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ABSTRACT

TIME INTEGRATION FOR COMPLEX FLUID DYNAMICS

Efficient and accurate simulation of turbulent combusting flows in complex geometry remains

a challenging and computationally expensive proposition. A significant source of computational

expense is in the integration of the temporal domain, where small time steps are required for the

accurate resolution of chemical reactions and long solution times are needed for many practical

applications. To address the small step sizes, a fourth-order implicit-explicit additive Runge-Kutta

(ARK4) method is developed to integrate the stiff chemical reactions implicitly while advancing

the convective and diffusive physics explicitly in time. Applications involving complex geometry,

stiff reaction mechanisms, and high-order spatial discretizations are challenged by stability issues

in the numerical solution of the nonlinear problem that arises from the implicit treatment of the stiff

term. Techniques for maintaining a physical thermodynamic state during the numerical solution of

the nonlinear problem, such as placing constraints on the nonlinear solver and the use of a nonlinear

optimizer to find valid thermodynamic states, are proposed and tested. Verification and validation

are performed for the new adaptive ARK4 method using lean premixed flames burning hydrogen,

showing preservation of 4th-order error convergence and recovery of literature results. ARK4 is

then applied to solve lean, premixed C3H8-air combustion in a bluff-body combustor geometry.

In the two-dimensional case, ARK4 provides a 70× speedup over the standard explicit four-stage

Runge-Kutta method and, for the three-dimensional case, three-orders-of-magnitude-larger time

step sizes are achieved. To further increase the computational scaling of the algorithms, parallel-

in-time (PinT) techniques are explored. PinT has the dual benefit of providing parallelization to

long temporal domains as well as taking advantage of hardware trends towards more concurrency

in modern high-performance computing platforms. Specifically, the multigrid reduction-in-time

(MGRIT) method is adapted and enhanced by adding adaptive mesh refinement (AMR) in time.
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This creates a space-time algorithm with efficient solution-adaptive grids. The new MGRIT+AMR

algorithm is first verified and validated using problems dominated by diffusion or characterized by

time periodicity, such as Couette flow and Stokes second problem. The adaptive space-time par-

allel algorithm demonstrates up to a 13.7× speedup over a time-sequential algorithm for the same

solution accuracy. However, MGRIT has difficulties when applied to solve practical fluid flows,

such as turbulence, governed by strong hyperbolic partial differential equations. To overcome

this challenge, the multigrid operations are modified and applied in a novel way by exploiting the

space-time localization of fine turbulence scales. With these new operators, the coarse-scale er-

rors are advected out of the temporal domain while the fine-scale dynamics iterate to equilibrium.

This leads to rapid convergence of the bulk flow, which is important for computing macroscopic

properties useful for engineering purposes. The novel multigrid operations are applied to the com-

pressible inviscid Taylor-Green vortex flow and the convergence of the low-frequency modes is

achieved within a few iterations. Future work will be focused on a performance study for practical

highly turbulent flows.
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Chapter 1

Introduction

1.1 Motivations and Objectives

While traditional combustion engines will continue to be used for power generation and ve-

hicle propulsion for the next two or three decades, cleaner combustion engine technology must

be developed to help slow down global warming and climate change. Accurately understanding

the interactions among multiple physical phenomena, such as thermodynamics, turbulence, chem-

ical reactions, and scalar transport, over a wide range of spatial and temporal scales, is difficult

but necessary for engineering design. Computation has become the third pillar alongside experi-

ment and theory. Moreover, computational techniques have advantages in investigating complex

systems operating under extreme conditions which present challenges to physical experiments.

Therefore, high-fidelity and high-performance simulations using advanced computational fluid dy-

namics (CFD) methods play an important role in modern engineering design cycles. Nevertheless,

efficient and accurate modeling of practical combusting flows remains a difficult task for CFD.

One of the primary difficulties is the fast time scales of chemical reactions compared to the

advective and diffusive ones presented by the multiple physical processes. The disparity in time

scales leads to a stiff system of partial differential equations (PDEs) to solve numerically [1–3].

When using an explicit time marching method, such as the standard fourth-order explicit Runge-

Kutta (ERK4) method, the solution can only be advanced with an exceptionally small time-step

size due to the stability constraint, and the CFD simulation can easily take an intractable amount

of CPU hours (e.g. months) to obtain accurate and meaningful results for statistical analysis that

can be used to derive physical insights for new designs. Evidently, efficient and accurate time

integration are desired for CFD modeling of stiff combustion problems for practical applications.

Therefore, fourth-order additive Runge-Kutta (ARK4) methods are implemented and applied to

increase the time step size by implicitly evolving the stiff chemical term while explicitly advanc-
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ing the advection and diffusion terms of complex reacting fluid flows with practical combustor

geometry.

Another difficulty for CFD modeling of complex reacting flows is the long numerical integra-

tion time required for the thermo-fluid dynamics to develop sufficiently. Reducing the run time

for such simulations is of great importance for computational combustion engineering. Many

strategies have been developed over the years, e.g., adaptive mesh refinement (AMR) [2, 4–14],

high-order methods [7, 15–18], and spatially parallel CFD algorithms [4, 12, 13, 19–28]. As com-

puter power increases, further speedup can be made possible through the parallelization of time

stepping after spatial parallelization has saturated, provided there is sufficient space-time paral-

lelism in the algorithms. This motivates the second part of the thesis research to be dedicated to

the investigation of parallel-in-time (PinT) algorithms. In particular, multigrid reduction-in-time

(MGRIT) appears well positioned to take advantage of this need by providing additional compu-

tational scaling and parallelization. Nevertheless, multigrid-based time-parallelization strategies

have difficulties in convergence for hyperbolic PDEs, so new techniques must be developed to

fully utilize time-parallel algorithms on future computing hardware.

To address these challenges, the following objectives are established in this thesis research:

1. Implement the ARK4 method with AMR in Chord to integrate the stiff chemical reactions

implicitly in time while advancing the advection and diffusion flux explicitly. This allows

for a significant increase in the step size taken by time integration without sacrificing the

accuracy of the solution, leading to a reduction in time-to-solution.

2. Develop strategies for robustness and optimization to mitigate unphysical phenomena of the

dynamical system. In particular, numerical errors such as those from the nonlinear solver

can cause species mass fractions and temperature to be out of physical bounds, leading to

unphysical thermodynamic states and divergence of the solution state.

3. Apply the ARK4+AMR algorithm to solve combusting flows with stiff reaction mechanisms

occurring in complex geometry. The application evaluates the effectiveness of the integrated
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numerical framework. Additionally, the effects of the geometry of the computational do-

main, the number of levels in AMR, and the types of fuels on the time scales are studied.

4. Add subcycling to MGRIT in XBraid. The addition of space-time adaptivity to MGRIT

allows for additional parallel scaling in time. Furthermore, high performance computing

(HPC) platforms are trending towards more concurrency, therefore enabling parallelization

in the temporal domain will take advantage of this hardware trend.

5. Apply the adaptive, space-time parallel algorithm to turbulence for further computational

efficiency. By exploiting the space-time localization of the fine scales of turbulent flows,

multigrid is creatively used to cater to the multi-scale nature of turbulence.

These objectives are achieved by leveraging Chord and XBraid, and novel contributions are

made to advance numerical algorithms. Chord [3,16,29–34] is the in-house solver developed by the

CFD & Propulsion Laboratory at Colorado State University. Chord is a high-order finite-volume

method (FVM) that solves the fully-coupled, compressible, reacting Navier-Stokes equations on

structured AMR grids. Mapped multiblock (MMB) techniques enable Chord to solve flows with

complex geometries such as the bluff-body combustor while effectively taking advantage of struc-

tured AMR grids. XBraid [35] is an open-source implementation of MGRIT. It has demonstrated

speedups for a variety of problems, including a 2D unsteady flow vortex-shedding [36], a 3D

Taylor-Green example with a moderate Reynolds number, eddy-current problems [37], optimiza-

tion and machine learning [38, 39], 1D Burgers equation [40], linear hyperbolic problems [41],

moving meshes [42], power systems [43, 44], linearized elasticity [45], elliptic problems [46, 47],

time-fractional equations [48], and adjoint problems [38, 49]. Background information on the two

primary methods upon which this study is built, namely ARK4 and PinT, is first reviewed. The

HPC architectures used for this work is briefly described.
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1.2 Additive Runge-Kutta Methods

Implicit-explicit (ImEx) time integration approaches have proven to be very promising for so-

lution efficiency by partitioning the physics into stiff and non-stiff terms, then treating each with

implicit and explicit methods, respectively. For example, Kennedy and Carpenter [50] introduced

additive Runge-Kutta (ARK) methods for one-dimensional convection-diffusion-reaction (CDR)

equations where convection and diffusion are solved explicitly and the reacting source term is

solved implicitly. Zhang et al. [8] applied an ARK method to solve scalar convection-diffusion

equations with AMR. Very recently, Chaplin [51] utilized the ARK method for simulating low

Mach-number compressible flows ranging from inviscid gas dynamics to compressible Navier-

Stokes with reactions in simple geometry. These studies demonstrate the computational efficiency

of ARK over ERK4 for stiff reactions. There are many other ImEx methods, such as operator

splitting [52–54], the SIMPLE algorithm and its successors [55, 56] and additive linear multi-step

methods [57]; however, the focus of the present work is on the ARK family of ImEx methods.

Readers are referred to those references for more information on general ImEx methods. The ob-

jective of the present study is to develop an efficient and accurate solution technique for solving

stiff PDEs by integrating a fourth-order ARK, specifically, the 2-ARK4(3)6L[2]SA method, with

AMR on MMB grids in Chord. The 2-ARK4(3)6L[2]SA method is introduced in Chapter 3. Then,

the resulting algorithm is applied to solve complex, multidimensional combusting flows governed

by the compressible Navier-Stokes equations coupled with chemical reactions in physical config-

urations with complex geometry.

1.3 Parallel-in-Time

Parallel-in-time methods have recently become an active research area and various approaches

for parallel-in-time integration are available. To name a few, some methods are based on multiple

shooting, waveform relaxation, domain decomposition, space-time multigrid methods, and direct

time parallel methods [58]. In this study, the MGRIT algorithm [46] is employed, because of (i)

demonstrated scalability [46, 47], (ii) non-intrusiveness and an ability to couple with many codes,
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and (iii) demonstrated success for some fluids problems [36]. Other space-time adaptive meth-

ods have been developed for parabolic equations, such as space-time multigrid with isogeometric

analysis [59]. The space-time domain is decomposed into time-slices and connected using a dis-

continuous Galerkin technique. Steinbach et al. [60,61] construct a 4D finite element discretization

in space and time and solve the system with GMRES and Kaczmarz relaxation. However, these

methods require the entire formulation to be built around their respective finite-element discretiza-

tions. The non-intrusive nature of MGRIT allows for its coupling with existing discretizations such

as those employed by structured AMR methods.

The present dissertation has two goals in this direction of research. The first goal is to add

the space-time adaptivity to XBraid with the structured AMR Chombo library [62] for the CFD

application code, Chord, and to demonstrate the validity, convergence, and performance of the

resulting algorithm by solving the compressible Navier-Stokes equations. The second goal is to

explore the application of this adaptive space-time parallel algorithm to multiscale turbulence.

This first goal is achieved by implementing the structured AMR in XBraid to create a unified

methodology for constructing meshes and performing relaxation, prolongation, and restriction on

space-time AMR grid hierarchies. This new feature combines the additional computational sav-

ings from subcycling with the base speedups seen from the existing temporal parallelization. The

coupled algorithm is verified and validated by a transient Couette flow and a time-periodic Stokes

second problem.

The second goal is achieved by applying the adaptive MGRIT algorithm to solve turbulent

flows. To overcome the inherent mathematical issue on MGRIT for hyperbolic PDEs, a novel

operator separating the high-frequency modes from low-frequency ones is developed. This makes

use of the space-time localization of the the high-frequency modes in a turbulent flow and enables

rapid convergence of the low-frequency large-scale dynamics of the flow. This new approach is

tested on an infinite-Reynolds-number compressible Taylor-Green vortex problem.
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1.4 High performance computing

The computing resources from three HPC centers were used in the course of this dissertation.

The primary development and testing phases were carried out on the CFD & Propulsion Labora-

tory’s Atlantis high performance compute server. This sever consists of nine compute nodes split

into two partitions. The first partition consists of four nodes, each containing 20 Intel Sandy Bridge

CPUs and 128 GB of memory, and the second partition consists of five nodes, each containing 24

Intel Haswell cores and 64 GB of memory. Cases run on Atlantis varied from single node tests to

using the entire machine.

Large-scale testing and simulations of ARK4 cases were performed on Centennial and Onyx,

managed by the Army Research Laboratory (ARL) Department of Defense (DoD) Supercomputing

Resource Center (DSRC) and the U.S. Engineer Research & Development Center (ERDC) DSRC,

respectively. Additional hardware information and development environment details can be found

at https://centers.hpc.mil/systems/unclassified.html. Up to 4096 CPU cores were used for 3D cases

with reacting turbulence.

Lastly, the PinT testing and production cases were run on Quartz and Ruby, managed by

Lawrence Livermore National Laboratory (LLNL). The number of CPUs used varies based on

the fine space-time resolution of the case, with the finest cases employing up to 4096 cores. Ad-

ditional information on the technical details and capabilities Quartz and Ruby can be found at

https://hpc.llnl.gov/hardware/platforms/Quartz and https://hpc.llnl.gov/hardware/platforms/ruby.

1.5 Dissertation Organization

This dissertation is structured as follows. For completeness and convenience, the mathemat-

ical modeling of the complex reacting flows and the underlying numerical framework where the

fourth-order ARK (denoted by ARK4 throughout this dissertation) is implemented are described

in Chapter 2. Chapter 3 reviews the relevant ARK4 method. Chapter 4 describes the solution algo-

rithm for a single level grid. Chapter 5 presents the integration of ARK4 with AMR. Verification

and validation of this algorithm is performed in Chapter 6 through a grid convergence study and
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comparisons of the solutions obtained by ARK4 and ERK4 for the reacting shock bubble prob-

lem. The validated algorithm is applied to solve combusting flows in a bluff-body combustor.

Results on computational performance and speedup provided by ARK4 are reported and discussed

in Chapter 7.

Chapter 8 introduces XBraid and MGRIT, highlighting the new adaptive space-time algorithm

on the high-level algorithmic structure and challenges, and discusses the coupling of the AMR and

MGRIT algorithms. Chapter 9 tests the resulting algorithm and presents its results on convergence

and performance against the time-sequential algorithm. Chapter 10 proposes the modifications to

the multigrid operators to support the application to infinite-Reynolds turbulent flows and demon-

strates the results of the Taylor-Green case. Finally, Chapter 11 concludes the dissertation research,

summarizes the original contributions, and points out the directions for future work.
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Chapter 2

Mathematical and Numerical Modeling

2.1 Governing Equations

The system of PDEs governing compressible combustion consists of the Navier-Stokes and a

set of species transport equations [3, 32] and specifically the mapped multiblock version [63–66]

is used for this study to represent complex geometry on a Cartesian grid with AMR. To provide a

brief background, the system of equations is given here. Grid mapping is used to transform from

physical space, ~x, to computational space, ~ξ, where ~ξ = ~ξ(~x). The grid is assumed to not deform

over time. The transformation grid metrics, NT, and metric Jacobian, J , are defined as

N = J (~∇x
~ξ)T , NT = J ~∇x

~ξ , J ≡ det(~∇ξ~x) ,

where T denotes the transpose operation.

Applying the coordinate transformation to the continuity, momentum, energy, and species

transport equations yields the governing equations for a compressible, thermally-perfect, reacting

multispecies fluid

∂

∂t
(Jρ)+ ~∇ξ ·

(
NTρ~u

)
=0 , (2.1)

∂

∂t
(Jρ~u)+ ~∇ξ ·

(
NT(ρ~u~u+p

~~I)
)
= ~∇ξ ·(N

T ~~T ) , (2.2)

∂

∂t
(Jρe)+ ~∇ξ ·

(
NTρ~u(e+

p

ρ
)

)
= ~∇ξ ·

(
NT(

~~T ·~u)

)
− ~∇ξ ·

(
NT ~Q

)
, (2.3)

∂

∂t
(Jρcn)+ ~∇ξ ·

(
NTρcn~u

)
=− ~∇ξ ·

(
NT ~J n

)
+ Jρω̇n , n=1 . . . Ns , (2.4)

where ρ is the density, ~u is the velocity vector, and p is the pressure of the gaseous mixture. A

total of Ns species comprise the gaseous mixture, with Ns transport equations. The ideal gas law

provides the relation between density, pressure, and temperature for the mixture.
~~I is the identity
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tensor, and e = |~u|2/2 +
∑Ns

n=1 cnhn − p/ρ is the total specific energy, where cn and hn are the

mass fraction and the specific enthalpy for species n. The calculation of the specific absolute

enthalpy hn can be found in Gao et al. [32]. Essentially, the species enthalpy, thermal conductivity,

and viscosity are calculated from a polynomial fit described by McBride et al. [67–69] and the

Joint-Army-Navy-Air Force (JANAF) thermo-chemical tables [70].

To close the system, the molecular stress, heat flux, and species diffusion must be approxi-

mated [13]. The molecular stress,
~~T , is linearly proportional to the strain rate based on the Newto-

nian fluid assumption

~~T = 2µ

(
~~S −

1

3
J−1~~I ~∇ξ ·

(
NT~u

))
, (2.5)

with the strain rate tensor,
~~S, given by

~~S =
1

2

(
(~∇ξ~u)

(
NT

J

)
+

(
(~∇ξ~u)

(
NT

J

))T
)

. (2.6)

Fourier’s law is used to model the molecular heat flux, ~Q

~Q = −

(
κ
N

J
~∇ξT −

Ns∑

n=1

(
hn

~J n

)
)

, (2.7)

where κ is the thermal conductivity coefficient and ~Jn is the mass diffusion of species n

~Jn = −ρDn
N

J
~∇ξcn . (2.8)

The molecular diffusivity Dn for species n can be computed from the dynamic viscosity µn using

the Schmidt number Sc as Dn = µn/(ρSc) or through the given Lewis number Le and the heat

capacity at constant pressure cp by the relation of Dn = κ/ρcpLe. Bulk viscosity is assumed to be

negligible and there are no body forces present.

9



The reacting source term is based on the finite rate chemistry model described by Gao, Owen

et al. [3, 11–13, 34]. For convenience, they are briefly described here since the chemical source

Jacobian is required in the study and its derivation is dependent on the model of chemical source

production rate. The mean reaction rate for species n is calculated from the general form of the

law of mass action [71] with

ω̇n =
Mn

ρ

Nr∑

r=1

(
ν

′′

n,r−ν
′

n,r

)( Ns∑

j=1

αj,r[Xj]

)[
kfr

Ns∏

i=1

([Xi])
ν
′

i,r−kbr

Ns∏

i=1

([Xi])
ν
′′

i,r

]
, (2.9)

where Mn is the molar mass of species n, [Xn] = ρcn/Mn is the molar concentration of the nth

species, Nr is the number of chemical reaction steps, ν
′′

i,k are the stoichiometric coefficients for

the products, ν
′

i,k are the stoichiometric coefficients for the reactants, and αj,r is the third-body

coefficients specified in the reaction mechanism. The forward reaction rates are computed with

the Arrhenius form kf,r = AT βr exp (−Ea,r/RuT ) and, for reversible reactions, the backward

reaction rate is kb,r = kf,r/Keq,r which is computed from the equilibrium rate

Keq,r = exp

[
Ns∑

n=1

νn,r

(
−Gn

RuT

)](
patm
RuT

)∑Ns
n=1 νn,r

, (2.10)

with νn,r the change in products and reactants, νn,r = ν
′′

n,r − ν ′

n,r, and Gibb’s free energy [67]

Gn

RuT
=−

a1,n
2T

+ a2,n (1 + lnT ) + a3,nT (1− lnT )

− a4,n
T 2

2
− a5,n

T 3

6
− a6,n

T 4

12
− a7,n

T 5

20
+ a8,n − a9,nT , (2.11)

where Ru is the universal gas constant and the coefficients ai,n are the polynomial coefficients for

species n as provided by McBride, Gordon, and Reno [67]. Various reaction mechanisms are used

in the present study and are introduced as they appear in Section 6.2 and Chapter 7.
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2.2 Numerical Framework

The numerical framework supporting the current work is Chord [3, 16, 29–32, 34, 72]. Chord,

built upon the Chombo parallel AMR library [62], features: a) fourth-order accuracy in space and

time for smooth flows, b) adaptive mesh refinement in space and time, c) parallel scaling to over

1× 105 CPU cores using a flat MPI-everywhere approach, and d) mapped grids for representing

complex geometry. Generalized curvilinear transformation is used to map a structured grid in

physical space to a Cartesian grid in computational space, and multiblock allows the construction

of complex geometry. Solution adaptivity is achieved by applying a nested hierarchy of grids

concentrated on physics of interest, such as large solution discontinuities, regions of high vorticity,

or combustion flame fronts. Chord can model turbulence using both large eddy simulation (LES)

and Reynolds-averaged Navier-Stokes (RANS) approaches. The LES model used in Chord is a

state-of-the-art stretched-vortex model [73–75]. Chord is particularly powerful in solving high-

speed flows with chemical reactions where detonation waves or shocks are present. A range of

fuels and their chemical kinetics are available for combustion, including H2, CH4, C3H8, and

NH3.

A system of semi-discrete ordinary differential equations (ODEs) is first obtained from finite-

volume spatial discretization before applying a time marching method to advance the solution in

time. The governing equations, Eqns. (2.1)–(2.4), are written in vector form and include compo-

nents of the hyperbolic flux, elliptic flux, and reaction source

∂(JU)

∂t
+ ~∇ξ ·

(
NT
(
~F− ~G

))
= JS . (2.12)
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with the hyperbolic flux dyad ~F, elliptic flux dyad ~G, and reacting source vector S given by

U =




ρ

ρ~u

ρe

ρcn



, ~F =




ρ~u

ρ~u~u+ p
~~I

ρ~u (e+ p/ρ)

ρcn~u



, ~G =




0

~~T

~~T · ~u− ~Q

~Jn



, ~S =




0

0

0

ρω̇n




. (2.13)

For finite volume methods, the integral form of the governing equations is expressed first as

∂

∂t

∫

Vξ

(JU) +

∫

Vξ

~∇ξ ·
(
NT(~F− ~G)

)
dV =

∫

Vξ

JSdV . (2.14)

Then, the general divergence form is applied with the cell-averaged definition to arrive at the semi-

discrete form of the Navier-Stokes equations

d

dt
〈JU〉i = −

1

h

D−1∑

d=0

((
〈NT

d
~F〉i+ 1

2
ed − 〈N

T
d
~F〉i− 1

2
ed

)

−
(
〈NT

d
~G〉i+ 1

2
ed − 〈N

T
d
~G〉i− 1

2
ed

))
+ 〈JS〉i , (2.15)

with 〈·〉 indicating cell-averaged or face-averaged quantities. The computational space consists of

a rectilinear-grid with cell centers marked by the points (i0, ..., iD−1) = i ∈ Z
D, and faces at the

indices i± 1
2
ed where e

d is the unit vector in direction d, and D is the number of dimensions. A

fourth-order center-differencing scheme is used to compute face-averaged quantities and gradients

for flux evaluation. Face averaged quantities needed for the flux are interpolated from cell averaged

quantities with

〈W〉j+ 1
2
ed =

7

12

(
〈W〉j + 〈W〉j+ed

)

−
1

12

(
〈W〉j−ed + 〈W〉j+2ed

)
+O(∆x4) , (2.16)
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with 〈W〉j+ 1
2
ed the average primitive value on face j + 1

2
ed. The viscous flux additionally requires

face averaged gradients normal and tangential to the face. Computing these gradients is a more

extensive process than the face averaged values and the readers are referred to Gao et al. [16]

for details on this, as well as other steps taken to preserve fourth-order accuracy on face value

reconstruction and boundary conditions. When strong discontinuities or shock waves are present,

the face-averaged quantities are limited via the Piece-wise Parabolic Method (PPM) limiter [15,

76, 77]. This creates a left and right state of the face-averaged quantities where an upwind scheme

is applied by solving a Riemann problem at each face. A time integration method may then be

used to evolve the semi-discrete ODEs in time (Eqn. (2.15)). While the standard fourth-order

ERK4 method has been used in Chord for time integration, the present work is to enable ARK4

for efficient solution of stiff combustion simulations.
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Chapter 3

Fourth-Order ImEx ARK Method

Kennedy and Carpenter [50, 78] provide a great deal of detail for the ARK4 family of time

marching methods, and their work serves as an excellent reference. Herein, for completeness

and convenience, the main solution procedure and features that are employed and adapted for the

present work are described.

In the general ARK procedure, a semi-discrete form of the governing equations, such as

Eqn. (2.15), has the right-hand side (RHS) split into N terms

d

dt
〈JU〉 = L(〈JU〉) =

N∑

ν=1

L(〈JU〉)[ν] , (3.1)

where L(〈JU〉)[ν] represents one of the N additive terms from which the RHS is constructed. The

N terms are integrated by an m-stage Runge-Kutta method where each stage i is computed from

〈JU(i)〉 = 〈JU(n)〉+∆t(n)
N∑

ν=1

m∑

j=1

a
[ν]
ij L[ν],(j) , (3.2)

where 〈JU(n)〉 = 〈JU(tn)〉 is the solution at time step n, 〈JU(i)〉 = 〈JU(tn+ci∆t(n))〉 the solution

at the ith stage, and L[ν],(i) = L(〈JU(i)〉)[ν] the additive term ν. A nonlinear problem arises from

Eqn. (3.2), for which the specifics of solving depend on the exact ARK method employed. At the

end of the mth stage, the solution is updated with

〈JU(n+1)〉 = 〈JU(n)〉+∆t(n)
N∑

ν=1

m∑

i=1

b
[ν]
i L[ν],(i) , (3.3)

where 〈JU(n+1)〉 = 〈JU(tn+∆t(n))〉 is the solution at time step n+1. The present study uses step-

size control for considerations of accuracy, iteration, and stability, and therefore the embedded
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scheme is included as

〈ĴU
(n+1)
〉 = 〈JU(n)〉+∆t(n)

N∑

ν=1

m∑

i=1

b̂
[ν]
i L[ν],(i) , (3.4)

where ·̂ indicates a quantity associated with the embedded scheme. The solution 〈ĴU
(n+1)
〉 is used

in conjunction with the dense output for computing stage value predictors as initial guess for the

nonlinear solver. The coefficients a
[ν]
ij , b

[ν]
i , b̂[ν], and c

[ν]
i are Butcher tableau coefficients and can be

found in references [50, 78].

For the present study, the 2-ARK4(3)6L[2]SA scheme is used, whose format is uniquely identi-

fied as that there are 2 additive terms, the order of the main method is 4, the order of the embedded

method is 3, there are 6 stages, it is L-stable, the 2nd-order accuracy of the stage-order of the

implicit method, and the stiff term is integrated with the explicit singly diagonal implicit Runge-

Kutta (ESDIRK) method. ESDIRK is a subclass of Runge-Kutta methods that, like ERK, utilize

a lower-diagonal Butcher tableau, but are better suited for stiff problems. Explicit singly diagonal

indicates that the first stage is computed explicitly and that the diagonal coefficients of the Butcher

tableau are identical. Each stage after the first is solved implicitly, providing better performance

compared to fully implicit methods [79].

Accordingly, Eqn. (2.15) is split into two additive terms, a non-stiff term solved explicitly and

a stiff term solved implicitly. As the goal of this study is to increase the time-stepping size for

advancing chemical reactions, the reacting source term is chosen to be solved implicitly while the

inertial and viscous fluxes are chosen to be solved explicitly. This leads to the semi-discrete ARK

form

d

dt
〈JU〉 = L(〈JU〉) = L(〈JU〉)[ns] + L(〈JU〉)[s] , (3.5)
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with the two terms

L(〈JU〉)[ns] =−
1

h

D−1∑

d=0

((
〈NT

d
~F〉i+ 1

2
ed − 〈N

T
d
~F〉i− 1

2
ed

)

−
(
〈NT

d
~G〉i+ 1

2
ed − 〈N

T
d
~G〉i− 1

2
ed

))
, (3.6)

L(〈JU〉)[s] =〈JS〉i . (3.7)

The superscript [ns] indicates the non-stiff term that is solved explicitly and the superscript [s]

indicates the stiff term that is solved implicitly. Substitute these two terms into Eqn. (3.2) to get

the specific stage values

〈JU(i)〉 = 〈JU(n)〉+∆t(n)
m∑

j=1

a
[ns]
ij L[ns],(j) + a

[s]
ij L[s],(j) . (3.8)

The stage values must be found by solving the nonlinear problem

〈JU(i)〉 = 〈JU(n)〉+ X(i) +∆tγL[s],(i) , i ≥ 2 , (3.9)

where previous stage values are used to compute X(i) explicitly by

X(i) = ∆t
i−1∑

j=1

(
a
[ns]
ij L[ns],(j) + a

[s]
ij L[s],(j)

)
, (3.10)

with γ = 1/4 [50]. The coefficients a
[ns]
ij correspond to matrix entries from the Butcher tableau

used to integrate the non-stiff terms explicitly, while a
[s]
ij corresponds to matrix entries from the

Butcher tableau used to integrate the stiff terms implicitly. A modified Newton iteration method

is employed to solve Eqn. (3.9) by linearizing the nonlinear term with respect to the reference

time tn and the solution at ith stage and Newton iteration k: 〈JU(i)〉k. Designate the Jacobian

J = ∂L[s],(j)/∂U, take the first two terms of the Taylor expansion, eliminate the explicit dependence
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on time, then expand about 〈JU(i)〉k+1 to arrive at

L
[s],(i)
k+1 = L

[s],(i)
k + J

(i)
k

(
〈JU(i)〉k+1 − 〈JU(i)〉k

)
. (3.11)

This expansion is substituted into Eqn. (3.9)

〈JU(i)〉=〈U(n)〉+X(i)+∆tγL
[s],(i)
k +∆tγJ

(i)
k

(
〈JU(i)〉k+1−〈JU(i)〉k

)
, i ≥ 2 , (3.12)

and rearranging it leads to the form of

(I−∆tγJ
(i)
k )∆U=−(〈JU(i)〉k−〈JU(n)〉)+X(i)+∆tγL

[s],(i)
k , (3.13)

where k is the Newton iteration and ∆U ≡
(
〈JU(i)〉k+1 − 〈JU(i)〉k

)
. A converged solution

from Eqn. (3.13) provides the value 〈U
(i)
k+1〉 which is the solution of stage i, that is 〈U(i)〉.

The step update to time tn+1 is

〈JU(n+1)〉 = 〈JU(n)〉+∆t(n)
( 6∑

i=1

biL
[ns],(i) +

6∑

i=1

biL
[s],(i)

)
, (3.14)

for the fourth-order method, and

〈ĴU
(n+1)
〉 = 〈JU(n)〉+∆t(n)

( 6∑

i=1

b̂iL
[ns],(i) +

6∑

i=1

b̂iL
[s],(i)

)
, (3.15)

for the third-order embedded method.
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3.1 Time Step Size Control

For better control of accuracy, iteration, and stability, the PID-controller as described in Kennedy

and Carpenter [50] is considered, using

∆tPID = κ∆t(n)
[

ǫPID

||δ(n+1)||∞

]α [ ||δ(n)||∞
ǫPID

]β [
ǫPID

||δ(n−1)||∞

]γ
. (3.16)

In this formula, δ is the difference between the solution state associated with the fourth-order

method (Eqn. (3.14)) and the solution state associated with the third-order embedded method

(Eqn. (3.15)): δ(n+1) = 〈JU(n+1)〉 − 〈ĴU
(n+1)
〉. The max norm is evaluated over all solu-

tion components. In the present study, it was found through numerical experimentation that

ǫPID = 5.0× 10−10 provides a stable time integration method without limiting the step size signif-

icantly. Other parameters are specified as κ = 0.9 and the exponents by

α =

[
kI + kP +

(
2ωn

1 + ωn

)
kD

]
/p , β = [kP + 2ωkD] /p , γ =

(
2ω2

n

1 + ωn

)
/p , (3.17)

(3.18)

with p = 3 the order of the embedded method, kI = 0.25, kP = 0.14, kD = 0.1, and ωn =

∆t(n)/∆t(n−1).

3.2 Stage-Value Predictors

To potentially provide a better initial guess for the nonlinear solve of Eqn. (3.9), the dense

output format is used to extrapolate stage-value guesses for stage i. Concerning the stability, a

second order dense output method [80] is adopted and the specific form is given by

〈JU(i)〉
(
t(n) + θi∆tn

)
= 〈JU(n)〉+∆tn

m∑

i=1

b∗i (θi)
(

L[ns],(i) + L[s],(i)
)
, (3.19)
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with the extrapolation coefficient θi = 1 + rci, where r = ∆t(n)/∆t(n−1). The coefficients b∗i and

ci are in the Butcher tableau [50, 78].

3.3 Stability of 2-ARK4(3)6L[2]SA

A stability analysis is performed using a scalar ODE with both stiff and non-stiff terms,

dφ

dt
= λ[ns]φ+ λ[s]φ , (3.20)

with non-stiff eigenvalues λ[ns] from the L[ns] term that is solved explicitly and stiff eigenvalues

λ[ns] from the L[s] term that is solved implicitly.

The stability function is [50, 81]

R(λ[ns]∆t, λ[s]∆t) = 1 +
(
λ[ns]∆t+ λ[s]∆t

)
b
(
I− λ[ns]∆tA[ns] − λ[s]∆tA[s]

)−1
e , (3.21)

where e = {1, 1, . . . , 1} and the equation satisfies [8]

R(λ[ns]∆t, λ[s]∆t) =
det
(
I− λ[ns]∆tA[ns] − λ[s]∆tA[s] +

(
λ[ns]∆t+ λ[s]∆t

)
e · b

)

det
(
I− λ[s]∆tA[s]

) . (3.22)

Substituting in the Butcher Table coefficients b, A[ns], and A[s] and plotting the stable region

|R(λ[ns]∆t, λ[s]∆t)| < 1 yields Fig. 3.1. Clearly, ARK4 indeed provides a much larger stabil-

ity region than ERK4.
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(b) Stability region near the origin.

Figure 3.1: Stability region for ARK4 when treating the reaction term implicitly and the advection physics

explicitly.
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Chapter 4

Implementation of ARK4 in a Single-Level

Algorithm

First, the ARK4 scheme is described for a single-level grid before introducing AMR. Alg. 1

presents the pseudo code for the single-level algorithm for ARK4 as a reference. In Alg. 1, the

linear system, Eqn. (4.2), can be solved directly or iteratively. If an iterative approach is employed,

then the linear solver has a separate convergence criterion from the nonlinear solver. The present

study does a direct solve using LAPACK’s LU decomposition with partial pivoting and row inter-

changes [82]. As the implicit method is of stage-order two, the chemical Jacobian, ∂L[s]/∂U, is

computed using cell-averaged quantities that are approximated by cell-centered values. This leads

to a block-diagonal matrix for the Jacobian. In Eqn. (4.2), the matrix A is a block diagonal matrix

A = diag



[

I−∆tγ
∂L[s]

∂U

∣∣∣∣∣
k

]

1,1

, · · · ,

[
I−∆tγ

∂L[s]

∂U

∣∣∣∣∣
k

]

N,N


 . (4.1)

Matrix A being block diagonal results in an efficient solution process for the data locality that

allows each cell to be solved independently. Further, this allows each level of the AMR hierarchy

to be advanced independently as in standard ERK4. For the outer nonlinear solver, the step length

is computed as described in Section 4.1, though other line search methods such as the Goldstein-

Armijo method described by Dennis and Schnabel [83] could be considered. After a number

of numerical experiments, the tolerance value of ǫNLS = 1.0× 10−8 is found to work well for

the problems considered herein. Note that the convergence tests scale the tolerance value by the

current mapped density value, 〈Jρ(i)〉k+1, which in practice leads to a convergence tolerance on

the order of 1.0× 10−14.
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Algorithm 1 Algorithm to Solve the Nonlinear Problem

Objective: Solve nonlinear problem 〈JU(i)〉 = 〈JU(n)〉+ X(i) +∆tγL[s],(i)

1: Xi ← ∆t
∑i−1

j=1 a
[ns]
ij L[ns],(j) + a

[s]
ij L[s],(j)

2: 〈JU(i)〉k=0 ← 〈JU(i−1)〉 ⊲ Initial guess of 〈JU(i)〉 at iteration k = 0
3: while not converged do

4: Linearize the problem about 〈JU(i)〉k+1:

(
I−∆tγ

∂L[s]

∂U

∣∣∣∣∣k
)(
〈JU(i)〉k+1 − 〈JU(i)〉k

)

= −
(
〈JU(i)〉k − 〈JU(n)〉

)
+ Xi +∆tγL

[s],(i)
k .

(4.2)

5: Solve this linear A
(i)
k ~x(i) = ~b

(i)
k problem for 〈JU(i)〉k+1 where:

A
(i)
k =

(
I−∆tγ

∂L[s]

∂U

∣∣∣∣∣k
)

, (4.3)

~x
(i)
k = 〈JU(i)〉k+1 − 〈JU(i)〉k , (4.4)

~b
(i)
k = −

(
〈JU(i)〉k − 〈JU(n)〉

)
+ Xi +∆tγL

[s],(i)
k . (4.5)

6: if ‖~r
(i)
k ‖ ≤ 〈Jρ

(i)〉k+1 ǫNLS or ‖~x
(i)
k ‖ ≤ 〈Jρ

(i)〉k+1 ǫNLS then

7: Converged

8: else

9: 〈JU(i)〉k+1 ← 〈JU(i)〉k + ηA−1~rik ⊲ η is step length

10: end if

11: With residual ~r
(i)
k = A~x

(i)
k .

12: end while

4.1 Nonlinear Solver’s Step Length Calculation

Large step lengths in the nonlinear solver may cause negative species mass fractions. If species

mass fractions in a cell are allowed to become significantly negative, then the thermodynamic

state in that cell becomes inconsistent and a physically valid temperature and pressure cannot be

determined. Typical methods of preventing negative species mass fractions, such as using an inert

species to absorb error or re-normalizing the species to sum to unity [34, 84, 85], were found to

lead the species into inconsistent thermodynamic states in this study.

Therefore, two different methods are implemented to limit the step length. First, the step length

is reduced based on the change in species mass fractions at each iteration of the nonlinear solver.
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Each nonlinear iteration starts with step length of unity, η = 1. For iteration k, species n is

evaluated for a change in sign. If the sign has changed in this iteration, that is if

〈JU(i)〉k,n ≥ 0, and 〈JU(i)〉k+1,n < 0 , (4.6)

then the step length is reduced by

η = min

(
η,
−〈JU(i)〉k,n

x
(i)
k,n

)
. (4.7)

If species n at iteration k is negative and becomes more negative, that is if 〈JU(i)〉k,n < 0 and

x
(i)
k,n < 0, then the species is prevented from becoming highly negative by directly setting the

update value to

x
(i)
k,n = −〈Jρ(i)〉k=0 ǫNLS , (4.8)

where ǫNLS is the previously defined nonlinear solver convergence tolerance.

Even with the reduction in step length from the first method, the iteration counts remain high in

some situations. In cases where the iteration count exceeds 10 iterations, the solution is typically

oscillating between two states. Reducing the step length allows for converging on a single state.

Accordingly, a reduction in step length is also implemented after a fixed number of nonlinear

iterations, as shown in Eqn. (4.9). Both methods are necessary for robust convergence.

η =





min(η, 0.5) if k > 10 ,

min(η, 0.25) if k > 20 ,

min(η, 0.1) if k > 30 .

(4.9)
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4.2 Time Step Size Evaluation

The time step is calculated based on the maximum wave-speed for inviscid flux, the von Neu-

mann number for diffusive flux, and a species destruction rate for the reacting terms. Since uniform

grid spacing and refinement is used in computational space, ∆ξ = ∆η = ∆ζ , and only ∆ξ is used

in the following notation. The maximum wave-speed calculation is similar to the CFL number for

convection terms [16, 86]

∆tinertial = α
∆ξ

(|~u|+ a)max

, (4.10)

where ∆ξ is the grid spacing, the stability constraint α = 1.3925 is derived by Colella et al. [7],

|~u| is the magnitude of velocity, and a is the speed of sound (so that (|~u|+ a)max is the maximum

wave speed in the domain). The von Neumann number is used to calculate the stable ∆t for the

second-order diffusive terms [16, 72]

∆tviscous = 2.5
∆ξ2ρ

|λd|maxµD
, (4.11)

where |λd|max is a stability constraint for the mapped grids [72], µ is the dynamic viscosity, and D

the number of spatial dimensions. The chemical time step is determined by [3]

τn = min

(
[Xn]

Φ̇n

)
, (4.12)

with [Xn] the molar concentration and Φ̇n the destruction rate for the nth species defined by [87]

Φ̇n =
Nr∑

r=1

(
ν

′

n,rkf,r

Ns∏

i=1

[Xi]
ν
′

i,r + ν
′′

n,rkb,r

Ns∏

i=1

[Xi]
ν
′′

i,r

)
, (4.13)

where all the terms and notation for the chemical time step are the same as for the source term

(Eqn. (2.9)). The time step based on the destruction rate is given by ∆tchemical = min (τ1, τ2, . . . , τNs
)
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for Ns number of species. The overall time step size is calculated using [3]

∆t =

[(
1

CFL∆tinertial
+

1

∆tviscous
+

1

∆tchemical

)
−1
]
, (4.14)

with typically CFL ≤ 1. In this work, the chemical source term is treated implicitly and therefore

the chemical step size is removed from the overall time-step constraint. Indeed, this is the purpose

of employing ARK4, because the chemical time step is usually expected to be the smallest step

size among them. Correspondingly, the overall time step size is determined by

∆tphysics =

[(
1

CFL∆tinertial
+

1

∆tviscous

)
−1
]
. (4.15)

For pathologically stiff reaction mechanisms, instability still occurs. The last resort is to solve a

nonlinear optimization problem as proposed and described in Section 4.4. Nevertheless, a solution

of this optimization process may yield drastically different temperature or species mass fractions

from the previous time step or from its neighboring cells. Although not ideal, the nonlinear op-

timization is used as a final attempt to find a consistent thermodynamic state which will help the

dynamical system to recover gradually over the following time steps.

A more optimal solution is to avoid the instability issues, which can largely be accomplished

by limiting the time step size with the PID-controller. However, in some cases the PID-controller

predicts a step size smaller than the chemical time step size, particularly when a solution involves

shock waves. It is unclear exactly why this happens, but it should be avoided for the sake of

computational efficiency. Since the chemical time step size is the limiting factor for stability in

this study, the following is proposed and works reasonably well as a criterion for determining the

ARK4 time-step size

∆t = min{max{∆tPID, ∆tchemical}, ∆tphysics} . (4.16)
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Note that the PID-controller has a self-starting issue because it requires information from two

previous time steps. Therefore, for the first two time steps, Eqn. (4.15) is used. For a case with ex-

tremely stiff chemical kinetics that begin at the initial conditions, the more conservative Eqn. (4.14)

is used.

4.3 Chemical Source Jacobian

The chemical source term in the present ARK4 scheme is treated as a stiff term and thus is

integrated implicitly in time. Therefore, the source Jacobian, or specifically, the chemical source

Jacobian must be determined when solving Eqn. (3.13) for the next iteration. Since the reacting

source term is local, the implicit solve, and therefore the Jacobian, is computed at every cell inde-

pendently from the other cells. The chemical source Jacobian is determined analytically based on

the finite rate Arrhenius formula [88]. A numerical Jacobian was also approximated by finite dif-

ference. However, the analytical Jacobian is preferred in the present study for two reasons. First,

the formulation is more accurate while still applicable to arbitrary fuels and reaction mechanisms.

Secondly, the analytical form takes into account third-body reactions precisely. This consideration

of non-linearity helps the numerical stability. Through the study, the reaction Jacobian is found to

have a major impact on the solution accuracy and stability. For convenience, the chemical source

Jacobian is provided in Appendix A.

4.4 Optimization Method for Inconsistent Thermodynamic States

An important issue that deserves attention is how to handle a physical quantity that becomes

unphysical during the numerical solution process. Often in numerical combustion, due to dis-

cretization error and round-off error, a species concentration may become negative, or the sum-

mation of all species mass fractions may be greater or less than unity, or both scenarios happen.

Because of this, more than often, the temperature of the mixture could be out of the physical range.

All is deemed unphysical. Previously, a simple renormalization correction method was used [34],

and it worked well for the reactions used in that reference. For convenience and comparison, the
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simple renormalization method is duplicated here. This process is applied to both cell-averaged

values and cell-point values, so the cell-averaged indicators, 〈·〉, are omitted for the remainder of

this section. For a species n, the mass fractions are truncated to the range of physically possible

values if necessary ˜ρcn = max(0,min(ρ, ρcn)). Then, the species are normalized by the sum of

species mass fractions ρcn = ( ˜ρcnρ) /
(∑Ns

j=1 ρ̃cj

)
.

Nevertheless, the renormalization method works less ideally for the hydrocarbon reactions,

such as CH4-air and C3H8-air considered in the present study. The reaction mechanisms for

CH4-air and C3H8-air are 13-species 38-reactions [89] and 25-species 66-reactions [90], respec-

tively. Both reactions are stiff. Repeatedly, unphysical phenomena were observed during the

solution process for the CH4-air and C3H8-air combustion. In addition to the different fuel com-

bustion kinetics, the present study introduces an additional nonlinear solver arising from the ARK4.

Usually, the symptom would be demonstrated by the nonlinear solver which solves the tem-

perature from the total energy by finding the root of the specific total energy of the mixture

f(T ) =
∑Ns

n=1 cnhn(T ) − RT − e + |~u2| /2, where the kinetic energy and total energy can be

found directly from the conservative state. On top of this temperature nonlinear solve, ARK4 adds

the nonlinear solve as Alg. 1. All may contribute to the unphysical issue.

With extensive and thorough numerical experiments by devising various correction methods,

an optimal method which is based on BFGS [91] is achieved. The motivation behind the use

of BFGS is built on the concept that the numerical correction of species in the solution process

should be consistent in the mathematical and numerical sense. Due to discretization and round-off

errors, the numerical system produces unphysical quantities and must then adjust itself through an

optimization process to become physical again. The unphysical situation has been predominately

associated with the species mass fractions. The species distribution should be adjusted by an

optimization process while satisfying the total energy of the system, which is conserved. The

optimization method is L-BFGS-B, a limited-memory quasi-Newton code for bound-constrained

optimization. Its main concept is the use of limited-memory BFGS matrices to approximate the

Hessian of the objective function. The method is especially useful when the Hessian matrix is not
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practical to compute. L-BFGS-B is widely used and well documented. Briefly, for this study, the

objective functions and the constraints are

f(T, c̃n) =
Ns∑

n=1

c̃nhn(T )−
Ns∑

n=1

c̃nRnT − e+
∣∣~u2
∣∣ /2 , (4.17)

min
T,cn

F(T, cn) = |f(T, c̃n)| , (4.18)

s.t. 0 ≤ cn ≤ 1, 290 ≤ T ≤ 5590, and c̃n = cn/
Ns∑

j=1

cj . (4.19)

For the present combustion problems, the method has demonstrated a reasonable balance between

the species correction and the overall numerical stability in comparison to the simple renormaliza-

tion method. The computational cost is negligible.
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Chapter 5

Integration of ARK4 with AMR

Now, the ARK4 scheme is implemented with AMR. Implementing the ARK4 method in the

context of AMR presents numerical challenges. Furthermore, coupling high-order ImEx time inte-

grators with high-order finite-volume methods introduces robustness issues. Operators to address

the challenges are discussed. Subcycling and the temporal interpolation scheme required to enable

ARK4 with AMR are briefly described.

5.1 Subcycling

Subcycling allows for adaptive refinement in time. The time step size of the fine grid, δt, is

scaled from the time step size of the coarse mesh, ∆τ, by the refinement ratio n = ∆τ/δt. A fixed

ratio n for all levels maintains the same CFL condition for all spatial resolutions.

This process is shown in Fig. 5.1 for a two-level grid. The coarse level, Ω0, is first integrated

from time point τ0 to τ
1 using ∆τ. Next, the fine level, Ω1, is integrated in smaller steps from

t0 to t4 using δt, which is one-fourth of ∆τ. Prior to each step on the fine grid, interpolations in

space and time fill the invalid ghost cells surrounding the fine grid as indicated by the upwards

pointing arrows. Also refer to Fig. 5.2 for the definition of ghost cells. After the fine grid has

been integrated to the end of the subcycling interval (t3), the fine solution is averaged down to the

overlaying region on the coarse grid and flux corrections occur in adjacent coarse cells to preserve

single-valued fluxes along the coarse-fine interface.

5.2 Interpolation in Time

In AMR with subcycling, invalid ghost cells need to be filled at interfaces via interpolation

from the next coarser grid. Since subcycling leads to the finer grid being solved at some time

intermediate time relative to the time points of the coarser grid, a time interpolation is required

in addition to a spatial interpolation. Dense output as described by Kennedy-Carpenter [50] is
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Figure 5.1: Subcycling allows coarse

spatial meshes to take larger time

steps than the nested fine spatial

meshes. This allows each level to take

time integrations with step sizes near

the stability limit of the level.

Figure 5.2: An AMR hierarchy with a coarse level Ωℓ−1 and

a fine level Ωℓ. Invalid ghost cells form a halo around Ωℓ and

allow centered stencil operations to be used on the fine level at

the AMR interfaces.

used for the interpolation in time, and a fourth-order least squares approximation as described

by McCorquodale-Colella [15] is used for the interpolation in space. As the spatial interpolator

requires no changes to work with ARK4, only the time interpolation technique is described.

First, the invalid ghost cells that need to be filled by interpolation are described. Figure 5.2

shows two grids in the AMR hierarchy, a coarse level Ωℓ−1 and a fine level Ωℓ. The base level,

denoted by Ω0, contains no invalid ghost cells because any ghost cells outside the domain on Ω0

are either physical boundary ghost cells that are filled by the physical boundary conditions or are

periodic ghost cells. Therefore, only the AMR levels above the base grid are of concern for this

interpolation process (that is, for levels Ωℓ, ℓ > 0). Due to the proper nesting requirements [62],

all invalid ghost cells on Ωℓ, ℓ > 0 have a sufficient number of cells on grid Ωℓ−1 to perform the

interpolation procedure using only the valid cells of Ωℓ−1.

During coarse grid integration from time t(ℓ−1) to time t(ℓ−1) +∆t(ℓ−1), the coarse stage values

(Eqn. (3.8)) are stored for use in temporal interpolation. Then, the fine grid is integrated in time

over that same interval with multiple smaller steps of size ∆t(ℓ). At each stage of each step on the

fine level, the coarse solution is interpolated in time and space to fill the invalid ghost cells of level

Ωℓ.
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Dense output provides high-order interpolation of the coarse grid solution to any point between

time t(ℓ−1) and t(ℓ−1) +∆t(ℓ−1). Given a fine level at time tℓ = t(ℓ−1) + θ∆t(ℓ−1) such that t(ℓ−1) ≤

t(ℓ) ≤ t(ℓ−1) +∆t(ℓ−1), where θ =
(
tℓ − t(ℓ−1)

)
/∆t(ℓ−1), interpolation is performed with

〈JU〉(ℓ−1)
(
t(n) + θ∆t

)
= 〈JU(n)〉+ (∆t)(n)

s∑

i=1

b∗i (θ)
(

L[ns],(i) + L[s],(i)
)
, (5.1)

where b∗i (θ) is the dense output coefficient b∗i (θ) =
p∗∑
j=1

b∗ijθ
j and the values of b∗ are given in the

Butcher tableau. An assumption is made that b∗i,ns = b∗i,s = b∗i which is valid for the ARK4 scheme

used in the present study per Kennedy-Carpenter [50]. After the interpolated solution of the coarse

grid is evaluated, the spatial interpolator is used to fill the invalid ghost cells of the fine spatial grid.

Stage-value prediction via extrapolation, as described in Section 3.2, can be performed with

AMR with one caveat. Extrapolation requires the stage values from one previous time step, so

stage-value prediction cannot be performed on the first time step. Likewise, when new finer spatial

levels are created, previous step stage values are not available. Therefore, extrapolation is not done

on the first step of a newly created fine level. Similarly, when an AMR level re-grids, the previous

step stage values are not defined on newly refined regions. After re-gridding, extrapolation is not

used for the first step.

PID step size control also requires information from two previous step solution values to be

calculated. More precisely, it requires the max norm of the difference between the 4th-order so-

lution and the solution associated with the 3rd-order embedded method for the previous two time

steps. When a new level is created, Eqn. (4.15) is used for computing the step size for the first two

time steps. When re-gridding happens, that is when the grids on an existing level adjust to updated

solution conditions, the norms from the previous time steps may be used and the PID method can

be used for step size control. Shown in Alg. 2 is the solution process for updating the solution on

a level Ωℓ with AMR.
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Algorithm 2 Recursive time advancement with AMR and ARK4

function ADVANCE(ℓ)
Advance 〈JU〉l from time tl to time tl +∆tl per Section 4:

1. Solve for stage i values as described in Alg. 1

2. Store stage values for interpolation on finer levels

3. Accumulate flux values at faces on boundaries between Ωℓ and Ωℓ+1

4. Update solution per Eqn. (3.3)

while tℓ+1 < tℓ do

Call Advance(ℓ+ 1)

end while

Synchronize the solution on level ℓ with the solution on level ℓ+ 1:

1. Average solution down from overlying fine regions

2. Perform flux corrections at boundaries between Ωℓ and Ωℓ+1

3. Update time tℓ ← tℓ +∆tℓ

Adjust the grid to the solution, if necessary

end function
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Chapter 6

Verification and Validation of ARK4 with AMR

Prior to applying ARK4 to solve practical combusting flows, the algorithm is verified and

validated. Verification is the process through which the programming implementation is confirmed

to match the conceptual model. Through validation, the computational simulation is compared

against literature data.

6.1 Verification
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Figure 6.1: The initial hydrogen and oxygen mass fractions for the convection-diffusion-reaction test case.

To verify the ARK4+AMR algorithm, a grid convergence study is performed on a pseudo

one-dimensional convection-diffusion-reaction test case with no gradients in the y-direction. A

rectangular domain is used with periodic boundaries on all sides with a length of 8 cm and a height

of 0.25 cm. A set of four meshes were used from the coarse grid with 256 × 8 cells up to a fine

grid of 4096 × 128 cells, with a refinement ratio of 2 between two consecutive grids. The H2–O2

combustion is modeled with a chemical mechanism of 8 species and 18 reactions without the inert

N2 [92]. A Gaussian distribution of the fuel, H2, is defined by cH2 = exp (−(x− x0)
2/(2σ2)),

where σ = 0.005 is the width of the distribution and x0 = 3.7 cm is the center of distribution.

The oxidizer, O2, is set to cO2 = 1 − cH2 and all other species are initialized to zero. A profile
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Figure 6.2: Error reduction rates of ρcO2 and ρcH2 converge to four as the mesh is refined.

of the initial conditions for the hydrogen and oxygen mass fractions is shown in Fig. 6.1. The

temperature of the fuel is TH2 = 1000K and the temperature of the oxidizer is TO2 = 2000K, the

density of the mixture is initialized to ρmix = patm (cH2RH2TH2 + cO2RO2TO2)
−1

where RH2 and

RO2 are the gas constants of the fuel and oxidizer, respectively, and patm is the standard atmospheric

pressure. The entire domain is initialized with standard atmospheric pressure and a constant flow

of U0 = 20m s−1 in the positive x-direction.

Richardson extrapolation is used to verify the 4th-order error convergence rates using the

4096 × 128 case as the reference solution. Chord has previously been verified as achieving 4th-

order error convergence for non-reacting multi-species flow [63], so this study focuses on verifying

the convergence rate for reacting flows with ARK4 time integration. The reference case is run for

1600 time steps with a fixed ∆t = 2.5× 10−9 s. For the subsequent cases, the time step size and

number of time steps is scaled in accordance with the CFL number. Shown in Fig. 6.2 are the

errors of the conservative quantities ρcH2 and ρcO2 as the mesh is refined from 256 cells to 2048

cells in the x-direction, along with two guidelines showing a 4th order and 5th order slope. This

shows that the solution errors for ρcO2 and ρcH2 are converging with 4th order accuracy as the
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grid is refined, confirming that the 4th order accuracy of the algorithm is maintained with ARK4

time integration. For completeness and reference, the solution error and convergence rates for all

conserved solution quantities are tabulated in Table 6.1.

Table 6.1: Solution errors measured with the L∞-, L1-, and L2-norms at 4.0× 10−6 s and convergence

rates between consecutive grid resolutions for the convection-diffusion-reaction case.

Var L#-norm 256×8 Rate 512×16 Rate 1024×32 Rate 2048×64

L∞ 7.074× 10−4 1.856 1.954× 10−4 3.335 1.937× 10−5 3.887 1.309× 10−6

ρ L1 1.716× 10−5 2.763 2.527× 10−6 3.713 1.927× 10−7 3.887 1.303× 10−8

L2 8.796× 10−5 2.410 1.655× 10−5 3.511 1.451× 10−6 3.908 9.669× 10−8

L∞ 5.941× 10−1 1.638 1.909× 10−1 3.181 2.106× 10−2 3.905 1.405× 10−3

ρu L1 1.576× 10−2 2.642 2.525× 10−3 3.660 1.997× 10−4 3.898 1.339× 10−5

L2 8.029× 10−2 2.283 1.650× 10−2 3.459 1.500× 10−3 3.894 1.009× 10−4

L∞ 1.657× 103 1.878 4.509× 102 3.285 4.625× 101 3.901 3.097× 100

ρe L1 3.924× 101 2.734 5.890× 100 3.696 4.543× 10−1 3.894 3.056× 10−2

L2 2.032× 102 2.395 3.865× 101 3.500 3.416× 100 3.906 2.279× 10−1

L∞ 1.965× 10−5 1.544 6.738× 10−6 3.052 8.121× 10−7 3.719 6.166× 10−8

ρcH2 L1 3.837× 10−7 2.151 8.639× 10−8 3.350 8.473× 10−9 3.910 5.637× 10−10

L2 1.967× 10−6 1.830 5.531× 10−7 3.253 5.803× 10−8 3.848 4.029× 10−9

L∞ 4.895× 10−4 1.751 1.454× 10−4 3.205 1.577× 10−5 3.940 1.027× 10−6

ρcO2 L1 1.111× 10−5 2.516 1.943× 10−6 3.546 1.664× 10−7 3.913 1.105× 10−8

L2 5.638× 10−5 2.203 1.224× 10−5 3.386 1.171× 10−6 3.909 7.792× 10−8

L∞ 1.327× 10−5 2.600 2.189× 10−6 3.900 1.466× 10−7 3.746 1.093× 10−8

ρcH L1 1.814× 10−7 2.933 2.374× 10−8 3.848 1.649× 10−9 3.900 1.104× 10−10

L2 1.161× 10−6 2.791 1.678× 10−7 3.850 1.164× 10−8 3.923 7.674× 10−10

L∞ 1.569× 10−4 3.164 1.751× 10−5 4.183 9.641× 10−7 3.675 7.549× 10−8

ρcO L1 1.987× 10−6 3.766 1.460× 10−7 3.992 9.177× 10−9 3.559 7.789× 10−10

L2 1.377× 10−5 3.515 1.204× 10−6 4.178 6.654× 10−8 3.547 5.691× 10−9

L∞ 9.613× 10−5 2.550 1.642× 10−5 3.822 1.161× 10−6 3.621 9.434× 10−8

ρcOH L1 1.495× 10−6 3.250 1.572× 10−7 4.206 8.517× 10−9 3.631 6.873× 10−10

L2 8.836× 10−6 2.877 1.203× 10−6 4.015 7.437× 10−8 3.664 5.868× 10−9

L∞ 2.457× 10−7 2.209 5.314× 10−8 3.448 4.868× 10−9 3.671 3.823× 10−10

ρcHO2 L1 8.672× 10−9 3.033 1.059× 10−9 3.622 8.604× 10−11 3.752 6.388× 10−12

L2 3.553× 10−8 2.770 5.210× 10−9 3.604 4.285× 10−10 3.915 2.841× 10−11

L∞ 3.829× 10−7 3.372 3.697× 10−8 4.534 1.596× 10−9 3.915 1.058× 10−10

ρcH2O2 L1 5.394× 10−9 4.087 3.173× 10−10 4.315 1.594× 10−11 3.893 1.073× 10−12

L2 3.666× 10−8 3.811 2.613× 10−9 4.531 1.130× 10−10 4.024 6.948× 10−12

L∞ 2.507× 10−4 2.202 5.449× 10−5 3.841 3.804× 10−6 4.044 2.306× 10−7

ρcH2O L1 4.560× 10−6 2.970 5.819× 10−7 4.102 3.388× 10−8 3.921 2.236× 10−9

L2 2.633× 10−5 2.647 4.203× 10−6 3.977 2.670× 10−7 3.999 1.670× 10−8
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6.2 Validation
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Figure 6.3: The shock bubble case setup: an H2-bubble in air is advected through a standing shock of

Ma = 2.

To further validate Chord’s ARK4 time stepping with reacting flows and shock waves, a two-

dimensional H2 bubble is convected through a shock. The case geometry and initial conditions are

shown in Fig. 6.3, which replicates the geometry and initial conditions of Owen et al. [3], where the

standard ERK4 method was used to validate Chord against Billet et al. [93] and Attal et al. [94]. As

such, the new ARK4 time integration method is compared against the pressure profile published by

Owen et al. as well as the results from Chord’s existing standard ERK4 time integration. Slip walls

bound the upper and lower boundaries of the y-direction, while extrapolated boundary conditions

are used on the left and right x-direction boundaries.

A Mach 2 steady planar shock is located 0.75 cm to the right of the origin and parallel to

the y-axis, and the hydrogen bubble is located just upstream of the shock. The initial velocities

UI = UIII = 1.24× 105 cm s−1 and UII = 4.34× 104 cm s−1 are the upstream and downstream

velocities of the shock. For the reaction mechanism, the same H2–O2 mechanism in Section 6.1 is

used for all shock bubble cases. The hydrogen mass fraction is initialized to

cH2 =
1

2

[
1 + tanh

(
rc − r

C2

)]
, r =

√
((x− x0)2 + (y − y0)2) , (6.1)

36



with rc the radius of the bubble and the coordinate (x0, y0) the center of the bubble. The coefficient

C2 determines the sharpness of the interface between the H2 bubble and the surrounding air. The

case parameters are C2 = 3× 10−3 cm−1, rc = 0.28 cm, and (x0, y0) = (0.4, 0.75)cm. The

mass fractions for the surrounding air are set to cN2 = 0.767 and cO2 = 0.233 both upstream and

downstream of the shock.

This case uses the same base resolution and AMR levels as in Owen et al. [3], that is, a base

resolution of 1024× 512 with three levels of AMR and a refinement ratio of 2 for each level. With

AMR, the inter-level ARK4 operations are validated. The grids are refined based on gradients of

density and pressure. The case is run to a solution time of t = 10 µs and solution profiles are taken

along the center line marked in Fig. 6.3.

The pressure profile by ARK4, shown in Fig. 6.4a, tracks nearly exactly to both Owen et

al. [3] and the ERK4 case, with only a slight over-prediction of pressure at the right reflected

shock. Density in Fig. 6.4b is also in nearly identical agreement, with a reciprocating slight under-

prediction in the right reflected shock. Shown in Fig. 6.4c are the traces of H2O mass fraction found

from ARK4 and ERK4. There is nearly identical agreement between the two methods. Likewise,

the mass fraction of OH found from ARK4 matches well with the ERK4 case, as seen in Fig. 6.4d.

This validates the accurate predictions by ARK4.

The evolution of the solution over time for three different cases is shown in Fig. 6.5. In addition

to the reacting ARK4 and ERK4 cases, a non-reacting ERK4 case is run in order to observe the

effects of reactions on the acoustic waves. The figures show pressure contour lines ranging from

1 atm to 7.37 atm. Overlaid on the pressure contours are shadings of H2 mass fractions. In the

first row, Figs. 6.5a–6.5c show the solution at time t = 1.5 µs. The initial H2 mass fraction bubble

has started to impinge on the standing shock and is being compressed, while reflected, refracted,

and transmitted waves are being produced. In the second row, solutions at time t = 3.5 µs are

shown in Figs. 6.5d–6.5f. A right reflected shock forms downstream of the H2 bubble and a left

reflected wave forms inside the H2 bubble. Also seen in all three cases is the secondary transmitted

wave forming to the left of the H2 bubble. Lastly, in the bottom row, Figs. 6.5g–6.5i show the
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Figure 6.4: Pressure, density, H2O mass fraction, and OH mass fraction profiles along the center line at

t = 3.5 µs for the shock bubble case with three AMR levels.

solutions at time t = 10 µs. A wave is reflected from the top boundary, and two counter-rotating

vortices have developed in the H2 bubble. At all three solution times, the ARK4 and ERK4 pressure

waves are nearly identically located, while the no-reaction case pressure waves slightly lag behind

the pressure waves of the reaction cases. This indicates that the reactions are driving the pressure

waves forward, as expected, and that ARK4 does correctly model the reactions driving the pressure

waves.

The comparison of time step sizes for the inertial, viscous, chemical, and total time step size is

shown in Fig. 6.6. In these figures, level 0 corresponds to the coarsest mesh resolution and level 2

corresponds to the finest mesh resolution. Due to the subcycling algorithm, the finer AMR levels

require more steps than coarser level, in this case at a ratio of 2 per level. The x-axes of levels

1 and 2 have been scaled to the same length as the level 0 x-axis in order to correctly align each
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(a) ARK4, t = 1.5 µs. (b) ERK4, t = 1.5 µs. (c) ERK4 No Reactions, t = 1.5 µs.

(d) ARK4, t = 3.5 µs. (e) ERK4, t = 3.5 µs. (f) ERK4 No Reactions, t = 3.5 µs.

(g) ARK4, t = 10 µs. (h) ERK4, t = 10 µs. (i) ERK4 No Reactions, t = 10 µs.

Figure 6.5: Pressure contour lines (1 atm to 7.37 atm) superimposed on cH2 (grayscale) obtained by ARK4

and ERK4 with reactions, respectively, in addition to ERK4 with no reactions. These shock bubble cases

are run with three levels of AMR.

level’s time step number with the solution time. On the finer levels, the inertial step size decreases

proportional to the mesh spacing, as required by the CFL condition. Likewise, the von Neumann

condition can be seen with the viscous step size decreasing quadratically to the mesh spacing. The

chemical time step size increases as the mesh is refined, and varies over time as the reactions begin

and then stabilize over time. The ARK4 time step size represents the time step size computed

from Eqn. (4.16). For this high-resolution shock bubble case, the inertial time step size is smaller

than the chemical time step size and so ARK4 cannot provide a speedup over ERK4 as expected.

Again, the purpose of this case is to demonstrate that ARK4 properly resolves the strong shock

waves, flame fronts, and chemical reactions.
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Figure 6.6: The step size found from inertial, viscous, and chemical time scales on the base level and three

AMR levels of the 2D shock bubble case, along with the step size taken by ARK4. Due to subcycling, the

finer levels take more steps than the coarser level at a ratio of 2 per level.
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Chapter 7

Results and Discussion of ARK4 with AMR

The ARK4+AMR algorithm is now applied to solve reacting flows in a bluff-body combus-

tor, a case that is near-intractable for explicit time stepping. Research into aerospace combustors

is accelerating due to a demand for increased efficiency and fewer emissions, but the complexity

of fluid and combustion interactions in practical applications provides a significant challenge to

numerical combustion. The efficient numerical techniques are tested by using the bluff-body com-

bustor as a representative for practical combustors. Common physical processes are sufficiently

represented, such as shear layers, a region of recirculation behind the flame holder with geometric

complexity, volumetric expansion in the wake, and complex thermoacoustic instabilities [90, 95].

7.1 Combustion in 2D Bluff-Body Combustor

The bluff body, as shown in Fig. 7.1 by the equilateral triangle shaded in gray, sits in a straight

channel with three sections of interest: the inlet, the combustor, and the outlet. At the inlet, a

gaseous mixture consisting of 4.01% C3H8, 22.36% O2, and 73.62% N2 by mass fraction flows

into the domain at a velocity of 15.7m s−1. The mixture has a temperature of 310K and a pressure

of 101 325Pa. The initial conditions in the domain are set to the same values as the inlet, except

for a small region around the bluff body. Near the bluff body, the gas mixture is initialized to
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Figure 7.1: A diagram of the bluff-body combustor geometry.
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12% CO2, 6.54% H2O, 5.14% O2, and 73.62% N2, with a temperature of 1300K and a pressure of

106 661Pa. This hot spot acts as the ignition to initiate reactions. The velocity near the bluff body

is the same as the initial conditions.

(a) The initial grid boxes for the bluff-body combustor.

(b) Grid boxes showing dynamic adaptation to the

solution at t = 5.2ms.
(c) At t = 5.2ms the cells are dynamically refined

for chemically reacting regions. This is a close up

view of the cells in the region outlined in red in

Fig. 7.2b.

Figure 7.2: In the physical domain: grids at the initial conditions and after some solution time.

A base mesh of 11 008 cells is used, with the following cases using various AMR levels. The

Cartesian computational domain is transformed from the physical domain using the MMB tech-

nique, enabling Chord to handle relatively complex geometries, such as the bluff body, while

efficiently using the finite-volume algorithm on a Cartesian grid with AMR. Cells are grouped into

grid boxes, and grid boxes are distributed across processors to achieve spatial parallelization. The

initial grid boxes are shown in Fig. 7.2a, with the domain comprised of seven mapped blocks. Dur-

ing time integration, the AMR algorithm tags regions in the domain based on the values of OH and

CH2O mass fractions, subject to cOH × cCH2O > 2.0× 10−9. A representative set of grid boxes
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Table 7.1: A comparison between ARK4 and ERK4 for the average step size and average wall-clock time

per step (in seconds) for the 2D bluff-body combustor.

Case Average ∆t Average Wall-Clock/Step Speedup

ERK4 2.5× 10−9 0.091 –

ARK4 1.0× 10−6 0.521 70

at t = 5.2ms is shown in Fig. 7.2b, and the individual cells may be seen at this solution time in

Fig. 7.2c in a close-up view.

For all cases considered here, neither the PID step-size controller nor the extrapolation for

initial stage value guesses in the ARK4 scheme is invoked. The PID step-size controller is found

unnecessary to control the stability, while in some cases, extrapolating initial stage value guesses

appears to prevent the nonlinear solver from converging. Regarding the nonlinear convergence

tolerance, it is set to ǫNLS = 1.0× 10−8, but is scaled by Jρ which leads to a typical value of ǫnls ≈

1.0× 10−14. A very tight convergence tolerance is required to ensure a consistent thermodynamic

state in a cell.

First, two cases, one with ARK4 and the other with ERK4, are run to a solution time of

t = 1ms. For a fair comparison, both cases use the same base grid. Results are presented to com-

pare the solution accuracy and efficiency between the ERK4 and ARK4 time integration methods.

Statistical data on the average time step size and average wall-clock time per step is collated in

Table 7.1. This demonstrates that the ARK4 time integration is able to take time step sizes of

approximately three orders of magnitude larger than the ERK4 time integration, with a wall clock

time of approximately half an order of magnitude longer per time step. This leads to an average

speedup of 70× by using ARK4 for the bluff body problem while providing an acceptable solution

accuracy. The ERK4 and ARK4 time integrators require 310 000 steps and 1200 steps, respectively,

to reach the same solution time. Figure 7.3 compares the contours of temperature, cH2O, and cOH

in a region immediately behind the bluff body where the flow and flame dynamics is important.

The difference in the temperature contours between the two time integrators is negligible for both

the structure and the magnitude. The cH2O contours are also nearly indistinguishable. Although
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the difference between the cOH contours is visible in a few spatial locations, the structures remain

identical. The visible difference is not a concern because OH variation over time is much more

dynamic than other species and its impact on the flame dynamics overall seems to be short-lived.

The difference in a mean distribution over a characteristic timescale is significantly less than that

shown in an instantaneous snapshot. The ARK4 time integrator achieves a 70× times speed-up for

this test.

309.4
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1,169.2

1,599

(a) Temperature for ARK4 after 1,200 steps. (b) Temperature for ERK4 after 310,000 steps.

0
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(c) H2O mass fraction for ARK4 after 1,200 steps. (d) H2O mass fraction for ERK4 after 310,000 steps.

0

0.72

1.43

2.15
×10−3

(e) OH mass fraction for ARK4 after 1,200 steps. (f) OH mass fraction for ERK4 after 310,000 steps.

Figure 7.3: Distributions of temperature, H2O mass fraction, and OH mass fraction behind the bluff body,

comparing ARK4 and ERK4 at t = 1ms for the C3H8-air chemistry.
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The case with the ARK4 time integrator was further advanced to a solution time of t = 5.2ms,

while two additional levels of AMR was employed with a refinement ratio of 2 for each level.

Figure 7.4 shows the temperature, density, cH2O, and cOH contours at the same physical region

as that in Fig. 7.3. As seen in Shanbhogue et al. [96], the recirculation and the beginning of the

generation of flame wrinkling are clearly observed. Using AMR, the flow and flame details are

efficiently resolved while greatly reducing the computational cost for this ARK4 case. Without

AMR, the base grid did not resolve the fine structure. Without AMR, it is simply not affordable

for a uniformly refined grid that has the same finest resolution as it in this AMR case,

309.9

865.6

1,421.3

1,977

(a) Temperature, ARK4.

0.18

0.51

0.85

1.18

(b) Density, ARK4.

0

2.59

5.18

7.76
×10−2

(c) H2O mass fraction, ARK4.

0

1.71

3.42

5.13
×10−3

(d) OH mass fraction, ARK4.

Figure 7.4: Distributions of temperature, density, H2O mass fraction, and OH mass fraction behind the bluff

body at t = 5.2ms for the C3H8-air combustion with two levels of AMR.

More interestingly, the time step sizes for the convective, diffusive, and reactive physics on

each AMR level are shown in Fig. 7.5. As shown in Fig. 7.5a, the inertial time step size de-

creases proportionally to the mesh resolution as expected from the CFL condition (Eqn. (4.10)).

Figure 7.5b shows the viscous time step size decreases quadratically to the mesh resolution as ex-

pected from the von Neumann condition (Eqn. (4.11)). As the mesh is refined, the average step
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Figure 7.5: The step size found from inertial, viscous, chemical, and ARK4 time scales on the base grid

and two AMR levels of the C3H8-air chemistry in the 2D bluff-body combustor. Due to subcycling, the finer

levels take more steps than the coarser level at a ratio of 2 per level.

size for chemical reactions increases as shown by Fig. 7.5c. Nevertheless, the chemical time step is

still the limiting one on each AMR level. Lastly, the combined ARK4 time step size, as computed

by Eqn. (4.15), is shown in Fig. 7.5d.

Inspired by the observation through numerical experiments that the geometry has demonstrated

an impact on chemistry stiffness, the impact on stiffness of the H2-air combustion in the bluff body

configuration is compared to the shock bubble configuration where there is no geometric com-

plexity. Figure 7.6 shows the evolution of the inertial (convective), viscous, chemical, and ARK4

time-step sizes over the solution time and the AMR level. Similarly to the C3H8-air combustion,

the inertial and viscous time step sizes for the H2-air flame decrease proportionally to the mesh

spacing and mesh spacing squared, respectively. The same is also observed that the chemical step

size increases as the spatial resolution increases. However, the evolution of the chemical time step
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Table 7.2: The average ∆t (in seconds) for the H2-air and C3H8-air chemistry for the shock bubble and

bluff body cases.

Case Level ARK4 ∆t Inertial ∆t Viscous ∆t Chemical ∆t

Shock bubble 0 5.6× 10−9 6.4× 10−9 1.4× 10−7 1.4× 10−8

(H2-air) 1 2.7× 10−9 3.2× 10−9 3.5× 10−8 2.6× 10−8

2 1.3× 10−9 1.6× 10−9 8.9× 10−9 5.0× 10−8

3 5.5× 10−10 8.0× 10−10 2.2× 10−9 9.8× 10−8

Bluff body 0 1.8× 10−7 1.1× 10−6 7.9× 10−4 8.8× 10−12

(H2-air) 1 1.0× 10−7 5.3× 10−7 1.9× 10−4 9.6× 10−9

2 5.8× 10−8 2.6× 10−7 4.8× 10−5 2.1× 10−8

Bluff body 0 1.1× 10−6 1.1× 10−6 8.3× 10−4 3.3× 10−9

(C3H8-air) 1 5.3× 10−7 5.6× 10−7 2.0× 10−4 6.2× 10−9

2 2.6× 10−7 2.75× 10−7 4.4× 10−5 1.1× 10−8

for the C3H8-air is much less oscillatory than that for the H2-air flame. The overall time step size

determined by ARK4 for the former is about two orders of magnitude larger than the latter. Fur-

thermore, the time step size on the base grid (level 0) for the H2-air flame is significantly smaller

than that on the finer levels, indicating a strong need for implicit time marching for the chemical

source term. The average time step values are summarized in Table 7.2 for the 2D shock bubble

with the H2-air mechanism as well as 2D bluff body cases with H2-air and C3H8-air mechanisms.

This demonstrates that the H2-air combustion is more stiff in the bluff-body combustor than in the

shock bubble configuration. However, the difference in the stiffness can also be a consequence of

the operating conditions. Additionally, H2-air combustion is more stiff than C3H8-air combustion

in the bluff-body combustor.

7.2 Combustion in 3D Bluff-Body Combustor

For the 3D bluff body case, the domain size and boundary conditions remain the same as the

2D case, except for the addition of the span-wise direction with a depth of 127mm. The combustor

is extruded to the entire depth. Periodic conditions are used on the boundaries normal to the span-

wise direction. The base mesh in the 3D case contains approximately 330 000 cells, and one level

of refinement is added at a refinement ratio of 2. As with the 2D case, the flow-direction mesh
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Figure 7.6: The step size found from inertial, viscous, chemical, and ARK4 time scales on the base level

and two AMR levels of the H2-air combustion in the 2D bluff-body combustor. Due to subcycling, the finer

levels take more steps than the coarser level at a ratio of 2 per level.

resolution stretched logarithmically from 1mm immediately behind the bluff body to 11mm at

the outlet. A level of mesh refinement is applied to resolve the complex dynamics immediately

behind the bluff body. Only the ARK4 time integration is employed for these 3D cases since the

computational time of using ERK4 is infeasible. First, the C3H8-air mechanism is demonstrated,

then the CH4-air mechanism is also considered.

Figure 7.7 shows the instantaneous isosurfaces of the vorticity, temperature, and mass fractions

of H2O and OH, respectively, for the 3D C3H8-air flame at a solution time of t = 246ms. The flame

is much more developed at 4.9 flow-through times. Note that a flow-through time is 50ms. The

vorticity contours demonstrate a significant recirculation zone immediately behind the combustor,

as well as vortex shedding in the wake. The temperature, cOH, and cH2O plots show resolution of

the flame front, hot products in the wake, and flame wrinkling.
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Figure 7.7: Vorticity, temperature, H2O mass fraction, and OH mass fraction of the C3H8-air flame in the

3D bluff-body combustor at solution time t = 246ms.
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Figure 7.8: A cross section of the contours of vorticity, temperature, H2O mass fraction, and OH mass

fraction of the C3H8-air flame in the 3D bluff-body combustor at solution time t = 246ms.

While 3D images are more interesting to view than 2D images, the latter is usually easier for

visualizing the details using contour lines. To show the contour lines, a mid-z-plane is taken from

Fig. 7.7, as shown in Fig. 7.8. Several important physical structures can be identified in the 2D

contours. Vortex shedding is seen in the vorticity plot, along with the recirculation zone behind
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Figure 7.9: Comparison of instantaneous OH flame structure between experimental results and computa-

tional results.

the combustor and its interaction with the shear layer. The temperature plot shows flame wrinkling

and the hot wake generated by the combustion.

For a quantitative comparison, consider the comparison between the experimental and the com-

putational results in Fig. 7.9, showing instantaneous OH flame structures. In these figures, the

trailing edge of the bluff body is aligned at x/D = 0. The flame thickness in the experimental

measurement is approximately the same as that predicted by Chord. In addition, the wrinkling

feature in the computational flame behaves closely to the experimental flame in the shear layer.

Immediately behind the flame holder is the recirculation zone, whose size is on the same order

between the experimental and computational flames. Nevertheless, time-averaging profiles would

be more insightful for comparison than instantaneous ones. A follow-up study will further explore

the time-averaged solutions.

The time step sizes for an AMR bluff-body case with the C3H8-air mechanism are shown in

Fig. 7.10. The inertial time step size decreases as the mesh resolution increases, and the diffusive

time step size decreases quadratically to the mesh resolution. As with previous cases, the chemical

time step size increases as the mesh resolution increases. For all three physical processes, the time

step sizes started decreasing as the solution time advanced.
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Figure 7.10: The step size found from inertial, viscous, and chemical time scales on the base level and two

AMR levels of the 3D bluff body case with C3H8-air chemistry. Due to subcycling, the finer levels take

more steps than the coarser level at a ratio of 2 per level.

A 13-species, 38-reaction CH4-air mechanism is used to evaluate ARK4 time integration with

methane as a fuel [98]. The instantaneous isosurfaces of temperature and OH mass fraction are

shown in Fig. 7.11 at a solution time of t = 834ms, or 16.7 flow-through times. Interestingly,

the chemical time scales for the methane reaction mechanism is of the same order of magnitude

as the inertial time scales. Not surprisingly, CH4-air combustion is much less stiff than C3H8-air

combustion. The average time step sizes for the CH4-air mechanism on the 3D bluff body geometry

is shown in Table 7.3. On the first level of refinement, the chemical time step size is larger than

the inertial time step size, rendering ARK4 ineffective at obtaining speedups. On the coarse level

(level 0), the C3H8-air mechanism takes an average step size of 8.4× 10−7 s while the chemical

step size would limit an ERK4 time integration method to an average step size of 7.9× 10−11 s.
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Figure 7.11: Temperature and OH mass fraction of the 3D bluff body CH4-air case at solution time t =
834ms.

This corresponds to taking a step size 10 000× larger in ARK4 than in ERK4. On the fine level,

the average step size of 4.2× 10−7 s is 2000× larger than the chemical step size of 2.4× 10−10 s.

Table 7.3: The average ∆t (in seconds) for the C3H8-air and CH4-air combustion in the 3D bluff-body

combustor.

Case Level ARK4 ∆t Inertial ∆t Viscous ∆t Chemical ∆t

C3H8-air 0 8.4× 10−7 8.4× 10−7 3.1× 10−4 7.9× 10−11

1 4.2× 10−7 4.2× 10−7 7.6× 10−5 2.4× 10−10

CH4-air 0 8.6× 10−7 8.6× 10−7 3.4× 10−4 1.5× 10−7

1 4.2× 10−7 4.2× 10−7 8.2× 10−5 3.8× 10−6
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Chapter 8

Adaptive Space-Time Parallel Algorithm

While ARK4 has significantly reduced the time-to-solution for turbulent reacting flows by in-

creasing time step sizes, the number of time steps required to eliminate transients from the solution

remains high. To this point, those time steps are solved sequentially by ARK4. This part of the dis-

sertation will discuss the parallelization of the temporal domain. The goal is to explore further re-

duction in the time-to-solution. Two objectives are defined to achieve this goal. First, AMR in time

is implemented in MGRIT to create an efficient space-time adaptive time-parallelized algorithm.

This will require establishing multigrid operators compatible with AMR hierarchies and creating

a method to generate adaptive space-time meshes. The second objective is to apply MGRIT with

AMR to solve turbulent flows. This will require modifying some standard multigrid operators to

effectively work with flows dominated strongly by hyperbolic characteristics. The new design of

the operators will need be non-intrusive. Details of the new techniques will be presented following

the brief background overview on the MGRIT method.

8.1 MGRIT

T 0 T 1 . . .

t0 t1 t2 t3 t4 t5 . . . δt

∆T = mδt

tN

Figure 8.1: A two-level time grid composed of F-points in green and C-points in black. The composition

of C-points and F-points form the fine time grid while, the C-points form the coarse time grid.

As mentioned in Chapter 1, this research adopts the MGRIT method for parallel-in-time.

XBraid [99], a non-intrusive open-source implementation of MGRIT, is used to enable the time

53



parallelization for the present study. MGRIT defines a temporal mesh of time points as

ti = iδt , i = 0, . . . , Nt , (8.1)

with δt = t/Nt, and the solution state Ui ≈ U(ti). While a uniform temporal mesh is presented for

simplicity, non-uniform temporal meshes are supported and used in this study. Given a one-step

time integration method, Φi, such as RK4, the time discretization method can be represented as

U0 = g0, Ui = Φi(Ui−1) + gi, i = 1, 2, . . . , Nt , (8.2)

where gi are solution-independent terms. This can be represented, for simplicity in the linear case,

with the system

AU ≡




I

−Φ1 I

. . .
. . .

−ΦNt
I







U0

U1

...

UNt




=




g0

g1

...

gNt



≡ g . (8.3)

A forward block solve of this system corresponds to sequential time integration. While a forward

solve only requires O(Nt) operations, it is not directly parallelizable. Applying a suitable multigrid

method such as MGRIT allows a concurrent solve that is also O(Nt) per iteration, but usually with

a larger computational constant (in the case of implicit methods, the computational constant can

be close to one [100, 101]).

With MGRIT, the temporal mesh specified in Eqn. (8.1) is coarsened into a hierarchy of tem-

poral grids using a coarsening factor m. Each grid is partitioned into F-points, which exist only

on the current fine time grid, and C-points which exist on both the fine time grid and the next

coarser time grid. A two-level hierarchy is shown in Fig. 8.1 where the fine grid is the composite

of F-points (in green) and C-points (in black), and the coarse grid is just the C-points. A two-level
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MGRIT method is described below for relaxation, prolongation, and restriction operators, but the

process may be applied recursively for additional levels.

T 0 T 1 T 2

Φ ΦΦ ΦΦ Φ

T 0 T 1 T 2

Φ Φ

Figure 8.2: F-relaxation is the parallelized applica-

tion of Φ, the time integration operator, to each of

the F-points.

Figure 8.3: C-relaxation is the parallelized applica-

tion of Φ, the time integration operator, to each of

the C-points.

Relaxation is performed by application of the time integration operator, Φ, to the time points in

two stages. The first stage is F-relaxation which applies the time integration operator to each block

of F-points in parallel. F-relaxation is shown in Fig. 8.2 which performs the application of Φ to the

block of three F-points following T 0 concurrently with the application of Φ to the block of three

F-points following T 1. The second stage is C-relaxation, which propagates the solution to the C-

points in parallel. This is shown in Fig. 8.3 with applications of Φ to points T 1 and T 2 completed

in parallel. Successive applications of F-relaxation and C-relaxation, called FCF-relaxation, make

up the relaxation strategy for MGRIT on a given temporal level.

For this study, a full multigrid (FMG) initialization is used. The coarse-grid system of equa-

tions, defined at mesh C-points i = jm, j = 0, 1, . . . , Nt/m, is

A∆e∆ ≡




I

−Φ∆,1 I

. . .
. . .

−Φ∆,Nt/m I







e∆,0

e∆,1

...

e∆,Nt/m



≡ r∆, (8.4)

with the coarse-grid error approximation e∆,i, the residual r∆ = RT (g − A (U)), and RT the

temporal restriction operator. Temporal restriction is performed by injection at the C-points and,

in this study, is accompanied by spatial coarsening, with RS the spatial coarsening operator. Spatial
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Figure 8.4: Subcycling presents a reduction in work for adaptive meshes through less time integration of

coarse spatial grids.

coarsening is performed with the exact averaging operator [62]. After restriction, the coarse grid

residual equation A∆e∆ = r∆ is solved on the coarse grid sequentially using the coarse grid time

propagator Φ∆,j .

Complementary to restriction, the coarse grid error approximation is first spatially interpolated

to the fine spatial resolution, denoted with ê∆ = PS(e∆). Spatial interpolation is performed with

a fourth-order accurate least-squares method [15]. Next, interpolation in time, PT, injects the

coarse grid error correction to the C-points on the fine grid, and the solution is updated with U =

U + PT(ê∆). F-relaxation then updates the F-points. This completes a two-grid MGRIT cycle of

relaxation, coarse grid solve for e∆, followed by the error correction on the fine grid. This can be

applied recursively for additional levels. Full approximation scheme (FAS) [102] cycling extends

this to nonlinear problems.

8.2 Adaptive MGRIT

This research adds the subcycling capability to XBraid. That is the first objective to enable

the adaptive space-time parallel algorithm for the purpose of further reduction in work performed

on coarser grids. Without subcycling, the coarser spatial resolutions must be integrated to every

time point, as seen in Fig. 8.4a. Since the time step sizes are limited to the CFL condition of

the fine spatial resolution, the coarse spatial resolution is taking time step sizes much smaller than
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domain refined.

Figure 8.5: A comparison of a static mesh and an adaptive mesh (both with subcycling).

necessary. Introducing subcycling enables the use of the same CFL condition across various spatial

resolutions, as shown in Fig. 8.4b, and eliminates integrating the coarse spatial grids at the fine

temporal resolutions. Therefore, a further reduction in computational cost is expected. Combining

subcycling with MGRIT is one of the novelties of this work.

For clarity, the construction process of the adaptive space-time algorithm will be described

in two phases. In the first phase, a static mesh is used to facilitate the explanation of the new

methodology. A static space-time mesh is one for which the spatial mesh does not change in time,

as illustrated in Fig. 8.5a. In the second phase, an adaptive mesh is introduced and the complication

it presents to the methodology is discussed. An adaptive space-time mesh is one for which only

subsets of the space-time domain are refined, such as in Fig. 8.5b.

The description of the new algorithm largely follows the procedure of MGRIT [46] and uses the

standard multigrid terminologies such as restriction, prolongation, and relaxation [103]. Commu-

nication between temporal processors and between spatial processors follows the standard domain

decompositions as used by MGRIT [46] and Chombo [62], respectively. However, a few con-

cepts, such as subcycling, vectors, and support structures, are further detailed in this section to

assist describing the implementation process of the new algorithm presented in the following two

sections.
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8.2.1 Subcycling

As discussed in Section 5.1, subcycling allows for adaptive refinement in time. The time step

size of the fine grid, δt, is scaled from the time step size of the coarse mesh, ∆T , by the refinement

ratio n = ∆T/δt. A fixed ratio n for all levels maintains the same CFL condition for all spatial

resolutions. Subcycling is heavily leveraged in this PinT algorithm to advance the solution in time

on the space-time adaptive meshes.

8.2.2 Composite Mesh

A composite mesh is the hierarchy of spatial grids that excludes coarse points which are over-

laid by a finer spatial mesh. Figure 8.5b, for example, shows composite meshes at time points

t1, t3, and t5. The overlaid points are excluded from the composite mesh since the finer grid is

assumed to be of higher accuracy and replaces the solution in the overlaying regions. Thus, the

composite mesh defines a single solution value for each location in the spatial domain.

8.2.3 Composite Vector

A composite vector consists of the solution values on the composite mesh. Solution values

associated with overlaid coarse mesh points are not part of the composite vector. A further require-

ment of the composite vector is that the solution at all spatial resolutions is at the same solution

time. This requirement is met when both the coarse and fine levels are at the same time point

during subcycling, such as T 1 in Fig. 5.1. With Chord, the composite vector is the solution data

that is output for post-processing and analysis.

8.2.4 XBraid Vector

An XBraid vector (commonly shortened to “a vector” in this manuscript) is the basic unit of

state data that all XBraid operations are performed on. The entire AMR hierarchy at a single

time point is considered a vector. While this appears to be resource intensive, it provides the data

locality required for subcycling.
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(b) A vector on the fine level containing both the

coarse and fine spatial grids. In black and green is

the space-time slice encapsulated by the vector, in

gray is the remaining space-time domain not stored

by this vector.

Figure 8.6: Representation of a vector encapsulating the AMR hierarchy at a single time point.

Therefore, a vector on the coarse multigrid level represented by Fig. 8.6a contains just the

base AMR level at one time point. A vector on the fine multigrid level represented by Fig. 8.6b

encapsulates a two-level AMR hierarchy containing state information on both the base AMR level

and the one level of refinement. This extends in the obvious way to three or more levels. Placing

the AMR hierarchy into an XBraid vector is a new concept introduced by this dissertation and is

further expanded upon in the following subsections.

8.2.5 Support Structure

The support structure includes the backward support structure and forward support structure.

In order to perform subcycling, coarse data is required at the beginning and end points of each

subcycling interval, that is the coarse time step interval from T 0 to T 1 of Fig. 5.1. Therefore,

support structures are the data structures providing coarse data that is required by subcycling. To

facilitate the discussion, the following definitions are used:

• the beginning time point of a subcycling interval (the time point that the coarse level is

integrated from) is called the backward support structure;
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• the ending time point of a subcycling interval (the time point that the coarse level is integrated

to) is called the forward support structure.

The representation in the XBraid Vector of the support structures is illustrated in Fig. 8.7a. The

forward support structure for the coarsest level is at timeline 3, while the intermediate level’s

forward support structure is at timeline 2. The backward support structure for both coarse and

intermediate levels are at timeline 0.

8.2.6 Working Time Point

The working time point of a vector is the current time point of a vector. The finest spatial

level in a time point is always at the working time point, whereas the forward and backward

support structures may be forward or backward in time relative to the working time point. This is

illustrated in Fig. 8.7a with the working time point in red at timeline 1 and the support structures at

the time points forward and backward from the working time point. When operations are applied

to a vector, they primarily operate on the working time point. For example, relaxation integrates

the working time point forward in time. The current working time point must always be nested

between the forward and backward support structure time points, or coincident with one of the

support structures.

The complete vector data type is represented in Alg. 3. A vector contains a working time point,

ω, an array of forward support structures, α, an array of backward support structures, β, t the time

of the working time point, and q the number of levels (inclusive of the working time point level).

Algorithm 3 An XBraid vector containing an AMR hierarchy

struct XBraid_vector contains

integer q ⊲ Number of spatial levels

float t ⊲ Current time

AMRLevel ω ⊲ Working time point

AMRLevel[q-1] α ⊲ Array of forward supports

AMRLevel[q-1] β ⊲ Array of backward supports

end
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(a) An XBraid vector representing time point 1. The

vector contains three levels of AMR with the working

time point (red) and the coarse (black) and interme-

diate (green) level support structures.
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(b) The composite XBraid vector of Fig. 8.7a, where

coarse (black) and intermediate (green) solutions at

timeline 1 are filled by interpolation.

Figure 8.7: A representation of how XBraid vectors are stored compared to the composite representation.

Note all the space-time points that are not part of the vector have been made gray.

8.2.7 Composite XBraid Vector

A composite XBraid vector is an XBraid vector that has been transformed so that the working

time point and all supports align in time. This is a new application of the composite vector concept

to XBraid vectors, with the distinction that composite XBraid vectors can be constructed at any

time point whereas, in AMR, composite vectors are only realized at the end of subcycling intervals.

Shown in Fig. 8.7a is when the fine vector is in the middle of a subcycling interval. The forward

and backward support structures are shown in black (coarse level) and green (intermediate level),

while the working time point is shown in red. The corresponding composite XBraid vector is

shown in Fig. 8.7b, where the coarse support structures are interpolated in time to timeline 1.

Certain operations, such as computing a vector norm, requires a composite XBraid vector.

8.3 Integrate MGRIT with AMR

Implementing AMR with MGRIT is intricate. For clarity, the coupling process is first demon-

strated on a static mesh, showing the mesh hierarchy. Then, adaptive mesh refinement is introduced

to MGRIT, enabling space-time adaptivity.
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8.3.1 Demonstration on a Static Mesh

Although static, the mesh refinement possesses the hierarchy of spatial grids from AMR on

which subcycling is performed. The primary simplification that occurs with static refinement

meshes, versus the adaptive refinement meshes discussed in Section 8.3.2, is that the MGRIT C-

points can be made to align with the coarse time interval of subcycling with an appropriate choice

of m. That is, points T 0 and T 1 of Fig. 5.1 coincide with C-points.

The coarse temporal grid is ΩT = [0, NT∆T ], with NT the number of time points on the coarse

temporal grid. This temporal grid is the same as defined in Section 8.1 and corresponds to the

C-points in Fig. 8.1. A coarse Cartesian spatial grid is denoted with Ω(0). This region consists of

disjoint patches where an individual patch is

Ω(0)
p = [xp,xp + k∆x] , (8.5)

with k = (k0, . . . , kD−1) for k ∈ Z
D, D the spatial dimensionality, and ∆x the spatial resolution.

Therefore Ω
(0)
p expresses a rectangular region of space extending from a lower coordinate xp to an

upper coordinate xp + k∆x. The coarse spatial grid is the collection of these patches

Ω(0) =

N
(0)
p⋃

p=1

Ω(0)
p , (8.6)

with N
(0)
p being the number of patches in the coarse spatial grid. The disjoint requirement specifies

that each patch satisfies Ω
(0)
p ∩Ω

(0)
p′ = ∅ if p 6= p′. The collection of time and space points constitutes

the coarse space-time mesh, Γ(0) ≡ ΩT × Ω(0). A coarse space-time mesh is shown in Fig. 8.8a.

The fine space-time mesh is a refinement of the temporal domain by a factor of m and a partial

refinement of the spatial domain by a factor of n. The fine temporal grid is Ωt = [0, Ntδt], with

Nt = mNT . The fine spatial domain is a subset of the coarse spatial domain such that Ω(1) ⊆ Ω(0)

where ∆x(1) = ∆x(0)/n, as shown in Fig. 5.2. Similar to the coarse spatial grid, the fine spatial
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Figure 8.8: The static space-time mesh is constructed by refining a subset of the spatial domain at every

time point.

grid is composed from the set of patches on the fine grid

Ω(1) =

N
(1)
p⋃

p=1

Ω(1)
p , (8.7)

with N
(1)
p being the number of fine spatial patches. The disjoint requirement applies to the fine

level similarly as the coarse level. As shown in Fig. 8.8b the fine space-time mesh contains fine

spatial points as well as coarse spatial points that are not overlaid by the fine spatial points. With a

spatial coarsening operator Cr, the fine space-time mesh is

Γ(1) ≡ Ωt × Ω(1) ∪ ΩT ×
(
Ω(0) − Cr

(
Ω(1)

))
. (8.8)

This refinement is illustrated in Fig. 8.8b for a temporal and spatial refinement factor of 2 in the

left part of the domain. Note this is applicable to any refinement factor.

Between levels, data must be transferred through spatial prolongation and restriction. Pro-

longation and restriction are depicted in Fig. 8.9 between the second and third levels in a 3-level

MGRIT method. Prolongation, illustrated in Fig. 8.9a, uses injection to transfer the current fine

level error approximation at timeline 1 (in green) and coarser support structures at timelines 0 and
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(a) Prolongation: Spatial refinement and injection to the finer multigrid level.
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(b) Restriction: Spatial coarsening and injection to the coarser multigrid level.

Figure 8.9: Injection to coarser or finer levels also injects the forward and backward support levels at their

current time value.

2 (in black) onto the fine vector. The new fine spatial grid (in red) is created and the solution filled

by spatial interpolation (PS) using the fourth-order least-squares method [15].

Restriction performs the complementary action of injecting and coarsening values to the coarse

grid. Restriction is shown in Fig. 8.9b where all timelines in the fine vector are injected to the

coarse vector. The solution is averaged (RS) from the fine spatial grid onto the coarse spatial grid.

The prolongation and restriction process is represented in Alg. 4.

Next, the application of Φ for use in relaxation is defined. On the coarsest level, there is

only the base coarse grid in the AMR hierarchy and so time integration may be applied directly.

Application of the time integration operator, Φ, is demonstrated on the fine level in Fig. 8.10.

Since the C-points align with the coarse time points in subcycling, this leads to two different time

integration scenarios. The first is when time integration begins at a C-point, the second when time

integration begins at an F-point. Time integration is outlined with pseudocode in Alg. 5.

In the first scenario, time integration begins at a C-point and the support structures align with

the working time point. This scenario corresponds to the first time point of F-relaxation and is
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Algorithm 4 Procedure for prolongation and restriction

⊲ vc: Coarse vector

⊲ vf: Fine vector

function PROLONGATION(vc, vf)

q, ω, α, and β from vf

q∆, ω∆, α∆, and β∆ from vc

for i = 0, . . . , q∆ do

Inject αi ← α∆,i

Inject βi ← β∆,i

end for

Interpolate working time point ω ← PS(ω∆)
end function

procedure RESTRICTION(vc, vf)

q, ω, α, and β from vf

q∆, ω∆, α∆, and β∆ from vc

for i = 0, . . . , q∆ do

Inject α∆,i ← αi

Inject β∆,i ← βi

end for

Average working time point ω∆ ← RS(ω)
end procedure

Ω
0

T 0 T 1

∆T

Ω
1

t0 t1 t2 t3δt

(a) Time integration that begins at

a C-point.

Ω
0

T 0 T 1

Ω
1

t0 t1 t2 t3δt

(b) Subsequent step of fine-level in-

tegration of subcycling.

Ω
0

T 0 T 1

Ω
1

t0 t1 t2 t3δt

(c) Completion of subcycling inter-

val.

Figure 8.10: Application of Φ, demonstrating the two time integration scenarios on the fine multigrid level.
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illustrated in Fig. 8.10a. Subcycling must perform the coarse time step first (in orange), followed

by interpolation to invalid ghost cells at t0 (in red), and lastly perform a fine time step on the fine

grid (in blue).

Algorithm 5 Procedure for time integration with two AMR levels

⊲ v: Vector to integrate

⊲ ti: Starting time point

⊲ ti+1: Ending time point

function RELAXATION(v,ti,ti+1)

ω, α, and β from v
if ti is a C-point then

β ← α ⊲ α starts at same time as β
α← Φ∆,i (β)

end if

ω = I∆ (β, α) ⊲ Interpolate to invalid ghost cells

ω = Φi (ω)
if ti+1 is a C-point then

α = RS (α) ⊲ Average solution

end if

end function

In the second scenario, integration begins at an F-point. This scenario corresponds to F-points

subsequent to the first scenario as well as C-relaxation. The forward and backward support struc-

tures have been previously filled by the application of the time integration operator at the initial

F-point. Since the support structures are already filled, all that needs to occur is the interpolation

to invalid ghost cells (in red) followed by time integration on the fine grid (in blue), as shown in

Fig. 8.10b.

In the case of C-relaxation, time integration of the fine grid reaches the end time point of a

subcycling interval, t3 in Fig. 8.10. After the time integration, the solution is averaged to the

coarse spatial grid to maintain coupling between the coarse and fine spatial grids. The flux is

subsequently corrected to ensure single-valued flux along the coarse-fine interface. C-relaxation

is illustrated in Fig. 8.10c with the interpolation in red, time integration in blue, and the averaging

and flux correction in orange.
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Figure 8.11: The refined space-time mesh in Fig. 8.11b is constructed by tagging the initial space-time

mesh in Fig. 8.11a. Subcycling intervals on the refined mesh are established from the initial coarse mesh’s

time points. MGRIT’s temporal coarsening creates coarser versions of the space-time mesh in Fig. 8.11c.

8.3.2 Coupling AMR with MGRIT

Subcycling is now added to the static refinement algorithm to enable space-time adaptivity. The

main complication addressed is the fact that uniform coarsening in XBraid can lead to C-points that

are not aligned with natural subcycling interval boundaries. For example, coarsening the grid in

Fig. 8.11b by a factor of 2 leads to Fig. 8.11c. Maintaining conservation of mass, momentum, and

energy with this grid configuration is problematic, and one solution is detailed below. The basic

idea is to augment the standard space-time AMR grid with additional subcycling synchronization

time points (support structure points) that line up with C-points. This creates a new space-time

mesh over which subcycling can be performed and conservation ensured as usual. On this new

space-time mesh, however, the components of the MGRIT algorithm are just as in the static case,

with only a few extra precautions needed to maintain stability.

This section is organized as follows. First, the adaptive space-time mesh construction process

is discussed, followed by a description of how points are added to align C-points with subcycling

intervals. Lastly, the adaptations to time integration are discussed.

To begin, an adaptive space-time mesh is constructed by generating an initial coarse uniform

spatial mesh, as illustrated in Fig. 8.11a, which corresponds to point “I” in the multigrid cycle
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(a) Finer multigrid time grids are created by refinement in an FMG cycle.

Time grid 0
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F -point (fine grid only)
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(b) After each temporal refinement, the coarser time grids are created by coarsening from the

finest time grid with a fixed coarsening factor.

(c) Spatial mesh at time grid 0 and

t4.

(d) Spatial mesh at time grid 1 and

t4.

(e) Spatial mesh at time grid 2 and

t4.

Figure 8.12: More refined time grids are created in an FMG cycle. Each time point has a corresponding

hierarchy of AMR meshes. An example spatial mesh is shown for time point t4 at each level in the time

grid.
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shown in Fig. 8.12a. Subsequently, on this coarse mesh, a preliminary solution is computed to pro-

vide guidance for refinement based on solution gradients. For example, two regions in Fig. 8.11a

are marked for refinement based on velocity normal gradients. A new finer space-time mesh is

created as shown in Fig. 8.11b. Coarse intervals for subcycling are set from the initial coarse

space-time mesh, Fig. 8.11a, and the number of fine intervals is established by the temporal refine-

ment factor, m. MGRIT coarsening of the mesh is carried out by removing every other time line

from the temporal grid, as shown in Fig. 8.11c with m = 2 as an example. The coarse spatial grid

points at timelines t1 and t2 are found from the coarse spatial grids of the nearest timeline back-

ward on the fine mesh, which in this case would be those at t1 and t3 from Fig. 8.11b. The residual

values are transferred to the coarse grid with restriction as described in the previous section. This

process leads to a two-level cycle for MGRIT, and may be repeated iteratively to create more levels

until the desired space-time resolution is met. To mention, a new finer time mesh defines a new

multigrid level, such as point “V” in Fig. 8.12a. An adaptive space-time mesh is illustrated by

Fig. 8.12b and Figs. 8.12c–8.12e together.

Flux correction must be made to ensure that there is only one flux value for each solution

variable on each face of a cell. At the end of a subcycling interval, a single-valued flux must be

maintained at the coarse-fine interface. However, in the adaptive MGRIT algorithm, coarse grid

corrections are performed at C-points which do not necessarily time-synchronize with the end of a

subcycling interval. This leads to a double-valued flux on the faces of the coarse-fine interface.

To resolve this discrepancy, additional points are added to the space-time mesh to force the

synchronization of subcycling intervals and MGRIT C-points. This is illustrated in Fig. 8.13 where

the new points are shown with open circles. With a coarsening factor of m = 4, the C-points occur

every fourth time point as shown by the red lines. At t = 4 in Fig. 8.13a, the AMR timeline

is extended to the next coarser AMR level as shown by the red line and open circle. In doing

so, subcycling will halt at t = 4 for time-synchronizing with the C-point. At t = 16, the AMR

timeline is extended to all coarser AMR levels because t = 16 is a C-point on both the finest mesh

and the next coarser mesh, as shown in Fig. 8.13b. For MGRIT coarsening factors larger than 2,
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Figure 8.13: A space-time mesh with extended C-points shown in red, with the open circles indicating the

extra space-time points added for synchronization. Dashed horizontal lines and their corresponding points

indicate the support timelines that are not part of the MGRIT temporal domain in Fig. 8.13b.
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this effectively halves the number of fine level time integrations per subcycling interval. Since the

coarser level time integrations are relatively cheap and the time steps are parallelized, this should

have minimal effect on the wall-clock time. With larger temporal refinement factors, the effect is

negligible.

Prolongation and restriction occurs at MGRIT C-points, and subcycling intervals coincide with

C-points due to the new space-time points added. This allows the use of the same prolongation and

restriction processes discussed in Section 8.3.1.
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δt/2
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Time
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Figure 8.14: When MGRIT intervals exceed the

maximum stable time step size, smaller time step

sizes, here ∆T/2, are taken by the CFD application

code to maintain stability.

Figure 8.15: A subcycling interval (in dashed

black) that has become misaligned with MGRIT

time points. The fine level must stop at the sub-

cycling interval as indicated with the dashed green

line.

The interval between time point t0 and t1 has grown larger as seen in Fig. 8.13c. This larger

interval may exceed the maximum stable time step for the explicit time marching method. In order

to maintain a stable time step size, the CFD application code will instead take multiple smaller

steps as shown in Fig. 8.14. These smaller time steps have no effect on the MGRIT algorithm.

When the subcycling intervals become misaligned with the C-points, they may also be mis-

aligned with any MGRIT time point as shown in Fig. 8.15. Although the time step size from tn to

tn+1 may be within the stability limit of the time integration method, two separate steps are taken.

The first step integrates the fine level to the end point of the subcycling interval. The second step
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begins the next subcycling interval by integrating the coarse grid before integrating the fine grid to

time tn+1.
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Chapter 9

Verification and Validation of MGRIT with AMR

The coupled algorithm is verified and validated on two diffusion-driven flows. Diffusion-driven

flows are tested here because the elliptic nature of the flows are known to converge well with

MGRIT, allowing the coupled algorithm to be analyzed without introducing complexities needed

for hyperbolic systems of equations. The verification and validation ensures that the coupled algo-

rithm (i) preserves the fourth-order and conservation properties of Chord, (ii) obtains the correct

solution profile, and (iii) achieves MGRIT convergence and a performance enhancement. The test

problems are first introduced in Section 9.1 and the results are presented in Section 9.2.

9.1 Summary of Test Problems

The MGRIT+AMR algorithm is demonstrated with two test problems: a transient Couette flow

and a periodic-in-time Stokes second problem. These problems are solved on cartesian grids with

no source term, and the density and pressure fields are constant.
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Figure 9.1: Diagram of the transient Couette flow case showing boundary conditions and velocity profile at

some point before steady state.
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9.1.1 Transient Couette Flow

An unsteady Couette flow is chosen because it is entirely driven by shear stress, where the

underlying system of PDEs is parabolic. This makes Couette flow an excellent test for the con-

vergence of the new adaptive MGRIT framework because MGRIT is known to perform well on

parabolic problems. Shown in Fig. 9.1 is a diagram of Couette flow. The working fluid is bounded

by an infinite, stationary wall on the top and a moving wall at the bottom of the domain while

the left and right side are periodic. The initial flow field is quiescent and, as the solution time

progresses, an axial velocity field develops until a steady state is achieved. At the steady state, the

axial velocity decreases linearly from the moving wall to the stationary wall.

The moving wall speed U0 is determined from a specified Reynolds number, Re = 200, so that

U0 = Re ν/h with the kinematic viscosity ν = 1.46× 10−5 m2 s−1 and the distance between the

walls h = 0.1m. A base space-time mesh with spacing ∆x and uniform temporal spacing ∆t is

specified. The initial coarse ∆t must be chosen so that the von Neumann [16] condition is satisfied.

Refinements in both space and time are then performed. Refinement tagging for this problem is

based on vorticity, which in a pseudo one-dimensional flow is equivalent to ω = ∂u/∂y [104].

A typical space-time mesh for this Couette flow is as shown in Fig. 8.13 where the mesh builds

up near the wall as the fluid accelerates. Not shown in Fig. 8.13, due to size constraints, is the

space-time mesh as the solution time approaches steady state and the mesh recedes.

Transient Couette flow has an analytic solution that describes the velocity profile as a function

of time [105]. Given the moving wall velocity of U0 and domain height h, the velocity profile is

u(y, t) = U0

(
1−

y

h

)
(9.1)

−
2U0

π

∞∑

n=1

1

n
exp

(
−n2π2 νt

h2

)
sin
(nπy

h

)
,

where ν is the kinematic viscosity. Numerical error is measured using this analytic solution by L1,

L2, and L∞ norms.
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Figure 9.2: A diagram of Stokes second problem.

9.1.2 Periodic in Time Problem

There are many time-periodic problems of interest in engineering applications, such as turbo-

machinery, piston engines, and wind turbines. Such problems may see significant benefits from

being solved by parallel-in-time algorithms. For instance, the MGRIT algorithm may drive out the

transient components over only a single periodic time period [106].

Stokes second problem is periodic in time. As shown in Fig. 9.2, an infinite no-slip plate at

y = 0 sets a fluid at rest into motion with a harmonic oscillation proscribed by

u(0, t) = U0 cos (ωt) , (9.2)

with amplitude U0 = Re ν/h, Reynolds number Re = 20000, kinematic viscosity ν = 1.46× 10−5

m2 s−1, and frequency ω = 2π/7. The analytic solution of the velocity distribution is [105]

u(y, t) = U0 exp (−ηy) cos (ωt− ηy) , (9.3)

with η =
√

ω/(2ν). All cases are run on a solution time interval of t0 = 0 s to tf = 7 s in order to

complete one period.
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9.2 Results

These test problems have analytic solutions; therefore they serve both verification and valida-

tion of the final algorithm. Verification assessment determines if the conceptual model is correctly

implemented in the new space-time parallel algorithm. Validation assessment ensures that the

computational results agree with physical reality. To perform this, (i) the order of accuracy of

the adaptive parallel-in-time algorithm is evaluated, (ii) the conservation properties of the under-

lying finite-volume method is measured, (iii) the convergence property of the MGRIT algorithm

is assessed, and (iv) the performance of the time-parallel algorithm is compared to the sequen-

tial algorithm. In all time-parallel cases, an absolute convergence tolerance conditioned upon the

discretization error matching the time-sequential case is used.

9.2.1 Transient Couette Flow

To confirm the adaptive MGRIT algorithm converges to the same solution as that from the

sequential time stepping, a grid convergence study is performed. The base grid is progressively

refined from 162 cells to 322 cells and lastly 642 cells using uniformly refined MGRIT levels.

This provides mesh spacings of ∆x = 6.25× 10−3 m, 3.125× 10−3 m, and 1.5625× 10−3 m

at the three refinements. The problem is solved from t0 = 0 s to tf = 50 s of solution time

with ∆t = 0.2 s, 0.05 s, and 0.0125 s. At each refinement the error from the analytic solution

is measured and the convergence rate is calculated. The code preserves fourth-order accuracy as

measured by the L1, L2, and L∞ norms from the analytic solution. This is the same convergence

rate that has previously been verified for the time-sequential algorithm [16, 29–33]. Additionally,

the error at each resolution is comparable to the sequential algorithm. Changing the number of

temporal and spatial processors has no effect on the grid convergence rate.

For a CFD application code based on finite volume methods, the conservation of mass, mo-

mentum, and energy must also be maintained. The conserved quantities is compared in a case with

a base grid of 162 cells and 250 coarse time points with 4 levels of refinement. Each level is refined

in time with a factor of m = 4 and refined in space with a factor of n = 2. An adaptive refinement

76



0 5 10 15 20

10−10

10−8

10−6

Iteration

R
es
id
u
a
l

2 Level Cycle
3 Level Cycle
4 Level Cycle

Figure 9.3: The convergence rate of the temporal residual over MGRIT iterations, showing that the conver-

gence rate is independent of the number of MGRIT levels.

technique is used where high gradient regions near the wall are refined. Over time, as the gradient

smooths out, the mesh is coarsened. The solution time runs from t = 0 s to t = 50 s. The total

x-momentum is measured at each time step in the domain for both the time-sequential case and the

time-parallel case. The conservative quantities for the two cases track each other with machine-

precision zero difference. Another method to verify the conservative nature of the algorithm is

to initialize the Couette flow at the steady state condition and run a large number of time steps.

Upon doing so, the conservative quantities show machine-precision zero difference over time steps

which further confirms the conservative property. Varying the number of cores used in space and

time has no effect on maintaining the conservation of the system.

To test the convergence properties of the adaptive MGRIT algorithm, the convergence rates

of the residual and solution error over iterations are measured. Three different cases are run with

base spatial resolution of 322 (∆x = 3.125× 10−3 m) and 250 coarse time points with 3 levels of

adaptive refinement. These cases run from t = 0 s to t = 12.5 s with a coarse level ∆t = 0.05 s. An

adaptive temporal refinement factor of m = 4 is used with an adaptive spatial refinement factor of

m = 2. Once the last refinement is performed, the test cases are varied by the number of temporal

coarsenings used by MGRIT. Using this procedure allows the same fine space-time mesh with a

different number of temporal levels, that is the MGRIT algorithm performs V-cycles with either 2,
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Figure 9.4: Strong scaling comparison of time-sequential and parallel-in-time codes. The time-parallel

code is tested with two different configurations: one processor in space, and eight processors in space.

3, or 4 temporal levels. Figure 9.3 shows the MGRIT residual history decreasing over a number of

iterations. This shows that the number of temporal levels has little impact on convergence rate of

the combined AMR-MGRIT algorithm. As expected, the number of cores used in space and time

has no effect on the convergence rate.

Performance is compared in terms of the strong scaling in sequential and time-parallel modes.

For all strong scaling tests, a base spatial mesh of 162 with four additional levels of AMR refine-

ment are used. A total of approximately 8600 time points are used on the finest temporal grid and

the solution is solved from the quiescent state to 7 seconds of solution time. The coarse level spa-

tial resolution is ∆x = 6.25× 10−3 m and the coarse time step size is ∆t = 0.2 s. The temporal

refinement ratio is m = 4 and the spatial refinement ratio is n = 2.

A set of baseline cases is run in the unmodified time-sequential algorithm with increasing

number of processors parallelizing the spatial dimension. The baseline cases are shown in green

in Fig. 9.4 with scaling from 1 processor to 128 processors of spatial parallelization. For this

particular case, diminishing returns are seen at 8 processors and communication overhead prevents

any further speedups beyond 32 processors.
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The time-parallel algorithm is run with just a single processor in space but the number of

processors parallelizing the time domain vary from 32 up to 1024 processors. A five-level MGRIT

method is used for the parallelization with a coarsening factor of m = 4 leading to approximately

32 coarsest level time points. At 32 processors in time, the wall time is approximately equal to the

sequential case with 1 processor. Needing 32 processors in time to match the sequential wall-clock

time is similar to the number needed for other MGRIT studies [46, 107]. As can be seen, the time

parallelization is saturated by 256 processors in time and the wall-clock time is about the same as

the spatially saturated time-sequential case. The fastest time parallelization for a single processor

in space is at 1024 processors in time; this case achieves a 4.3× speedup over the time-sequential

single processor case (left-most green point).

De Sterck [40] suggests that adding spatial parallelization after saturating the temporal paral-

lelization may result in further speedups. To test that, time-parallel cases were run with four and

eight spatial processors as shown in Fig. 9.4. The number of temporal processors is scaled from

32 processors in time to 512 processors in time for a maximum of 4096 processors. At the max-

imum number of processors, a 1.5× speedup is achieved over the fastest time-sequential case (at

64 processors in space).

Furthermore, the overhead introduced by the adaptive MGRIT algorithm is compared to the

sequential application of the CFD code. This overhead can be measured by restricting the adaptive

MGRIT to the finest time grid for an equivalent sequential time integration. It is found that the

overhead is problem dependent on parameters such as the number of AMR and multigrid levels

used, the degrees of freedom, etc., however nearly all of the overhead occurs in the FMG process.

More quantitative measurements will be performed in the future. Nevertheless, this overhead is not

a concern for the performance of time-parallel computations because the FMG process provides a

good initial guess for the remaining multigrid cycles.

Another area of research is finding ways to increase the size of the time domain to be paral-

lelized. The Couette flow case has a small final solution time compared to the solution time needed

to reach steady state. This is due in part to the fact that optimal performance of the MGRIT al-
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gorithm is achieved when there are a small number of time points on the coarsest time grid. Due

to the explicit time marching method, the time step size on the coarsest time grid is limited and

further spatial coarsening is not possible. Finding methods to take larger time steps on the coarsest

time grid, perhaps by using an implicit method on only those coarse time grids needing it, would

allow for larger time domains where parallel-in-time methods would excel.

9.2.2 Stokes Second Problem

As with the transient Couette flow case, this time periodic case is verified for fourth-order error

convergence with respect to the analytic solution using a grid convergence study on 162 cells up to

5122 cells. The spatial resolutions vary from ∆x = 6.25× 10−3 m to ∆x = 1.953 125× 10−4 m

and the time step sizes decrease from ∆t = 0.2 s to ∆t = 1.953 125× 10−4 s.

The conservation of mass, momentum, and energy is tested on a 4-level AMR grid with a base

mesh resolution of ∆x = 6.25× 10−3 m and a time step size of ∆t = 0.2 s along with a spatial

refinement of n = 2 and a temporal refinement of m = 4. The values of conserved quantities from

the parallel-in-time case are within machine-precision zero difference from the time-sequential

case.

The numerical solutions at four characteristic times are compared for the time-parallel and

time-sequential algorithms against the analytic solution. Figure 9.5 shows the time-parallel so-

lution after convergence of MGRIT compared to the time-sequential solution after convergence.

Convergence requires four MGRIT iterations for the time-parallel case and ten time intervals for

the time-sequential case. These velocity profiles are taken through the center line (x = 0) of the

domain. At times t = π/2 s and t = 3π/2 s the wall speed is zero while the momentum of the fluid

continues to push the fluid in the positive x-direction and negative x-direction, respectively. The

error is at its maximum in the high gradient region. Conversely, at times t = π s and t = 2π s the

wall is at its maximum positive x-direction and negative x-direction speed, respectively. Again the

error is mostly concentrated in the high gradient region near the wall. Nevertheless, the parallel-

in-time solution matches closely to the time-sequential solution; both agree well with the analytic
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Figure 9.5: Velocity profiles at the characteristic times after convergence.
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Figure 9.6: Strong scaling study comparing time-sequential with time-parallel.

profiles. The error is the largest in the high gradient regions near the wall, but is significantly lower

than in the first iteration or time interval.

A strong scaling test is performed to analyze the speedup obtained by time-parallelization. A

fixed problem size is used with a 162 base spatial mesh and four levels of refinement, leading to

a five level AMR and multigrid hierarchy. Using the maximum stable time-step size on all levels

leads to a total of 8960 time points on the finest temporal grid. For the time-sequential algorithm,

the spatial parallelization is increased from 1 to 256 processors. The results are shown in Fig. 9.6.

Spatial parallelization saturates fairly quickly in the time-sequential case, the maximum speedup

due to spatial parallelization occurred at 64 processors in space but diminishing returns are seen
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after 8 processors. Two different time-parallel cases are run; the first solely parallelizes the time

domain (no spatial parallelization) while the second uses 8 processors for spatial parallelization.

Eight processors are used for spatial parallelization because that is the point in which additional

processors provide severely diminishing returns in the time-sequential case. When only paral-

lelizing the temporal domain, saturation occurs around 1024 processors and it is 7.0× faster than

time-sequential. When combining space and time parallelization, saturation is reached at 4096

processors with a speedup of 13.7× over the time-sequential case.
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Chapter 10

Results and Discussion of MGRIT with AMR

The valid MGRIT+AMR algorithm is eventually expected to solve practical fluid dynamics

problems which are often characterized by hyperbolic dominant features. This is the second objec-

tive of the PinT research component. However, MGRIT has difficulties in converging a hyperbolic

system [41] using traditional multigrid operations and space-time discretizations. To cope with this

difficulty, a new method is developed by modifying the multigrid operators to enable MGRIT to

solve highly turbulent flows by separation of scales. To aid the development of multigrid operators

that can solve highly turbulent flows, an invisicd Taylor-Green vortex case is considered. Next, the

challenges faced by MGRIT for turbulent flows are described in the context of the Taylor-Green

vortex problem and various methods to overcome these challenges are evaluated. Results of this

new method are discussed.

10.1 Inviscid Taylor-Green Vortex

In order to demonstrate the concepts, an infinite-Reynolds number Taylor-Green vortex case is

used. In a fully-periodic cube of side-length D, an initial vortex is initialized by a sinusoidal initial

velocity

u = −U0 sin
(nπx
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(a) τ = 2.1. (b) τ = 18.7.

Figure 10.1: Iso-surfaces of enstrophy in a Taylor-Green flow.

where U0 is the magnitude of velocity fluctuation and n is the number of vortices in the domain

in each coordinate direction. This case has a Mach number of Ma = 0.1 based on U0, a Prandtl

number for air of Pr = 0.71, and a specific heat ratio γ = 1.4. A non-dimensional, charactersitic

time, τ is defined as

τ = t
U0

D
, (10.6)

where t is the simulation time. Fig. 10.1 illustrates the iso-surfaces of enstrophy at τ = 2.1 when

initial roll-up occurs, and at τ = 18.7 when the turbulence is fully developed. The transition to

fully developed turbulence occurs by τ = 10 in a decaying Taylor-Green flow. To test in a regime

where a well distributed spectrum of energy presents, the solution is first advanced sequentially-in-

time to characteristic time τ = 20. The time-sequential solution at τ = 20 is then used as the initial

condition for PinT cases. A two-level MGRIT scheme is used with a two-level AMR scheme, the

coarse spatial level contains 323 cells and the fine spatial level contains 643 cells. The stability

constraint, imposed by the CFL condition, requires a temporal grid of 226 time points on the fine

space-time grid per characteristic time.
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10.2 Challenges of MGRIT Application to Turbulent Flows
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Figure 10.2: The energy spectrum for the inviscid Taylor-Green case at characteristic time τ = 21 when

the AMR with MGRIT operators are applied. As the MGRIT iterations increase, the solution deviates from

the sequential solution.

The challenges faced by the standard multigrid operators used in the adaptive MGRIT algo-

rithm can be clearly seen in the energy spectrum as shown in Fig. 10.2. The PinT solution is

initialized at the τ = 20 characteristic time, shown in black. In red is the sequential solution af-

ter advancing forward by one characteristic time, which represents the ideal solution obtained by

MGRIT. In shades of blue are several iterations of the solution obtained with MGRIT at the same

solution time as the sequentially-run case. As can be seen, the low-frequency modes are deviating

from the sequential solution as more iterations are performed. Furthermore, the mid-range scales

around k = 8 are increasing in energy above both the initial and sequential solutions. On the

coarse mesh, the largest frequency that may be represented according to the Nyquist theorem is

k = 16, while frequencies between 8 ≤ k ≤ 16 may experience significant aliasing error. These

poorly-represented scales on the coarse mesh create coarse-grid corrections that likely corrupt the

solution, leading to divergence of the MGRIT algorithm and motivating the need to further separate

the scales solved on the multigrid levels.
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Walters et al. [75] demonstrated that by applying a stretched-vortex subgrid-scale (SGS) model

at a coarser length scale than the grid filter, the large-scale dynamics converge independently of

grid resolutions and numerical schemes. By using a coarser length scale for the SGS model, the

high-frequency information is dampened or filtered out yet the low-frequency data remains well

resolved. This demonstrates a separation of scales desirable for MGRIT applications, namely that

the localized high-frequency information can be filtered out of the solution while still accurately

resolving the large-scale dynamics. The large scale-dynamics are sufficient for many engineering

applications.

−10

0

10

V
al
u
e

Coarse

−10

0

10

V
al
u
e

Interpolated

0 0.5 1

−10

0

10

x-location

V
al
u
e

Reference

Figure 10.3: Representation of a sum of frequencies on a coarse mesh, interpolation to a fine mesh, and a

reference representation of the frequencies on the fine mesh. The coarse mesh shows many aliasing errors

of the frequencies, and the interpolation further exacerbates the problem.

For a demonstration of the need to filter out high frequency, consider a sum of sine waves

f(x) = sin

(
8
2π

L
x

)
+ 0.5 sin

(
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L
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)
+ 5 sin

(
32
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L
x

)
+ 7.3 sin

(
100

2π

L
x

)
, (10.7)

as a cell-averaged solution on a coarse mesh of 64 cells in a 1D periodic domain with length L.

Note that the sine wave with the frequency of 100 cannot be properly represented on a mesh of

64 cells and so presents significant aliasing errors. Similarly, the frequency of 32 presents aliasing

errors as it is right at the Nyquist frequency, especially if any phase shift is applied to the wave.

This function is shown on the coarse 64-cell mesh in Fig. 10.3, demonstrating significant alias-
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ing. The fourth-order conservative interpolation of the coarse mesh solution onto a fine mesh of

256 is also shown in Fig. 10.3, along with a reference solution of the sine waves on the 256-cell

mesh. Shown in Fig. 10.4 is the frequency space of the coarse solution, reference solution, and
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Figure 10.4: Energy spectrum of the coarse solution, reference solution, and interpolated solution. Inter-

polation of a solution with significant aliasing error introduces high-frequency information at magnitudes

equivalent to the solution domain.

interpolated solution. The reference solution shows the waves at k = {8, 12, 32, 100}, correctly

representing the frequencies of the analytic function. On the coarse solution, waves are shown at

k = {8, 12, 32} and an aliasing of highest frequency at k = 28. An interpolation of the coarse

solution from 64 cells to a 256-cell mesh introduces high-frequency information at significant mag-

nitudes. This high-frequency information quickly redistributes and, in fluid flows, that is typically

done through the generation of acoustic energy which affects the large-scale dynamics. Therefore,

to properly separate the scales on each multigrid level and prevent the coarse-grid-corrections from

incorrectly adjusting high-frequency information and prevent adverse effects on the large-scale dy-

namics, high-frequency information from interpolations must be eliminated.
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10.3 Techniques to Address the Challenges

To overcome the identified challenges, several techniques are developed to achieve rapid con-

vergence of the large-scale dynamics and recover the high-frequency information in turbulent

flows. Spectral filtering is the primary method to further separate the scales onto multigrid lev-

els. Deconvolution is used to reconstruct some of the fine scales lost by interpolation during the

FMG process. Lastly, to help reconstruct the high-frequencies faster, the C-points are stretched

further apart in MGRIT to allow more relaxation on the F-points between coarse-grid corrections.

10.3.1 Filtering

Time
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Figure 10.5: Prolongation is modified to add a spectral filter.

A low-pass sharp-isotropic spectral filter is employed to filter the solution upon prolongation

as shown in Fig. 10.5. The filter is added to prolongation after spatial refinement in order to

ensure only the low-frequency data is used in the coarse-grid-correction of the fine level. Through

testing, a filter width of ∆f = ∆xcoarse is found insufficient to prevent corruption of the fine scales.

This mirrors the lack of scheme-independence noted by Walters et al. [75], and a filter width of

∆f = 2∆xcoarse is sufficient and used for this study.

Shown in Fig. 10.6b is the energy spectrum diagram for a PinT case with the initial condition

at τ = 20 and run over a one-τ time domain to a final time of τ = 21. Also shown on the

energy spectrum diagram are the initial condition at τ = 20 and the sequential solution advanced

to τ = 21. The initial condition and initial guesses on the fine multigrid level are filled exactly

from the τ = 20 solution information, and the case is run for 12 MGRIT iterations.
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Figure 10.6: The base algorithm (optimized for diffusive flows) and the effect of filtering scales during

restriction and prolongation.
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If the MGRIT strategy optimized for diffusive flows is employed for the turbulent Taylor-Green

flow, the solution does not converge to the sequential solution. In fact, the PinT solution diverges,

as shown by the “Base” case in Fig. 10.6, which shows both the residual and the energy spectrum

of the turbulent flow. The residual is r = AU − g from Eqn. (8.3). To neglect the fine scale

features, which are likely chaotic, the fine grid solution is first spatially coarsened to the resolution

of the coarse spatial mesh before the residual is computed. This ensures the residual is assessing

the convergence of the coarse scales.

After the implementation of the spectral filter, filtering is added separately to the restriction

and prolongation operators. As demonstrated in Fig. 10.6, weak convergence was only observed

when the prolonged coarse-grid correction was filtered to a resolution of 163 before being added

to the fine-grid solution. The resolution of 163 corresponds to 2∆xcoarse, which is analogous to

Walters’ application of a SGS model at a coarser length scale than the grid filter. Although the

convergence is weak, the large-scale dynamics converge to the sequential solution. The high-

frequency information has barely evolved and still closely follows the initial condition. As the

small turbulence scales at τ = 20 are nearly identical to those at τ = 21, the influence of the small

scales on the large scales are also nearly identical. This indicates that corruption of features in

the range 8 < k < 16 is caused by discretization error on the coarse grid. This error is caused

by the PPM limiter where the turbulence as recognized as discontinuities, introducing additional

dissipation. The limiter is necessary, however, as it is required to maintain stability for this inviscid

flow. Therefore, the prolongation must only transfer corrections from the well-resolved scales on

the coarse grid in order to solve turbulent flows with MGRIT, thus demonstrating the need for

filtering during prolongation.

10.3.2 Deconvolution

In the previous section, the initial conditions and initial guesses were initialized to the sequen-

tial solution at τ = 20. However, this is not ideal for general problems and the fine-grid solution

will need to be approximated from the coarse-grid solution via the FMG startup procedure as
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Figure 10.7: The effect on the initialization of the fine-grid solution as part of the FMG starup procedure

by interpolation and interpolation followed by deconvolution with various filter widths.

demonstrated in Fig. 8.12. Spatial interpolation is used to fill the fine-grid solution, however this

does not provide a complete population of the high-frequency scales. To this end, deconvolution is

introduced which, for non-projective filters, is the inverse of filtering. Approximate deconvolution

methods are well established for usage in structural subgrid-scale models [108–112] for incom-

pressible and compressible turbulence. For this work, a differential deconvolution algorithm given

by

φ = 〈φ〉 −
∆2

f

24
∆(2)〈φ〉 , (10.8)

is employed, where ∆f is the filter width, ∆(2) is a second-order Laplacian, and 〈φ〉 is the cell-

averaged solution state.

The initial guess of the fine-grid solution from the FMG process is shown in Fig. 10.7 for in-

terpolation alone, then interpolation followed by deconvolution with several different filter widths.

Although ∆f = 2∆xcoarse provides a close approximation of the sequential energy spectrum, the

number of iterations to reach equilibrium in the fine scales is not significantly reduced compared to

δf = ∆xcoarse. Furthermore, adding in excessive high-frequency energy content carries some risk.

In the remaining results, the filter width of ∆f = ∆xcoarse was used, though a more rigorous study
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of the filter width’s impact on different turbulent flows would be required to evaluate the best filter

width.

10.3.3 Number of C-points
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Figure 10.8: Internal steps (i.s.) allow for more applications of the time integrator in FCF-relaxation. The

time point numbers indicate the number of steps taken by the explicit time-integration method.

The primary concern when solving turbulent flows with the MGRIT algorithm was in the con-

vergence of the low-frequency modes as that is sufficient for many engineering applications. How-

ever, ideally the high-frequency modes would be reconstructed by PinT. To accelerate convergence

of the high-frequency modes, additional relaxation must be applied on the finest MGRIT level rel-

ative to the error corrections from the coarse grid. With the existing MGRIT algorithm, the number

of applications of the time integrator between C-points is equal to the coarsening ratio, m, which

is typically m = 2 or m = 4 when using an explicit time integration method. To increase the

relaxations on the fine grid, the multigrid F- and C-points are stretched further apart in the tem-

poral domain and, to accommodate the explicit time integration method, internal steps are taken

in-between. Internal steps are time integrations made by the explicit Runge-Kutta method within

the stability region of the method, potentially tens or hundreds of times smaller than the time in-

terval of the stretched-out F- and C-points. This concept is demonstrated in Fig. 10.8, where the

large black points represent C-points and the small green points represent F-points. Each arrow

shows 15 internal steps taken by the time integrator for each point in the multigrid algorithm. Each
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row represents a concurrent operation in FCF-relaxation, which begins at each C-point. Stretching

the time between F- and C-points reduces the number of C-points in the time domain, and thus

reduces the temporal parallelization. However, this is a reduction in parallelism corresponding to

a reduction in the algorithm’s memory footprint. Taking internal steps, therefore, often improves

the overall performance of the algorithm. The ideal number of internal steps is currently deter-

mined by numerical experiments, and needs to balance relaxation to equilibrium in the fine scales

to feedback from their influence on coarse scales.

For this section, the time domain is changed to the full simulation of the the Taylor-Green

problem, i.e. 0 ≤ τ ≤ 20, and the fine scales are evolved to equilibrium. Consider the two

extremes for the number of C-points in the temporal domain. In the first extreme, there is a C-point

every m time points, which is the number of C-points used thus far in this study. As previously

demonstrated, this extreme leads to slow negligible convergence towards equilibrium in the high-

frequency modes. On the other extreme, there are only two C-points: one at the initial condition

and one at the final time point. This extreme would mean that a sequential solve is performed on the

fine mesh at every iteration, that is no parallelization would be used. Furthermore, this corresponds

to the high-frequency modes being resolved to their equilibrium value at each multigrid iteration.

Ideally the high-frequency modes will reach equilibrium at the same number of multigrid iterations

as the low-frequency modes converge, therefore a balanced number of C-points would require a

few multigrid iterations which is dictated by the number of C-points in the temporal domain.

However, as the number of C-points in the domain is reduced, so does the maximum allowable

number of iterations. This is because the exact solution is propagated sequentially forward by one

C-point in every multigrid iteration. When the number of multirid iterations performed equals the

number of C-points in the temporal domain, the solution has been sequentially stepped on the fine

mesh, obviating the point of MGRIT. This is the exactness property of MGRIT. Convergence must

be achieved in fewer iterations to provide an opportunity of a parallel speedup.

Cases were run with 5, 10, and 20 total C-points, which corresponds to temporal separations

of 4, 2, and 1 τ between C-points. Each case was iterated until the exactness property reached the

93



100 101

10−5

10−4

10−3

10−2

10−1

k

E
(k
)

IC

Seq. 643

Seq. 323

5 C-points, iter=4

10 C-points, iter=7

20 C-points, iter=14

Figure 10.9: Energy spectrum at τ = 20 of a Taylor-Green flow solved from τ = 0 to τ = 20. Comparison

of cases with different numbers of C-points.

final time point so that the solution at each iteration may be thoroughly studied. The results of this

are shown in Fig. 10.9, along with the initial condition, the coarse-grid 323 sequential solution, and

the fine-grid 643 sequential solution. The coarse-grid solution is shown to demonstrate the effect of

the high-frequency modes on the low-frequency modes. If the coarse-grid solution’s low-frequency

modes were the same as the fine-grid solution’s, then little effort would have been required of the

MGRIT algorithm as the FMG process would nearly exactly set the correct solution.

The PinT cases are shown after convergence, which for the 5 C-point case required 4 iterations

(80% of the iterations to reach the exactness property). The 10 and 20 C-point cases required 70%

of the iterations to reach the exactness property, or 7 and 14 iteartions, respectively. For this case,

the optimal number of C-points likely lies between 5 and 10 C-points. The number of multigrid

levels may affect the optimal choice of C-points, which will need further investigations.

10.4 Results of the Inviscid Taylor-Green Vortex Problem

With the new strategies of filtering, deconvolution, and stretched out C-points, this modified

MGRIT algorithm is re-applied to solve the inviscid Taylor-Green vortex problem. First, conver-

gence of both the energy spectrum and the MGRIT residuals is detailed in Section 10.4.1. Second,
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Figure 10.10: Residual at each iteration. The exactness property takes effect on iteration 5, 10, and 20 for

the case with 5 C-points, 10 C-points, and 20 C-points, respectively.

a performance comparison between the solution obtained by the new final MGRIT algorithm and

a sequential solution is presented in Section 10.4.2.

10.4.1 Convergence

The residuals for the 5, 10, and 20 C-point cases are shown in Fig. 10.10, and they demonstrate

the exactness property as they go to machine zero at the 5th, 10th, and 20th C-point, respectively.

Each demonstrates weak convergence until the exactness property is reached. The energy spectrum

for the 5 and 20 C-point cases are shown in Figs. 10.11–10.12 for a number of iterations. Despite

the weak convergence of the residual, convergence of the low-frequency and high-frequency scales

occurs before the exactness property, demonstrating that the different scales of turbulence may be

utilized to achieve MGRIT convergence. Despite this convergence, the intermediate scales from

4 ≤ k ≤ 8 require the most iterations to approach the sequential solution. This is shown by the fact

that the low and high-frequency information is reasonably converged by the 12th and 2nd iteration

of Figs. 10.11–10.12, respectively, while the intermediate scales need up to iterations 4 and 16

to converge. Currently, “convergence” is defined by a qualitative comparison of the difference

between the PinT and sequential energy spectra. Research is ongoing into a quantitative measure

of convergence. While the residual of Fig. 10.10 seems to provide a quantitative measure, there is
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Figure 10.11: Energy spectrum at τ = 20 of a Taylor-Green flow solved from τ = 0 to τ = 20 using an

MGRIT algorithm with 20 C-points.

obviously a discrepancy between the residual and the qualitative analysis of the energy spectra that

must be accounted for.

10.4.2 Performance

Table 10.1: Wall-clock run time information for 2-level cases with varying numbers of C-points.

Case Total Time (s) FMG (s) Time/Iter (s) Final Sweep (s)

PinT, 10 C-Pts 10 266.62 321 1105 362.76
PinT, 20 C-Pts 13 561.42 254 650 261.42

Seq. 3696.46 – – –
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Figure 10.12: Energy spectrum at τ = 20 of a Taylor-Green flow solved from τ = 0 to τ = 20 using an

MGRIT algorithm with 5 C-points.
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To evaluate the performance characteristics of the algorithm, a 2-level Taylor-Green vortex case

is run with varying numbers of C-points, and compared against the sequential case. The results

are shown in Table 10.1, where the FMG time is the time spent in the FMG process, and the Final

Sweep is time spent after convergence performing one last FCF-relaxation to write out the final

solution information. These cases are are run from τ = 0 to τ = 20 with 64 spatial processors.

The PinT cases used 10 C-points for temporal parallelization and were run until the exactness

property, which is 10 iterations for the 10 C-point case and 20 iterations for the 20 C-point case.

As demonstrated in the previous sections, fewer iterations are typically needed to converge all of

the scales. However, only 3 MGRIT iterations in the 10 C-point case leads to a longer solution

time than the sequential case. Similarly, the 20 C-point case has a longer solution time after only

5 iterations.

Table 10.2: Wall-clock run time information for a 3-level case.

Case Total Time (s) FMG (s) Time/Iter (s) Final Sweep (s)

PinT 13 819.96 130 2148 419.96
Seq. 9048.577 – – –

One of the biggest effects on MGRIT solution time is the coarse grid solve, which is performed

sequentially at each iteration. By increasing the fine-grid problem size through spatial refinement,

the relative cost of the coarse-grid becomes negligible. Therefore, for this test 3 levels of MGRIT

are used with the fine grid consisting of a 1283 solution mesh, and the coarse and intermediate

remain at 323 and 643, respectively. Both cases use 128 processors for spatial parallelization, while

the PinT case uses 12 temporal processors for a total of 1536 processors. This case is evolved from

τ = 0 to τ = 6, with the PinT case using 6 C-points. The results, in Table 10.2, show a total PinT

run time for 6 iterations, which reaches the exactness property. For this particular case, the low and

high-frequency information shows convergence at 3 iterations, which requires a wall clock time of

6993.93 s, or over 2000 s faster than the sequential case. Based on these results, it is expected that
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with finer spatial meshes MGRIT may be exploited to achieve significant speedups in turbulent

flows.
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Chapter 11

Conclusion and Future Work

11.1 Conclusions

The research includes two components: the ARK4+AMR algorithm and the MGRIT+AMR

algorithm. In the first component, the 2-ARK4(3)6L[2]SA scheme has been implemented with

AMR and validated in Chord, a fourth-order finite-volume CFD software infrastructure where

numerical capabilities of solving complex fluid dynamics problems include the mapped multiblock

technique for accommodating real geometries, the large eddy simulation for turbulence modeling,

and the species transport and chemical kinetics of a range of fuels (hydrogen and hydrocarbons)

for simulating reacting flows. The AMR technique is one of the foundational numerical features

in the framework for maximizing computational efficiency in solving stiff problems. While ARK4

is not new, a successful building of ARK4 into this complex software framework has required a

few new strategies, particularly in the context of AMR. For example, the integration overcomes

the challenge of subcycling by utilizing dense output to enable temporal interpolation of ghost

cells on finer levels. The incorporation of ARK4 has enabled Chord to efficiently model practical

combustion problems occurring in a realistic combustor geometry with stiff chemical mechanisms,

where the standard ERK4 method is intractable.

The computational efficiency and accuracy have been demonstrated and assessed for the lean

C3H8-air premixed flame in the bluff-body combustor, using the chemical kinetics of 24 species

and 66 reactions. The C3H8 combustion is much stiffer than the CH4-air combustion under the

same operating conditions. The ARK4 time step on level 0 (the base mesh) is on the order of

8.0× 10−7 s while the global chemical step is on the order of 8.0× 10−11 s; that is a 10000×

increase in time step sizes. On level 1, the ARK4 time step is about 4.0× 10−7 s while the global

chemical time step is about 2.0× 10−10 s; that is a 2000× increase in time step size. If using

ERK4 with a uniform mesh resolution matching the fine AMR level, this C3H8-air premixed flame
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in the bluff-body combustor simulation would take a hundred years of wall-clock time on 4096

CPUs to achieve one flow-through time, which is evidently impractical. However, using ARK4, the

simulation can be performed efficiently in days on 4096 CPUs. As shown, the global chemical time

step increases as the mesh resolution is refined. At some fine level, one would expect the chemical

time step would eventually not be the limiting time scale for the overall computation. At this point,

treating the chemical term implicitly becomes unnecessary. Therefore, in the algorithm, ARK4

is programmed to respond to the level of AMR where it is automatically engaged or disengaged

based on the chemical time scale. It is anticipated that the viscous term might become the stiff

term as the mesh is refined. Then, the viscous term would be treated implicitly. Nevertheless, for

all applications of interest to the present study, the viscous physics has always been less stiff than

the chemical reactions.

Another major challenge is the species correction strategy. A new robust method is imple-

mented to cope with the unphysical phenomenon in species caused by numerical errors. The

nonlinear solvers employed during the solution process experienced convergence difficulty when

a unphysical species mass fractions occurs. To prevent this, an optimization strategy based on the

L-BFGS solver is employed to redistribute the species mass fraction when either a single species

or the sum of all species is out of bounds. This method has proven to be superior to any simple

redistribution scheme by re-normalizing and weighting. The analytical chemical Jacobian is found

to perform better than the approximate one in terms of computational efficiency and accuracy for

the stiff chemical reactions.

In the second component, a new adaptive parallel space-time algorithm is developed. This

algorithm is created by coupling the space-time adaptivity of a structured AMR algorithm with

the temporal parallelization of MGRIT. Implementation details and challenges are discussed when

adding adaptivity to MGRIT, specifically the incorporation of subcycling into relaxation.

Verification and validation of the new adaptive parallel space-time algorithm is performed us-

ing the Couette flow and Stokes second problem. Grid convergence studies show that the error

converges at the same rate as the time-sequential algorithm, and is the same magnitude as the
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time-sequential algorithm. Conservation of mass, momentum, and energy is maintained thanks

to careful construction of the space-time mesh, and conservation is verified by comparison to the

time-sequential algorithm. The multigrid algorithm’s residuals converge at a rate that is compa-

rable to other MGRIT studies. The residual convergence rate is also consistent between different

numbers of temporal levels on the same fine space-time mesh. A 4.3× speedup was achieved

when comparing to single-spatial-processor cases on the Couette flow. When comparing the best

performing time-sequential case with the best performing time-parallel case, a 1.5× speedup was

achieved. The time periodic case shows a greater speedup, with a 7.0× speedup when parallelizing

only the temporal domain, and a speedup of 13.7× when parallelizing both space and time.

Lastly, the adaptive parallel space-time algorithm is extended to solve a purely inertial tur-

bulent flow. The prolongation operator is extended with a spectral filter to properly separate the

scales solved at each level of the multigrid algorithm, and ensure that the low-frequency modes are

correctly resolved on the fine level. On application to an infinite-Reynolds number Taylor-Green

vortex test case, the low-frequency modes converge within several iterations.

11.2 Original Contributions

Many novel contributions are made towards the time integration of fluid flow governed by the

thermally perfect, compressible Navier-Stokes equations in complex geometry. Some important

original features of the research are as follows:

1. Developed robust and consistent strategies for coping with unphysical phenomena. For the

reacting source term integrated implicitly in time, stiff reaction mechanisms lead to unphys-

ical temperature and species mass fractions during nonlinear iterations. A novel chemical

species constraint method is developed for the nonlinear solver to provide stability and main-

tain a reasonable thermodynamic state. In the rare situation where the constraints fail to pro-

vide a physical thermodynamic state, a nonlinear optimizer based on L-BFGS was created

and implemented to find a thermodynamic state that allows the simulation to advance.
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2. Integrated ARK4 and AMR with high-order spatial discretization schemes. To use ARK4

with AMR, time interpolation of invalid ghost cell data needs to be performed at each stage of

the Runge-Kutta scheme. The development and implementation of dense output for temporal

interpolations on AMR hierarchies allows for fourth-order accuracy in both the spatial and

temporal discretization.

3. Applied the AKR4+AMR algorithm to practical combustion occurring in complex geometry

with large, stiff chemical kinetics. Previous applications of ARK4 with AMR were per-

formed on simple geometries and with small reaction mechanisms. This work introduces

ARK4 with AMR to the complex practical geometry of a bluff-body combustor and the use

of the much larger C3H8-air reaction mechanism.

4. Conducted a comprehensive parametric sensitivity study. This work contributes to the lit-

erature and understanding of the impacts of AMR, case geometry, and chemical reaction

mechanisms on the time scales of the inertial, viscous, and chemical physics.

5. Created an efficient solution-adaptive space-time parallel method. This required extensive

development of novel multigrid operations for relaxation with subcycling and prolongation

and restriction with adaptive grid hierarchies. The creation of space-time adaptive grids for

use with MGRIT requires a unique use of FMG to generate successively finer space-time

meshes and in the process construct a hierarchy of multigrid levels.

6. Implemented novel restriction and prolongation operators to enable the adaptive MGRIT

algorithm to solve turbulence.

11.3 Future Work

There are many areas for future work, ranging from improvements to the existing algorithm to

new areas of exploration based on the results.

• Applications of ARK4 to cases with strong shocks provided less-than-satisfactory results.

For example, a reacting Richtmyer-Meshkov instability case was run and found to be nu-
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merically unstable when using the inertial scales for the time step sizes. Limiting the step

size with the PID-controller resulted in step sizes that were smaller than the chemical time

scales. The causes of the numerical instability need to be further investigated, and potentially

more severe constraints on the nonlinear solver employed. Another approach would be to

evaluate different error-based step size controls for efficacy with strong shocks.

• MGRIT has been demonstrated for the infinite-Reynolds number Taylor-Green vortex, how-

ever, MGRIT does not show convergence of residuals. New convergence criteria based on

the large-scale dynamics need to be devised and evaluated. More test problems such as a

time-evolving mixing-layer case and decaying homogeneous turbulence would further prove

the robustness of the algorithm. Of particular interest would be the interaction of turbulence

models with MGRIT algorithm.

• The overarching goal of the MGRIT algorithm is to enable a time-parallel solve of reacting

turbulent flow on complex geometry. In order to realize that goal, the MGRIT algorithm must

be evaluated on flows containing inertial and diffusive fluxes. Further development of the

MGRIT algorithm will be required to achieve convergence of scales of interest. Furthermore,

the reacting source term is untested for MGRIT. While source terms have not presented a

problem to MGRIT in the past, it is possible the chaotic nature of turbulent chemistry may

prove challenging.
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Appendix A

Derivation of Analytic Reacting Source Jacobian

The analytic reacting source Jacobian is derived with the following considerations:

1. The mapped terms in the Jacobian are independent of this formulation.

2. The Jacobian is evaluated with cell averaged quantities, but for simplicity in expressions the

cell-averaged notation, 〈·〉, is dropped.

3. Since only the species are updated at each iteration of the nonlinear solver, only a subset of

the source vector and state vectors need to be used. With n = 1, . . . , Ns for Ns the number

of species, the vectors are

(a) Source vector Ŝ = {ρω̇n},

(b) Primitive quantity vector Ŵ = {T, cn},

(c) Conservative state vector Û = {ρcn}.

From experimentation, it was discovered that density has a negligible impact on the reacting source

Jacobian. First, the chain rule is applied for convenience, mathematically there is no difference

∂Ŝ

∂Û
=

∂Ŝ

∂Ŵ

∂Ŵ

∂Û
, (A.1)

leading to two matrices that must be evaluated.

For evaluating the Jacobian ∂Ŵ/∂Û, either the process of Fedkiw et al. [113] or Gao [24] may

be used. Due to the steps taken to reduce complexity, the matrix is not identical to that of either
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reference. The matrix in use is a (1 +Ns)×Ns sized matrix

∂Ŵ

∂U
=




(γ−1)(R1T−h1)
ρR

(γ−1)(R2T−h2)
ρR

. . . (γ−1)(RNsT−hNs )

ρR

1/ρ 0 . . . 0

0 1/ρ . . . 0

...
...

. . .
...

0 0 . . . 1/ρ




.

The Jacobian ∂Ŝ/∂Ŵ follows much of the same procedure as Perini et al. [88], except pressure

dependent reactions are neglected. This leads to a Ns × (1 +Ns) sized matrix

∂Ŝ

∂W
=




∂ρω̇1/∂T ∂ρω̇1/∂c1 ∂ρω̇1/∂c2 . . . ∂ρω̇1/∂cNs

∂ρω̇2/∂T ∂ρω̇2/∂c1 ∂ρω̇2/∂c2 . . . ∂ρω̇2/∂cNs

...
...

...
. . .

...

∂ρω̇Ns
/∂T ∂ρω̇Ns

/∂c1 ∂ρω̇Ns
/∂c2 . . . ∂ρω̇Ns

/∂cNs



.

The derivatives with respect to temperature are

∂ρω̇i

∂T
= Mi

Nr∑

r=1

(
(ν

′′

i,r − ν
′

i,r)

(
Ns∑

j=1

αj,r

[
ρcj
Mj

])

(
Ea,r

R
ArT

βr−2 exp

(
−
Ea,r

RT

) Ns∏

k=1

[
ρcj
Mj

]ν′
k,r

+ ArT
βr−1 exp

(
−
Ea,r

RT

)
βr

Ns∏

j=1

[
ρcj
Mj

]ν′j,r

−
Ea,r

Rκeq

ArT
βr−2 exp

(
−
Ea,r

RT

) Ns∏

k=1

[
ρcj
Mj

]ν′′
k,r

−
1

κeq

ArT
βr−1 exp

(
−
Ea,r

RT

)
βr

Ns∏

j=1

[
ρcj
Mj

]ν′′j,r ))
,

(A.2)
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and the derivatives with respect to the mass fraction are

∂ρω̇i

∂cn
= Mi

Nr∑

r=1

(
(ν

′′

i,r − ν
′

i,r)

[(
Ns∑

j=1

αj,r

[
ρcj
Mj

])(
ν

′

n,rκf,r
ρ

Mn

(
ρcn
Mn

)
−1 Ns∏

j=1

[
ρcj
Mj

]ν′j,r

− ν
′′

n,rκb,r
ρ

Mn

(
ρcn
Mn

)
−1 Ns∏

j=1

[
ρcj
Mj

]ν′′j,r )

+

(
αn,r

ρ

Mn

)(
κf,r

Ns∏

j=1

[
ρcj
Mj

]ν′j,r
− κb,r

Ns∏

j=1

[
ρcj
Mj

]ν′′j,r)])
.

(A.3)

For reactions that do not involve a third body-term, the following terms simplify to,

Ns∑

j=1

αj,r

[
ρcj
Mj

]
= 1 , (A.4)

Ns∑

j=1

αj,r

[
cj
Mj

]
= 0 , (A.5)

αn,r
ρ

Mn

= 0 . (A.6)
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