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ABSTRACT

NONPARAMETRIC TESTS FOR INFORMATIVE SELECTION AND SMALL AREA

ESTIMATION FOR RECONCILING SURVEY ESTIMATES

Two topics in the analysis of complex survey data are addressed: testing for informative selec-

tion and addressing temporal discontinuities due to survey redesign.

Informative selection, in which the distribution of response variables given that they are sam-

pled is different from their distribution in the population, is pervasive in modern complex sur-

veys. Failing to take such informativeness into account could produce severe inferential errors,

such as biased parameter estimators, wrong coverage rates of confidence intervals, incorrect test

statistics, and erroneous conclusions. While several parametric procedures exist to test for in-

formative selection in the survey design, it is often hard to check the parametric assumptions on

which those procedures are based. We propose two classes of nonparametric tests for informative

selection, each motivated by a nonparametric test for two independent samples. The first nonpara-

metric class generalizes classic two-sample tests that compare empirical cumulative distribution

functions, including Kolmogorov–Smirnov and Cramér–von Mises, by comparing weighted and

unweighted empirical cumulative distribution functions. The second nonparametric class adapts

two-sample tests that compare distributions based on the maximum mean discrepancy to the setting

of weighted and unweighted distributions. The asymptotic distributions of both test statistics are

established under the null hypothesis of noninformative selection. Simulation results demonstrate

the usefulness of the asymptotic approximations, and show that our tests have competitive power

with parametric tests in a correctly specified parametric setting while achieving greater power in

misspecified scenarios.

Many surveys face the problem of comparing estimates obtained with different methodology,

including differences in frames, measurement instruments, and modes of delivery. Differences
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may exist within the same survey; for example, multi-mode surveys are increasingly common.

Further, it is inevitable that surveys need to be redesigned from time to time. Major redesign of

survey processes could affect survey estimates systematically, and it is important to quantify and

adjust for such discontinuities between the designs to ensure comparability of estimates over time.

We propose a small area estimation approach to reconcile two sets of survey estimates, and apply it

to two surveys in the Marine Recreational Information Program (MRIP). We develop a log-normal

model for the estimates from the two surveys, accounting for temporal dynamics through regres-

sion on population size and state-by-wave seasonal factors, and accounting in part for changing

coverage properties through regression on wireless telephone penetration. Using the estimated de-

sign variances, we develop a regression model that is analytically consistent with the log-normal

mean model. We use the modeled design variances in a Fay-Herriot small area estimation proce-

dure to obtain empirical best linear unbiased predictors of the reconciled effort estimates for all

states and waves, and provide an asymptotically valid mean square error approximation.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Sources of Errors in Surveys

Surveys are used to collect information about a part of a finite population (of people, house-

holds, land segments, account records, image pixels, or any other identifiable elements) in order to

make inferences about the whole population. Surveys are complex because populations are com-

plex: heterogeneous, hard to identify, hard to access, hard to measure, etc. Several errors could

occur during the process of complex surveys. Those errors can be divided into sampling error ver-

sus nonsampling error. Sampling error is the error made by drawing inference about the population

from only a sample. Nonsampling errors are all other errors, including coverage error, nonresponse

error, measurement error and processing error. See section 1.7 of Särndal et al. (1992).

Surveys start with a definition of the population of interest and collection of one or more sam-

pling frames that allow identification and access to population elements: for example, maps, ad-

dress files, telephone directories, etc. Population elements are sampled from the frame, often using

complex procedures that reflect both practical and theoretical considerations. Next, the survey at-

tempts to collect data from the sampled elements. Surveys of human populations use one or more

modes of data collection: mail, internet, telephone, or face-to-face interviewing, for example. Not

all sampled elements respond, and not all responding elements give accurate data. Finally, the col-

lected data are adjusted statistically, to account for the various sources of error, and used to make

inferences about the finite population or the “superpopulation” model assumed to have generated

the finite population.

Coverage error occurs when the sampling frame fails to match the target population. Of partic-

ular concern is undercoverage, in which some elements are in the population of interest but not in

the frame, and cannot be sampled. For example, older telephone surveys were based on landlines
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in households. However, with the expansion of mobile-only users, landline surveys gradually lose

coverage of the targets (Curtin et al. (2005)).

Nonresponse error, in which a sampled element fails to provide some or all data elements, is

a challenge in surveys. In certain surveys of human populations, face-to-face interviewing might

increase the response rate while in other cases, respondents may refuse to respond or give false

information for privacy. If the responses are not missing at random, it could severely bias the

inference unless appropriate adjustments are made. See section 14.10 of Särndal et al. (1992).

Measurement error refers to differences between the true data values and the responses recorded

in surveys, especially systematic bias. Different modes have to adjust the wording and length of

survey questionnaires accordingly, which could lead to bias. For example, a telephone survey may

need to break a long question into pieces for the convenience of respondents, and the overall survey

cannot take too long. Mail survey respondents have the flexibility to answer longer questions and

longer questionnaires. These differences in the format and layout could lead to systematic differ-

ences between the responses to the same question presented via different modes. See section 14.8

of Särndal et al. (1992).

Processing error occurs in analyzing the sample, which includes all kinds of errors, such as

data entry error, coding error, imputation error, wrong formulas, etc. See section 1.7.iii of Särndal

et al. (1992).

This dissertation focuses on two primary problems: informative selection, which may come

from some combination of coverage error, sampling error, and nonresponse error; and reconcilia-

tion of survey estimates from surveys with different kinds of nonsampling errors.

1.1.2 Informative Selection

By design, complex surveys often involve unequal probabilities of selection, especially to

achieve efficiencies, ensure representation of subpopulations, etc. In addition, actual probabil-

ities of selection can differ from designed probabilities of selection due to coverage errors and

nonresponse. For simplicity, we will consider the case of known (designed) selection probabili-
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ties, though in practice we usually work with weights that are, at least approximately, estimated

versions of inverse selection probabilities, reflecting both design and non-design features.

One direct result of unequal probability sampling is that the model holding for sample data

can be quite different from the model for the population. Suppose we have a finite population

consisting of N elements denoted by a set of indices, U = {1, . . . , N}. We denote the response

variable of interest by yi for i ∈ U and assume that these values in the finite population are

generated as independent and identically distributed (iid) realizations from the probability density

function (pdf) f(yi), known as the superpopulation model.

Let s ⊂ U be the sample of selected elements, and define the sample membership indicator

ξi = 1 if i ∈ s and ξi = 0, otherwise. We denote the (unconditional) inclusion probability by

πi = P(i ∈ s) = P(ξi = 1). The sample pdf is defined as the conditional density of the response,

given that it was selected:

fs(yi) = f(yi | ξi = 1) =
P(ξi = 1 | yi)f(yi)

P(ξi = 1)
. (1.1.1)

It follows from (1.1.1) that population and sample pdfs can be different unless P(ξi = 1 | yi) =

P(ξi = 1); that is, the inclusion probability is independent of the variable of interest. If the

inclusion probability depends on the variable of interest, we call the sampling design an informative

design.

If the design is noninformative, we can ignore the randomness in the design and generalize

inference directly from the sample model to the population model. Applying standard analysis to

the sample yields a valid inference for the population. Otherwise, we lose efficiency incorporating

the design into our analysis.

On the other hand, if the design is informative, the analysis has to be adjusted to get appropri-

ate results. Failure to account for informativeness can lead to biased and inconsistent parameter

estimators, poor coverage of confidence intervals, false predictions and other fundamental infer-

ential errors. Several methods have been established to account for informativeness in analysis,

such as the design-based Horvitz Thompson (HT) estimation in Horvitz & Thompson (1952). This
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includes several cases: the parameter is a linear function of random variable; the nonlinear pa-

rameter can be explicitly written as a function of random variable; the parameter is solution to a

population-level estimating equation; the parameter is the maximum likelihood estimator (MLE)

of the population-level model (see Binder (1983)). There are also likelihood-based approaches,

e.g., pseudo-likelihood Krieger & Pfeffermann (1992), sample likelihood Patil & Rao (1978) and

full likelihood Skinner (1994). Pfeffermann & Sverchkov (1999, 2003) develop sample likelihood

approaches under various models.

Thus, testing for informative selection is crucial in analyzing complex surveys. A number of

parametric tests exist for testing informative selection. Pfeffermann & Sverchkov (1999) focus on

whether the moments of the population model residuals are equal to the moments of the sample

model residuals. Another important class of tests is based on assessing the significance of the dif-

ference between weighted and unweighted estimators of model parameters. DuMouchel & Duncan

(1983) construct a test to compare the weighted and unweighted parameter estimators in a linear

model. Fuller (1984) considers the case of cluster samples within strata, and gives an approximate

F-test. Pfeffermann (1993) extends the comparison of weighted and unweighted esitmators to

general likelihood-based problems with explicit estimators, and provides a Wald-type test statistic.

Pfeffermann & Sverchkov (2003) extend that test to estimators that are defined as the solutions to

estimating equations in generalized linear models. Herndon (2014) develops the Wald-type test by

a parametric bootstrap approach which avoids estimation of covariance matrices.

The work presented in this dissertation extends these weighted/unweighted comparisons from

the parametric setting to the nonparametric setting, via distribution functions in Chapter 2 and via

maximum mean discrepancy in Chapter 3.

1.1.3 Reconciliation of Estimates from Different Surveys

Different surveys of the same population may use different methods, including frames, sam-

pling designs, nonresponse follow-up, measurement instruments and modes of delivery. This is

true of independent surveys, conducted by different investigators, as well as of repeated surveys
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over time, conducted by the same investigator with periodic methodological changes. Ideally,

these differences in methodology would have no effect on inferences about the population. How-

ever, these differences in methodology lead to differences in coverage, sampling, response, and

measurement errors and can have large impacts on inference.

As an example of mode differences, surveys of risky behaviors such as adolescent sexual be-

havior, drug use and violence have been studied in Turner et al. (1998). The respondents were

randomly assigned to answer surveys by either the traditional questionnaire or a computer-assisted

audio interview. It turns out that estimates of those risky behaviors are three times or more higher

when computer-assisted audio is used. As another example, a survey of Medicare prostate surgery

patients is described in Fowler et al. (1998). Patients in Massachusetts were assigned to mail or

personal interviews while patients out of Massachusetts were assigned to mail or telephone. There

are 25 statistically significant differences between the telephone and mail responses out of 51 ques-

tions compared, but only nine significant differences between mail and personal interviews.

It is often of interest to compare estimates from different surveys of the same population, but

methodological differences can make these comparisons useless. “Reconciling” estimates involves

estimation procedures that attempt to adjust for the methodological differences and allow compar-

isons or even combination of data.

J. Van Den Brakel et al. (2020) review different methods to measure discontinuities due to a

survey process redesign. For parallel data collection, where data is collected under the old and new

designs alongside each other for a certain period, design-based methods in J. A. Van Den Brakel

(2008, 2013), state-space models in J. A. Van Den Brakel (2008, 2010) and small area estimation

models in Pfeffermann (2002, 2013) and Rao & Molina (2015) can be adopted, depending on the

length of the parallel run and sample sizes. For a phase-in approach, where changeover to the new

design is done by a gradual roll-out, methods are similar to the parallel run. For the case where

there is no overlap at all, state-space models can be used.

Work presented in Chapter 4 of this dissertation develops a small area estimation methodology

for reconciling estimates from surveys that have changed over time.
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1.2 Existing Methods

Existing methods for testing informative sampling are primarily parametric, but in practice it

may be hard to develop parametric models and check the parametric assumptions. In this disserta-

tion, we propose two nonparametric approaches, one based on comparison of empirical distribution

functions and one based on maximum mean discrepancy. In Section 1.2.1 and Section 1.2.2, we

briefly review nonparametric tests for the classical two-sample problem: given two independent

samples, test the hypothesis that they come from the same distribution against the alternative that

they do not. These tests motivate our approaches, but in our context, we have a single sample and

wish to test the hypothesis that its selection was noninformative against the alternative of informa-

tive selection.

Small area estimation models can be used to improve the estimation precision given limited

sample size for specific domains. In this dissertation, we adopt small area estimation techniques

to adjust for discontinuities between two surveys and reconcile their estimates. Specifically, we

propose a Fay–Herriot model with modeled design variances for this problem. As background, we

briefly review existing small area estimation methods in Section 1.2.3.

1.2.1 Two-Sample Problems by Empirical Distribution Functions

Random variables X1, X2, . . . , Xn are independent and identically distributed (iid) if they

are mutually independent and they have the same distribution FX(x) = P (Xi ≤ x). The random

function

FXn(x) =
1

n

n∑

i=1

✶(Xi≤x) (1.2.1)

is called the empirical distribution function (edf) of the data, where the indicator function ✶(Xi≤x) =

1 when Xi ≤ x and 0 otherwise.

The goodness-of-fit problem is one of the classical problems of statistics. It is to test the

hypothesis

H0 : FX(x) = F (x), (1.2.2)
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where F (x) is a given continuous distribution function.

The Kolmogorov–Smirnov (KS) test and Cramér–von Mises (CvM) test are two of the most

widely adopted nonparametric methods for this problem. Kolmogorov (1933) establishes a test

based on the statistic

Kn =
√
n sup

−∞<x<∞
|FXn(x)− F (x)| . (1.2.3)

If Kn is large, then H0 in (1.2.2) gets rejected. Denoting the distribution of Kn by Φn(x), Kol-

mogorov shows that

lim
n→∞

P (Kn ≤ x) = lim
n→∞

Φn(x) = Φ(x) =
∞∑

j=−∞
(−1)je−2j2x2 , 0 < x <∞. (1.2.4)

Cramér (1928) suggests the following criterion:

∫ ∞

−∞
(FXn(x)− F (x))2dK(x),

where K(x) is a nondecreasing weight function. Smirnov (1937) modifies this as

W 2
n = n

∫ ∞

−∞
(FXn(x)− F (x))2 ψ(F (x))dF (x), (1.2.5)

where ψ(t), 0 ≤ t ≤ 1, is a nonnegative weight function. It can be shown that

lim
n→∞

P
(
W 2
n ≤ x

)
= G(x) = P

( ∞∑

j=1

Z2
j

λj
≤ x

)
, (1.2.6)

where Z1, Z2, . . . are iid standard normal random variables and λ1, λ2, . . . are the eigenvalues of

the kernel Γ(s, t) = min{s, t} − st.

The two-sample problem is an extension of the goodness-of-fit problem. Let Xi be as above

with continuous distribution function FX(x). Let Y1, Y2, . . . , Ym be iid random variables with

common continuous distribution function FY (x) = P (Yi ≤ x) and assume all n + m random

variables are mutually independent. Then the two-sample problem is to test the hypothesis
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H0 : FX(x) = FY (x). (1.2.7)

The edf of Yi is defined similarly as FXn(x),

FY m(x) =
1

m

m∑

i=1

✶(Yi≤x). (1.2.8)

Smirnov (1939) establishes the two-sample version of (1.2.3). He shows that the statistic

Dmn =

√
mn

m+ n
sup

−∞<x<∞
|FXn(x)− FY m(x)| (1.2.9)

has the same limiting distribution of Φ(x) as in (1.2.4) if

0 < a <
m

n
< b <∞, m→ ∞, n→ ∞. (1.2.10)

Similarly, by Darling (1957), a natural analogue to (1.2.5) is

mn

m+ n

∫ ∞

−∞
(FXn(x)− FY m(x))

2 ψ

(
nFXn +mFY m

m+ n

)
d

(
nFXn +mFY m

m+ n

)
. (1.2.11)

It has the same limiting distribution as W 2
n in (1.2.5) when ψ(t) ≡ 1.

All of these tests are nonparametric, which means that they do not rely on any parametric distri-

bution assumptions. Our first class of tests are motivated by these nonparametric tests, but replace

comparison of edfs from two independent samples by comparison of weighted and unweighted

edfs from the same sample. While the mutual independence condition of the classic two-sample

problem is not satisfied here, we are still able to establish the asymptotic distribution of our test

statistics under reasonable conditions that have been assumed widely in the survey literature.

1.2.2 Maximum Mean Discrepancy

The two-sample problem can be treated as measuring the similarity of two probability mea-

sures, and one useful way to measure similarity is to define a probability metric. The characteristics
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of a distribution are often captured by the integral of some function f with respect to the probabil-

ity measure p, motivating Müller (1997) to develop the integral probability metrics, d(p, q). For a

class of functions F ,

d(p, q) := sup
f∈F

∣∣∣∣
∫
f dp−

∫
f dq

∣∣∣∣ . (1.2.12)

The Kolmogorov–Smirnov test in (1.2.9) is essentially the Kolmogorov metric ρ defined by

ρ(p, q) := sup
t∈❘

|FX(t)− FY (t)| , (1.2.13)

which is also an integral probability metric, with

FX(t) =

∫

X

✶(−∞,t] dp,

FY (t) =

∫

Y

✶(−∞,t] dq,

and F being the set of functions ✶(−∞,t], t ∈ ❘.

The choice of F is critical. First, F needs to be large enough so that d(p, q) is a metric. Only

in this way can we test p = q by checking
∫
f dp =

∫
f dq. Dudley (2002) shows that p = q if

and only if
∫
f dp =

∫
f dq for all continuous bounded functions f . However, F cannot be too

large, or else practical use of the metric is infeasible. We work in the setting of finite sample sizes,

and require that empirical means converge sufficiently quickly to their expectations. Besides the

Kolmogorov metric in (1.2.13), some other examples of F for which d(p, q) is a metric can be

found in Sriperumbudur et al. (2010).

Gretton et al. (2012) and Smola et al. (2007) consider F to be the unit ball in a universal

reproducing kernel Hilbert space (RKHS) H (Aronszajn (1950)). That is Fk = {f : ‖f‖
H

≤ 1}.

The advantages of using Fk are summarized in Sriperumbudur et al. (2010). An RKHS is defined

as follows: H is a Hilbert space of functions X → R with inner product 〈·, ·〉 satisfying the

reproducing property:

〈f(·), k(x, ·)〉 = f(x), (1.2.14)
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where the reproducing kernel k is assumed to be continuous, symmetric, positive definite and

integrable. With the restriction that X is compact, a universal RKHS is dense in C(X ) with

respect to the L∞ norm, where L∞ norm is defined as ‖f‖∞ = sup{|f(x)| : x ∈ X }. It follows

that

Ex∼FX
[f(x)] = Ex∼FX

[〈f(·), k(x, ·)〉] = 〈f(·),Ex∼FX
[k(x, ·)]〉, (1.2.15)

and

1

n

n∑

i=1

f(xi) =
1

n

n∑

i=1

〈f(·), k(xi, ·)〉 =
〈
f(·), 1

n

n∑

i=1

k(xi, ·)
〉
. (1.2.16)

So we can compute expectations and empirical means by taking inner products with the means in

the RKHS. While we have written the above in terms of scalar random variables for simplicity, the

random objects can be in more general Hilbert spaces and random vectors are of particular interest

in this dissertation.

Gretton et al. (2012) rename the integral probability metric as the Maximum Mean Discrepancy

(MMD). Let F be a class of functions f : X → R. Then the MMD and its biased empirical

estimate are defined as:

MMD[F , FX , FY ] := sup
f∈F

(Ex∼FX
[f(x)]− Ey∼FY

[f(y)]) , (1.2.17)

and

MMDb[F , X, Y ] := sup
f∈F

(
1

n

n∑

i=1

f(xi)−
1

m

m∑

i=1

f(yi)

)
, (1.2.18)

where {xi} and {yi} are drawn iid from FX and FY respectively.

By restricting F to be Fk, an unbiased estimator (U -statistic) of MMD is given as

MMD2
u[Fk, X, Y ] =

1

n(n− 1)

n∑ n∑

i 6=j
k̃(zi, zj), (1.2.19)

where zi := (xi, yi) (i.e. assuming m = n), and k̃(zi, zj) := k(xi, xj) + k(yi, yj) − k(xi, yj) −

k(xj, yi). The asymptotic distribution of nMMD2
u[Fk, X, Y ] under the null hypothesis (1.2.7) has
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been established. Conditions on k such that MMD is a metric are investigated by Fukumizu et al.

(2008); Gretton et al. (2007); Smola et al. (2007); Steinwart (2002); Sriperumbudur et al. (2010).

Among those, Steinwart (2002) shows that the Gaussian and Laplace kernels are universal. The

concentration of empirical means as in (1.2.16) is investigated by Altun & Smola (2006), who

show the fast convergence of empirical means to their expectations.

In this dissertation, we adapt the MMD from the two-sample problem to test the hypothe-

sis of informative selection, by comparing weighted and unweighted samples. We establish the

asymptotic distribution of our MMD statistic under the null hypothesis of noninformativeness, and

investigate the power and size of the test via simulation.

1.2.3 Small Area Estimation

Small area estimation (SAE), also known as small domain estimation, refers to the problem

of constructing estimates for small subpopulations using information from a survey sample. As

the sample size is limited while the number of domains often substantial, the sample size in each

domain is often very small or even zero. However, it is still required to get point estimators with

measures of error in these areas. SAE methods can be divided into two categories: “design-based”

and “model-based.” For design-based methods, the estimator is for some descriptive quantity of

the finite population or constructed with the help of a model, but the randomness of the estimator

is based on the randomization of the design. Model-based methods, on the other hand, assume

a model for the superpopulation and draw inference based on this underlying model. In SAE,

because certain areas could have no samples at all, both design-based and model-based methods

would have to use auxiliary covariate information. Performance of the model depends heavily on

the quality of these auxiliary covariates. A comprehensive review of methods used in SAE is given

in Pfeffermann (2013).

Consider a population U = {1, . . . , N}, divided into M exclusive and exhaustive areas U1, U2,

. . ., UM with Ni units in area i and
∑M

i=1Ni = N . Let s = s1∪s2∪· · ·∪sm be the overall sample,

where si is the sample of size ni from sampled area i, and m is the number of sampled areas.
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Total sample size is n =
∑m

i=1 ni. Let y be the variable of interest, and denote yij the response

for unit j in area i, i = 1, . . . ,M and j = 1, . . . , Ni, with sample means ȳij =
∑ni

j=1 yij/ni.

The associated covariate values are xij = (x1ij, . . . , xpij)
⊺, with sample means x̄i =

∑ni

j=1 xij/ni.

The corresponding true area means are X̄i =
∑Ni

j=1 xij/Ni. We denote the target quantity by θi.

Suppose the sample is selected by simple random sampling without replacement (SRSWOR) and

the targets of interest are area means of the responses, θi = Ȳi =
∑Ni

j=1 yij/Ni.

If no covariates are available, the direct estimator of θi is given by

ȳi =

ni∑

j=1

yij/ni, (1.2.20)

where “direct” means that the estimator uses only the response variable from the sampled area i.

Suppose covariates xij are observed with x1ij ≡ 1. The synthetic estimator is

̂̄Y
syn

reg,i = X̄
⊺

i B̂ =
1

Ni

Ni∑

j=1

x
⊺

ijB̂, (1.2.21)

where B̂ = (
∑m

i=1

∑ni

j=1 xijx
⊺

ij)
−1
∑m

i=1

∑ni

j=1 xijyij is the ordinary least square estimators. Here,

a common ratio is assumed for all areas between response and covariates. This estimator is in-

direct because it borrows information from other areas, reducing variance relative to the direct

estimator. However, this may increase the bias of the estimator, especially if the areas are far from

homogeneous in the response.

In order to reduce the possibly large bias, the survey regression estimator is given as

̂̄Y
S−R

i = X̄
⊺

i B̂w +
1

Ni

Ni∑

j=1

wij

(
yij − x

⊺

ijB̂w

)

= ̂̄Y i,HT +
(
X̄i − ̂̄Xi,HT

)
⊺

B̂w, (1.2.22)
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where B̂w = (
∑m

i=1

∑ni

j=1wijxijx
⊺

ij)
−1
∑m

i=1

∑ni

j=1wijxijyij . {wij} are sampling weights. ̂̄Y i,HT

and ̂̄X i,HT are the Horvitz–Thompson (HT) estimators of Ȳi and X̄i. The survey regression esti-

mator reduces the possibly large bias from the synthetic estimator, but the variance could be large.

The composite estimator is constructed to reduce the mean square error, by trading off the

low bias/high variance of the survey regression estimator with the high bias/low variance of the

synthetic estimator. The composite estimator is defined as

̂̄Y
COM

i = δi
̂̄Y

S−R

i + (1− δi)
̂̄Y

syn

reg,i, 0 ≤ δi ≤ 1. (1.2.23)

With large sample size, the design-based composite estimators are approximately unbiased and

consistent. They are protected against model misspecification. However, as the sample size is often

small, these estimator can be highly variable. Moreover, they cannot be used to estimate areas with

no samples at all.

Model-based methods provide optimal estimators, assuming the correct specification of a model.

These methods can overcome disadvantages in design-based models. However, robustness to

model misspecification must be investigated.

SAE models are divided into area-level models, in which the model specification is for the

direct estimates at the area level, and unit-level models, in which model specification is for the

original response data. Usually, the choice of area-level or unit-level is driven by the availability

of useful covariates.

One widely used area-level model is by Fay & Herriot (1979). It is defined as:

ỹi = x
⊺

iβ + ui + ei, (1.2.24)

where ỹi denotes the direct sample estimator of θi, ui are random effects with ui ∼ N (0, σ2
u) and

ei are the sampling error with ei ∼ N (0, σ2
Di). The random effects ui are independent from ei. For

known σ2
u, the best linear unbiased predictor (BLUP) of θi is
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θ̂i = x
⊺

i β̂GLS + ûi

= x
⊺

i β̂GLS + γi

(
ỹi − x

⊺

i β̂GLS

)

= γiỹi + (1− γi)x
⊺

i β̂GLS, (1.2.25)

where γi = σ2
u/ (σ

2
u + σ2

Di), and β̂GLS =
(
X⊺Σ−1X

)−1
X⊺Σ−1Y is the generalized least square

estimator, with Σ as the covariance of Y. Fay & Herriot (1979) assume that the design variances

σ2
Di are known, which is not true in practice. Various techniques are used to smooth or otherwise

stabilize the estimated design variances before incorporating them into a Fay-Herriot model.

A unit-level model is given by Battese et al. (1988). It is defined as

yij = x
⊺

ijβ + ui + εij, (1.2.26)

where ui ∼ N (0, σ2
u) independent from εij ∼ N (0, σ2

ε). For known variances σ2
u and σ2

ε , the

BLUP of θi is

θ̂i = γi

[
ȳi +

(
X̄i − x̄i

)
⊺

β̂GLS

]
+ (1− γi)X̄

⊺

i β̂GLS, (1.2.27)

where x̄i =
∑ni

j=1 xij/ni and γi = σ2
u/ (σ

2
u + σ2

ε/ni).

SAE modeling has been extended in many directions, including spatial and temporal exten-

sions, generalized mixed models for discrete responses, multivariate responses, etc. See Cressie

(1993), Kim et al. (2001), Opsomer et al. (2003) and Jiang & Lahiri (2006) for review. Another

important topic is estimation of mean square error of the SAE predictions, which is challenging

even for the linear model. This topic has been investigated, for example, in Kackar & Harville

(1984), Harville (1985), Datta & Lahiri (2000), Datta et al. (2005) and Jiang & Lahiri (2006).

In this dissertation, we adopt the Fay-Herriot model as in (1.2.24) to reconcile two sources of

surveys and unify them into one mixed model in Chapter 4. We propose a novel model for the

design variances and develop a mean squared error approximation.
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1.3 Organization

This dissertation addresses two topics in the analysis of complex survey data: nonparametric

hypothesis testing for informative selection and using small area estimation to address temporal

discontinuities due to survey redesign.

We propose two classes of nonparametric tests for informative selection, each motivated by a

nonparametric test for two independent samples. In Chapter 2, we generalize classic two-sample

tests that compare empirical cumulative distribution functions, including Kolmogorov–Smirnov

and Cramér–von Mises, by comparing weighted and unweighted empirical cumulative distribu-

tion functions. In Chapter 3, we adapt two-sample tests that compare distributions based on the

maximum mean discrepancy to the setting of weighted and unweighted distributions. The asymp-

totic distributions of both test statistics are established under the null hypothesis of noninformative

selection. Simulation results, for various degrees of informativeness and for different sources of

informativeness, demonstrate the usefulness of the asymptotic approximations, and show that our

tests have competitive power with parametric tests in a correctly specified parametric setting while

achieving greater power in misspecified scenarios. Both nonparametric tests are investigated in

applications to data from a recreational fisheries survey.

In Chapter 4, reconciliation of two sets of estimates from two surveys, which differ due to

various sources of nonsampling error, are investigated. A log-normal model for the estimates from

the two surveys is built. A design variance model is developed to smooth the estimated design

variances. The empirical best linear unbiased predictors (EBLUPs) of the reconciled estimates are

obtained by applying the modeled design variances in a Fay-Herriot small area estimation model.

Mean Square Error (MSE) estimators of EBLUPs are constructed, and empirical evaluation of

the MSE estimators is provided in simulations. Results are applied to two surveys in the Marine

Recreational Information Program (MRIP), one traditionally collected via telephone interviews,

and the other now collected via mailed questionnaires.

A brief discussion of conclusions and future directions is given in Chapter 5. All proofs are

deferred to the Appendix.
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Chapter 2

Nonparametric Tests for Informative Selection in

Complex Surveys

2.1 Introduction

We consider possibly informative selection of a sample from a finite population, with responses

Y that are generated as independent and identically distributed (iid) random variables from a cu-

mulative distribution function (cdf) F , referred to as the superpopulation model. The selection is

informative if the distribution of the sample responses, given that they were selected, is not iid

F . We propose a class of nonparametric procedures to test the null hypothesis of noninformative

selection against the alternative of informative selection.

In surveys, the full likelihood of all observable quantities would include not only responses but

also design information, such as probabilities of selection (or their inverses, the sampling weights)

and response indicators. If the design can be determined to be noninformative, the likelihood of the

sample without the design information would be proportional to the full likelihood with the design

information, and by the likelihood principle in section 6.3 of Casella & Berger (2002), the inference

would be identical. So in the noninformative case, we can ignore the randomness in the design and

directly generalize from the sample to the population using likelihood-based procedures. That is,

we can apply standard analysis to the sample and get valid inference for the population. If we do

incorporate design features in this noninformative setting, we often lose efficiency in the analysis;

see, for example, section 3.5 of Chambers et al. (2012). On the other hand, if the design does

have informativeness, the analysis must be adjusted to get appropriate results. Failure to account

for the informative selection could lead to biased and inconsistent parameter estimators, invalid

confidence intervals and errors in conclusions.
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Several methods have been established to account for informativeness in analysis. The stan-

dard method is Horvitz-Thompson (HT) estimation, in which sampled values are weighted by the

inverses of their inclusion probabilities (Horvitz & Thompson (1952)). HT yields unbiased es-

timators of population totals provided all units have positive probabilities of inclusion and yields

consistent estimators of finite population parameters under mild conditions on the sequence of sam-

pling designs. For nonlinear parameters which can be written explicitly as a function of random

variables, such as ratios or proportions, the estimator by HT plug-in principle is consistent and

asymptotically design-unbiased. If a finite population parameter is the solution to a population-

level estimating equation, then the HT plug-in estimator is obtained by solving a weighted sample-

level estimating equation. When the parameter is the maximum likelihood estimator (MLE) of

the population-level model, then the estimator is the maximum pseudo-likelihood estimator which

maximizes the weighted sample-level score function (Binder (1983)). Together, these weighted

estimation procedures constitute the standard design-based approach to inference. These methods

are widely available in software specifically designed for analysis of complex survey data, such as

svymean in R package survey and SURVEYMEANS procedure in SAS.

In contrast to design-based methods, model-based methods attempt to describe the joint distri-

bution of the observations, response indicators, and probabilities (full likelihood, Skinner (1994))

or the joint distribution of the observations as distorted by the selection (sample likelihood, Patil &

Rao (1978); Breslow & Cain (1988)). Pfeffermann & Sverchkov (1999, 2003) use sample likeli-

hood for the fitting of linear and generalized linear population models. Sverchkov & Pfeffermann

(2004) use sample likelihood for the prediction of population totals. Pfeffermann et al. (2006) pro-

pose a model-based approach for multi-level modeling under informative multi-stage sampling.

However, methods to adjust inference under informative selection are out of the scope of this

chapter, which focuses on testing to determine if the sampling design is informative.

A number of authors have investigated tests of informative selection. One class of tests fo-

cuses on whether the moments of the population model residuals are equal to the moments of the

sample model residuals. Pfeffermann & Sverchkov (1999) show that the hypothesis of zero cor-
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relation between the sampling weights and all order of polynomials of the sample model errors is

equivalent to the hypothesis of equal conditional moments for the population model errors and the

sample model errors. Pfeffermann & Sverchkov (1999) use standardized Fisher transformation of

the correlation to test this hypothesis. This testing procedure is not exact as infinite number of mo-

ments should be compared to prove the equivalence of two distributions. In practice, the authors

recommend testing the first two to three correlations. Pfeffermann & Sverchkov (1999) show an

alternative test that regresses sampling weights against all order of polynomials of sample model

errors and test whether the corresponding slopes are zero.

Another important class of tests is based on assessing the significance of the difference between

weighted and unweighted estimators of model parameters. DuMouchel & Duncan (1983) construct

a test to compare weighted and unweighted parameter estimators in a linear model, and illustrate

its equivalence to an F-test of the hypothesis that the original linear model is adequate against the

alternative that an augmented linear model (with design matrix expanded to include weighted co-

variates) is necessary. This equivalence makes the test very convenient to run in standard software.

Fuller (1984) considers the case of cluster samples within strata, and gives an approximate F-test.

Nordberg (1989) extends the DuMouchel–Duncan test to generalized linear models. Pfeffermann

(1993) extends weighted-unweighted comparisons to general likelihood-based problems with ex-

plicit estimators, and provides a Wald-type test statistic. Pfeffermann & Sverchkov (2003) extend

the test to estimators that are defined as the solutions to estimating equations in generalized linear

models.

Our approach builds on the idea of comparing weighted and unweighted estimators. However,

instead of assuming parametric models, we propose a class of nonparametric tests of informative

selection.

Our results are built on the theory of Boistard et al. (2017a), who establish a functional central

limit theorem for the Horvitz-Thompson (HT) empirical process and the Hájek empirical process

centered by their finite population mean as well as their superpopulation mean. The results apply

to single-stage unequal probability designs and only require conditions on higher-order inclusion
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probabilities. We apply this theory to establish the asymptotic distribution of the normalized dif-

ference between the weighted (Hájek) and unweighted estimators of the cumulative distribution

function (cdf). The asymptotic distribution is known up to a scaling constant that can be estimated

from the data, so critical values for various test statistics can be obtained. We specifically consider

Kolmogorov–Smirnov and Crámer–Von Mises test statistics for informative selection, though other

tests could be considered.

This chapter is organized as follows. Notation and assumptions, adopted from Boistard et al.

(2017a), are introduced in Section 2.2. Inclusion probabilities up to the fourth order are required

and a central limit theorem (CLT) for the Horvitz-Thompson estimator of a population total for

independent and identically distributed (iid) bounded random variables is assumed. We prove the

asymptotic result for our weighted and unweighted difference in Section 2.3. In Section 2.4, we

explore the power and size properties of our tests and compare to existing parametric tests under

different types and amounts of informativeness. Lastly, our theory is applied to data from a fisheries

survey in Section 2.5. The proofs are deferred to the Appendix.

2.2 Notation and Assumptions

We follow the notation in Boistard et al. (2017a), who adopt the superpopulation setup in

Rubin-Bleuer & Kratina (2005).

We first define the superpopulation space. Consider a finite population U = {1, . . . , N}. For

each element i ∈ U , let (yi, zi) ∈ R × R
q
+, with y = (y1, . . . , yN) ∈ RN denoting the vector of

the variable of interest and z = (z1, . . . , zN) ∈ R
q×N
+ , denoting information about the sampling

design. We assume (yi, zi) are realizations of random quantities (Yi, Zi) ∈ R×R
q
+ that are defined

on a common probability space (Ω,F,Pm).

We next define the design space. Let S = {s : s ⊂ U} be the collection of subsets of U , and let

A = σ(S) be the σ-algebra generated by S . A sampling design is a function P : A×R
q×N
+ 7→ [0, 1].

Define the probability measure on the design space (S,A) as A 7→ Pd(A, ω) =
∑

s∈A P (s,Z(ω)).
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Next, we define a product space that includes both the superpopulation space and the design

space, assuming conditional independence of sample selection and model characteristics given the

design variables. Let (S × Ω,A × F) be the product space with probability measure Pd,m defined

on rectangles {s} × E ∈ A× F by

Pd,m({s}, E) =
∫

E

P (s,Z(ω))dPm(ω) =

∫

E

Pd({s}, ω)dPm(ω).

For certain sampling designs, the sample size could be random. Denote the sample membership

indicator by ξi = 1 if i ∈ s and 0 if i /∈ s, and let ns =
∑N

i=1 ξi denote the sample size. The first-

order inclusion probability is denoted πi(ω) = Ed(ξi, ω) =
∑

i∈s P (s,Z(ω)). Further, denote the

expected sample size n = Ed[ns(ω)] =
∑N

i=1 Ed(ξi, ω) =
∑N

i=1 πi(ω). Here πi(ω) could indicate

both the random variable and its realization. For example, the inclusion probability could be a

function of Z, i.e. πi = π(Zi).

A functional central limit theorem is obtained by proving weak convergence of all finite di-

mensional distributions and tightness. To get tightness, we impose a set of conditions involving

the sets

Dν,N = {(i1, i2, . . . , iν) ∈ {1, 2, . . . , N}ν : i1, i2, . . . , iν all different} , (2.2.1)

for integers 1 ≤ ν ≤ 4. We assume the following conditions:

(C1) There exist constants K1, K2, such that for all i = 1, 2, . . . , N ,

0 < K1 ≤
Nπi
n

≤ K2 <∞, ω–a.s.

There exists a constant K3 > 0, such that for all N :

(C2) max(i,j)∈D2,N
|Ed(ξi − πi)(ξj − πj)| ≤ K3n/N

2,

(C3) max(i,j,k)∈D3,N
|Ed(ξi − πi)(ξj − πj)(ξk − πk)| ≤ K3n

2/N3,

(C4) max(i,j,k,l)∈D4,N
|Ed(ξi − πi)(ξj − πj)(ξk − πk)(ξl − πl)| ≤ K3n

2/N4,
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ω–a.s.

As Nπi/n ≤ N/n, an upper bound in (C1) is immediate if one requires n/N → λ > 0.

Sometimes, the lower bound is imposed as πi ≥ π∗ > 0. This condition can be found in many

articles, e.g. Breidt & Opsomer (2000), Bertail et al. (2013), Conti (2014), Conti et al. (2017).

Conditions (C2)–(C4) are used to establish tightness of the random processes. These conditions

on higher order inclusion probabilities are commonly used in survey sampling. Breidt & Opsomer

(2000) show that they hold for simple random sampling without replacement and stratified simple

random sampling without replacement, and Boistard et al. (2012) prove that they hold for rejective

sampling.

In order to establish weak convergence of all finite dimensional distributions, we need a CLT for

suitably-normalized HT estimators of the population means for sequences of bounded iid random

variables V1, V2, . . . on (Ω,F,Pm). Let S2
N be the design-based variance of the HT estimator of the

population mean,

S2
N =

1

N2

N∑

i=1

N∑

j=1

πij − πiπj
πiπj

ViVj. (2.2.2)

We assume the following conditions:

(H1) Let V1, V2, . . . be a sequence of bounded iid random variables, not identical to zero. Suppose

there exists an M > 0 such that |Vi| ≤M ω–a.s. for all i = 1, 2, . . ., and suppose that for N

sufficiently large, SN > 0 and

1

SN

(
1

N

N∑

i=1

ξiVi
πi

− 1

N

N∑

i=1

Vi

)
L→ N (0, 1), ω–a.s.,

where the convergence in distribution is under Pd.

(H2) For k ∈ {1, 2, . . .}, i = 1, 2, . . . , N and t1, t2, . . . , tk ∈ R, define

Y
∗⊺
ik =

(
1− Nπi

n

) (
✶(Yi≤t1), . . . ,✶(Yi≤tk)

)
. There exists a deterministic matrix Σ∗

k, such that

lim
N→∞

n

N2

N∑

i=1

N∑

j=1

πij − πiπj
πiπj

Y∗
ikY

∗⊺
jk = Σ∗

k, ω − a.s. (2.2.3)
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(H3) For k ∈ {1, 2, . . .}, i = 1, 2, . . . , N and t1, t2, . . . , tk ∈ R, define

Y
⊺

ik =
(
1− Nπi

n

) (
✶(Yi≤t1) − F (t1), . . . ,✶(Yi≤tk) − F (tk)

)
. There exists a deterministic ma-

trix Σk, such that

lim
N→∞

n

N2

N∑

i=1

N∑

j=1

πij − πiπj
πiπj

YikY
⊺

jk = Σk, ω − a.s. (2.2.4)

(H4) n/N → λ ∈ (0, 1).

(H5) For k ∈ {1, 2, . . .} and t1, t2, . . . , tk ∈ R, the matrix Σk in (2.2.4) is positive definite.

Condition (H1) has been checked by many authors in different sampling designs. It holds for

simple random sampling without replacement if n(N − n)/N → ∞ as N → ∞ (see Thompson

(2013)), and Poisson sampling under certain conditions (see Fuller (2009)). Hájek (1964) gives a

condition that is sufficient and necessary for (H1) for rejective sampling. Berger (1998) extends

it to high entropy designs. Conditions like (H2) and (H3) are quite standard in survey sampling

literature. See, for example Deville & Särndal (1992), or Francisco & Fuller (1991). Condition

(H4) is also quite standard; see, for example Breidt & Opsomer (2000) or Conti (2014).

2.3 Asymptotic Results

2.3.1 Asymptotic Distribution

Theorem 2.3.1. Let Y1, . . . , YN be iid random variables with cdf F . Suppose that conditions

(C1)–(C4), (H1)–(H5) hold, then

Tn =
√
n
(
F̂HJ − F̂

)
=

√
n

(
1

N̂

N∑

i=1

ξi
πi
✶(Yi≤t) −

1

n

N∑

i=1

ξi✶(Yi≤t)

)

converges weakly to a mean zero Gaussian process G with covariance function
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EmG(s)G(t) =

lim
N→∞

n

N2

N∑

i=1

N∑

j=1

Em

[
πij
πiπj

(
1− Nπi

n

)(
1− Nπj

n

)(
✶(Yi≤s) − F (s)

) (
✶(Yj≤t) − F (t)

)]

for s, t ∈ R, where N̂ =
∑N

i=1 ξi/πi.

Corollary 2.3.1.1. Under the conditions of Theorem 2.3.1, if the Yi’s are independent of πij’s, for

all i and j, then the covariance function can be simplified as

EmG(s)G(t) = lim
N→∞

n

N2

N∑

i=1

Em

[
1

πi

(
1− Nπi

n

)2
]
[F (min{s, t})− F (s)F (t)] for s, t ∈ R.

Corollary 2.3.1.2. Consider probability proportional to size (pps) sampling with πi = nzi/
∑

U zi,

where the zi’s are iid with µz = Em[z1] < ∞ and Em [1/z1] < ∞. Then, under the conditions of

Corollary 2.3.1.1, the covariance function can be further simplified as

EmG(s)G(t) =

(
µzEm

[
1

z1

]
− 1

)
[F (min{s, t})− F (s)F (t)] for s, t ∈ R.

2.3.2 Test Statistic

The classical functional central limit theorem tells us that the Brownian Bridge of F (t), denoted

B (F (t)), is a Gaussian process with zero mean and covariance function [F (min{s, t})− F (s)F (t)].

Further, ‖B (F (t))‖∞ follows the Kolmogorov distribution (Donsker (1951)) and
∫
t
B (F (t))2 dF (t)

follows the Cramér–von Mises distribution (Donsker (1951)), where ‖·‖∞ is the sup norm. Then

by Corollary 2.3.1.1, we can construct the test statistics in the following result.

Result 2.3.1.1. Under conditions in Theorem 2.3.1 and the null hypothesis of noninformative se-

lection, Tn(t)
L→ C1/2B (F (t)), where the scaling constant

C = lim
N→∞

n

N2

N∑

i=1

Em

[
1

πi

(
1− Nπi

n

)2
]

can be consistently estimated by
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Ĉ =
n

N̂2

∑

i∈U

ξi
π2
i

(
1− N̂πi

n

)2

=
n− 1

n

(
Sw
w̄

)2

, (2.3.1)

with w̄ the sample mean and Sw the sample standard deviation of the design weights (inverse

inclusion probabilities). Then, asymptotically, Ĉ− 1

2 ‖Tn(t)‖∞ follows the Kolmogorov distribution

and Ĉ−1
∫
T2
n(t)dF̂ (t) follows the Cramér–von Mises distribution.

Remark 2.3.1.1. Consider the special case of Poisson sampling, under the null hypothesis of

noninformative selection with iid {πi},

Tn =

√
n

N̂

N∑

i=1

ξi
πi

(
1− N̂πi

n

)
(
✶(Yi≤t) − F (t)

)

=
1√
N

N∑

i=1

√
n

N

ξi
πi

(
1− Nπi

n

)(
✶(Yi≤t) − F (t)

)
+ op(1),

so the asymptotic distribution of Tn in Result 2.3.1.1 above can also be derived by directly ap-

plying Theorem 2.9.2 (the multiplier central limit theorem) of van der Vaart & Wellner (1996).

Theorem 2.3.1 covers more general designs and asymptotic distributions under alternative hy-

potheses.

2.4 Simulation

2.4.1 Gestational Age Example

As described in Bonnéry et al. (2018), this example simulates sampling of at-risk infants, moti-

vated by the actual design of the 1988 National Maternal and Infant Health Survey (NMIHS). That

study, described in Korn & Graubard (1999), oversampled low birthweight infants. Unlike the

original setting of a stratified sampling design, we simulate an unstratified design with N = 15000

and n = 300. The variable of interest is Y = gestational age, assumed to be iid N (θ, σ2) in the

superpopulation. As the survey is designed to oversample the lower birthweight infants, the inclu-

sion probabilities (and hence the sampling weights) depend directly on birthweight, which in turn

is highly correlated with gestational age. Hence, the design is informative.
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We generate the inclusion probabilities by

ln π | (Y = y) ∼ N (−δ0 − δy, τ 2)

with

δ0 = − ln
n

N
+
τ 2

2
− δθ +

δ2σ2

2
.

We set θ = 39.853, σ2 = 16.723, τ 2 = 0.087 and let δ range from 0 to 0.03 with grid size of 0.002.

Lower values of δ correspond to less informativeness, with noninformativeness when δ = 0.

For each of the 1000 independent replicates, we draw a Poisson sample of expected size n =

300. Then we compute Tn’s as in Theorem 2.3.1, estimate the scaling factor C’s as in (2.3.1) and

calculate the Kolmogorov–Smirnov (KS) and Cramér-von Mises (CvM) statistics.

Figure 2.1 shows the power of our methods compared to DuMouchel and Duncan (DD, Du-

Mouchel & Duncan (1983)) and Pfeffermann (PFE, Pfeffermann (1993)) versus δ; informativeness

increases with δ. All methods maintain approximately the correct size at the noninformative null,

δ = 0. In this example, our nonparametric methods show competitive power relative to DD and

PFE. DD has the correct parametric model specification and PFE has the correct likelihood. The

KS statistic shows lowest power while CvM power curve is slightly below DD. PFE power curve

lies between CvM and KS. The reason PFE does not perform as well as DD is that we estimate

the variance in the likelihood instead of treating it as known. In other simulations (not shown), if

we plug in the true variance in the likelihood, the PFE power curve lies almost right on top of DD

power curve. Here DD assumes correct model and PFE uses correct likelihood, while our methods

do not assume parametric distributions but only use sample responses and their design weights.

Essentially, our methods achieve good power for “free”; that is, without any of the modeling cost

of the parametric methods.
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Figure 2.1: Power versus informativeness for DuMouchel–Duncan (DD; top curve), Pfeffermann (PFE;

second lowest curve), Kolmogorov–Smirnov (KS; bottom curve), and Cramér–von Mises (CvM; second

highest curve) tests, based on 1000 replicate Poisson samples of expected size n = 300 from the simulated

gestational age population. Nominal size of all tests is α = 0.05 (horizontal reference line). Informativeness

increases with the value of δ, with δ = 0 the noninformative null.
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2.4.2 Two-Stage Gestational Age Example

The theory of Section 2.3.1 is derived for single-stage sampling. We investigate the application

to two-stage sampling via simulation, by extending the gestational age example of Section 2.4.1.

Consider a finite population consisting of NPSU = 15000 primary sampling units (PSUs), each

made up of m = 10 secondary sampling units (SSUs). We set Zkl iid N (θ/m, σ2/m) for k =

1, 2, . . . , NPSU and l = 1, 2, . . . ,m, so that the PSU totals Yk =
∑m

l=1 Zkl are iid N (θ, σ2) across

PSUs. We generate the inclusion probabilities of the first stage by

ln π | Y = y ∼ N (−δ0 − δy, τ 2)

with

δ0 = − ln
n

N
+
τ 2

2
− δθ +

δ2σ2

2
.

We set θ = 39.853, σ2 = 16.723, τ 2 = 0.087 and δ ranges from 0 to 0.03 with grid size of

0.002 as before. For each of 1000 independent replicates, we draw a Poisson sample of the PSUs

with expected sample size n = 300, and then draw a simple random sample without replacement

(SRSWOR) within each selected PSU, with sample size nm.

The goal in this problem is inference for the distribution of Y , the PSU totals. To test for

informative selection, we compute the estimated PSU totals, ŷk = m
∑

l∈sk zkl/nm, from the

simple random sample sk we collected in the second stage. We then follow the calculations as in

Section 2.4.1, using estimated PSU totals ŷk in place of yk and using PSU weights wk. Figure 2.2

shows the power curves of all the statistics for various amount of informativeness with nm = 2

and nm = 6. The setting in Section 2.4.1 can be treated as a special case of two-stage sampling

with nm = 10. In spite of the subsampling, the tests maintain the correct size and the same relative

power ordering as in Figure 2.1, though power decreases as the subsample size nm decreases.
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nm = 6

Figure 2.2: Power versus informativeness for DuMouchel–Duncan (DD; top curve), Pfeffermann (PFE;

second lowest curve), Kolmogorov–Smirnov (KS; bottom curve), and Cramér–von Mises (CvM; second

highest curve) tests, based on 1000 replicate two-stage samples, with Poisson samples of expected size

n = 300 PSUs in stage one, and simple random samples without replacement of size nm = 2 (left panel)

and nm = 6 (right panel) in stage two. Nominal size of all tests is α = 0.05 (horizontal reference line).

Informativeness increases with the value of δ, with δ = 0 the noninformative null.

2.4.3 Stratified Simple Random Sampling without Replacement

Theorem 2.3.1 is derived in the sense that the y’s are assumed iid from the superpopulation. It

is of interest to study the case in which y-properties vary across strata. We consider the example

of stratified simple random sampling, with strata formed by ordering on an auxiliary variable z

that might be correlated with y, so that the distribution of y varies across strata except in the

case of no correlation between y and z. We generate the finite population by first simulating

H = 100 random stratum sizes Nh ∼ Negative Binomial for h = 1, 2, . . . , H , with mean 150

and number of success trials 10. Here the probability mass function of the Negative Binomial is

Pr [X = k] =
(
k+r−1
k

)
pr(1 − p)k, where r is the number of successes, k is the number of failures,

and p is the probability of success. The population size is then N =
∑H

h=1Nh, with expected

population size HE[Nh] = 15000. We generate N iid random vectors



y

z


 ∼ N






θ

θ


 ,



σ2 ρσ2

ρσ2 σ2
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and sort (y, z) by z in ascending order: the firstN1 pairs are then stratum 1, the nextN2 are stratum

2, etc. Next, we compute the sum of z in each stratum, tzh, and allocate the stratum sample size nh

proportional to this total: nh = ⌊n ∗ tzh/
∑H

h=1 tzh⌉. We then select the sample by stratified simple

random sampling without replacement.

We apply our test at the stratum level instead of the observation level, comparing the un-

weighted empirical cdf of the H stratum sample means ȳh = n−1
h

∑
k∈sh yk to the weighted em-

pirical cdf using stratum weights wh = Nhn
−1
h . We conjecture that our asymptotic framework

could be adapted to this setting, assuming that the number of strata goes to infinity while the size

of each stratum shrinks, so that the empirical cdf of the stratum population means converges to the

superpopulation cdf of y. Our simulation results support this conjecture.

We set θ = 40, σ = 0.5 and let ρ vary from 0 to 1 with grid size 0.025, where ρ = 0 is

noninformative and informativeness grows as ρ increases.

Figure 2.3 shows the power curves of all the statistics versus ρ. All tests have approximately the

correct test size at ρ = 0 when the critical value is determined from our asymptotic theory with the

number of strata,H , replacing the expected sample size, n. PFE statistic shows highest power, with

DD statistic slightly under PFE and CvM slightly under DD. KS statistic shows lowest power. PFE

shows better performance than it does in the gestational age example, because the informativeness

affects both the mean and the variance in this setting, and the likelihood-based method is able to

detect these differences. Once again, the nonparametric methods have considerable power to detect

informative selection without any need for a correct parametric specification.

2.4.4 Scaled t Distribution

In the gestational age example, both DD and PFE show good power as expected: the infor-

mativeness exists in the mean and the correctly-specified F-test and Wald test should be able to

capture the difference. In this t example, the informativeness will appear in the variance.

Our variable of interest yk is generated as follows:
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Figure 2.3: Power versus informativeness for Pfeffermann (PFE; top curve), DuMouchel–Duncan (DD;

second highest curve), Kolmogorov–Smirnov (KS; bottom curve) and Cramér–von Mises (CvM; second

lowest curve) tests, based on 1000 replicate stratified simple random samples without replacement of size

n = 300 from the simulated bivariate normal distribution. Nominal size of all tests is α = 0.05 (horizontal

reference line). Informativeness increases with the value of ρ, with ρ = 0 the noninformative null.
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yk = µ+ σ
zk√
vk/ν

√
ν − 2

ν
= µ+ σkzk,

where {zk} is iid N (0, 1), independent of {vk} iid χ2
ν . The error terms here are distributed as

scaled tν , with mean 0 and variance σ2 for ν > 2, and

yk | vk ∼ N (0, σ2
k).

Let {v∗k} be iid χ2
ν , independent of {zk} and {vk}, and set

τk = σ
1√
v∗k/ν

√
ν − 2

ν
,

which has the same distribution as σk but is not used in generating yk. Define dk = ρσk+(1−ρ)τk
and set the inclusion probabilities as

πk = ndk

(∑

k∈U
dk

)−1

,

where ρ ∈ [0, 1] is a constant to control the amount of informativeness in the design. We select

samples by Poisson sampling with probability proportional to size dk. The motivation for this

example is that designs with πk ∝ σk minimize the unconditional variance, with respect to model

and design, of the Horvitz-Thompson estimator of the y-total, and dk is a proxy for σk.

We set µ = 39.853, σ2 = 6.123, ν = 5, and let ρ range from the noninformative null at

ρ = 0 to the highly-informative, optimal design at ρ = 1 with grid size of 0.025. For each of 1000

independent replicates, we draw a Poisson sample of expected size n = 300. As in the gestational

age example, we compute Tn’s, estimate C’s and calculate the KS and CvM statistics.

Figure 2.4 shows the power of our methods compared to DD and PFE under various amounts

of informativeness. All tests have approximately the correct size at the noninformative null, ρ =

0. As ρ increases, DD has a very low amount of power, because the weighted and unweighted

estimates of the mean will differ by chance, and the DD test will correctly reject the null by
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incorrectly attributing the difference to bias caused by informative selection: both the weighted

and unweighted estimates are actually unbiased for the mean. PFE uses the correctly-specified

likelihood and has the most power. Our nonparametric tests are much less powerful than PFE,

but again these methods use only the sample observations and weights, requiring no parametric

modeling at all, and thus are always worth trying.
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Figure 2.4: Power versus informativeness for DuMouchel–Duncan (DD; bottom curve), Pfeffermann (PFE;

top curve), Kolmogorov–Smirnov (KS; second-lowest curve), and Cramér–von Mises (CvM; second highest

curve) tests, based on 1000 replicate Poisson samples of expected size n = 300 from the simulated scaled-t

population. Nominal size of all tests is α = 0.05 (horizontal reference line). Informativeness increases with

the value of ρ, with ρ = 0 the noninformative null.
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2.4.5 Pretest Estimators for Scaled t Distribution

As mentioned in Section 2.1, if the sampling design is noninformative, we should use the

unweighted estimator for efficiency. Otherwise, we should use a design-weighted estimator or

other estimation methods that incorporate design information.

The availability of our test suggests an alternative, “pretest estimator”: use the unweighted

estimator if the test fails to reject the null hypothesis of noninformativeness, or use the weighted

estimator if the test rejects the null.

We compared the root mean squared error (rMSE) of the weighted, unweighted and pretest

estimators (using KS or CvM as the test) via simulation for the mean, median, upper quartile and

90th percentile of the scaled t distribution as in Section 2.4.4. Figure 2.5 shows the rMSE of these

estimators as a function of the amount of informativeness. In each panel, the dotted line shows

the rMSE of the unweighted estimator, which increases due to increasing variability of the sample

as ρ increases, and due to bias under informative selection for the quantiles (but not the mean).

The dashed line sloping down from the left shows the rMSE of the weighted estimator, which

loses some efficiency due to unnecessary weighting when ρ is small, but reduces bias without an

increasing price in variance as ρ increases. The other two curves, solid for KS and dash-dot for

CvM, show the rMSE of the pretest estimators.

For the mean, shown in the upper left panel of Figure 2.5, the weighted estimator does not

lose much efficiency in low informativeness, and both pretest estimators have large variance in

moderate informativeness. So the weighted estimator is the best one for estimating the mean.

Figure on the upper right is for the median. With the increase in ρ, the unweighted estimator

has huge bias and thus large rMSE, while the weighted estimator loses efficiency in lower ρ, but

stays consistent overall. Our two pretest estimators have both advantages of efficiency in low

informativeness and unbiasedness in high informativeness. The KS and CvM pretest estimators

behave similarly, each dominating the weighted estimator for low values of ρ, dominating the

unweighted estimator for intermediate values of ρ, and converging to the rMSE of the weighted

estimator for high values of ρ. The lower left and lower right are figures for the upper quartile
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and 90th percentile. Both pretest estimators gain efficiency in low informativeness while having

some bias for intermediate ρ, and produce similar rMSE overall as the weighted estimator. To sum

up, our pretest estimators could have better performance than the weighted estimator for certain

problems.

2.5 Application to a Recreational Angling Survey

We apply the nonparametric tests of informative selection to recreational angling data from the

2016 Marine Recreational Information Program (MRIP) in South Carolina. MRIP measures the

number of fishing trips taken by recreational anglers in saltwater, along with the number of fish of

each species caught by the anglers. Data on recreational angling are important for understanding

fish stocks and sustainable management of fisheries.

Both shore fishing and boat fishing are of interest in MRIP. In this example, we focus on

boat trips. To estimate characteristics of the population of all boat trips in South Carolina in

2016, MRIP uses two complementary surveys: an on-site “intercept” survey that collects catch

by species information via angler interviews at the fishing site, and an off-site “effort” survey

that collects information on the number of angler trips via self-administered questionnaire (mail-

out/mail-back). The two sources of information are combined into the weights for the intercept

survey, so we focus here on the details of that survey.

In MRIP, the intercept survey of boat trips is obtained by constructing a frame of publicly-

accessible sites where boats can return to shore; crossing those sites with days in the fishing sea-

son to get “site-days”; stratifying site-days spatially (using contiguous South Carolina counties

as strata) and temporally (using five two-month waves: March–April,. . . , November–December);

obtaining a stratified sample of site-days; and intercepting all boat trips on selected site-days. The

stratified sampling is conducted with probabilities proportional to estimated fishing activity for the

site-days (“pressures”). The weights for MRIP reflect these unequal probabilities of selection and

also reflect other adjustments, particularly from the effort survey.
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Figure 2.5: rMSE of unweighted estimator (increasing dotted curve), weighted estimator (decreasing dashed

curve) and pretest estimators with KS statistic (solid curve) and CvM statistic (dashed-dotted curve) for the

mean (upper left panel), median (upper right panel), upper quartile (lower left panel) and 90th percentile

(lower right panel). Results based on 1000 replicate Poisson samples of expected size n = 300 from the

simulated scaled t population. Nominal size of tests for pretest estimators is α = 0.05. Informativeness

increases with the value of ρ, with ρ = 0 the noninformative null.
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Table 2.1: p-values of Kolmogorov–Smirnov (KS), Cramér–von Mises (CvM) and Dumouchel–Duncan

(DD) statistics for eight different response variables: number of anglers and catch for seven species.

Variable of Interest KS CvM DD

Anglers 0.020 0.007 0.027

Red drum 0.998 0.930 0.763

Black sea bass 0.095 0.091 0.060

Bluefish 0.650 0.569 0.853

Black drum 0.585 0.603 0.836

Wahoo 0.895 0.703 0.575

Gag grouper. 0.815 0.655 0.300

Atlantic croaker 0.719 0.637 0.388

Table 2.1 shows the p-values of KS, CvM and DD statistics for various variables. At test size

α = 0.05, all of the tests give same result. The only significant variable is Anglers. From the

nature of the design, we know Anglers ought to be informative, as surveys were taken on the days

and sites that were more likely to have anglers. After investigating the plots of Anglers versus

catch for the seven species, we do not see strong relationships, and conclude that it is reasonable

to treat the design as noninformative for the other variables.

2.6 Discussion

This chapter provides nonparametric methods of testing for informative selection by follow-

ing the idea of one class of parametric tests that compare weighted and unweighted estimators

of parameters. The test statistics turn out to be the scaled version of well-known KS and CvM

statistics. Relatively good power, being free from distribution assumptions and low computa-

tional cost make this method always worth trying if possible. However, it should be clear that this

method does not work for every survey design. The result is developed under the framework of

single-stage unstratified design, including poisson sampling, rejective sampling and high entropy

designs. Heuristically, it performs similarly under two-stage sampling and stratified sampling as

shown in the simulations. To extend the current results, theories under multistage designs and

stratified sampling deserve attention.
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Chapter 3

Nonparametric Tests for Informative Selection by

Maximum Mean Discrepancy

3.1 Introduction

Let Y be a random variable in Hilbert space and let q denote its probability measure, also

known as the superpopulation model. Our examples are Euclidean spaces, with real-valued scalar

random variables or real random vectors, but the methodology we describe is not limited to these

cases. Responses for a finite population ofN elements are generated as independent and identically

distributed (iid) realization of Y . We consider possibly informative selection of a sample from this

finite population. The selection is informative if the conditional probability measure of the sampled

responses, given that they were selected, is no longer iid q. We establish a nonparametric procedure

based on the maximum mean discrepancy to test the null hypothesis of noninformative sampling

versus the alternative hypothesis of informative sampling.

If the sampling design is noninformative, we can ignore the randomness in the design and

directly draw inferences based on the sample using classical likelihood-based procedures. That

is, standard inferences based on the sample are still valid for the population. Otherwise we lose

efficiency by incorporating the design into the analysis; see section 3.5 of Chambers et al. (2012).

On the other hand, if there is evidence that the design is informative, we must take into account the

informative selection to get valid inferences. Failing to do so can produce biased and inconsistent

parameter estimators, false confidence intervals and erroneous conclusions.

There are two major approaches to adjust for the effect of informative selection. The standard

approach is design-based estimation, which builds on Horvitz-Thompson (HT) estimation. Sam-

pled values are weighted by the inverses of their inclusion probabilities to get unbiased estimators

of population totals, assuming all units have positive inclusion probabilities (Horvitz & Thomp-
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son (1952)). HT estimators are consistent estimators of finite population parameters under mild

conditions on the sequence of sampling designs. For nonlinear parameters such as ratios or propor-

tions, which are explicit functions of finite population totals, the estimators obtained by plugging

in HT estimators are consistent and asymptotically design-unbiased under mild conditions. For a

parameter that is a solution to a finite population-level estimating equation (expressed as a finite

population total), the HT plug-in estimator is the solution to the weighted sample-level estimat-

ing equation, and is again consistent and asymptotically design-unbiased under mild conditions.

One important example is estimation of the finite population parameter defined as the maximum

likelihood estimator (MLE) at the finite population-level; that is, the parameter is the solution of

the finite population-level score equation. The corresponding estimator is the maximum pseudo-

likelihood estimator, obtained by maximizing the weighted log-likelihood, or equivalently solving

the weighted sample-level score equation (Binder (1983)). These weighted estimation procedures

together constitute the standard design-based approach to inference. These methods are widely

adopted in software specifically designed for survey analysis, such as the R package survey and

SURVEYMEANS, SURVEYLOGISTIC, etc. procedures in SAS.

Another approach is the class of model-based methods, which attempt to describe the joint dis-

tribution of the observations as distorted by the selection (sample likelihood: Patil & Rao (1978);

Breslow & Cain (1988)) or the joint distribution of the observations, response indicators, and prob-

abilities (full likelihood: Skinner (1994)). Pfeffermann & Sverchkov (1999, 2003) fit linear and

generalized linear population models by sample likelihood. Sverchkov & Pfeffermann (2004) pre-

dict population totals by sample likelihood. Pfeffermann et al. (2006) propose a multi-level model

under informative multi-stage sampling.

However, estimation methods to account for informative selection are out of the scope of this

chapter. We focus on testing to determine if the sampling design is informative.

Several authors have investigated hypothesis test of informative selection. One class of tests

checks whether all moments of residuals of the population model are identical to the moments of

residuals of the sample model. Pfeffermann & Sverchkov (1999) show that the hypothesis of equal
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moments of residuals for the population model and the sample model is equivalent to the hypothe-

sis of zero correlation between the sampling weights and all orders of polynomials of residuals of

the sample model. The hypothesis is tested by comparing the standardized Fisher transformation

of the correlation to the mean zero normal distribution under the null of noninformative selection.

This testing procedure is, however, not exact as (theoretically) an infinite number of correlations

between polynomials of residuals and sampling weights should be compared. The authors recom-

mend testing the first two to three correlations in practice. An alternative test is also provided by

Pfeffermann & Sverchkov (1999), which regresses sampling weights against all polynomials of

sample model residuals and tests whether the corresponding slopes are zero.

Another major class of tests focuses on evaluating whether the difference between weighted

and unweighted estimators of model parameters is significant. A test is constructed by DuMouchel

& Duncan (1983) to compare weighted and unweighted parameter estimators in a linear model,

and it is equivalent to an F-test of the null hypothesis that the original linear model is adequate

versus the alternative hypothesis that an augmented linear model whose design matrix is expanded

to include weighted covariates is needed. This equivalence makes it very convenient to run the test

in standard software. Fuller (1984) gives an approximate F-test for the case of cluster samples

within strata. The DuMouchel–Duncan test is extended to generalized linear models by Nordberg

(1989). Pfeffermann (1993) extends comparison of weighted and unweighted parameter estima-

tors to general likelihood-based problems with explicit estimators, and provides a Wald-type test

statistic. Pfeffermann & Sverchkov (2003) extend the test to generalized linear models in which

estimators are defined as the solutions to estimating equations.

Our approach builds on the idea of this latter class of tests comparing weighted and unweighted

estimators. However, instead of making parametric assumptions, we propose a nonparametric test

of informative selection.

Our nonparametric procedure is motivated by Gretton et al. (2012), who establish a kernel

method for the classical two-sample-problem. In order to test if two samples are from different

populations, they propose the Maximum Mean Discrepancy (MMD) test statistic, in which they
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find a smooth function f that is large on the points sampled from one population and small on the

points sampled from the other population. The MMD test statistic is then the estimated difference

between the expected function values on the two samples. By restricting the class of such smooth

functions F to be the unit ball in a universal reproducing kernel Hilbert space (RKHS) H (Aron-

szajn (1950)), with reproducing kernel k, Fk = {f : ‖f‖
H

≤ 1}, Gretton et al. (2012) propose

a computationally-feasible MMD statistic and derive its asymptotic distribution under the null and

alternative hypotheses. Advantages of using Fk are summarized in Sriperumbudur et al. (2010).

We propose a novel nonparametric test for informative selection that uses the maximum mean

discrepancy between the weighted sample and the unweighted sample, and establish its asymp-

totic distribution under the null hypothesis of noninformative selection. The test relies only on

sample observations (possibly vector-valued) and sample weights. We show via simulation that

the asymptotic test has correct size in finite samples and good power for a variety of informative

alternatives.

This chapter is organized as follows. Notation and assumptions are introduced in Section 3.2,

following the framework of Gretton et al. (2012). We prove the asymptotic result for our statistic

in Section 3.3. In Section 3.4, we explore the power and size properties of our tests and compare

to existing parametric tests and the cdf-based nonparametric tests introduced in Section 2, under

different types and amounts of informativeness. In Section 3.5, we apply our methodology to data

from a recreational fisheries survey, the Marine Recreational Information Program (MRIP). The

proofs are deferred to the Appendix.

3.2 Notation and Assumptions

Consider a finite population U = {1, . . . , N}. {yi}i∈U are realization of {Yi}i∈U , independent

and identically distributed (iid) with probability measure p. Only a subset of U is observed, and

such subset s is called a sample. We use sample membership indicator ξi to denote if an element is

being selected, ξi = 1 if i ∈ s, and ξi = 0 otherwise. The inclusion probability πi = E [ξi|Yi = yi].

The sample weights wi’s are the inverse of the πi’s, wi = π−1
i . Sample size n = |s|.
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Let p and q be probability measures and let Y and Y ′ be random variables defined on Y . For a

set of functions F , the maximum mean discrepancy (MMD) between p and q over F is defined as

MMD[F , p, q] := sup
f∈F

(Ey∼p [f(y)]− Ey′∼q [f(y
′)]) . (3.2.1)

The idea behind this metric is that we pick f to be large on p and small on q, so that MMD would

be large if the two samples are from different distributions, while MMD is zero if p = q.

To sidestep the problem of choosing f , it is convenient to choose F to be the unit ball {F :

‖f‖H ≤ 1} in a universal reproducing kernel Hilbert space (RKHS) H , in the sense of section 2.2

of Gretton et al. (2012), with universal kernel k(·, ·). With restriction that Y is compact, a universal

RKHS is dense in C(Y ) with respect to the L∞ norm. Steinwart (2002) shows that Gaussian and

Laplace kernels are universal. Assume k is continuous, symmetric, positive definite and square

integrable. Using RKHS properties and squaring MMD for convenience, Gretton et al. (2012)

show that

MMD2[F , p, q] =

{
sup

f∈H :‖f‖≤1

(Ey∼p [f(y)]− Ey′∼q [f(y
′)])

}2

= ‖Ey∼p [k(y, ·)]− Ey′∼q [k(y
′, ·)] ‖2H (3.2.2)

= Ey∼p,y′∼p〈k(y, ·), k(y′, ·)〉 − 2Ey∼p,y′∼q〈k(y, ·), k(y′, ·)〉

+Ey∼q,y′∼q〈k(y, ·), k(y′, ·)〉

= Ey∼p,y′∼p[k(y, y
′)]− 2Ey∼p,y′∼q[k(y, y

′)] + Ey∼q,y′∼q[k(y, y
′)], (3.2.3)

where y and y′ are independent random variables in each expectation.

Given samples {y1, y2, . . . , yn} iid from p and {y′1, y′2, . . . , y′n} iid from q, an unbiased and

consistent estimator of MMD2[F , p, q] is then, from (3.2.3),

MMD2 =
1

n(n− 1)

n∑

i=1

n∑

i 6=j

{
k(yi, yj)− 2k(yi, y

′
j) + k(y′i, y

′
j)
}
.
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Under the null hypothesis p = q, this statistic has mean zero, and Gretton et al. (2012) show that

nMMD2 converges in distribution to an infinite linear combination of χ2
1 random variables, with

coefficients given by the eigenvalues of the centered kernel

h(yi, yj) := k(yi, yj)− Eyk(y, yj)− Eyk(yi, y) + Ey,y′k(y, y
′), (3.2.4)

where the eigen-decomposition is with respect to the common (null) probability measure p = q.

3.3 Methods

Our test statistic follows similar reasoning to the MMD of Gretton et al. (2012), but instead

of comparing two independent samples from possibly different probability measures, it compares

weighted and unweighted versions of the same sample. Under the alternative of informative selec-

tion, the superpopulation probability measure q is correctly estimated by using the survey weights

wi, which are inverse inclusion probabilities. By contrast, the probability measure p, estimated by

the unweighted sample, is not q but

p(A) =

∫
y∈A π(y) dq(y)∫
y∈Y π(y) dq(y)

for measurable sets A ⊂ Y , where Y is the entire outcome space. That is, under the alternative

the inclusion probability π(y) = P(ξi = 1 | y) depends on y and the design is informative. If

π(y) = P(ξi = 1 | y) = π, a constant independent of y, then the design is noninformative and

p(A) = q(A) for all measurable sets A.

Because we do not have independent samples, we construct a plug-in estimator of the popula-

tion MMD2[F , p, q] not from (3.2.3) but from (3.2.2), then correct for bias. First, define
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A =

∥∥∥∥∥
1

n

∑

i∈s
k(·, yi)−

1

n

∑

i∈s

wi
ws
k(·, yi)

∥∥∥∥∥

2

H

=

∥∥∥∥∥
1

n

∑

i∈s

(
1− wi

ws

)
k(·, yi)

∥∥∥∥∥

2

H

=
1

n2

∑

i∈s

∑

j∈s

(
1− wi

ws

)(
1− wj

ws

)
〈k(·, yi)k(·, yj)〉H

=
1

n2

∑

i∈s

∑

j∈s

(
1− wi

ws

)(
1− wj

ws

)
k(yi, yj),

by properties of the inner product and the kernel in the RKHS. Since
∑

i∈s(1 − wi/ws) = 0, we

can replace k by h from (3.2.4) without changing the value:

A =
1

n2

∑

i∈s

∑

j∈s

(
1− wi

ws

)(
1− wj

ws

)
h(yi, yj). (3.3.1)

Because (3.3.1) is not unbiased for MMD2[F , p, q], we remove the main diagonal. Further, we

replace the theoretically-centered kernel h by its empirical estimator ĥ and normalize by n to

obtain the following test statistic:

nMMD2
ĥ
=

1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)
ĥ(yi, yj), (3.3.2)

where ws =
∑

i∈swi/n and

ĥ(yi, yj) = k(yi, yj)−
1

n

∑

j∈s
k(yi, yj)−

1

n

∑

i∈s
k(yi, yj) +

1

n2

∑

i∈s

∑

j∈s
k(yi, yj). (3.3.3)

We then have the following asymptotic result.

Theorem 3.3.1. Assume that the design weights {wi}i∈s are iid with mean µw and finite variance

σ2
w, and assume the null hypothesis that the weights are independent of sampled responses {yi}i∈s

that are iid q. Assume further that Eq [k
2(y, y′)] <∞, where y, y′ are iid q. Then, as n→ ∞,
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nMMD2
ĥ

L→
∞∑

l=1

λl

(
z2l −

σ2
w

µ2
w

)
, (3.3.4)

where {zl} are iid N (0, σ2
w/µ

2
w), and λl are solutions to the eigenvalue equation

∫

Y
h(y, y′)ψl(y) dq(y) = λlψl(y

′).

Practical use of this theorem requires estimates of the eigenvalues, provided in the following

result.

Remark 3.3.1.1. Gretton et al. (2009) show that empirical estimates of the first n eigenvalues can

be obtained as

λ̂l =
1

n
νl,

where νl are the eigenvalues of the centered Gram matrix

K̃ := CKC,

K := [k(yi, yj)]i,j∈s, C = I − 1
n
11T is a centering matrix, and 1 is an n× 1 vector of 1’s.

The full implementation of the MMD hypothesis test then proceeds as follows. First, choose a

kernel k (standard choices would be Gaussian or Laplacian densities). Next, determine the kernel

bandwidth. An empirical rule that seems to work well is to use the median of the interpoint

distances among the sample {yi}i∈s; for example, set the standard deviation for a Gaussian kernel

or the scale parameter for a Laplacian kernel equal to this median value. Compute the kernel

values K = [k(yi, yj)] and the MMD statistic (3.3.2). Use the empirical mean and variance of the

weights to estimate µw and σ2
w, and use Remark 3.3.1.1 to estimate the first n eigenvalues {λl}nl=1.

With these estimated values, simulate a large number of realizations from the limiting distribution

(3.3.4) via
n∑

l=1

λ̂l

(
z2l −

σ̂2
w

µ̂2
w

)
,
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where {zl} are iid N (0, σ̂2
w/µ̂

2
w). The p-value of the test is then the proportion of simulated real-

izations that are greater than the computed MMD statistics.

3.4 Simulation

3.4.1 Gestational Age Example

As described in Bonnéry et al. (2018), this simulation is motivated by the actual design of the

1988 National Maternal and Infant Health Survey (NMIHS), which oversampled low birthweight

infants (Korn & Graubard (1999)). We simulate an unstratified design with N = 15000 and n =

300 instead of the stratified sampling design in the original setting. We assume Y = gestational

age to be iid N (θ, σ2) in the superpopulation. Because birthweight and gestational age are highly

correlated, oversampling lower birthweight infants means that inclusion probabilities and sampling

weights depend on gestational age. Thus the design is informative.

We generate the inclusion probabilities by

ln π | (Y = y) ∼ N (−δ0 − δy, τ 2)

with

δ0 = − ln
n

N
+
τ 2

2
− δθ +

δ2σ2

2
.

We set θ = 39.853, σ2 = 16.723, τ 2 = 0.087 and let δ range from 0 to 0.03 with grid size of 0.002.

Lower values of δ means less informativeness, with noninformativeness when δ = 0.

For each of the 1000 independent replicates, a Poisson sample of expected size n = 300 is

selected. MMD is computed as in (3.3.2). Figure 3.1 shows the power of our method compared

to DuMouchel and Duncan (DD, DuMouchel & Duncan (1983)), Pfeffermann (PFE, Pfeffermann

(1993)), Kolmogorov–Smirnov (KS), and Cramér-von Mises (CvM) versus δ; informativeness in-

creases with δ. All methods maintain approximately the correct size at the null hypothesis of

noninformative selection, δ = 0. In this example, MMD statistic shows competitive power relative

to DD and PFE. The DD statistic shows the highest power while CvM power curve is slightly
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below DD. The KS statistic shows lowest power. PFE and MMD power curves lie between CvM

and KS, and are almost right on top of each other. The reason that PFE does not perform as well

as DD is that the PFE statistic looks for informativeness in both the mean (which is altered by

informative selection in this example) and variance (which is not altered), while DD has the ad-

vantage of looking for informativeness only in the mean. In other simulations (not shown), the

PFE shows approximately the same power as DD if we plug in the true variance in the likelihood.

Here DD assumes the correct model and PFE uses the correct likelihood, while MMD, KS and

CvM use only sample responses and their design weights. Essentially, our method achieves good

power without any of the modeling cost of the parametric methods.

3.4.2 Two-Stage Gestational Age Example

We investigate the application of MMD to two-stage sampling via simulation, by extending

the gestational age example of Section 3.4.1. Consider a finite population with NPSU = 15000

primary sampling units (PSUs), each made up of m = 10 secondary sampling units (SSUs). We

set Zij iid N (θ/m, σ2/m) for i = 1, 2, . . . , NPSU and j = 1, 2, . . . ,m, so that the PSU totals

Yi =
∑m

j=1 Zij are iid N (θ, σ2) across PSUs. We generate the inclusion probabilities of the first

stage by

ln π | Y = y ∼ N (−δ0 − δy, τ 2)

with

δ0 = − ln
n

N
+
τ 2

2
− δθ +

δ2σ2

2
.

We set θ = 39.853, σ2 = 16.723, τ 2 = 0.087 and δ ranges from 0 to 0.03 with grid size of

0.002 as before. For each of 1000 independent replicates, a Poisson sample of the PSUs with

expected sample size n = 300 is selected, and then a simple random sample without replacement

(SRSWOR) within each selected PSU is selected, with sample size nm.

The goal in this problem is inference for the PSU totals. The estimated PSU totals, ŷi =

m
∑

j∈si zij/nm, are computed from the simple random sample si we collected in the second stage.
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Figure 3.1: Power versus informativeness for DuMouchel–Duncan (DD; top curve), Pfeffermann (PFE;

second lowest curve, dotdash), Kolmogorov–Smirnov (KS; bottom curve), Cramér–von Mises (CvM; sec-

ond highest curve) and Maximum Mean Discrepancy (MMD; second lowest curve, longdash) tests, based

on 1000 replicate Poisson samples of expected size n = 300 from the simulated gestational age population.

Nominal size of all tests is α = 0.05 (horizontal reference line). Informativeness increases with the value of

δ, with δ = 0 the noninformative null.
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Then the calculations follow as in Section 3.4.1 by using estimated PSU totals ŷi in place of yi and

using PSU weights wi. Figure 3.2 shows the power curves of all the statistics for various amount

of informativeness with nm = 2 and nm = 6. The single stage sampling in Section 3.4.1 can be

treated as a special case of two-stage sampling with nm = 10. In spite of the subsampling, the tests

maintain the correct test size and the same relative power ordering as in Figure 3.1, though power

decreases as the subsample size nm decreases.
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Figure 3.2: Power versus informativeness for DuMouchel–Duncan (DD; top curve), Pfeffermann (PFE;

second lowest curve, dotdash), Kolmogorov–Smirnov (KS; bottom curve), Cramér–von Mises (CvM; sec-

ond highest curve) and Maximum Mean Discrepancy (MMD; second lowest curve, longdash) tests, based

on 1000 replicate two-stage samples, with Poisson samples of expected size n = 300 PSUs in stage one,

and simple random samples without replacement of size nm = 2 (left panel) and nm = 6 (right panel) in

stage two. Nominal size of all tests is α = 0.05 (horizontal reference line). Informativeness increases with

the value of δ, with δ = 0 the noninformative null.

3.4.3 Multidimensional Gestational Age Example

One big advantage of our MMD approach is that vector-valued responses can be tested simul-

taneously, exactly as with a scalar response. Instead of building parametric models for each scalar

response, or running a nonparametric test for each scalar response, we can run a single test to

detect if there is informative selection anywhere among the responses.
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To illustrate, we generalize the gestational age example in Section 3.4.1 to the m-dimensional

case. The response vector of interest, Y = (Y1, Y2, . . . , Ym)
⊺, is normally distributed in the super-

population with mean vector θ = (θ, θ, . . . , θ)⊺ and covariance matrix Σ = diag(σ2, σ2, . . . , σ2).

The finite population vector responses, yi = (y1i, y2i, . . . , ymi)
⊺, are iid realizations from the su-

perpopulation model for i = 1, 2, . . . , N .

The inclusion probabilities are generated by an informative mechanism that depends only on

the first component of the response vector:

ln π | y1 ∼ N (−δ0 − δy1, τ
2)

with

δ0 = − ln
n

N
+
τ 2

2
− δθ +

δ2σ2

2
.

We set θ = 39.853, σ2 = 16.723, τ 2 = 0.087 and let δ range from 0 to 0.03 with grid size of 0.002.

Lower values of δ correspond to less informativeness, with noninformativeness when δ = 0. Four

different dimensions are considered (m = 1, 4, 16, 64), so that the true informative mechanism is

increasingly obscured as the dimension increases.

For each of the 1000 independent replicates, we draw a Poisson sample of expected size n =

300. The MMD statistic is calculated as in (3.3.2). Figure 3.3 shows the power of the MMD test

versus different amounts of informativeness for the four dimensions. No other tests are compared,

as we are not aware of other tests for informative selection in the multi-dimensional case.

The scalar case, m = 1, is the same as in Section 3.4.1. As dimension grows (but expected

sample size remains fixed), the power decreases and it is harder to detect the informativeness in the

design. The MMD test has no guidance about which, if any, of the m dimensions might be infor-

mative. As expected, power decreases as dimension increases, but even in the highest dimension

considered, the MMD test has considerable power against higher levels of informativeness. All

cases show approximately the correct test size at δ = 0.
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Figure 3.3: Power versus informativeness for Maximum Mean Discrepancy (MMD) test with various re-

sponse dimension (dim = 1; top curve), (dim = 4; second highest curve), (dim = 16; second lowest curve)

and (dim = 64; bottom curve), based on 1000 replicate Poisson samples of expected size n = 300 from

the simulated gestational age population. Nominal size of all tests is α = 0.05 (horizontal reference line).

Informativeness increases with the value of δ, with δ = 0 the noninformative null.
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3.4.4 Scaled t Distribution

As the informativeness exists in the mean for the gestational age example, both DD and PFE

show good power as expected: they assume the correctly-specified mean model and likelihood. In

the following t example, the informativeness exists in the variance.

Our variable of interest yi is generated as follows:

yi = µ+ σ
zi√
vi/ν

√
ν − 2

ν
= µ+ σizi,

where {zi} are iid N (0, 1), independent of {vi} iid χ2
ν . The error terms here are distributed as

scaled tν , with mean 0 and variance σ2 for ν > 2, and

yi | vi ∼ N (0, σ2
i ).

Let {v∗i } be iid χ2
ν , independent of {zi} and {vi}, and set

τi = σ
1√
v∗i /ν

√
ν − 2

ν
,

which has the same distribution as σi but is not used in generating yi. Define di = ρσi + (1− ρ)τi

and set the inclusion probabilities as

πi = ndi

(∑

i∈U
di

)−1

,

where ρ ∈ [0, 1] is a constant to control the amount of informativeness in the design. Samples are

selected by Poisson sampling with inclusion probability proportional to size di. The motivation

for this example is that designs with πi ∝ σi minimize the unconditional variance, with respect to

model and design, of the Horvitz-Thompson estimator of the y-total, and di is a proxy for σi.

We set µ = 39.853, σ2 = 6.123, ν = 5, and let ρ range from the noninformative null at

ρ = 0 to the highly-informative, optimal design at ρ = 1 with grid size of 0.025. For each of 1000
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independent replicates, a Poisson sample of expected size n = 300 is selected. We compute MMD

statistic as in (3.3.2).

Figure 3.4 shows the power of our method compared to DD, PFE, KS and CvM versus ρ;

informativeness increases with ρ. All tests have approximately the correct test size at the noninfor-

mative null, ρ = 0. As ρ increases, DD has a very low amount of power, because the weighted and

unweighted estimates of the mean will differ significantly, by chance, due to large variation, even

though both the weighted and unweighted estimates are actually unbiased for the mean. That is,

the DD test sometimes “guesses the right answer” when it rejects the null by mistakenly attributing

the difference to bias caused by informative selection. PFE uses the correctly-specified likelihood

and has the most power. KS and CvM tests are much less powerful than PFE. MMD, however,

shows good power that is quite comparable to PFE for a wide range of ρ. Since MMD uses only

the sample observations and their weights, and requires no parametric modeling at all, it is always

worth trying as a test for informative selection.

3.4.5 Multidimensional Scaled t Distribution

MMD shows good power in multidimensional testing of informativeness in the mean in Sec-

tion 3.4.3. Here we investigate its power in multidimensional testing of informativeness in the

variance. We generalize the scaled t example in Section 3.4.4 to the m-dimensional case. The

response vector of interest is Y = (Y1, Y2, . . . , Ym)
⊺. The finite population vector responses,

yi = (y1i, y2i, . . . , yji, . . . , ymi)
⊺, are iid realizations from the following model for i = 1, 2, . . . , N

and j = 1, 2, . . . ,m:

yji = µ+ σ
zi√
vji/ν

√
ν − 2

ν
= µ+ σjizi,

where {zi} are iid N (0, 1), independent of {vji} iid χ2
ν . The error terms here are distributed as

scaled tν , with mean 0 and variance σ2 for ν > 2, and

yji | vji ∼ N (0, σ2
ji).
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Figure 3.4: Power versus informativeness for DuMouchel–Duncan (DD; bottom curve), Pfeffermann (PFE;

top curve), Kolmogorov–Smirnov (KS; second-lowest curve), Cramér–von Mises (CvM; third highest curve)

and Maximum Mean Discrepancy (MMD; second highest curve) tests, based on 1000 replicate Poisson sam-

ples of expected size n = 300 from the simulated scaled-t population. Nominal size of all tests is α = 0.05

(horizontal reference line). Informativeness increases with the value of ρ, with ρ = 0 the noninformative

null.
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Let {v∗i } be iid χ2
ν , independent of {zi} and {vi}, and set

τi = σ
1√
v∗i /ν

√
ν − 2

ν
,

which has the same distribution as σji but is not used in generating yi. Define di = ρσ1i+(1−ρ)τi
and set the inclusion probabilities as

πi = ndi

(∑

i∈U
di

)−1

,

where ρ ∈ [0, 1] is a constant to control the informativeness of the design. Here di only depends on

the first component of σi, thus only depends on the first component of yi. As πi is proportional to

di, πi only depends on the first component of yi. Four different dimensions are considered (m =

1, 4, 16, 64), so that the informative mechanism is getting obscured as the dimension increases.

We set µ = 39.853, σ2 = 6.123, ν = 5, and let ρ increase from the null of noninformativeness

at ρ = 0 to the highly-informative, optimal design (for the first component of the response vector)

at ρ = 1, with grid size of 0.025. For each of 1000 independent replicates, a Poisson sample of

expected size n = 300 is selected. The MMD statistic is computed as in (3.3.2). Figure 3.5 shows

the power of the MMD test versus various amounts of informativeness for the four dimensions.

The scalar case, m = 1, is the same as in Section 3.4.4. As expected, power decreases as

dimension increases. The power of MMD in m = 4 dimensions is similar to the power of KS in

only m = 1 dimension. MMD does not show as good power as it did in Section 3.4.3 for high

dimensions. This reflects the difficulty in detecting informativeness in the variance. However,

the MMD test still has some power against higher levels of informativeness, and all cases show

approximately the correct test size at ρ = 0.
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Figure 3.5: Power versus informativeness for Maximum Mean Discrepancy (MMD) test with various re-

sponse dimension (dim = 1; top curve), (dim = 4; second highest curve), (dim = 16; second lowest curve) and

(dim = 64; bottom curve), based on 1000 replicate Poisson samples of expected size n = 300 from the sim-

ulated scaled-t population. Nominal size of all tests is α = 0.05 (horizontal reference line). Informativeness

increases with the value of ρ, with ρ = 0 the noninformative null.
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3.4.6 Pretest Estimators for Scaled t Distribution

As mentioned in Section 3.1, if the sampling design is noninformative, we should use the

unweighted estimator for efficiency. Otherwise, we should adopt design-weighted estimators or

other estimation methods that incorporate design information.

Our test suggests an alternative, “pretest estimator”: use the unweighted estimator if the test

fails to reject the null hypothesis of noninformative selection, or use the weighted estimator if the

test rejects the null.

We compare the root mean squared error (rMSE) of the weighted, unweighted and pretest

estimators (using KS, CvM or MMD as the test) via simulation for the mean, median, upper quartile

and 90th percentile of the scaled t distribution as in Section 3.4.4. Figure 3.6 shows the rMSE

of these estimators as a function of the amount of informativeness. In each panel, the dotted

line shows the rMSE of the unweighted estimator, which increases due to increasing variability

of the sample as ρ increases, and due to bias under informative selection for the quantiles (but

not the mean). The rMSE of the weighted estimator is represented by the dashed line sloping

down from the left. The weighted estimator loses some efficiency due to unnecessary weighting

when ρ is small, but reduces bias without an increasing price in variance as ρ increases. The

other three curves, solid for KS and dash-dot for CvM, two-dash for MMD, show the rMSE of the

pretest estimators. The pretest estimators have both advantages of efficiency in low informativeness

and unbiasedness in high informativeness. The three pretest estimators behave similarly, each

dominating the weighted estimator for low values of ρ, dominating the unweighted estimator for

intermediate values of ρ, and converging to the rMSE of the weighted estimator for high values of

ρ.

The upper left panel of Figure 3.6 shows the estimation for the mean. The weighted estimator

does not lose much efficiency in low informativeness, and pretest estimators have large variance

in moderate informativeness as the unweighted estimator has large variance for moderate to large

informativeness. So the weighted estimator is the best one for estimating the mean. Estimation for

the median is shown on the upper right. With the increase in ρ, the unweighted estimator has huge
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bias and thus large rMSE, while the weighted estimator loses some efficiency for lower ρ, but has

fairly stable rMSE overall. Our three pretest estimators have both advantages of efficiency in low

informativeness and unbiasedness in high informativeness. The three pretest estimators dominate

the weighted estimator for low values of ρ, dominate the unweighted estimator for intermediate

values of ρ, and converge to the rMSE of the weighted estimator for high values of ρ. Estimation

of upper quartile and 90th percentile are shown in the lower left and lower right. All pretest

estimators gain efficiency in low informativeness, have some bias for intermediate ρ, and produce

similar rMSE overall as the weighted estimator, with MMD showing smaller rMSE than KS and

CvM. In sum, our pretest estimators dominate the weighted and unweighted estimators of quantiles

in this example, and might have better estimation properties than the weighted estimator for certain

problems.

3.5 Application to a Recreational Angling Survey

We apply the nonparametric tests of informative selection to recreational angling data from the

2016 Marine Recreational Information Program (MRIP) in South Carolina. MRIP measures the

number of fishing trips taken by recreational anglers in saltwater, along with the number of fish of

each species caught by the anglers. Data on recreational angling are important for understanding

fish stocks and sustainable management of fisheries.

Both shore fishing and boat fishing are of interest in MRIP. In this example, we focus on

boat trips. To estimate characteristics of the population of all boat trips in South Carolina in

2016, MRIP uses two complementary surveys: an on-site “intercept” survey that collects catch

by species information via angler interviews at the fishing site, and an off-site “effort” survey

that collects information on the number of angler trips via self-administered questionnaire (mail-

out/mail-back). The two sources of information are combined into the weights for the intercept

survey, so we focus here on the details of that survey.

In MRIP, the intercept survey of boat trips is obtained by constructing a frame of publicly-

accessible sites where boats can return to shore; crossing those sites with days in the fishing sea-
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Figure 3.6: rMSE of unweighted estimator (increasing dotted curve), weighted estimator (decreasing dashed

curve) and pretest estimators with KS statistic (solid curve), CvM statistic (dashed-dotted curve) and MMD

statistic (two-dashed curve) for the mean (upper left panel), median (upper right panel), upper quartile

(lower left panel) and 90th percentile (lower right panel). Results based on 1000 replicate Poisson samples

of expected size n = 300 from the simulated scaled t population. Nominal size of tests for pretest estimators

is α = 0.05. Informativeness increases with the value of ρ, with ρ = 0 the noninformative null.
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Table 3.1: p-values of Kolmogorov–Smirnov (KS), Cramér–von Mises (CvM), DuMouchel–Duncan (DD)

and Maximum Mean Discrepancy (MMD) statistics for eight different response variables (number of anglers

and catch for seven species) individually, and for combinations of all response variables, all but Anglers and

all but Anglers and Black sea bass.

Variable of Interest KS CvM DD MMD

Anglers 0.020 0.007 0.027 0.022

Red drum 0.998 0.930 0.763 0.705

Black sea bass 0.095 0.091 0.060 0.029

Bluefish 0.650 0.569 0.863 0.286

Black drum 0.585 0.603 0.836 0.222

Wahoo 0.895 0.703 0.575 0.284

Gag grouper 0.815 0.655 0.300 0.229

Atlantic croaker 0.719 0.637 0.388 >0.999

All – – – 0.032

All\Anglers – – – 0.082

All\{Anglers, Black sea bass} – – – 0.640

son to get “site-days”; stratifying site-days spatially (using contiguous South Carolina counties

as strata) and temporally (using five two-month waves: March–April,. . . , November–December);

obtaining a stratified sample of site-days; and intercepting all boat trips on selected site-days. The

stratified sampling is conducted with probabilities proportional to estimated fishing activity for the

site-days (“pressures”). The weights for MRIP reflect these unequal probabilities of selection and

also reflect other adjustments, particularly from the effort survey.

Table 3.1 shows the p-values of KS and CvM statistics as described in Chapter 2, DD statistic

as in DuMouchel & Duncan (1983) and MMD statistic for various variables. Anglers is significant

for all the tests at test size α = 0.05. Black sea bass shows significance by MMD at test size

α = 0.05 while being significant at test size α = 0.1 for other tests. From the nature of the design,

we know Anglers ought to be informative, as surveys were taken on the days and sites that were

more likely to have anglers. Further, if catch for a species is correlated with number of anglers, we

might expect the design to be informative for that species. After investigating the plots of Anglers

with catch for the seven species, we do not see a strong correlation between them except for Black

sea bass, with moderate correlation 0.332. Thus, it makes sense that the test finds evidence of

informative selection for Black sea bass while failing to reject the noninformative null for the other
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species. MMD shows smaller p-value than KS, CvM and DD in detecting Black sea bass, and in

fact is the only test that rejects the null at α = 0.05.

Because our MMD test can also be applied to vector-valued responses, we have also provided

in Table 3.1 (below the horizontal dashed line) the p-values for MMD applied to all response

variables, all except Anglers, and all except Angler and Black sea bass. The MMD test rejects the

null hypothesis of noninformative selection for all responses at α = 0.05, and for all responses

but Anglers at α = 0.1. Once the two informative dimensions of Anglers and Black sea bass are

removed from the vector, MMD fails to reject the noninformative null. These multivariate results

are consistent with the individual results in the rest of the table.

3.6 Discussion

This chapter provides a nonparametric method of testing for informative selection by follow-

ing the idea of one class of parametric tests that compare weighted and unweighted estimators

of parameters. The test statistic is constructed by measuring the MMD between weighted and

unweighted samples in RKHS. Power analysis shows the competitiveness of our method to other

parametric methods. Moreover, the MMD statistic does not require parametric assumptions and

can be widely applied to all situations. An important issue in the application of the MMD-based

tests is the selection of the kernel width. A heuristic solution that we adopt is to pick the kernel

width as the median distance between points in the sample. The optimum choice of kernel width is

an ongoing area of research. Also, the choice of new kernels could lead to more powerful tests. The

class of functions considered in this chapter is the RKHS, but this might be extended to other, more

general, classes of functions. MMD measures the discrepancies in terms of norms of differences of

mean embeddings. Other discrepancies, such as kernel Fisher discriminant and Kullback-Leibler

divergence, could be investigated rather than the difference of RKHS means.
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Chapter 4

A Small Area Estimation Approach for Reconciling

Mode Differences in Two Surveys of Recreational

Fishing Effort

4.1 Introduction

For decades, the National Marine Fisheries Service (NMFS) has conducted the Coastal House-

hold Telephone Survey (CHTS) to collect recreational saltwater fishing effort (the number of fish-

ing trips) from shore and private boat anglers in 17 US states along the coasts of the Atlantic

Ocean and the Gulf of Mexico: Alabama, Connecticut, Delaware, Florida, Georgia, Louisiana,

Maine, Maryland, Massachusetts, Mississippi, New Hampshire, New Jersey, New York, North

Carolina, Rhode Island, South Carolina, and Virginia. Data collection occurs during a two-week

period at the end of each two-month sample period (or “wave”), yielding six waves for each year.

However, samples are not obtained for every wave in every state; for example, many states have

no wave 1 sample, reflecting minimal fishing effort during January and February in those states.

The CHTS uses random digit dialing (RDD) for landlines of households in coastal counties.

RDD suffers from several shortcomings in this context, such as the inefficiency at identifying an-

glers (National Research Council, 2006), the declining response rate for telephone surveys (Curtin

et al., 2005), and the undercoverage of anglers due to the increase in wireless-only households

(Blumberg & Luke, 2013). Thus, after some experimentation, NMFS implemented the new Fish-

ing Effort Survey (FES) that involves mailing questionnaires to a probability sample of postal

addresses (Andrews et al., 2014).

The telephone-based CHTS and the mail-based FES have obvious methodological differences.

The two surveys have different coverage properties, because they use very different frames: RDD

of landlines for CHTS versus address-based sampling, with oversampling of addresses matched
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to licensed anglers, for FES. They have different nonresponse patterns, with overall FES response

rates nearly three times higher than CHTS response rates (Andrews et al., 2014). Finally, the

measurement processes are fundamentally different, due to the differences in asking about angling

activity over the phone versus a paper form.

Due at least in part to these methodological differences, there is a large discrepancy between the

effort estimates from the CHTS and the FES estimates. Whatever the reasons for the discrepancy,

it is of interest to fisheries managers and stock assessment scientists to be able to convert from the

“units” of the telephone survey estimates to those of the mail survey estimates, and vice versa. This

conversion is known as “calibration” in this context, and is not to be confused with the calibration

method common in complex surveys. The calibration allows construction of a series of comparable

estimates across time.

The data used for the calibration exercise come from the CHTS for most states and waves from

1982 to 2017, and from the FES for states and waves from 2015 to 2017. For each survey, the data

consist of estimated total effort for shore fishing and for private boat fishing, along with estimated

design variances and sample sizes, for each available state and wave.

The literature on reconciling estimates from more than one survey is sparse. J. Van Den Brakel

et al. (2020) review different methods to measure discontinuities due to a survey process redesign.

Depending on whether there is an overlapping period between the old and new surveys, how long

such a period lasts, and how the old survey switches to the new survey, the problem can be divided

into the following cases. For parallel data collection, where data is collected under the old and new

designs alongside each other for a certain period, design-based methods in J. A. Van Den Brakel

(2008, 2013), state-space models in J. A. Van Den Brakel (2008, 2010) and small area estimation

models in Pfeffermann (2002, 2013) and Rao & Molina (2015) can be adopted, depending on the

length of the parallel run and the sample sizes. For the phase-in approach, where changeover to the

new design is done by a gradual roll-out, similar methods to those used for a parallel run can be

implemented. For the case where there is no overlap at all, state-space models are recommended.
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The methodology described here uses effort estimates transformed via natural logarithms, for

either shore or private boat fishing. Let M̂st denote the estimated log-effort based on the mail sur-

vey in state s and year-wave t and let T̂st denote the estimated log-effort based on the telephone

survey. We build a model that assumes that both mail and telephone estimates target a common un-

derlying time series of true effort, but that each survey estimate is distorted both by sampling error

and nonsampling error. The true effort series is further described with a classical time series model

consisting of trend, seasonal, and irregular components. The sampling error series have properties

that are well-understood based on features of the corresponding sampling designs, including well-

estimated design variances. The nonsampling error cannot be completely disentangled from the

true effort series. But given the overlap of mail and telephone estimates for some states and waves,

the difference in the nonsampling errors can be estimated, and can be modeled with available co-

variates to allow extrapolation forward or backward in time. This extrapolation is a key part of the

calibration procedure.

The combined model for the two sets of estimates and the underlying true effort series is a linear

mixed model of a type that commonly appears in the context of area-level small area estimation,

where it is known as the Fay-Herriot model (Fay & Herriot, 1979). In Fay-Herriot, it is standard to

treat design variances as known. Our design variances are based on moderate to large sample sizes

(minimum size n = 39) in each state and wave and so are well-estimated by the standards of small

area estimation. A complication is that our design variances are on the original effort scale rather

than the log scale. As an alternative to standard Taylor linearization, we develop a novel approach

to transforming the estimated design variances that ensures analytic consistency between our mean

model and our variance model.

The Fay-Herriot methodology leads to empirical best linear unbiased predictors (EBLUPs) of

the mail target or the telephone target, and these constitute our calibrated effort series. Unlike the

standard Fay-Herriot context, the EBLUPs require prediction at new sets of covariates. We adapt

standard Mean Square Error (MSE) approximations and estimates to this non-standard situation,
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and evaluate their performance via simulation. Finally, we apply the methods to the problem of

reconciling past telephone survey estimates to the mail survey.

4.2 Model

4.2.1 Mean Model

We fix attention on one type of fishing behavior, either shore or private boat: the model de-

velopment is identical in both cases. We assume that the telephone effort estimate T̂st is a design-

unbiased estimator of the “telephone target” Tst, which includes both the true effort and survey

mode effects due to the telephone methodology, while the mail effort estimate M̂st is a design-

unbiased estimator of the “mail target” Mst, which includes both the true effort and survey mode

effects due to the mail methodology. That is,

T̂st = Tst + eTst and M̂st =Mst + eMst

where the sampling errors {eTst} and {eMst } have zero mean under repeated sampling.

We assume that both the telephone target and the mail target contain the true effort series, which

is further assumed to contain state-specific trends, due in part to changing state population sizes,

state-specific seasonal effects that vary wave to wave, and irregular terms that are idiosyncratic

effects not explained by regular trend or seasonal patterns. We model state-specific trends by using

annual state-level population estimates from the US Census Bureau US Census Bureau (2016) on a

log scale. We model a general seasonal pattern via indicators for the two-month waves, and allow

the seasonal pattern to vary from state to state. The remaining irregular terms, denoted {νst} below,

represent real variation not explained by the regular trend plus seasonal pattern, and are modeled

as iid random variables with mean zero and unknown variance, ψ.

The survey mode effects present in the telephone and mail targets are nonsampling errors,

including potential biases due to coverage error (population 6= sampling frame), nonresponse error

(sample 6= respondents), and measurement error (true responses 6= measured responses). These
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effects may have their own trend and seasonality: for example, due to changes in the quality of

the frame over time, changes in response rates over years or waves, changes in implementation

of measurement protocols over time, etc. These nonsampling errors thus cannot be completely

disentangled from the true effort series (a problem in every survey).

Because of the availability of overlapping effort estimates, however, the difference in the effort

estimates is an unbiased estimator of the difference in the survey mode effects. These differences

can then be modeled and extrapolated to other time points that do not have overlapping data,

allowing calibration from the telephone target to the mail target, and vice versa. The extrapolation

requires a model and suitable covariates, which in this setting means covariates that explain the

change in measurement error, nonresponse error, or coverage error over time. The calibration thus

relies critically on extrapolation, with the usual caveat that the calibrated values may be badly

wrong if the model does not hold over the full range of time.

The changing proportion of wireless-only households is a potential covariate for explaining

changes in coverage error over time for the landline-only telephone survey. Accordingly, we ob-

tained June and/or December wireless-only proportion estimates for each state from 2007–2015

from the National Health Interview Survey, conducted by the National Center for Health Statistics

(Blumberg & Luke, 2013). We transformed these proportions via empirical logits and fitted the

transformed values as state-specific lines with a slope change in 2010. The fitted model has an ad-

justed R2 value of 0.9948. Transforming back to proportions and extrapolating backward in time

yields a series {wst} that is approximately zero prior to the year 2000.

Either trend or seasonal could contain survey mode effects. Accordingly, we allow for the

possibility that trend and seasonal are different for mail versus telephone, and in particular we

allow for the possibility that either trend or seasonal can change with the level of wireless.

Our combined model then assumes
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T̂st = Tst + eTst

Tst = a
⊺

stα+ 0 · b⊺stµ+ wstc
⊺

stγ + νst

= [a⊺

st,0
⊺, wstc

⊺

st]β + νst

= x
⊺

Tstβ + νst

M̂st = Mst + eMst

Mst = a
⊺

stα+ 1 · b⊺stµ+ 0 · c⊺stγ + νst

= = [a⊺

st, b
⊺

st,0
⊺]β + νst

= x
⊺

Mstβ + νst, (4.2.1)

where

• ast is a vector of known covariates, including intercept, log(population), state indicators,

wave indicators, and state by log(population) and state by wave interactions;

• bst and cst are subvectors from ast;

• β⊺ = [α⊺,µ⊺,γ⊺] is a vector of unknown regression coefficients;

• the sampling errors {eTst} are independent N (0, σ2
Tst) random variables, with known design

variances σ2
Tst;

• the sampling errors {eMst } are independent N (0, σ2
Mst) random variables, with known design

variances σ2
Mst;

• the irregular terms {νst}, representing real variation not explained by the regular trend plus

seasonal pattern, are independent and identically distributed (iid) N (0, ψ) random variables,

with unknown variance ψ;

• {eTst}, {eMst } and {νst} are mutually independent.

The assumed independence of the sampling errors is justified by independent samples drawn state-

to-state and wave-to-wave, and the assumed normality is justified by central limiting effects of
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moderate to large-size stratified samples in each state and wave. Further, we assume that because

the mail and telephone surveys are selected and conducted independently, the sampling errors {eTst}

and {eMst } are independent of one another. We use simulation to assess the sensitivity of some of

our methods to the normality assumption on the random effects in Section 4.4.1 below. The design

variances {σ2
Tst} and {σ2

Mst} are on the log scale, while the available design variance estimates

{V̂Tst} and {V̂Mst} are on the original scale; we address this discrepancy in Section 4.2.2 below.

4.2.2 Design Variance Model

Under the log-normal effort models (4.2.1), the variances of the sampling errors are given by

VTst = Var
(
exp(T̂st) | Tst

)
=
{
exp(σ2

Tst)− 1
}
exp

{
2Tst + σ2

Tst

}
(4.2.2)

and

VMst = Var
(
exp(M̂st) |Mst

)
=
{
exp(σ2

Mst)− 1
}
exp

{
2Mst + σ2

Mst

}
. (4.2.3)

We need to estimate σ2
Tst and σ2

Mst, incorporating the approximately design-unbiased estimates

V̂Tst and V̂Mst of VTst and VMst, respectively.

We follow an approach related closely to generalized variance function estimation (e.g., Ch. 7

of Wolter (2007)). Assume that given Tst and Mst, the empirical coefficients of variation (CV’s)

are log-normally distributed, independent of the effort estimates T̂st and M̂st:

ln

(
V̂Tst

exp(2T̂st)

)
= d

⊺

Tstδ
T
0 + δT1 ln(nTst) + ηTst, ηTst ∼ N (0, τ 2T ) (4.2.4)

where dTst is a vector of known covariates (including state, wave, and state by wave interaction),

and

ln

(
V̂Mst

exp(2M̂st)

)
= d

⊺

Mstδ
M
0 + δM1 ln(nMst) + ηMst , ηMst ∼ N (0, τ 2M), (4.2.5)

where dMst is a vector of known covariates. These models can be rewritten as regression models

for the design variance estimates, with known offsets:
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ln
(
V̂Tst

)
= 2T̂st + d

⊺

Tstδ
T
0 + δT1 ln(nTst) + ηTst, ηTst ∼ N (0, τ 2T )

and

ln
(
V̂Mst

)
= 2M̂st + d

⊺

Mstδ
M
0 + δM1 ln(nMst) + ηMst , ηMst ∼ N (0, τ 2M).

Empirically, each of these models fits very well: 94.54% adjusted R2 value for telephone, and

98.01% adjusted R2 value for mail.

These empirical models may be of independent interest as generalized variance functions for

variance estimation on the original scale: by plugging the point estimate, state, wave, and sam-

ple size into the fitted versions of (4.2.4) or (4.2.5), one obtains excellent point estimates of the

coefficient of variation.

Assuming that V̂Tst is exactly unbiased for VTst, we then have from the log-normal CV model

(4.2.4) and the assumed conditional independence of V̂Tst and T̂st given Tst that

exp

{
d
⊺

Tstδ
T
0 + δT1 ln(nTst) +

τ 2T
2

}
= E


 V̂Tst

exp
(
2T̂st

)

∣∣∣∣∣∣
Tst




= E
[
V̂Tst | Tst

]
E
[
exp

(
−2T̂st

)
| Tst

]

= VTst exp
(
−2Tst + 2σ2

Tst

)
, (4.2.6)

and similarly

exp

{
d
⊺

Mstδ
M
0 + δM1 ln(nMst) +

τ 2M
2

}
= E


 V̂Mst

exp
(
2M̂st

)

∣∣∣∣∣∣
Mst




= E
[
V̂Mst |Mst

]
E
[
exp

(
−2M̂st

)
|Mst

]

= VMst exp
(
−2Mst + 2σ2

Mst

)
. (4.2.7)

Thus, we have from (4.2.2) and (4.2.6) that
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exp

{
d
⊺

Tstδ
T
0 + δT1 ln(nTst) +

τ 2T
2

}

=
{
exp(σ2

Tst)− 1
}
exp

{
2Tst + σ2

Tst

}
exp

(
−2Tst + 2σ2

Tst

)

= exp(4σ2
Tst)− exp

(
3σ2

Tst

)
(4.2.8)

and from (4.2.3) and (4.2.7) that

exp

{
d
⊺

Mstδ
M
0 + δM1 ln(nMst) +

τ 2M
2

}

=
{
exp(σ2

Mst)− 1
}
exp

{
2Mst + σ2

Mst

}
exp

(
−2Mst + 2σ2

Mst

)

= exp(4σ2
Mst)− exp

(
3σ2

Mst

)
. (4.2.9)

The left-hand-side parameters of (4.2.8) can be estimated from (4.2.4) and the left-hand-side pa-

rameters of (4.2.9) can be estimated from (4.2.5). The resulting estimates of σ2
Tst and σ2

Mst can

then be obtained by solving the equations (4.2.8) and (4.2.9), which are quartic polynomials in

exp(σ2
Tst) and exp(σ2

Mst). Using Descartes’ rule of signs, it can be shown that each of these quar-

tic equations has one negative real root, two complex conjugate roots, and one positive real root.

The solutions for σ2
Tst and σ2

Mst are then the logarithms of the unique, positive real roots, which

can be obtained via standard numerical procedures. While these solutions are in fact estimates,

we will treat them as fixed and known in what follows, as is standard in the small area estimation

techniques which we will apply in subsequent sections.

The resulting design variances on the log scale, σ2
Tst and σ2

Mst, are strongly correlated with

the variance approximations from Taylor linearization, V̂Tst exp
(
−2T̂st

)
and V̂Mst exp

(
−2M̂st

)
:

0.798 and 0.803, respectively. But they are not identical (see Figure 4.1), and the method described

forces analytical consistency between the mean model and the variance model.

4.2.3 Fay-Herriot Small Area Estimation Model

Define

69



●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●
●

●
● ●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●
●●

●●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

● ●

●

●
●●

●

●●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●
●
●

●●

●

●

●

●

●
● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●●

●
●

●
●●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●●

●

●

●

● ●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●●

●●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●●

●
●

●●
●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●●
●●

●

●

●
●

●●
●●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●
● ●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●●

●
●●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●
●

●● ●

● ●

●

●
●●●

●●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●●
●

●
●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●
●

●●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●
● ●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
● ●

●●
●●●

●
●

●
●

●●
●●●● ●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●
●

●
●

●●●●

●

●

●●

●●

●●
●● ●●

●

●

●
●

●●

●

●

●●
●●

●●

●

●
●●●●●●

●●
●

●

●●
●●●● ●●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●● ●●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●●●●

●
●

●●
●●

●●●● ●
●

●●

●●
●●

●● ●●●●
●●

●
●

●

●

●

●

●●

●

●

●

●●●
●●●●

●

● ●
●

●
● ●●●● ●●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●●
●
●

●●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
● ●

●

●
●●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●●
●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●
●

●●

●
●

●

●

●●

●

●

●

●

●●
●●

●

●

●

● ●●
●
●●●

●
●

●

●

●●
●
●

●●●●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●● ●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●

●

●
●●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●●

●

●

●
●

●

●●

●●●
●
●

●

●

●
●

●●
●
●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●
●

●●

●

●

●
●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●● ●● ●

●

●

●

●
●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

● ●

●

●
● ●●

●
●

●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●
●

●●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●
●

●
● ●●

●

●
●

●

●
●

●
●●

● ●●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●
● ●

●

●
● ●●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●●●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●●
●●●

●

●

●

●

●●
●●

●
●

●●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●
●

●

● ●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●●●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●
●

●●●●

●●

●

●

●●
●
●●

● ●
● ●

●

●
● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●
●

● ●
●

●●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●●

●
●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

● ●

●

●●

●●

●

●●

●
●●

●●●●

●

●

●●

●
●

●
●●

●
●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●
●

●●
●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●●
●

●
●

● ●

●

●
●

●
●

●

●

●
●

●●

●●

●

●

●

●

●
●

●●

●

●

●●

●
●

●
●

●
●

●

●●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●
●
● ●●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●●●

●● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●● ●●●●
●●

●
●

●
● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●
●●

●

● ●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●
● ●

●

●
●

●●
●●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●●

●●

●

●

●●

●
●●●

●
●

●

●

●●

●
● ●

●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●●●

●
●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●● ●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

0.0 0.1 0.2 0.3 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

sigma2_T

T
a
y
lo

r_
L

in
e

a
ri

z
a

ti
o

n
_

T

●

●●

●
●

● ●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●

●

●
●●

●●●

●
●●

●

●●

●●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
.1

0
.2

0
.3

0
.4

sigma2_M

T
a
y
lo

r_
L

in
e

a
ri

z
a

ti
o

n
_

M

Figure 4.1: Estimated design variances for log-effort via Taylor linearization versus solution of the quartic

polynomial equations (4.2.8) for telephone (left panel) and (4.2.9) for mail (right panel).

x
⊺

st =





x
⊺

Tst, if no mail estimate is available;

x
⊺

Mst, if no telephone estimate is available;

(xTst + xMst)
⊺/2, otherwise.

Then it is convenient to write

Yst =





T̂st, if no mail estimate is available;

M̂st, if no telephone estimate is available;

(
T̂st + M̂st

)
/2, otherwise;

=





x
⊺

Tstβ + νst + eTst, if no mail estimate is available;

x
⊺

Mstβ + νst + eMst , if no telephone estimate is available;

(xTst + xMst)
⊺β/2 + νst + (eTst + eMst )/2, otherwise;

= x
⊺

stβ + νst + est. (4.2.10)
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This model then follows exactly the linear mixed model structure of Fay & Herriot (1979), with

direct estimates Yst equal to regression model plus random effect νst plus sampling error with

“known” design variance, given by

Dst =





σ2
Tst, if no mail estimate is available;

σ2
Mst, if no telephone estimate is available;

1
4
(σ2

Tst + σ2
Mst) , otherwise.

Averaging the telephone and mail estimates results in a small loss of information, since we are

replacing two correlated observations with one observation, but allows the use of standard software

for estimation.

4.3 Methods

4.3.1 Estimation for the Fay-Herriot Model

Define A = {(s, t) : Yst is not missing} to be the set of all state by year-wave combinations

for which we have an estimate from either survey. Let m denote the size of the set A. Define

X := [x⊺

st](s,t)∈A, Y := [Yst](s,t)∈A. We have

Y = Xβ + [νst](s,t)∈A + [est](s,t)∈A.

Then Σ(ψ) := Var (Y ) = diag{ψ+Dst}(s,t)∈A. If ψ were known, the best linear unbiased estima-

tor (BLUE) of β would be

β̃ψ =
{
X⊺Σ−1(ψ)X

}−1
X⊺Σ−1(ψ)Y . (4.3.1)

Since ψ is not known, we replace it by a consistent estimator to obtain

β̂ =
{
X⊺Σ−1(ψ̂)X

}−1

X⊺Σ−1(ψ̂)Y . (4.3.2)
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We will use the Restricted Maximum Likelihood (REML) estimate ψ̂ unless otherwise indicated.

4.3.2 Prediction

In the classical Fay-Herriot context, it is of interest to predict

x
⊺

stβ + νst

from (4.2.10). In our setting, however, we seek to predict

φst = z
⊺

stβ + νst, (4.3.3)

where zst may not equal xst. For example, for a past time point with a telephone survey estimate

but no mail survey estimate, we may want to use

z
⊺

st = x
⊺

Mst = [a⊺

st, b
⊺

st,0
⊺]

to predict the mail target Mst, while for a future time point with a mail survey estimate but no

telephone, we may want to use

z
⊺

st = [a⊺

st,0
⊺,0⊺]

to predict the telephone target, corrected for the wireless effect: Tst − wstc
⊺

stγ = a
⊺

stα+ νst.

Let λst denote an m × 1 vector with a one in the (s, t)th position and zero elsewhere. Under

normality, it is well-known that the best mean square predictor of φst in (4.3.3) is

φst (β, ψ) = z
⊺

stβ + ψλ⊺

stΣ
−1(ψ)(Y −Xβ), (4.3.4)

which is feasible only if both β and ψ are both known. If only ψ is known, the best linear unbiased

predictor (BLUP)
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φst

(
β̃ψ, ψ

)
= z

⊺

stβ̃(ψ) + ψλ⊺

stΣ
−1(ψ)(Y −Xβ̃(ψ)) (4.3.5)

is obtained by plugging the BLUE from (4.3.1) into (4.3.4). Finally, if neither β nor ψ is known,

then the empirical best linear unbiased predictor (EBLUP) can be obtained by substituting a con-

sistent estimator of ψ into (4.3.5):

φst

(
β̂, ψ̂

)
= z

⊺

stβ̂ + ψ̂λ⊺

stΣ
−1(ψ̂)(Y −Xβ̂), (4.3.6)

where β̂ is given by (4.3.2). These EBLUPs are the proposed calibrated values on the log scale.

4.3.3 Mean Square Error Approximation

To assess the uncertainty of the calibrated values, we adapt the approach of Datta & Lahiri

(2000) in approximating the MSE of φst

(
β̂, ψ̂

)
. It can be shown that

MSE
{
φst

(
β̂, ψ̂

)}
= E

[{
φst

(
β̂, ψ̂

)
− φst

}2
]

= E
[
{φst (β, ψ)− φst}2

]
+ E

[{
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

}2
]

+E

[{
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)}2
]

= ġ1st(ψ) + ġ2st(ψ) + ġ3st(ψ) + o
(
m−1

)
, (4.3.7)

where

ġ1st(ψ) =
ψDst

ψ +Dst

,

ġ2st(ψ) =

(
ψ(zst − xst)

⊺ +Dstz
⊺

st

ψ +Dst

)[∑

u∈A
(ψ +Du)

−1xux
⊺

u

]−1(
ψ(zst − xst)

⊺ +Dstz
⊺

st

ψ +Dst

)
⊺

,

and
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ġ3st(ψ) =
2D2

st

(ψ +Dst)3
1∑

u∈A(ψ +Du)−2
.

The terms ġ1st(ψ) and ġ3st(ψ) are identical to the terms g1st(ψ) and g3st(ψ) in section 4 of Datta

& Lahiri (2000), while ġ2st(ψ) simplifies to g2st(ψ) of that paper in the special case of zst = xst.

We defer the proofs to the Appendix.

4.3.4 Mean Square Error Estimation

We now propose an estimator of the MSE approximation in (4.3.7). Using arguments like those

in section 5 of Datta & Lahiri (2000), it can be shown that

E
[
ġ1st(ψ̂)

]
≃ ġ1st(ψ)− ġ3st(ψ)

E
[
ġ2st(ψ̂)

]
≃ ġ2st(ψ)

E
[
ġ3st(ψ̂)

]
≃ ġ3st(ψ)

and hence an approximately unbiased estimator of the MSE approximation in (4.3.7) is given by

mse
{
φst

(
β̂, ψ̂

)}
= ġ1st(ψ̂) + ġ2st(ψ̂) + 2ġ3st(ψ̂). (4.3.8)

We assess the quality of the asymptotic approximation (4.3.7) and its estimator (4.3.8) via simula-

tion in Section 4.4.1.

4.3.5 Prediction on the Original Scale

To compute predictors on the original scale, we back-transform by exponentiating the EBLUP

from (4.3.6) and adjust for the nonlinearity of the back-transformation using the estimated MSE

from (4.3.8):

̂exp(φst) = exp

[
φst

(
β̂, ψ̂

)
+

1

2
mse

{
φst

(
β̂, ψ̂

)}]
, (4.3.9)
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which is an estimator of the best mean square predictor under the normal model, and a standard

adjustment even without the normality assumption.

4.3.6 Moving Average of the Predictions

One way to get smoother predictions is to compute a moving average of the EBLUPs in (4.3.6).

Here we denote the new predictor as φ̂stMA. As we mention in Section 4.1, t denotes year-wave.

In this subsection we separate t as t1 and t2 for year and wave respectively. Then

φ̂stMA =
K∑

j=−K
ajφs(t1+j)t2

(
β̂, ψ̂

)
, (4.3.10)

where {aj} is a sequence of constants with
∑K

j=−K aj = 1. We apply this filter to every wave

of each state across different years. To deal with edge effects at year 2017, we average five

waves for years up to 2013 as
∑4

j=0 φs(t1+j)t2

(
β̂, ψ̂

)
/5; we average four waves for year 2014

as
∑3

j=0 φs(t1+j)t2

(
β̂, ψ̂

)
/4; three waves for year 2015; two waves for 2016; and a single wave

for 2017 (that is, 2017 is left unchanged). The MSE is given as

MSE
(
φ̂stMA

)
=

K∑

j=−K
a2j

{
MSE

(
φ̂s(t1+j)t2

)
+ E

[(
φs(t1+j)t2 − φst1t2

)2]}

+
∑∑

i 6=j
aiajE

[(
φs(t1+i)t2 − φst1t2

) (
φs(t1+j)t2 − φst1t2

)]
+O

(
m−1/2

)
.

(4.3.11)

By plugging in the EBLUPs, we have

mse
{
φ̂stMA

}
=

K∑

j=−K
a2j

{
mse

(
φ̂s(t1+j)t2

)
+
(
φ̂s(t1+j)t2 − φ̂st1t2

)2}

+
∑∑

i 6=j
aiaj

(
φ̂s(t1+i)t2 − φ̂st1t2

)(
φ̂s(t1+j)t2 − φ̂st1t2

)
. (4.3.12)
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Once we have the new predictors, we transform them back to the original scale as shown in (4.3.9).

Plots of the moving averaged predictions are omitted. Derivation of (4.3.11) is deferred to the

Appendix.

4.4 Empirical Results

4.4.1 Simulation

In this section, we investigate the performance of our second-order approximation of MSE and

the estimated MSE under a setting that mimics the reconciliation problem of this paper, but with

a smaller number of observed time points: 17 states and six years (1985, 1995, 2005, 2010, 2015,

and 2016) of six waves each, with telephone effort estimates for all waves, and with mail effort

estimates for only the final two years. In this setting, m = (17 states)(6 waves)(6 years) = 612.

We take the wireless values and US Census population counts from the actual data.

We use the estimates from model (4.2.10) fitted to shore data, with intercept, log(population),

state indicators, wave indicators, state by log(population) interaction, and state by wave; plus wire-

less and its interactions with log(population), state indicators, and wave indicators; plus an indica-

tor for presence of a mail survey estimate and the mail indicator’s interactions with log(population),

state indicators, and wave indicators. We pick ψ = 0.11, again from the fit of the model. The sim-

ulation model is similar to the final model selected in Section 4.4.2 below.

We consider three different patterns for the design variances {Dst}. First, we sample six actual

design variances for each simulated state, arrange the six into a “peaked” seasonal pattern, and

replicate this seasonal pattern across all six years to create pattern (b). We consider two additional

settings, by multiplying pattern (b) by 0.5 to yield pattern (a), and multiplying pattern (b) by 2.0 to

yield pattern (c). The simulated sampling errors {est} in (4.2.10) are then generated independently

as N (0, Dst) under each pattern.

Following Datta et al. (2005), we consider three distributions to simulate the normalized ran-

dom effects:

• {ψ−1/2νst} iid N (0, 1);
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• {ψ−1/2νst} iid Laplace(0, 1/
√
2);

• {ψ−1/2νst} iid centered Exponential(1) (that is, exponential random variables centered to

mean zero).

Under each distribution, E [νst] = 0 and Var (νst) = ψ.

For each combination of sampling variance pattern and random effect distribution, we generate

1000 data sets from model (4.2.10). For each simulated data set, we use the R package sae Molina

& Marhuenda (2015) to compute ψ̂ via REML and β̂. We compute the EBLUPs in (4.3.6) for the

mail targets {Mst}, approximate their MSEs using (4.3.7), and estimate their MSEs using (4.3.8).

We then compare the approximations and the estimates to the true (Monte Carlo) MSEs over the

1000 simulated realizations.

Figure 4.2 shows plots of the MSE approximation and the estimated MSE versus the true MSE

for each of the nine simulation scenarios. Here the gray dots are the MSE approximations and the

black circles are the estimated MSE’s. The approximations and estimates are nearly overlapping

in all cases, indicating that the MSE estimates are essentially unbiased for the MSE approxima-

tions. Further, the points are all very close to the (0,1) reference line, indicating that the proposed

methodology yields acceptable MSE estimates across a range of settings.

4.4.2 Calibration of the CHTS and FES Estimates

For the data described in Section 4.1, we use the R package sae (Molina & Marhuenda, 2015)

to fit a number of models via maximum likelihood for both shore fishing and private boat fishing,

and compare the models via their AIC values. The smallest model considered includes intercept,

log(population), state indicators, wave indicators, state by log(population) interaction, and state by

wave interaction. That is, the smallest model includes no differences due to survey methodology

and instead drops the terms b
⊺

stµ and wstc
⊺

stγ from (4.2.1). The largest model considered adds

wireless and its interactions with log(population), state indicators, wave indicators, and state by

log(population), together with an indicator for presence of a mail survey estimate and the mail

indicator’s interactions with log(population), state indicators, and wave indicators. The omission
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Laplace mixed effects with pattern (c)

Monte Carlo MSE
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Centered exponential mixed effects with pattern (a)

Monte Carlo MSE
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Centered exponential mixed effects with pattern (b)

Monte Carlo MSE
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Figure 4.2: MSE approximation (solid gray dots) and estimated MSE’s (open black circles) versus true

MSE from Monte Carlo, for random effect distributions normal, Laplace, and centered exponential across

the rows, and sampling error patterns (a), (b), and (c) across the columns.
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of the higher order interactions between wireless and the mail indicator is due to parsimony: for

the mail indicator in particular, there are only 17 states and 11 waves from which to estimate the

parameters µ in model (4.2.1).

Numerous submodels between the smallest and largest are considered; the best five models

and additional reference models are given in Table 4.1 for shore fishing and Table 4.2 for private

boat fishing. The tables are ordered by AIC values, with the best models at the top. The models

that ignore some (largest minus all mail, largest minus all wireless) or all (smallest) of the survey

mode differences are not competitive with the models that include these factors. The largest model

considered is quite competitive, with the best models dropping a small number of interactions from

that largest model.

While not the best model for either shore or private boat, the largest model minus the mail

by log(population) and mail by state interaction is fifth best in both cases. It is operationally

convenient to use a common model for both reconciliations, and this particular model is further

convenient because, when extrapolating back in time, it involves only wave level shifts once the

effect of wireless has died out. We also use the first two waves of 2018 as our out of sample data for

prediction. With the AIC versus MSE of prediction plot (not shown here), this model is obviously

among the top a few. We therefore choose this model as the final model for both modes of fishing,

and refit it using REML to estimate the unknown variance ψ. We then compute EBLUPs of the

mail target {Mst} for all states and waves.

An example for Alabama shore fishing is shown in Figure 4.3 and an example for Florida

private boat fishing is shown in Figure 4.4. In each figure, we show the raw effort survey estimates

and the EBLUPs. The EBLUPs can be seen as a smoothed version of the estimates adjusted for

mail methodology and wireless effects.

4.5 Discussion

The proposed methodology accounts for various sources of variation in the effort series from

each survey, including trend, seasonality and irregular terms in the true effort series, together with

79



Table 4.1: Maximized log(likelihood), AIC and residual degrees of freedom (df) for various models fitted

to effort estimates for shore fishing. See text for description of largest model.

Model is largest minus terms below: log(likelihood) AIC df

mail:log(pop), mail:state, wireless:wave -2129.14 4564.28 3022

mail:state, wireless:wave -2128.35 4564.69 3021

mail:log(pop) and wireless:wave -2113.43 4564.86 3006

wireless:wave -2113.42 4566.85 3005

mail:log(pop) and mail:state -2127.22 4570.45 3017

nothing (largest) -2111.64 4573.28 3000

mail interactions -2137.25 4580.51 3022

wireless interactions -2223.52 4719.05 3038

all interactions -2256.42 4742.84 3050

all wireless -2243.37 4758.73 3029

all mail -2267.37 4838.73 3023

all mail and all wireless (smallest) -2440.35 5106.70 3052

Table 4.2: Maximized log(likelihood), AIC and residual degrees of freedom (df) for various models fitted

to effort estimates for private boat fishing. See text for description of largest model.

Model is largest minus terms below: log(likelihood) AIC df

nothing (largest) -1482.28 3314.55 2990

mail:log(pop) -1483.28 3314.56 2991

mail:log(pop) and wireless:wave -1489.21 3316.42 2996

wireless:wave -1488.23 3316.47 2995

mail:log(pop) and mail:state -1503.36 3322.73 3007

mail:state -1502.50 3323.00 3006

mail interactions -1528.13 3362.27 3012

all mail -1598.62 3501.23 3013

wireless interactions -1623.17 3520.33 3028

all interactions -1708.39 3646.78 3050

all wireless -1739.02 3750.03 3029

all mail and all wireless (smallest) -1837.91 3901.82 3052
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Figure 4.3: EBLUPs
{
φst

(
β̂, ψ̂

)}
(curve) of mail targets {Mst} for shore fishing log-effort in Alabama.

Gray dots are telephone log-effort estimates {T̂st} and black triangles are mail log-effort estimates {M̂st}.
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Figure 4.4: EBLUPs
{
φst

(
β̂, ψ̂

)}
(curve) of mail targets {Mst} for private boat fishing in Florida. Gray

dots are telephone log-effort estimates {T̂st} and black triangles are mail log-effort estimates {M̂st}.

82



survey mode effects in the two series. The model assumes that differences in measurement and

nonresponse errors between the two surveys would be stable over time, while the changes in cov-

erage error over time due to growth in wireless-only households is explicitly modeled. Further, the

methodology accounts for uncertainty due to sampling error, using a novel approach to ensure ana-

lytical consistency in mapping design variances estimated on the original scale to design variances

estimated on the log scale.

As formulated in this paper, the reconciliation methodology turns out to follow a standard,

well-established procedure: Fay-Herriot small area estimation. This means that the calibrated

values turn out to be empirical best linear unbiased predictors under a linear mixed model fitted

using likelihood-based techniques. The method is flexible enough to provide optimal calibrated

values for different problems: predicting mail targets using telephone-only data, or predicting

telephone targets using mail-only data, for example.

Uncertainty is quantified via a mean square error approximation that adapts existing methods

from the literature. Simulation results show that the mean square error approximation and its

estimator are highly accurate for the kinds of sample sizes and sampling errors present in the

calibration data. The methodology is readily implemented with standard software.
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Chapter 5

Conclusion

This dissertation addresses two important problems in the analysis of complex surveys: non-

parametric testing for informative selection, and reconciling estimates from two different surveys,

with particular application to addressing discontinuities due to survey redesign.

We propose two classes of nonparametric tests for informative selection. Both tests build on

the idea of comparing weighted and unweighted characteristics from the same sample, but use this

comparison with nonparametric two-sample tests, instead of applying it to parameter estimates.

One class of nonparametric tests is based on the difference between weighted and unweighted

empirical cdfs. By scaling the difference with an appropriate constant, we prove that the normal-

ized difference converges to a scaled Brownian bridge, and we construct the first class of tests

by applying various functionals to the Brownian bridge. We particularly focus on statistics dire-

cly analogous to the classical Kolmogorov–Smirnov statistic and Crámer–Von Mises statistic. We

derive their limiting distributions under the null hypothesis of noninformative selection and show

via simulation that the tests have correct size under the null and good power across a range of

informative alternatives.

The second class of tests is derived by comparing the maximum mean discrepancy between

the weighted and unweighted sample in a reproducing kernel Hilbert space. In this setting, we

compare weighted and unweighted estimates of probability measures via their maximum mean

discrepancy. We derive the asymptotic distribution of the test statistic under the null hypothesis of

noninformative selection. Importantly, the test can be conducted with scalar, vector, or other types

of responses, provided these random objects are in a Hilbert space. We show via simulation that

the tests have correct size under the null and good power across a range of informative alternatives,

including in the multivariate case.

Unlike the existing parametric tests that assume correctly-specified models, our methods re-

quire no distributional assumptions and no model specification. The computational costs are trivial

84



and generic: the same computations are done regardless of the design, as the tests depend only

on the sampling weights and the response. The tests show competitive power relative to existing

parametric tests, and in some cases are the only known tests. Thus, it is always worth running our

tests first, followed by estimation without adjusting for the design if the test shows no evidence

of informative selection, or adjusting for design if the test indicates informative selection. Pre-test

estimators that follow this approach have good performance in our limited simulations.

We also provide a small area estimation procedure to reconcile two surveys. By modeling the

design variances and applying them within a Fay–Herriot model, we produce the EBLUPs of the

variable of interest for new sets of covariates. A second-order approximation of the mean square

error of the EBLUPs is derived. With our model, it is convenient to produce estimates for both

surveys at any sets of covariates. We anticipate that the need to reconcile different sets of survey

estimates will continue, given the rapidly-changing landscape of complex surveys.
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Appendix A

A.1 Proof of Lemmas and Theorem in Chapter 2

To prove the convergence of TN =
√
n
(
F̂HJ − F̂

)
in main theorem, we prove convergence

of several intermediate random processes. In Appendix A.1.2, we show TN(t) = GN(t) + op(1),

where GN(t) =
√
n
N

∑N
i=1

ξi
πi

(
1− Nπi

n

) (
✶(Yi≤t) − F (t)

)
. Boistard et al. (2017a) show the con-

vergence of process
√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

✶(Yi≤t) − F (t)
)
. Similarly, we show the convergence of

YN(t) =
√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

1− Nπi
n

) (
✶(Yi≤t) − F (t)

)
in Lemma A.1.3. We see that YN(t) is

equivalent to XN(t) − FN(t), where XN(t) =
√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

1− Nπi
n

)
✶(Yi≤t) and FN(t) =

√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

1− Nπi
n

)
F (t). Both of these two processes have the form of CLT assumption

in (H1), so the convergence follows by showing their weak convergence of all finite dimensional

distributions and tightness, in Lemma A.1.1 and Lemma A.1.2 respectively.

A.1.1 Lemmas and Proofs

Lemma A.1.1. Let Y1, . . . , YN be iid random variables with cdf F . Suppose that conditions (C1)–

(C4) and (H1)–(H2) hold, then
√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

1− Nπi
n

)
✶(Yi≤t) converges weakly to a zero

mean Gaussian process GHT with covariance function

EmG
HT (s)GHT (t) = lim

N→∞

n

N2

N∑

i=1

N∑

j=1

Em

[
πij − πiπj
πiπj

(
1− Nπi

n

)(
1− Nπj

n

)
✶(Yi≤s)✶(Yj≤t)

]

for s, t ∈ R.

Proof. Proof of Lemma A.1.1 is very similar to the proof of Theorem 3.1 in Boistard et al. (2017a).

We will use Theorem 13.5 from Billingsley (1999), by first checking the tightness condition, and

then constructing the weak convergence in all finite dimensional distributions.

To establish the tightness condition, we will use 13.14 from Billingsley (1999). Suppose (C1)–

(C4) hold, let XN =
√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

1− Nπi
n

)
✶(Yi≤t). If there exists a constant K > 0 inde-

pendent of N , such that for any t1, t2 and −∞ < t1 ≤ t ≤ t2 <∞,
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Ed,m
[
(XN(t)− XN(t1))

2(XN(t2)− XN(t))
2
]
≤ K (F (t2)− F (t1))

2 , (A.1.1)

then we claim we have tightness.

First we define p1 = F (t)−F (t1), p2 = F (t2)−F (t), Ai = ✶{t1<Yi≤t}, and Bi = ✶{t<Yi≤t2}.

Furthermore, let αi =
(
ξi−πi
πi

) (
1− Nπi

n

)
Ai and βi =

(
ξi−πi
πi

) (
1− Nπi

n

)
Bi. Then, as p1p2 ≤

(F (t2)− F (t1))
2
, it suffices to show

1

N4
Ed,m


n2

(
N∑

i=1

αi

)2( N∑

j=1

βj

)2

 ≤ Kp1p2. (A.1.2)

The expectation on the left side can be decomposed as

N−4

N∑

i=1

N∑

k=1

Ed,m[n
2α2

iβ
2
k ] +N−4

N∑

i=1

∑

j 6=i

N∑

k=1

Ed,m[n
2αiαjβ

2
k ]

+N−4

N∑

k=1

∑

l 6=k

N∑

i=1

Ed,m[n
2α2

iβkβl] +N−4

N∑

i=1

∑

j 6=i

N∑

k=1

∑

l 6=k
Ed,m[n

2αiαjβkβl].

(A.1.3)

By symmetry, the two triple sums can be handled similarly. So we only need to consider three

summations.

Since ✶{t1<Yi≤t}✶{t<Yi≤t2} = 0, we will only have non-zero expectations when {i, j} and {k, l}

are disjoint. So

1

N4

N∑

i=1

N∑

k=1

Ed,m[n
2α2

iβ
2
k ] =

1

N4

∑∑

(i,k)∈D2,N

Ed,m[n
2α2

iβ
2
k ]

=
1

N4

∑∑

(i,k)∈D2,N

Em

[
n2AiBk

π2
i π

2
k

(
1− Nπi

n

)2(
1− Nπk

n

)2

Ed(ξi − πi)
2(ξk − πk)

2

]

≤ 1

K4
1

∑∑

(i,k)∈D2,N

Em

[
AiBk

n2

(
1− Nπi

n

)2(
1− Nπk

n

)2

Ed(ξi − πi)
2(ξk − πk)

2

]

≤ 1

K4
4

∑∑

(i,k)∈D2,N

Em

[
AiBk

n2
Ed(ξi − πi)

2(ξk − πk)
2

]
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for some constant K4 as a direct result of condition (C1). Straightforward computation shows that

Ed(ξi − πi)
2(ξk − πk)

2 equals

(πik − πiπk)(1− 2πi)(1− 2πk) + πiπk(1− πi)(1− πk).

Hence, with (C1)–(C2) we find that

Ed(ξi − πi)
2(ξk − πk)

2 ≤ |Ed(ξi − πi)(ξk − πk)|+K2
2

n2

N2
= O

(
n2

N2

)
,

ω-a.s. It follows that

1

N4

N∑

i=1

N∑

k=1

Ed,m[n
2α2

iβ
2
k ] ≤ O

(
1

N2

) ∑∑

(i,k)∈D2,N

Em[AiBk].

Since D2,N has O (N2) elements and Em[AiBj] = p1p2 for (i, j) ∈ D2,N , it follows that

1

N4

N∑

i=1

N∑

k=1

Ed,m[n
2α2

iβ
2
k ] ≤ Kp1p2. (A.1.4)

The second summation of (A.1.3) can be written as:

1

N4

∣∣∣∣∣
N∑

i=1

∑

j 6=i

N∑

k=1

Ed,m[n
2αiαjβ

2
k ]

∣∣∣∣∣ =
1

N4

∣∣∣∣∣∣
∑∑∑

(i,j,k)∈D3,N

Ed,m[n
2αiαjβ

2
k ]

∣∣∣∣∣∣

≤ 1

N4

∑∑∑

(i,j,k)∈D3,N

Em

[
n2AiAjBk

πiπjπ2
k

(
1− Nπi

n

)(
1− Nπj

n

)(
1− Nπk

n

)2

×
∣∣Ed(ξi − πi)(ξj − πj)(ξk − πk)

2
∣∣]

≤ 1

K4
1

∑∑∑

(i,j,k)∈D3,N

Em

[
AiAjBk

n2

(
1− Nπi

n

)(
1− Nπj

n

)(
1− Nπk

n

)2

×
∣∣Ed(ξi − πi)(ξj − πj)(ξk − πk)

2
∣∣]

≤ 1

K4
4

∑∑∑

(i,j,k)∈D3,N

Em

[
AiAjBk

n2

∣∣Ed(ξi − πi)(ξj − πj)(ξk − πk)
2
∣∣
]
.
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We find that Ed(ξi − πi)(ξj − πj)(ξk − πk)
2 equals

(1− 2πk)Ed(ξi − πi)(ξj − πj)(ξk − πk) + πk(1− πk)Ed(ξi − πi)(ξj − πj).

With (C1)–(C3), this means |Ed(ξi − πi)(ξj − πj)(ξk − πk)
2| = O (n2/N3), ω-a.s. It follows that

1

N4

∣∣∣∣∣
N∑

i=1

∑

j 6=i

N∑

k=1

Ed,m[n
2αiαjβ

2
k ]

∣∣∣∣∣ = O
(

1

N3

)∑∑∑

(i,j,k)∈D3,N

Em[AiAjBk].

Since D3,N has O (N3) elements and Em[AiAjBk] = p21p2, for (i, j, k) ∈ D3,N , we find

1

N4

∣∣∣∣∣
N∑

i=1

∑

j 6=i

N∑

k=1

Ed,m[n
2αiαjβ

2
k ]

∣∣∣∣∣ ≤ Kp1p2. (A.1.5)

The third summation in (A.1.3) is bounded by the same argument leading to (A.1.5). Finally

we consider the last summation in (A.1.3):

1

N4

∣∣∣∣∣
N∑

i=1

∑

j 6=i

N∑

k=1

∑

l 6=k
Ed,m[n

2αiαjβkβl]

∣∣∣∣∣ =
1

N4

∣∣∣∣∣∣
∑∑∑∑

(i,j,k,l)∈D4,N

Ed,m[n
2αiαjβkβl]

∣∣∣∣∣∣

≤ 1

K4
1

∑∑∑∑

(i,j,k,l)∈D4,N

Em

[
AiAjBkBl

n2

(
1− Nπi

n

)(
1− Nπj

n

)

×
(
1− Nπk

n

)(
1− Nπl

n

)
|Ed(ξi − πi)(ξj − πj)(ξk − πk)(ξl − πl)|

]

≤ 1

K4
4

∑∑∑∑

(i,j,k,l)∈D4,N

Em

[
AiAjBkBl

n2
|Ed(ξi − πi)(ξj − πj)(ξk − πk)(ξl − πl)|

]
.

Since D4,N has O (N4) elements and Em [AiAjBkBl] = p21p
2
2, for (i, j, k, l) ∈ D4,N , with (C4),

we conclude that

1

N4

∣∣∣∣∣
N∑

i=1

∑

j 6=i

N∑

k=1

∑

l 6=k
Ed,m[n

2αiαjβkβl]

∣∣∣∣∣ ≤ Kp1p2. (A.1.6)

Combining (A.1.4), (A.1.5), (A.1.6) and (A.1.3), we get (A.1.1), concluding the proof of tight-

ness. Next we prove all finite dimensional weak convergence by Cramér-Wold device.
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As XN =
√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

1− Nπi
n

)
✶(Yi≤t), then

a1XN(t1) + · · ·+ akXN(tk) =

√
n

N

N∑

i=1

(
ξi
πi

− 1

)
Vik, (A.1.7)

where

Vik = a1

(
1− Nπi

n

)
✶(Yi≤t1) + · · ·+ ak

(
1− Nπi

n

)
✶(Yi≤tk) = a

⊺

kY
∗
ik, (A.1.8)

with Y
∗⊺
ik =

(
1− Nπi

n

) (
✶(Yi≤t1), . . . ,✶(Yi≤tk)

)
and a

⊺

k = (a1, . . . , ak). For the design-based vari-

ance, we have

nS2
N =

n

N2

N∑

i=1

N∑

j=1

πij − πiπj
πiπj

VikVjk (A.1.9)

= a
⊺

k

(
n

N2

N∑

i=1

N∑

j=1

πij − πiπj
πiπj

Y∗
ikY

∗⊺
jk

)
ak → a

⊺

kΣ
∗
kak, (A.1.10)

according to (H2). Together with (H1), it follows that (A.1.7) converges in distribution to a zero

mean normal random variable with variance a
⊺

kΣ
∗
kak. We conclude that (XN(t1), . . . ,XN(tk)) has

a k-variate zero mean normal distribution with covariance matrix Σ∗
k. According to the Cramér-

Wold device, this proves weak convergence of all the finite-dimensional distributions.

Combining with the tightness condition we established previously, we have proved the lemma

for the case that Yi’s are uniformly distributed on [0, 1]. Extension of this to Yi’s with a general cdf

F can be found at Boistard et al. (2017a).

Lemma A.1.2. Let Y1, . . . , YN be iid random variables with cdf F . Suppose that conditions (C1)–

(C4) and (H1)–(H2) hold, then
√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

1− Nπi
n

)
F (t) converges weakly to a Gaussian

process G∗
F .

Proof. Set Vi = 1− πiN/n in (H1), the limiting Gaussian process easily follows.
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Lemma A.1.3. Let Y1, . . . , YN be iid random variables with cdf F . Suppose that conditions (C1)–

(C4), (H1) and (H3) hold, then

YN(t) =

√
n

N

N∑

i=1

(
ξi
πi

− 1

)(
1− Nπi

n

)(
✶(Yi≤t) − F (t)

)

converges weakly to a mean zero Gaussian process GHT
F with covariance function

EmG
HT
F (s)GHT

F (t) =

lim
N→∞

n

N2

N∑

i=1

N∑

j=1

Em

[
πij − πiπj
πiπj

(
1− Nπi

n

)(
1− Nπj

n

)(
✶(Yi≤s) − F (s)

) (
✶(Yj≤t) − F (t)

)]

for s, t ∈ R.

Proof. Because YN(t) is the difference between the two random quantities in Lemma A.1.1 and

Lemma A.1.2, each of which converges to a tight continuous process, the tightness of YN(t) fol-

lows from Lemma B.2 in Boistard et al. (2017b).

Convergence of the finite dimensional distributions is similar to Lemma A.1.1. As YN(t) =
√
n
N

∑N
i=1

(
ξi
πi
− 1
) (

1− Nπi
n

) (
✶(Yi≤t) − F (t)

)
, then

a1YN(t1) + · · ·+ akYN(tk) =

√
n

N

N∑

i=1

(
ξi
πi

− 1

)
Vik, (A.1.11)

where

Vik = a1

(
1− Nπi

n

)(
✶(Yi≤t1) − F (t1)

)
+ · · ·+ ak

(
1− Nπi

n

)(
✶(Yi≤tK) − F (tk)

)
(A.1.12)

= a
⊺

kYik,

with Y
⊺

ik =
(
1− Nπi

n

) (
✶(Yi≤t1) − F (t1), . . . ,✶(Yi≤tk) − F (tk)

)
and a

⊺

k = (a1, . . . , ak). For the

design-based variance, we have
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nS2
N =

n

N2

N∑

i=1

N∑

j=1

πij − πiπj
πiπj

VikVjk (A.1.13)

= a
⊺

k

(
n

N2

N∑

i=1

N∑

j=1

πij − πiπj
πiπj

YikY
⊺

jk

)
ak → a

⊺

kΣkak, (A.1.14)

according to (H3). Together with (H1), it follows that (A.1.11) converges in distribution to a zero

mean normal random variable with variance a
⊺

kΣkak. We conclude that (YN(t1), . . . ,YN(tk)) has

a k-variate zero mean normal distribution with covariance matrix Σk. According to the Cramér-

Wold device, this proves weak convergence of all finite dimensional distributions.

Lemma A.1.4. Let Y1, . . . , YN be iid random variables with cdf F . Suppose that conditions (C1)–

(C4), (H1) and (H3)–(H5) hold, then GN(t) =
√
n
N

∑N
i=1

ξi
πi

(
1− Nπi

n

) (
✶(Yi≤t) − F (t)

)
converges

weakly to a mean zero Gaussian process GF with covariance function

EmGF (s)GF (t) =

lim
N→∞

n

N2

N∑

i=1

N∑

j=1

Em

[
πij
πiπj

(
1− Nπi

n

)(
1− Nπj

n

)(
✶(Yi≤s) − F (s)

) (
✶(Yj≤t) − F (t)

)]

for s, t ∈ R.

Proof. We first decompose GN(t) into two parts,

GN(t) =

√
n

N

N∑

i=1

ξi
πi

(
1− Nπi

n

)(
✶(Yi≤t) − F (t)

)

= YN(t) +

√
n

N

N∑

i=1

(
1− Nπi

n

)(
✶(Yi≤t) − F (t)

)

= YN(t) + ZN(t). (A.1.15)

We have shown the limiting process of YN(t) in Lemma A.1.3. The limiting process of ZN(t)

can be established by similar arguments to Lemma A.1.2. Thus we have the sum of two tight

continuous limiting processes, implying that GN(t) is tight. Next, we find the covariance function
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of GN(t). We know

Var (GN(t)) = Var (YN(t)) + Var (ZN(t)) + 2Cov (YN(t),ZN(t)) , (A.1.16)

and

Cov (YN(t),ZN(t)) = Covm (Eξ [YN(t)|Y,π] ,Eξ [ZN(t)|Y,π])

+ Em [Covξ (YN(t),ZN(t)|Y,π)]

= Covm (0,ZN(t)) + Em [0] = 0.

It follows that the limiting process has covariance function

EmGF (s)GF (t) =

lim
N→∞

n

N2

N∑

i=1

N∑

j=1

Em

[
πij
πiπj

(
1− Nπi

n

)(
1− Nπj

n

)(
✶(Yi≤s) − F (s)

) (
✶(Yj≤t) − F (t)

)]

for s, t ∈ R.

A.1.2 Proof of Theorem 2.3.1

Proof. We prove the theorem by showing TN = GN + op(1). Because

√
n

N̂

N∑

i=1

ξi
πi

(
1− N̂πi

n

)
F (t) = 0,

we have
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TN =
√
n
(
F̂HJ − F̂

)
=

√
n

(
1

N̂

N∑

i=1

ξi
πi
✶(Yi≤t) −

1

n

N∑

i=1

ξi✶(Yi≤t)

)

=

√
n

N̂

N∑

i=1

ξi
πi

(
1− N̂πi

n

)
(
✶(Yi≤t) − F (t)

)

=

√
n

N̂

N∑

i=1

ξi
πi

(
✶(Yi≤t) − F (t)

)
− 1√

n

N∑

i=1

ξi
(
✶(Yi≤t) − F (t)

)

=
N

N̂

√
n

N

N∑

i=1

ξi
πi

(
✶(Yi≤t) − F (t)

)
−

√
n

N

N∑

i=1

ξi
πi

Nπi
n

(
✶(Yi≤t) − F (t)

)

= GN + op(1)

since N̂/N
P→ 1.

A.2 Proof of Theorem 3.3.1

Proof. Our statistic is

nMMD2
ĥ
=

1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)
ĥ(yi, yj), (A.2.1)

with empirically-centered kernel

ĥ(yi, yj) = k(yi, yj)−
1

n

∑

j∈s
k(yi, yj)−

1

n

∑

i∈s
k(yi, yj) +

1

n2

∑∑

i,j∈s
k(yi, yj).

Denote

nMMD2
h =

1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)
h(yi, yj), (A.2.2)

with the theoretically-centered kernel

h(yi, yj) := k(yi, yj)− Eyk(yi, y)− Eyk(y, yj) + Ey,y′k(y, y
′),

replacing the empirically-centered kernel ĥ. Here, Ey,y′k(y, y
′) denotes expectation with respect

to independent y and y′, so that for i 6= j,
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Ey,y′h(yi, yj) = 0.

We first show nMMD2
ĥ
− nMMD2

h
P→ 0:

nMMD2
ĥ
− nMMD2

h

=
1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)(
ĥ(yi, yj)− h(yi, yj)

)

=
1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)(
1

n2

∑∑

i′,j′∈s
k(yi′ , yj′)− Ey,y′k(y, y

′)

)

− 1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)(
1

n

∑

j′∈s
k(yi, yj′)− Eyk(yi, y)

)

− 1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)(
1

n

∑

i′∈s
k(yi′ , yj)− Eyk(y, yj)

)

= I + II + III.

Using φ(y) to denote k(y, ·), we consider the kernel difference in I:

1

n2

∑∑

i′,j′∈s
k(yi′ , yj′)− Ey,y′k(y, y

′)

=

〈
1

n

∑

i′∈s
φ(yi′),

1

n

∑

j′∈s
φ(yj′)

〉
−
〈
Eφ(y),Eφ(y)

〉

=

〈
1

n

∑

i′∈s
φ(yi′),

1

n

∑

j′∈s
φ(yj′)

〉
−
〈
Eφ(y),

1

n

∑

j′∈s
φ(yj′)

〉

+

〈
Eφ(y),

1

n

∑

j′∈s
φ(yj′)

〉
−
〈
Eφ(y),Eφ(y)

〉

=

〈
1

n

∑

i′∈s
φ(yi′)− Eφ(y),

1

n

∑

j′∈s
φ(yj′)

〉
+

〈
Eφ(y),

1

n

∑

j′∈s
φ(yj′)− Eφ(y)

〉

= Op

(
n−1/2

)

by the central limit theorem and continuity of inner product, and
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1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)
= Op (1)

by the central limit theorem. Hence, I = Op

(
n−1/2

)
. Because II and III are symmetric, we only

consider II. The kernel difference in II is

1

n

∑

j′∈s
k(yi, yj′)− Eyk(yi, y) =

〈
φ(yi),

1

n

∑

j′∈s
φ(yj′)

〉
−
〈
φ(yi),Eφ(y)

〉

=

〈
φ(yi),

1

n

∑

j′∈s
φ(yj′)− Eφ(y)

〉
,

so that

II =
1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)(
1

n

∑

j′∈s
k(yi, yj′)− Eyk(yi, y)

)

=
1

n− 1

∑∑

i,j∈s

(
1− wi

ws

)(
1− wj

ws

)〈
φ(yi),

1

n

∑

j′∈s
φ(yj′)− Eφ(y)

〉

− 1

n− 1

∑

i∈s

(
1− wi

ws

)2〈
φ(yi),

1

n

∑

j′∈s
φ(yj′)− Eφ(y)

〉

=
n

n− 1

1√
n

∑

j∈s

(
1− wj

ws

)〈
1√
n

∑

i∈s

(
1− wi

ws

)
φ(yi),

1

n

∑

j′∈s
φ(yj′)− Eφ(y)

〉

− n

n− 1

〈
1

n

∑

i∈s

(
1− wi

ws

)2

φ(yi),
1

n

∑

j′∈s
φ(yj′)− Eφ(y)

〉

= Op

(
n−1/2

)
,

by the central limit theorem and continuity of inner product.

Hence nMMD2
ĥ
−nMMD2

h
P→ 0, and we can work with nMMD2

h to get the limiting distribution

under the null.

We now follow Gretton et al. (2008) and Serfling (1980), section 5.5.2, by computing the

eigendecomposition of the kernel with respect to the common null probability measure p = q:

h(yi, yj) =
∞∑

l=1

λlψl(yi)ψl(yj),
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where λl are eigenvalues and ψl(·) are orthonormal eigenfunctions in the sense that

Eψl(y)ψl′(y) =

∫

Y

ψl(y)ψl′(y) dp(y) =





0, l 6= l′

1, l = l′.

Further, Eψl(y) = 0 for all l (see equation (29) of Gretton et al. (2008)), so that Var (ψl(y)) = 1.

Using the eigendecomposition, we have

nMMD2
h =

1

n− 1

∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)
h(yi, yj)

=
1

n− 1

∑

l

λl
∑∑

i,j∈s,i 6=j

(
1− wi

ws

)(
1− wj

ws

)
ψl(yi)ψl(yj)

=
1

n− 1

∑

l

λl



(∑

i∈s

(
1− wi

ws

)
ψl(yi)

)2

−
∑

i∈s

(
1− wi

ws

)2

ψ2
l (yi)




=
n

n− 1

∑

l

λl



(

1√
n

∑

i∈s

(
1− wi

ws

)
ψl(yi)

)2

− 1

n

∑

i∈s

(
1− wi

ws

)2

ψ2
l (yi)


 .

Since wi and yi are independent under the null hypothesis of noninformativeness,

1√
n

∑

i∈s

(
1− wi

ws

)
ψl(yi)

L→ zl ∼ N
(
0,
σ2
w

µ2
w

)
,

independent across l = 1, 2, . . ., and

1

n

∑

i∈s

(
1− wi

ws

)2

ψ2
l (yi)

P→ σ2
2

µ2
w

.

Hence

nMMD2
h

L→
∞∑

l=1

λl

(
z2l −

σ2
w

µ2
w

)
, (A.2.3)

where {zl} are iid N (0, σ2
w/µ

2
w).
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A.3 Proof of MSE Approximation in Section 4.3.3

Proof. By giving and taking, we have

φst

(
β̂, ψ̂

)
− φst = [φst (β, ψ)− φst] +

[
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

]

+
[
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)]
.

For some arbitrary function h(·),

Cov (h(Yst), φst (β, ψ)− φst) = Cov (h(Yst), νst (β, ψ)− νst) = 0,

where the second equality is by (3.10) in Harville (1985). So we have

Cov
(
φst

(
β̃ψ, ψ

)
− φst (β, ψ) , φst (β, ψ)− φst

)
= 0, (A.3.1)

and

Cov
(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
, φst (β, ψ)− φst

)
= 0. (A.3.2)

Next we will show

Cov
(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
, φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)
= 0. (A.3.3)

From section 2.1 in Kackar & Harville (1984), we know
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Cov
(
L⊺Y, φst

(
β̃ψ, ψ

)
− φst

)

= Cov
(
L⊺Y, φst

(
β̃ψ, ψ

)
− νst

)

= Cov
(
L⊺Y, νst

(
β̃ψ, ψ

)
− νst

)
+ Cov

(
L⊺Y, (z⊺st − x

⊺

st)β̃(ψ)
)

= Cov
(
L⊺Y, νst

(
β̃ψ, ψ

)
− νst

)

+ Cov
(
L⊺Y, (z⊺st − x

⊺

st)(X
⊺Σ−1(ψ)X)−1X⊺Σ−1(ψ)Y

)

= Cov
(
L⊺Y, νst

(
β̃ψ, ψ

)
− νst

)
+ (z⊺st − x

⊺

st)(X
⊺Σ−1(ψ)X)−1X⊺L

= Cov
(
L⊺Y, νst

(
β̃ψ, ψ

)
− νst

)
+ 0

= Cov
(
L⊺Y, νst

(
β̃ψ, ψ

)
− νst

)
= 0,

where L is an arbitrary nonrandom matrix such that E [L⊺Y] ≡ 0. In particular,

Cov
(
Y −X⊺β̃(ψ), φst

(
β̃ψ, ψ

)
− φst

)
= 0.

Now we will show both φst

(
β̂, ψ̂

)
and φst

(
β̃ψ, ψ

)
are location-equivariant. We call d(Y) is

location equivariant if d(Y +Xα) = d(Y) + z
⊺

stα for all α and Y.

φst(β̃ψ, ψ,Y +Xα)

= z
⊺

stβ̃(ψ,Y +Xα) + ψλ⊺

stΣ
−1(Y +Xα−Xβ̃(ψ,Y +Xα))

= z
⊺

st(X
⊺Σ(ψ)−1X)−1X⊺Σ(ψ)−1(Y +Xα)

+ ψλ⊺

stΣ(ψ)−1(Y +Xα−X(X⊺Σ(ψ)−1X)−1X⊺Σ(ψ)−1(Y +Xα))

= z
⊺

st(X
⊺Σ(ψ)−1X)−1X⊺Σ(ψ)−1Y + z

⊺

stα

+ ψλ⊺

stΣ
−1(Y −X(X⊺Σ(ψ)−1X)−1X⊺Σ(ψ)−1Y)

= z
⊺

stβ̃(ψ,Y) + z
⊺

stα+ ψλ⊺

stΣ(ψ)−1(Y −Xβ̃(ψ,Y))

= φst

(
β̃ψ, ψ

)
+ z

⊺

stα
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So φst

(
β̃ψ, ψ

)
is location equivariant.

By similar arguments and the translation invariant property of ψ̂, which means ψ̂(Y + Xα) =

ψ̂(Y) for all α and Y, we can show φst

(
β̂, ψ̂

)
is location equivariant, too. So φst

(
β̂, ψ̂

)
−

φst

(
β̃ψ, ψ

)
is translation invariant, and it can be reexpressed as a function of Y − X⊺β̃(ψ). By

normal distribution assumption, we have the independence of Y−X⊺β̃(ψ) with φst

(
β̃ψ, ψ

)
−φst,

thus we have the independence of φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
and φst

(
β̃ψ, ψ

)
− φst. Thus,

Cov
(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
, φst

(
β̃ψ, ψ

)
− φst

)
= 0. (A.3.4)

(A.3.3) is easily achieved by subtracting (A.3.2) from (A.3.4). Next, we decompose the MSE of

φst

(
β̂, ψ̂

)
into three parts and show them respectively.

MSE
(
φst

(
β̂, ψ̂

))

= E

[(
φst

(
β̂, ψ̂

)
− φst

)2]

= E

[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
+ φst

(
β̃ψ, ψ

)
− φst (β, ψ) + φst (β, ψ)− φst

)2]

= E
[
(φst (β, ψ)− φst)

2]+ E

[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)2]

+ E

[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))2]

+ 2E
[
(φst (β, ψ)− φst)

(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)]

+ 2E
[
(φst (β, ψ)− φst)

(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))]

+ 2E
[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))]
.

As E [φst (β, ψ)− φst] = 0 and E
[
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

]
= 0,
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MSE
(
φst

(
β̂, ψ̂

))
= E

[
(φst (β, ψ)− φst)

2]+ E

[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)2]

+ E

[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))2]

+ 2Cov
(
φst

(
β̃ψ, ψ

)
− φst (β, ψ) , φst (β, ψ)− φst

)

+ 2Cov
(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
, φst (β, ψ)− φst

)

+ 2Cov
(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
, φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)

= E
[
(φst (β, ψ)− φst)

2]+ E

[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)2]

+ E

[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))2]

= ġ1st + ġ2st + ġ3st.

For each part,

ġ1st = E
[
(φst (β, ψ)− φst)

2]

= E
[{(

z
⊺

stβ + ψλ⊺

stΣ
−1(ψ)(Y −Xβ)

)
− (z⊺stβ + νst)

}2]

= E
[(
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)− νst

)2]

= E
[(
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)− λ

⊺

stν
) (
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)− λ

⊺

stν
)
⊺
]

= E
[
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)(Y −Xβ)⊺Σ−1(ψ)λstψ

]

− 2E
[
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)ν⊺λst

]
+ E [λ⊺

stνν
⊺λst]

=
ψ2

ψ +Dst

− 2
ψ2

ψ +Dst

+ ψ

=
ψDst

ψ +Dst

,
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ġ2st

= E

[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)2]

= E

[{(
z
⊺

stβ̃ + ψλ⊺

stΣ
−1(ψ)(Y −Xβ̃)

)
−
(
z
⊺

stβ + ψλ⊺

stΣ
−1(ψ)(Y −Xβ)

)}2
]

= E

[{
z
⊺

st

(
β̃ − β

)
− ψλ⊺

stΣ
−1(ψ)X

(
β̃ − β

)}2
]

= E

[{(
z
⊺

st − ψλ⊺

stΣ
−1(ψ)X

) (
β̃ − β

)}2
]

= E
[(
λ

⊺

stZ− ψλ⊺

stΣ
−1(ψ)X

) (
β̃ − β

)(
β̃ − β

)
⊺ (

λ
⊺

stZ− ψλ⊺

stΣ
−1(ψ)X

)
⊺
]

=
(
λ

⊺

stZ− ψλ⊺

stΣ
−1(ψ)X

) (
X⊺Σ−1(ψ)X

)−1 (
λ

⊺

stZ− ψλ⊺

stΣ
−1(ψ)X

)
⊺

=

(
ψ(zst − xst)

⊺ +Dstz
⊺

st

ψ +Dst

)[ m∑

u=1

(ψ +Du)
−1xux

⊺

u

]−1(
ψ(zst − xst)

⊺ +Dstz
⊺

st

ψ +Dst

)
⊺

,

and

ġ3st = E

[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))2]
.

Following the proof of Theorem A.1 in Datta & Lahiri (2000), we can find that ġ3st = g3st +

o(m−1), where g3st can be found at Datta et al. (2005), and it has order O (m−1). So

ġ3st ≃ g3st ≃
2D2

st

(ψ +Dst)3
1∑m

u=1(ψ +Du)2

A.4 Proof of MSE Approximation in Section 4.3.6

Proof. Recall that the moving average predictor is

φ̂stMA =
K∑

j=−K
ajφs(t1+j)t2

(
β̂, ψ̂

)
,

and the MSE is
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MSE
(
φ̂stMA

)
= E

[(
φ̂stMA − φst

)2]

= E



(

K∑

j=−K
ajφ̂s(t1+j)t2 − φst1t2

)2



= E



(

K∑

j=−K
ajφ̂s(t1+j)t2 −

K∑

j=−K
ajφst1t2

)2



= E

[
K∑

j=−K
a2j

(
φ̂s(t1+j)t2 − φst1t2

)2
]

+ E

[∑∑

i 6=j
aiaj

(
φ̂s(t1+i)t2 − φst1t2

)(
φ̂s(t1+j)t2 − φst1t2

)]

=
K∑

j=−K
a2jE

[(
φ̂s(t1+j)t2 − φst1t2

)2]

+
∑∑

i 6=j
aiajE

[(
φ̂s(t1+i)t2 − φst1t2

)(
φ̂s(t1+j)t2 − φst1t2

)]
. (A.4.1)

We check the two expectations separately. Firstly,

E

[(
φ̂s(t1+j)t2 − φst1t2

)2]
= E

[(
φ̂s(t1+j)t2 − φs(t1+j)t2 + φs(t1+j)t2 − φst1t2

)2]

= E

[(
φ̂s(t1+j)t2 − φs(t1+j)t2

)2]
+ E

[(
φs(t1+j)t2 − φst1t2

)2]

+ 2E
[(
φ̂s(t1+j)t2 − φs(t1+j)t2

) (
φs(t1+j)t2 − φst1t2

)]
,

where the expression of E

[(
φ̂s(t1+j)t2 − φs(t1+j)t2

)2]
can be found at Section 4.3.3. To simplify

the notation, we will use t and t′ to denote (t1+ j)t2 and t1t2 respectively in the cross product term

above.
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E
[(
φ̂s(t1+j)t2 − φs(t1+j)t2

) (
φs(t1+j)t2 − φst1t2

)]

= E
[(
φst

(
β̂, ψ̂

)
− φst

)
(φst − φst′)

]

= E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
+ φst

(
β̃ψ, ψ

)
− φst (β, ψ) + φst (β, ψ)− φst

)
(φst − φst′)

]

= E [(φst (β, ψ)− φst) (φst − φst′)] + E
[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)
(φst − φst′)

]

+ E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))
(φst − φst′)

]

= E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))
(φst − φst′)

]

= E
[
(φst − φst′)E

[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))∣∣∣φst, φst′
]]
.

By Cauchy–Schwarz inequality,

E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))∣∣∣φst, φst′
]

≤
{

E

[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))2∣∣∣∣φst, φst′
]}1/2

= O
(
m−1/2

)
,

which comes from the order of ġ3st in Section A.3. So

E
[(
φ̂s(t1+j)t2 − φs(t1+j)t2

) (
φs(t1+j)t2 − φst1t2

)]
= O

(
m−1/2

)
, (A.4.2)

as E [φst − φst′ ] is O (1). Thus we have

E

[(
φ̂s(t1+j)t2 − φst1t2

)2]
= MSE

(
φ̂s(t1+j)t2

)
+ E

[(
φs(t1+j)t2 − φst1t2

)2]
+O

(
m−1/2

)
,

(A.4.3)

Next, we look at the cross product term in (A.4.1).
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E
[(
φ̂s(t1+i)t2 − φst1t2

)(
φ̂s(t1+j)t2 − φst1t2

)]

= E
[(
φ̂s(t1+i)t2 − φs(t1+i)t2 + φs(t1+i)t2 − φst1t2

)(
φ̂s(t1+j)t2 − φs(t1+j)t2 + φs(t1+j)t2 − φst1t2

)]

= E
[(
φ̂s(t1+i)t2 − φs(t1+i)t2

)(
φ̂s(t1+j)t2 − φs(t1+j)t2

)]

+ E
[(
φ̂s(t1+i)t2 − φs(t1+i)t2

) (
φs(t1+j)t2 − φst1t2

)]

+ E
[(
φ̂s(t1+j)t2 − φs(t1+j)t2

) (
φs(t1+i)t2 − φst1t2

)]

+ E
[(
φs(t1+i)t2 − φst1t2

) (
φs(t1+j)t2 − φst1t2

)]

= A+B + C +D.

B and C have same order as (A.4.2). To simplify the notation, we use t and t′ to denote (t1 + i)t2

and (t1 + j)t2 respectively. We only need check A now.

E
[(
φ̂s(t1+i)t2 − φs(t1+i)t2

)(
φ̂s(t1+j)t2 − φs(t1+j)t2

)]

= E
[(
φst

(
β̂, ψ̂

)
− φst

)(
φst′

(
β̂, ψ̂

)
− φst′

)]

= E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
+ φst

(
β̃ψ, ψ

)
− φst (β, ψ) + φst (β, ψ)− φst

)

×
(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

)
+ φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ) + φst′ (β, ψ)− φst′

)]

= E [(φst (β, ψ)− φst) (φst′ (β, ψ)− φst′)]

+ E
[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)(
φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ)

)]

+ E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

))]

+ E
[
(φst (β, ψ)− φst)

(
φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ)

)]

+ E
[
(φst (β, ψ)− φst)

(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

))]

+ E
[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

))]

+ E
[
(φst′ (β, ψ)− φst′)

(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)]

+ E
[
(φst′ (β, ψ)− φst′)

(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))]

+ E
[(
φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ)

)(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))]
.
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As E [φst (β, ψ)− φst] = 0, E
[
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

]
= 0, E [φst′ (β, ψ)− φst′ ] = 0 and

E
[
φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ)

]
= 0,

E
[(
φ̂s(t1+i)t2 − φs(t1+i)t2

)(
φ̂s(t1+j)t2 − φs(t1+j)t2

)]

= E [(φst (β, ψ)− φst) (φst′ (β, ψ)− φst′)]

+ E
[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)(
φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ)

)]

+ E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

))]

+ Cov
(
φst

(
β̃ψ, ψ

)
− φst (β, ψ) , φst′ (β, ψ)− φst′

)

+ Cov
(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
, φst′ (β, ψ)− φst′

)

+ Cov
(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

)
, φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ)

)

+ Cov
(
φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ) , φst (β, ψ)− φst

)

+ Cov
(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

)
, φst (β, ψ)− φst

)

+ Cov
(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

)
, φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)
.

By arguments in (A.3), the six covariances are zero. So

E
[(
φst

(
β̂, ψ̂

)
− φst

)(
φst′

(
β̂, ψ̂

)
− φst′

)]

= E [(φst (β, ψ)− φst) (φst′ (β, ψ)− φst′)]

+ E
[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)(
φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ)

)]

+ E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

))]

= ġ1stt′ + ġ2stt′ + ġ3stt′ .

For each part,
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ġ1stt′ = E
[(
φst

(
β̂, ψ̂

)
− φst

)(
φst′

(
β̂, ψ̂

)
− φst′

)]

= E
[{(

z
⊺

stβ + ψλ⊺

stΣ
−1(ψ)(Y −Xβ)

)
− (z⊺stβ + νst)

}

×
{(

z
⊺

st′β + ψλ⊺

st′Σ
−1(ψ)(Y −Xβ)

)
− (z⊺st′β + νst′)

}]

= E
[(
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)− νst

) (
ψλ⊺

st′Σ
−1(ψ)(Y −Xβ)− νst′

)]

= E
[(
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)− λ

⊺

stν
) (
ψλ⊺

st′Σ
−1(ψ)(Y −Xβ)− λ

⊺

st′ν
)
⊺
]

= E
[
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)(Y −Xβ)⊺Σ−1(ψ)λst′ψ

]

− E
[
ψλ⊺

stΣ
−1(ψ)(Y −Xβ)ν⊺λst′

]

− E
[
λ

⊺

stν(Y −Xβ)⊺Σ−1(ψ)λst′ψ
]
+ E [λ⊺

stνν
⊺λst′ ]

= 0.

The last equality holds as t and t′ are different time and the covariance matrix is diagonal by

independence of random effects and sampling error.

ġ2stt′

= E
[(
φst

(
β̃ψ, ψ

)
− φst (β, ψ)

)(
φst′

(
β̃ψ, ψ

)
− φst′ (β, ψ)

)]

= E
[{(

z
⊺

stβ̃ + ψλ⊺

stΣ
−1(ψ)(Y −Xβ̃)

)
−
(
z
⊺

stβ + ψλ⊺

stΣ
−1(ψ)(Y −Xβ)

)}

×
{(

z
⊺

st′β̃ + ψλ⊺

st′Σ
−1(ψ)(Y −Xβ̃)

)
−
(
z
⊺

st′β + ψλ⊺

st′Σ
−1(ψ)(Y −Xβ)

)}]

= E
[{

z
⊺

st

(
β̃ − β

)
− ψλ⊺

stΣ
−1(ψ)X

(
β̃ − β

)}

×
{
z
⊺

st′

(
β̃ − β

)
− ψλ⊺

st′Σ
−1(ψ)X

(
β̃ − β

)}]

= E
[{(

z
⊺

st − ψλ⊺

stΣ
−1(ψ)X

) (
β̃ − β

)}{(
z
⊺

st′ − ψλ⊺

st′Σ
−1(ψ)X

) (
β̃ − β

)}]

= E
[(
λ

⊺

stZ− ψλ⊺

stΣ
−1(ψ)X

) (
β̃ − β

)(
β̃ − β

)
⊺ (

λ
⊺

st′Z− ψλ⊺

st′Σ
−1(ψ)X

)
⊺
]

=
(
λ

⊺

stZ− ψλ⊺

stΣ
−1(ψ)X

) (
X⊺Σ−1(ψ)X

)−1 (
λ

⊺

st′Z− ψλ⊺

st′Σ
−1(ψ)X

)
⊺

=

(
ψ(zst − xst)

⊺ +Dstz
⊺

st

ψ +Dst

)[ m∑

u=1

(ψ +Du)
−1xux

⊺

u

]−1(
ψ(zst′ − xst′)

⊺ +Dst′z
⊺

st′

ψ +Dst′

)
⊺

,
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and

ġ3stt′ = E
[(
φst

(
β̂, ψ̂

)
− φst

(
β̃ψ, ψ

))(
φst′

(
β̂, ψ̂

)
− φst′

(
β̃ψ, ψ

))]

≃ 2D2
st

(ψ +Dst)3
1∑m

u=1(ψ +Du)2
.

So

E
[(
φ̂s(t1+i)t2 − φst1t2

)(
φ̂s(t1+j)t2 − φst1t2

)]

= E
[(
φs(t1+i)t2 − φst1t2

) (
φs(t1+j)t2 − φst1t2

)]
+O

(
m−1/2

)
. (A.4.4)

Then by combining (A.4.3) and (A.4.4), we have

MSE
(
φ̂stMA

)
=

K∑

j=−K
a2j

{
MSE

(
φ̂s(t1+j)t2

)
+ E

[(
φs(t1+j)t2 − φst1t2

)2]}

+
∑∑

i 6=j
aiajE

[(
φs(t1+i)t2 − φst1t2

) (
φs(t1+j)t2 − φst1t2

)]
+O

(
m−1/2

)
.

(A.4.5)
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