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ABSTRACT 

NUMERICAL SIMULATION OF WIND, TEMPERATURE, SHEAR STRESS 
AND TURBULENT ENERGY OVER NONHOMOGENEOUS TERRAIN 

Airflow in the atmospheric surface layer over nonhomogeneous 

surfaces with discontinuities in surface roughness and temperature is 

investigated by numerical techniques. A computational scheme is 

developed for solving the steady state two-dimensional boundary layer 

equations. Several theorems of convergence are proved. A successful 

numerical test, which has been compared to the exact solution, is 

achieved. Some iterative schemes, which have already enjoyed con-

siderable success without theoretical support are here shown to be 

convergent. 

The variations in pressure and buoyancy force associated with 

changes in surface roughness have been neglected by previous investiga-

tors whose work is included in the present study. The numerical 

results of velocity and shear stress are compared with wind tunnel and 

field data. The roughness and temperature discontinuities are shown 

to have an effect on the upstream as well as the downstream flow 

conditions. 

Significant variations in the horizontal velocity, vertical 

velocity and shear stress profiles near the roughness discontinuity 

occurred between those cases neglecting and those retaining the pressure 

terms in the governing equations. The predicted physical quantities 

for diabatic conditions also show significant differences in those 

two cases; thus, the pressure terms should be retained in the governing 

equations. 
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No inflection point in the wind profile for neutral conditions 

has been observed in the mixing length model; however, it has been 

observed in both the turbulent energy model and the model presented 

in this study. The field and wind tunnel observations also confirm 

the presence of an inflection point. The inflection point is less 

visible in the presented model as compared with the turbulent energy 

model. 

For a small change in surface roughness, the wind profiles 

simulated by the numerical method are in good agreement with wind 

tunnel data. The distribution of the surface shear stress predicted 

by the presented theory is in better agreement with Bradley's field 

data than previously existing theories. 

A proposed mechanism of turbulent energy transfer is developed, 

based upon the results of numerical experiments that explain the 

distribution of shear stress, and, hence, the distribution of velocity 

profiles in the atmospheric surface layer. Two different theories, 

the mixing length theory and the turbulent energy theory, are modified, 

and examined in detail; a theory is developed to remove some weaknesses 

of previously existing theories. 
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Chapter I 

INTRODUCTION 

1.1 General Remarks 

The airflow over homogeneous terrain in the atmospheric surface 

layer has been the subject of extensive studies in the past few 

decades. The so-called "constant flux layer" near the earth's surface 

in the homogeneous plane, considering mean physical quantities and 

turbulent characteristics, is well understood. The airflow over a 

flat plate has long interested fluid dynamicists who have successfully 

simulated this flow in the wind tunnel. 

Although the airflow over homogeneous terrain has been extensively 

studied, the airflow over a complex surface with abrupt changes in 

temperature and roughness occurs more often in nature. In fact, it is 

extremely difficult to find a perfectly homogeneous terrain on the 

earth's surface; for all practical purposes, it is usually assumed 

that there is an infinite upstream fetch over a homogeneous surface. 

The study of airflow over complex surfaces under various stability 

conditions is of great interest, because of its relation to evaporation 

from crop fields or from lakes, to the diffusion of air pollutants in 

urban areas, to lake and sea breezes and because of its interaction 

with the general circulation. The atmospheric motions are influenced 

by the underlying surface, which is the source of heat and moisture 

fluxs. Since the large-scale and meso-scale considerations of the air 

motion depend on the micrometeorological conditions, the study of 

dynamic micrometeorology should prove to be very rewarding. 
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In order to improve the predictability of wind, temperature, water 

vapor and air pollutants in the atmospheric boundary layer, more physical 

insight into the mechanism of turbulent transports is required. Un-

fortunately, field measurements are inadequate both in quality and 

accuracy. Because of the numerous uncontrollable factors involved in 

the atmospheric surface layer, it is quite difficult to interpret the 

r esulting measurements. One promising method of attacking this 

problem and of interpreting the transfer mechanism of turbulent energy, 

heat, and momentum is through the use of a high-speed computer to solve 

the governing equations for the flow by a numerical technique. 

1.2 Statement of the Problem 

The physical problem considered is the air flow moving over a 

surface with an abrupt change in surface roughness and temperature. 

Since many previous workers dealt with neutral conditions and disregarded 

the influence of roughness discontinuities on the upstream flow, we will 

incorporate this effect into our model and also extend the model to 

diabatic conditions. 

Since certain terms in the governing equations are difficult to 

incorporate into the internal boundary-layer models, it is felt that a 

generalized mathematical model can most easily be realized through a 

numerical simulation. Such simulations should lead to a deeper and 

broader physical insight into the problem. 

Therefore, the purpose of our study is to integrate a closed set 

of nonlinear equations of motion by numerical techniques. The 

objectives in this study are the following: 

(1) Develop a theory of airflow over inhomogeneous terrain in 

order to avoid some weaknesses of previous theories and to improve the 
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predictability of the mean flow, temperature, shear stress, and turbu-

lent energy in the atmospheric surface layer. 

(2) To propose a mechanism of turbulent energy transport in order 

to explain the distribution of shear stresses and hence, the distribution 

of wind profiles. 

(3) Develop a numerical scheme with theoretical support, which 

should be applicable to three-dimensional boundary layer flow. 

(4) Retain the pressure and buoyancy terms in the governing 

equations in order to examine the buoyancy and pressure effects on the 

flow, and the effect of the roughness discontinuity on the upwind flow. 

(5) To compare the results among various theories, and the results 

predicted by various theories with those of wind tunnel and field 

measurements. 

(6) To answer why the k-theory model works so well in predicting 

the mean flow field in light of a newly developed theory. 

(7) To examine the applicability of the traditional concept of 

the internal boundary layer. 

1.3 Historical Background 

Phillips, as early as in 1956, found by analyzing synoptic charts, 

that the surface wind blows much stronger over smooth terrain than over 

rough terrain. Phillips (1956), Mintz (1958) and many others have set 

up two-parameter models for the study of atmospheric general circulation, 

including friction and heating terms in the atmospheric surface layer. 

Numerical studies of the sea breeze with the assumptions of constant 

heat flux and momentum flux in the surface boundary layer have been 

carried out by Fisher (1961) and many others. The successful numerical 

investigations of the general circulation and meso-scale circulation all 
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depend upon the ability to incorporate the dynamic aspects of airflow 

influenced by complex surfaces. The vertical distribution of velo-

city and shear stress profiles are modified when the flow moves from 

one type of roughness and temperature to a new surface with a different 

roughness and temperature. The modified airflow in turn will affect 

the local transfer rates of heat and moisture. 

In the early stages of research, almost all reliable experiments 

were performed in wind tunnels (Jacobs, 1939) or in closed hydraulic 

channels (Nikuradse, 1933; Tani, 1958). Recently, Yeh and Nickerson 

(1970) have successfully simulated the mean flow field and turbulent 

characteristic of the atmospheric boundary layer flow downstream from 

a roughness discontinuity. Field observations of mean flow encounter-

ing abrupt changes in surface roughness have been obtained by Lettau 

(1962) and Bradley (1968). Data obtained from wind tunnel and field 

observations are still inadequate to construct a general mathematical 

model. It is felt that only through numerical experiments combined 

with experimental data, either obtained from the field or the wind 

tunnel, can a generalized mathematical model be deduced and the 

mechanisms involved be understood. 

The concept of the "internal boundary layer" was first introduced 

by Elliott (1958) and subsequently modified by Panofsky and Townsend 

(1964) and Townsend (1965a, 1965b). Numerical models without a prior 

assumption about an "internal boundary layer" have been constructed by 

Nickerson (1968), Onishi and Estoque (1968) and Taylor (1969). Almost 

all theories deal with neutral conditions and employ mixing length 

hypothesis, The main drawback of the mixing length model is that it 

disregards the upstream history of an air parcel. Bradshaw, et al 
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(1967) have successfully solved this problem by replacing the mixing 

length with a turbulent energy equation. Following the work of Bradshaw 

et al.(1967), Peterson (1969) applied this idea to the atmospheric 

turbulent boundary layer. Although reasonable mean meteorological 

variables and shear stress have been obtained by this model, some 

problems arise. The turbulent energy was assumed to be linearly corre-

lated with the shear stress and they considered the turbulent energy 

equation as if it were an equation for the Reynolds shear stress. It 

turns out, however, that they used the wrong equation for the Reynolds 

shear stress. Considering the unsound mathematical background of these 

models, one might ask why the mixing length model and the Bradshaw model 

work so well. We will return to this question later and attempt to 

answer it in light of a new theory developed in this thesis. 

Many investigators assume the existence of an "internal boundary 

layer," which means that when a turbulent flow encounters a sudden 

change in surface roughness, the effect of this change is not felt 

immediately through the turbulent boundary layer, but is diffused 

outwards as the flow moves downstream. However, there is definite 

evidence that when the flow encounters a sudden change in surface 

roughness, the effects are immediately felt not only downstream but 

upstream as well. The upstream effects of roughness discontinuity have 

been numerically studied by both Wagner (1966) and Onishi and Estoque 

(1968). Wagner considered the unsteady flow problem, while Onishi 

and Estoque solved the problem of two-dimensional flow moving from one 

tYPe of roughness to another. 

The effects of roughness discontinuity have been observed by 

Stearn and Lettau (1964), who carried out field experiments in and 
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around a group of discarded Christmas trees planted on frozen Lake 

Mendota. 

The entire flow field imbedded in the planetary boundary layer can 

be classically divided into three regions as shown in Figure 1-1. The 

flow in each region has a different structure. Region I is an equili-

brium boundary layer, where the velocity profiles have similar shape. 

In this region, there is no inertial acceleration, and a constant shear 

stress exists. A large number of theoretical and experimental studies 

have been carried out in the past few decades in this region. However, 

the assumption of an equilibrium flow in the planetary boundary layer 

is an over simplification. The pioneering work was carried out by 

Prandtl and von Karman (see Schlichting, 1968), who determined that 

a logarithmic velocity profile exists in this region. Region II is a 

transition region (O < x < x1). In this region, the new surface will 

cause the flow to change from its equilibrium condition. The accelera-

tion or deceleration of the flow depends on whether the new surface is 

respectively smoother or rougher than the upstream surface. The change 

of mean physical quantities and the characteristics of turbulence are 

initially restricted to a shallow layer near the surface, which gradually 

diffuses outward, as the flow advances downstream. This shallow layer 

grows thicker as air progresses downstream; such a layer is called 

an "internal boundary layer." The flow outside this layer has not been 

affected by the underlying surface. Region III is a new equilibrium 

boundary layer. The internal boundary layer will deepen as the flow 

progresses downstream. Thus, if the fetch is long enough, it is possible 

to assume that beyond a certain distance x1 in the downstream direction, 

the flow will eventually reestablish a new equilibrium with the underlying 
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Figure 1-1 Regions of flow downstream with an abrupt change in surface roughness 
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surface. Finally, the internal boundary layer will cover the entire 

depth of the atmospheric boundary layer, and the thickness of the 

internal boundary layer will coincide with the atmospheric boundary layer. 

For neutral conditions, our model will include the pressure term 

neglected by Peterson (1969). In a study of sea breezes, Neuman and 

Mahrer, (1971) showed that the acceleration terms in the vertical 

momentum equation are important. Therefore, they suggested that these 

terms be retained. For steady state, two-dimensional flow under 

diabatic conditions, no papers which retain the vertical momentum 

equation in the system have appeared in the literature (although most 

writers assume hydrostatic equilibrium). The pressure and buoyancy 

effects have been neglected by Taylor (1970, 1971) for the flow under 

stable and unstable conditions; however, we will consider these effects 

in our model. After a new theory has been developed, we will investi-

gate the various mechanisms involved for the flow in the turbulent 

atmospheric boundary layer. 

After the mathematical model has been constructed, one needs to 

search for a relevant numerical scheme; otherwise, the physical problems 

will still be unsettled. Many numerical schemes are available; however, 

no convergence to the solution has been proved. Iterative schemes have 

been developed by several authors (Greenspan, 1968; Onishi and Estoque, 

1968; Apelt, 1969; Estoque and Bhumalker, 1970). The iterative scheme 

developed by Greenspan was used for solving vorticity equations, and a 

similar scheme has been used by Apelt (1969) to investigate the problem 

of cavity flow. The iterative scheme developed by Onishi and Estoque 
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(1968), and Estoque and Bhumalker (1970) for solving the primitive 

equations has also enjoyed considerable success; however, no proof of 

convergence has been made, since Estoque and Bhumalker (1970) justified 

his results only numerically. 

We will develop an iterative scheme for solving a system of non-

linear partial differential equations and prove several convergence 

theorems. Under certain hypotheses, the scheme will converge to the 

solution. 
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Chapter II 

THEORETICAL BACKGROUND 

2.1 Analytical Model 

The fully developed turbulent airflow blowing steadily from one 

reg ion to another region with different surface roughness was first 

considered by Elliott (1958). He assumed that far upstream the turbulent 

fl ow is in equilibrium with the underlying surface and that the air in 

the transition region immediately adjusts to the new surface,. The 

depth of the layer influenced by the underlying surface grows with 

downstream distance from the roughness discontinuity. The lower 

boundary layer of small vertical extent where the effects of the 

new surface roughness are felt was called the "internal boundary layer" 

by Elliott. Under the assumption of the conservation of momentum 

for steady state flow, he needed only the equations of continuity 

and horizontal momentum without pressure gradient force to close the 

system. 

Applying the von Karman integral technique, Elliott obtained an 

analytical expression for the height of the internal boundary layer: 

d 
dx 

h(x) - 2 d 
J u dx - uh dx 
zl 

h(x) 
f udz = (2-1) 
zl 

where h(x) is the hei ght of the internal boundary layer, uh is the 

velocity at the edge of the internal boundary layer, and u*o and 

u*l are the surface frictional velocities upstream and downstream 

respectively. The quantities and are assumed to be 
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functions of the downstream distance x only. is the downstream 

roughness length; k the von Karman constant which is equal to 0.4. 

The momentum equation (2-1) has been obtained by assuming constant 

shear stress within the internal boundary layer and zero nressure 

gradient. Equation (2-1) simply states the conservation of momentum, 

i.e., the loss of momentum by advection, must also be equal to the net 

gain of momentum by frictional velocity. The mean flow inside the 

internal boundary layer is described by 

u = 
u* 1 (x) 

k 
z ln (2-2) 

In Elliott's model, it was assumed that the shear stress is 

independent of height inside the internal boundary layer; outside the 

internal boundary layer, the flow has the same shear stress as the 

upstream fluid. Therefore, a discontinuity in shear stress appears at 

the edge of the internal boundary layer. Since the wind profile is con-

tinuous across the edge of the internal boundary layer and the air does 

not feel the influence of the surface roughness, the acceleration of 

air is negligible. The negligible acceleration of air at the edge of 

the internal boundary layer contradicts the existence of the shear 

stress discontinuity, which implies the maximum acceleration of air 

at that same point. The assumption of constant shear stress inside 

the internal boundary layer would imply that the air is either not 

accelerating or not decelerating. However, the opposite is true, for 

when the air moves over a new surface, it will either accelerate or 

decelerate. Since the acceleration or deceleration of air is usually 

negligible near the edge of the internal boundary layer, the velocity 
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profile is continuous; hence, the shear stress distribution should also 

be continuous. 

Since the constant local shear stress assumed by Elliott inside 

the internal boundary layer is unrealistic, several authors have made 

an attempt to improve Elliott's model by introducing various forms for 

the shear stress distribution in the internal boundary layer. Panofsky 

and Townsend (1964) avoided the unrealistic distribution of shear stress 

used in Elliott's model; they assumed that the distribution of shear 

stress varies with height in the internal boundary layer. The shear 

stress distribution was assumed to take the form 

and 

s = 
0 

ln z/z0 

ln h(x) - 1 
z 

0 

(2-3) 

(2-4) 

where S is a measure of the change of the surface stress, which is a 
0 

function of downstream distance. 

Taylor (1967) constructed a model based upon the von Karman -

Pohlhausen technique using a higher order polynomial to fit the vertical 

distribution of frictional velocity: 

3 
{ (1-S ) + S [10 (~) o o h 

4 
+ 15 (~) h 

5 
+ 6 (~) ] } (2-5) 

All three theories (Elliott, 1958; Panofsky and Townsend, 1964; and 

Taylor, 1967) are basically similar; they consider mathematical 
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simplifications which lead to an approximate solution. The main 

differences between their theories lie in the manner in which they 

prescribe the vertical distribution of frictional velocity; however, 

the mean velocity profiles downstream from the roughness continuity 

predicted by all three theories do not differ significantly. This 

indicates that the change of the mean horizontal velocity is insensitive 

to the distribution of shear stress. The three predicted results for 

the growth of the internal boundary layer thickness also differ. Taylor 

(1969) found that his model was less accurate in predicting the distri-

bution of shear stress in an internal boundary layer than Panofsky and 

Townsend's model. 

Townsend (1965a, 1965b) tried to generalize the previous works 

and introduced the self-preserving turbulent flow. For the flow over 

an abrupt change in surface roughness, Townsend postulated that the 

flow is self-preserving, which means that distributions of each quantity 

have the same form at all distances from the point of transition; they 

differ only in common scales of velocity and length. Townsend (1965a) 

proposed a self-preserving flow having the shear stress distribution of 

the form: 

where 

+ T s 
F ( ~) 

9., 
0 

is a velocity scale, and 

2) F (-z ) ul 9., (2-6) 
0 

9., 
0 

is a length scale of the 

self-preserving process. Using the mixing length transfer relation, 

the distribution function F(t-), a universal function, has been 
0 

derived and has the exponential form 



F (~) = e 
Q, 

0 

2.2 Numerical Models 

z 
Q, 

0 

14 

(2-7) 

2.2.1 Mixing length theory - The methods advanced by Elliott, 

Panofsky and Townsend, and Taylor are applicable only to a restricted 

class of flow. The theories postulate the vertical distributions of 

frictional velocity and then deduce the horizontal component of the 

mean velocity. On the other hand, numerical simulation without a prior 

assumption about the internal boundary layer can avoid some of the 

difficulties encountered by the similarity methods; it can also apply 

to any class of flow. Therefore, it should lead to a deeper and 

broader insight into the dynamic processes of the flow than an over-

simplified analytical method. 

The steady state, two-dimensional, incompressible fluid moving 

over horizontal terrain with an abrupt change in surface roughness 

has been investigated by several workers (Nickerson, 1968, Onishi and 

Estoque, 1968; Taylor, 1969, 1970 and 1971) using numerical techniques. 

The models were based on the steady state, two-dimensional turbulent 

boundary layer equations with the mixing-length assumption. The 

turbulent boundary layer equations and the equation of continuity may 

be written as 

au au 1 aP a (K au) a (K au) (2-8) u - + w - = -+ ax + az ax az ax X ax z az p 

aw aw 1 aP a (K aw) a (K aw) (2-9) u -+ w - = - - g + ax + ax az az X ax az z az 
p 



au 
ax + 

aw 
az 

15 

= 0 (2-10) 

in which a Cartesian coordinate system has been used. The x-axis is the 

horizontal direction parallel to plane of mean wind, while the z-axis is 

normal to the x-axis pointing in the vertical direction. u and w 

are the mean velocity components corresponding to X and z. p is the 

mean density of air; 

viscosity; and K , z 

P, the pressure; K the horizontal eddy 
X 

the vertical eddy viscosity. 

Nickerson (1968) reduced the system of equations (2-8), (2-9), and 

(2-10) to parabolic equations (2-8) and (2-10) without considering the 

pressure effect, horizontal diffusion terms or the vertical momentum 

equation. Townsend (1965) compared his own results with Elliott (1958) 

and Panofsky and Townsend (1964); he found that the forms of eddy 

exchange coefficient used by the previous workers are relatively 

unimportant. Based on Townsend's findings, Nickerson assumed that the 

exchange coefficient K z is a linear function of height away from the 

wall; it does not vary in the downwind direction. He solved the system 

of equations (2-8) and (2-10) by the Dufort-Frankel Scheme, marching 

according to the direction of flow. Taylor (1969) used the same system 

of equations as in Nickerson's model. However, he considered the eddy 

exchange coefficient as depending not only on the height but also on 

the vertical wind shear; this consideration is essentially the mixing 

length hypothesis for the exchange coefficient. Taylor reduced the 

nonlinear system of equations to ordinary differential equations, and 

solved the system of equations by the standard method of Runge-Kutta. 
s· ince all of the above researchers solved the system of parabolic 
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equations, no upstream effects of roughness discontinuity can be found 

in their results. 

Onishi and Estoque (1968) did not consider the horizontal diffusion 

terms. They solved the system of equations by an iterative method. No 

theoretical support for the convergence has been given. However, they 

included the pressure terms in their model, thus retaining the vertical 

momentum equation. The pressure terms included in the system of equations 

cannot be computed by the marching scheme used by the previous workers, 

which can be obtained only through the Poisson equation by an iterative 

technique. The roughness discontinuity, which perturbs the oncoming 

flow, also perturbs the pressure field. The change in pressure will 

result in the change of the flow's momentum which in turn will affect 

the flow upstream. 

Taylor (1970) considered the approaching flows under unstable 

conditions with a step change both in heat flux (or temperature), and 

surface roughness. In order to investigate the flow under unstable 

conditions, he included, in addition to the momentum and continuity 

equations an energy equation written in terms of temperature rather 

than potential temperature. The closure he chose is the mixing length 

assumption, using the formula for nondimensional wind shear developed 

by Businger-Dyer (unpublished). The vertical momentum equation has not 

been considered in the set of equations; the buoyancy term and pressure 

term have been ignored in his numerical experiment. Despite these 

shortcomings, he was able to obtain a distribution of shear stress 

profiles which is quite different from the profiles obtained under 

neutral conditions. For slightly stable conditions, Taylor (1971) 

also included the equation for water vapor in his model. He made an 
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attempt to compare his numerical results with field measurements 

(Rider, et. al., 1963). However, his results are far from conclusive 

due to the uncertainty and incompleteness of the field measur •.:ments. 

As in the case of unstable conditions, he was again able tc demonstrate 

that exchange coefficients and shear stress profiles change significantly 

when compared with those of neutral conditions. 

2.2.2 Turbulent energy model - At the present time, the calculation 

of the flow in the turbulent boundary layer usually employs the mixing 

length assumption to close the system, which provides the first approxi-

mation for the turbulent boundary layer problem. The mixing length 

hypothesis states that the shear stress is a local property, which 

is related to the mean velocity gradient and the distance from the 

wall. Since the mixing length hypothesis disregards the past history 

of the flow behavior in the boundary layer, Dryden (1947) proposed that 

the shear stress is closely related to the turbulent kinetic energy. 

Based on the evidence that the turbulent kinetic energy is positively 

correlated with the shear stress, Bradshaw et al, (1967), following 

Townsend (1961), used the turbulent kinetic energy equation to generalize 

the mixing length theory, thus taking the past history of turbulent 

characteristics into account. The turbulent energy equation (Hinze, 

1968) for two-dimensional steady state can be written as 

- a 2 2 
~ ..L pr 2 

u ·- (-L) + w _a_ (_g_) = - u'w' dz [WI (- + _g_)] - E: (2-11) ax 2 az 2 az p 2 ' 
horizontal vertical production diffusion dissipation advection advection 

In the above equation, the viscous and normal stress terms have 
been neglected. 

E: is the dissipation of turbulent kinetic energy 
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by the action of molecular viscosity, and P' is the fluctuating com-

ponent of the static pressure. A bar over a symbol denotes the time 

average. The resultant fluctuating velocity is 

2 q = 7 u + 7 V + ,2 w (2-12) 

Consideration of the system of equations which includes the 

horizontal momentum equation, the equation of continuity and the 

turbulent kinetic energy equation does not close the system, since 

there are more unknown than the number of equations in the system. 

Therefore, more information is needed in order to close the system 

of equations. Some empirical functions must be introduced to make 

the system closed; this is precisely what has been done by Townsend 

(1956, 1961), Bradshaw et al. (1967) and McDonald (1968) in two-

dimensional incompressible viscous flow. The empirical functions 

are introduced by modeling the diffusion, and dissipation terms in 

the turbulent kinetic energy equation. In the mixing length theory, 

one assumption is enough, while in this model three empirical functions 

are required. They are 

2 
(i) (-u'w') = a1 %-
(ii) w' (~+ L) 

p 2 

(iii) (2-13) 
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where o is the boundary layer thickness, 

the shear stress and the turbulent intensity, 

parameter. l is the dissipation length and 

dissipation. The diffusion coefficient a2 

l are assumed to be universal functions of 

is the ratio between 

is another turbulent 
2 is the E = v (au. '/ax . ) 

l J 
and the dissipation length 

z/ o. The first relation 

(i) states that the magnitude of the shear stress is proportional to 

the turbulent intensity. The second relation (ii) expresses the 

diffusion term as a function of the local shear stress and the maximum 

shear stress at a particular station. The third relation (iii) implies 

that the dissipative eddies are approximately isotropic. By substituting 

the above three empirical functions into the turbulent kinetic energy 

equation, one obtains the following dynamic equation for turbulent 

shear stress: 

u aT --+ a1 ax 
w aT au 
al az = T az 

1: 
T 2 
max 

3/2 
T (2-14) 

l 

Since the shear stress is related to the scale of mixing length, the 

above equation is a generalized mixing length equation. Omitting the 

convective terms and diffusion term in (2-14), equation (2-14) is 

reduced to the mixing length equation hYPothesized by Prandtl (1925), 

if one chooses the dissipation length to be equal to kz, where k 

is the von Karman constant. Thus, the inclusion of the advective and 

diffusive terms in the turbulent energy equation generalizes the mixing 

length equation; the upstream effect on the mixing length has been taken 

into consideration in this model. Although more information is avail-

able from the turbulent energy model, one has to pay a higher price by 

obtaining three empirical functions. 
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The two-dimensional turbulent energy model developed by Bradshaw 

et al. (1967) has been shown to be very successful in calculating 

turbulent boundary layer flow. They determined the shear stress from 

the turbulent kinetic energy equation with the aid of three empirical 

functions. This concept of modeling has been extended to che atmospheric 

boundary layer by Peterson (1969), who assumed that the process for the 

diffusion of the turbulence energy is the same as that of momentum; the 

dissipation scale l is chosen to be equal to kz, where k is the 

van Karman constant. This means that under equilibrium conditions, 

dissipation is equal to production. Manin (1959) has argued that the 

dissipation length l = kz is probably also valid for non-equilibrium 

conditions with accelerating or decelerating flow. Furthermore, Peterson 

assumed that a1 , relating shear stress to turbulent energy, is equal 

to 0.16. He stated that the value is close to the value of a1 = 0.15 

used by Bradshaw et al., and suggested that the constant a1 is a 

universal function. Actually the value of a1 chosen by Bradshaw is 

0.3 which is twice as large as that used by Peterson (1969). The latter 

reduced the equation (2-14) to a parabolic equation rather than a 

hyperbolic equation (Bradshaw et al., 1967). His results indicate that 

a "kink" appears in the predicted velocity profile; the nondimensional 

wind shear is either less than or greater than unity depending on 

whether the flow is accelerating or decelerating. The predicted non-

dimensional wind shear, which is assumed to be equal to unity for 

neutral conditions in mixing length theory, seems in very close agree-

ment with the observations. 
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Chapter III 

WIND AND TEMPERATURE PROFILES IN THE SURFACE LAYER 

3.1 Atmospheric Boundary Layer 

In the earth's atmosphere, the layer of fluid which is influenced 

by the combined action of Coriolis force, the thermal stratification 

and surface friction is called the atmospheric boundary layer. Thus 

the atmospheric boundary layer is a turbulent boundary layer with density 

stratification in a rotating coordinate system. Within the atmospheric 

boundary layer, there are two distinct layers (Figure 3-1): one is 

called the "Ekman layer", the other is the "surface layer." The 

thickness of the Ekman layer can be determined by the equation H' = 

CV /f', where V is the gradient wind velocity at the upper gr gr 
boundary of the layer, f' = 2Qsin¢' is the Coriolis parameter, n is 

the angular velocity of the earth, ¢' is the latitude, and C is 

a nondimensional factor. 

The thickness of the Ekman layer usually extends to about 1 km 

with V = 10 m/sec and gr 
-4 -1 f' = 10 sec ; this is approximately one 

order of magnitude less than the effective thickness of the earth's 

atmosphere, 10 km. The wind direction changes with height in order to 

maintain a balance between the Coriolis, pressure gradient, and 

frictional forces, and the vertical turbulent flux decreases with 

height. The thickness of the surface layer extends up to about 50 

meters over homogeneous terrain. The wind direction is considered 

to be constant; the variations in shear stress and vertical momentum 

flux are negligible. The Coriolis force is not important in the surface 

layer. 
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In their numerical modeling of the atmosphere, meteorologists have 

become increasingly concerned with the interaction between the atmosphere 

and the underlying surface. The surface of the earth supplies the 

heat and water vapor to the atmosphere; it also extracts momentum from 

the atmosphere by the friction of the earth. Therefore, the atmospheric 

motion will be modified by changes in surface roughness. Hence, this 

study will be primarily restricted to a consideration of the air in 

the nonhomogeneous surface layer. 

In the homogeneous surface layer, the shear stress is approximately 

constant, 

T + \I 
X 

av 
T + \I - 0 y clz 

(3-1) 

This surface layer corresponds to the wall region of the turbulent 

boundary layer in a nonrotating coordinate system with thermal stratifi-

cation. As one approaches the surface of the earth, the effect of 

thermal stratification on turbulence becomes less important, and finally 

its effect vanishes. The layer in which the influence of density 

stratification can be neglected is cal led "the sublayer." 

In the lower part of the layer near the earth's surface, the 

st ructure of the turbulent flow is determined by the three constant 

parameters, 
\) ' and the roughness parameter represented by z 

0 

or hs, where hs is the mean height of roughness. This layer is 

called "the dynamic sublayer" (Monin, 1970), since in this layer, the 

characteristics of turbulence are determined by the dynamic factors 
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and z . The underlying surface can be divided into two 
0 

distinct surfaces: one is dynamically smooth; the other is dynamically 

rough. The criteria used to separate these two kinds of surfaces 

depend on the ratio 

If h u*/v is less than unity, the underlying surface is called s 

dynamically smooth; on the other hand, if the ratio is much 

larger than unity, the underlying surface is called dynamically rough. 

In the case of a dynamically smooth surface, the dynamic sublayer is 

not influenced by the roughness elements; the important scaling 

parameters in this case are v and u*. The Reynolds shear stress 

is negligible compared to the viscous stresses; this layer is called 

nthe viscous sublayer." The thickness of the viscous sublayer in the 

atmospheric boundary layer is about one millimeter. ln the viscous 

sublayer, equation (3-1) reduces to 

au 
V dZ (3-2) 

Hence the mean velocity profile is a linear function of height: 

u = z . 
V 

(3-3) 

This equation is valid for the height In the case of a 

dynamically rough surface, the viscous sublayer is almost nonexistent. 

When the flow passes through the roughness elements, vortices are 

generated. This type of surface is more frequently observed in the 

atmospheric boundary layer. 
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the dynamic parameter of the dynamic sub-

layer depends primarily on the frictional velocity u*, and very little 

on molecular viscosity of air v. Thus from dimensional analysis, the 

resulting equation for the mean velocity gradient is 

(3-4) 

Integrating equation (3-4), we obtain the logarithmic wind profile: 

u = k ln z 
z 

0 

(3-5) 

This equation represents the mean velocity profile in the upper 

part of the dynamic sublayer, and indicates the dynamic interaction 

between the underlying surface and the air above. The equation is 

valid for height z >> h . s If the ratio of z/h is not signifi-s 

cantly larger than unity, then the effect of the roughness elements will 

appear in (3-5). The thickness of the dynamic sublayer depends on the 

thermal stratification. It would be deeper for air approaching neutral 

conditions. For adiabatic conditions, the thickness of the dynamic sub-

layer occupies the entire surface layer. The roughness parameter z 
0 

of the logarithmic sublayer depends on the distribution of the height, 

the size and the shape of the roughness elements of the underlying 

surface. The roughness parameter z usually does not depend on the 
0 

wind speed. However, it may depend on the wind speed, when the grass 

is bent by the action of shear stress. The corresponding height of 

for hs is shown in Table 1 (Priestly, 1959; Laikhtman, 1961; and 

Lettau, 1967). 

z 
0 
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TABLE 1 ROUGHNESS PARAMETER zo CORRESPONDING 
TO HEIGHT h s 

z (cm) 
0 

h (cm) s 

Smooth Snow 0.001 

Deserts 0.03 

Mowed Grass 0.2-0.7 1.5-3.0 

High Grass 9.3-3.7 60-70 

Shrubs and Trees 10 

Forests 50-100 1000 

Cities 100 
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When the height hs is relatively high, as in the case of high 

vegetation, the above logarithmic wind profile must be modified to: 

u = ln z-d 
z 

0 

where d is the zero plane displacement. 

usually lies between h /2 s and h . s 

(3-6) 

The roughness parameter z 
0 

As with the definition of eddy viscosity, one can also define the 

eddy conductivity for heat Kh and the eddy diffusivity for mass 

and write 

K ' w 

H pC Kh 
ae 

= az p (3- 7) 

E = - pK ~ w az (3-8) 

The presence of water vapor and heat in the dynamic sublayer 

does not change the characteristics of turbulence; therefore, one can 

consider water vapor and heat as passive substances in the layer. The 

effect of buoyancy force can also be neglected in the dynamic sublayer. 

As with frictional velocity, we can define two scales, "frictional 

temperature" and ''frictional humidity" as 

0 
H (3-9) = - kp Cu* * 

0 p 

E 
q* = - (3-10) kp u* 0 
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Since heat flux and water vapor flux are positive upward if distribu-

tions of temperature and humidity decrease with height; 0* and q* 

are negative for upward transport of heat and moisture. 

In the logarithmic sublayer, all statistical properties are 

determined by three constant parameters u*, 0* and q*. With 

the definitions of heat flux, water vapor flux, frictional temperature 

and frictional humidity, we obtain 

ae 0 * 
= az ~z 

(3-11) 

~- q* 
az a Z (3-12) 

q 

where 

a = K /K. q w m 

From (3-11) and (3-12), we can obtain logarithmic equations for mean 

potential temperature and humidity profiles: 

0 * ln ~ 0 (z) - 0 (z ) = 
0 ~ z 

0 

(3-13) 

- (z) (z) ~ ln z q - q = -
0 a z (3-14) 

q 0 

The above equations are similar to the mean velocity profile in the 

dynamic sublayer (3-5). 
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3.2 The Monin-Obukhov Similarity Theory 

Above the logarithmic sublayer, the buoyancy force cannot be 

neglected. The heat and humidity become active in this region. Monin 

and Obukhov (1954) attempted to generalize the wind, temperature and 

humidity profiles in the surface layer to diabatic conditions. They 

postulated that in order for similar profiles to exist in the surface 

layer, the relevant scaling parameters must be u*, H/C p  , 
p 0 

E/p and 
0 

g/T. The length L depends on the stability, which is defined as 

L --

3 
u* C p T 

p 0 
kgH 

and the sign for L is 

I 
negative for unstable conditions 

L = 00 ~ ~ neutral conditions 

positive for stable conditions. 

(3-13) 

The velocity scale is u* , which in turn can be used to deter-

mine the temperature and humidity scales 0 
* 

through (3-9) 

and (3-10). According to the similarity hypothesis advanced by Monin 

and Obukhov (1954), the nondimensional wind and temperature should be 

universal functions of the nondimensional height s' = z/L: 

kz dU 
<PCs') = 

u* dZ (3-14) 

z a0 <PCs') 
0 az = ah(s') * 

(3-15) 

where<!>(.,..') . 
s is a universal function, depending only on stability s'. 
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The nondimensional wind shear ~ can be expressed in terms of 

the eddy viscosity defined by Km= u*
2
/~~ as 

Hr;') = 
K (z) 
m 

In an analogous manner, we obtain the nondimensional lapse rate 

cp(r; ') /ah (r; ') as given by 

(3-16) 

(3-17) 

From the definition of L, ~' K  ' m 
Kh and Ri, one can show that 

the gradient Richardson number is equivalent to the nondimensional 

height r;' = z/L, given by 

z 

L 
Rf= Hr;') Ri (3-18) 

By integrating (3-14) and (3-15), we obtain the universal functions for 

momentum and heat respectively: 

u* z  z 
u(z
1
) u(z2) = k [f 

( _!_) - f ( ~)] 
L L 

(3-19) 

z z2 
0(z
1
) 0(z

2
) = 0 [ft (_!_) - f CL)]. * L t 

(3-20) 

For the flow in neutral stratification, L  00, ~(0) =  1 and r;'  0, 

equation (3-19) reduces to the logarithmic velocity law (3-5). The 

universal functions in (3-19) and (3-20) can be written as 
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f(s') = ln s' + const for Isl, << 1 (3-21) 

1 
lns' + const 

ah 
for Is' I << 1 (3-22) 

The logarithmic laws (3-21) and (3-22) also hold for z  0 and for L 

as a fixed constant, which implies that the dynamic sublayer does exist 

as the height approaches zero. 

If we expand the nondimensional wind shear ¢ in a Taylor's 

series in (3-14) and (3-15), after integrating (3-14) and (3-15) for 

the case Is ' I ~ l, and retaining only the linear terms of Taylor's 

series, we obtain universal functions of the log-linear law for 

wind and temperature profiles: 

f(s') -lns' + S s' + const u 
for 

1 
lns' + Sts' + const 

ah 

Is' I 
~ 

< 1 (3-22) 

for ~ 1 (3-23) 

For very strong instability, since the temperature profile is 

independent of u*, Obukhov (1946) and Monin (1950) showed that the 

universal function for temperature profile is possible only for 

Thus the universal functions for wind and tempera-

ture profiles for very unstable cases are: 

f(s') = c s,-l/3 + const s' << -1 (3-24) 
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C -1/3 
1'; 1 + canst 

ah 
1';' << - 1 (3-25) 

where C is some constant. 

For very strong stability, the universal functions for wind and 

temperature profiles (Manin 1970) are 

f(r;') - ~ r;' + canst 
0 

1 
ahRo 

1';' + canst 

where R
0 

is a finite limit on Rf. 

1';' >> 1 (3-26) 

1';' >> 1 (3-27) 

The theoretical predictions advanced by Manin and Obukhov (1954) 

agree very well with experimental data. Table 2 is a summary of the 

constants ah, Su, St and C for various stability conditions. 

The nondimensional wind shear has been introduced in (3-14). In 

addition, since the vertical heat flux is rarely available, the most 

frequently measured quantities are temperature and mean wind velocity. 

When these quantities are given, following Panofsky (1964), we define, 

u* ~T az L' = 

kg a0 
az 

Then L' is related to the Monin-Obukhov stability length L by 

Kh 
L' = L -K m 

The ratio Kh/Km depends only on the Richardson number. 

(3-28) 

(3-29) 
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TABLE 2 A SUMMARY OF THE CONSTANTS ah, Su, St, 
FOR VARIOUS AUTHORS AND STABILITY CONDITIONS 

Authors Stability i:;' ah = K /K h m Su st C 

Pandolfo (1966) Unstable -1 
<Pm 

Charnock (1967) Strong 
Instability -4.5 3.5 

Zilitinkevich Stable Q'\,0.4 0.83 9.9 10.4 

and 

Chalikov (1968) Unstable -1.2"-0 1.4 2.0 

Free 
Convection 0.87 1. 25 

Laykhtman & 
Ponomareva 
(1969) Stable 0"-0.10 0.8 

Unstable -0.8"-
3 . 2 I I:; I I O . 35 -0.3 

Unstable <-0.8 3.0 

Businger et al 1. 0+4. n I (1971) Stable "' 1.2 0.74+4.71:;' 
!-.:: 

Unstable 1.35(1-91:;') 2 

k 
(1.0-151:; ')" 
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By the definitions of the nondimensional wind shear and stability 

length L' , we have 

kz <PC~) = L 

For a small value of z/L', (3-30) becomes 

ku au 
az 

z = 1 + f3' I• 

where f3' is a constant. Thus the velocity profile is 

u = k 
z [ln - + z 

0 
f3 I ~I] 

The values of S' are listed in Table 3. 

The values of nondimensional wind shear obtained by various 

researchers are shown in Table 4. 

(3-30) 

(3-31) 

(3-32) 

For a nearly neutrally stratified airflow, most investigators 

agree that the ratio Kh/Km is nearly unity. Thus, the temperature 

profile is given as 

0 (z) 0 (z ) = 
0 0 

z -+ z 
0 

(3-33 ) 

Analogous to equation (3-18), the relation between the gradient 

Richardson number and z/L' is given by 

Ri = (3-34) 
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TABLE 3 THE VALUE OF S' FOR VARIOUS AUTHORS 
AND STABILITY CONDITIONS 

Author 

Deacon (1962) 

Panofsky et al. (1960) 

Taylor (1960) 

Monin and Obukhov (1954) 

McVehil (1964) 

Plate and Lin (1966) 

Stability 

Unstable 

Unstable 

Unstable 

Unstable 

Stable 

Stable 

Unstable 

Stable 

S' 

4 

4.5 

6 

0.6 

0.6 

7 

2 

7 
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TABLE 4 THE VALUE OF NONDIMENSIONAL WIND SHEAR FOR 
VARIOUS RESEARCHERS AND STABILITY CONDITIONS 

Authors 

Holzman (1943) 

Monteith (1957) 

KEYPS 

Webb (1970) 

Businger-Dyer 

Authors 

McVehil (1964) 

Webb (1970) 

Oke (1970) 

Businger et al 
(1971) 

Authors 

Webb (1970) 

Unstable 

_],., 
(1-yRi) 2 

-½ (1-yRi) 

-¼ (1-yRi) 

z 1 + y -L 
z -¼ (1-y r) 

Stable 

(/>m 

1 z 
+ a I 

1 z + a -L 

(1- aRi)-l 

1 z 
+ a L 

Strong Stable 

1 + a 

Constant 

y = 8.2 

y ::, 10 

y = 18 

y = 4.5 

y = 15 

Constant 

a = 7 

a = 5.2 

a = 5.0 

a = 4.7 

Constant 

a= 5.2 

Range 

0 < Ri to free 
convection 

Range 

0 < Ri < 0.12 
'\., 0.14 

0 < Ri < 
R '\., 0.1 crit 
0< "[ <'v 1. 2 

Range 

1 < ~ 
- L 
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For log-linear law, ¢ = 1 + S' z/L', thus equat1on (3-34) becomes 

Ri = 

z 
~ 

l+DI ~ 
µ L' 

Due to large variations in observed profiles under stably 

stratified conditions, the inversion profiles cannot be fitted to 

(3-35) 

the KEYPS equation by a single curve. The results obtained by Taylor 

(1960) and Takeuchi (1961) showed that the Monin-Obukhov similarity 

wind profiles are applicable even under stable conditions; however, 

they did not define the range of applicability. The analysis of 

McVehil (1964) establishes the range of applicability of the Richardson 

number for which the Monin-Obukhov log-linear law is valid. Following 

Monin-Obukhov's similarity argument for small values of z/L, an~ 

expanding ¢ in Taylor series, after retaining only the linear term, 

one finds: 

z ¢ = 1 + a [ 

1 
= (3-35) 

The second equality has been obtained from the definition of L and 

where a is some constant. Equation (3-35) is valid for stable 

as well as unstable conditions. However, it is only valid for very 

small values of z/L in unstable cases. Under stable conditions, 

such restrictions are not necessarily required. The equation is 

applicable to large values of z/L as suggested by Taylor (1960). A 

mean Value of six has been obtained by Taylor (1960) and Takeuchi 
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(1961). This would imply a critical Richardson number of 1/6, which 

agrees quite well with the theoretical result of 1/7 (Ellison, 

1957). If we introduce the quantities L' and a' as before, the 

Monin-Obukhov log-linear law becomes 

1 
1-a'Ri (3-35) 

The above nondimensional wind shear is valid for Ri less than 0.1 

with a' = 7 and for cases where the Richardson number does not 

exceed 1/7. The value of Ri = 1/7 represents the critical Richardson 

number. The results obtained by McVehil agree with Deacon's con-

clusions (1949), that the critical Richardson number was about 0.15. 

Data have been obtained from three sets of observations: the 

O'Neill, Nebraska data of 1953; (Lettau and Davidson, 1957) and of 

1956 (Barad, 1958) and Antarctic Profiles (Dalrymple, 1961; McVehil 

1964). The analysis of these data suggests that the ratio of Kh/Km 

is less than unity under stable stratification. If we define the 

ratio of the buoyancy term and the production term in the turbulent 

energy equation, we obtain 

Kh 
Rf= K m 

Ri (3-37) 

Where Rf is the flux Richardson number, and the ratio Kh/Km also 

depends on the gradient Richardson number. Pandolfo (1966) suggested 

that the ratio of eddy conductivity to eddy diffusivity is uniquely 

related to the nondimensional wind shear under unstable conditions. 

This relation is expressed by 



<P = 
K m 

\ 
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(3-38) 

Therefore the flux Richardson number in an unstable atmosphere becomes 

!-,-
= (1 - yRi) 4 Ri (3-39) 

where 
!-,-

<P = (1.0 - 18 Ri)- 4 for Ri < 0 . (3-40) 

By definition of various quantities, z/L, ct, and Rf and with the 

aid of (3-38) suggested by Pandolfo, it is easy to show that 

z/L = Ri (3-41) 

The stability parameter z/L is equal to Ri. Since L is nearly 

constant in the lower atmospheric boundary layer, this indicates 

that the Richardson number is a function of height. 

From the definition of nondimensional wind shear and the ratio of 

Km/\ postulated by Pandolfo (1966), the eddy diffusivity and the 

eddy conductivity may be written as 

K k2z2 cp au = m az (3-41) 

3/2 

Kh = k2z2 cp (3-42) 

for unstable conditions 
' 



where ¢ -2 ¢ 
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~ 
¢ = (1.0 - 18 Ri)- 4 for Ri < 0 (3-43) 

Most authors agree that the ratio of the eddy diffusivity to the 

eddy conductivity is nearly equal to unity for stable conditions. Hence, 

the eddy conductivity is the same as the eddy diffusivity for stable 

conditions, and 

for stable conditions, 

where ¢ = ¢- 2 

¢ = (1.0-7 Ri)-l for 0 < Ri < 0.1. 

3.3 Modeling the Surface Layer 

(3-44) 

(3-46) 

Conventional approaches to numerical general circulation modeling 

usually employ the traditional mixing length theory (Smagorinsky et al. 

1965; Miyakoda et al., 1969), although the Monin-Obukhov similarity 

theory has long been known to offer remarkable success in representing 

wind and temperature profiles in the constant flux layer. Surprisingly, 

the similarity theory has only been adopted recently (Delsol, et al., 

1971), presumably because other physical and mathematical treatments were 

mainly concerned with other aspects of the problem. With the advance 
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of more complex mathematical models, perhaps the time has come to 

consider the modeling of the surface boundary layer. Some of the 

theories of the surface boundary layer have already been described 

in some detail. We will now summarize those results along with some 

theories which have not previously been mentioned. 

(1) the mixing length theory: 

(i) The Prandtl mixing length theory is: 

K = R..2 au 
m az for z < z < z 

0 - t (3-47) 

where z
0 

is the roughness parameter, and zt is the height of the 

constant flux layer. The mixing length R, is given by 

where 

t = kz 

k = 0.4. 

(ii) The Clayton theory (not yet published) includes both 

the unstable and stable cases. 

For the unstable case, the eddy coefficient for the momentwn is 

(3-47) 

and for the stab le case, 

2 au K = t (l+aS*) m az (3-48) 

where a= 18, 



S* = 
( i)½ as 
g az 

8 (au) az 

(2) the similarity theory: 
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A number of the similarity theories are based on the Monin-

Obukhov similarity theory (Lumley and Panofsky, 1964; Monin and Yaglom, 

1966). The formulations of these theories are shown in the following. 

(i) The Monin-0bukhov similarity theory (1954), from dimen-

sional analysis in the constant flux layer, states that: 

u(z) - u(z ) 
0 

z 
= f(~) - f(---E.) 

L L (3-49) 

where L is the Monin-0bukhov length, f is a universal function to be 

determined empirically, and u* is the friction velocity. 

(ii) The Businger-Dyer theory for the nondimensional wind 

in unstable conditions, is 

z p 
4> = (1 - y - ) L 

where y is the Businger-Dyer constant, and 

y = 16.0 and p = 

y = 15.0 and p = 

published). 

0.25, and (Paulson, 1967) 

0.275, and (Dyer, to be 
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(iii) The KEPYS theory is as follows. 

For unstable conditions, the nondimensional wind shear is given by: 

k ~m = (1 - y'Ri)-~ 

where y' = 18 (Panofsky et al., 1960). 

Pandolfo (1966) has shown that 

z 
[ = Ri(z), 

therefore, equation (3-51) becomes 

-z)-¼ ~m = (1 - Y' L 

Equation (3-53) is very close to the Businger-Dyer formula. 

(iv) The Yamamoto and Shimanuki theory (1966) follows. 

(3-51) 

(3-53) 

The formula for ~ proposed by Yamamoto and Shimanuki is an m 

improvement over the KEYPS equation. 

For unstable conditions, they find 

2~ 2 + 1 = 0 m 

where s* = - az and a= 15 is a constant. 
L 

For stable conditions, the relation 

holds' where / p = 1 6. 
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(v) The McVehil theory (1964) is another similarity theory. 

For stable conditions, 

z 
~ = 1 + a L ~m 

where a is an empirical constant. With some modification formula is 

also suggested by others (Paulson; 1967, Webb, 1970), where a is an 

empirical constant and 

a = 

7 

7.5 

Sp 

(McVehil, 1964) 

(Paulson, 1967) 

p = 1 for z L~l 

p =~for 1 < ~ < 6 (Webb, 1970) z L 

4.7 (Businger et al., 1971). 

(vi) The Clarke theory (1970) is still another. The non-

dimensional wind shear is expressed as 

(3-55) 

This is an interpolation formula using a -2 z profile at a 

great height and a Webb profile close to the surface. 

It is customary to treat the atmospheric surface layer as the 

constant flux layer in numerical modeling in previous theories, thus, 

no dynamic modeling of the surface boundary layer has ever been made. 

Since previous theories are only valid for flow over homogeneous 

terrain, we will need to develop a theory that has no such limitation. 

The model developed in Chapter IV possesses internal mathematical 
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•stency and is without a priori asswnptions, as are necessary in cons1 

previous theories. 

3.4 Effects of Roughness and Various Stabilities on Wind Profiles 

The observed wind profiles in the field and wind tunnel, which 

reveal the effects of surface roughness, will be presented in this 

section. The wind profiles under various stability conditions with 

constant fluxes are theoretically derived. The results show the 

influence of various stabilities on wind profiles. 

The requirement necessary for the application of Reynolds law in 

modeling the atmospheric boundary layer cannot be met in the wind 

tunnel; however, the Reynolds number appears not to be an essential 

parameter for the atmospheric boundary layer. It is known from 

Nikuradse's experiments (1933) that flow may be independent of the 

Reynolds number, and it may depend only on the roughness and turbulence. 

Therefore, the modeled flow must be turbulent, similar to that of the 

natural wind. 

Simulation of atmospheric shear flows by wind tunnels has been 

discussed by a nwnber of investigators (see Cermak et al., 1966) and 

can be clearly seen in Figure 3-2. Wind profiles from wind tunnels and 

from the natural environment are shown in Figure 3-2, (Jensen, 1958). 

The figure is used to demonstrate that natural wind over rough surface 

can be simulated by a wind tunnel. The profile at Hojer represents 

flow over a smooth surface, while the profiles at Frerslev, Alberteland 

and Nasgard represent observations over cultivated fields. The wind 

profile for the area over the central part of Copenhagen is also 

shown in Figure 3-2. Wind profiles simulated by a wind tunnel are 
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Figure 3-2 Velocity profiles over various terrains in the 
field and wind tunnel. The abscissa is tne velocity 
normalized by the velocity at a height of 100 meters; 
the ordinate is the height above the surface on a 
logarithmic scale (from Jensen, 1958) 
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different surfaces covered with masonite sheets, corrugated paper, 

and models of houses. Figure 3-2 shows the effects of the fillets 

roughness on the flow that can be simulated in a wind tunnel. surface 

Toe velocity profile is modified by the surface roughness, there-

fore, roughness parameters z are important parameters in controlling 
0 

the flow field. The influence of various surface roughnesses on the 

wind profile is shown in Figure 3-2. For homogeneous terrain, the wind 

profile essentially follows a logarithmic law under neutral stratifi-

cation. Figure 3-2 shows that the wind profiles in the atmospheric 

boundary layer can be simulated by a wind tunnel. For the flow from 

smooth to rough transition, or from rough to smooth, the wind profile 

somewhere between the two wind profiles in equilibrium with the under-

lying surfaces can be qualitatively inferred from Figure 3-2. 

The nondimensional wind shear in a constant flux layer is 

au kz az 
u*o 

z -¼ = (1 - y -) L (3-56) 

from equation (3-53). If velocity and length are scaled with respect 

to u* /k and 
0 

(3-56) as 

where s = _ 5!:_ 
L 

respectively, we obtain the nondimensional equation 

k 
au (1 + Sz) - 4 

= az z (3-57) 

Integrating equation (3-57) we get 

z 
u(z) = J 

1 

1 
-¼ z (1 + Sz) 

dz (3-58) 
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obtain the velocity profile as and we 

u(z) 
!-.- !-.-

= ln [(l + Sz) 4 -1][(1 + S) 4 +l] 
!-.- !-.-

[(l + Sz) 4 +1] [(l + S) 4 -1] 

-1 !-.- 1 + 2 tan (1 + Sz) 4 
- 2 tan - (1 + S) (3-60) 

The nondimensional log-linear wind profile for stable conditions 

can be obtained from the Webb profile; after integrating Equation 

(3-59) we have 

u(z) = lnz + S(z-1) (3-61) 

where r S = L and r = 5.2 (Webb, 1970). 

The wind profiles from equations (3-60) and (3-61) are plotted in 

Figure 3-3; the figure indicates the effects of various instabilities. 
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Chapter IV 

THEORETICAL DEVELOPMENT 

The conventional approach to closing the system of equations 

describing turbulent flow is to use the mixing length assumption. The 

mixing length hypothesis has long been popular in solving boundary 

layer problems, and has worked well in many engineering and atmospheric 

problems. An alternative approach to the boundary layer flow has been 

considered by several authors in recent years. Turbulent energy 

closure has been investigated by Glushko (1965); Bradshaw et al. (1967); 

Bechwith and Bushnell (1968) ; Mellor and Herring (1968, 1970), for the 

calculation of boundary layer development in fluid mechanics; and 

Bradshaw et al., who use three empirical functions to relate the 

turbulent intensity, diffusion and dissipation to the shear stress 

profile. Mellor and Herring (1968) define length scales relating 

shear stress and dissipation to turbulent kinetic energy and assume 

that the transport of kinetic energy is the same as that of momentum. 

These concepts by Bradshaw et al., have been utilized to investigate 

the flow in the atmospheric surface layer by Peterson (1969). He 

chose two empirical functions and one assumption similar to Bradshaw's 

three empirical functions. The first function which relates the 

turbulent intensity to the shear stress is a constant of 0.16. 

Bradshaw et al., however, use a constant of 0.30. The second function 

which relates the dissipation to the shear stress is equal to the 

mixing length kz, where k is a von Ka:rma:n "constant". Under 

equilibrium conditions, the dissipation is equal to T
3/ 2/kz 

where T is the shear stress. Although Monin (1959) argued that this 
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is also valid even under non-equilibrium conditions, there relation 
. adequate quantity of data, to support his claim. It is not is no 

Whether Monin's claim holds true in accelerating or decelerating clear 

flows. Donaldson et al., (1968) and Mellor and Herring (1970) made 

an attempt to close the system consisting of the momentum equation, 

the equation of continuity, and either the double velocity correlations 

or turbulent energy equation by introducing several length scales. 

We now will seek a fundamental framework for the model theory. 

The aim is to try to choose length scales in order to close the system 

of equations. If unknown terms have maximum correlation with known 

quantities, then these unknown variables can be replaced by the known 

quantities. Thus, the assumptions based on empirical facts must be 

used to reduce the number of unknown variables. This reduction will 

serve as a foundation for the further refinement and future work. 

Although turbulent energy closure is more complicated and requires 

more empirical functions, it can provide more information about the 

turbulent quantities which cannot be obtained from the heuristic 

model of mixing length. These turbulent quantities can be used in 

comparison with the experimental data. 

A set of basic equations is needed in order to obtain a complete 

set of equations. To obtain such results and proceed with the study 

in the following sections we will first derive the basic equations and 

then the equations for the turbulent quantities. 

4.1 Equation of State 

The equation of state for an ideal gas which relates pressure to 

the density and temperature is 
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P = pRT , ( 4-1) 

where the values of pressure, density and temperature are denot ed by 

P, p and T, respectively. R is a gas constant and equal to 

C - C p V 
for an ideal gas, where C p is specific heat at constant 

pressure and C 
V 

is specific heat at constant volume. 

A reference state will be defined in which the temperature distri-

bution is a function of height; the effects of viscosity, heat conduction 

and radiation are considered to be negligible. The values of pressure, 

density and temperature will be denoted by and T 0 , 

· respectively. The pressure in the reference state obeys the hydro-

static relation 

aP 
0 az ::: - pog 

and the equation of state for the reference atmosphere will be 

P = p RT 
0 0 0 

(4- 2) 

(4- 3) 

The instantaneous values of pressure, density and temperature will 

be expressed as 

p p '\., 
::: + p 

0 
'\., 

p ::: Po + p 

T ::: T + ~ (4-4) 0 
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where the tilde represents the departure of a quantity from the 

reference state. To a high degree of approximation, the product of 

the perturbed quantities can be neglected. The perturbed quantities 

of pressure, density, and temperature are related as 

'\, p 
p 

0 
= 

~ 
T 

0 

(4-5) 

A scale analysis by Dutton and Fichtl (1969) shows that if the vertical 

pressure gradient term has the same order of magnitude as the buoyancy 

term, then 

~ p '\, (4-6) 
0 

where L is the vertical scale and H is the scale height defined w a 

by 

-1 1 ap 
0 H = ---

a Po az 

We will assume that the perturbed quantity 

smaller compared to the reference density, 

In the shallow convective atmosphere, 

(4-7) 

of density, 
'\, 

is much p , 

p . 
0 

Thus, 

(4-8) 

L /H is also smaller w a 

than unity. Therefore, the relative pressure variation in (4-5) can 

be ignored as compared to the relative density variation for the 

shallow convective atmosphere, Equation (4-5) can be approximated as 
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T = 
r 0 . 

0 

4.2 Equation of Continuity 

The equation of continuity is 

le_ + at 
apu. 

l 
ax. 

l 

which may be expanded in the form 

ap -+ at u. 
l 

= 0 

The condition in (4-8) allows us to neglect the relative density 

variation term as compared with unity on the right side of 

(4-11). Equation (4-11) becomes 

ap - + at 
au. 

l 

ax. 
l 

(4-9) 

(4-10) 

(4-11) 

(4-12) 

According to the scale analysis of convection for compressible 

flow derived by Dutton and Fichtl (1969), the technique of Fourier 

analysis can be used to define certain scales. Dutton and Fichtl, 

furthermore, made the assumptions that the order of magnitude of the 

pressure gradient is the same as the buoyancy force, and the pressure 

and buoyancy terms are out of phase. With such assumptions and 

definitions of scales, they concluded that in a deep convective case 

the depth scale, L , w for the fluid is permitted to be the same 
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Of magnitude as the scale height, H, in the atmosphere. order a 

deep convective case the relevant equation of continuity may be For a 

of the form 

ap u. 
0 1 = 0 
~ 

(4-13) 
1 

This equation is useful in studying the gravity wave in the atmosphere, 

since a vertical scale of several kilometers is allowed. The equation 

of continuity for deep convection (4-13) reduces to 

au. 
1 

Po -- + ax. 
1 

0 (4-14) 

For a case of shallow convection, the vertical scale is much less 

than the scale height. Therefore, the last term in (4-14) may be 

eliminated, and equation (4-14) becomes 

au. 
1 

ax. 
1 

= 0 (4-15) 

For a shallow convective atmosphere with a low Mach number, the 

approximate equation of continuity permits us to treat the compressible 

medium as incompressible. The vertical scale validated in the shallow 

convection is less than about half a kilometer. Another important 

consequence is that relatively high frequencies are permitted. As 

the vertical scale approaches the horizontal scale, the magnitude of 

the vertical velocity becomes the same as the horizontal velocity. 
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4.3 Equations of Motion 

The Navier-Stokes equations of instantaneous motion of a com-

pressible, viscous, diffusive and nonhomogeneous fluid which is 

subjected to a uniform body force in a Newtonian medium and in a 

nonrotation system (Jeffreys, 1931), are 

au. au. a 1 1 
pg 03i p -- + u. ax.= - + 

axK at J J 

au. a au. auk 2 J oik} + 1 (4-16) {-(P + - JJ -) 
axK {µ(-a-+ -)} 3 ax. XK ax. 

J 1 

All tensor components refer to a right-handed Cartesian coordinate 

system, X. (i = 1, 2, 3) 
1 

x, 

denotes as follows, 

z 

z is in the vertical direction, while x and y axis are in the 

horizontal direction. 6 .. is the Kronecker delta, JJ is the coeffi-lJ 
cient of molecular viscosity, P is the static pressure at any point 

in the fluid and is a mean value of the normal stresses exerted through 

the orthogonal axes meeting at the point. The value of P should be 

invariant under rotation of a coordinate system. Equations (4-16) 

express the conservation of momentum. We are mainly considering the 

fluid motion at a very low Mach number and assume that the dynamic 

coefficient of viscosity, JJ = pv, does not depend on the temperature. 

In addition, temperature variations permitted in the fluid must be small 

compared to the temperature in the reference state. 
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By substituting the perturbations equations (4-4) into the 

avier-Stokes equations (4-16) and writing the non-viscous, non-

inertial acceleration terms in the vertical direction, one obtains 

1 aP 
p az - g 

where the higher order terms of the relative density perturbation 

have been ignored. In order that the product of perturbation 

quantities in (4-17) can be neglected, it is required that 

Thus, we can write (4-17) as 

1 
p 

aP 
az - g = a~ - + az 

1' r g 
0 

(4-17) 

(4-18) 

(4-19) 

After substituting (4-19) into the Navier-Stokes equation (4-16), and 

making use of the continuity equation, we obtain 

au. au. 1 a~ 1' 1 1 
~ + u. ax. = - ax. + r g 03i J J Po 1 0 

a2u. 
+ \} 1 

axkaxk (4-20) 

where \} is the kinematic viscosity and assumed constant for a low 

Mach numb er. 

Equation (4-20) essentially contains Boussinesq's approximations 

(Spiegel and Veronis, 1960), which states that the variations in 
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density result primarily from thermal effects, not pressure, and that 

in the equations for the rate of change of momentum and mass, the 

variations of density may be neglected, except when they are associated 

with the gravitational acceleration in the buoyancy term. 

4.4 Equations of Mean Velocity Field 

We will now consider a mean flow in a turbulent boundary layer. 

This flow is in the surface layer, and the depth of the fluid is less 

t han a few tens of meters. It will be assumed that the turbulent 

motion of flow can be separated into mean flow and superimposed 

eddy motion. Thus, the instantaneous components of turbulent motion 

will be denoted as 

u.=u.+u'. 
1 1 1 

(i = 1, 2, 3) ( 4-21) 

The instantaneous values of pressure and temperature can also be 

expressed as 

p = p + P' 

t = t + T' (4-22) 

where the overbar at the top of a symbol denotes the mean value of a 

physical quantity with respect to time averaged at a fixed point in 

space. Following Osborne Reynolds, an assumed significant mean value 

can be taken, which implies that the time interval is short enough 

and that the turbulent fluctuations are so rapid that the change in 

the mean value can be ignored. Taking the mean value and applying the 
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Reynolds' rule: if A and B .are dependent variables, and s (of 

any of x. (i = 1,2,3) and 
1 

t) an independent variable, then AB= 

X B, and aA/'aX = aA/as (Goldstein, 1965). Reynolds' principles 

can be applied to the physical quantities so that 

u.' = 0 , p' = 0, T' = 0, P' = 0 
1 

(4-23) 

If we substitute u. + 
1 

U. I 
1 

for u. 
1 

into the momentum equation 

(4-20) and equation of continuity (4-15), and use Reynolds' principles, 

we obtain, 

au. 
1 -- + at 

dU. I dU. dU. dU! cJu! 
--

1
- + u. r + u! a}-+ u. ai!- + u! ~ at J x. J x. J x. J . x. 

J J J J 

'\., '\., 

.!_~_.!_~+TT g T' 
p ax. p ax. 03i + T g 03i 

+ \} 

0 1 0 1 0 0 

a2u. 
( 1 + 
ax. ax. 

J J 

au. 

a2u! 
1 ) 

ax. ax. 
J J 

'au! 
1 

ax. 
1 

+ __ 1 = 0 
ax. 

1 

(4-24) 

(4-25) 

Taking the average value of (4-24) and (4-25), we obtain the equations 

for mean motion and the continuity equation for the mean flow, 

respectively. They are expressed as: 
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1 1 -- + Uk -- = -at axk 

a + -{- ukui axk 

au. 
1 

ax. 
1 

= 0 
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1 aP- t 03i ax. + T g 
Po 1 0 

au. 
+ \) _1} 

axk ( 4-26) 

(4-27) 

If we subtract (4-27) from (4-25), we have au.' /ax. = o. 
1 1 

Because 

au. '/ax. = 0, equation (4-26) can be obtained. The equations of mean 
1 1 

motion assume the same form as (4-20) of the instantaneous motion, 

except the terms called Reynolds stresses, - p
0 

ukuI. 

4.5 The Turbulent Energy Equation 

Owing to the presence of viscosity, the turbulent motion in 

the atmosphere will dissipate into heat if there is no continuous 

supply of energy for the maintenance of the turbulent motions. 

Consequently, these motions will decay with time. How the flow 

changes its pattern, and the relation between the velocity fluctuations 

during decay can be investigated by describing the double velocity 

correlations. Subtracting (4-26) from (4-24) and (4-27) from (4-25), 

the equations of turbulent motion and the equation of continuity for 

u.' are expressed respectively as 
1 

au;_ aui .!_ aP' + T' .r: 

at + uk a xk = - p ax. T g u 3 i 
0 1 0 

au. au! au! 
- u' 1 

~ 
1 u' __ 1 -- - --+ k axk axk k axk 

a2u! 
1 + \) 

axkaxk (4-28) 
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0 

To obtain the equations of motion for the stresses 

(4-29) 

u!u! 
1 J 

the moment of (4-28) with u! 
J 

is added to another moment of (4-28) 

after interchanging the indices. The result is 

au. 'u. ' au. 'u.' au. au. 
1 J 1 J uk'uj' 

1 
- uk'ui ' _J 

+ ~ = -
axk at axk axk 

1 u! aP' 1 
' aP' u. 

Po J ax. Po 1 ax. 
1 J 

u. 'T' u. 'T' 
+ _J__ 03j 

1 03i T g + T g 
0 0 

a + -- uk 'u. 'u.' axk 1 J 

a2u. I a2u! 
I 1 I J (4-30) + \) u. + \) u. 

J axkaxk 1 axkaxk 

The resulting equation (4-30) describes the relation between the 

turbulence motions. If we contract (4-30), we obtain the turbulence 

energy equation. Equation (4-30) can also be written in the following 

form, 

au. 1U. I 
1 J 
at 

au. 1U. I 
1 J 
axk 

au. --- au. 
1 - U. I U1. I __ ] 

axk K axk 



62 

-- P' a (u ! P' a (u.' ax. -) - ax. -) 
J Po l Po l J 

P' au . ' P' au. ' l + + 
Po ax. Po ax. 

l J 

u!T' u.'T' 
+ _l__ 03j 

l 03i g +-- g T T 
0 0 

a + -- (uk 'u. 'u. ') axk l J 

a au.' a au.' 
+ -- (u! \) at--) + -- (u ! v at--) axk J k axk l k 

au. ' au. ' 
- 2 \) _1 _ _1_ ( 4-31) axk axk 

If we contract (4-31), we obtain the turbulent energy equation, 

a 2 a 2 au. u. 'T' 
(L) (L) uk'ui' 

l l 
g 03i at + Uk axk = -- + -T--2 2 axk 0 

I II III IV 

a 2 P' a 2 
+- (u' g___ -

~ - + 
axk 

(L)) 
axk k 2 Po 2 

V VI VII 

au.' au.' 
l l - \) (-)(-) 

axk axk 
(4-32) 

VIII 
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The turbulent energy equation states: the change of turbulent 

kinetic energy per unit mass of fluid (i.e., the local rate of change 

(I) and advection term, (II)) is equal to the sum of the term, , 

production terms: the transformation of energy through interaction 

of Reynolds stress and wind shear to mean motion (III), the production 

of turbulent energy due to buoyancy forces (IV), the convective diffusion 

of turbulent energy (V) and turbulent pressure (VI) by turbulence, the 

turbulent energy transport by viscous shear stresses of the turbulent 

motion (VII), and dissipation by the turbulent motion (VIII). The 

dissipation term (VIII) is positive definite; it always extracts the 

turbulent energy from the fluid. The production term (III) usually 

is positive; however, a small region of negative production in the 

case of wall jets has been observed. 

4.6 Equations of Double Velocity Fluctuation 

Considering the index i as fixed, and taking the moment of 

(4-28) by u.' , 
1 

the turbulent energy equations for each velocity 

component are obtained: 

'2 au. u. 'T' a u. 
1 - u. 'u. ' 1 1 

at (-)= ax. + -T-- g 2 1 J J 0 

,2 au'. au! au! a u. 
(-1-) 1 

a/) 
1 - Uk axk 

- V (-+ ax. 2 ax. 
J 1 J 

,2 a u. 
+ ( - (-1-) U! + V ax. 2 J 

2 
a c.L) 

ax. 2 + V 

J J 

03i 

1 ap, 
u! ax. Po 1 

1 

a -a- (u. 'u. ')) , xi 1 J 

where no summation is taken in the equation over index i. These 

are the equations for the mean square of the longitudinal, the 

(4-33) 
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normal and lateral component. A similar interpretation used in the 

turbulent energy equation can also apply to these equations. The 

second term from the last represents the diffusion of energy down the 

gradient by the viscous action. The last term represents the con-

duction of energy by the pressure gradient force (Mellor and Herring 

1970). The terms inside the bracket only symbolize the transport 

of energy from one place to another and not the destruction or 

creation of energy. 

4.7 Energy Equations 

For the derivation of the equations of motion, we assumed that 

momentum was conserved. Subsequently, we derived the momentum 

equations for the mean motion and equations for the double velocity 

correlation. Similarly, the conservation of entropy results in the 

equation 

aT 
- + at ( 4- 34) 

where K is thermal conductivity. The last term represents heat 

transferred by eddy motion associated with temperature fluctuations . 

Other terms are analogous to the mean momentum equation. 

An equation for the transport of heat by eddy motion, represented 

by the last term of (4-34), can be expressed as 

au. 'T' au. 'T' a~ au. 
1 1 

- ui'uk' u'T' 1 
+ Uk = at axk axk k axk 

a (ui 'uk 'T') axk 
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a2T' a2u! 
T' l 

- K u! axkaxk l axkaxk 

T'2 
!__T' aP' 03i ( 4-35) --+ g T Po ax. 

l 0 

t . for the temperature variance, the last term in (4-35), can An equa ion 

be written as 

-
'v 

T'2 a2T 1 
a T'2 a T' 2 --aT a + KT' (-) + Uk (-) = u'T' -- - u' (-y) 
at 2 axk 2 k axk k axk axkaxk 

(4-36) 

The closure of the system of equations (4-26), (4-27), (4-31), (4-33), 

(4-34), (4-35), and (4-36) can be achieved in principle, if some length 

scales are provided (Donaldson et al., 1968). Length scales relate the 

unknown quantities to the known quantities by invariant modeling, which 

is based on the conventional assumption that the flow of a physical 

quantity is transported down a gradient. A specific simple model 

describing atmospheric flow, devoid of convective terms, has been used 

to demonstrate this idea (Donaldson et al., 1968). 

In order to use the double velocity equation (4-31) or turbulent 

energy equation (4-32) as a closure, one should relate production, 

triple velocity correlation, diffusion, and dissipation terms to the 

known quantities, as in the following section. The fundamental 

framework of this approach is proposed by Prandtl (1945) and Rotta 

(1951). Turbulent energy closure has not been developed enough to 

receive the general agreement acknowledged of the mixing length 
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closure. Turbulent energy closure, however, does provide some ins ight 

into the dynamic process of turbulent flow and makes future research 

promising and attractive. 

Dissipation Term £: - From experimental evidence and dimensional 

reasoning (Rotta, 1962), the dissipation term is related to the 

turbulent energy as 

Let 
R, 

0 
A= c 

£ = C 

- 3/2 ill_ 
R, 

0 

be another length scale, where 

(4 -37) 

t is an appropriate 
0 

length scale which depends on large eddies and is independent of 

viscosity except near the wall. The length scale t
0 

is compara~le 

with Prantl's mixing length. The dimensionless constant C depends 

on the structure of the large eddy motion. Equation (4-37) has l ong 

been recognized by most workers. It was found experimentally that 

dissipation is related to the three halves power of the turbulent 

energy in wake, jet and in homogeneous turbulence for large Reynolds 

number flows. Since this length scale is determined by the large 

eddies, the viscous dissipation terms in (4-31) become 

au. •au. I 

2 \! l J 
axk axk 

= 2 
3 £ 0ij ( 4-38) 

Pressure - Velocity Correlation - The important hypothesis for 

pressure-velocity terms was derived by Rotta (1951). In one of his 

works he discusses the physical basis for the term P'au. '/p ax. 
l O J He 

maintains that under contraction these terms must vanish. Since the 

terms are zero in the total turbulent energy equation, they represent 
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t energy flow between component energies. Rotta also postulates a ne 
that the pressure-velocity correlation is related to the shear stress, 

thus, 

P' aui 1 
-P- ax. = - 6 

0 J 
(u!u! 

l. J 
(4-39) 

Mellor and Herring (1970) also make a traditional assumption that 

the flow of pressure fluctuations is down a gradient, i.e., 

P'u.' = 
l. 

(4-40) 

where the scales t 1 and t 2 are to be determined. 

Triple Velocity Correlation - The flux of a physical quantity 

down the gradient will be assumed in obtaining expressions for the 

triple velocity terms, 

u. 'u. 'uk' 
l. J 

~ au].. I U. I V-:Zn ( K = q "'3 _a_x __ _ 
l. 

+ 

which is analogous to viscous diffusion. 

+ 
au. 1 U. I 

l. J ) 
axk 

( 4-41) 

Viscous Diffusion Terms - Viscous diffusion terms are simple to 

deal with and are transferable into flux form. 

au. I 
l. 

Cu! v ) + 
J ~ k 

= \) 
au. 1U. I 

l. J 
axk 

au. I 

(Uj I \) ax1-) 
k 

( 4-42) 
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The molecular diffusion term can be neglected as compared with the 

eddy diffusion term except in the immediate vicinity of the boundary. 

If we substitute equations (4-37), (4-38), (4-39), (4-40), (4-41), 

(4-42) into (4-31) the equation for the double velocity correlation is 

derived: 

Du . 'u.' 
1 J 
Dt 

-;z 
(ok. ¾L + 1 oX. 

1 

-2 
0 -~)] 

k1. ax. 
J 

au. 
_J - uk'uJ.' axk 

au. 
1 

axk - o .. 
1J 

u. 'T' + _] __ 
T 

u. 'T' 
1 +--
To 

( 4- 43) 
0 

Equation (4-43) contains four equations. By contraction (4-43) we 

obtain the turbulent energy equation, 

au. 
1 -- -axk 

u. 'T' 
1 

- -T- g 03i 
0 

(4-44) 

An equation similar to (4-44) has been obtained by Mellor and 

Herring (1970) under neutral conditions. Equations (4-43) or (4-44) 

combined with (4-26), (4-27), (4-33), (4-34), (4-35), and (4-36) form 

a closure, provided that the length scales are specified. 
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Chapter V 

NUMERICAL MODELS 

In the following sections, the two-dimensional boundary layer flow 

is considered. A numerical procedure is developed which may be extended 

in a straight forward manner to the three-dimensional case. The flow 

in the atmospheric surface layer which encounters an abrupt change in 

surface roughness under various stability conditions will be investi-

gated. Flow under neutral condition has been investigated by Nickerson 

(1968) and Taylor (1969), and the pressure effects and the effects of 

the roughness discontinuity on the upstream velocity profile have been 

considered by Onishi and Estoque (1968). Flow under stable and un-

stable stratifications has also been investigated by Taylor (1970; 

1971); for those investigations he used the Runga-Kutta method to 

solve a system of nonlinear parabolic equations. Taylor, however, did 

not consider the buoyancy and pressure effects because the Runga-

Kutta method is only capable of solving parabolic equations and is not 

applicable to elliptic equations. Also, the pressure term can only 

be obtained by solving Poisson's equation; so for our purposes the 

marching technique of the Runga-Kutta method cannot be applied in this 

study. 

In the model developed for this study, we include the buoyancy 

and pressure terms and can therefore include the buoyancy and pressure 

effects on the upstream flow which effects were neglected by Taylor 

0970, 1971). We use the "modified" Newton's method to integrate the 

system of equations by an iterative technique. The pressure and 

buoyancy terms in the momentum equations, neglected by Peterson (1969), 
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together with a closure scheme that makes use of the turbulent kinetic 

energy equation will also be considered. Finally, a theory is 

to avoid some inappropriate assumptions of the previous models. 

5.1 Mixing Length Model 

The mixing length model is particularly simple and widely used 

in atmospheric science and engineering. The model has predominated 

for the past decades in the study of atmospheric flow, although i t is 

independent of past history of turbulent motion. The two-dimensional 

equations of motion, the continuity equation, and the energy equation 

for the mean flow and the mixing length hypothesis constitute a closed 

set of equations, which can be written respectively as 

au u - + ax 

aw u - + ax 

au - + ax 

ae u -ax 

'\., 
au 1 aP a - --+ w - = az p ax az 

aw w - = az 

aw 
az = 0 

-

0 

'\., 
1 ap 

-+ 
Po az 

ae a (-G'w') + w az = az 

'\., 
0 
0 

(-w'u') (5-1) 

(-WI 2) a g + az (5-2) 
0 

(5-3 ) 

(5- 4) 

To close this incomplete set of equations, the double correlations 

are related to the mean flow fields; we define 

u'w' K au (5 -5) - = m az 

w'w' K aw (5-6) = m az 

0'w' Kh 
ae (5-7) - = az 
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where and are coefficients of turbulent diffusion for 

momentum and heat, respectively. Mean potential temperature is 0 , 

represents eddy diffusivity and ¾ represents eddy conductivity. 
Km 
Equations (5-1), (5-2), (5-3), and (5-4) with (5-5), (5-6), (5-7) 

consist of four equations with four unknowns. Thus, the system is 

closed by using mean flow fields. 

The eddy diffusivity for various stability conditions is defined 

by 

(5-7) 

where ¢ depends on stability, and is equal to unity for neutral 

conditions. For unstable air, the KEPY equation for ¢ and for stable 

air, the McVehil's equation for ¢ will be used: 

k 
4> = (l-18Ri) 2 >l for unstable Ri < 0 

= 1 Ri = 0 

= (1-7Ri) 2 <l 0 < Ri < 0.14 (5-8) 

Pandolfo (1966) has suggested that the turbulent Prandtl number 

depends on the stability and is related to the nondimensional wind 

shear, ~ , for an unstable case as 

(5-9) 

where the nondimensional wind shear is defined as 



kz 
cp = au 

az 
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and is a function of the Richardson number . 

(5-10) 

If we cross differentiate (5-1) and (5-2) with x and z , and 

add the resultant equations, the result is, 

-a -cl (au+ aw) [ - 2 aw au - 2] (u - + w -) + (au) + 2 --+ Caw) 
ax clz ax az ax ax az clz 

a2 a2 'I, 

[ ;z 
au) (K clw)J 

p a (K a 
= (-+ -) -+ az + -

ax2 az2 Po m clz clz m clz 

'I, 
_g__ ae (5-11) + -0 az 

0 

Using the equation of continuity (5-3), equation (5-11) can be 

reduced to 

a2 'I, a2 'I, 

(~) (~) 
ax2 + --

Po az 2 Po 
[ clKm a 

= az ax 

- 2 [aw au+ 
ax az 

'I, 

+ .!L ae 
0 az 

0 

au clK -J maw -+ azaz az 

cau) 
2

} az 

We will consider the boundary conditions (Figure 5-1) in the 

following section. 

(5-12) 

(i) Lower boundary conditions at z = z. - The parameter z. 
1 1 ------------------

is a local roughness parameter. Non-slip conditions at the surface 

z = z. will be assumed. The lower boundary conditions, therefore , 
1 

can be specified as 



- U•o Z 
u=-k ln-Zo 

w=O 

aw o~ 
a= const. w=O, =O a'z=O, a'z=O 

a=w=o, 

zo,u•o 
u.o z 

u= -k In -Zo 

Figure 5-1 Schematic diagram of boundary conditions 

w=O 

p=O 

 o crx-
w-o az-

@= o az 
or 

;,:o 

qp=O ox. 



u = w = 0 

aw 
az = 0 
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(5-13) 

where equation (5-13) can be obtained from the equation of continuity 

(5-3). 

(ii) Upstream boundary conditions - A logarithmic velocity profile 

for neutral thermal stratification conditions will be assumed to exist 

upstream of any surface discontinuities. The velocity profile can be 

expressed as 

In z 
z 

0 

The pressure field at the lower boundary can be obtained from the 

vertical momentum equation (5-2): 

a~ -+ az a (K aw) = 0 az m az 

(5-14) 

(5-15) 

Since the last term is much smaller, it can be neglected (Onishi and 

Estoque, 1968). Equation (5-15) therefore becomes 

0 

where is the frictional velocity, 

and z is the roughness parameter. 
0 

k is the von K~rm~n constant 

(iii) Downstream boundary conditions - For neutral conditions we 

assume that the hydrostatic condition holds and there is no pressure 
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perturbation. The horizontal velocity gradient and vertical velocity 

gradient are zero: 

w = 0, ~ = 0, = 0, aw az = o, = 0 

For diabatic conditions, we assume 

= 0 , instead of ~ = 0 at the downstream boundary. 

(iv) Upper boundary conditions - For simplicity, we assume 

u = constant, w = 0, ~ = 0, aw az = o, and = az 0 

for all stability conditions. 

The roughness of the underlying surface of airflow will be 

characterized by introducing the local roughness parameter, 

describe the wind profile in the atmospheric boundary layer. The 

to 

horizontal mean velocity and vertical mean velocity are all zero at 

z = zi; thus, the wind profile close to the boundary can be described 

as 

where 

position. 

-u = 
u*(x,z) 

k 
ln z 

z. 
1 

is the frictional velocity which will generally vary with 

We will consider the airflow moving from a rough surface to a 

smooth surface or vice versa or the air encountering a step change in 

surface temperature. The upstream and downstream roughness and 
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frictional velocity will be denoted by roughness parameters 

and respectively. If we assume that the airflow encounters 

a step change in the surface roughness, a surface of discontinui t y 

at the junction of two different roughnesses will exist. Physi cally, 

this cannot occur in nature. The surface roughness must ch ange in a 

continuous fashion, even though it may change very rapidly. Since we 

do not have adequate experimental data to illustrate the degree of 

r oughness change near the surface of discontinuity, the degree of 

change is not known. Here, however, we will assume that near the 

surface of discontinuity the roughness varies approximately linear 

with distance. 

For convenience, the variables in equations (5-1), (5-2), (5-3), 

and (5-4) are nondimensionalized with respect to u*o' 

as follows: 

-* ku u = 

w* = kw 

-* 0 0 = 0 
0 

I\, 

0 ' 0 = 0 
0 

P* 
k2 p 

= 2 
u*o Po 

2 
g* 

k z1 = g 2 
u*o 

0 and 
0 

(5-16) 
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980 cm/sec 2 g = 

X n = -zl 

ln z 
l; = -

zl 

These equations then take the form, after dropping the star over each 

symbol, 

- au w e-z; au aP 2 -l; a (K au) u -+ -= - - + k e an a z; an az; m az; (5-17) 

- aw - -l; aw - l; aP 0'g + k2e -z; 1._(K aw) u - + w e ~= - e -+ an az; az; m a z; (5-18) 

aw 
~ = 0 

a2 2- aw1 u + e-z; [aw 0 (5-19) 
~ 

= an az;2 az; 

- ae + w e-z; ae 2 -l; a C¾ ae (5-20) u- ~- k e a z; ~) a z; 

A variable grid length system consisting of 28 points in the 

horizontal and 29 points in the vertical has been used for the numerical 

integration of the governing equations. The logarithmic and hyperbolic 

sine functions are used to specify the grid spacing in the vertical and 

horizontal directions, respectively; the range of the nondimensional 

distance in the horizontal direction is of the order of -105 < x < 106 

and in the vertical direction of the order of 6 z < 10 . This grid system 
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therefore provides for maximum resolution at the surface (z = z ) 
0 and 

in the immediate vicinity of the roughness discontinuity (x = 0), _While 

still providing a sufficiently large total area. 

To investigate the velocity and temperature profiles in the surface 

boundary layer, plausible assumptions about the eddy viscosity and 

eddy conductivity coefficients must be introduced. The mixing length 

assumptions are the simplest of many choices. For all atmospheric 

conditions, the form of the eddy viscosity and eddy conductivity 

coefficients can be assumed as follows: 

K = ~ au 
m 31',; 

<I> K ' m 

where ~ and <f> are universal functions, uniquely determined by t he 

stability. 

The upstream boundary conditions are 

w = 0 

u = s + m, 

where 

m = - ln 

The nondimensionalized Poisson's equation for pressure can be 

written as 
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a2P b2 [ a2P - ~ ] (5-21 ) --+ 
an 2 az? ar,; 

= k2b a [b a~ :f J 
aK* 2- :~] + k2b3 ~ [ ~ 

ar,; an ar,; ar,;2 

a2K* aK* 
[b 

- 2} + k2b3 aw l ar,;; - at J - 2 (au) ( aw) + (au) 
ar,; ar,; an an 

+ g b a0 aZ , 

where 

K = <!> I aul m ar,; 
K* = b-l K 
m m 

b = e-r,; 

5.2 Turbulent Energy Model 

Bradshaw et al. (1967) have postulated that the shear stress is 

closely related to turbulent kinetic energy. The transport of the 

turbulent energy is governed by the turbulent energy equation (the 

turbulent energy has its past history as well as local properties). 

Dryden (1946) maintained that the shear stress cannot be uniquely 

determined by the gradient of mean velocity at a fixed point in space 

alone. In view of the close relation between the shear stress and 

the turbulent kinetic energy, Bradshaw et al. (1967) have proposed an 

alternate approach, correlating shear stress with other parameters that 

describe the turbulent structure. The assumptions were made, Bradshaw 

et al. (1967), that the turbulent kinetic energy and the dissipation 

and diffusion of the turbulent kinetic energy are related to the shear 

stress profile. The same idea has been applied to the atmospheric 
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boundary layer (Peterson, 1969). We, however, will retain the pressure 

effects in momentum equations in our model. 

We will consider the turbulent kinetic energy closure with 

particular emphasis on motions in the atmospheric boundary layer . The 

turbulent energy equation (4-32) for the two-dimensional, steady, 

compressible mean flow, outside the viscous sublayer is 

- a 2 
u ax Cr-) 

- a + w -az 
--au u'w' -az 

0'w' 
0 

0 

a 2 
(P 'w' + w' L) az 2 

where E is a dissipation term and is defined as 

- € 

(5-22) 

(5-23) 

Equation (5-22), together with equations (5-17), (5-18), and (5- 19), 

does not form a closed set. Additional assumptions are thus required 

so that the equations can be written in terms of the dependent variables 

u, w, T, and ~ for neutral conditions. A proportionality between 

shear stress and turbulent kinetic energy has been proposed by Bradshaw 

et al. (1967), with the constant of proportionality being equal t o 

0.3. On the other hand, Peterson selected a value of 0.16. Although 

Peterson (1969) suggested that the empirical function relating shear 

stress to turbulent energy is a universal constant, his suggestion is 

based on the two empirical constants, 0.16 (Peterson, 1969) and 0 .15 

(Bradshaw et al., 1967). Careful examination, reveals a mistake made 

by Peterson; the empirical constants differ by about a factor of two. 
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following Townsend (1956), both Peterson (1969) and Bradshaw et al., 

(l967) assumed that the shear stress is proportional to the turbulent 

energy, as 

where 

T = 

0.34 (Rose, 1966) 

0.3 (Bradshaw et al., 1967) 

0.16 (Peterson, 1970) 

0.25 (Hinze, 1968) 

0.25 (Present) . 

(5-24) 

From equations (4-37), and (5-23), the dissipation term can" be corre-

lated with the shear stress by 

E: = 

- 3/2 
itl 

A 

3/2 
T 

l 
(5-25) 

where l This relation is assumed by Bradshaw et al., 

(1967), where l is a dimensional length scale. This length scale is 

most important, because in the turbulent boundary layer the magnitude 

of dissipation is usually much larger than advection or diffusion. 
3/2 

For equilibrium flow conditions, the dissipation is equal to ~z 

If the flow is not in equilibrium, Manin (1959) suggests that this 

relation is still valid. Therefore, the length scale l is equal to 

the mixing length. Peterson (1969) as well as Mellor and Herring 

(l968) further assumed that the transport of turbulent kinetic energy 

by the action of turbulent motion is proportional to the gradient of 

mean turbulent kinetic energy and that the mechanism for the transport 
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of the turbulent kinetic energy is the same as the transport of momentum. 

The function of the diffusion term is to smooth out the shear stres s 

profile without changing its basic shape. The diffusion term in t he 

turbulent energy equation can be expressed as 

2 a 2 
P'w' + w' cL) - - K az cL) 2 m 2 (5- 26) 

where 

K T = -m au 
(5-27) 

az 
By substituting (5-24), (5-25), (5-26) and (5-27) into (5-22) for 

neutral atmospheric stability, equation (5-22) becomes 

= T au + a (Km ~z (.!.._)) az 3z a a1 

(5-28) 

If the shear stress in (5-27) is substituted into (5-28), we 

obtain the generalized mixing length equation, with additional terms 

representing advection and diffusion. Equation (5-28) with horizontal 

and vertical momentum equations and the equation of continuity form 

a closed set of four equations with four unknowns, u, w, ~, and 

T. The boundary conditions are the same as for the mixing length 

model. 

We will nondimensionalize equation (5-28). The characteristic 

velocity and length scale for nondimensionalizing the velocity and 

distance were defined in equation (5-16). Nondimensional shear s tress 

will be defined here as 
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T 
T 

0 
(5-29) 

where T 
0 

is the upstream shear stress. With this definition, the 

generalized mixing length equation (5-28) can be rewritten as 

- a u-an 

3/2 -z_; 
- T e 

a [K ~] 
az.; m az.; 

(5-30) 

In this equation it is understood that every dependent and independent 

variable is nondimensional. All empirical functions previously discussed 

in this section can in principle be measured. Although highly accurate 

measurements cannot be obtained, a first approximation can be provided 

Refinement can be achieved by comparing the numerical calculated 

results of the turbulent boundary development with experimental results. 

Along the same line as Bradshaw's model, a phenomenological 

model is proposed by Nee and Kovasznay (1969), who artificially create 

a dynamic equation for the eddy viscosity analogous to Bradshaw's 

shear stress equation. Both models can be considered as a trans-

formation from the turbulent energy equation to the shear stress 

equation or the eddy viscosity equation; however, the physical grounds 

behind these models are rather unclear. 

Let us assume that 



84 

= f(K , l) m 

where A1 and B1 are universal constants, and (au/az) is also a 

constant. In addition, E/(au/az) is assumed a universal function 

depending on K m and a length scale l If we further assume that 

the diffusion of turbulent energy is the same as the transport of 

momentum, and substitute the above two equations into the turbulent 

energy equation, we obtain 

aK m u -- + ax 
aK m 

w az = 

This equation is proposed by Nee and Kovasznay (1969) and fanned a 

closure together with horizontal momentum equation and equation of 

continuity for the study of quasi-parallel turbulent shear flows. 

5.3 A Theory 

It is extremely difficult at this stage to consider the complete 

set of equations developed in the previous chapter. An alternative 

approach is to consider equations (4-43) and (4-44) for the boundary 

layer approximation. The usual boundary layer approximation to equations 

(4-43) and (4-44) for mean turbulent kinetic energy per unit mass and 

for shear stress, respectively, are: 

- a u-ax 
2 

(.9.._) 
2 

- a + w -az 
au 
az 
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u' .0' 
l - -- g 
0 

0 

(5-31) 

(5-32) 

where q= p. The last equation (5-32) also can be obtained 

directly by dimensional argument. From the mixing length theory, we 

know that the Reynolds shear stress is a function of the scale length 

and velocity gradient in the vertical direction; from the turbulent 

energy theory, we also know that it is .positively correlated with 

turbulent kinetic energy. Therefore, the relevant parameters for the 

Reynolds shear stress inferred from the mixing length theory and the 

turbulent energy theory are one length scale, shear velocity gradient 

and turbulent kinetic energy. The Reynolds shear stress can be 

expressed in the functional form as 

au 'v 
= f C 2 i' a z ' q) 

(5-33) 

From dimensional analysis of equation (5-33), we obtain 

-- 'v au -u'w' = q i 1 az 

which i s the same form as (5-32), where a nondimensional constant 

associated with f has been absorbed into i 1 . This form of Reynolds 

shear stress has also been formulated theoretically by Mellor and 

Herring (1970) from another point of view for the study of turbulent 

boundary layer development in the wind tunnel under neutral conditions. 
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Equations (5-31) and (5-32) with the two momentum equations and t he 

equation of continuity and the thermal energy equation form a c los ed 

set of boundary layer equations, provided that the length scales are 

specified. These equations are very attractive from a computational 

point of view; they provide a sound mathematical background. 

The mathematical model developed by Bradshaw et al. (1967) used 

experimental evidence and hypothesized that the mean turbulent kinetic 

energy is proportional to the shear stress profile. The shear stress 

then can be predicted by the turbulent energy equation. However, the 

turbulent energy equation is independent of the shear stress transport 

equation, since the contraction of the double velocity correlation 

equation will result in the turbulent energy equation. The assumptions 

by Bradshaw et al. (1967), therefore, are made relative to inappr opriate 

terms in the wrong equation. 

For nearly isotropic turbulence, Mellor and Herring (1970) argued 

that some assumptions should be made about the diffusion and dissipation 

tenns. The Reynolds shear stress equation should result in a f or m 

similar to conventional Newtonian or Boussinesq relationships. If we 

define a nondimensional tensor a .. that departs from isotropy as 1J 

2 
u'.u'. = (o .. + a .. ) _g__3 1 J 1J 1J 

(5-34) 

where a .. = 0, and if we substitute (5-34) into (4-31), we obtain lJ 
an approximate equation, 

-u!u! + 
l J 

o . . 2 'v au . au . 
___..:!j_ q = q i ( J + l) 

3 1 ax. ax. 
l J 

(S-35) 
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For two-dimensional turbulent boundary layer flow, equation (5-35) 

becomes 

-- '\, au -u'w' = q Jl 1 az (5-36) 

We now assume that the transport of heat and momentum are analogous. 

We can, therefore, postulate that 

-- '\, ae - 0 'WI = q Jl5 az (5-37) 

where Jl5 = Jl1 ~' and ~ is a universal function depending only on 

stability, and equal to the nondimensional wind shear. 

Substituting (5-36), and (5-37) into (5-31) we obtain 

where Jl == A 2-3/ 2 
E: 

- a + w -az 

1 2 3/2 
Jl c}) 

E: 

-2 
'\, Jl (au) 
q 1 az 

'\, Jl _g_ ae 
- q 5 0 az 

0 
(5-38) 

According to the experience gained by Bradshaw et al. (1967), well 

inside the turbulent boundary layer a gradient-diffusion form represent-

ing transport processes exists. Peterson (1969) also assumed the 

&radient form for the vertical flux of turbulent energy. Mellor and 

Herring (1970) carried out a numerical integration of the boundary 
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layer equations. In comparison with the experimental results, they 

found that 

(5-39) 

Thus, in the atmospheric turbulent boundary layer, equation (5-38) can 

be approximated as 

- a + w -az 

a 
+ az 

1 
R, 

E: 

-2 
"' 1 ( au) 
q 1 az 

(5-40) 

As a first approximation, we postulate the length scales R- 1 , t 5 
and R, to be universal functions. The length scale R, in equation 

E: E: 

(5-40) is comparable to the mixing length. For the flow in the 

adiabatic condition and in equilibrium, and from equation (5-40), we 

know that the dissipation of turbulent energy is equal to the production 

of turbulent energy, and from the direct consequence of the logarithmic 

velocity profile, we obtain 

(5-41) 

From field observation, for air over a relatively homogeneous 

terrain, Cramer and Record (1969) show that the ratio of turbulent 

energy to the shear stress is a constant with an approximate value of 
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4.o for averaging times of 1.2 minutes at heights of 40 and 16 meters. 

Experimental information by Hinze (1968) also confirms the results, 

which shows that the turbulent kinetic energy is, indeed, uniform in a 

constant stress layer. Such results suggest that the length scale is a 

universal function. Using this relation we arrive at 

2 
where Cr)/,= c = 4.0 

fl = 3.2 z , 
£ 

(5-42) 

In the constant shear stress layer, the distribution of the mean 

velocity profile follows the logarithmic law for an adiabatic condition. 

By the definition of shear stress and the universal relation between 

shear stress and turbulent kinetic energy in neutral equilibrium flow, 

the following expression for the length scale fl 1 is obtained: 

1 

12c 
kz (5-43) 

Combining equation (5-32) with equation (5-40), neglecting the 

advection terms and diffusion term, we obtain 

-u'w' = au au 
az az 

This is essentially the mixing length hypotheses for shear stress. 

Thus, the k-theory model may be considered as an approximation to the 

presented theory. 

Table 5 is a summary of various length scales used oy <lifferent 

authors, 

The constants associated with length scales fl£, fld, and £1 
Will be referred to as dissipation, diffusion and eddy viscosity 
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TABLE 5 THE VALUE OF LENGTH SCALES t ' td, E: 

ANU tl FOR VARIOUS AUTHORS 

Authors t td tl E: 

Weighardt (1945) 2.22z 0.107z 0.158z 

Glusko (1965) 3.2z 0.095z 0.14lz 

Spalding (1967) 3.2z 0.083z 0.14lz 

Mellor and Herring (1970) 4.24z 0.16z 0.16z 

Present 3.2z 0.14lz 0.14lz 
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constants, respectively. The constants suggested by Weighart (1945) are 

based on the data obtained from the decay of :isotropic turbulence for 

his dissipation length. His diffusion constant is based on data from 

the turbulent energy distribution near the center line of ducts and 

the eddy viscosity constant on the velocity profile near the wall. 

Glushko (1965) obtained his eddy viscosity constant based on data 

summarized by Hinze (1968). The dissipation and diffusion constants 

were obtained by carrying out the numerical experiment to solve a 

set of two-dimensional turbulent boundary layer equations, including 

the turbulent energy equation, the momentum equation and the equation 

of continuity, for obtaining the best correlations with the experimental 

data of mean velocity and turbulent energy distribution. Mellor and 

Herring (1968) postulated the constants obtained by adjusting the 

results of the numerical experiment to the best fit with the mean 

velocity and turbulent energy profiles measured by Klebanoff (1955) 

under the condition of constant pressure. With the scale lengths £ , 
E 

td' £1 and t 5 specified, the set of equations containing two 

momentum equations, equations of continuity, thermal energy equations, 

turbulent energy equations and equation for Reynolds shear stress form 

a closed system. In principle, we can solve this set of equations for 

flow with density stratification; however, for the primary investiga-

tion we will consider the flow under neutral conditions only, since the 

length scales under neutral condition may or may not be applicable to 

the diabatic conditions. 
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Chapter VI 

ITERATIVE METHODS OF NONLINEAR EQUATIONS 

One of the most useful numerical techniques for solving a system 

of nonlinear equations is Newton's method. Many articles dealing with 

the modification and convergence of Newton's method have been published 

since the fundamental paper of Kantorovich (1949) appeared. Recently, 

several authors have considered iterative methods consisting of a 

combination of Jacobi, Gauss-Seidel and Newton's iterative methods for 

solving a system of nonlinear equations. Some iterative schemes 

(Greenspan, 1968; Onishi and Estoque, 1968; Apelt, 1969; and Es toque 

and Bhumalker, 1970) and many other similar to Newton's method have 

enjoyed considerable success without theoretical explanation. Our 

intention here is not to review iterative methods exhaustively, since 

many excellent books dealing with these subjects are already available 

(Ames, 1965, 1969; Forsythe and Wason, 1960; Fox, 1962). We wi l l 

develop a numerical scheme based on a modification of Newton's method. 

Several theorems considering the convergence of iterative methods will 

be proved. A numerical test, which will be compared to the exact 

solution for arbitrary initial guess, is carried out. 

Theorems and definition which are utilized for the proof of other 

theorems in the text are given in Appendix A. 

6.1 Iterative Processes 

For solving a system of nonlinear equations by iterative processes, 

we will consider the real twice continuously differentiable n nonlinear 

equations with n unknowns: 
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(6-1) 

in vector notation or in vector representation as 

f(x) = A(x)x - B = 0, (6-2) 

where the operator A(x) is nonlinear, and B is a matrix with known 

entries. Based on the results of linear theory, a more general 

difference equation (Ortega and Rochoff, 1966) can be used to describe 

equations (6-1) and (6-2): 

( n+l n) 0 g X , X = n=0,1,2, .... , (6-3) 

where g is a nonlinear mapping from an open subset, D g' of product 

space, Rn x Rn into Rn, and where Rn is a real n-dimensional 

space. The function is nonlinear in both n+l and x n Here g X 

gx and gy are the partial Fr~chet derivatives of g with respect 

to the first and second vector variables. The -1 is the inverse of gx 

the Frechet derivative defined on x. H is defined as 

* * evaluated at a solution (x, x). We denote a continuous Frechet 

derivative of g with order p for x £ S by g £ cP(S x S), where 

s X s C D 
g 

In the discussion of the asymptotic rate of convergence of the 

Grauss-Seidel type iterative processes and its application (Ortega and 

Rochoff, 1966), the magnitude of the spectral radius is not known a 

priori. The solution, * X however, is required to be known before 

numerical evaluation of the spectral radius. 
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The purpose of this section ~s to, r,._~move the a priori assumption 

about the spectral radius. By using matrix properties, it can be 

shown that the spectral radius of the magnification matrix is less than 

unity, if some restrictions are imposed on the Fr~chet derivative of 

f. Many of the partial differential equations arising in fluid 

mechanics, meteorology and physics satisfy those restrictions on f'. 

We will, however, consider the following types of nonlinear difference 

equations (Ortega and Rockoff, 1966), 

I. The Jacobi-Newton Method, 

( n+l xn) gI . X , ,1 

elf. l 
1 ( n) [ n+ n] X X - X + ax. 
l 

II. The "modified" Newton's Method, 

n f. (x ) = 0 
l 

i = 1, ... N 

n = 0, 1, ... 

( n+l xn) elf. . l . 
1 (xn' 1 ) [x1.1+ - x1.1] + wf. (xn' 1

) = 0 gII . x = , W, l, clx. l l l 

where (n, i) 
X 

l 

n+l n+l n 
= (xl , ... , xi-1' xi 

III. The nonlinear Gauss-Seidel Method, 

i = 1, ... N 

n = 0, 1 .... , 

i = 1, .... N 

n = 0, 1. .... 
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6.2 Theorems of Convergence 

The following theorems of convergence will be considered. 

Theorem I. Let f(x) = 0 or g(x,y) = 0 be a system of nonlinear 

equations. Assume that the Fr~chet derivative of f at x has a 

regular splitting of the matrix, f'(x), and the inverse of the 

Fr~chet derivative, [f'(x)]- 1, exists and is non-negative. Let S 

be an open neighborhood of a point, Assume that 1 g £ C 

-1 * (S x S), gx is defined and continuous on S x S, and f(x) = 0 

* * or g (x , x) = 0. 

We define 

* * g (x ,x) 
H = * * 

y (6-4) 
g (x ,x) 

X 

denoting the matrices, * * -1 [g (X , X ) ] 
X 

* * g (x ,x ), y for and 

gIII by H1, HII,w and HIII' respectively. 

For each w in the range O < w .::_ 1, there exists a neighborhood 

S of x* such that the sequence {xi, i = 1,2,3, ... } converges to 

the solution * X for the Jacobi-Newton method, the nonlinear Gauss-

Siedel method and the "modified" Newton method, if the successive 

overrelaxation factor, w, is in the range O < w < 1. 

Proof: 

Since the Fr~chet derivative of f(x) has a regular splitting of 

the matrix f'(x), it may be expressed: 

f'(x) = D(x) - B(x) X £ S (6-5) 

and D(x) or B(x) = E(x) + F(x) ~ 0, D (x) is a diagonal matrix, and 

E(X) and F(X) are strictly lower triangular and strictly upper 
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triangular n x n matrices, respectively. From equations (6- 4) and 

(6-5), one can easily show that, 

* * = E(x) + F(x) 
* (6-6) 

D(x) 

* * 
H [ (1-w) D(x) + w F(x ) ] for 0 < w < 1 (6-7) = * II ,w * [D(x) - w E(x )] 

* 
HIII = F(x) (6-8) 

* * [D(x ) - E(x )] 

All iterative methods considered can be described by the f ol lowing 

choices, 

M = D N = E + F 

M = D - E N = F 

M = ,1 (D - wE), 
w 

N = 
1 (wF + (1-w) D) 
w w -/- 0 . (6-9) 

We now consider some special properties of the matrices M and 

N in equation (6-9). We note that D is a positive and diagonally 

dominant matrix, and either F or E+F is a non-negative matrix f rom 

equation (6-5) by hypothesis. It is obvious that for O < w < 1 the 

different splittings of M and N in equation (6-9) possess the 

common properties of the inverse of M, M-l > 0 and N > 0 . 

By hypothesis, we know the inverse of the Fr~chet derivative, 

* -1 F' (x ) ~ 0, and from the above results we know M-l > 0 and N > O; 

therefore M- 1N > O results. With the aid of the Perron-Frobenous 
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theory of non-negative matrices (Th. 2.7 Varga, 1962), we can determine 
-1 -1 the spectral radius p(M N) of M N (pp. 89, Varga, 1962) as shown 

to be 

p c/-lN) 

l+p c/-lN) 
< 1 (6-10) 

Because the matrices M- 1N and f
1

-
1N are non-negative matrices, 

the associated eigenvalue p's of the matrices M- 1N and f
1

-
1N 

are necessarily non-negative. Obviously p(f
1

-
1N)/[l + p(f

1

-
1N)] is 

I -1 I 1 a monotone function of p(f N). Since p(f - N) is non-negative, it 

is obvious that p(M- 1N) < l; thus, the matrix M- 1N is convergent. 

As a consequence of Theorem 3 (Ortega and Rockoff, 1966), there exists 

* a neighborhood S of x . The iterative methods of I, II, and III 

are all, consequently, convergent. 

A similar proof of Theorem 1 is independently given by (Ortega 

and Rheinholdt, 1970). 

Theorem 2. Let f(x) = 0 or g(x,y) = 0 be a system of nonlinear 

equations. Assume that the Fr~chet derivative of f at x has a 

regular splitting of the matrix f' (x). Let s be an open neighborhood 

of a point * E Rn 1 -1 
X and assume that g E C (S X S) , gx is defined 

and * * * continuous on s X S and f(x) = 0 or g(x , X ) = 0. 

In addition, let the matrix D be the diagonal matrix whose 

diagonal entries d .. 
11 

d .. = 
11 

are defined as 

1 
a .. 

11 
1 < i < n ( 6-11) 
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If f' = (a . . ) is a real n x n matrix with a .. < 0 for al l i F J. lJ lJ , 

and aij > 0 for all i = j, and the matrix B = I-Df' is non- negative 

and convergent, then all methods considered in Theorem 1 are convergent 

for any initial vector, X ES. 
0 

Proof: From all hypothesis given and on the basis of Theorem 

3.10 (Varga, 1962), it can be shown that f' is non-singular and 

he inverse of the Fr~chet derivative -1 f > o. Since and 

by hypotheses f' has a regular splitting of matrix f' J all t he 

conditions satisfy theorem 1. As a consequence of theorem 1, al l 

iterative methods considered in theorem 1 are convergent. 

The considerations of the irreducibility of matrix Bis given in 

theorem 3. If matrix B is irreducible, it can be shown that t he 

inverse of the Fr~chet derivative of f is strictly greater than 

zero. The proof is similar to those already given. 

Theorem 3: Let f(x) = 0 or g(x,y) = 0 be a system of 

nonlinear equations. Assume that the Fr~chet derivative of f at x 

has a regular splitting of the matrix f'(x). Let S be an open 

neighborhood of a point * n x ER and assume that 1 g E c (S X S), 

* that is defined and continuous on S x S and that f(x) = 0 

* * or g(x ,x) = 0. In addition, let the matrix D be the diagonal 

matrix whose diagonal entries are defined in equation (6-11). If the 

matrix B = I-D- 1f 1 is non-negative, irreducible, and convergent , 

then all methods considered in theorem 1 are convergent. 

Proof: the proof of theorem 3 follows from theorem 1 and theorem 

3.11 (Varga, 1962). 

Theorem 4. Let f(x) or g(x,y) = 0 be a system of nonlinear 

equations and assume that the Fr~chet derivative f'(x) = (a .. (x)) 
lJ 

is 
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a real, irreducibly diagonally dominant n x n matrix with a .. < 0 
lJ 

for al l i I- j , and a .. > 0 for all 1 < i < n. 
ll 

Let S be an 

open neighborhood of a point, * n 
X £ R ' and assume that 1 g £ C (S X S) 

* are defined and continuous on S x S and f(x ) = 0 or 

* * g(x ,x) = 0. All methods considered in theorem 1, then, are con-

vergent for any initial vector X £ S. 
0 

Proof: By hypotheses the Fr~chet derivative f'(x) is a real, 

irreducible, diagonally dominant n x n matrix with positive diagonal 

entries and non-negative off-diagonal entries; thus, the Fr~chet 

derivative, f'(x), has a regular splitting of the matrix f'(x). By 

corollary (pp. 85, Varga, 1962) we know that the inverse of the 

Fr~chet derivative, f'(x) is non-negative, i.e., 

-1 [f'(x)] >O. (6-12) 

Since det [D(x)] I- 0, X £ S, exists for each and 

g111 owing to non-vanishing determinant of the diagonal matrix and is 

continuous on S x S. As a consequence of these results and using 

theorem 1, the Jacobi-Newton method, the nonlinear Gauss-Siedel 

method and the "modified" Newton's method for O < w < 1 are convergent. 

Theorem 5. If f'(x) = (a .. ) is a real, symmetric and non-
lJ 

singular n x n irreducible matrix, where a .. < 0 
lJ -

for al 1 i I- j 

and f'(x) is positive definite, then all iterative methods considered 

are convergent for X £ S. 
0 

Proof: Since f'(x) has non-positive off-diagonal entries and 

is def1·n1·te h d. 1 · f , t e 1agona entries o f' are positive real numbers. 

These results imply that M is nonsingular with -1 
M ~ O; hence, 
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the Fr~chet derivative of f(x) has a regular splitting of t he n x n 

matrix. The above hypotheses also imply that the inverse of the 

Fr~chet derivative of f is positive by Corollary 2 (Vargas, pp. 85, 

1962). Following the theorem 1, therefore, all iterative methods 

considered are convergent. 

Theorem 6. If f'(x) = I-B, where B = L + U is a non-negative 

irreducible, and convergent n x n matrix, and L and U are 

strictly lower and upper triangular matrices, respectively, then, the 

successive overrelaxation matrix, H is convergent for al l II .w 

0 < w < 1. Moreover if 0 < w1 < w2 .::._ 1, then: 

O < p (HII w) < p (HII w) < l 
' 2 ' 1 

Proof: The proof of theorem 6 is similar to linear theory (Vargas, 

1962, pp. 92). 

In addition, by the Stein-Rosenberg theorem, we have 

From the above we know that the Gauss-Seidel method is convergen t faster 

than the other two methods if any initial vector 0 
X £ S. However, 

under the conditions imposed on f' , the under relaxation methods may 

improve the global convergence. 

* Theorem 7: Let f'(x) = D(x) - E(x) - E (x) be an n x n 

Hermitian matrix, where D is Hermitian and positive definite, and 
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D _ wE is nonsingular for 0 < w < 2, 

is positive definite and 0 < w < 2. 

then p(H) < 1, w if f' (x) 

Proof: We derive these results by replacing A by f' (x) in 

theorem 3.6 (p. 77, Varga, 1962). 

Theorem 8: Let the Fr~chet derivative of f be a consistently 

ordered 2-cyclic matrix with non singular diagonal entries of f' ' 
and assume that f' is irreducible, diagonally dominant and symmetric, 

and f' = D - E - F, D ~ 0, E + F > 0. Let the eigenvalues of the 

associated Jacobi matrix B be real and non-negative, with 0 < p(B) < 

* n 
1 and let an open neighborhood of a point X i:: R . Assume that 

1 S) and -1 is defined and continuous on S X S and g £ C (S X gx 
* * g(x ' X ) = 0. 

* There, then, exists a neighborhood S of x such that the 

sequence n {x , n = 0, 1, .... } C S 

Newton's method with 0 < w < 2. 

* converges to x for the "modified" 

Proof: By the above hypothesis and theory developed by Young 

(1954) for a system of linear equations, the "modified" Newton's 

method for a point of successive overrelaxation which satisfies Th. 4.4 

(p. 111, Varga, 1962) is convergent for each O < w < 2. 

As in the linear problem, the following fundamental relationship 

holds for the nonlinear problem (Theorem 4.3, Varga, 1962), 

2 2 2 (A+ w - 1) = Awµ i (6-13) 

for some i, 1 < i < r. Where µ. is an eigenvalue of the Jacobi 
1 

matrix B, A is an eigenvalue of the matrix Hrr,w· The relationship 

in equation (6-13) holds between the eigenvalues µi of H1 and the 
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eigenvalue of H II ,w We denote the optimum value of the success ive 

overrelaxation factor, w by Wopt' which minimizes the spectral 

radius of 

given by: 

The optimum relaxation factor Wopt' then, is 

w = opt 
2 (6-14) 

1 + 

Virtually all of the theories developed by Young (1954) for linear 

equations is also applicable to nonlinear equations, if matrix A is 

replaced by Fr~chet derivative f' . 

6.3 Numerical Test 

A numerical example, which satisfies all conditions in Theor em 4, 

is given in the following. We will consider a system of two nonlinear 

equations with two unknowns, 

f 1 (x,y) = 0 

The algorithm for the "modified" Newton's formula for the system 

(6-15) and (6-16), then, takes the following form, 

n+l (n) 
X = X 

f ( (n) (n)) 1 X , y 
w ----,--,---,--,---

a f 1 (x (n) ' /n)) 

ax 

(6-15) 

(6-16) 

( 6-17) 
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n+ 1 (n) y = y -
f2 (x(n+l)' /n)) 

w 
af2 (x(n+l)' /n)) 

(6-18) 

ay 

where n is the number of iteration and w is a relaxation factor. 

Note that the result of the newly calculated value of (n+l) 
X 

equation (6-17) is used to get 

numerical example we consider is 

(n+l) y 

f 1 (x,y) 2 = X + 2X - 3y - 5 = 0 

2 = y + y - 2x + 2 = 0 

in equation (6-18). 

in 

The 

(6-19) 

(6-20) 

The exact solution of the system of equations (6-19) and (6-20) is: 

* X = 2 .0 

* y = 1. 0 , and 

the Fr~chet derivative of f(x) is: 

2x + 2 -3 

f' (x,y) = (6-21) 

-2 2y + 1 
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If we choose an initial guess for x and y such that 

t hen, 

X = 0.6 
0 

y
0 

= 0.6 

f' (x,y) = 

3. 2 -3 

-2 2.2 

By virtue of equation (6-21) the algorithm of the "modified" Newton's 

method from equations (6-17), (6-18), (6-19), and (6-20) takes the 

following form, 

(n+ 1) (n) 
(n)2 + 2x(n) 3 (n) - 5 X - y 

X = X - w 
2x(n) + 2 

(6-21) 

(n+l) (n) -2x(n+l) + (n) 2 + /n) + 2 y y = y - w 
2y(n) + 1 

(6- 22) 

The numerical processes for integrating the system of equat i ons 

(6-21) and (6-22) follow. We choose some initial values for 0 0 
X > y ' 

and the relaxation factor, w, the latter is set equal to 0.5. 

From (6-21), we obtain (1) and inserting (1) and 0 into X > X y 

(6-22), we have (1) y . Then we calculate X 
(2) and y (2) in (6- 21) 

and (6-22) from (1) and (1) and the cycle for calculating 
(r) 

X y ) X 

and y (r) from (6-21) and (6-22) is repeated until the predetermined 

criteria for the error is satisfied. For a convergence test of 
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llx(n+l) - x(n) I I ~ 10-6 , the number of iterations and the initial 

guess for the starting values of x0 and y0 are tabulated in Table 6. 

Initial 
0 

X 

o.o 
0.6 

1.5 

2.5 

10.0 

TABLE 6 THE NUMBER OF ITERATIONS, THE RELAXATION 
FACTOR, w0 , AND THE INITIAL GUESS FOR THE 
STARTING VALUES OF x0 AND yo 

value 
0 y 

0.0 

0.6 

0.6 

1.5 

10.5 

Relaxation 
w 

0.5 

0.5 

0.5 

0.5 

0.5 

factor Number of iterations 

50 

48 

47 

47 

57 

Exact Solution 

* * X = 2.0 y = 1.0 
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Chapter VII 

THE FINITE DIFFERENCE METHOD 

The momentum equations (5-17) and (5-18), the equation of 

continuity (5-19) and the thermal energy equation (5-20) may form a 

closure, provided that the eddy diffusivity and eddy conductivity are 

specified. We can solve the set of nonlinear partial differential 

equations by using the iterative technique of the "modified" Newton's 

method. The mixing length model, which relates the exchange coefficients 

to the mean flow fields, is simpler and uses fewer empirical constants; 

therefore, it will be used for closure of the nonlinear partial differ-

ential equations. 

The finite differences for the pressure field, (Poisson' s equation). 

Equation (5-21), the momentum equation (5-17), the thermal energy 

equation (5-20) and the equation of continuity (5-19) are wri t ten in 

the following sections. The grid system is shown in Figure 7-1 . The 

unbalanced spacing is used for finite difference equations. 

7.1 Poisson's Equation 

are 

The finite differences for the pressure field in equation (5- 21) 

2 [P(i+l,j) - P(i,j) 
lln(i) + lln(i+l) lln(i+l) 

P(i,j) - P(i-1,j) ] 
tin (i) 

[ 
2 [P(i,j+l) - P(i,j) 

tir;(i) + Lir;(j+l) Lir;(j+l) 

_ P(i,j) - P(i,j-1) { 
fir; (j) J 

P(i,j) - P(i, j-1)] 
Lir;(j) 
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u(i,j+l) - u(i,j) 
ti,;(j+l) 

I 
tin (i) + tin (i+I) · 

uCi,j) - uCi,j-1)] 
ti,; (j) 

[ 
2 

[ / ) (w Ci,j+1) - w Ci,j))- tir;~j) [w Ci,j) tir;(j) + tir;(j+l) ti,; J+l 

-w ( i , j -1))] I 
tir; (j) + ti,; (j +I) 

-2 [ b(j) [
uCi,j+I) - uCi,j-1)] 

M;(j) + tir;(j+l) 

( w (i,j+l) - w (i,j-1))] 

[
wCi+l,j) - wCi-I,j)] 

tin (i) + tin (i+l) 

+[uci+I,j) - uCi-1,j)] 
21 + bC") [0Ci,j:1) - ec~,j-1)] c7_1) 

tin(i) + tin(i+I) g J tir;(J) + tir;(J+l) 

7.2 Momentum Equation and the Energy Equation 

For the flow with u(i,j) .:::._ 0 and w(i,j) < 0. We use the 

upwind difference for the advective term. The upwind difference has 

stabilizing effects, which have long been known to meteorologists. 

The finite difference analogous to equation (5-17) is 
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uCi,j) [ ll(i,i) - U(i-1,jJ] + wCi,j) -l;j [ U ( i , j + 1 ~c - U ( i , j J ] 
~n (i) e 

P(i+l,j) - P(i-1,j) - k2 - l;j 2 + ~n (i) + ~n (i+l) e ~l; (j) + ~l;(j+l) 

fK Ci ·+1) [uCi,j+12_- uCi,j)] l_'. m ,J ~l;(J+l) 
_ K (i .) [ u(i,j) - ~(i,j-1)] 1 = m ,J ~l;(J) 0 . 

(7-2) 

Rearrangement of equation (7-2) results in the following functional 

representation, 

f (. . ) U 1,J [ 
-(n+l) -(n+l) -(n) -(n) 
u(i-1,j) 'u(i,j-1) 'u(i,j) 'u(i+l,j)' -(n) l u(i,j+l) = 0 • 

(7-3) 

Employing central differences to the eddy diffusivity and eddy 

conductivity in the above equation, we have: 

.. 
-n( .. 1) -n+l( .. 1) Kn+l =~nu 1,J+ - u 1,J-

m ~l;(j) + ~l;(j+l) (7-4) 

(7- 5) 

where ~n (1 18Rn )-¼ 
~ = - c· .) 1,J 

Rin(. ") = 1,J 
g[Ef(i,j+l) - Ef+l(i,j-1)] 

-l;j [t11(i,j+l) - t11+1(i,j-l)] 
e [ ~l; (j) + ~l; (j + 1)] 

( 7-6) 

(7- 7) 



109 

(i-1,j+I) D( i, j +I) (i+I, j+I) 

·G 

E ( i I j) 
A( i-1, j )--------e--------w C ( i +I, j) 

F 

(i-1, j-1) B( i, j -I) (i+l,j-1) 

11n (i) = AE F 1 = 2 BE 

11n(i+l) = EC G 1 = 2 ED 

lll;(j) = BE K(i,j) = K at point F m 
Ill; (j + 1) = ED K(i,j+l) = K at point G m 

Figure 7-1 Grid system used in numerical integration 
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The numerical scheme, we use, is the "modified" Newton's method : 

-(n+l) 
u(i,j) = 

-(n) 
U(. . ) l,J 

f (. . ) U l ,J w 
u af C. . ) U l,J 

au (i ,j) 

(7-8) 

In a set of nonlinear equation, there are no general numerical 

methods for studying stability. Most of the methods are applied 

di rectly to physical problems. There are some indications t hat the 

underrelaxation scheme is more stable for nonlinear equations . The 

Newtonian fluid governed by the Navier-Stokes equations, however, has 

been considered by Whitaker and Wendel (1963). They found that the 

stability of the numerical scheme depends on the value of the relaxa-

tion factor, w, for the successive relaxation method. They maintain 

the scheme using the Reynolds number Re= 0.01 is stable for w < 

0.4; for Re= 10, the scheme leads to instability for w > 0. 2. 

The Fr~chet derivative of the function f ( . . ) is diagonally 

is nonsingul ar. 
U l,J 

dominant, and the determinant of a f ( i , j ) / au ( i , j ) u 

We also assume that the function f c· .) is continuous and that a 
U l ,J 

solution exists. Furthermore, we choose the relaxation factor wu 

with a range 0 < wu < 1. The optimum value of wu is based on 

numerical experiments. Thus the set of nonlinear equations satisfy 

all conditions given in Theorem 4 . For any arbitrary initial guess 

for the starting value u (. . ) 0 l, J , the sequence n 
{u( .. )} l,J 

converges to 

* a unique solution u(i,j)" 

Since the energy equation (S-20) has the same form as the momentum 

equation, the finite difference representation can be made analogous 

to the momentum equation. We will, therefore, not present the fini te 

difference analog of the energy equation here. 
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7_3 Eguation of Continuity 

Toe continuity equation in the form 

aw 
az = 

au 
ax (7-9) 

has been used by Onishi and Estoque (1968). Although the vertical 

velocities at the lower and upper boundaries may both be zero, the 

numerical integral of the right side of equation (7-9) will not 

necessarily vanish. Onishi and Estoque attempted to avoid those 

difficulties by introducing any arbitrary function, f(z), in such 

a way that the constraint of the continuity equation (7-9) will 

assure that the boundary conditions are satisfied. Equation (7-9) 

after introducing the above constraints, becomes: 

aw f(z) _ au az = ax (7-10) 

Upon integrating from the bottom to the top of a column of air, 

equation (7-10) maintins its equality. Although constraints preserve 

equality in equation (7-10), for the two-point boundary problem, there 

are an infinite number of choices for the function f(z). The vertical 

Velocity, w, therefore, may have infinite solutions, depending on the 

choice of function f(x). The artificial function f(z) can be dis-

carded, if the continuity equation in the form of the second order 

partial differential equation has been used such that 

2-a w 
az 2 

2-a u 
azax (7-11) 
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This equation automatically meets the boundary conditions and preserves 

equality. The finite difference form of equation (7-11) can be written: 

1 
[tir;(j) + tir;(j+l)] [tin(i) + tin(i+l)] [ u(i+l,j+l) - u(i-1,j+l) 

- uCi+1,j-1) + uCi-1,j-l)] + e - r;j 

[
wCi,j+12 - wCi,j) _ wCi,j) - wCi,j-1)] 

tir;(j+l) tir;(j) 

w(i,j+l) - w(i,j-1) ( = 0 
tir;(j) + tir;(j+l) s 

1 
+ fir; (j + 1) 

(7 -12) 

The finite difference equations for the pressure equation (7-1), 

the thermal equation (5-20) and the equation of continuity (7-1 1) can 

be written analogous to equation (7-8), respectively: 

p(n+l) (n) f E(i,j) = PC .) w (i,j) l,J p (af (" )l E l ,J 
ap(i,j) 

(7-13) 

0 (n+l) -(n) f0(i,j) = 0(i,j) - w0 
f0(i,j) ( i, j) (7-14) 

a0c .) l,J 

-(n+l) -(n) f (" ") 
= w W l ,J 

w(i,j) w(i,j) w af w(i,j) 
(7- 15) 

aw (i, j) 

Equations (7-8) and (7-13) can be reduced to the same system of 

equations as that of Onishi and Estoques' model (1968), if we make 
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w == w = 1 and linearize the functions f u and f . p The system of 
u p 

nonlinear equations (7-8), (7-13), (7-14), and (7-15) with (7-4) and 

(7-s) form a closure. We have solved this set of equations by using 

a CDC 6400 computer. 

7.4 Boundary Conditions 

The general discussion for Poisson's equation of the first and 

second kind along the boundaries are outlined in this section. In the 

numerical integration of Poisson's equation, the finite-difference 

equation should be made consistent with the boundary conditions. 

7.4.1 Boundary conditions of the first kind (Dirchlet Conditions -

Poisson's equation can be written as 

(7-16) 

with the Dirchlet boundary conditions, such that P is constant 

along the boundary, where F is a known function. The finite difference 

form of this equation may be written in the form 

p(i-l . ) + P(. ·-l) + P(. l .) + P( .. l) - 4P( .. ) - F(. ") = 0 ,J 1,J 1+ ,J l,J+ l,J l,J 

(7-17) 

where P is a fixed constant along the boundaries, the linear equation 

(?-16) converges to give the solution by means of the Jacobi iterative 

method (see Smith, 1965). 

The error vector is expressed as 
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where n is the index of iteration and p is the spectral radius of 

the iteration matrix. Then the spectral radius, p, for the Jacobi 

iteration corresponding to equation (7-17) can be shown to be 

() 1( II _ll) p J = 2 cos p + cos q (7-18) 

where P and q are the number of grid points in the x and z 

directions, respectively. The spectral radius for the Gauss-Sei del 

iteration is: 

(7-19) 

that is, the Gauss-Seidel method converges twice as fast as the Jacobi 

method. The systems of linear equation (7-16) can be represent ed by a 

matrix that is symmetrical, positive definite and consistently ordered. 

Young (1949) shows that the system converges to the solution with 

the relaxation factor, 

w = 
1 + 

2 
2 [l-p(G) ] 

(7-20) 

The rate of convergence of the successive overrelaxation method 

developed by Young (1949) is considerably faster than the Jacobi and 

Gauss-Seidel method. The rate of convergence depends on the value of 

the relaxation factor, w 

7.4.2 Boundary conditions of the second kind (Neuman condit iontl -

Poisson's equation with boundary conditions of the second kind or 

Neuman conditions, is represented by: 
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(7-21) 

where P is any physical variable not necessarily representing pressure 

and F is a known function with certain Neuman boundary conditions 

such that 

aP an = x(x,z) (7-22) 

along the boundaries. Here n is the coordinate nonnal to the 

boundary, and x is the known function along the boundary. We 

integrate the governing equation (7-21) over the entire domain, and 

with the aid of Gauss' divergence theorem, derive: 

ff F dcr = ff v2Pdcr = 

The following equation results, 

ff F dcr = f xdS' , 

J ap dS' 
an (7-23) 

• 
(7-24) 

where cr is the area and S' is the boundary. _ The boundary condition 

in equation (7-22) will then be written: 

P. 2 1, p. 1 = X 1, i,1½ i = 2,3 ..... M-1 

Substituting equation (7-25) into the finite difference fonn of 

equation (7-21) we have: 

(7-25) 
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therefore, 

p(i-1,2) + p(i+l,2) + p(i,3) - 3P(i,2) - F(i,2) - x (i,l½).t.cr = O • 

(7-26) 

The equation for the pressure, (7-1), can be easily express ed 

s i milar to equation (7-26) for the grid points near the boundari es . 

7 .5 Numerical Processes 

We employ the "modified" Newton's method of optimum displacement 

by point to solve the system of equations (7-8), (7-13), (7-14), and 

(7- 15) . The method is applied to each point from the bottom to the 

top of the air column. We then, survey each column from left to right 

in the same direction as the flow. The finite difference equations 

are used only for flow moving from rough to smooth surface with 

heating. With this information we are prepared to begin solving t he 

set of equations. 

(i) Initially, we set P(o) = 0 and ;Co)= O for all grid 

points. The potential temperature has an upstream boundary value 

0 = 1.0. We also make an arbitrary initial approximation for the 

horizontal velocity field 

we can compute and 

respectively. 

-(o) u . With the horizontal velocity, 

from equations (7-4) and (7-5), 

- (o) 
u ' 

(ii) Next, using equation (7-13), we calculate P(l) from t he 

known values - (o) u , -(o) w , 1io) available from step 

(i) by successive iteration of the "modified" Newton ' s method. We 

calculate pO) at each grid point as soon as the new iterative 

values of p (1) are available, and we utilize this new iterative 

value pCl) for the calculation of pO) in the next grid point . 
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-(o) w , -(o) 0 , and 

have been obtained from steps (i) and (ii), which are used for the 
. -(1) -(1) calculation of u from equation (7-8). We use u available 

from the previous calculation to compute K(l) and ~l) at the same m 

grid point, then we proceed to compute -(1) 0 from equation (7-14) and 

;Cl) from equation (7-15). We scan each point in the entire flow 

field and then go to the next step. 

(iv) The final iterative values obtained from (iii) are reset 

as initial conditions, and we set them equal to -(1) u , -(1) w , 

eCI) K(l) 
' m , ~l). We repeat the processes from steps (i) to (iii) 

to obtain -(2) -(2) p (2) u , w , , -(2) K (2) 0 , m and (2) 
~ . The cycles 

from (i) to (iv) are repeated to compute -(n) u , -(n) w , P (n), -(n) 0 

K(n) m , 1:in) as n increases until we obtain the prescribed degree 

convergent solution giving the balance in velocity fields and the 

temperature and pressure field. 

A similar numerical technique described in this chapter is also 

applicable to the turbulent energy and turbulent-Newtonian models; 

therefore , the finite differences of these models will not be given. 

of 
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Chapter VIII 

RESULTS AND DISCUSSION 

The results of numerical integration for various models are 

presented in the following sections. We have considered the abrupt 

change of surface roughness and temperature, and the effects of non-

homogeneous surface on the upstream flow. The thermal respons e to 

characteristics of the turbulence regime has also been examined. Also, 

numerical results have been compared with wind tunnel measurements and 

field observations. Turbulent kinetic energy usage to close the system 

of equations has been investigated and various terms in the turbulent 

energy equation have been calculated. The alternative models, other 

thank-theory, i.e., the turbulent energy model and turbulent energy -

Newtonian model, are integrated numerically in this study. 

8.1 Airflow From Rough to Smooth Transition Under Neutral Conditions 

--k-Theory 

The airflow moving from one type of surface roughness to a new 

surface under neutral stratification has been investigated in detail. 

Such flow has been considered by several authors; however, almos t all 

of them have not considered the influence of roughness discontinuity on 

the upstream flow. Furthermore, the problem is far from settled; many 

phenomena still remain to be explained. The abrupt change in surface 

roughness serves to perturb the approaching flow, and thus, the effects 

of a roughness discontinuity on the upstream flow may appear. In our 

model, the equation of continuity is written in the form of a second 

order partial differential equation. The solution of that equation 

automatically satisfies the boundary conditions and preserves equality 
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at any location between the vertical velocity and vertical integral of 

the horizontal divergence. We also compare the distribut i on of wind 

profiles with wind tunnel measurements and the distribution of surface 

shear stress with data obtained from field observations. 

8.1.1 Retaining pressure terms: Case 1 - Airflow passing from 

rough surface to smooth surface with a relative roughness ratio of 

m ~ s.O has been considered in Case 1. The pressure terms in our 

model have been retained. The velocity profiles at various distances 

from roughness discontinuity are shown in Figure 8.1.1. The wind 

profile of the fully developed turbulent flow far from the dis-

continuity of surface roughness in the upstream location is shown by 

Curve 1 in Figure 8.1.1. The flow is in equilibrium with the under-

lying surface characterized by the roughness parameter, z
0

, and, 

it is assumed, follows the logarithmic wind profile. 

profile in Curve 2 at a nondimensional distance of 

The velocity 
2 

X = - 8.0 X 10 

is still located in the upstream position, and the accelerated wind 

velocity is caused by the pressure gradient force. This upstream 

effect has also observed by Wagner (1966) and Onishi and Estoque 

(1968). 

Downstream of the roughness discontinuity, the air readjusts to 

the new surface of relatively smooth terrain. As a result of this 

smooth surface and less surface friction, the air accelerates, as 

shown at Curves 3 and 4. As the air gradually readjusts to its new 

surface, it begins to slow down and gradually reestablishes a new 

equilibrium wind profile with the underlying surface, as seen at Curve 

5 in Figure 8.1.1. 
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Distribution of the pressure field is shown in Figure 8. 1.2. 

The motion of the air has been perturbed by the presence of roughness 

discontinuity; therefore, fluctuations in pressure are observed. The 

maximum value of negative pressure located near the roughness di s-

continuity has the effect of accelerating the air ahead of the surface 

discontinuity. This effect has been shown in Figure 8.1.1 at Curve 2. 

Although the air in the rear part of the surface discontinuity i s 

decelerated by the pressure gradient force, the pressure effects are 

mainly felt near the surface of roughness discontinuity and the air 

is still accelerating forward. 

The vertical velocity field is shown in Figure 8.1.3. Aft er the 

air passes over the surface of roughness discontinuity, downward 

motion of the air is induced due to the acceleration of the air. Such 

motion is required to satisfy the equation of continuity. The 

downward motion of air supplies the downward flux of horizontal momentum 

to the surface and as the air progresses downstream the airflow gradually 

regains its equilibrium conditions. The maximum downward motion is 

found above the surface discontinuity. Since the air is continuously 

accelerating in the upper portion of the flow but slowing down in the 

downstream direction and reestablishing its equilibrium conditions near 

the surface, the downward motion reduces its strength with downstream 

distance in the lower part of the boundary layer. The flux of hori -

zontal momentum in the upper part of the flow field continuously 

feeds momentum to the air below by eddy motions, maintaining the fie ld 

of downward motion. In the atmosphere, the air in the lower layer 

moves much slower than the air above it; hence, the region of 

maximum acceleration shifts upward while air moves in a downstream 
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direction, and the axis of maximum downward motion tilts upward and 

extends toward the downstream direction, as in Figure 8.1.3. 

The shear stress profiles are shown in Figure 8.1.4. The lower 

part of the shear stress profile in Curve 2 is increasing as a result 

of the effect of the pressure gradient force. The .shear stress profile 

decreasing with height at Curve 2 results from the combined effect of 

the pressure gradient force and downward motion that produces a region 

of maximum acceleration corresponding to the minimum shear stress at 

Curve 2. The distribution of the shear stress profile, which varies 

with height, is shown in subsequent curves of 2, 3, 4 and 5 in Figure 

8.1.4 at various distances from the surface of roughness discontinuity. 

The thickness of the constant shear stress layer, however, becomes 

deeper as the fetch becomes longer. This is due to the flux of 

momentum that is continuously supplied to the lower part of the surface 

layer, and can be seen by comparing curves 3 with 4 and curves 4 with 

5 in Figure 8.1.4. 

The surface stress is shown in Figure 8.1.5. The normalized 

shear stress is equal to unity in the upstream far from the surface 

discontinuity. The shear stress, then, continuously increases toward 

the roughness discontinuity by the action of dynamic pressure induced 

by surface discontinuity. The shear stress reaches a maximum value 

before the abrupt change of surface roughness; then, it suddenly drops 

toward a minimum value. Downstream of the roughness discontinuity, 

the flux of horizontal momentum is continuously supplied to the surface 

by the action of downward and eddy motions. The surface shear stress, 

therefore, increases with downstream distance. After the air attains 

a relatively long fetch, due to a decrease in momentum flux from above, 



122 

the downward motion gradually vanishes and the surface shear s tress 

reaches an asymptotic constant, as shown in Figure 8.1.5. 

8.1.2 Neglecting pressure terms: Case 2 - In this case, a ll 

conditions are the same as in case 8.1.1, except that the pressure is 

omitted. The wind profiles are shown in Figure 8.1.6. For a re latively 

long fetch, the wind profiles in this case are virtually the same as 

Case 1, which includes pressure terms. This comparison can be seen 

in Curves 4 and 5 in Figure 8.1.1 and in Figure 8.1.6. However , owing 

to the presence of pressure in Case 1, the main difference between 

the velocity profiles in Case 1 and Case 2 is observed near the r ough-

ness discontinuity. In front of the roughness discontinuity, t he air 

which has been pushed forward by the pressure gradient force, is 

accelerating near the earth's surface; compare Curve 2 in Figure 8 . 1.1 

and Figure 8.1.6. To the rear of the roughness discontinuity, the air 

fs decelerated by the pressure gradient force, as seen by comparing 

Curve 3 in Figure 8.1.1 to Curve 3 in Figure 8.1.6. The field of 

vertical velocity is shown in Figure 8.1.7. 

The region of maximum downward motion is located far above the 

surface of discontinuity in Case 2; however, if the pressure terms 

are included in the momentum equations, the region of maximum down-

ward motion is found near the surface of roughness discontinuity, as 

indicated in Figure 8.1.3. The magnitude of downward motion will be 

overestimated, if the pressure terms are not included in the system 

of equations as can be seen by comparing the vertical velocity fiel ds 

in Figure 8.1.7 and Figure 8.1.3. The maximum value of downward 

motion in Case 2 is about six times larger than the value in Case 1. 

The shear stress profiles in the cases with and without pressure 
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effects are shown in Figure 8.1.4 and Figure 8.1.8, respectively. 

• the main differences of shear stress profiles in both cases, 1 Again, 

and 2, occur near the roughness discontinuity in response to the 

pressure gradient force. 

In front of the roughness discontinuity, the air is accelerating 

in Case l; therefore, the magnitude of the shear stress is larger in 

case 1 than that of Case 2, as indicated by Figure 8.1.4 and Figure 

8.1.8. Curve 3 in Figure 8.1.4 and Figure 8.1.8 indicates that in 

Case 1 the air has been pushed back by pressure gradient force, and 

in Case 2, the air is accelerating as a result of compensation of 

downward motion. The slope of the shear stress profile in Case 1, 

therefore, is steeper than that of Case 2, and its magnitude is also 

smaller. The difference in shear stress is a result of the different 

velocity profiles in Case 1 and Case 2. The surface shear stress 

without the presence of the pressure field is shown in Figure 8.1.9. 

The main difference between Case 1 and Case 2 is the distribution of 

surface shear stress near the roughness discontinuity. In Case 1 

the surface shear stress is larger in front of the roughness dis-

continuity and smaller in the rear than the stress in Case 2; these 

results are in response to the pressure field. 

8.2 Airflow in Transition From Smooth to Rough Under Neutral Conditions 

--k-Theory 

The results of airflow moving from smooth to rough terrain with 

m ~ -5 and with abrupt change in surface roughness with and without 

pressure terms is shown in the following sections for Case 1 and Case 

2, respectively. 



124 

8.2.1 Retaining pressure terms: Case 1 - The velocity profiles 

for Cas e 1 are shown in Figure 8.2.1. Curve 1 represents the horizontal 

mean velocity profile in the upstream location, where air is not 

affected by the roughness discontinuity. The effect of roughness dis-

continuity on the upstream flow is shown at Curve 2 of Figure 8.2 .1. 

Curve 2 is at an upstream location with a nondimensional distance of 

X = - 1 1 10 2. • X After the change of surface roughness, t he flow is 

modified by the friction of the rough surface, as shown by Curves 3, 

4 and 5 in Figure 8.2.1. The pressure field is shown in Figure 8.2.2, 

which indicates that the air near the roughness discontinuity is first 

decelerating, then accelerating and finally again decelerating in 

response to the pressure field. 

The field of vertical motion is shown in Figure 8.2.3. The 

maximum region of upward motion is located above the roughness 

discontinuity. Similar distributions of the vertical velocity field 

have appeared in the numerical integration of a set of unsteady 

equations by Wagner (1966), as shown in Figure 8.2.3a and in the field 

observations of Stearns and Lettau (1964) as shown in Figure 8.2. 3b. 

Figure 8.2.3a and Figure 8.2.3b show the pattern of vertical velocity 

fields obtained by Wagner (1966), and Stearns and Lettau (1964), 

respectively. Their results indicate the influence of the roughness 

discontinuity on the upstream flow. 

The distribution of shear stress profiles is shown in Figure 

8.2.4. The change of the profiles is relatively sharp compared with 

the flow from rough to smooth transition. This phenomenon indicates 

that over relatively rough terrain, the air adjusts to the underlying 

surface more rapidly than over smooth terrain. The small effect of 
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the roughness discontinuity on th·e stress profile in the upstream location 

is also shown at Curve 2 in Figure 8.2.4. 

The distribution of surface shear stress is shown in Figure 8.2.5. 

In front of the roughness discontinuity, the surface shear stress 

slightly decreases and then suddenly increases as the air moves over a 

rough surface. After the surface shear stress reaches its peak value, 

it decreases abruptly and then gradually decreases in magnitude to an 

asymptotic value. Similar distribution of the surface shear stress has 

been obtained by Yeh and Nickerson (1970), as shown in Figure 8.2.Sa. 

8.2.2 Neglecting pressure terms: Case 2 - The horizontal mean 

velocity profiles at various locations are shown in Figure 8.2.6. 

Since pressure terms have been excluded from this model, the velocity 

profile at Curve 2 in Figure 8.2.6 almost keeps its upstream value. 

No significant change in velocity profiles, as revealed by comparison 

of Curves 3, 4 and 5 in Case 1 and Case 2, has been observed. If 

the pressure terms are not included in the set of equations, the 

vertical velocity field will be overestimated, as shown in comparison 

of Figure 8.2.7 to Figure 8.2.3. The distribution of shear stress is 

shown in Figure 8.2.8. Without pressure terms there is no effect of 

roughness discontinuity on the shear stress at an upstream location, 

as shown at Curve 2 in Figure 8.2.8. The distribution of shear 

stress and surface shear stress (Figure 8.2.9) is similar to those 

profiles with the pressure force, as in Case 1. 

B.3 Airflow in Transition from Rough to Smooth Under Unstable 

Conditions--k-Theory 

The air flowing from a rough to smooth surface with m ~ 5 and 

over a heated surface of nondimensional potential temperature 1.05 is 
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considered. Since the effects of surface roughness are dominant, the 

flow is essentially similar to the flow in Case 1, section 8.1. The 

velocity at Curve 2 in Figure 8.3.1 is slightly greater than the case 

without heating, as shown at Curve 2 in Figure 8.1.1. This is in 

response to thermal effects and the pressure force. The velocity 

indicated by Curve 5 in Figure 8.3.1 is significantly larger than the 

case with neutral conditions, as shown at Curve 5 in Figure 8.1.1. 

This effect is therefore a response to the surface heating. 

The pressure field is shown in Figure 8.3.2, where the pressure 

gradient force is slightly larger than that of the case with neutral 

conditions shown in Figure 8.1.2. Owing to a slightly large pressure 

gradient force, the air will accelerate a little faster than air under 

neutral conditions in front of a roughness discontinuity. Air with 

surface heating will decelerate more than air without surface heating 

in the rear of the roughness discontinuity. The special phenomenon 

of the pressure field in Figure 8.3.2 is that there is a positive 

region of pressure field in the upper right hand side. Which is 

produced by surface heating. This positive pressure field created by 

heating has not been observed in the case with neutral stratification. 

The positive pressure force will result in a slight retardation of the 

airflow. 

The field of vertical velocity in this case is similar to the 

case without heating. These results indicate that roughness is the 

dominant factor. Since the surface of the earth has been heated, 

however, the increase in momentum will result in an increasing down-

ward motion near the earth's surface, as seen in Figure 8.3.3. 
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The shear stress, shown in Figure 8.3.4 increases as a result of 

the heating of the earth's surface as comparing Curve 2 in Figure 8.1.4 

and Figure 8.3.4. The distribution of surface shear stress, shown in 

Figure 8.3.5, is increasing slightly faster as the air approaches the 

roughness discontinuity and then drops at a slightly faster rate than 
6 airflow without heating. At x = 1.8 x 10 in Figure 8.3.5, the 

surface shear stress is increasing at a fa.ster rate than airflow with 

neutral stratification. 

8.4 Airflow Over Step Change in Surface Temperature with no Change in 

Surface Roughness--k-Theory 

In order to isolate the thermal effects from the effects of 

roughness on flow, we will consider air moving over an abrupt change 

in surface potential temperature and over constant surface roughness. 

8.4.1 Retaining pressure terms: Case 1 - The pressure terms are 

included in this case. The wind profiles are shown in Figure 8.4.1. 

Curve 1 represents the wind profile in the · far upstream station. With-

out pressure effects, the flow will accelerate; however due to the 

presence of the pressure force the flow approaching the temperature 

discontinuity decelerates. After the flow passes over the point of 

temperature discontinuity, it will accelerate near the earth's surface 

and the air in the upper layer will decelerate because of the induced 

upward vertical motion of the heated surface of the earth. 

The distribution of potential temperature is shown in Figure 8.4.2. 

The potential temperature continuously increases as the air progresses 

in the downstream direction. The pattern of the pressure field shown 

in Figure 8.4.3, resembles the flow in transition from smooth to rough 
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encountering the roughness discontinuity. The pattern of the field 

of vertical motion shown in Figure 8.4.4 also resembles the flow in 

transition from smooth to rough. The region of maximum upward motion 

is displaced upward above the temperature discontinuity ; however, near 

the earth's surface, some small downward motion is induced by the 

i ncreasing momentum near the earth's surface. 

The distribution of shear stress is shown in Figure 8.4.5. In 

the lower layer as the air approaches the point of temperature dis-

continuity, the shear stress continuously decreases in response to 

the pressure field. After the air passes over the temperature dis-

continuity, the shear stress gradually increases. The increase of 

shear stress in the lower atmospheric surface layer is a result of 

transfer of shear stress or turbulent energy from above, since the 

maximum region of shear stress is produced near the edge of the 

internal boundary layer by thermal effects. The maximum value in 

a shear stress profile moves upward as the air progresses in a 

downstream direction. 

The surface shear stress is shown in Figure 8.4.6. Before the 

temperature discontinuity, the surface shear stress decreases in 

response to the negative pressure force; however, after the temperature 

discontinuity, the surface shear stress increases, and the heated air 

near the earth's surface accelerates, because the turbulent energy or 

shear stress produced by thermal effects is transferred downward from 

above. 

8.4.2 Neglecting pressure terms: Case 2 - By heating the earth's 

surface in the absence of a pressure force, the mean hori zontal wind 

accelerates as the air moves in the downwind direction, as shown in 
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Figure 8.4.7. No retarded flow has been observed under these 

circumstances which is in contrary to what occurs in Case 1 of this 

section. The potential temperature profiles are shown in Figure 

8.4.8. No significant change in potential temperature profiles has 

been observed by a comparison of the profiles in Figure 8.4.8 to 

Figure 8.4.2. The pattern of vertical velocity is shown in Figure 

8.4.9. The field of vertical motion in Case 2 is only similar to Case 

1 in the lower part of the atmospheric surface layer. It can be seen, 

however, by comparing Figure 8.4.4 to Figure 8.4.9 that the field is 

quite distinct in these two cases. There is an intense region of up-

ward motion above the temperature discontinuity in Case 1. 

The shear stress profiles in Case 1 and Case 2 (Figure 8.4.10) 

are quite different. Without pressure effect, there is no decrease 

in shear stress as the air advances downwind direction. Because there 

is no induced upward motion in Case 2, the shear stress profiles are 

sharper than those of Case 1 in Figure 8.4.5 near the edge of the 

internal boundary layer. For x < o the surface shear stress in 

Case 2 remains unchanged instead of decreasing as in Case l; for 

x > o the surface shear stress increases as in Case 1. Figure 8.4.11 

shows the distribution of surface shear stress. The surface shear stress 

is not monotonously decreasing; the distribution is quite distinct from 

that of Case 2 (Figure 8.4.6). 

8.S Airflow in Transition from Rough to Smooth Under Neutral Conditions 

--Turbulent Energy Model 

8.5.1 Retaining pressure terms: Case 1 - Here we will consider 

the airflow from rough to smooth terrain with a roughness parameter 
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of m ~ 5. In this case, we assume that the distribution of shear 

stress is proportional to the turbulent kinetic energy, this ass umption 

is based on experimental work. We also assume that the transport of 

turbulent energy is the same as the transport of momentum and the 

dissipation length scale is related to the scale of mixing length. It 

has been assumed by one researcher that the equilibrium velocity 

profile in the upstream position can be used to compute the shear 

velocity gradient for the vertical advective term in the turbulent 

energy equation (Peterson, 1969); however, no such assumption has 

been made in our model. We then integrate the set of equations in the 

model to obtain numerical results. 

The velocity profiles obtained by this model, are shown in Figure 

8.5.1. Since in this model the magnitude of the pressure gradient 

force is larger in the upstream region, the air moves faster, as shown 

at Curve 2 in this case, than at Curve 2 in Figure 8.1.1 which is 

based on the mixing length model. The air after passing through the 

roughness discontinuity moves much faster, as indicated in Curves 3, 

4 and S, than that predicted by the simplest model of mixing length. 

These results can be anticipated, because the mixing length model does 

not take the history of a particle into consideration. On the other 

hand, the turbulent kinetic energy model does include the advective 

terms and diffusion term. At a downstream station, therefore, the air 

parcel at a fixed point inherits part of the momentum flux or turbu lent 

energy coming from the upstream region by the advection of the medium, 

and also gains part of its energy by the processes of diffusion from 

the air above, possessing a relatively large amount of turbulent energy 

or momentum flux. 
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The wind profile of Curve 5 shows a distinct feature that is 

absent from the mixing length model. There is a "kink" in the upper 

region of the profile, which is not observed by the mixing length model. 

Toe "kink" in wind profiles is produced by fast moving air in the lower 

region of the surface layer. A limited amount of experimental work 

confirms the existence of the "kink" in the wind profile as shown in 

Bradley's data in Figures 8.5.la and 8.5.lb, and Yeh and Nickerson's 

data in Figure 8.5.lc. 

Figure 8.5.2 shows the pressure field for the turbulent energy 

model. The pressure gradient force is slightly larger in the turbulent 

energy model than in the mixing length models. The pattern of vertical 

motion as shown in Figure 8.5.3 is similar to the case obtained by the 

mixing length model, as shown in Figure 8.1.3. 

The shear stress profiles at various locations are shown in Figure 

8.5.4. Curve 2 indicates that the shear stress in the upstream station 
2 at nondimensional distance of x = - 8.0 x 10 is increased by the 

action of the dynamic pressure force; the magnitude of the shear stress 

is greater than unity. The shear stress at Curve 2 in Figure 8.5.4 

is greater than unity, while the shear stress at Curve 2 in Figure 

8.1.4 of k-theory may be less than unity. The shear stress profiles 

appear to be much steeper above the constant shear stress layer than 

that of k-theory, as indicated by Curves 3, 4 and 5 in Figure 8.5.4. 

The "kink" in the wind profile, as shown in Curve 5 in Figure 

B.5.1, appears in response to the combined action of diffusion and 

advection of turbulent kinetic energy, and can be explained by the 

distribution of shear stress profile. Due to the advection and diffusion 

of the turbulent kinetic energy, the surface shear stress also shows a 
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much larger value than that of the mixing length model, as indicated 

in Figure 8.5.5. The magnitude of the surface shear stress increases 

at a much faster rate than that of the mixing length model after the 

air passes through the roughness discontinuity. For the rough-smooth 

transitions, the inflection point at the wind profile is less visible 

in Peterson's model. It can, however, be clearly detected in Curves 

in Figure 8.5.1 of our model. This difference between our model and 

Peterson 's model may be due to the following differences: since in 

our model we have included the pressure terms in our equations, we also 

use the vertical momentum equation; our choice of the constant of 

proportionality which relates the shear stress to turbulent kinetic 

energy is 0.25, a value larger than the value 0.16 used by Peterson. 

Furthermore, Peterson does not directly solve the exact form of the 

horizontal momentum equation; the vertical advective term is approxi-

mated by using the logarithmic wind profile in the upstream location. 

Figure 8.5.6 shows the nondimensional wind shear ~ versus the 

distance from the roughness discontinuity. Curve 2 is at an upstream 

location, which reveals that the roughness discontinuity has an effect 

on the upstream flow. The nondimensional wind shear is usually assumed 

to be equal to unity under neutral stratification. However ~ may not 

be equal to unity for airflow over inhomogeneous terrain under neutral 

conditions. All of the nondimensional wind shear ~ shown in Figure 

8.5.6 are less than unity. Initially the gains of the turbulent 

kinetic energy immediately after the change of roughness are fairly 

small. As the fetch increases, however, the air continuously gains 

turbulent kinetic energy, leading to continuously smaller values of 

nondimensional wind shear profiles, as shown in Curves 3 and 4. The 
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minimum value of the nondimensional wind shear is displaced toward 

much higher levels, as the air moves over a fairly long fetch in the 

downstream direction. Initially the turbulent energy adjusts slowly 

to new surface conditions, however, after some distance, the turbulent 

energy will continually adjust itself to new surface conditions. The 

nondimensional wind shear, therefore, will shift toward the upstream 

value of unity, and the air will gradually reestablish its equilibrium 

with surface conditions. 

The nondimensional wind shear less than unity is also observed 

by Busch and Panofsky (1968), who analyzed the data obtained from the 

measurement at Round Hill near South Dartmouth in Massachusetts by 

Record and Cramer (1966) for the period 1960 to 1963. They used two 

towers, as shown in Figure 8.5.7: One is located at a rough surface 

covered by open fields, bushes and woods, and during the above mentioned 

period data were collected under the conditions of the mean westerly 

wind; the other tower is located in a smooth area covered by grass 

40 miles north of the shoreline of Buzzard Bay. Mean wind directions 

during the experiments varied from south through west to north. The 

grass trimmed to a length of S to 10 centimeters, covers a radius of 

~~ 100 meters to the west ~d north around the tower, Tl. The 

north and east of tower T2 are covered by a wooded area, which is 

~~ 300 meters away from tower Tl. Tower T2 is installed about 

900 meters to the north-west of tower Tl. The site area is covered 

With brush of an average height of 1.5 meters. The surrounding area 

of tower T2 , except in the west, is covered by scattered woods with 

an average height of about 8 meters. 
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Busch and Panofsky (1968) analyzed the data for the non-

dimensional wind shear measured at Round Hill Station, as shown in 

Figure 8.5.8. For unstable conditions, the solid line represents the 

best fit by the KEYP equation for the data obtained by Swinbank; for 

stable conditions, the line is based on McVehil's formula. For tower 

T2 , Swinbank's curve fits the Round Hill observational data well; 

however, the data in tower T1 show a systematic lower value of 

about one half of the value at tower T2 . This difference can be 

explained in that tower T2 is influenced by a relative homogeneous, 

rough terrain and the turbulence there has adjusted to the surface 

conditions. When air reaches tower T1 , however, the area is 

relatively smooth, and the air accelerates and the intensity of the 

turbulence decreases. Since the air parcels coming from upstream 

carry with them relatively high turbulent energy, and since the velocity 

adjusts rapidly to the underlying terrain, the nondimensional wind 

shear at tower T1 is only half the value at tower T2 . 

Evidence of the nondimensional wind shear that is not equal to 

unity under neutral conditions is also indicated in the wind tunnel 

experiments (Yeh and Nickerson, 1970). Yeh and Nickerson investigated 

the flow in transition from a smooth to rough surface with the upwind 
-4 -2 . and downwind parameters z

0 
= 4.08 x 10 in and z1 = 3.06 x 10 1n, 

respectively. From analysis of their data, we find that the non-

dimensional wind shear is greater than unity, as in Figure 8.5.9. This 

implies that the flow is not in equilibrium with the new surface. 

8.5.2 Turbulent energy budget - The various terms in the turbulent 

energy equation are shown in Figures 8.5.10 and 8.5.11, 8.5.12 and 

8.5.13 for different locations. In these figures, Curve 1 represents 
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the horizontal advection term; Curve 2, vertical advection terms; 

curve 3, the production term; Curve 4, the diffusion term; and Curve 

s, the dissipation term. 

The various terms in the turbulent energy equation at upstream 

station X = - 4.4 X 10- 5 are shown in Figure 8.5.10. The production 

term is equal to the dissipation term, and other terms are negligibly 

small. The production and dissipation of turbulent energy are the 

same, which implies that the nondimensional wind shear is equal to 

unity, and the velocity profile follows the logarithmic law. Figure 

8.5.11 at station 4 
X = 2.7 X 10 shows that the turbulent energy at 

almost any level is continuously decreasing. The high turbulent energy 

is diffused downward: as a result, in the lower level, the turbulent 

energy increases by diffusion; in the higher level, the turbulent energy 

decreases, since part of its turbulent energy has been transported to 

the lower level. In Figure 8.5.12 at x = 4.4 x 105 , the air gains 

turbulent energy in the lower layer by processes of diffusion and 

loses turbulent energy in the higher layer by the action of turbulent 

diffusion and dissipation exceeding production. 

The maximum difference between the production and dissipation 

of turbulent energy gradually moves upward, as can be seen by comparing 

Curves 3 and 5 in Figure 8.5.11 and Figure 8.5.12. In the lower layer 

the air continuously restores its equilibrium with the underlying 

surface; therefore, this difference between dissipation and production 

gradually vanishes. In Figure 8.5.13 at 6 x = 1.8 x 10 , the decrease 

of turbulent energy for a given parcel of air becomes smaller, as 

shown at Curves 1 and 2, and the magnitude of positive and negative 

diffusion terms for different regions also decrease. The flow attempts 
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to restore its new equilibrium with the underlying surface, since the 

difference between the production term and the dissipation term 

decreases, as shown in Curves 3 and 5. Since nondimensional wind 

shear is equivalent to the ratio of the production of turbulent energy 

to the dissipation of turbulent energy in the turbulent energy model, 

the distribution of the nondimensional wind shear ~ and the location 

of minimum value of ~ can be easily inferred by comparing Curve 5 

representing the dissipation term with Curve 3 representing t he 

production term in the same Figures 8.5.10, 8.5.11, 8.5.12 and 8. 5 . 13. 

For rough to smooth transition, the air accelerates, and hence 

the nondimensional wind shear is less than unity. This phenomenon 

was explained by Busch and Panofsky (1968), who suggested that the 

turbulent energy of a given parcel of air decreases since diss i pation 

far exceeds production. However, the statement is only true when there 

is no other mechanism involved. If the turbulent energy of a given 

parcel of air is continuously decreasing, ~ may be greater t han 

unity. In view of the increase of surface shear stress after the 

change of surface discontinuity and the relative increase of the 

surface shear stress in the turbulent energy model as compared to the 

mixing length model, the explanation is only partially correct. In 

the turbulent energy model the nondimensional wind shear is equal to 

the ratio of the production term to the dissipation term. Since the 

dissipation of turbulent energy exceeds the production of turbulent 

energy, ~ is less than unity for air in transition from a rough to 

smooth surface. 

An interpretation of the value of ~, which is less than uni ty, 

may be considered from another point of view. Since the turbulent 
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energy is assumed to be proportional to in the turbulent energy 

model, the friction velocity and turbulent energy still maintain some 

portion of their upstream value by the processes of advection and 

diffusion, and the velocity profile adjusts itself more rapidly to the 

underlying surface. 

8.5.3 Neglecting pressure terms: Case 2 - In this case, all 

conditions are the same as in Case 1 in section 8.5.1, except the 

pressure terms are excluded. The distribution of horizontal velocity, 

vertical velocity, shear stress, surface shear stress, and non-

dimensional wind shear are shown in Figures 8.5.14, 8.5.15, 8.5.16, 

8.5.17, and 8.5.18, respectively. Comparison of Case 1 with Case 2 

in this section is similar to the argument pertaining to the comparison 

of Case 1 and Case 2 in section 8.1. As expected, the main difference 

in Case 1, and Case 2 in section 8.5 is in the physical variables near 

the point of roughness discontinuity. Curve 3 in Figure 8.5.18 in 

comparison with Curve 3 in Figure 8.5.6, reveals that the nondimensional 

wind shear where there is zero pressure gradient is smaller than the 

nondimensional wind shear where there is a pressure gradient force. 

This result implies that the dissipation of turbulent energy in the 

case with zero pressure gradient may be larger than dissipation in the 

case with pressure force in the lower layer of an air column or the 

production of turbulent energy in Case 2 may be larger than that of 

Case 1. 

8 -6 A Theory--The Turbulent Energy--Newtonian Model 

The flow conditions in this section are the same as in section 8.5. 

The numerical results of integrating a closed set of equations in the 

turbulent energy - Newtonian Model are presented in this section for 
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the f low with step change in surface roughness under neutral conditions. 

Physical quantities of the model that are similar in this sect i on and 

in the previous sections will not be discussed here. 

8.6.1 Retaining pressure terms: Case 1 - The wind pro{i l es in 

this case are shown in Figure 8.6.1. The inflection poin t 1 ~ visible 

in Curve 5, but the curvature is smaller than in Section 8.5. 1. The 

pressure and vertical velocity fields are shown in Figure 8 . 6.2 and 

Figure 8.6.3, respectively. The general features of the pres sure and 

vertical velocity fields are not significantly different in this case 

and the case in Section 8.5. The distribution of the shear stress is 

shown in Figure 8.6.4. The shape of Curve 2 in this case is quite 

different from the curve presented in Section 8.5 (Figure 8.5.4) . In 

general, the magnitude of the shear stress is slightly smaller i n this 

case than the shear stress in Section 8.5 (Figure 8.5.4). The surface 

shear stress is shown in Figure 8.6.5. The difference between this 

model and the turbulent energy model is that after the air fl ows over 

the roughness discontinuity, the surface shear approaches an asymptotic 

value faster than it does in the case in Figure 8.5.5. The non-

dimensional wind shear is shown in Figure 8.6.6. 

The nondimensional wind shear in the turbulent energy model has 

been assumed equal to the ratio of production to dissipation. That 

is, however, inconsistent with the definition of nondimensional wind 

shear. The nondimensional wind shear assumed in the turbulent energy 

model is true only if the dissipation is assumed equal to T
312/kz . 

In the present model, no such assumption about ~ has been made . 

The value of the nondimensional wind shear, as shown in Figure 8 .6 . 6, 

is larger than that predicted by the turbulent energy model. If we 
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would not have assumed the nondimensional wind shear in the turbulent 

energy model to be equal to unity below the nondimensional vertical 

height of z < 500, the calculated surface shear stress would be 

unrealistic. In the present case, we assume that the logarithmic law 

is only valid in a very shallow layer (z <· 10 for x > 0) near the 

earth's surface. The predicted surface shear stress is in better 

agreement with field data than existing theories, (Figure 8.8.5). 

The turbulent energy in this case is shown in Figure 8.6.7. The 

turbulent energy model assumes that the turbulent energy is linearly 

correlated to the shear stress. Such an assumption implies that by 

obtaining the turbulent energy, the shear stress can automatically be 

derived. This assumption, however, is invalid. For example, no shear 

is present in the flow in the grid generated turbulence along a moving 

wall (Uzkan and Reynolds, 1967). By inspection of the numerical results 

obtained by the turbulent energy - Newtonian Model, the assumed relation 

between turbulent energy and shear stress in the turbulent energy model 

does not hold in general. This result was also confirmed by Yeh and 

Nickerson (1970). Each term in the turbulent energy equation at various 

locations is shown in Figures 8.6.8, 8.6.9, 8.6.10 and 8.6.11. The 

general shapes are the same in this case and in the case predicted by 

the turbulent energy model. They, however, differ in detail. The 

difference between the production and dissipation is smaller in the 

present case than in the case predicted by the turbulent energy model. 

Such a comparison implies that the air in this case restores its 

equilibrium near the earth's surface faster than that predicted by 

the turbulent energy model. 
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8.6.2 Neglecting pressure terms: Case 2 - The predicted phys ical 

quantities in Case 1 and Case 2 have similar distributions, they differ 

near the roughness discontinuity. The wind profiles are shown in Figure 

8.6.12. The vertical velocity is shown in Figure 8.6.13, the shear 

stress profiles in Figure 8.6.14, the surfa~e shear stress in Fi gure 

8.6.15, the nondimensional wind shear in Figure 8.6.16, and the 

turbulent energy profiles in Figure 8.6.17. Each term in the turbulent 

energy equation at various locations is subsequently shown in Figures 

8.6.18, 8.6.19, 8.6.20 and 8.6.21. 

8.6.3 Mechanism of turbulent energy transfer - The mechanism of 

turbulent energy transfer is capable of explaining the behaviors of 

shear stress profiles and, hence, the velocity profiles. Based on the 

previous analysis of various terms in the turbulent energy equation, 

we will propose the mechanism of turbulent energy transfer in a 

column of air. For a steady state, two-dimensional turbulent boundary 

layer flow, there is no local rate of change of turbulent energy; 

the various terms, namely horizontal advection, vertical advect i on, 

production, diffusion and dissipation terms, are in balance. There 

exists two distinct layers in a column of air: one is near the 

surface of the earth; the other is above the first layer, as shown 

in Figure 8.6.22. In the lower layer the difference between production 

and dissipation of turbulent energy is relatively small; the downward 

motion results in an increase of turbulent energy, and the diffusion 

of turbulent energy also contributes to the net gain of turbulent 

energy. As a result, the outgoing turbulent energy by horizontal 

advection in the layer is larger than the incoming turbulent energy by 

horizontal advection in the same layer. On the other hand, in the 
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upper layer, the dissipation exceeds the production; however, the 

downward motion still contributes to the gain pf the turbulent energy. 

The diffusion of turbulent energy reverses its sign and becomes a 

negative contribution to the turbulent energy. Consequently, the 

outgoing turbulent energy by horizontal advection is less than the 

incoming turbulent energy by horizontal advection. Such a turbulent 

transfer mechanism can be used to explain the change of shear stress 

profiles in Figure 8.6.4. In the lower layer the outgoing turbulent 

energy by horizontal advection increases, which results in an increase 

in the shear stress, as shown in the sequences of Curves 3, 4 and 5. 

In the upper layer the outgoing turbulence by horizontal advection 

decreases, which results in a reduction of the magnitude of the shear 

stress, as shown in the curves. The acceleration of a given air parcel 

can be observed from the slope of the shear stress profile. Since the 

acceleration of a given parcel of air depends on the vertical gradient 

of shear stress, the distribution of wind profile can be explained 

from the distribution of shear stress. 

8.6.4 Growth of internal boundary layer - The variation of the 

internal boundary thickness with distance from the roughness discontinuity 

(m ~ S) for various theories, i.e., the k-theory, Bradshaw's (or 

Peterson) theory and the present theory is shown in Figure 8.6.23. The 

concept of an internal boundary layer which postulates the growth of 

the internal boundary beginning right at the roughness discontinuity 

is not applicable. The growth of the internal boundary layer begins 

upstream of the discontinuity at a nondimensional distance of the 

order 104 , this result is further confirmed in wind tunnel experiments 

(Yeh and Nickerson, 1970). The height of the interface defined in this 
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study is that where the slope of the shear stress profile at a location 

intersects the shear stress profile at the upstream location, or where 

the value of nondimensional shear stress difference, T - T*o is less 

than 0.1. 

The growth of the internal boundary layer predicted by the k-theory 

in this study for smooth to rough transition as shown in Figure 8. 6. 23 

further confirms the 0.8 power law predicted by previous workers 

(Elliott, 1958; Panofsky and Townsend, 1964; Taylor, 1969; Peterson, 

1969). However, for rough to smooth transition, the growth of the 

internal boundary layer predicted by various models indicates t hat 

the rate of growth follows the 0.7 power as shown in Figure 8.6 . 23 

rather than the 0.8 power, since the boundary adjustment is more slow 

in the case with rough to smooth transition than the case with smooth 

to rough transition. Although various theories predict the same rate 

of the growth of the internal boundary layer for rough to smooth 

transition, the heights of the interface predicted by various models 

are different as shown in Figure 8.6.23. The k-theory model predicts 

a rather high height of the interface, while the Bradshaw-Peterson 

model gives a rather low height of the interface. The height of the 

interface predicted by various models is approximately one tenth the 
4 downstream fetch for nondimensional distances larger than 10 . 

8.7 Comparison of Numerical Results with Wind Tunnel Measurement s 

The numerical integration of the mixing length model under a 

neutral condition is compared with experimental data measured from the 

wind tunnel, as shown in Figure 8.7.1 (Yeh and Nickerson, 1970). The 

flow Yeh and Nickerson consider is in transition from smooth to r ough, 

For the case with a small change in surface roughness, the upstream 
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and downstream roughness parameters are z
0 

= 1.4 x 10- 4 in and 

z = 7.0 x 10-4 in, respectively, and the upstream surface friction 
1 

velocity is u*o = 1.17 fps. In numerical integration, the pressure 

terms are retained in the governing equations. The velocity profiles 

obtained by numerical computations are in agreement with experimental 

data up to about x = 6 in obtained by Yeh and Nickerson (1970). For 

a large change in surface roughness, the distribution of the surface 

shear stress qualitatively agrees with experimental data, as can be 

seen by comparing Figure 8.2.5 with Figure 8.2.5a. 

In the numerical model with pressure terms and without pressure 

tenns in the governing equations, no significant change in the pre-

dicted wind profiles have been observed for the flow with a small 

change in surface roughness, the large discrepancy between the 

experimental data and numerical results exists near the roughness 

discontinuity. Further experimental investigations are required to 

eliminate the discrepancy. 

8.8 Comparison of Surface Shear Stress with Various Theories 

Despite the simplicity of mixing length model, the predicted value 

of surface shear stress agrees with the analytical models advanced by 

Elliott (1959), Panofsky and Townsend (1964), as well as with field 

data obtained by Bradley (1968). For air moving from a rough to a 

smooth surface, Curve 1 in Figure 8.8.1 illustrates present numerical 

results. Such results compare well with the theories of Elliott, 

Panofsky and Townsend. Curve 2 and 3, in which we have assumed that 

the nondimensional wind shear prescribed as a function of downstream 

distance is less than unity, fit the field data much better. This may 
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be considered equivalent to taking the past history of air parcels into 

account. Ignoring the past history of air parcels is the shortcoming 

of the mixing length model. For the air flowing from rough t o smooth 

surface as seen in Figure 8.8.1, both the mixing length mode l and 

analytical models lead to an under prediction of the surface shear 

stress . 

For the air flowing from smooth to rough terrain, the sur face 

shear stress predicted by the mixing length model and analytical models 

(Elliott, 1959; Panofsky and Townsend, 1964) agrees with experimental 

results (Figure 8.8.2). Distribution of surface drag similar to the 

data of Bradley have been obtained in wind tunnel for the fl ow from a 

smooth surface to a canopy consisting of model trees as shown in Fig. 

8.8.3 (Meroney, 1968). The surface shear stress is overestimated 

by previous models in this case, while the values of the surface shear 

stress are underestimated as compared to previous models of the air 

from rough to smooth terrain. This can be explained in that these 

models did not have the advection and diffusion terms for turbulent 

energy in their models. Including these terms in the turbulent energy 

model does predict the surface shear stress better than other models 

as shown in Figure 8.8.4, if the particular adjust merits in the model 

has been made. Curve 1 in Figure 8.8.4 gives the predicted surface 

shear stress distribution which agrees well with the experimental data. 

The significant difference between the turbulent energy model and the 

mixing length model or analytical models is that immediately after the 

air passes the roughness discontinuity, the surface shear stress pre-

dicted by the turbulent energy model rises at a much faster rate than 

the shear stress of previous models. The surface shear stress 
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predicted by the turbulent energy - Newtonian Model, shown in Figure 

8.8.5, is in better agreement with field data than other existing 

theories. 
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Chapter IX 

SUMMARY AND CONCLUSIONS 

In this study, the mixing length and turbulent energy models have 

been used to describe air flowing either from a rough to smooth trans-

ition or from a smooth to rough transition under different stability 

conditions in the atmospheric boundary layer. The models describe the 

adjustment of the flow to the nonhomogeneous surface with abrupt 

change in surface roughness and temperature, with the flow at right 

angles to the line of roughness discontinuity. No hydrostatic 

assumption has been made about the flow, although the pressure terms 

and buoyancy force are retained in the governing equations. The flow 

in the far upwind location is in equilibrium with the underlying 

surface. The presented theory does not assume that the shear stress 

is proportional to the turbulent energy as the turbulent energy model 

does, since this relation does not hold, in general, for flow not in 

equilibrium. The turbulent energy equation has been retained, however; 

the scale lengths in the equation have been postulated, and are based 

on experimental analyses and theoretical considerations. The theory 

describes the flow governed by horizontal momentum, vertical momentum, 

continuity, turbulent energy equations, and a similarity form of shear 

stress that depends on turbulence, one scale length and velocity 

gradient. In the theory the processes of the diffusion of turbulent 

energy is postulated to have the same mechanism as the transport of 

momentum. The flow problem has been simulated by a high speed computer, 

the CDC 6400 at Colorado State University. 
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The mean horizontal, mean vertical velocity field, pressure field, 

shear stress, nondimensional wind shear and turbulent energy in the 

atmospheric surface layer have been predicted by a numerical technique. 

The following conclusions can be drawn from the analyses of the present 

investigations. The conclusions are numbered in accordance with the 

objectives stated in the introduction. 

(1) The presented theory is not based on a priori assumption 

about the distribution of wind and shear stress profiles, but rather 

on empirical hypotheses deduced from theoretical and physical con-

siderations and from the analyses of experimental work. None of the 

other existing theories has the ability to predict both turbulent 

energy and shear stress profiles, in which the prediction of one 

variable does not imply that we have the other. The predicted physical 

quantities agree with the available experimental data better than any 

previous model to date. The development of the present model, indi-

cates that further research to investigate more complicated and complete 

models ought to prove rewarding. 

(2) In relatively rough terrain, the air adjusts to the under-

lying surface more rapidly than in smooth terrain. 

(3) For air flo~ing from a rough to smooth terrain, the 

dissipation of turbulent energy exceeds the production of turbulent 

energy for the flow downstream. 

(4) Based on the analysis of the numerical results, a mechanism 

of turbulent energy transfer is proposed. It can be used to explain 

the distribution of shear stress profiles and, in turn, the distribu-

tion of wind profiles. There are two regimes of turbulent energy 

transfer in a column of air; for a rough to smooth transition, one 
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regime is in the lower layer, where the horizontal export of turbulent 

energy exceeds the horizontal import of turbulent energy; the second 

regime is in the upper layer, where the horizontal import of turb1., Jent 

energy exceeds the horizontal export of turbulent energy. 

(5) Some numerical schemes have already shown remarkab le success 

without theoretical support. In this investigation we have proved 

several theorems of convergence, which can be used to show that certain 

numerical schemes are convergent. 

(6) A "modified" Newton's method is used to solve the sys tem of 

nonlinear equations, thus describing the flow in the atmospheric 

turbulent boundary layer, by an iterative process. 

(7) The equation of continuity has been put in the f orm of a 

second order partial differential equation that automatically satisfies 

the boundary conditions at any moment. Thus, instability arising 

from the continuity equation has been avoided. 

(8) In the turbulent energy model developed by Peterson (1969), 

the vertical wind shear in the vertical advection term of the horizontal 

momentum equation has been approximated by using the logarithmic 

wind profile in the upwind location. In solving the turbulent energy 

model, we have used the exact difference equations, and the pressure 

terms neglected by Peterson are thus included. 

(9) The wind profiles, the vertical velocity field and t he shear 

stress profiles near the roughness discontinuity depend very much upon 

whether or not the pressure terms are retained or neglected in the 

governing equations. 

(10) Neglecting the pressure terms in the governing equations 

results in overestimating the value of vertical motion for the f low 



149 

either from a rough to smooth transition or from a smooth to rough 

transition under neutral condition. The maximum region of vertical 

motion in both cases is displaced upward from the origin of the 

roughness discontinuity, if the pressure terms are ignored. 

(11) The effects of roughness discontinuity on the upwind flow 

have been observed in both the numerical models and field data. These 

effects can be seen from the wind profiles, vertical velocity field 

and shear stress profiles. 

(12) The nondimensional wind shears become different near the 

roughness discontinuity, depending on whether the pressure terms 

in the governing equations are retained or neglected. 

(13) The distribution of the predicted quantities are quite 

different in neutral and unstable cases. For unstable stratification, 

the zone of maximum turbulent energy is located near the edge of 

internal boundary layer. 

(14) No inflection point in the wind profiles under neutral con-

dition has been observed in the model of k-theory, but it has been 

observed in both the turbulent energy and turbulent energy-Newtonian 

models. However, the inflection point is less visible in the 

turbulent energy-Newtonian model. 

(15) For a small change in surface roughness, the wind profiles 

simulated by the numerical method are in very good agreement with the 

data obtained in a wind tunnel and in the field. Thus, the flow from 

one terrain to a new terrain can be simulated by a wind tunnel. The 

distribution of surface shear stress simulated by numerical technique 

is in qualitative agreement with the data measured in a wind tunnel 

for a large change in surface roughness; however, the large discrepancy 
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in wind profiles obtained by the numerical model and measured in a 

wind tunnel exists near the roughness discontinuity. More experimentation 

is required to determine the influence of the roughness parameter on 

the flow near the roughness discontinuity. 

(16) Nondimensional wind shear is an important parameter in 

understanding the properties of turbulence and wind profiles in the 

atmospheric surface layer. The k-theory implies that the nondimensional 

wind shear is equal to unity, disregarding accelerating or decelerating 

flow. Both theories, i.e., the turbulent energy model and the turbulent 

energy-Newtonian model, predict that the nondimensional wind shear is 

less than unity for accelerating flow. The field data collected at 

Round Hill Station and in a wind tunnel also confirm that nondimensional 

wind shear is not equal to unity for the accelerating or decelerating 

air. 

(17) The distribution of surface shear stress predicted by 

various numerical models is in good agreement with analytical models 

and field data. The distribution of surface shear stress predicted 

by the presented theory is in excellent agreement with field data, 

since the theory takes into account the past history of a given air 

parcel and the characteristics of turbulence. 

(18) All theories agree rather well in predicting the mean wind 

far downstream of roughness discontinuity, except near the edge of 

internal boundary layer, where wind profiles predicted by various 

models differ considerably. A discrepancy in predicting the 

physical quantities by various models exists near the roughness dis-

continuity. 
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(19) For most conditions, the dissipation and production terms 

in the turbulent energy equation are usually larger than other terms. 

Therefore, the k-theory model may be regarded as an approximation to 

the presented model and hence, in predicting the mean flow field, the 

k-theory model is relatively insensitive to the particular forms of 

shear stress used by previous researchers. However, when the 

dissipation of turbulent energy far exceeds the production of turbulent 

energy, the k-theory may not apply so well. 

(20) In view of the improved predicted surface shear stress of 

the presented theory, the mixing length model in the fully developed 

turbulent boundary layer is .not applicable in the transitory region. 

Wind tunnel observations also confirm this result. 

(21) In view of the region of maximum absolute value of vertical 

motion located above the roughness discontinuity and the effects of 

this discontinuity on the upstream flow under various stability condi-

tions, the traditional concept of the internal boundary layer intro-

duced by Elliott (1958) is not applicable. 

(22) The growth of the internal boundary layer does not begin 

right at the roughness discontinuity, but rather some distance upstream. 

The growth of the internal boundary for smooth to rough transitions 

follows the 0.8 power law, however for rough to smooth transitions, 

it follows the 0.7 power. The heights of the interface predicted by 

Various models are different. The height of the interface predicted 

by the k-theory is higher than that of other theories, the height of 

the interface predicted by the present theory lies between that of the 

k-theory and that of the Bradshaw-Peterson theory. 
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The definition and theorems in the text of Matrix Iterative 

Analysis (Varga, 1962), and the theorem of convergence developed by 

Ortega and Rockoff (1966) are following: 

DEFINITION 3.5. For n x n real matrices A, M, and N, A= M - N 

is a regular splitting of the matrix A if M is nonsingular with 
-1 M .:_ 0, and N > 0 . 

THEOREM 3.3. (Stein and Rosenberg). Let the Jacobi matrix 

B = L + U be a non-negative n x n matrix with zero diagonal entries, 

and let L1 be the Gauss-Seidel matrix, the special case w = 1 of 

(3.39). Then, one and only one of the following mutually exclusive 

relations is valid: 

1. p(B) = p(L1) = 0. 

2. 0 < p ( L1) < p (B) < 1. 

3. 1 = p(B) = p(L1). 

4. 1 < p(B) < p(L1). 

Thus, the Jacobi matrix B and the Gauss-Seidel matrix L1 are either 

both convergent, or both divergent. 

THEOREM 3.6. Let A= D - E - E* be an n x n Hermitian matrix, 

where D is Hermitian and positive definite, and D - wE is non-

singular for O < w < 2. Then, 

positive definite and O < w < 2. 

p(L )< 1 if and only if A is w 

THEOREM 3.10. If A= (a .. ) is a real n x n matrix with 1,J 
a .. < 0 for all i # j, then the following are equivalent: 1,J 



163 

1. A is nonsingular, and -1 A > 0. 

2. The diagonal entries of A are positive real numbers, 

and letting D be the diagonal matrix whose diagonal entries 

are defined as 

d .. 
1,1 

d. . = 1/a. . 1 < i .::_ n, 
1,1 1,1, 

then the matrix B = I - DA is non-negative and convergent. 

TIIEOREM 3.11. If A = (a. .) is a real n x n matrix with 1,J 
a .. < 0 for all i # j, then the following are equivalent: 1,J 

1. A is nonsingular, and A-l > 0. 

2. The diagonal entries of A are positive real numbers. 

If D is the diagonal matrix defined by (3.66), then the matrix 

B = I - DA is non-negative, irreducible, and convergent. 

COROLLARY 1. If A= (a .. ) is a real, irreducibly diagonally 1,J 
dominant n x n matrix with a .. < 0 1,J 
for all 1 < i < n, then -1 A > 0. 

for all i 1 j, and a .. > 0 
1,1 

COROLLARY 2. If A= (a .. ) is a real, symmetric and nonsingular 1,J 
n x n irreducible matrix, where a .. < 0 1,J - for all i # j, then 

A-1 > 0 if and only if A is positive definite. 

THEOREM 3.13. If A= M - N is a regular splitting of the matrix 

A and -1 A .:. 0, then 

p(A- 1N) 
p(M- 1N) = ----:--- < 1. 

1 + p(A- 1N) 

Thus, the matrix M-lN is convergent, and the iterative method of 

(3.70) converges for any initial vector x(O)_ 
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THEOREM 4.4 Let the matrix A be a consistently ordered p-cyclic 

matrix, with nonsingular diagonal submatrices A .. 1 < i < N. 
1,1, If au 

the eigenvalues of the pth power of the associated block Jacobi matrix 

B are real and non-negative, and 0 .::_ p(B) <l, 

in (4.26), 

1. p(L ) = (wb - l)(p - l); 
wb 

2. p (L ) > p (L ) 
w wb for all w 1 ~ 

then with 

Moreover, the block successive overrelaxation matrix L w 

for all w with 0 ~ w < p/(p - 1). 

defined 

is convergent 

THEOREM 3. 0. Let S' be an open neighborhood of a point x* e: R". 

Assume that 

S' x S' and 

1. 

1 -1 g e: C (S' x S'), g 
X 

g(x*,x*) = 0. Define 

is defined and continuous on 

H -

2. that suppose that p(H) - A< 1. Then there exist s a 

neighborhood S of x* such that g e: F(S;x*). 

where g is defined to belong to the class of functions F(s;x*) 

if for each initial vector x(O) e: S, the difference equation has a 

unique solution {x(k), k = 0,1, ... }C S which converges to x*. 
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Figure 8.1-1 Calculated (pressure included) nondimensional 
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Figure 8.5-17 Distribution of nondimensional surface shear stress 
as in Fig. 8.5-5 but without pressure terms 

N 
N 
N 



223 

1:00000 -------1"----r---~----,---.----r-----::J 

:00000 

100 0 0 

l 

C~ P~[ I AT X•·J,J[•S 
'. ~P~[ 2 AT l •·8.J[•2 
: ~P~[ 3 AT k • 3,3[•3 
'. ~PJ[ J AT ~• 2,7[•J 
'. ~P\ [ 5 Ar k• J,J[•S 
: u~~[ 6 i~ ~ - 1.&[•6 

~:: L__ __ _._ ___ J.._ __ ~---..J.-----1~--_._ ___ ..._ __ __, 

NONDIMENSIONAL WIND SHEAR 

Figure 8.5-18 Nondirnensional wind shear as in Fig. 8.5-6 
but without pressure terms 

2 



""' .--i 
N 
-....... 
N 
'-..J 

~ 
C.c) 
H 

~ 

224 

:::~:: --------,r----"T""----,---T""--,--:;i,-,---:::a 

1000 

TOO 

2 ' 

c~•~c t ,! •0-,.,c•s 
c~•~c 2 ,: ••-1.:c•2 
c~•~c , ,: 1 ° ,.,c•s 
,·.1•·,c : ,:  2. 7'C•• 
c~•~c 5 ,: •• ,.,c•s 

' 
HORIZONTAL VELOCITY (KU/U*

0
) 

Figures 8.6-1 Distribution of nondimensional wind profiles 
at various nondimensional distances (x/z1) 
from the origin for a rough to smooth 
transition with M ~ 5 under neutral condi-
tion. Pressure terms included 

I 



ZI 
zt 
Z7 
z, 
ZS 
z, 
ZS 
ll 
ll 
zo 
II 
ti 
17 
1, 
15 

" IS 
IZ 
ti 

" I 
I 
7 

' 5 

' ' z 

-0.05 

Z S , 5 , 7 I I II ti IZ IS " 15 1, 1-7 11 '.I ZO Zt ZZ ZS z, ZS z, Z't ZI 

Figure 8.6-2 Distribution of a nondime~sional pressure (k 2p/u~0 ) 
field (deviation from the hydrostatic pressure) 
for a rough to smooth transition with M ~ 5 

N 
N 
(Jl 



Zi lr,r7r-~~DCJc:::Jc::l:=::J=::::a:=:::i~;==':=::::J:=::::J==i=:::i::::J:::J:::J::::J~~~r-~ 
Zt 
2, 
2, 
ZS 
2, 
25 
22 
2: 
2: 
:9 :, 

.. ·• 
!, 

• 
' 5 ...... _____________ __,.;"-

' 
' 2 

z 5 , 5 i 7 I 9 IQ 11 IZ 15 1' 15 1, 17 II 19 ZO 21 22 ZS z, 25 z, r ZI 

Figure 8.6-3 Distribution of a nondimensional vertical velocity (kw/u*
0

) 

field for a rough to smooth transition with M ~ 5 

N 
N 
(J\ 



r"'\ 
~ 

N 
........ 
N 
'-,J 

~ 
c., ..... 
!il 

10000 

1000 

101 

10 

227 

+l 

cu•~E , ,,  

C~P~E Z Ai ~•-1.0E•Z 
c~•~E 5 Ai W• 5.5E•5 
C~~~E, AT 1• Z.7E•4 
,u,~E 5 ,~ x• ,.,E•5 

!L----L------~---------4-------4---....1 
0 

STRESS (r/'t0) 

Figure 8.6-4 Nondimensional shear stress profiles for various 
nondimensional distances (x/z1) from the 
origin for a rough to smooth transition with M~s 

l 



,..__ 
0 

f--, 
'-. 

f--, 
'--" 

U) 
U) 
ri:i 
0:: 
E-< 
U) 

z 5 , 5 6 7 I 9 10 II IZ IS a 15 16 17 11 19 ZO ZI ZZ ZS z, Z5 Z6 Z"- ZI 

DISTANCE (X/Z1) 
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Terms in the turbulent energy equation at 
nondimensional distance x = 2,7 x 104 
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Terms in the turbulent energy equation at 
nondimensional distance x = 1.8 x 106 
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