitz-Thompson estimator T̂y (white boxplot) under either combination; T̃y,diff1 and T̃y,diff2

(light gray boxplots) under the Poor Match combination; T̃y,diff1 and T̃y,diff2 (dark gray boxplots) under the

Better Match combination.
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Figure 2.2: Boxplots for estimated total catch of red drum, based on 1000 simulated stratified simple

random samples for each population/database combination. Horizontal reference line is at the true value.

From left to right: Horvitz-Thompson estimator T̂y (white boxplot) under either combination; T̃y,diff1 and

T̃y,diff2 (light gray boxplots) under the Poor Match combination; T̃y,diff1 and T̃y,diff2 (dark gray boxplots)

under the Better Match combination.
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Figure 2.3: Boxplots for estimated total catch of black sea bass, based on 1000 simulated stratified simple

random samples for each population/database combination. Horizontal reference line is at the true value.

From left to right: Horvitz-Thompson estimator T̂y (white boxplot) under either combination; T̃y,diff1 and

T̃y,diff2 (light gray boxplots) under the Poor Match combination; T̃y,diff1 and T̃y,diff2 (dark gray boxplots)

under the Better Match combination.
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Figure 2.4: Boxplots for estimated total catch of gag grouper, based on 1000 simulated stratified simple

random samples for each population/database combination. Horizontal reference line is at the true value.

From left to right: Horvitz-Thompson estimator T̂y (white boxplot) under either combination; T̃y,diff1 and

T̃y,diff2 (light gray boxplots) under the Poor Match combination; T̃y,diff1 and T̃y,diff2 (dark gray boxplots)

under the Better Match combination.
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Table 2.2: Summary results for estimated angler trips, red drum catch, black sea bass catch, and gag grouper

catch, based on 1000 simulated stratified simple random samples for each population/database combination.

Relative RMSE (Root Mean Square Error) is RMSE of the estimator in the denominator and RMSE of

T̂y in the numerator. Estimated SE (standard error) is for stratified simple random sampling, but ignoring

within-stratum finite population corrections. Confidence interval coverage is for nominal 95% coverage

under normality, using (estimator)± 1.96× (estimated SE).

Poor Match Better Match

T̂y T̃y,diff1 T̃y,diff2 T̃y,diff1 T̃y,diff2
Mean 37567.7 37600.0 37424.6 37534.3 37471.0

Percent Relative Bias 0.3 0.4 -0.1 0.2 0.0

Angler Relative RMSE 1.0 2.1 2.4 3.1 3.9

Trips RMSE 4427.2 2071.0 1828.9 1443.3 1138.3

Average Estimated SE 4555.0 2155.3 1915.4 1476.5 1138.3

Coverage 95.2 94.9 94.3 94.9 92.8

Mean 37508.6 37266.3 37197.5 36887.2 37236.7

Percent Relative Bias 0.6 0.0 -0.2 -1.1 -0.1

Red Drum Relative RMSE 1.0 1.5 2.3 1.7 3.5

Catch RMSE 7417.2 4857.0 3164.3 4301.2 2086.9

Average Estimated SE 7270.7 4693.0 3042.5 4235.8 1960.8

Coverage 93.1 92.6 90.5 92.8 87.6

Mean 63094.5 63915.1 62853.5 63509.8 62806.4

Percent Relative Bias -0.5 0.8 -0.9 0.2 -0.9

Black Sea Bass Relative RMSE 1.0 1.3 2.2 1.4 3.0

Catch RMSE 23526.6 18008.0 10533.4 16287.8 7793.4

Average Estimated SE 22725.9 17063.2 9653.7 15397.5 6473.7

Coverage 87.5 91.2 83.1 92.4 76.9

Mean 256.0 260.9 272.1 263.7 258.5

Percent Relative Bias -3.4 -1.5 2.7 -0.5 -2.5

Gag Grouper Relative RMSE 1.0 1.1 2.0 1.1 3.8

Catch RMSE 209.2 196.2 105.0 188.8 54.4

Average Estimated SE 170.7 170.5 75.5 163.3 29.2

Coverage 72.4 79.9 62.2 86.0 45.5
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Figure 2.5 to Figure 2.8 are side-by-side boxplots for estimated angler trips, estimated red drum

catch, estimated black sea bass catch, and estimated gag grouper catch. Table 2.3 summarizes the

results for the Mecatti estimator and the multiplicity-adjusted difference estimator with the percent

relative bias, RMSE, RMSE ratio (with Mecatti estimator in the numerator) average estimated

standard error (SE), and coverage of nominal 95% confidence interval.

The figures show that each Horvitz-Thompson estimator is biased for the total because of the

incomplete frames. The Mecatti estimator is unbiased, and the multiplicity-adjusted difference es-

timator is nearly unbiased. The multiplicity-adjusted difference estimator gains some information

by using the auxiliary information and has lower RMSE than the Mecatti estimator. The Better

Match difference estimator is better than the Poor Match difference estimator in terms of lower

RMSE as can be seen from Table 2.3. The variance estimate is nearly unbiased and the confidence

interval coverage is close to nominal 95%.

2.6 Discussion

The difference estimators described here are feasible in practice, given an auxiliary database

and a suitable matching algorithm. The methodology offers substantial efficiency gains in a sim-

ulation study motivated by a real application in fisheries management. The simulation described

here does not reflect any differential reporting, allowing probabilities of the match states to de-

pend on the population characteristics. For example, boat captains catching only Atlantic croaker

might be less likely to file a report than captains catching other species. The simulation also does

not reflect differential measurement errors between the survey interviews and the logbook reports.

In current practice, the boat captain is not required to file a logbook report immediately, and the

catch recalled by the captain at the time of reporting may differ from the catch observed by an

interviewer at a dockside intercept. These are directions for further study, both analytically and via

simulation.

In results not reported here, we have also considered multiplicative adjustments of the Horvitz-

Thompson estimator, as opposed to the additive adjustments of the difference-type estimators.
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Figure 2.5: Boxplots for estimated total angler trips, based on 1000 simulated stratified simple random

samples. Horizontal reference line is at the true value. From left to right: Horvitz-Thompson estimator T̂y1

and T̂y2 (green boxplots) under either combination; Mecatti estimator T̂y,mec, (blue boxplot) under either

combination; T̃y,diff,mult (pink boxplot) under the Poor Match combination; T̃y,diff,mult (purple boxplot)

under the Better Match combination.
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Figure 2.6: Boxplots for estimated total catch of red drum, based on 1000 simulated stratified simple

random samples . Horizontal reference line is at the true value. From left to right: Horvitz-Thompson

estimator T̂y1 and T̂y2 (green boxplots) under either combination; Mecatti estimator T̂y,mec, (blue boxplot)

under either combination; T̃y,diff,mult (pink boxplot) under the Poor Match combination; T̃y,diff,mult (purple

boxplot) under the Better Match combination.

41



●
●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●●
●

●

●
●

●

●

●

T̂y1 T̂y2 T̂y, mec T
~

y, diff, mult, pT
~

y, diff, mult, b

0
5

0
0

0
0

1
0

0
0

0
0

1
5

0
0

0
0

Black Sea Bass Catch

Figure 2.7: Boxplots for estimated total catch of black sea bass, based on 1000 simulated stratified simple

random samples. Horizontal reference line is at the true value. From left to right: Horvitz-Thompson

estimator T̂y1 and T̂y2 (green boxplots) under either combination; Mecatti estimator T̂y,mec, (blue boxplot)

under either combination; T̃y,diff,mult (pink boxplot) under the Poor Match combination; T̃y,diff,mult (purple

boxplot) under the Better Match combination.

42



●

●

●●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●
●
●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

T̂y1 T̂y2 T̂y, mec T
~

y, diff, mult, pT
~

y, diff, mult, b

−
5

0
0

0
5

0
0

1
0

0
0

1
5

0
0

Gag Grouper Catch

Figure 2.8: Boxplots for estimated total catch of gag grouper, based on 1000 simulated stratified simple

random samples. Horizontal reference line is at the true value. From left to right: Horvitz-Thompson

estimator T̂y1 and T̂y2 (green boxplots) under either combination; Mecatti estimator T̂y,mec, (blue boxplot)

under either combination; T̃y,diff,mult (pink boxplot) under the Poor Match combination; T̃y,diff,mult (purple

boxplot) under the Better Match combination.
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Table 2.3: Summary results for estimated angler trips, red drum catch, black sea bass catch, and gag grouper

catch, based on 1000 simulated stratified simple random samples for each population/database combination.

Relative RMSE (Root Mean Square Error) is RMSE of the estimator in the denominator and RMSE of

T̂y,mec in the numerator. Estimated SE (standard error) is for stratified simple random sampling, but ignoring

within-stratum finite population corrections. Confidence interval coverage is for nominal 95% coverage

under normality, using (estimator)± 1.96× (estimated SE).

Poor Match Better Match

T̂y,meca T̃y,diff,mult T̃y,diff,mult

Mean 37656.4 37537.3 37423.7

Percent Relative Bias 0.5 0.2 -0.1

Angler Relative RMSE 1.0 2.1 3.3

Trips RMSE 4987.5 2360.1 1514.5

Average Estimated SE 4963.5 2298.4 1536.0

Coverage 94.4 93.7 94.6

Mean 37329.6 36871.0 37388.6

Percent Relative Bias 0.1 -1.2 0.2

Red Drum Relative RMSE 1.0 1.5 1.8

Catch RMSE 8232.1 5432.3 4621.4

Average Estimated SE 7863.8 5117.4 4430.1

Coverage 90.7 90.4 94.7

Mean 63528.5 63551.4 61628.1

Percent Relative Bias 0.2 0.2 -2.8

Black Sea Bass Relative RMSE 1.0 1.4 1.5

Catch RMSE 2600.9 18532.1 16618.3

Average Estimated SE 24485.7 17661.6 16169.2

Coverage 86.5 91.5 92.8

Mean 265.8 273.8 270.6

Percent Relative Bias 0.3 3.3 2.1

Gag Grouper Relative RMSE 1.0 1.1 1.1

Catch RMSE 229.1 207 216.4

Average Estimated SE 183.8 173.4 188.6

Coverage 72.4 84.5 91.4
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These multiplicative adjustments lead to ratio-type estimators that can be considered generaliza-

tions of capture-recapture sampling, extending the work of Liu et al. (2017). These multiplicative

adjustments, however, seem particularly sensitive to poor matching and can have large biases and

variances. Further study on such estimators is necessary.

We also proposed the difference estimator that allows for elements sampled from multiple

frames with matching errors to the auxiliary database. Auxiliary information is still useful with

multiple frames under imperfect matching. The variance estimator and confidence interval cover-

age work well in the multiple frame setting. A possible extension would be to include multiple

auxiliary databases, and this will be more challenging if we consider the matching across multiple

frames and matching across multiple auxiliary databases.
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Chapter 3

Inference for complex surveys incorporating expert

judgment at the screening stage

3.1 Introduction

Many complex surveys start with a “screener” stage: a probability sample of primary sampling

units (PSUs) is drawn and the selected PSUs are examined to determine if they contain elements of

interest. Any elements of interest are then either measured directly or subsampled further, depend-

ing on the context. Examples include household surveys looking for people in certain demographic

groups (e.g., age-eligible children for an immunization survey), establishment surveys looking for

certain specializations (e.g., hospitals with radiation oncologists), and area surveys looking for

certain landscape characteristics (e.g., farms served by well water).

Our motivating example is a pilot study for the redesign of a recreational fisheries survey, the

Large Pelagics Intercept Survey (LPIS), conducted by the US National Marine Fisheries Service

(National Marine Fisheries Service, 2015). In this study, the PSUs are “site-days”: saltwater fishing

access sites (docks or marinas) on days of the year during the fishing season. A probability sample

of site-days is selected via a stratified unequal-probability sampling design, and field crews visit

the site-days to try to intercept boats returning from fishing trips that targeted pelagic species

like tunas, billfishes, swordfish and sharks. LPIS data are used to estimate catch rate: average

recreational catch per large pelagic boat trip, by species. Site-days with no large pelagic trips

contribute nothing to estimation of catch rate. It is of interest to draw a site-day sample with high

“yield,” meaning as many trips as possible, so site-days are selected with probability proportional

to their fishing pressure (an index of expected fishing activity).

Let U = {1, 2, . . . , N} denote the indices of the PSUs in the finite population of interest, let

{zk}k∈U denote the nonnegative integer-valued counts of the element of interest for each PSU,
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and let {yk}k∈U denote the PSU total of some characteristic for each PSU. In the above examples,

k would index households, hospitals, land segments, or site-days; zk would denote numbers of

age-eligible children, radiation oncologists, farms with well water, or large pelagics trips; and yk

might denote numbers of immunized children, radiation oncology patients, wells with pesticide

contamination, or catch of a given species. In each case, if zk = 0 then yk = 0. Our primary

inferential target is the finite population rate ϕN =
∑

k∈U yk/
∑

k∈U zk = Ty/Tz.

Let s ⊂ U denote a sample of PSUs, selected via a sampling design p(s) that assigns proba-

bility to all 2N possible subsets of U , and assume (zk, yk) are observed without error for k ∈ s;

we ignore subsampling within selected PSUs for simplicity of presentation. Define the sample

membership indicators by Ik = 1 if k ∈ s and Ik = 0 if k /∈ s. Denote the first-order inclusion

probabilities πk = P(k ∈ s) = Ep[Ik], where the probability is with respect to p(·). Provided

πk > 0 for all k ∈ U , the design is a probability sampling design, and the well-known HT estima-

tors (Horvitz and Thompson, 1952) T̂z =
∑

k∈U zkIkπ
−1
k and T̂y =

∑
k∈U ykIkπ

−1
k are unbiased

for the corresponding finite population totals Tz and Ty. The plug-in estimator ϕ̂ = T̂y/T̂z is

asymptotically unbiased and consistent for ϕN under mild conditions.

Intuitively, sampled elements with zk = yk = 0 contribute no information for estimation of

the rate, ϕN . To see this more formally, consider a model ξ under which the yk are uncorrelated,

nonnegative random variables with means Eξ[yk | zk] = ϕzk and variances Varξ(yk | zk) = σ2z2δk

for some ϕ, δ, σ > 0. Under this model, the plug-in estimator is unbiased for the finite population

target: Eξ[ϕ̂ − ϕN ] = 0. Further suppose that zk > 0 for k ∈ U+ and zk = 0 for k ∈ U \ U+ (so

yk ≡ 0 for k ∈ U \ U+). Draw a sample s = {k ∈ U : Ik = 1} ⊂ U via a probability sampling

design on U , so that πk = Ep[Ik] > 0 for all k ∈ U . Under this design, the expected sample size is
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n =
∑

k∈U πk and the plug-in estimator has anticipated variance (Isaki and Fuller, 1982)

Ep

[
Eξ

[
(ϕ̂− ϕN)

2
]]

= Ep

[
1

T̂ 2
z T

2
z

Varξ

(
T̂yTz − TyT̂z

)]

= Ep

[
1

T̂ 2
z T

2
z

∑

k∈U

σ2z2δk

(
T 2
z Ik
π2
k

− 2TzT̂zIk
πk

+ T̂ 2
z

)]

≃ σ2

T 2
z

∑

k∈U+

z2δk
1− πk
πk

,

where the approximation arises by replacing unbiased estimators by their expectations in nonlinear

functions.

Now suppose that a sample s+ = {k ∈ U+ : I+k = 1} could be allocated without error to

U+ only, with the probabilities increased to π+
k = Ep[I

+
k ] = nπk

(∑
k∈U+ πk

)−1
> πk for all

k ∈ U+ (assuming for simplicity that these do not exceed 1, and rescaling otherwise). By the same

argument above, the anticipated variance of the plug-in estimator is approximately

σ2

T 2
z

∑

k∈U+

z2δk
1− π+

k

π+
k

<
σ2

T 2
z

∑

k∈U+

z2δk
1− πk
πk

,

so that the design avoiding elements with zero responses is more efficient.

Perfect allocation to the nonzero part of the population is unlikely in practice. But in some sur-

veys with a screener step, a sampler might be able to use expert judgment to improve the chances of

finding PSUs that contain elements of interest. In our setting, local expertise might allow the field

crew to improve chances of finding site-days with large pelagics trips. In other contexts, judgment

might allow samplers to find more households with eligible children, or more establishments of the

desired type. If samplers are allowed to use their judgment to find the samples, these samples are

no longer probability samples, and making inference to the population of interest becomes more

challenging.

We consider surveys in which the screener stage includes both a strict probability sample,

selected with fixed and known inclusion probabilities, and an additional expert judgment sample
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that we treat as a nonprobability sample. The presence of the probability sample makes it possible

to estimate inclusion probabilities for the nonprobability sample and conduct valid inference to the

finite population.

A growing literature discusses statistical inference for nonprobability samples. Ganesh et al.

(2017) combine information from probability and nonprobability samples via small area estima-

tion techniques, including bivariate Fay-Herriot models. Such approaches are not viable in our

context due to the need to build separate models for each different characteristic. Sample match-

ing approaches (Chen et al., 2020; Rivers, 2007; Yang et al., 2018) assign sampling weights from

the probability sample to the nonprobability sample by comparing covariates available in both

samples, and using the weight of the nearest probability sample element for each nonprobability

sample element. These approaches could be implemented in our context but need to be modified

since we have response variables observed in both the probability and nonprobability samples. The

mass imputation approach (Chen et al., 2020; Kim et al., 2021) is a method that fits a model by

regressing response variables on covariates in the nonprobability sample, then predicts (“imputes”)

the missing response variable using the observed covariates for every element in the probability

sample. The estimator for the population is the weighted sum of the predicted values from the

probability sample. The approach is also viable in our context but needs to be modified since we

already have response variables in the probability sample. The approach of this paper follows the

inverse weighting or quasi-randomization approach (e.g., Elliott and Valliant (2017), Chen et al.

(2020), Kim and Wang (2019), and Valliant (2020)), in which the propensities for the nonproba-

bility elements are estimated by combining the probability and nonprobability samples. In many

of these papers, the response of interest is available only on the nonprobability sample, unlike our

context. Doubly-robust estimation combines an estimated propensity and a regression model for

response on covariates, so that inference is approximately unbiased if either model is correctly

specified (Chen et al., 2020; Kim and Wang, 2019; Valliant, 2020). In our specific application,

the weighted estimators for rates are doubly-robust under the model ξ above, and other covariates

available for prediction of the responses are relatively weak, so that the doubly-robust estimators
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were dominated by simpler inverse weighting estimators in our limited simulations. We restrict

our discussion to inverse weighting estimators in the remainder of this chapter.

In section 3.2, we introduce notation and estimation of the inclusion probabilities for the non-

probability sample. Estimation for totals and rates is described in section 3.3, including “separate”

and “combined” approaches to point estimation, both motivated by comparable estimators in dual-

frame surveys. Variances of the estimators and variance estimators are derived. In section 3.4,

we present some asymptotic properties of the combined estimator, assuming that the judgment

selection follows Poisson sampling. In section 3.5, we describe simulation experiments using an

artificial population constructed to mimic the LPIS motivating example. Across a range of con-

ditions, the proposed combined strategy that allows for some judgment dominates the separate

strategy and the classic strategy of pure probability sampling with known design weights. A brief

discussion follows in section 3.6.

3.2 Sampling mechanisms and probability estimation

3.2.1 Probability and nonprobability sampling

Let s0 denote a probability sample from U with known inclusion probabilities. A probability

sample sA ⊂ s0 is selected with known inclusion probabilities and observations are obtained for

k ∈ sA. The elements so \ sA can either be left alone or moved via expert judgment to any other

elements in U \ sA. Whether moved or not, these selected elements constitute the nonprobability

sample, sB ⊂ U \ sA, and sA ∩ sB = ∅. The sample size of sA is nA, and the expected sample size

of sB is nB, n = nA + nB. The probability sample indicators are IAk if k ∈ sA, IAk = 0 otherwise;

similarly, the nonprobability sample indicators are IBk if k ∈ sB, IBk = 0 otherwise. The first-order

inclusion probability for sA is πA
k = E

[
IAk
]
= Pr

[
IAk = 1

]
satisfying πA

k > 0 for all k ∈ U and

known for all k ∈ sA. The first-order inclusion probability for the nonprobability sample is

πB
k = Pr [k ∈ sB | k ∈ sA] Pr [k ∈ sA] + Pr [k ∈ sB | k /∈ sA] Pr [k /∈ sA]

= 0 + ρk(1− πA
k ). (3.1)
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Because of the judgment selection, the ρk and πB
k are unknown and not necessarily positive for all

k ∈ U .

3.2.2 Estimation of the inclusion probability for nonprobability samples

Estimation of the probabilities for the nonprobability sample requires modeling assumptions.

We use an approach similar to Chen et al. (2020). For the kth element, we define xk to be the vector

of variables in the propensity model, possibly including yk or zk. We specify a parametric model,

f(xk,θ), for ρk in (3.1), where θ are the true unknown parameters. We estimate the parameters via

a likelihood-based method. We assume Poisson sampling for sB, under which the log-likelihood

function is

lnL(θ) =
∑

k∈U\sA

IBk ln

(
ρk

1− ρk

)
+
∑

k∈U\sA

ln(1− ρk).

However, the second term of the log-likelihood involves data not in sA or sB. We thus replace the

second term by the unbiased HT estimator (from the sA sample) of its expectation, and compute

the estimate θ̂ by maximizing the pseudo log-likelihood

∑

k∈U\sA

IBk ln

(
ρk

1− ρk

)
+
∑

k∈U

ln(1− ρk)(1− πA
k )
IAk
πA
k

.

We further assume a logistic model for ρk, logit (ρk) = x⊤
k θ, for which the pseudo log-likelihood

is

ℓ(θ) =
∑

k∈U\sA

IBk x
⊤
k θ −

∑

k∈U

ln
{
1 + exp

(
x⊤
k θ
)}

(1− πA
k )
IAk
πA
k

,

and the score function is

∂

∂θ
ℓ(θ) =

∑

k∈U\sA

IBk xk −
∑

k∈U

exp
(
x⊤
k θ
)

1 + exp
(
x⊤
k θ
)xk

(
1− πA

k

) IAk
πA
k

,

which has expected value equal to zero. The pseudo log-likelihood can be maximized by Newton-

Raphson iteration or other numerical optimization. We plug in the estimated parameters θ̂ to obtain

initial estimates, ρ̃k. A possible calibration approach would be to set the sample size equal to the
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estimated expected sample size,

nB =
∑

k∈U

ρ̃k(1− πA
k ), (3.2)

but enforcing this calibration constraint is not feasible because the estimated ρ̃k cannot be com-

puted unless xk are observed. Instead, we estimate the right-hand side of (3.2) from the probability

sample by
∑

k∈sA

ρ̃k(1− πA
k )

πA
k

,

then ratio-adjust the initial estimates by finding the constant α such that

∣∣∣∣∣nB −
∑

k∈sA

αρ̃k(1− πA
k )

πA
k

∣∣∣∣∣

is minimized, subject to the constraint that αρ̃k ≤ 1. The initial ρ̃k are then replaced by the

ratio-adjusted values

ρ̂k = αρ̃k.

We have also considered with-replacement sampling as an alternative model for the non-

probability sampling design. The pseudo log-likelihood and the score function under the with-

replacement assumption are discussed in Appendix A.1. Simulation results reported below are

similar under either the Poisson or with-replacement sampling model.

3.3 Estimation

The estimated inclusion probabilities for the nonprobability sample can be used to construct

inverse probability weighting estimators, analogous to HT estimation. As in dual-frame estimation

(see, for example, Singh and Mecatti (2011)), we could construct the estimator by keeping the

probability sample and nonprobability sample separate or by combining them. We discuss both

types of estimator and some properties, assuming known ρk, in the following subsections.
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3.3.1 Separate estimator of the total

The separate estimator is a convex combination of the HT estimator from the probability sample

sA and the approximate HT estimator from the nonprobability sample sB,

T̂y,sep = ψ
∑

k∈sA

yk
πA
k

+ (1− ψ)
∑

k∈sB

yk
(1− πA

k ) ρ̂k
,

where ψ is between 0 and 1. The drawback of the separate estimator is that it might have large

weights in the second term due to small estimated inclusion probabilities for the nonprobability

sample.

Let T̃y,sep denote the separate estimator with ρk replacing the estimates ρ̂k. Then T̃y,sep is

exactly unbiased for Ty, and its design variance under Poisson sampling of sB is

Var
(
T̃y,sep

)
=
∑∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) y∗∗k
πA
k

y∗∗ℓ
πA
ℓ

+ (1− ψ)2
∑

k∈U

(1− ρk)

(1− πA
k )ρk

y2k,

where y∗∗k = yk
{
ψ − (1− ψ)πA

k (1− πA
k )

−1
}

.

3.3.2 Combined estimator of the total

Denote the combined sample by s = sA ∪ sB and let Ik = 1 if k ∈ s and Ik = 0 if k /∈ s,

and note that Ik = IAk + (1 − IAk )I
B
k . Then the combined (unconditional) first-order inclusion

probability is

πk = Pr [k ∈ s] = E [Ik] = πA
k + (1− πA

k )ρk.

By plugging in ρ̂k to estimate these unknown πk, we obtain the combined estimator as the approx-

imate HT estimator for the combined sample,

T̂y,com =
∑

k∈s

yk
πA
k + (1− πA

k )ρ̂k
.

Unlike the separate estimator, the combined estimator has stable weights by construction, since

πA
k +(1−πA

k )ρ̂k ≥ πA
k > 0 and extremely small estimated inclusion probabilities are not possible.
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Let T̃y,com denote the combined estimator with ρk replacing the estimates ρ̂k. Then T̃y,com is

exactly unbiased for Ty, and its design variance is

Var
[
T̃y,com

]
=
∑∑

k,ℓ∈U

Cov [Ik, Iℓ]
yk
πk

yℓ
πℓ

=
∑∑

k,ℓ∈U

(πkℓ − πkπℓ)
yk
πk

yℓ
πℓ
,

where the second-order inclusion probability under Poisson sampling for sB is

πkℓ = E [IkIℓ] = E
[(
IAk + (1− IAk )I

B
k

) (
IAℓ + (1− IAℓ )I

B
ℓ

)]

= πA
kℓ (1− ρk) (1− ρℓ) + πA

k ρℓ (1− ρk) + πA
ℓ ρk (1− ρℓ) + ρkρℓ.

If sA is selected via a measurable sampling design (πA
kℓ > 0 for all k, ℓ ∈ U ), then the combined

design is also measurable under Poisson sampling for sB (πkℓ > 0 for all k, ℓ ∈ U and any choice

of {ρk}), so that an exactly unbiased variance estimator is

V̂0 (y) =
∑∑

k,ℓ∈U

(πkℓ − πkπℓ)
yk
πk

yℓ
πℓ

IkIℓ
πkℓ

.

The standard approximate variance estimator, available in most statistical software, replaces the

unbiased variance estimator V̂0 by assuming a design with the same inverse-probability weights

but with-replacement sampling,

V̂1 (y) =
1

n (n− 1)

∑

k∈s

(
yk
πk/n

−
∑

k∈s

yk
πA
k + (1− πA

k )ρ̂k

)2

. (3.3)
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The variance of the combined estimator can also be derived from the iterated variance formula

by conditioning on the sA sample. Assuming Poisson sampling for sB, the variance is

Var
[
T̃y,com

]
= Var

[
E
[
T̃y,com

∣∣∣ sA
]]

+ E
[
Var
[
T̃y,com

∣∣∣ sA
]]

=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) y∗k
πA
k

y∗ℓ
πA
ℓ

+ E

[
Var

[
∑

k∈U

(1− IAk )I
B
k

πA
k + (1− πA

k )ρk
yk

∣∣∣∣∣ sA

]]
(3.4)

=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) y∗k
πA
k

y∗ℓ
πA
ℓ

+ E

[
∑

k∈U

(1− IAk )ρk(1− ρk)

(πA
k + (1− πA

k )ρk)
2y

2
k

]

=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) y∗k
πA
k

y∗ℓ
πA
ℓ

+
∑

k∈U

(1− πA
k )ρk(1− ρk)

(πA
k + (1− πA

k )ρk)
2y

2
k, (3.5)

where y∗k = (1− ρk)π
A
k yk

(
πA
k + (1− πA

k )ρk
)−1

. This alternative expression for the variance sug-

gests three additional approaches for variance estimation. The first approach, denoted as V̂2 (y),

estimates the first component of (3.5) from the probability sample sA using the with-replacement

sampling approximation, and estimates the expectation of conditional variance (the second com-

ponent of (3.5)) with an unbiased estimator using the probability sample sA only:

V̂2 (y) =
1

nA (nA − 1)

∑

k∈sA

(
ŷ∗k

πA
k /nA

−
∑

k∈sA

yk(1− ρ̂k)

πA
k + (1− πA

k )ρ̂k

)2

+
∑

k∈U

(1− πA
k )ρ̂k(1− ρ̂k)

(πA
k + (1− πA

k )ρ̂k)
2
y2k
IAk
πA
k

, (3.6)

where ŷ∗k = (1 − ρ̂k)π
A
k yk

(
πA
k + (1− πA

k )ρ̂k
)−1

. The second approach, denoted as V̂3 (y), es-

timates the first component of (3.4) from the probability sample sA using the with-replacement

sampling approximation, and estimates inside the expectation of (3.4), the conditional variance

Var
(
T̃y,com

∣∣∣ sA
)

with the unbiased estimator using sA and sB, which is unbiased for the outer
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expectation:

V̂3 (y) =
1

nA (nA − 1)

∑

k∈sA

(
ŷ∗k

πA
k /nA

−
∑

k∈sA

yk(1− ρ̂k)

πA
k + (1− πA

k )ρ̂k

)2

+
∑

k∈U

(1− IAk )I
B
k (1− ρ̂k)

(πA
k + (1− πA

k )ρ̂k)
2y

2
k. (3.7)

The third approach, denoted as V̂4 (y) estimates the first component of (3.4) from the probability

sample sA using with-replacement sampling approximation, and replaces the unbiased estimator

of the second component used in V̂3 (y) with its with-replacement approximation:

V̂4 (y) =
1

nA (nA − 1)

∑

k∈sA

(
ŷ∗k

πA
k /nA

−
∑

k∈sA

yk(1− ρ̂k)

πA
k + (1− πA

k )ρ̂k

)2

+
1

nB (nB − 1)

∑

k∈sB

(
(1− IAk )ρ̂knByk
πA
k + (1− πA

k )ρ̂k
−
∑

k∈sB

yk(1− IAk )

πA
k + (1− πA

k )ρ̂k

)2

. (3.8)

3.3.3 Estimation of rates

Since our primary target is the rate, we construct separate and combined versions of the plug-in

rate estimator:

R̂sep =
T̂y,sep

T̂z,sep
=
ψ
∑

k∈sA
yk/π

A
k + (1− ψ)

∑
k∈sB

yk/
(
1− πA

k

)
ρ̂k

ψ
∑

k∈sA
zk/πA

k + (1− ψ)
∑

k∈sB
zk/ (1− πA

k ) ρ̂k
,

and

R̂com =
T̂y,com

T̂z,com
=

∑
k∈s yk/

(
πA
k + (1− πA

k )ρ̂k
)

∑
k∈s zk/ (π

A
k + (1− πA

k )ρ̂k)
.

In simulation experiments described below, the combined estimator dominates the separate

estimator across a range of conditions. Hence, we only discuss variance and variance estimation

for the combined estimator of the ratio. Let R̃com denote the rate estimator with ρk replacing the

estimates ρ̂k. The design variance of the ratio estimator can be approximated by Taylor expansion,

56



and the Taylor expansion of R̃com is

∑
k∈U yk∑
k∈U zk

+
∑

k∈s

1

(πA
k + (1− πA

k )ρk)
vk,

where

vk =

{
1∑

k∈U zk

(
yk −

∑
k∈U yk∑
k∈U zk

zk

)}
.

Then the design variance and the variance estimator of the ratio are

Var
[
R̃com

]
=
∑∑

k,ℓ∈U

(πkℓ − πkπℓ)
vk
πk

vℓ
πℓ
; V̂

[
R̃com

]
=
∑∑

k,ℓ∈U

(πkℓ − πkπℓ)
v̂k
πk

v̂ℓ
πℓ

IkIℓ
πkℓ

,

where

v̂k =

{
1∑

k∈sA
zk/πA

k

(
yk −

∑
k∈sA

yk/π
A
k∑

k∈sA
zk/πA

k

zk

)}
.

We refer to this approximate variance estimator as V̂0, and this variance estimate is often computed

in standard software as a variance estimate of the ratio. Similarly, we could obtain V̂1 by replacing

yk with v̂k in equation (3.3); V̂2 by replacing yk with v̂k in equation (3.6); V̂3 by replacing yk with

v̂k in equation (3.7), and V̂4 by replacing yk with v̂k in equation (3.8) to get the variance estimator

for the rate. These variance estimates of the rate are explored in the simulation study.

3.4 Asymptotic properties of the combined estimator

In this section, we provide some theoretical support for the combined estimator with Poisson

sampling of sB and known probabilities ρk, using an asymptotic framework in which there is

a sequence of finite populations UN of size N , with N → ∞. Let FN be the N th realized finite

population. Assume a sequence of probability samples sA,N ⊂ UN of size nA,N and nonprobability

samples sB,N ⊂ UN of size nB,N drawn according to designs pA,N(·) and pB,N(·), respectively.

The subscript N will be suppressed in much of the notation that follows.

We assume the following regularity conditions.
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(B1) For the sA sample, as N → ∞, nAN
−1 → π∗ ∈ (0, 1). For all N , mink∈U π

A
k ⩾ λ > 0,

mink,ℓ π
A
kℓ ⩾ λ∗ > 0 and

lim sup
N→∞

nA max
k,ℓ∈U :k ̸=ℓ

∣∣πA
kℓ − πA

k π
A
ℓ

∣∣ <∞.

(B2) The study variables {yk}k∈U satisfy

lim sup
N→∞

N−1
∑

k∈U

y4k <∞.

(B3) For the sA sample,

lim
N→∞

n2
A max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk1 − πA

k1

) (
IAk2 − πA

k2

) (
IAk3 − πA

k3

) (
IAk4 − πA

k4

)]∣∣ <∞

and

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk3I

A
k4
− πA

k3k4

)]∣∣ = 0,

where Dt,N denotes the set of all distinct t-tuples (k1, k2, . . . , kt) from UN .

(B4)

n−1
A nB → c,

where c is a positive constant.

Lemma 3. Assume (B1), (B2), (B4), and sB follows Poisson sampling with 0 ⩽ ρk ⩽ 1. Then

mink∈U πk ⩾ λ > 0, mink,ℓ∈U πkℓ ⩾ λ∗ > 0, and

lim sup
N→∞

n max
k,ℓ∈U :k ̸=ℓ

|πkℓ − πkπℓ| <∞.
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Lemma 4. Assume (B1), (B2), (B3), (B4), and sB follows Poisson sampling with 0 ⩽ ρk ⩽ 1.

Then

lim
N→∞

n2 max
(k1,k2,k3,k4∈D4,N)

|E [(Ik1 − πk1) (Ik2 − πk2) (Ik3 − πk3) (Ik4 − πk4)]| <∞

and

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

|E [(Ik1Ik2 − πk1k2) (Ik3Ik4 − πk3k4)]| = 0.

The proofs of the two lemmas above are provided in the Appendix A.2.

Result 1. Assume (B1), (B2), (B4), and sB follows Poisson sampling with 0 ⩽ ρk ⩽ 1. Then

Var
[
N−1T̂y,com

]
≤ 1

Nλ

∑

k∈U

y2k
N

+
maxk,ℓ∈U :k ̸=ℓ |πkℓ − πkπℓ|

λ2

(
∑

k∈U

|yk|
N

)2

→ 0

as N → ∞, hence the combined estimator is design mean square consistent.

Proof. The result follows from Lemma 3 and standard bounding arguments.

Result 2. Assume (B1), (B2), (B3), (B4), and sB follows Poisson sampling with 0 ⩽ ρk ⩽ 1. Then

nE
[∣∣∣V̂

[
N−1T̂y,com

]
− Var

[
N−1T̂y,com

]∣∣∣
]
→ 0

as N → ∞, so that V̂
[
N−1T̂y,com

]
is design consistent for Var

[
N−1T̂y,com

]
.

Proof. The result follows from Lemma 3, Lemma 4, and Theorem 3 of Breidt and Opsomer (2000).

We next show that the combined estimator with known ρk is asymptotically normal, by adapting

the argument of Theorem 1.3.6 in Fuller (2009). We assume a conventional finite population central

limit theorem holds for sA,N to the finite population FN , and assume nonprobability sample sB,N

follows Poisson sampling, then the sequence of the combined estimator is asymptotically normal

almost surely (a.s.).
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Result 3. Assume conditions (D1), (D2), (D3) of Appendix A.3, and sB follows Poisson sampling

with 0 ⩽ ρk ⩽ 1. Then

T̂y,com − Ty,N√
VA + VB

∣∣∣∣∣FN
L→ N(0, 1) a.s.,

where Ty,N =
∑

k∈U yk, VA = Var
[

E
[
T̂y,com

∣∣∣ sA, FN

]∣∣∣FN

]
,

and VB = E
[

Var
[
T̂y,com

∣∣∣ sA, FN

]∣∣∣FN

]
. Further,

T̂y,com − θN√
ν0,N + VA + VB

L→ N(0, 1),

where θN , ν0,N is a sequence of constants not depending on FN .

Proof. The proof is given in Appendix A.3.

3.5 Simulation experiment

3.5.1 Constructing an artificial population

In the Large Pelagics Intercept Survey (LPIS), there are 57,388 site-days in the frame, com-

prising five months (June to October) and three states (Delaware, Massachusetts, Maryland). Each

site-day has a value of “pressure” or expected fishing activity. We simulated the number of boat

trips for each site-day as independent zero-inflated Poisson random variables, with parameters es-

timated from past LPIS data, and with values truncated at the maximum observed number of trips:

Zk ∼





0 with probability pk

Poisson(λk) with probability 1− pk, truncated at η,

(3.9)

with logit(pk) = β0 + β1 × pressurek, λk = α× pressurek. Parameter values vary from stratum to

stratum; see the Appendix A.4 Table A.1 for details.
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For each simulated trip, we then simulated the number of fish caught using eleven different

parameterizations of the following model for catch, given trips:

Yk | Zk ∼





0 Zk = 0,

Binomial(Zk, θ) Zk > 0, (binary)

(1− q)× 0 + qPoisson(θZa
k ) Zk > 0, truncated at Zkγ, (other catch).

(3.10)

Catch is simulated independently across site-days. The parameter choices summarized in Table A.2

of Appendix A.4 reflect a variety of fishing behaviors and relationships between catch and trips: (1)

no relation between catch and trips (a = 0); (2) binary with at most one fish caught per trip; (3,4,5)

retention corresponding to a limit (γ = 4) on the number of fish, and expected catch proportional

to square root of trips (a = 0.5), linear function of trips (a = 1), or quadratic function of trips

(a = 2); (6,7,8) moderate catch (θ = 4) with no limit (γ = ∞) and square root, linear or quadratic

relation with trips; and (9,10,11) high catch (θ = 8) with no limit (γ = ∞) and square root, linear

or quadratic relation with trips. For the high catch scenarios, the species is not caught frequently

(zero inflation with probability 1− q = 0.6), but is caught in high numbers when it is caught.

Trips and catch per trip are simulated once, then this fixed finite population is used in all

subsequent sampling experiments.

3.5.2 Simulated samples

The sampling design used in the simulation follows the LPIS pilot study. We stratified the pop-

ulation into thirty strata by five months (June to October), three states (Delaware, Massachusetts,

Maryland), and two kinds of boat mode (charter, private). The stratified sampling design selects

particular site-days with probability proportional to fishing pressure. We allocate the overall sam-

ple size of 865 as in the actual pilot survey, then use the traditional LPIS sampling design to select

a stratified unequal-probability sample, so = ∪H
h=1soh, with probabilities proportional to fishing

pressure.
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Within each stratum h, we then divide soh at random, with 75% selected as sAh, a strict and

unmovable probability sample, and the remaining 25% as the movable sample. We have two

different methods for moving the movable sample. The first method, called the stratum method,

requires that moves remain strictly within the stratum. The second method, called the bucket

method, allows moves within a “bucket” consisting of two strata, corresponding to both boat modes

within the same month, state, and kind-of-day (weekday or weekend). That is, boat mode can be

changed in the bucket method, giving greater flexibility that was desired by field crews in the LPIS

application.

For both methods of movement of the movable samples, we consider nine behaviors that reflect

the different judgment abilities of field staff in finding site-days with non-zero trips: (1) no move,

so that sBh = soh \ sAh is the original 25% of the initial sample; (2) unskilled, in which sBh is

a simple random sample from the complement of the stratum probability sample, Uh \ sAh; (3)

expert jump, which successfully avoids all zero-trip site-days without distorting the distribution of

non-zero-trip site-days; (4) skilled jump, which reduces the number of zero-trip site-days, without

distortion of non-zero; (5) pure tilt, which does not change the number of zero trips but increases

the probability of more trips when there are non-zero trips; (6) jump and tilt, which changes the

distribution of both zero-trip and non-zero-trip site-days; (7) skilled shift, which is a special case of

jump and tilt that leaves half the movable sample unmoved and moves the other half to the highest-

trip site-days; (8) logistic, which creates inclusion probabilities as a function of trips using equation

(3.11) and then draws sBh as a without-replacement sample from Uh \ sAh using (approximately)

these unequal probabilities; and (9) with-replacement that uses the same probabilities as (8) to

draw sBh as a with-replacement sample from Uh \ sAh using (exactly) these unequal probabilities.

For any judgment behavior, the final sample is s = ∪H
h=1(sAh ∪ sBh). The no move behavior

yields the original probability sample, s = so, for which we can compute the standard survey-

weighted estimator using the known sampling weights. This classic design/estimator strategy

serves as the baseline for other strategies.
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For all behaviors (including no move), we estimate the conditional inclusion probabilities ρk

using the likelihood approach in Section 3.2, for both the Poisson and with-replacement models of

selection. In all cases, we use the model

logit(ρk) = β0 + β11{Zk=0} + β2Zk1{Zk>0} (3.11)

so that probabilities depend on trips but not on other characteristics of the observed PSUs, includ-

ing catch. This means estimated probabilities are the same for all catch characteristics, yielding

weights that can be applied for all species. The model is misspecified for all of the judgment

behaviors and is approximately correct (modulo normalization) for logistic and with-replacement.

The initial estimate of ρk from the stratum method is calibrated to the stratum movable sample

size nBh, and ρk from the bucket method is calibrated to the sum of movable sample size within

a bucket of two strata. Because of the two different calibrations, estimators under the no move

judgment behavior with the stratum movement method are different from estimators under the no

move judgment behavior with the bucket movement method.

We draw 1000 stratified, unequal probability original samples from the population, use both

movement methods and all nine judgment behaviors for each original sample, estimate ρk using

both Poisson and with-replacement likelihoods and calibrate to the movable sample size, construct

separate and combined estimators of catch rate using both sets of ρk estimates, and apply these

design/estimator strategies to eleven species. The total number of strategies is

(2 movement methods) × (9 judgment behaviors) × (2 likelihoods) × (2 estimators)

= 72 strategies,

plus the baseline strategy with the no-move behavior and the original sample weights, for a total

of 73 strategies.

We use all 73 strategies to estimate the catch rate for each of the 11 species in each of the 1000

samples. Figure 3.1 summarizes all results as boxplots of the root mean square error (RMSE) ratios
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for the 11 estimated species catch rates. In the ratios, the RMSE of combined-Po, combined-WR,

separate-Po or separate-WR is the numerator and the RMSE for no-move with original sample

weights is the denominator. There are two boxplots for each judgment behavior and each esti-

mator, with the left boxplot corresponding to the stratum movement method and the right boxplot

corresponding to the bucket movement method. Figure 3.1 shows that strategies with the combined

estimator (Poisson or with-replacement) dominate the baseline strategy across nearly all judgment

behaviors and species characteristics. Strategies that use the separate estimator are not recom-

mended: they sometimes beat the baseline strategy and sometimes are much worse. The combined

strategies almost always dominate the separate strategies. Finally, the two combined strategies

are very similar in most cases, so the choice of Poisson versus with-replacement likelihood is not

very important. Between the two movement methods for movable samples, the bucket method is

slightly better due to its greater flexibility.

In addition to (3.11), we have considered five other models: (1) logit(ρk) = β0 + β1pressurek;

(2) logit(ρk) = β0 + β11{Zk=0}; (3) logit(ρk) = β0 + β11{Zk=0} + β2Zk1{Zk>0} + β3Z
2
k1{Zk>0};

(4) logit(ρk) = β0 + β11{Zk=0} + β2Zk1{Zk>0} + β3Z
2
k1{Zk>0} + β4Xk; (5) logit(ρk) = β0 +

β11{Zk=0} + β2Zk1{Zk>0} + β3Z
2
k1{Zk>0} + β4Xk, where the Xk variable is the part of pressurek

that is orthogonal to trips, Zk. We repeated the simulation experiment with all 72 strategies for

these five different inclusion probability models, finding that models with trips dominate the model

with pressure only, and that there is not much gained by adding complexity beyond model (3.11).

The results are qualitatively similar and there is no specific model that dominates across judgment

behaviors and 11 species. We therefore reported results only for model (3.11).

We compare variance estimators for the combined-Po estimator, which had the best overall

performance among the point estimation strategies we considered. We consider V̂1 by using the

survey package in R, V̂2, V̂3, and V̂4. We also considered replication methods for variance esti-

mation, including a version of jackknife and of balanced repeated replication (BRR). Since neither

performed as well as the simpler methods reported here, we omit the details and results for the

replication methods. Boxplots of the 1000 estimators of non-replication methods for each of the
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No Move Unskilled Expert Jump Skilled Jump Pure Tilt Jump and Tilt Skilled Shift Logistic With Replacement

Figure 3.1: Ratios of RMSE for each strategy to RMSE of baseline strategy across 72 strategies and 11

species. Values greater than one favor the baseline strategy, which uses the no-move behavior and the origi-

nal sample weights. Each pair of successive boxplots corresponds to RMSE ratios for one judgment behav-

ior, one estimator type, one likelihood, and 11 species under the stratum movement method (left boxplot)

and under the bucket movement method (right boxplot). Combined-Po shows RMSE ratio boxplots under

the two movement methods for the combined estimator with pseudo log-likelihood assuming Poisson sam-

pling; Combined-WR is for the combined estimator with pseudo log-likelihood assuming with replacement

sampling; Separate-Po is for the separate estimator with pseudo log-likelihood assuming Poisson sampling;

and Separate-WR is for the separate estimator with pseudo log-likelihood assuming with replacement sam-

pling.
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11 species are provided in the supplementary materials. Figure 3.2 summarizes the results as box-

plots of the relative root mean square error (RMSE) for variance estimate for the 11 species. In

the ratios, RMSE of the estimated standard deviation is the numerator and the true standard devia-

tion approximated via Monte Carlo is the denominator. There are two boxplots for each judgment

behavior and each estimator, with the left boxplot corresponding to the stratum movement method

and the right boxplot corresponding to the bucket movement method. The variance estimator V̂1

is recommended since it is easily implemented in standard software and closer to the truth across

the range of judgment behaviors, catch characteristics, and two moving methods. Figure 3.3 sum-

marizes the coverage of the 95% confidence interval for the 11 species except for skilled shift

judgment behavior, which is highly under-coverage due to the biased point estimate. The vari-

ance estimator V̂1 also has better coverage across different catch characteristics and two moving

methods.

3.6 Discussion

We propose estimators for inference when samplers are allowed to use judgment to select part

of the samples. These estimators are based on simple (and incorrect) models, but work well in our

simulations across a range of conditions. The combined estimator dominates the separate estimator

and the classical probability estimator with known design weights across nearly all judgment be-

haviors. The simple variance estimator gives good confidence interval coverage. We also consider

the behavior that moves all the movable samples to the highest trip site-days. The results are not

included in Figure 3.1 because of more variation of RMSE ratio across 11 catch types that distort

the structure of the figure.

Because of the problem of the possibly misspecified probability model, it is worth considering

the doubly-robust estimation strategy. The strategy incorporates a prediction model for yk. The

estimator would remain consistent if at least one of the two models (the probability model or

prediction model) is correct. In our settings, there is more than one way to do this, depending on

which covariates we are going to use. We will discuss this in detail in chapter 4.
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Figure 3.2: Relative RMSE of estimated standard deviation using four different variance estimators across

72 strategies and 11 species for the combined-Po estimator. Smaller values are better. Each pair of successive

boxplots corresponds to relative RMSE for one judgment behavior, one estimator type, and 11 species under

the stratum movement method (left boxplot) and under the bucket movement method (right boxplot).
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Figure 3.3: 95 percent confidence interval coverage across 64 strategies and 11 species using four different

variance estimators. Each pair of successive boxplots corresponds to confidence interval coverage for one

judgment behavior, one estimator type, and 11 species under the stratum movement method (left boxplot)

and under the bucket movement method (right boxplot).
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The variance estimators considered here include only the design variance, ignoring the varia-

tion due to estimation of the parameters in the nonprobability model. In results not shown here,

we have used the estimating equations approach to derive the variance that includes estimating the

probabilities for the nonprobability sample. This approach only works if the probability model

is correctly specified. In our simulations, the resulting variance estimate does not show a large

difference with the variance estimate that only considered design. In practice, we recommend the

Taylor approach since it is easy to implement and gives good confidence interval coverage across

a range of conditions.
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Chapter 4

Extension of inference for complex surveys

incorporating expert judgment

4.1 Doubly-robust inference for complex surveys incorporat-

ing expert judgment

4.1.1 Introduction

In Chapter 3, we have proposed estimators that combine the strict probability sample and expert

judgment sample by estimating the unknown inclusion probability of the judgment sample. Due

to the possibly misspecified probability model, it is worth considering a prediction model and

constructing a doubly-robust estimator, which would remain consistent if at least one of the two

models (prediction model or probability model) is correctly specified.

Let U = {1, 2, . . . , N} denote the indices of the PSUs in the finite population of interest and

our primary inferential targets are the finite population total Ty =
∑

k∈U yk and finite population

rate ϕN =
∑

k∈U yk/
∑

k∈U zk = Ty/Tz. Let s ⊂ U denote a sample of PSUs, selected via a

sampling design p(s), and assume (zk, yk) are observed without error for k ∈ s. Let s0 denote

a probability sample from U with known inclusion probabilities. A probability sample sA ⊂ s0

is selected with known inclusion probabilities and observations are obtained for k ∈ sA. The

judgment sample is sB ⊂ U \ sA, where sA ∩ sB = ∅ and s = sA ∪ sB. The combined estimators

for the total and rate are

T̂y,com =
∑

k∈s

yk
πA
k + (1− πA

k )ρ̂k
,

and

R̂com =
T̂y,com

T̂z,com
=

∑
k∈s yk/

(
πA
k + (1− πA

k )ρ̂k
)

∑
k∈s zk/ (π

A
k + (1− πA

k )ρ̂k)
,

where ρ̂k is the estimated inclusion probability for the judgment sample.
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The combined estimator for rates is doubly-robust by construction. To see this formally, con-

sider a model ξ under which the yk are uncorrelated, nonnegative random variables with means

Eξ[yk | zk] = ϕzk for some ϕ > 0. The Taylor expansion of the rate is

R̂com ≈
∑

k∈U yk∑
k∈U zk

+
∑

k∈s

1

πA
k + (1− πA

k )ρ̂k

{
1∑

k∈U zk

(
yk −

∑
k∈U yk∑
k∈U zk

zk

)}
.

If model ξ is correctly specified, we have

Eξ

[
R̂com − ϕN

]
= Eξ

[
Eξ

[
R̂com − ϕN

∣∣∣ {zk}k∈U
]]

= Eξ

[
ϕ
∑

k∈s zk/
(
πA
k + (1− πA

k )ρ̂k
)

∑
k∈s zk/ (π

A
k + (1− πA

k )ρ̂k)
− ϕ

]

= 0.

On the other hand, if the probability model for ρk is correctly specified, we have

Ep

[
R̂com − ϕN

]
≈
∑

k∈U

{
1∑

k∈U zk

(
yk −

∑
k∈U yk∑
k∈U zk

zk

)}
≈ 0.

Under some mild assumptions, the rate estimator has the variance that goes to 0 under either the

model ξ or the probability model. Because the bias goes to 0 if either the model ξ or the probability

model is correctly specified, the estimated rate has the double robustness property.

There is some literature that discusses the doubly-robust inference with nonprobability sam-

ples. Chen et al. (2020) and Kim and Wang (2019) both build the doubly-robust estimator adapted

from Kim and Haziza (2014) with nonprobability and probability samples to get the double robust-

ness property. We also follow a similar approach by combining the probability and nonprobability

samples. In section 4.1.2, we introduce the doubly-robust estimators of the dual-frame type and

the variance of the estimators and variance estimators. In section 4.1.3, we describe simulation

experiments of the doubly-robustness strategy.
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4.1.2 Estimation

Doubly-robust estimator of the total

Suppose there is a parametric model for the response y, E [y|x] = m(x,β) = x⊤β. We can

construct the doubly robust estimator using the combined sample given by

T̂y,com,DR =
∑

k∈sA∪sB

yk −m(xk, β̂)

πA
k + (1− πA

k )ρ̂k
+
∑

k∈U

m(xk, β̂),

provided the auxiliary variables are known in the population. The coefficient of the model can be

obtained from the ordinary least square or maximum likelihood from the combined sample. Let

T̃y,com,DR denote the doubly-robust estimator with ρk replacing the estimates ρ̂k, and β replacing

the estimates β̂. Then T̃y,com,DR is exactly unbiased for Ty. One way to get the design variance of

the doubly-robust estimator T̂y,com,DR is to approximate it by T̃y,com,DR and write the approximation

as the weighted sum of yk:

T̂y,com,DR ≈ T̃y,com,DR

=
∑

k∈s

yk

[
1

πA
k + (1− πA

k )ρk

−
(
∑

k∈s

x⊤
k

πA
k + (1− πA

k )ρk
−
∑

k∈U

x⊤
k

)(
∑

k∈s

xkx
⊤
k

πA
k + (1− πA

k )ρk

)−1(
xk

πA
k + (1− πA

k )ρk

)


=
∑

k∈s

ykwk,

where

wk =

[
1

πA
k + (1− πA

k )ρk

−
(
∑

k∈s

x⊤
k

πA
k + (1− πA

k )ρk
−
∑

k∈U

x⊤
k

)(
∑

k∈s

xkx
⊤
k

πA
k + (1− πA

k )ρk

)−1(
xk

πA
k + (1− πA

k )ρk

)
 .
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The variance and variance estimator of the doubly-robust estimators are

Var
[
T̂y,com,DR

]
≈
∑∑

k,ℓ∈U

Cov [Ik, Iℓ]
yk
πk

yℓ
πℓ

=
∑∑

k,ℓ∈U

(πkℓ − πkπℓ)
yk
πk

yℓ
πℓ
,

and

V̂0(yDR) = V̂
[
T̂y,com,DR

]
=
∑∑

k,ℓ∈U

(πkℓ − πkπℓ)
yk
πk

yℓ
πℓ

IkIℓ
πkℓ

,

where πk is 1/wk and πkℓ is the second order inclusion probability of the corresponding weights in

the estimators. The standard approximate variance estimator, available in most statistical software,

replaces the unbiased variance estimator V̂0(yDR) by assuming a design with the same inverse-

probability weights but with-replacement sampling,

V̂1(yDR) =
1

n (n− 1)

∑

k∈s

(
yk
πk/n

−
∑

k∈s

yk
πk

)2

. (4.1)

Similar to the combined estimator, the variance of the doubly-robust estimator can also be

derived from the iterated variance formula by conditioning on the sA sample. Assume Poisson

sampling for sB,

Var
[
T̃y,com,DR

]

= Var
[
E
[
T̃y,com,DR

∣∣∣ sA
]]

+ E
[
Var
[
T̃y,com,DR

∣∣∣ sA
]]

(4.2)

=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) y∗k
πA
k

y∗ℓ
πA
ℓ

+ E

[
Var

[
∑

k∈s

yk −m(xk,β)

πA
k + (1− πA

k )ρk

∣∣∣∣∣ sA

]]

=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) y∗k
πA
k

y∗ℓ
πA
ℓ

+
∑

k∈U

(1− πA
k )ρk(1− ρk)

(πA
k + (1− πA

k )ρk)
2

(
yk − x⊤

k β
)2

(4.3)

where y∗k =
(
yk − x⊤

k β
)
(1 − ρk)π

A
k

(
πA
k + (1− πA

k )ρk
)−1

. The expression suggests two differ-

ent approaches for variance estimation. The first approach, denoted as V̂2(yDR), estimates the

first component of (4.3) from the probability sample sA using the with-replacement sampling ap-

proximation, and estimates the second component of (4.3) with an unbiased estimator using the
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probability sample sA only:

V̂2(yDR) =
1

nA (nA − 1)

∑

k∈sA


 ŷ∗k
πA
k /nA

−
∑

k∈sA

(
yk − x⊤

k β̂
)
(1− ρ̂k)

πA
k + (1− πA

k )ρ̂k




2

+
∑

k∈U

(1− πA
k )ρ̂k(1− ρ̂k)

(πA
k + (1− πA

k )ρ̂k)
2

(
yk − x⊤

k β̂
)2 IAk
πA
k

, (4.4)

where ŷ∗k =
(
yk − x⊤

k β̂
)
(1 − ρ̂k)π

A
k

(
πA
k + (1− πA

k )ρ̂k
)−1

. The second approach, denoted as

V̂3 (yDR), estimates the first component of (4.2) from the probability sample sA using the with-

replacement sampling approximation, and estimates inside the expectation of (4.2), the conditional

variance Var
(
T̃y,com,DR

∣∣∣ sA
)

using sA and sB:

V̂3 (yDR) =
1

nA (nA − 1)

∑

k∈sA


 ŷ∗k
πA
k /nA

−
∑

k∈sA

(
yk − x⊤

k β̂
)
(1− ρ̂k)

πA
k + (1− πA

k )ρ̂k




2

+
∑

k∈U

(1− IAk )
2IBk (1− ρ̂k)

(πA
k + (1− πA

k )ρ̂k)
2

(
yk − x⊤

k β̂
)2
. (4.5)

Doubly-robust estimator of the rate

Although the combined estimator of the rate has the doubly robustness property under a linear

model for yk as a function of zk, as shown in Section 4.1.1, we also consider a model-assisted dou-

bly robust estimator to allow for more complex models. For example, the doubly-robust estimator

of the rate that includes a quadratic term in the prediction model dominates the combined estimator

in the simulation experiments described below. The doubly-robust estimator for the rate is

R̂com,DR =
T̂y,com,DR

T̂z,com,DR

=

∑
k∈sA∪sB

yk−m1(xk,
̂β)

πA
k
+(1−πA

k
)ρ̂k

+
∑

k∈U m1(xk, β̂)

∑
k∈sA∪sB

zk−m2(xk,
̂β)

πA
k
+(1−πA

k
)ρ̂k

+
∑

k∈U m2(xk, β̂)

.
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The design variance of the doubly-robust estimators for the rates could be approximated by Taylor

expansion. For the weighted sum approach, the variance and variance estimator are

Var
[
R̂com,DR

]
=
∑∑

k,ℓ∈U

(πkℓ − πkπℓ)
vk
πk

vℓ
πℓ
; V̂

[
R̂com,DR

]
=
∑∑

k,ℓ∈U

(πkℓ − πkπℓ)
v̂k
πk

v̂ℓ
πℓ

IkIℓ
πkℓ

,

where πk is 1/wk,

vk =

{
1∑

k∈U zk

(
yk −

∑
k∈U yk∑
k∈U zk

zk

)}
,

and

v̂k =

{
1∑

k∈sA
zk/πA

k

(
yk −

∑
k∈sA

yk/π
A
k∑

k∈sA
zk/πA

k

zk

)}
.

We compute the variance estimator using the standard approximate variance estimator from with-

replacement sampling, denoted as V̂1(vDR), which replaces equation (4.1) by v̂k. For the iterated

variance approach under Poisson sampling of sB sample,

Var
[
R̂com,DR

]
= Var

[
E
[
R̂com,DR

∣∣∣ sA
]]

+ E
[
Var
[
R̂com,DR

∣∣∣ sA
]]

(4.6)

=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) v∗k
πA
k

v∗ℓ
πA
ℓ

+
∑

k∈U

(1− πA
k )ρk(1− ρk)

(πA
k + (1− πA

k )ρk)
2

{
1∑

k∈U zk

(
(yk −m1(xk,β))−

∑
k∈U yk∑
k∈U zk

(zk −m2(xk,β))

)}2

,

where

v∗k =

{
1∑

k∈U zk

(
(yk −m1(xk,β))−

∑
k∈U yk∑
k∈U zk

(zk −m2 (xk,β))

)}
(1− ρk)π

A
k

(πA
k + (1− πA

k )ρk)
.

We estimate the first component of (4.6) from the probability sample sA using the with-replacement

sampling approximation, and estimate the second term of (4.6) either from the expectation of

conditional variance using sA only or estimate the conditional variance with the unbiased estimator

using sA and sB. The estimators are denoted as V̂2(vDR) and V̂3(vDR).
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The estimators above consider only the design variance, and ignore the variation caused by

the estimation of the parameters. Except for the design variance, we have used the estimating

equations approach to derive the variance that includes the estimation of the parameters in the

nonprobability and prediction model. However, this more complex estimator does not dominate

the estimators above in our simulation experiments. The variance estimator in Chen et al. (2020)

implemented from Kim and Haziza (2014) is not applicable in our setting, since we will generally

have different dimensions for the prediction model and the probability model.

4.1.3 Simulation experiment

We use the same simulated population from section 3.5 with the same stratified design and

sample size. The proportion of the judgment samples, judgment behavior, and the methods for

movable sample are the same as before. For all behaviors, we estimate the conditional inclusion

probabilities ρk using the likelihood from the Poisson model of selection with covariates as indi-

cators of trip,

logit(ρk) = α0 + α11{Zk=0} + α2Zk1{Zk>0}.

We consider two different prediction models in the simulation, one linear in trips and one quadratic

in trips:

m(Zk) = β1Zk,

m(Zk) = β1Zk + β2Z
2
k

where trips are assumed available at the population level and the total trips is known. In general,

this is not always a realistic assumption but in some cases, we might have good estimates of total

trips from another external source, like a separate survey or monitoring program.

We draw 1000 stratified, unequal probability original samples from the population, use all

nine judgment behaviors for each original sample, estimate ρk using Poisson likelihood, construct

combined and doubly-robust estimators of catch and catch rate, and apply to eleven species for two
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movement methods. The total number of strategies is

(2 movement methods) × (9 judgment behaviors) ×

(2 prediction models of doubly-robust estimator + combined estimator) = 54 strategies,

plus the baseline strategy that uses the survey regression estimator for the original probability

sample with known design weights. Therefore, there is a total of 55 strategies.

Figure 4.1 shows that the catch estimator is nearly unbiased if at least one of the two models is

correctly specified: either catch is a linear (or quadratic) function of trips, or the judgment behavior

is logistic or with-replacement. Figure 4.2 shows another example in which the catch estimator is

nearly unbiased if at least one of the two models is correctly specified: either catch is a quadratic

function of trips, or the judgment behavior is logistic or with-replacement. For other catch char-

acteristics, the figures show results that are qualitatively similar; these figures are omitted. Results

summarized across trips are presented in Figure 4.3, which shows all results as boxplots of the root

mean square error (RMSE) ratios for estimated catch for the 11 species. In the ratios, combined-Po,

DR-Trip, DR-Quad-Trip is the numerator and RMSE for no-move with original sample weights

of regression estimator is the denominator. There are two boxplots for each judgment behavior

and each estimator, with the left boxplot corresponding to the stratum movement method and the

right boxplot corresponding to the bucket movement method. Figure 4.3 shows that the combined

estimator and doubly-robust estimator using some judgment sampling dominate the regression es-

timator using pure probability sampling across nearly all judgment behaviors and species.

Figure 4.4 to Figure 4.7 summarize the results of the bias ratio and root mean square error

(RMSE) ratios for the estimated catch for all 11 species. Figure 4.4 and Figure 4.5 are the summary

of ratios when the prediction model is linear in trips. Figure 4.7 is the summary of ratios when

the prediction model is quadratic in trips. In the ratios, the absolute bias or RMSE for the doubly-

robust estimator is the numerator and absolute bias or RMSE for the combined estimator is the

denominator. These figures show that doubly-robust estimator with two different prediction models
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Figure 4.1: Boxplots of Linear in Trips: Moderate Catch estimates under 54 strategies. Each pair of

successive boxplots corresponds to point estimates for one judgment behavior, and one estimator type un-

der the stratum movement method (left boxplot) and under the bucket movement method (right boxplot).

Combined-Po is the combined estimator with pseudo log-likelihood assuming Poisson sampling; DR-Trip

is the doubly-robust estimator with model linear in trips; DR-Quad-Trip is the doubly-robust estimator with

model quadratic in trips.

78



150000

200000

250000

300000

350000

Quadratic in Trips: Moderate Catch

 

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

No Move Unskilled Expert Jump Skilled Jump Pure Tilt Jump and Tilt Skilled Shift Logistic With Replacement

Figure 4.2: Boxplots of Quadratic in Trips: Moderate Catch estimates under 54 strategies. Each pair

of successive boxplots corresponds to point estimates for one judgment behavior, and one estimator type

under the stratum movement method (left boxplot) and under the bucket movement method (right boxplot).

Combined-Po is the combined estimator with pseudo log-likelihood assuming Poisson sampling; DR-Trip

is the doubly-robust estimator with model linear in trips; DR-Quad-Trip is the doubly-robust estimator with

model quadratic in trips.

79



0

2

4

6

8

10

 

R
M

S
E

 r
a
ti
o

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

C
o
m

b
in

e
d
−

P
o

D
R

−
T
ri

p

D
R

−
Q

u
a
d
−

T
ri

p

No Move Unskilled Expert Jump Skilled Jump Pure Tilt Jump and Tilt Skilled Shift Logistic With Replacement

Figure 4.3: Ratio of RMSE for each strategy to RMSE of baseline strategy for catch across 54 strategies and

11 species. Values greater than one favor the baseline strategy, which is the no-move behavior regression

estimator with original weights. Each pair of successive boxplots corresponds to RMSE ratios for one

judgment behavior, one estimator type, and 11 species under the stratum movement method (left boxplot)

and under the bucket movement method (right boxplot). Combined-Po is the combined estimator with

pseudo log-likelihood assuming Poisson sampling; DR-Trip is the doubly-robust estimator with model linear

in trips; DR-Quad-Trip is the doubly-robust estimator with model quadratic in trips.
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has smaller RMSE and lower bias compared to the combined estimator. Doubly-robust estimator

fixes some bias from the misspecified inclusion probability model.
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Figure 4.4: RMSE ratio versus bias ratio across 11 catch types and 9 judgment behaviors of catch for the

model linear in trips and stratum movement method. Horizontal axis: ratio of doubly-robust estimator bias

to combined estimator bias. Vertical axis: ratio of doubly-robust estimator RMSE to combined estimator

RMSE. Values smaller than one favor the doubly-robust estimator. FF: cases for which both the probability

and prediction models are misspecified; FT: cases for which the probability model is misspecified and the

prediction model is correctly specified; TF: cases for which the probability model is correctly specified and

the prediction model is misspecified; TT: cases for which both the probability and prediction model are

correctly specified.

We also summarize the results of catch rate similar to catch. Figure 4.8 summarizes all results

as boxplots of the root mean square error (RMSE) ratios for estimated catch rate for the 11 species.

In the ratios, combined-Po, DR-Trip, DR-Quad-Trip is the numerator and RMSE for no-move

with original sample weights of regression estimator is the denominator. There are two boxplots

for each judgment behavior and each estimator, with the left boxplot corresponding to the stratum

movement method and the right boxplot corresponding to the bucket movement method. Figure 4.8
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Figure 4.5: RMSE ratio versus bias ratio across 11 catch types and 9 judgment behaviors of catch for the

model linear in trips and bucket movement method. Horizontal axis: ratio of doubly-robust estimator bias

to combined estimator bias. Vertical axis: ratio of doubly-robust estimator RMSE to combined estimator

RMSE. Values smaller than one favor the doubly-robust estimator. FF: cases for which both the probability

and prediction models are misspecified; FT: cases for which the probability model is misspecified and the

prediction model is correctly specified; TF: cases for which the probability model is correctly specified and

the prediction model is misspecified; TT: cases for which both the probability and prediction model are

correctly specified.
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Figure 4.6: RMSE ratio versus bias ratio across 11 catch types and 9 judgment behaviors of catch for the

model quadratic in trips and stratum movement method. Horizontal axis: ratio of doubly-robust estimator

bias to combined estimator bias. Vertical axis: ratio of doubly-robust estimator RMSE to combined es-

timator RMSE. Values smaller than one favor the doubly-robust estimator. FF: cases for which both the

probability and prediction models are misspecified; FT: cases for which the probability model is misspeci-

fied and the prediction model is correctly specified; TF: cases for which the probability model is correctly

specified and the prediction model is misspecified; TT: cases for which both the probability and prediction

model are correctly specified.

83



0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Quadratic in Population Trips: Bucket Method

Bias ratio

R
M

S
E

 r
a
ti
o

FF

FT

TF

TT

Figure 4.7: RMSE ratio versus bias ratio across 11 catch types and 9 judgment behaviors of catch for the

model quadratic in trips and bucket movement method. Horizontal axis: ratio of doubly-robust estimator

bias to combined estimator bias. Vertical axis: ratio of doubly-robust estimator RMSE to combined es-

timator RMSE. Values smaller than one favor the doubly-robust estimator. FF: cases for which both the

probability and prediction models are misspecified; FT: cases for which the probability model is misspeci-

fied and the prediction model is correctly specified; TF: cases for which the probability model is correctly

specified and the prediction model is misspecified; TT: cases for which both the probability and prediction

model are correctly specified.
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No Move Unskilled Expert Jump Skilled Jump Pure Tilt Jump and Tilt Skilled Shift Logistic With Replacement

Figure 4.8: Ratio of RMSE for each strategy to RMSE of baseline strategy for catch rate across 54 strategies

and 11 species. Values greater than one favor the baseline strategy, which uses the no-move behavior re-

gression estimator with the original sample weights. Each pair of successive boxplots corresponds to RMSE

ratios for one judgment behavior, one estimator type, and 11 species under the stratum movement method

(left boxplot) and under the bucket movement method (right boxplot). Combined-Po is the combined esti-

mator with pseudo log-likelihood assuming Poisson sampling; DR-Trip is the doubly-robust estimator with

model linear in trips; DR-Trip is the doubly-robust estimator with model quadratic in trips.

shows that the combined and doubly-robust estimator of catch rate also dominate the regression

estimator across nearly all judgment behaviors and species. Figure 4.9 to Figure 4.12 summarize

the results of the bias ratio and root mean square error (RMSE) ratios for the estimated catch rate

for all 11 species. Figure 4.9 and Figure 4.10 are the summary of ratio with prediction model linear

in trips. Figure 4.11 and Figure 4.12 are the summary of ratio with prediction model quadratic in

trips. In the ratios, the absolute bias or RMSE for the doubly-robust estimator is the numerator

and absolute bias or RMSE for the combined estimator is the denominator. Since the catch rate

has doubly-robustness property, the doubly-robust estimator would not gain much by adding the

prediction model. Figure 4.9 and Figure 4.10 show that we do not reduce the bias of catch rate

from the doubly-robust estimator of the correctly specified regression model. Figure 4.11 and Fig-
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ure 4.12 show that the doubly-robust estimator dominates the combined estimator if the regression

model has quadratic term in trips and correctly specified.
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Figure 4.9: RMSE ratio versus bias ratio across 11 catch types and 9 judgment behaviors of catch rate for the

model linear in trips and stratum movement method. Horizontal axis: ratio of doubly-robust estimator bias

to combined estimator bias. Vertical axis: ratio of doubly-robust estimator RMSE to combined estimator

RMSE. Values smaller than one favor the doubly-robust estimator. FF: cases for which both the probability

and prediction models are misspecified; FT: cases for which the probability model is misspecified and the

prediction model is correctly specified; TF: cases for which the probability model is correctly specified and

the prediction model is misspecified; TT: cases for which both the probability and prediction model are

correctly specified.

We consider three different variance estimation methods discussed in Section 4.1.2 for the

doubly-robust estimator of catch and catch rate with prediction model quadratic in trips since the

the doubly-robust estimator works better than combined estimator for catch and catch rate that has

quadratic term of trips. Figure 4.13 and 4.14 summarize the results as boxplots of the relative

root mean square error (RMSE) for variance estimate for the 11 species of catch estimates. In the

ratios, RMSE of the estimated standard deviation is the numerator and the true standard deviation
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Figure 4.10: RMSE ratio versus bias ratio across 11 catch types and 9 judgment behaviors of catch rate for

the model linear in trips and bucket movement method. Horizontal axis: ratio of doubly-robust estimator bias

to combined estimator bias. Vertical axis: ratio of doubly-robust estimator RMSE to combined estimator

RMSE. Values smaller than one favor the doubly-robust estimator. FF: cases for which both the probability

and prediction models are misspecified; FT: cases for which the probability model is misspecified and the

prediction model is correctly specified; TF: cases for which the probability model is correctly specified and

the prediction model is misspecified; TT: cases for which both the probability and prediction model are

correctly specified.
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Figure 4.11: RMSE ratio versus bias ratio across 11 catch types and 9 judgment behaviors of catch rate for

the model quadratic in trips and stratum movement method. Horizontal axis: ratio of doubly-robust esti-

mator bias to combined estimator bias. Vertical axis: ratio of doubly-robust estimator RMSE to combined

estimator RMSE. Values smaller than one favor the doubly-robust estimator. FF: cases for which both the

probability and prediction models are misspecified; FT: cases for which the probability model is misspeci-

fied and the prediction model is correctly specified; TF: cases for which the probability model is correctly

specified and the prediction model is misspecified; TT: cases for which both the probability and prediction

model are correctly specified.
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Figure 4.12: RMSE ratio versus bias ratio across 11 catch types and 9 judgment behaviors of catch rate

for the model quadratic in trips and bucket movement method. Horizontal axis: ratio of doubly-robust esti-

mator bias to combined estimator bias. Vertical axis: ratio of doubly-robust estimator RMSE to combined

estimator RMSE. Values smaller than one favor the doubly-robust estimator. FF: cases for which both the

probability and prediction models are misspecified; FT: cases for which the probability model is misspeci-

fied and the prediction model is correctly specified; TF: cases for which the probability model is correctly

specified and the prediction model is misspecified; TT: cases for which both the probability and prediction

model are correctly specified.
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approximated via Monte Carlo is the denominator. There are two boxplots for each judgment

behavior and each estimator, with the left boxplot corresponding to the stratum movement method

and the right boxplot corresponding to the bucket movement method. The variance estimator V̂1

is recommended since it is easily implemented in standard software and closer to the truth across

the range of judgment behaviors, catch characteristics, and two moving methods. Figure 4.15 and

4.16 summarize the coverage of the 95% confidence interval for the 11 species of catch except for

skilled shift judgment behavior, which is highly under-coverage due to the biased point estimate.

The variance estimator V̂1 also has better coverage across different catch characteristics and two

moving methods. Figure 4.17 and 4.18 are the relative root mean square error (RMSE) for variance

estimate for the 11 species of catch rate and 95% confidence interval coverage of catch rate using

the quadratic in trips prediction model. These two figures also suggest V̂1 has better coverage

across different catch characteristics and judgment behavior.

4.2 A dual-frame approach for estimation of respondent-driven

samples

4.2.1 Introduction

There are several possible applications of the estimation constructed in chapter 3. We consider

applying the methodology to the respondent-driven samples. Respondent Driven Sampling (RDS)

is a chain-referral sampling that is implemented to study the hidden population and introduced by

Heckathorn (1997). RDS sampling starts with seeds from the target population and progresses with

recruiting waves until the desired sample size is reached. If seeds are selected according to some

probability design, the seeds can be treated as strict probability samples, and those being recruited

are nonprobability samples since we do not know the probability of the recruitment process. In

the existing literature, several assumptions are needed to get an asymptotically unbiased estimate

but these assumptions might be unrealistic. In this section, we apply the dual-frame estimator in

chapter 3 to the RDS sample.
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Figure 4.13: Relative RMSE of standard deviation for catch using three different variance estimator across

54 strategies and 11 species for the doubly-robust estimator with model linear in trips. Smaller values are

better. Each pair of successive boxplots corresponds to relative RMSE for one judgment behavior, one

estimator type, and 11 species under the stratum movement method (left boxplot) and under the bucket

movement method (right boxplot).
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Figure 4.14: Relative RMSE of standard deviation for catch using three different variance estimator across

54 strategies and 11 species for the doubly-robust estimator with model quadratic in trips. Smaller values

are better. Each pair of successive boxplots corresponds to relative RMSE for one judgment behavior, one

estimator type, and 11 species under the stratum movement method (left boxplot) and under the bucket

movement method (right boxplot).
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Figure 4.15: 95 percent confidence interval coverage for catch across 48 strategies and 11 species of each

variance estimate with model linear in trips. Each pair of successive boxplots corresponds to confidence

interval coverage for one judgment behavior, one estimator type, and 11 species under the stratum movement

method (left boxplot) and under the bucket movement method (right boxplot).
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Figure 4.16: 95 percent confidence interval coverage for catch across 48 strategies and 11 species of each

variance estimate with model quadratic in trips. Each pair of successive boxplots corresponds to confidence

interval coverage for one judgment behavior, one estimator type, and 11 species under the stratum movement

method (left boxplot) and under the bucket movement method (right boxplot).
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Figure 4.17: Relative RMSE of standard deviation for catch rate using three different variance estimator

across 54 strategies and 11 species for the doubly-robust estimator with model quadratic in trips. Smaller

values are better. Each pair of successive boxplots corresponds to relative RMSE for one judgment behavior,

one estimator type, and 11 species under the stratum movement method (left boxplot) and under the bucket

movement method (right boxplot).
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Figure 4.18: 95 percent confidence interval coverage for catch rate across 48 strategies and 11 species

of each variance estimate with model quadratic in trips. Each pair of successive boxplots corresponds

to confidence interval coverage for one judgment behavior, one estimator type, and 11 species under the

stratum movement method (left boxplot) and under the bucket movement method (right boxplot).
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4.2.2 Dual-frame methods applied to the respondent-driven sampling

In order to construct a scenario similar to the judgment sample, we consider the case in which

the seeds are selected by some probability design with known inclusion probabilities. This is also

the case considered in Michaels et al. (2019). The individuals are sampled without replacement.

The only assumption we make is Poisson sampling in estimating the inclusion probability for the

nonprobability samples. We make no assumptions about the population network. Let sA denote the

seeds and sB denote the individuals being recruited. We consider without-replacement sampling

sA ∩ sB = ∅, s = sA∪ sB. Let nA denote the number of seeds, and nB is the number of individuals

being recruited. We apply the same likelihood and normalization process in section 3.2 to estimate

the inclusion probability for the individuals being recruited. The combined estimators for the total

and the mean of the variable of interest are

T̂y,com =
∑

k∈s

yk
πA
k + (1− πA

k )ρ̂k
,

µ̂y,com =
∑

k∈s

yk/π
A
k + (1− πA

k )ρ̂k
1/πA

k + (1− πA
k )ρ̂k

, (4.7)

where ρ̂k is the estimated inclusion probability for the individual being recruited.

The most commonly used estimator in the current RDS is the VH estimator, and Gile and

Handcock (2010) state that the VH estimator performs better than the SH estimator. The combined

estimator would be less efficient if the nonprobability sample size is large. For these reasons, we

also construct the convex combination of the VH estimator and the combined estimator of the total

and mean

T̂y,convex =
nA

nA + nB

∑

k∈s

yk
πA
k + (1− πA

k )ρ̂k
+

nB

nA + nB

∑

k∈s

Nd−1
k yk∑

k∈s d
−1
k

=
∑

k∈s

[
nA

nA + nB

1

πA
k + (1− πA

k )ρ̂k
+

nB

nA + nB

Nd−1
k∑

k∈s d
−1
k

]
yk,
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µ̂y,convex =

∑
k∈s

[
nA/

{
(nA + nB)

(
πA
k + (1− πA

k )ρ̂k
)}

+ nBNd
−1
k /

{
(nA + nB)

(∑
k∈s d

−1
k

)}]
yk∑

k∈s

[
nA/ {(nA + nB) (πA

k + (1− πA
k )ρ̂k)}+ nBNd

−1
k /

{
(nA + nB)

(∑
k∈s d

−1
k

)}] .

(4.8)

The variance and variance estimator of (4.7) can be approximated by Taylor expansion and

πA
k + (1 − πA

k )ρ̂k can be treated as the corresponding combined inclusion probability. Similarly,

the variance and variance estimator of (4.8) can be approximated by Taylor expansion and

nA/
{
(nA + nB)

(
πA
k + (1− πA

k )ρ̂k
)}

+ nBNd
−1
k /

{
(nA + nB)

(
∑

k∈s

d−1
k

)}

can be treated as the corresponding combined inclusion probability.

4.2.3 Simulation experiment

The proposed estimators are evaluated and compared to the three current estimators SH, VH,

and SS using the Project 90 study. The data was collected between 1988 and 1992 in Colorado

Springs, CO to study the heterosexuals’ transmission of HIV, and is network data on the hidden

population. Several published studies (Baraff et al., 2016; Fellows, 2019; Goel and Salganik, 2010)

have used Project 90 data to compare the RDS estimators. As in the prior studies, we constructed

a subset of the network containing the largest connected component, which includes 4430 individ-

uals and 18407 edges. The data includes 13 individual attributes such as sex worker, pimp, drug

dealer. The values of attributes are binary, and 1 indicates the individual has the attribute. Table 4.1

summarizes all the 13 attributes and the population proportion.

We consider two target sample sizes, 130 and 150, each with 100 seeds. These targets reflect

the numbers from Michaels et al. (2019). The design is without replacement sampling and seeds

are given three coupons. We consider two selections of seeds, proportional to degree or randomly,

and eight different recruitment behaviors similar to having different judgment behaviors: (1) ran-

dom, in which three acquaintances are recruited at random with equal probabilities, if possible; (2)

recruit fraction, in which 0, 1, 2, or 3 acquaintances are recruited at random, with probabilities

(1/6, 1/6, 1/6, 1/2); (3) degree, in which recruitment probabilities are proportional to the degrees
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Table 4.1: Project 90 population proportion

Attributes Population proportion

female 0.43

sex worker 0.06

pimp 0.02

client 0.10

drug dealer 0.08

drug cook 0.01

thief 0.03

retired 0.03

housewife 0.06

disabled 0.04

unemployed 0.17

homeless 0.14

nonwhite 0.26

of acquaintances; (4) inverse degree, in which recruitment probabilities are proportional to the

inverse degrees of acquaintances; (5) prefer female, in which females must recruit female acquain-

tances, if possible, and males recruit males; (6) prefer pimp, in which pimps must recruit pimp

acquaintances, if possible, and non-pimps recruit non-pimps; (7) expert female, in which everyone

must recruit female acquaintances, if possible; and (8) expert pimp, in which everyone must recruit

pimp acquaintances, if possible. In the existing literature, recruitment is assumed at random, but

our estimator allows for differential recruitment.

For all the recruitment behaviors, we estimate the inclusion probabilities using the model

logit(ρk) = β0 + β1degree

so the probabilities are the same across all attributes. The model is misspecified for all the simu-

lated recruitment behaviors, though it is somewhat similar to (3) degree. We draw 1000 samples,

use all recruitment behaviors, estimate the inclusion probabilities assuming Poisson sampling, con-

struct five different estimators (SH, VH, SS, combined, and convex combination of VH and com-

bined), and apply these estimators to thirteen attributes. The estimates, standard deviations, and
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the confidence intervals of SH, VH, and SS estimator are computed using the R package “RDS”

(Handcock et al., 2021).

Figure 4.19 and Figure 4.20 summarize all results as boxplots of the root mean square error

(RMSE) ratios for 13 attributes. In the ratios, RMSE for combined estimator is the numerator

and RMSE for SH, VH, SS, convex combination is the denominator. There are two boxplots

in each estimator and recruitment behavior, the left one is 130 sample size, and the right one is

150 sample size. Both figures show that combined estimator or convex combination reduces the

mean square error. To help see the improvement of RMSE in the combined estimator, we also

rank the five estimators and summarize the ranking across all attributes and recruitment behaviors

in Table 4.2. The combined estimator has the lowest average rank for different sample sizes.

Combined estimator or convex combination is doing better than the existing estimators.

Table 4.2: Summary results for average rank across all attributes of five different estimators, SH, VH, SS,

Combined, and Convex combination for two different sample size with two kinds of seeds selection.

Estimator

SH VH SS Combined Convex

Seeds proportional to degree
130 sample size 5 3.9 3.02 1.19 1.88

150 sample size 5 3.82 3.03 1.27 1.88

Seeds randomly
130 sample size 5 3.94 2.94 1.73 1.38

150 sample size 5 3.94 2.93 1.55 1.58

Figure 4.21 and Figure 4.22 summarize the results as boxplots of the relative root mean square

error (RMSE) for variance estimate for different recruitment behaviors across 13 attributes. In the

ratios, RMSE of the estimated standard deviation is the numerator and the true standard deviation

approximated via Monte Carlo is the denominator. Figure 4.23 and Figure 4.24 summarize the

coverage of the 95% confidence interval for different recruitment behaviors across 13 attributes.

Combined estimator and convex combination are closer to the true standard deviation approxi-

mated via Monte Carlo and nominal 95 percent confidence interval coverage.
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Figure 4.19: Ratio of RMSE for each recruitment behavior to RMSE of combined estimator across 13

attributes of seeds selected proportional to degree. Values smaller than one favor the combined estimator.

Each pair of successive boxplots corresponds to RMSE ratios for one recruitment behavior, one estimator

type, and 13 attributes under 130 sample size (left boxplot) and 150 sample size (right boxplot).
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Figure 4.20: Ratio of RMSE for each recruitment behavior to RMSE of combined estimator across 13

attributes of seeds selected randomly. Values smaller than one favor the combined estimator. Each pair of

successive boxplots corresponds to RMSE ratios for one recruitment behavior, one estimator type, and 13

attributes under 130 sample size (left boxplot) and 150 sample size (right boxplot).
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Figure 4.21: Relative RMSE of standard deviation of each strategy across 13 attributes for five estimator

of seeds selected proportional to degree. Smaller values are better. Each pair of successive boxplots cor-

responds to relative RMSE for one recruitment behavior, one estimator type, and 13 attributes under 130

sample size (left boxplot) and 150 sample size (right boxplot).
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Figure 4.22: Relative RMSE of standard deviation of each strategy across 13 attributes for five estimator

of seeds selected randomly. Smaller values are better. Each pair of successive boxplots corresponds to

relative RMSE for one recruitment behavior, one estimator type, and 13 attributes under 130 sample size

(left boxplot) and 150 sample size (right boxplot).
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Figure 4.23: 95 percent confidence interval coverage of each strategy across 13 attributes for five estimator

of seeds selected proportional to degree. Each pair of successive boxplots corresponds to confidence interval

coverage for one recruitment behavior, one estimator type, and 13 attributes under 130 sample size (left

boxplot) and 150 sample size (right boxplot).
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Figure 4.24: 95 percent confidence interval coverage of each strategy across 13 attributes for five estimator

of seeds selected randomly. Each pair of successive boxplots corresponds to confidence interval coverage

for one recruitment behavior, one estimator type, and 13 attributes under 130 sample size (left boxplot) and

150 sample size (right boxplot).
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4.3 A dual-frame approach for combing probability and non-

probability samples

4.3.1 Introduction

In chapter 3, we assume probability sample and nonprobability sample are selected from the

same frame. However, this might not be true in many nonprobability sampling settings. In this sec-

tion, we consider the extension that nonprobability samples are drawn from a subset of the whole

population, so that the nonprobability samples have undercoverage bias. We utilize the frames and

simulated samples described in Benoit-Bryan and Mulrow (2021), which were created to evaluate

different estimation approaches that combine probability and nonprobability samples. The data

used to generate these simulated samples is from a real study called Culture and Community in

a Time of Crisis (CCTC), which evaluated behaviors and attitudes during the pandemic crisis. In

the simulated version, the probability sample frame is the full population, and the nonprobability

sample frame is from an unknown subset of the probability sample frame and has unknown selec-

tion mechanism. The probability sample is representative and small, the nonprobability sample is

biased but large. Our goal is to estimate characteristics of the population of interest by combin-

ing the probability and nonprobability samples. The approach we used is a dual-frame technique

adapted from chapter 3.

4.3.2 Estimation

We modified the combined estimator and separate estimator, introduced in chapter 3, to the

scenario that the nonprobability sample frame is a subset of the probability sample frame. Let

sA denote a probability sample from U with known inclusion probabilities, and sB denote a non-

probability sample from sub-population UB with unknown inclusion probabilities. Any elements

selected in both sA and sB are screened out in the sB sample, so that sA ∩ sB = ∅. The probability

sample indicators are IAk = 1 if k is from the probability sample, IAk = 0 otherwise; IBk = 1 if k is

from the nonprobability sample, IBk = 0 otherwise. The first order inclusion probability for sA is
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πA
k = P

[
IAk = 1

]
, where πA

k > 0 and known for all k ∈ sA. The first order inclusion probability

for sB is πB
k = ρk(1 − πA

k ). Because of the unknown selection mechanism, both ρk and πA
k are

unknown for k ∈ sB.

We use statistical matching from the nonprobability sample to the probability sample to figure

out what part of the universe sB represents, and to determine πA
k for k ∈ sB. Each nonprobability

sample element is matched to one probability sample element using Gower’s distance measure

(Gower, 1971). We define the matching notation mkℓ = 1 if k ∈ sA is matched to unit ℓ ∈ sB,

mkℓ = 0 otherwise. If
∑

ℓ∈sB
mkℓ = mk+ > 0, some element in sA is matched in sB, andmk+ = 0

otherwise. Let bk = 1 if mk+ > 0, bk = 0 if mk+ = 0. If the nonprobablity sample size nB is

large, bk is almost not random, hence we treat bk as nonrandom here. Using a similar argument to

that in chapter 3 for estimating ρk, we construct the pseudo log-likelihood function using only the

matched part of sA and sB, and assuming Poisson sampling for sB:

∑

k∈U\sA

IBk ln

(
ρk

1− ρk

)
+
∑

k∈U

ln (1− ρk) (1− πA
k )
IAk
πA
k

bk.

If ρk follows a logistic model logit (ρk) = x⊤
k θ, the pseudo log-likelihood is

∑

k∈U\sA

IBk x
⊤
k θ −

∑

k∈U

(1− πA
k )
IAk
πA
k

bk ln
{
1 + exp

(
x⊤
k θ
)}
.

We also normalize the estimated ρk so that the expected nonprobability sample size matches the

actual sample size.

The matching step helps us figure out the undercoverage of the nonprobability sample frame

and πA
k of the nonprobability samples. The matched part of the sA sample (mk+ > 0) is covered

by both the probability sampling frame and the nonprobability sampling frame. For the matched

sample, we utilize the combined or separate estimator to estimate the total. For the unmatched

part of the sA sample (mk+ = 0), we use only the probability sample to estimate the total since

the probability sample is the only data source. The modified combined estimator for the mean
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R̂y,com,m is then

∑
k∈U ykbk(I

A
k + (1− IAk )I

B
k )/(π

A
k + (1− πA

k )ρ̂k) +
∑

k∈U yk (1− bk) I
A
k /π

A
k∑

k∈U bk(I
A
k + (1− IAk )I

B
k )/(π

A
k + (1− πA

k )ρ̂k) +
∑

k∈U (1− bk) IAk /π
A
k

. (4.9)

The design variance of the modified combined estimator can be approximated by Taylor ex-

pansion, and derived from the iterated variance by conditioning on the sA sample first. The Taylor

expansion for the ratio of the combined estimator is approximately

∑
k∈U yk∑
k∈U 1

+
1∑
k∈U 1

[
∑

k∈U

ykbk(I
A
k + (1− IAk )I

B
k )

(πA
k + (1− πA

k )ρ̂k)
+
∑

k∈U

yk (1− bk)
IAk
πA
k

−
∑

k∈U

yk

]

+
−∑k∈U yk

(
∑

k∈U 1)2

[
∑

k∈U

bk(I
A
k + (1− IAk )I

B
k )

(πA
k + (1− πA

k )ρ̂k)
+
∑

k∈U

(1− bk)
IAk
πA
k

−
∑

k∈U

1

]

=
∑

k∈U

(IAk + (1− IAk )I
B
k )

πA
k + (1− πA

k )ρ̂k)
vk +

∑

k∈U

IAk
πA
k

wk,

where

vk =
1∑
k∈U 1

[
ykbk −

∑
k∈U yk∑
k∈U 1

bk

]
,

and

wk =
1∑
k∈U 1

[
yk (1− bk)−

∑
k∈U yk∑
k∈U 1

(1− bk)

]
.

The design variance assuming Poisson sampling for sB is

Var

[
E

[
∑

k∈U

(IAk + (1− IAk )I
B
k )

πA
k + (1− πA

k )ρk
vk +

∑

k∈U

IAk
πA
k

wk

∣∣∣∣∣ sA

]]

+ E

[
Var

[
∑

k∈U

(IAk + (1− IAk )I
B
k )

πA
k + (1− πA

k )ρk)
vk +

∑

k∈U

IAk
πA
k

wk

∣∣∣∣∣ sA
]]

= Var

[
∑

k∈U

(IAk + (1− IAk )ρk)

πA
k + (1− πA

k )ρk
vk +

∑

k∈U

IAk
πA
k

wk

]
+ E

[
∑

k∈U

v2k(1− IAk )
2ρk(1− ρk)

(πA
k + (1− πA

k )ρk)
2

]

=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) hk
πA
k

hℓ
πA
ℓ

+
∑

k∈U

v2k(1− πA
k )ρk(1− ρk)

(πA
k + (1− πA

k )ρk)
2 , (4.10)

109



where hk =
{(

(1− ρk)vkπ
A
k

)
(πA

k + (1− πA
k )ρk)

−1 + wk

}
. The variance estimator that estimates

the first component of (4.10) from the probability sample using the with-replacement approxi-

mation, and estimates the second component of (4.10) from the probability sample sA assuming

Poisson sampling for sB is:

1

nA (nA − 1)

∑

k∈sA

(
ĥk

πA
k /nA

−
∑

k∈sA

(1− ρ̂k)v̂k
πA
k + (1− πA

k )ρ̂k
+
ŵk

πA
k

)2

+
∑

k∈U

v̂2k(1− πA
k )ρ̂k(1− ρ̂k)

(πA
k + (1− πA

k )ρ̂k)
2

IAk
πA
k

, (4.11)

where ĥk =
{(

(1− ρ̂k)v̂kπ
A
k

)
(πA

k + (1− πA
k )ρ̂k)

−1 + ŵk

}
.

v̂k =
1∑

k∈sA
1/πA

k

[
ykbk −

∑
k∈sA

yk/π
A
k∑

k∈sA
1/πA

k

bk

]
,

and

ŵk =
1∑

k∈sA
1/πA

k

[
yk (1− bk)−

∑
k∈sA

yk/π
A
k∑

k∈sA
1/πA

k

(1− bk)

]
.

The modified separate estimator for the mean R̂y,sep,m is

ψ
∑

k∈U ykbkI
A
k /π

A
k + (1− ψ)

∑
k∈U ykbk(1− IAk )I

B
k /(1− πA

k )ρ̂k +
∑

k∈U yk (1− bk) I
A
k /π

A
k

ψ
∑

k∈U bkI
A
k /π

A
k + (1− ψ)

∑
k∈U bk(1− IAk )I

B
k /(1− πA

k )ρ̂k +
∑

k∈U (1− bk) IAk /π
A
k

,

(4.12)

where ψ is between 0 and 1. The design variance of the modified separate estimator can also be

approximated by Taylor expansion, and derived from the iterated variance by conditioning on the

sA sample first. The Taylor expansion is

∑

k∈U

ψ
IAk
πA
k

vk +
∑

k∈U

(1− ψ)
(1− IAk )I

B
k

(1− πA
k )ρ̂k

vk +
∑

k∈U

IAk
πA
k

wk.
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The design variance assuming Poisson sampling for sB is

Var

[
E

[
∑

k∈U

ψ
IAk
πA
k

vk +
∑

k∈U

(1− ψ)
(1− IAk )I

B
k

(1− πA
k )ρk

vk +
∑

k∈U

IAk
πA
k

wk

∣∣∣∣∣ sA

]]

+ E

[
Var

[
∑

k∈U

ψ
IAk
πA
k

vk +
∑

k∈U

(1− ψ)
(1− IAk )I

B
k

(1− πA
k )ρk

vk +
∑

k∈U

IAk
πA
k

wk

∣∣∣∣∣ sA
]]

=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) gk
πA
k

gℓ
πA
ℓ

+
∑

k∈U

(1− ψ)2
v2k(1− πA

k )ρk(1− ρk)

((1− πA
k )ρk)

2 , (4.13)

where gk =
{
ψvk +

(
−(1− ψ)vkπ

A
k

)
((1− πA

k ))
−1 + wk

}
. The variance estimator that estimates

the first component of (4.13) from the probability sample using the with-replacement approxi-

mation, and estimates the second component of (4.13) from the probability sample sA assuming

Poisson sampling for sB is:

1

nA (nA − 1)

∑

k∈sA

(
ĝk

πA
k /nA

−
∑

k∈sA

ψv̂k + (−(1− ψ)v̂k)

(1− πA
k )

+
ŵk

πA
k

)2

+ (1− ψ)2
∑

k∈U

v̂2k(1− πA
k )ρ̂k(1− ρ̂k)

((1− πA
k ) ρ̂k)

2

IAk
πA
k

, (4.14)

where ĝk =
{
ψv̂k +

(
−(1− ψ)v̂kπ

A
k

)
((1− πA

k ))
−1 + ŵk

}
.

4.3.3 Simulation experiment

The artificial population for the CCTC simulation consists of 113,549 records. Stratified proba-

bility samples of size 1,000 are selected from the whole population. Nonprobability samples of size

4,000 are selected from a sub-population consisting of 74,202 records. The inclusion probability

is known for the probability sample and unknown for the nonprobability sample. The estimation

methods are evaluated on 22 binary response variables related to a person’s behavior or attitude.

There are many possible covariates for matching and propensity modeling. We use all covariates

in matching the nonprobability sample and probability sample, including education, employment

status, income, age, race, region, and metro (binary indicator of metropolitan area). We estimate
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the inclusion probability of nonprobability sample ρk for all variables using the model

logit(ρk) = β0 + β1age.

We use this very simple model because adding other covariates like race did not improve the pre-

diction performance. From the CCTC simulation experiment, we use 1000 replicates of the proba-

bility and nonprobability samples and construct combined and separate estimators of 22 variables,

plus a baseline using only probability samples and the original weights. The ψ for separate esti-

mator is fixed at 0.5. Table 4.3 summarizes the percent relative bias for each of the 22 variables.

The estimator using only the probability sample is theoretically unbiased. Both the combined and

separate estimator incorporate the nonprobability sample while maintaining small relative bias.

Table 4.4 summarizes the effective sample size ratio for each of the 22 variables. In the ratio,

mean square error for the baseline is the numerator and mean square error for combined or separate

estimator is the denominator. If the ratio is greater than 1, there is a benefit of adding nonproba-

bility sample to the probability sample. For all variables, there is a gain from the addition of the

nonprobability sample, but the increase is not a factor of five (from 1000 probability to 1000 prob-

ability plus 4000 nonprobability) due to the selection and coverage issues with the nonprobability

sample.

We compute the standard error for combined and separate estimator from (4.11) and (4.14). The

variance estimator is stable and approximately unbiased. Table 4.5 summarizes the 95% confidence

interval coverage for the 22 variables. Almost all confidence intervals using either the separate or

combined estimator have close to the 95% nominal coverage. In some cases, like the “Q18-Very

Unimportant” variable, the population proportion is very close to zero and confidence intervals for

such sparse proportions are known to have poor coverage because the normal approximation is

poor.
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Table 4.3: Monte Carlo estimates (based on 1000 replicated samples) of percent relative bias of estimators

using the probability sample only, combined estimator (4.9), and separate estimator (4.12) for 22 binary

variables from the CCTC experiment.

Variable Probability Sample Combined Estimator Separate Estimator

Classical music 0.04 1.91 1.22

In person art experience 0.10 0.37 0.26

Online exhibitions 0.04 1.26 0.68

See play 0.23 0.01 0.11

Live online event -0.26 1.16 0.54

Want more fun 0.17 -0.91 -0.52

Online kid activities 0.07 2.84 1.52

Celebrate heritage 0.62 1.95 1.49

Community festival 0.05 0.15 0.07

Want more hope 0.04 -0.59 -0.35

Watched TV series or movie -0.06 -0.27 -0.21

Take art class -0.47 0.31 -0.03

Q17-Very Unimportant 0.00 -2.26 -1.35

Q17-Unimportant 0.70 -0.81 -0.21

Q17-Neither 0.21 -2.33 -1.23

Q17-Important 0.00 -1.72 -1.00

Q17-Very Important -0.12 1.74 0.96

Q18-Very Unimportant 0.52 -0.28 -0.29

Q18-Unimportant -0.59 -4.52 -2.94

Q18-Neither -0.50 -3.54 -2.24

Q18-Important 0.11 -1.67 -0.91

Q18-Very Important 0.05 1.59 0.94
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Table 4.4: Effective sample size ratio (based on 1000 replicated samples) of the combined estimator (4.9),

and separate estimator (4.12) for 22 binary variables from the CCTC experiment.

Variable Combined Estimator Separate Estimator

Classical music 1.61 1.67

In person art experience 2.83 2.11

Online exhibitions 2.11 2.01

See play 3.26 2.35

Live online event 2.48 2.17

Want more fun 2.23 2.05

Online kid activities 1.11 1.53

Celebrate heritage 2.85 2.07

Community festival 2.91 2.18

Want more hope 2.85 2.21

Watched TV series or movie 2.39 1.97

Take art class 3.23 2.22

Q17-Very Unimportant 2.50 1.90

Q17-Unimportant 2.93 2.09

Q17-Neither 2.31 1.99

Q17-Important 2.32 2.02

Q17-Very Important 1.72 1.88

Q18-Very Unimportant 1.85 1.56

Q18-Unimportant 2.00 1.72

Q18-Neither 1.77 1.69

Q18-Important 2.18 1.99

Q18-Very Important 1.51 1.75
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Figure 4.25: Standard error (based on 1000 replicated samples) of the combined estimator for 22 binary

variables from the CCTC experiment. The red dots are the true standard error approximated via Monte

Carlo.
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Figure 4.26: Standard error (based on 1000 replicated samples) of the separate estimator for 22 binary

variables from the CCTC experiment. The red dots are the true standard error approximated via Monte

Carlo.
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Table 4.5: 95 percent confidence interval coverage (based on 1000 replicated samples) of the combined

estimator (4.9), and separate estimator (4.12) for 22 binary variables from the CCTC experiment.

Variable Combined Estimator Separate Estimator

Classical music 85.1 91.7

In person art experience 94.8 94.5

Online exhibitions 89.9 94.0

See play 94.1 94.4

Live online event 92.3 95.5

Want more fun 93.0 96.4

Online kid activities 75.3 90.2

Celebrate heritage 93.5 93.0

Community festival 94.5 95.3

Want more hope 94.5 95.3

Watched TV series or movie 93.8 93.9

Take art class 95.0 94.0

Q17-Very Unimportant 89.5 91.0

Q17-Unimportant 92.7 93.5

Q17-Neither 90.8 94.7

Q17-Important 90.5 93.7

Q17-Very Important 87.1 94.9

Q18-Very Unimportant 73.4 78.9

Q18-Unimportant 89.3 91.5

Q18-Neither 89.8 93.1

Q18-Important 91.7 95.4

Q18-Very Important 85.5 94.4

117



4.4 Discussion

We give three possible extensions of the dual-frame type estimator combing the probability and

nonprobability samples. Doubly-robust estimator fixes the drawback of misspecified probability

model by including a prediction model for the response. The dual-frame type estimator applied to

the respondent-driven sampling dominates the existing RDS estimator for seeds that are selected

with known probability design and a relative small number being recruited. In the setting of incom-

plete frame of the nonprobability sample, the estimator is also robust by adding the matching step

between the probability and nonprobability samples. The dual-frame estimator is robust across dif-

ferent kinds of data set that involves the strict probability sample and the sample with an unknown

selection mechanism or inclusion probability.
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Chapter 5

Discussion and conclusion

5.1 Summary of contributions

We examined two messy survey problems in this dissertation, imperfect matching in the aux-

iliary information and inference for surveys incorporating expert judgment. Auxiliary variable in

estimation has been widely used in the survey setting, but it assumes the external data source can be

matched to one and only one auxiliary record for the kth element in the population. We developed

a difference estimator and its variance estimator when the element k is imperfectly matched to the

external data source. We also extended the difference estimator to the multiple frame scenario. In

the simulation, we demonstrated that the difference estimator under imperfect matching is better

than the Horvitz-Thompson type estimator in terms of lower RMSE.

Because of the difficulty and expense of collecting data from a probability sample, there is

a growing literature discussing inference for nonprobability samples. The response of interest is

available in both probability and nonprobability samples in our scenario of expert judgment sam-

pling. We combine the nonprobability sample with the probability sample to generate the estimates

of inclusion probabilities and estimators of population total. The combined estimator dominates

the classic probability sample with known weights across a range of characteristics and differ-

ent judgment behaviors. Theoretical properties including consistency and central limit theorem

of the combined estimator are also derived in chapter 3. We extend the estimator in chapter 3 to

the doubly-robust combined estimator to avoid the problem of a misspecified probability model.

The methodological contributions in chapter 3 are shown to work in a variety of contexts like

respondent-driven sampling and incomplete frame of nonprobability samples.
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5.2 Directions for further work

In the imperfect matching, three other directions for generalization of the results are (1) allow-

ing the predictor µ(aℓ) to be estimated from the sample, (2) allowing the match metric values mkℓ

to depend on the sample, and (3) allowing multiple auxiliary databases. The first of these gen-

eralizations is standard in the survey literature (see Breidt and Opsomer (2017) for an extensive

review), but will be novel in this context due to the uncertain matching. The second generalization

is also novel; some of the techniques of Breidt and Opsomer (2008); Dahlke et al. (2013) may be

relevant in determining suitable variance estimation strategies.

In the expert judgment inference, future work may involve the generalization of the doubly-

robust estimator that allows the different partition of the sample with known or unknown inclusion

probability, known or unknown auxiliary information available at the sample level, and known

or unknown auxiliary information available at the population level. In the dual-frame approach

for combining probability and nonprobability samples, future work may involve the model selec-

tion for the propensity model, and the alternate setting of the incomplete frame in section 4.3, in

which the nonprobability sample frame gives more complete coverage of the population and the

probability sample frame is incomplete.
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Appendix A

A.1 Likelihood and score function for the with replacement

sampling assumption of the nonprobability sample

Suppose the nonprobability sampling design is with replacement sampling, the log-likelihood

function for the ρk is

lnL(θ) =
∑

k∈U\sA

bk ln ρk −
∑

k∈U\sA

bk ln


 ∑

k∈U\sA

ρk


 ,

where bk is the number of times the kth element in the nonprobability samples. Because the second

term of the log-likelihood involves data not in sA or sB, it is replaced by the Horvitz-Thompson

estimator of its expectation

∑

k∈U\sA

bk ln ρk −
∑

k∈U\sA

bk ln

(
∑

k∈U

ρk(1− πA
k )
IAk
πA
k

)
.

Under the logistic regression model of ρk, logit (ρk) = x⊤
k θ, the pseudo log-likelihood is

ℓ(θ) =
∑

k∈U\sA

bk
[
x⊤
k θ − ln

{
1 + exp

(
x⊤
k θ
)}]

− nB ln

{
∑

k∈U

exp
(
x⊤
k θ
)

1 + exp
(
x⊤
k θ
)(1− πA

k )
IAk
πA
k

}
,

and the score function is

∂

∂θ
ℓ(θ) =

∑

k∈U\sA

bk

[
xk −

exp
(
x⊤
k θ
)

1 + exp
(
x⊤
k θ
)xk

]

− nB

∑
k∈U exp

(
x⊤
k θ
)
xk

(
1− πA

k

)
IAk /

{
1 + exp

(
x⊤
k θ
)}2

πA
k∑

k∈U exp
(
x⊤
k θ
)
(1− πA

k ) I
A
k /
{
1 + exp

(
x⊤
k θ
)}
πA
k

. (A.1)
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The expected value of (A.1) is

E


E


 ∑

k∈U\sA

bk

{
xk −

exp
(
x⊤
k θ
)
xk

1 + exp
(
x⊤
k θ
)
}∣∣∣∣∣∣

sA






− nBE

[∑
k∈U exp

(
x⊤
k θ
)
xk

(
1− πA

k

)
IAk /

{
1 + exp

(
x⊤
k θ
)}2

πA
k∑

k∈U exp
(
x⊤
k θ
)
(1− πA

k ) I
A
k /
{
1 + exp

(
x⊤
k θ
)}
πA
k

]
= (I)− (II) .

For (I),

E


E


 ∑

k∈U\sA

bk

{
xk −

exp
(
x⊤
k θ
)
xk

1 + exp
(
x⊤
k θ
)
}∣∣∣∣∣∣

sA






= nBE


 ∑

k∈U\sA

exp
(
x⊤
k θ
)
xk/

{
1 + exp

(
x⊤
k θ
)} {

1 + exp
(
x⊤
k θ
)}

∑
k∈U exp

(
x⊤
k θ
)
/
{
1 + exp

(
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= nB

[∑
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(
1− πA
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1 + exp
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/
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]
+O(n−1/2).

For (II),

nBE

[∑
k∈U exp

(
x⊤
k θ
)
xk

(
1− πA

k

)
IAk /
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1 + exp

(
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k∈U exp
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∑
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k ) exp
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x⊤
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/
{
1 + exp
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x⊤
k θ
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]
+O(n−1/2).

The score function is asymptotically unbiased for 0.

A.2 Proof of Lemmas in chapter 3

A.2.1 Lemma 3

Proof. Because πk = πA
k + (1 − πA

k )ρk, by (B1) and 0 ⩽ ρk ⩽ 1, mink∈U πk ⩾ λ > 0. By

the assumption that sB follows Poisson sampling, πkℓ = πA
kℓ (1− ρk) (1− ρℓ) + πA

k ρℓ (1− ρk) +

πA
ℓ ρk (1− ρℓ) + ρkρℓ. By (B1) and 0 ⩽ ρk ⩽ 1, mink,ℓ∈U πkℓ ⩾ λ∗ > 0. The covariance of the
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combined sample for k ̸= ℓ is

Cov(Ik, Iℓ) = Cov
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B
ℓ

)
+ Cov

(
IAℓ , (1− IAk )I

B
k

)

+ Cov
(
(1− IAk )I

B
k , (1− IAℓ )I

B
ℓ

)

= Cov(IAk , I
A
ℓ ) + E

[
Cov

(
IAk , (1− IAℓ )I

B
ℓ

∣∣ sA
)]

+ Cov
(
E
[
IAk
∣∣ sA
]
,E
[
(1− IAℓ )I

B
ℓ

∣∣ sA
])

+ E
[
Cov

(
IAℓ , (1− IAk )I

B
k

∣∣ sA
)]

+ Cov
(
E
[
IAℓ
∣∣ sA
]
,E
[
(1− IAk )I

B
k

∣∣ sA
])

+ E
[
Cov

(
(1− IAk )I

B
k , (1− IAℓ )I

B
ℓ

∣∣ sA
)]

+ Cov
(
E
[
(1− IAk )I

B
k

∣∣ sA
]
,E
[
(1− IAℓ )I

B
ℓ

∣∣ sA
])

=
(
πA
kℓ − πA

k π
A
ℓ

)
− ρℓ

(
πA
kℓ − πA

k π
A
ℓ

)
− ρk

(
πA
kℓ − πA

k π
A
ℓ

)
+ ρkρℓ

(
πA
kℓ − πA

k π
A
ℓ

)

=
(
πA
kℓ − πA

k π
A
ℓ

)
(1− ρk) (1− ρℓ) .

Then

lim sup
N→∞

(nA + nB) max
k,ℓ∈U :k ̸=ℓ

|πkℓ − πkπℓ|

= lim sup
N→∞

(nA + nB) max
k,ℓ∈U :k ̸=ℓ

∣∣(πA
kℓ − πA

k π
A
ℓ

)
(1− ρk) (1− ρℓ)

∣∣

= lim sup
N→∞

{
nA max

k,ℓ∈U :k ̸=ℓ

∣∣(πA
kℓ − πA

k π
A
ℓ

)∣∣ |(1− ρk) (1− ρℓ)|

+ nB max
k,ℓ∈U :k ̸=ℓ

∣∣(πA
kℓ − πA

k π
A
ℓ

)∣∣ |(1− ρk) (1− ρℓ)|
}
,

which is bounded by (B1) and (B4).
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A.2.2 Lemma 4

Proof. For k1, k2, k3, k4 ∈ D4,N , the expectation E [(Ik1 − πk1) (Ik2 − πk2) (Ik3 − πk3) (Ik4 − πk4)]

can be written as

E
[{(

IAk1 + (1− IAk1)I
B
k1

)
−
(
πA
k1
+ (1− πA

k1
)ρk1

)}

{(
IAk2 + (1− IAk2)I

B
k2

)
−
(
πA
k2
+ (1− πA

k2
)ρk2

)}

{(
IAk3 + (1− IAk3)I

B
k3

)
−
(
πA
k3
+ (1− πA

k3
)ρk3

)}

{(
IAk4 + (1− IAk4)I

B
k4

)
−
(
πA
k4
+ (1− πA

k4
)ρk4

)}]

= (1− ρk1) (1− ρk2) (1− ρk3) (1− ρk4)E
[(
Ik1 − πA

k1

) (
Ik2 − πA

k2

) (
Ik3 − πA

k3

) (
Ik4 − πA

k4

)]
.

By 0 ⩽ ρk ⩽ 1, (B3), (B4), and the Cauchy–Schwarz inequality,

lim
N→∞

n2 max
(k1,k2,k3,k4∈D4,N)

|E [(Ik1 − πk1) (Ik2 − πk2) (Ik3 − πk3) (Ik4 − πk4)]|

= lim
N→∞

(nA + nB)
2 max
(k1,k2,k3,k4∈D4,N)

|(1− ρk1) (1− ρk2) (1− ρk3) (1− ρk4)×

E
[(
Ik1 − πA

k1

) (
Ik2 − πA

k2

) (
Ik3 − πA

k3

) (
Ik4 − πA

k4

)]∣∣

= lim
N→∞

n2
A max
(k1,k2,k3,k4∈D4,N)

|(1− ρk1) (1− ρk2) (1− ρk3) (1− ρk4)| ×
∣∣E
[(
Ik1 − πA

k1

) (
Ik2 − πA

k2

) (
Ik3 − πA

k3

) (
Ik4 − πA

k4

)]∣∣

+ lim
N→∞

n2
B max
(k1,k2,k3,k4∈D4,N)

|(1− ρk1) (1− ρk2) (1− ρk3) (1− ρk4)| ×
∣∣E
[(
Ik1 − πA

k1

) (
Ik2 − πA

k2

) (
Ik3 − πA

k3

) (
Ik4 − πA

k4

)]∣∣

+ lim
N→∞

2nAnB max
(k1,k2,k3,k4∈D4,N)

|(1− ρk1) (1− ρk2) (1− ρk3) (1− ρk4)| ×
∣∣E
[(
Ik1 − πA

k1

) (
Ik2 − πA

k2

) (
Ik3 − πA

k3

) (
Ik4 − πA

k4

)]∣∣ <∞.

129



For k1, k2, k3, k4 ∈ D4,N , the expectation E [(Ik1Ik2 − πk1k2) (Ik3Ik4 − πk3k4)] can be written as

E
[{(

IAk1 + (1− IAk1)I
B
k1

) (
IAk2 + (1− IAk2)I

B
k2

)

−
(
πA
k1k2

(1− ρk1 − ρk2 + ρk1ρk2) + πA
k1
(ρk2 − ρk1ρk2) + πA

k2
(ρk1 − ρk1ρk2) + ρk1ρk2

)}

{(
IAk3 + (1− IAk3)I

B
k3

) (
IAk4 + (1− IAk4)I

B
k4

)

−
(
πA
k3k4

(1− ρk3 − ρk4 + ρk3ρk4) + πA
k3
(ρk4 − ρk3ρk4) + πA

k4
(ρk3 − ρk3ρk4) + ρk3ρk4

)}]

= E
[{(

IAk1I
A
k2
− πA

k1k2

)
(1− ρk1) (1− ρk2) +

(
IAk1 − πA

k1

)
ρk2(1− ρk2)

+
(
IAk2 − πA

k2

)
ρk1(1− ρk1)

}
×
{(
IAk3I

A
k4
− πA

k3k4

)
(1− ρk3) (1− ρk4)

+
(
IAk3 − πA

k3

)
ρk4(1− ρk4) +

(
IAk4 − πA

k4

)
ρk3(1− ρk3)

}]

= (1− ρk1) (1− ρk2) (1− ρk3) (1− ρk4)E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk3I

A
k4
− πA

k3k4

)]

+ (1− ρk1) (1− ρk2) ρk4(1− ρk4)E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk3 − πA

k3

)]

+ (1− ρk1) (1− ρk2) ρk3(1− ρk3)E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk4 − πA

k4

)]

+ (1− ρk3) (1− ρk4) ρk2(1− ρk2)E
[(
IAk3I

A
k4
− πA

k3k4

) (
IAk1 − πA

k1

)]

+ (1− ρk3) (1− ρk4) ρk1(1− ρk1)E
[(
IAk3I

A
k4
− πA

k3k4

) (
IAk2 − πA

k2

)]

+ ρk2(1− ρk2)ρk4(1− ρk4)E
[(
IAk1 − πA

k1

) (
IAk3 − πA

k3

)]

+ ρk2(1− ρk2)ρk3(1− ρk3)E
[(
IAk1 − πA

k1

) (
IAk4 − πA

k4

)]

+ ρk1(1− ρk1)ρk4(1− ρk4)E
[(
IAk2 − πA

k2

) (
IAk3 − πA

k3

)]

+ ρk1(1− ρk1)ρk3(1− ρk3)E
[(
IAk2 − πA

k2

) (
IAk4 − πA

k4

)]
.

By (B1),

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk1 − πA

k1

) (
IAk3 − πA

k3

)]∣∣ = lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣πA
k1k3

− πA
k1
πA
k3

∣∣ = 0

Similarly,

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk1 − πA

k1

) (
IAk4 − πA

k4

)]∣∣ = 0;
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lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk2 − πA

k2

) (
IAk4 − πA

k4

)]∣∣ = 0;

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk2 − πA

k2

) (
IAk3 − πA

k3

)]∣∣ = 0.

From the covariance inequality,

∣∣E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk4 − πA

k4

)]∣∣2 ≤ E
[(
IAk1I

A
k2
− πA

k1k2

)2]
E
[(
IAk4 − πA

k4

)2]
.

By (B1) and (B3),

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk4 − πA

k4

)]∣∣2

≤ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

E
[(
IAk1I

A
k2
− πA

k1k2

)2]
lim

N→∞
max

(k1,k2,k3,k4∈D4,N)
E
[(
IAk4 − πA

k4

)2]

≤ 0.

Hence,

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk4 − πA

k4

)]∣∣ = 0.

Similarly,

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk3 − πA

k3

)]∣∣ = 0;

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk3I

A
k4
− πA

k3k4

) (
IAk1 − πA

k1

)]∣∣ = 0;

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

∣∣E
[(
IAk3I

A
k4
− πA

k3k4

) (
IAk2 − πA

k2

)]∣∣ = 0.
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Therefore,

lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

|E [(Ik1Ik2 − πk1k2) (Ik3Ik4 − πk3k4)]|

= lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

(1− ρk1) (1− ρk2) (1− ρk3) (1− ρk4)×
∣∣E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk3I

A
k4
− πA

k3k4

)]∣∣

+ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

(1− ρk1) (1− ρk2) ρk4(1− ρk4)
∣∣E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk3 − πA

k3

)]∣∣

+ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

(1− ρk1) (1− ρk2) ρk3(1− ρk3)
∣∣E
[(
IAk1I

A
k2
− πA

k1k2

) (
IAk4 − πA

k4

)]∣∣

+ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

(1− ρk3) (1− ρk4) ρk2(1− ρk2)
∣∣E
[(
IAk3I

A
k4
− πA

k3k4

) (
IAk1 − πA

k1

)]∣∣

+ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

(1− ρk3) (1− ρk4) ρk1(1− ρk1)
∣∣E
[(
IAk3I

A
k4
− πA

k3k4

) (
IAk2 − πA

k2

)]∣∣

+ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

ρk2(1− ρk2)ρk4(1− ρk4)
∣∣E
[(
IAk1 − πA

k1

) (
IAk3 − πA

k3

)]∣∣

+ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

ρk2(1− ρk2)ρk3(1− ρk3)
∣∣E
[(
IAk1 − πA

k1

) (
IAk4 − πA

k4

)]∣∣

+ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

ρk1(1− ρk1)ρk4(1− ρk4)
∣∣E
[(
IAk2 − πA

k2

) (
IAk3 − πA

k3

)]∣∣

+ lim
N→∞

max
(k1,k2,k3,k4∈D4,N)

ρk1(1− ρk1)ρk3(1− ρk3)
∣∣E
[(
IAk2 − πA

k2

) (
IAk4 − πA

k4

)]∣∣ = 0.

A.3 Assumptions and the proof of the central limit theorem of

the combined estimator

(D1) Let Ty,N be a sequence of functions of the elements of FN and let θN , ν0,N be a sequence of

constants not depending on FN . Assume

Ty,N − θN√
ν0,N

L→ N(0, 1),

where Ty,N =
∑

k∈U yk.
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(D2) Let a sequence of probability samples sA,N selected from FN such that

E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty,N

√
Var
[
E
[
T̂y,com

∣∣∣ sA, FN

]]∣∣∣FN

∣∣∣∣∣∣∣∣
FN

L→ N(0, 1) a.s.,

where

E
[
T̂y,com|sA, FN

]
=


∑

k∈sA

yk
πA
k + (1− πA

k )ρk
+
∑

k∈U\sA

ykρk
πA
k + (1− πA

k )ρk


 ,

and

Var
[

E
[
T̂y,com

∣∣∣ sA, FN

]∣∣∣FN

]
=
∑

k,ℓ∈U

(
πA
kℓ − πA

k π
A
ℓ

) y∗k
πA
k

y∗ℓ
πA
ℓ

with y∗k = (1− ρk)π
A
k yk

(
πA
k + (1− πA

k )ρk
)−1

.

(D3) Assume

VAV
−1
B

∣∣FN → γ in probability as N → ∞,

where γ is a nonzero constant.

Lemma 5. Assume a sequence of subsamples sB,N selected from the complement of the probability

sample and follows Poisson sampling, then

T̂y,com − E
[
T̂y,com

∣∣∣ sA, FN

]

√
Var
[
T̂y,com

∣∣∣ sA, FN

]

∣∣∣∣∣∣∣∣
sA,N , FN

L→ N(0, 1) a.s.,

where

Var
[
T̂y,com

∣∣∣ sA, FN

]
=
∑

k∈U

(1− IAk )ρk(1− ρk)

(πA
k + (1− πA

k )ρk)
2
y2k.
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Proof. Let rk =
yk(1−IA

k )(IBk −ρk)
πA
k
+(1−πA

k
)ρk

, k = 1, 2, · · · , N . Under Poisson sampling for the sB,N and

conditioned on the sA,N and FN , rk are independent random variables with mean 0 and variance

Vk =
y2k
(
1− IAk

)2

(πA
k + (1− πA

k )ρk)
2ρk(1− ρk).

Let

B2
N =

∑

k∈U

y2k
(
1− IAk

)2

(πA
k + (1− πA

k )ρk)
2ρk(1− ρk) =

∑

k∈U

Vk.

From assumptions (B1) and (B2), for some δ > 0,

lim sup
N→∞

1

N

∑

k∈U

E
[
|rk|2+δ

]
≤ lim sup

N→∞

1

N

∑

k∈U

|yk|2+δ

λ2+δ
× 42+δ <∞ a.s.,

and

lim sup
N→∞

1

N

∑

k∈U

Vk ≤ lim sup
N→∞

1

N

∑

k∈U

y2k
4λ2

<∞ a.s..

If yk does not identically equal to 0, and ρk does not identically equal to 0 or 1,

∑

k∈U

E
[
|rk|2+δ

]
= o

(
B2+δ

N

)
.

Then

B−1
N

∑

k∈U

rk

∣∣∣∣∣ sA,N , FN
L→ N(0, 1) a.s..

by 1.9.2 Corollary in Serfling (1980).

Proof of Result 3.

Proof. Var
[
T̂y,com

∣∣∣ sA, FN

]
is design mean square consistent by (B1) and (B2). We have

VB

(
Var
[
T̂y,com

∣∣∣ sA, FN

])−1
∣∣∣∣FN

P→ 1. (A.2)
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From (A.2), (D2) and Lemma 5,

T̂y,com − E
[
T̂y,com

∣∣∣ sA, FN

]

√
VB

∣∣∣∣∣∣
sA,N , FN

L→ N(0, 1) a.s. (A.3)

by Slutsky’s theorem.
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Let Ep denote the expectation conditioned on FN . For d ∈ R,

P
((

T̂y,com − Ty

)
(VA + VB)

−1/2
⩽ d
∣∣∣FN

)

= P
(
T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]
+ E

[
T̂y,com

∣∣∣ sA, FN

]
− Ty ⩽ d

√
VA + VB

∣∣∣FN

)

= P



T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]

√
VB

⩽ d

√
1 +

VA
VB

−
E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty

√
VB

∣∣∣∣∣∣
FN




= E


P



T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]

√
VB

⩽ d

√
1 +

VA
VB

−
E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty

√
VB

∣∣∣∣∣∣
sA,N , FN






= Ep


Φ


d
√

1 +
VA
VB

−
E
[
T̂y,com|sA

]
− Ty

√
VB






+ Ep


P



T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]

√
VB

⩽ d

√
1 +

VA
VB

−
E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty

√
VB

∣∣∣∣∣∣
sA,N




−Φ


d
√

1 +
VA
VB

−
E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty

√
VB






≤ Ep


Φ


d
√
1 +

VA
VB

−
E
[
T̂y,com|sA

]
− Ty

√
VB






+ Ep



∣∣∣∣∣∣
P



T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]

√
VB

⩽ d

√
1 +

VA
VB

−
E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty

√
VB

∣∣∣∣∣∣
sA,N




−Φ


d
√

1 +
VA
VB

−
E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty

√
VB



∣∣∣∣∣∣




= (I) + (II).
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Let w = d
(
1 + VAV

−1
B

)1/2 −
(

E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty

)
(VB)

−1/2
. For (II), because

∣∣∣∣∣∣
P



T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]

√
VB

⩽ w

∣∣∣∣∣∣
sA,N


− Φ (w)

∣∣∣∣∣∣

is bounded for all w. Hence,

lim
N→∞

Ep



∣∣∣∣∣∣
P



T̂y,com − E

[
T̂y,com

∣∣∣ sA
]

√
VB

⩽ w

∣∣∣∣∣∣
sA,N


− Φ (w)

∣∣∣∣∣∣




= Ep


 lim
N→∞

∣∣∣∣∣∣
P



T̂y,com − E

[
T̂y,com

∣∣∣ sA
]

√
VB

⩽ w

∣∣∣∣∣∣
sA,N


− Φ (w)

∣∣∣∣∣∣




by the dominated convergence theorem. Because Φ is continuous, by Lemma 3.2 of Rao (1962)

and (A.3),

lim
N→∞

sup
w

∣∣∣∣∣∣
P



T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]

√
VB

⩽ w

∣∣∣∣∣∣
sA,N


− Φ(w)

∣∣∣∣∣∣
= 0

Hence,

Ep


 lim
N→∞

∣∣∣∣∣∣
P



T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]

√
VB

⩽ w

∣∣∣∣∣∣
sA,N


− Φ (w)

∣∣∣∣∣∣




≤ Ep


 lim
N→∞

sup
w

∣∣∣∣∣∣
P



T̂y,com − E

[
T̂y,com

∣∣∣ sA, FN

]

√
VB

⩽ w

∣∣∣∣∣∣
sA,N


− Φ (w)

∣∣∣∣∣∣


 = 0.

For (I), since Φ is a bounded and continuous function,

Ep


Φ


d
√

1 +
VA
VB

−
E
[
T̂y,com

∣∣∣ sA, FN

]
− Ty

√
VA

√
VA√
VB




→ E

[
Φ
(
d
√

1 + γ − Z
√
γ
)]
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by assumptions (D2), (D3), and the Portmanteau theorem. Hence,

P

(
T̂y,com − Ty√
VA + VB

⩽ d

∣∣∣∣∣FN

)
→ E

[
Φ
(
d
√

1 + γ − Z
√
γ
)]
.

Let U be a standard normal random variable independent of Z,

E
[
Φ
(
d
√

1 + γ − Z
√
γ
)]

= E
[
P
(
U ⩽ d

√
1 + γ − Z

√
γ
∣∣∣Z
)]

= P
(
U + Z

√
γ ⩽ d

√
1 + γ

)
= Φ(d).

Hence,

P

(
T̂y,com − Ty√
VA + VB

⩽ d

∣∣∣∣∣FN

)
→ Φ(d) as N → ∞.

If ν0,N ≪ VA, VB, (VA + VB) (ν0,N + VA + VB)
−1 P→ 1,

T̂y,com − θN√
ν0,N + VA + VB

L→ N(0, 1),

because

T̂y,com − Ty√
VA + VB

√
VA + VB√

ν0,N + VA + VB
+

Ty − θN√
ν0,N + VA + VB

√
ν0,N√
ν0,N

L→ N(0, 1).

If ν0,N is not small relative to VA, VB, by Theorem 1.3.6 of Fuller (2009), assumption (D1) and the

central limit theorem of the combined estimator imply that

T̂y,com − θN√
ν0,N + VA + VB

L→ N(0, 1).

A.4 Parametric models for simulated trips and catch
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Table A.1: Parameters of the trip model (3.9) within each stratum.

Stratum p̄ λ̄ η Stratum p̄ λ̄ η

1 0.61 1.93 4 16 0.79 1.85 1

2 0.33 3.65 5 17 0.38 3.43 2

3 0.49 2.75 5 18 0.61 2.41 1

4 0.37 1.75 4 19 0.87 1.04 1

5 0.83 2.17 4 20 0.94 1.00 1

6 0.54 3.85 7 21 0.26 2.34 4

7 0.24 2.81 9 22 0.08 1.22 4

8 0.47 2.21 8 23 0.22 0.80 7

9 0.70 1.47 2 24 0.44 0.60 4

10 0.86 1.75 4 25 0.76 0.66 3

11 0.36 1.70 2 26 0.80 1.86 2

12 0.49 2.23 3 27 0.42 1.39 2

13 0.43 1.73 4 28 0.75 0.89 3

14 0.71 1.64 4 29 0.68 1.08 4

15 0.80 1.47 4 30 0.72 0.49 4

Table A.2: Parameters of the catch model (3.10) given trips for eleven different catch types.

Catch θ a γ q

No relation Unif(0, 5) 0 ∞ 1

Binary 0.3

Square root in trips: retention 0.8 0.5 4 1

Linear in trips: retention 0.8 1 4 1

Quadratic in trips: retention 0.8 2 4 1

Square root in trips: moderate 4 0.5 ∞ 1

Linear in trips: moderate 4 1 ∞ 1

Quadratic in trips: moderate 4 2 ∞ 1

Square root in trips: high 8 0.5 ∞ 0.4

Linear in trips: high 8 1 ∞ 0.4

Quadratic in trips: high 8 2 ∞ 0.4

139


