Metabolism of Labeled Organic Nitrogen in Soil: Regulation by Inorganic Nitrogen

M. Scott Smith,* Charles W. Rice, and Eldor A. Paul

ABSTRACT

Regulation of organic N metabolism by inorganic N availability was investigated in short-term laboratory incubations of soil. A 14C-, 15N-labeled organic N substrate was produced by growing Pseudomonas stutzeri in labeled media and isolating a cytoplasmic fraction. This was added to soils that had been preincubated with glucose or glucose plus NH; to induce conditions of N deficiency or sufficiency. Regulation by inorganic N was indicated by stimulated proteolytic enzyme activity and greater initial rates of cytoplasmic 14C mineralization in N deficient soils. However, effects of N deficiency on ¹⁴C mineralization persisted for no more than 24 h. Preinduced N deficiency significantly decreased the extent of 15N mineralized from cytoplasmic N. Mineralization of ¹⁴C from leucine added to soil was similarly affected by N availability, yet 14C-glutamate mineralization was apparently unaffected. In another experiment labeled cytoplasm was added simultaneously with or without a larger quantity of glucose. The glucose caused virtually complete assimilation of 15N but had no effect on apparent assimilation of 14C. Thus, there was no relationship between 15N assimilation and 14C assimilation, suggesting that the C and N contained in organic N are processed separately by soil microbes. Inorganic N availability may have shortterm effects on metabolism of C in organic N but long-lasting effects appear to be minimal.

The regulatory function of inorganic N (N_i) in the metabolism of organic C and organic N (N_o) in soil systems is not clear. Where N_i additions have stimulated C mineralization (CO₂ evolution) from organic materials this probably can be attributed to continuous, extreme N deficiency limiting microbial growth (Jenkinson et al., 1985). More frequently N_i amendment has inconsistent effects (Johnson et al.,

M.S. Smith, Dep. of Agronomy, Univ. of Kentucky, Lexington, KY 40546; C.W. Rice, Dep. of Agronomy, Kansas State Univ., Manhattan, KS 66506, formerly Dep. of Crop and Soil Sciences, Michigan State Univ., and E.A. Paul, Dep. of Crop and Soil Sciences, Michigan State Univ., E. Lansing, MI 48824. The investigation reported in this paper (no. 88-3-117) is in connection with a project of the Univ. of Kentucky Agric. Exp. Stn. and is published with the approval of the director. The project was initiated while M.S. Smith and E.A. Paul were at the Dep. of Plant and Soil Biology, Univ. of California, Berkeley, and was supported in part by NSF grant B.S.R. 8306181. Received 8 Aug. 1988. *Corresponding author.

Published in Soil Sci. Soc. Am. J. 53:768-773 (1989).

1980; Shields et al., 1974) or inhibits C mineralization (Kowalenko et al., 1978; De Jong et al., 1974). In many of these studies it is not possible to assess the overall N and C (energy) availability in the unamended soils; this is likely to influence the relative response to N_i amendment. In addition to uncertainty about N_i effects on the rate of C mineralization, there is the question of N_i effects on the extent of C assimilation and mineralization, and therefore the significance of N availability in determining soil organic matter retention (Leuken et al., 1962; Pinck et al., 1950; Turk and Millar, 1936).

With regard to metabolism of N_0 , pure culture results suggest that regulation by N_i, specifically NH₄. will be significant. In the fungi and bacteria that have been characterized, enzymes for utilization of C-N compounds tend to be regulated by both C and N availability (Marzluf, 1981; Payne, 1980; North, 1982). Yet, the growing fundamental understanding of regulation of amino acid and protein utilization obtained in pure cultures is difficult to extrapolate to soil systems. In part, this is because regulatory mechanisms and the specific effects of NH₄ vary among organisms. Also, N_0 utilization requires distinct enzymatic steps for extracellular hydrolysis, uptake, deamination, and intracellular catabolism, each of which could be regulated differently. Although proteolytic enzyme activity and degradation of N_0 have been studied in soil (Ladd, 1978), the possible significance of N_1 regulation apparently has not been considered.

Some simulation models of C-N cycling in soils have accounted for the possibility of regulation by N_i and other nutrients by including demand or deficiency factors, related to nutrient availability, in the substrate decomposition functions (Bosatta and Berendse, 1984; Van Veen et al., 1981). The latter authors specifically noted that it is unclear how regulation of extracellular polymer metabolism should be described mechanistically. In conceptual models (McGill and Cole, 1981; Hunt et al., 1983) it has been proposed that soil nutrients covalently bonded with C (C-N) are metabolized to provide energy whereas ester bonded nutrients (C-O-P or C-O-S) are metabolized to provide the

nutrient. If this is true, metabolism of C-N compounds should be regulated primarily by C availability and not N_i . Yet, this is inconsistent with pure culture studies as discussed above.

We have used 14 C-, 15 N-labeled bacterial cytoplasm and 14 C-labeled amino acids to determine how the availability of N_i affects the metabolism of easily degraded sources of N_o .

MATERIALS AND METHODS

Soils

Two soils were used in this study. An Argonaut silt loam (Mollic Haploxeralfs) was collected from the oak-grass savannah on the Sierra Nevada Foothill Range Stn., Univ. of California. This soil has a pH of 5.9, and organic C and N contents of 31 g C kg⁻¹ and 2.2 g N kg⁻¹. The second soil was a Holland silt loam (Ultic Haploxeralfs) collected from a mixed conifer forest on the Blodgett Exp. For., Univ. of California. This soil has a pH of 5.6 and organic C and N contents of 40 g C kg⁻¹ and 2 g N kg⁻¹.

Production of Labeled Organic N

Pseudomonas stutzeri was grown aerobically in media which included (per liter): 0.2 g yeast extract, 0.2 g MgSO₄·7H₂O, 0.68 g KH₂PO₄, 1.14 g K₂HPO₄·3H₂O, 0.10 g NH₄Cl, 2 g glucose, 5 mg Na₂EDTA, 5 mg FeSO₄·7H₂O, 1.5 mg MnSO₄·H₂O, 0.1 mg CuSO₄·5H₂O, 0.2 mg CoCl₂·6H₂O, 0.18 mg Na₂B₄O₇·10H₂O, and 0.58 mg Na₂MoO₄·2H₂O. For labeled batches, uniformly labeled ¹⁴C D-glucose, 75 µCi l⁻¹, was used and NH₄Cl was replaced with 237.7 mg (NH₄)₂SO₄ enriched with ¹⁵N.

Cells were harvested in early stationary phase by centrifugation (4 °C, 10 000 g). These were washed repeatedly in pH 7 phosphate buffer, resuspended in water, then disrupted by sonication. A fraction consisting primarily of cell walls was removed by centrifugation. The supernatant was decanted, and acidified to pH 3 with HCl. This precipitated cytoplasmic protein and presumably other cytoplasmic polymers. Soluble components were removed from this precipitate by repeated centrifigation and washing in dilute HCl. The precipitated N_o was resolubilized by neutralizing with KOH, then frozen for storage. This material had a C/N ratio of approximately 4/1. The batch used for experiment I had an atomic % ¹⁵N of 6.305; for Experiment II and IV this was 17.647.

Experiment I

Argonaut soil (35.1 g dry wt) was added to 945 mL Mason jars. This was amended with glucose, glucose plus NH₄Cl or with nothing. There were four replicates of each of these three treatments. The concentration of glucose was 1.92 mg C g soil⁻¹; NH₄Cl was 0.19 mg N g⁻¹ soil. The final moisture content of all treatments was 0.28 g H₂O g⁻¹ dry soil (0.08 MPa). The jars were sealed with covers fitted with a serum stopper for gas sampling. Unamended initial soil samples were analyzed for N_i (NH₄ and NO₃). Periodically gas samples from the jars were analyzed for CO₂. When CO₂ concentration exceeded 2% by volume the covers were removed briefly to replenish the O₂ supply. Samples were incubated at 24 °C in the dark.

After 7 d, a subsample (5 g) was removed for N_i analysis. The remaining soil was then amended with 2 mL of labeled N_0 solution containing 26.9 μ g N and 98.4 μ g C per g dry soil. Periodically during the next 4 d headspace gas samples were collected by syringe for measurement of total and ¹⁴C-CO₂. On day 11, subsamples (5 g) were removed for measurement of total N_i .

Experiment II

This was similar in design to experiment I with exceptions described below. Holland soil (15.3 g dry wt) was added to 473-mL Mason jars. All flasks received 1.96 mg glucose-C g⁻¹ soil. Half of the flasks received 0.196 mg NH₄Cl-N g⁻¹ soil. There were eight replications of each treatment. Moisture content after amendment was 0.31 g H₂O g⁻¹ dry soil (0.03 MPa). The preincubation period lasted for 6 d. At this time four replicates were used for N_i measurement; the remaining jars were amended with labeled N_o containing 58.2 μ g N and 232.7 μ g C g⁻¹ soil and were incubated for 4 additional days.

Experiment III

Argonaut soil (31 g dry wt.) was placed in 945-mL Mason jars and amended with 1.9 mg glucose-C g⁻¹, with 0.19 mg NH₄Cl-N g⁻¹ plus glucose, or left unamended. The final gravimetric moisture content was 0.28 g g⁻¹ dry soil (0.08 MPa). There were three replications per treatment. Jars were incubated as above. Periodically subsamples were removed for measurement of proteolytic activity as described below.

Experiment IV

Argonaut soil (14.8 g dry wt) was incubated in 473-mL Mason jars. Half the samples were amended with 2.03 mg glucose C g^{-1} soil and all received, at the same time, labeled cytoplasm at a rate of 0.11 mg C g^{-1} and 0.027 mg N g^{-1} . Soils were incubated as above. There were four replicates per treatment. Total CO_2 , $^{14}CO_2$, N_i , and $^{15}N_i$ were measured at 228 h. Initial N_i was also determined.

Analytical Procedures

Proteolytic activity was measured by determining the rate of production of Folin reagent-reactive compounds from casein, following the procedure of Ladd and Butler (1972). Moist soil (1 g) was mixed with 5 mL of TRIS buffer (pH 8.1, 0.1 M) containing 50 mg isoelectric casein. This was incubated in a shaking water bath at 45 °C for 2.5 h. The reaction was terminated with 2 mL of 17.5% (wt/wt) trichloroacetic acid (TCA). After centrifugation, 2 mL of supernatant was mixed with 3 mL 2.8 M Na₂CO₃ and 0.33 mL Folin reagent. After 30 min absorbance was read at 700 nm. Tyrosine in an equivalent solution of TRIS buffer and TCA was used as the standard. Controls for each treatment were incubated with casein omitted. Both this value and the value for a control with soil omitted were subtracted from the appropriate sample values.

Inorganic N was extracted by shaking soil for 1 h with 2 M KCl, 10 mL g⁻¹ soil. Ammonium and nitrate in filtered extracts were measured by flow injection analysis (Lachat Quikchem, Mequon, WI). When ¹⁵N was to be measured an aliquot of the extract was steam distilled (Keeney and Nelson, 1982). The still was washed with 95% ethanol and 0.04 M acetic acid between samples. Distillate was collected in excess H₂SO₄ and evaporated at 90 °C in an NH₄-free oven. Mass spectrometer analyses were performed by Isotope Services Inc. (Los Alamos, NM).

Total N and ¹⁵N in the labeled substrate were measured by conventional Kjeldahl methods (Bremner and Mulvaney, 1982), followed by distillation and analysis as above. The substrate contained no detectable free NH₄ or NO₃ prior to digestion.

Total C and ¹⁴C in the substrate was measured by wet oxidation and diffusion (Snyder and Trofymow, 1984). Total C was measured by titration and ¹⁴C was measured by mixing an aliquot of the C trapped in base with 10 mL Scintiverse 2 (Fisher Scientific, Pittsburgh, PA).

Table 1. Total C mineralized (CO₂ evolved) during preincubation and after organic N addition to Argonaut and Holland soils with different amendments.†

Experiment	Initial	Total C mineralized		
	amendment	Preincubation	After N _o	
	g kg ⁻¹ soil	——— g C•kg ⁻¹ soil ———		
I Argonaut	none 1.92 glucose C 1.92 glucose C, +0.19 NH ₄ -N	0.17a* 1.12b 1.04c	0.16a 0.32b 0.23c	
II Holland	1.96 glucose C 1.96 glucose C, +0.20 NH2-N	1.10a 1.03b	0.24a 0.19b	

^{*} Values within the same column and experiment followed by the same letter are not significantly different at the 0.05 level by pair-wise t-tests.

Total CO₂ evolved during incubation was measured by gas chromatography on a 0.5 mL subsample of the headspace of incubation jars. The gas chromatograph was a Varian 91-P (Varian Associates, Sunnyvale, CA) with a Porapak QS column (Supelco, Bellefonte, PA) at 70 °C and a thermal conductivity detector at 105 °C. The carrier gas was He at a flow rate of 30 mL min⁻¹. For determination of ¹⁴CO₂, a 20 mL headspace sample was injected into an evacuated scintillation vial containing 1 mL of 0.5 M NaOH and sealed with a serum stopper. After at least 8 h the vial was opened, 10 mL of Scintiverse 2 was added, and ¹⁴C was measured as above.

Experiment V

To further define the controls on N_0 mineralization, amino acids were added to the Argonaut soil as a single known N_0 source. Glucose (2 μ g C g⁻¹ soil) or (NH₄)₂SO₄ (100 μ g N g⁻¹ soil) were added to the soil, and incubated for 7 d at approximately 0.20 g H_2O g⁻¹ soil (0.25 MPa) to create N deficiency or sufficiency, respectively. The 14C-glutamate or leucine was added to 7.5 g dry weight soil at a rate of 500 μg C g⁻¹ soil. This amendment brought the soil to a moisture content of 0.30 g H₂O g⁻¹ soil (0.06 MPa). Soil was incubated in 473 mL Mason jars with gas-tight lids fitted with septa for gas sampling. To minimize soil drying during the assay, a beaker of water was placed in each Mason jar. Soil was incubated and preincubated at 25 °C. The jars were sampled (1 mL) for CO₂ content with a Varian 90-P gas chromatograph with detector and column conditions as described above, except that the column was operated at 35 °C. Determination of ¹⁴CO₂ was as described previously except that the scintillant was Safety-Solve (Research Products Int., Mt. Prospect, IL.).

For determination of N_i and extractable ¹⁴C, 50 mL 2 M KCl was added to the soil, shaken for 1 h, and filtered (Whatman no. 1). The extract was analyzed for NH₄ and NO₂ + NO₃ colorimetrically. Extracted ¹⁴C was measured by placing a 1 mL aliquot into a 20 mL scintillation vial containing 10 mL of scintillation cocktail.

RESULTS AND DISCUSSION

Preincubation

The intent of treating soil with glucose or glucose plus NH_4^+ was to establish N deficiency or sufficiency prior to incubating with labeled N_o . Observations during the preincubation in experiments I and II are presented primarily to define soil conditions when N_o was

Table 2. Inorganic N during incubation of Argonaut soil with or without glucose, ammonium and organic N (experiment I).†

Amendment		Inorganic N			
	N source	Day 0	Day 7	Day 11	
		mg N kg ⁻¹ soil			
None	Soil N	57.4a*	63.6a	65.4a	
	Labeled N	—	—	9.1b	
Glucose	Soil N	57.4a	5.3b	9.8b	
	Labeled N	—	—	4.0c	
Glucose	Soil N	248.4b	94.3c	92.1d	
+NH ₄	Labeled N	—		11.6e	

^{*} Values within a column followed by the same letter are not significantly different at the 0.05 level by pair-wise t-tests.

† 26.9 μ g N_o -N added.

added (Tables 1, 2 and 3). During preincubation N_i was reduced to low concentrations in soils amended with glucose only. These results also are of interest with regard to the effect of N_i on metabolism of soil and glucose C. In experiments I and II, total C mineralized was slightly, but consistently and significantly, increased in N deficient (glucose alone) compared to sufficient treatments (NH⁺₄ plus glucose) (Table 1). This NH₄ effect on unlabeled CO₂ evolution was also observed after N_0 was added (Table 1). In these soils, under these conditions, the glucose added completely disappeared in 3 d or less and consumption was not slower with added NH₄ (data not shown). Therefore, the differences in CO₂ evolution shown here are not the result of NH₄ inhibition of glucose degradation but are due to increased assimilation of C into biomass or microbial products.

Proteolytic Enzyme Activity

Proteinase activity, as measured by short-term unlabeled casein hydrolysis in experiment III, was affected by glucose and NH[‡] additions (Fig. 1). Proteinase activity was approximately constant during incubation of unamended soil. When glucose plus NH[‡] was added, significantly increased activity was observed on day 7; before and after this time there was no significant difference from the control. This is consistent with an earlier report (Ladd and Paul, 1973). When N deficiency was induced by adding only glucose, proteinase activity was greater than both the control and the glucose plus NH[‡] treatment on days 4 through 11.

These results indicate that proteolytic activity in soil is regulated by N_i availability. It is not possible to precisely define the mechanism of regulation. This could be at the cellular level: regulation of extracellular hydrolytic enzyme synthesis and soluble N uptake systems. Also, the N deficient vs. N sufficient incubation conditions probably would induce qualitative and quantitative differences in the soil microbial populations, thereby influencing total soil proteolytic activity. Indirect effects of N_i on enzyme stability and turnover are also possible.

Enzyme assays of this nature cannot necessarily be extrapolated to the actual mineralization of C and N in N_o substrates. Therefore, at times corresponding to the activity peaks in Fig. 1, labeled N_o was added to the soil.

[†] Preincubation was day 0 to 7 for experiment I; day 0 to 6 for experiment II. Second interval was day 7 to 11 for experiment I; day 6 to 10 for experiment II.

Table 3. Inorganic N during incubation of Holland soil (experiment II).†

Amendment		Inorganic N					
	N source	Day 0	Day 6	Day 10			
		mg N kg-1 dry soil					
Glucose	Soil N Labeled N	44.4a* —	3.8a _	4.4a 13.2b			
Glucose +NH;	Soil N Labeled N	240.5b	112.9b —	107.5c 43.2d			

Values in the same column followed by the same letter are not significantly different at 0.05 level by pair-wise t-tests.
 † Glucose plus or minus NH₄ was added on day 0, labeled cytoplasm on day

Mineralization of Labeled No

Preinduced N deficiency increased the initial rate of mineralization of C from the labeled N_o substrate. This was indicated by greater quantities of $^{14}\text{CO}_2$ evolution in Argonaut and Holland soils previously treated to induce N deficiency (Fig. 2 and Table 4, respectively). The effect in the Holland soil was less pronounced but statistically significant. These differences were observed only during a period of 24 h or less after N_o was added. Effects of N_i addition cannot be attributed to soil acidity induced by nitrification of added NH⁴ since variation in pH among all treatments was less than 0.1 unit after the preincubation period (data not shown). These observations support the hypothesis that availability of N_i regulates soil metabolism of N_o .

On the other hand, induced N deficiency did not have a long-lasting effect on mineralization of the C contained in N_o . In experiment I (Fig. 2), 98 h after N_o was added, 36% of the ¹⁴C added was evolved as CO_2 in the unamended and in the glucose plus NH_4^+ treatments, and 37% in the glucose only treatment. In experiment II (Table 4), after 99 h, 24% was mineralized in the glucose plus NH_4^+ treatment, 25% with glucose only.

The difference in mineralization between the two soils might be explained by a difference in their capacity to adsorb N_0 . This unmeasured potential for

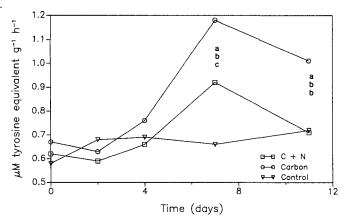


Fig. 1. Proteinase activity, as measured by casein hydrolysis, in Argonaut soil incubated with no amendment, with glucose only, or with glucose plus NH₄ (experiment III). Results of statistical analysis are presented in the text. Letters indicate statistically significant differences, at sampling times when they exist, by Duncan's multiple range test (P < 0.05).

Table 4. Carbon mineralization following addition of labeled organic N to Holland soil preincubated for 6 d with glucose and with or without NH₄ (experiment II).†

	¹⁴ C recovered as CO ₂ after:					
Treatment	4 h	9 h	24 h	48 h	75 h	99 h
+NH ₄ -NH ₄	1.2a* 1.4b	3.1a 3.6b	12.6a 10.1b	20.0a 17.9a	23.4a 22.2a	29.2a 25.1a

^{*} Values in same column followed by same letter are not significantly different at 0.05 level by t-tests.

adsorption also makes it difficult to estimate the fraction of $N_{\rm o}$ metabolized which was assimilated into biomass.

Nitrogen deficiency affected total C mineralization differently than it affected labeled C mineralization. While N deficiency caused an initial increase, but no long-lasting effect, on labeled C evolution, it resulted in increased total C evolution throughout the experimental period (Table 1). Unlabeled CO_2 is presumably derived from soil organic matter and from the metabolic turnover of recently added glucose. The results suggest that N regulation of these C sources may be longer-lived, and therefore of greater significance, than N availability effects on N_0 metabolism. Organic N itself had no significant effect on unlabeled C mineralization from N deficient soil, as was determined by incubating the plus glucose minus NH_4^+ treatments with and without N_0 (data not shown).

Nitrogen deficiency had large effects on mineralization of cytoplasmic ^{15}N , even though the glucose was depleted well before the labeled $N_{\rm o}$ was added. In both experiments, approximately three times more of the labeled N was mineralized in the N sufficient treatments compared to the N deficient (glucose only) treatments (Tables 2 and 3). This residual effect of the preincubation on N mineralization might be associated with microbial storage of C reserves or with induced changes in biomass C/N. Significantly less ^{15}N was mineralized in the previously unamended soil than in the soil with glucose plus NH_4^+ (Table 2). Since the

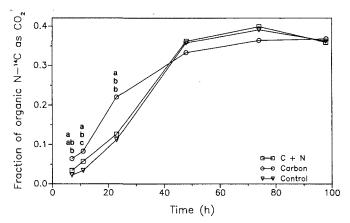


Fig. 2. Mineralization of C from cytoplasmic constituents, as measured by evolution of $^{14}\text{CO}_2$ from Argonaut soil preincubated with no amendment, with glucose only, or with glucose plus NH₄ (experiment I). Letters indicate statistically significant differences, at sampling times when they exist, by Duncan's multiple range test (P < 0.05).

f Glucose plus or minus NH₄ was added on day 0, labeled cytoplasm on day 6 (58.2 mg $N_0 - N$ added kg⁻¹).

 $[\]dagger N_0$ added at the rate of 58.2 mg N kg⁻¹ dry soil.

latter had higher concentrations of N_i , and six times more NH₄, this might be attributed to preferential assimilation of NH₄-N over N_o .

The fraction of N_0 -N mineralized was higher in experiment II than in experiment I, while the opposite was true for N_0 -C. This argues against adsorption of intact N polymers or amino acids as an explanation for lower C mineralization in experiment II. Approx-

Table 5. Mineralization of C and N from labeled organic N added to Argonaut soil simultaneously with or without glucose and incubated for 9.5 d (experiment IV).†

		Final N _i		C mineralized	
Treatment	Initial N _i	Total	15N	Total	14C
		mg N	kg-1 soil —		
Glucose	31	4	<4‡	1846	45
No glucose	31	61	17	442	46

[†] Organic N added at the rate of 110 mg C kg⁻¹ and 27 mg N kg⁻¹; glucose added at the rate of 2.03 g kg⁻¹.

[‡] Because of the small quantity of total N_i it was not possible to obtain reliable values for ¹⁵N mineralized.

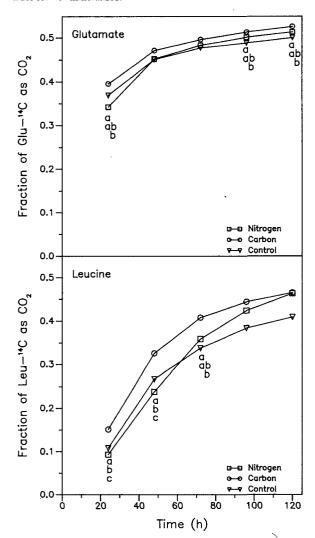


Fig. 3. Rate of C mineralized as $^{14}\text{CO}_2$ from Argonaut soil amended with labeled glutamate or leucine. Soil was preincubated with no amendment, with glucose, or with NH₄ (experiment V). Letters indicate statistically significant differences, at sampling times when they exist, by Duncan's multiple range test (P < 0.05).

imately twice as much $N_{\rm o}$ -N was added in experiment II and there was perhaps a limited potential for N assimilation under these conditions. Yet, the lack of any apparent correlation between C and N assimilation from the same substrate was interesting and this was investigated further in experiment IV.

In experiment IV a relatively small quantity of labeled N_o was added simultaneously with or without a larger amount of glucose. After 9.5 d, no detectable ¹⁵N was mineralized with glucose, but 62% of the ¹⁵N was mineralized without glucose (Table 5). Yet there was no significant difference in ¹⁴C mineralization from the cytoplasmic material; 41% with glucose, 42% without (Table 5). Therefore in this case, as in the previous experiments, there was no apparent correlation between C assimilation and N assimilation from N_o . There was a slight delay in ¹⁴C mineralization, lasting 2 to 3 d, when glucose was added (data not shown).

Amino Acids

Glutamate or leucine were added to the Argonaut soil as single defined organic N sources (experiment V). After 3 d incubation, less than 2% of the added glutamate-14C, and 2 to 7% of the leucine-14C, remained in soluble, extractable forms, indicating virtually complete consumption of the initial substrate. Preinduced differences in N availability had no significant effect on the rate of mineralization of glutamate-C (Fig. 3A). In contrast to glutamate, the initial rate of leucine-C mineralization was affected by soil N_i levels (Fig. 3B). In this case, glucose-induced N deficiency initially increased 14C mineralization relative to the N sufficient treatment. However, this effect did not persist and at the end of the 5-d incubation there was no discernable difference in leucine-C mineralized. Thus, the results with leucine, but not with glutamate, are consistent with those for the cytoplasmic constituents.

CONCLUSIONS

We had expected that in N deficient soils some of the intact amino acids or nucleic acids from the substrate would be utilized anabolically. It should be energetically advantageous to use preformed amino acids to synthesize cell protein rather than deaminating and catabolizing all substrate amino acids, then synthesizing cell N_0 molecules de novo. Anabolic utilization of intact amino acids would have been reflected in lower ¹⁴C mineralization when ¹⁵N mineralization was low. Yet this was not the case and there was no relationship between 14 C and 15 N mineralization and no detectable reduction of C mineralized from N_o by N deficiency. These results suggest that the C and N in N_0 are processed independently by the soil population. Apparently amino acid and other soluble N substrates are initially deaminated completely then the N and C moieties are apportioned to anabolic and catabolic pathways.

These data provide evidence that N_i availability can affect N_o metabolism in soils. This was indicated by increased casein hydrolysis, and by increased initial ¹⁴C mineralization from leucine and from cytoplasmic constituents when N deficiency was induced. These

results do not reveal the mechanism for this effect; one possibility is regulation of proteolytic enzyme synthesis by N_i . However, the effect of N_i availability was transitory and had little long-term effect on mineralization or assimilation of the C contained in N_o .

REFERENCES

- Bosatta, E., and F. Berendse. 1984. Energy or nutrient regulation of decomposition: Implications for the mineralization-immobilization response to perturbations. Soil Biol. Biochem. 16:63-67.
- Bremner, J.M., and C.S. Mulvaney. 1982. Nitrogen-total. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9:595-624.
- DeJong, E., H.J.V. Schappert, and K.B. MacDonald. 1974. Carbon dioxide evolution from virgin and cultivated soil as affected by management practices and climate. Can. J. Soil Sci. 54:299-307.
- Hunt, H.W., J.W.B. Stewart, and C.V. Cole. 1983. A conceptual model for interactions among carbon, nitrogen, sulphur and phosphorus in grasslands. p. 303-325. In B. Bolin and R.B. Cook (ed.) The Major biogeochemical cycles and their interactions, John Wiley and Sons. Chichester.
- Jenkinson, D.S., R.H. Fox, and J.H. Rayner. 1985. Interactions between fertilizer nitrogen and soil nitrogen—the so called priming effect. J. Soil Sci. 36:425-444.
- Johnson, D.W., N.T. Edwards, and D.E. Todd. 1980. Nitrogen mineralization, immobilization and nitrification following urea fertilization of a forest soil under field and laboratory conditions. Soil Sci. Soc. Am. J. 44:610–616.
- Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-inorganic forms. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agronomy 9:643-698.
- Kowalenko, C.G., K.C. Ivarson, and D.R. Cameron. 1978. Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol. Biochem. 19:417-423.
- Ladd, J.N. 1978. Origin and range of enzymes in soil. p. 51-96. In

- R.G. Burns (ed.) Soil enzymes. Academic Press. London.
- Ladd, J.N., and E.A. Paul. 1973. Changes in enzymic activity and distribution of acid-soluble, amino acid nitrogen in soil during immobilization and mineralization. Soil Biol. Biochem 5:825-840.
- Ladd, J.N., and J.H.A. Butler. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4:19-30.
- Leuken, H., W.L. Hutcheon, and E.A. Paul. 1962. The influence of nitrogen on the decomposition of crop residues in the soil. Can. J. Soil Sci. 42:276-288.
- Marzluf, G.A. 1981. Regulation of nitrogen metabolism and gene expression in fungi. Microbiol. Rev. 45:437–461.
- McGill, W.B., and C.V. Cole. 1981. Comparative aspects of organic C, N, S, and P cycling through organic matter during pedogenesis. Geoderma 26:267-286.
- North, M.J. 1982. Comparative biochemistry of the proteinases of eucaryotic microorganisms. Microbiol. Rev. 46:308-340.
- Payne, J.W. (ed.) 1980. Microorganisms and nitrogen sources: Transport and utilization of amino acids, peptides, proteins, and relation substrates. John Wiley and Sons, New York.
- Pinck, L.A., F.E. Allison, and M.S. Sherman. 1950. Maintenance of soil organic matter. II. Losses of carbon and nitrogen from young and mature plant materials during decomposition in soil. Soil Sci. 69:391-401.
- Shields, J.A., E.A. Paul, and W.E. Lowe. 1974. Factors influencing the stability of labeled microbial materials in soils. Soil Biol. Biochem. 6:31-37.
- Snyder, J.D., and J.A. Trofymow. 1984. A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Commun. Soil Sci. Plant Anal. 15:587-597.
- Turk, L.M., and C.E. Millar. 1936. The effect of different plant materials, lime and fertilizers on the accumulation of soil organic matter. J. Am. Soc. Agron. 28:210-324.
- Van Veen, J.A., W.B. McGill, H.W. Hunt, M.J. Frissel, C.V. Cole. 1981. Simulation models of the terrestrial nitrogen cycle. *In F.E. Clark and T. Rosswall (ed.) Terrestrial nitrogen cycles. Ecol. Bull.* (Stockholm) 33:25-48.