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A Local Measure of Fault Tolerance for
Kinematically Redundant Manipulators
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Abstract— When a manipulator suffers a joint failure, its
performance can be significantly affected. If the failed joint
is locked, the resulting manipulator Jacobian is given by the
original Jacobian, except that the column associated with the
failed joint is removed. The rank of the resulting Jacobian then
determines if the manipulator still has the ability to perform arbi-
trary end-effector motions, Unfortunately, even at an operating
configuration that has a relatively high manipulability index, a
joint failure may still result in a singular Jacobian. This work
examines the problem of determining the reduced manipulability
of a manipulator after one or more joint failures. Configurations
that result in a minimal reduction of the manipulability index for
any set of joint failures are determined.

I. INTRODUCTION

INEMATICALLY redundant manipulators offer several
advantages over conventional nonredundant manipula-
tors including the potential for obstacle avoidance, torque
minimization, singularity avoidance, and greater dexterity [1],
3], [41, [91, [13], [14], [18], [19], [26]-[28]. Another ad-
vantage that has only recently been investigated is fault
tolerance [8], [16], [17], [20], [24]. Obviously, a complete
joint failure in a nonredundant manipulator automatically
results in the loss of full end-effector control; however, with
a kinematically redundant manipulator, one can design the
manipulator such that the extra degrees of freedom will be
able to compensate for the failure. This article examines the
problem of determining the reduced manipulability after one
or more joint failures have occurred.
Recall that the end-effector velocities, %, and the joint
velocities, 0, are related by the equation

& =Jb )

where J is the manipulator Jacobian. If a failed joint ¢ is
locked, the Jacobian equation becomes
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where

=1 dict Jin LS €
Jj; denotes the j-th column of J, and

9 = [d, by i 6.

The reduced manipulator Jacobian *J then determines the
kinematic properties of the degraded system. In this article,
a local measure of fault tolerance is defined that measures the
performance of the degraded system relative to the original
system.

In the next section, necessary and sufficient conditions are
derived for determining whether a manipulator with a single
degree of redundancy is in a configuration for which the
reduced system is singular. Using this condition, one can
then develop strategies that will avoid such configurations.
Section III discusses how the manipulability of a manipulator
is affected by a joint failure. Once this has been determined,
configurations can be identified for which the manipulability
is reduced by a minimum amount due to any joint failure.
The case of multiple joint failures is considered in Section
IV. Section V discusses the application of these results to
motion planning and Section VI presents a fully general spatial
example. Finally, conclusions appear in Section VIL

II. FAULT INTOLERANT CONFIGURATIONS

As mentioned earlier, a joint failure can essentially result
in a manipulator being in a singular configuration, even if
the original Jacobian is of full rank. It is easy to show, using
column space arguments, that the rank of the reduced Jacobian
satisfies

rank(J) — 1 < rank(*J) < rank(J) )

so that a single joint failure at a nonsingular configuration
will not result in a multiple singularity. For applications that
require a manipulator to work in a hazardous environment
where joint failures are not unlikely, it would be beneficial to
have a simple method for determining whether a joint failure
will render a manipulator to be in a singularity. Necessary and
sufficient conditions for the reduced Jacobian to be singular
in the case of a single degree of redundancy will be derived
in this section.

A configuration 6* will be said to be fault intolerant with
respect to joint ¢ if the reduced Jacobian J is singular. Much
of this article is dedicated to identifying fault intolerant config-
urations and quantifying, at least locally, the fault tolerance of
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a configuration. It can be shown that a singular configuration
for a planar revolute manipulator is characterized by the
links being collinear. This geometric approach for identifying
singularities can be applied to the problem of determining fault
intolerant configurations. If there is a failure in a joint other
than the first joint, then one can view the manipulator as an
(n — 1)-jointed robot with links 4 — 1 and ¢ replaced by a
link connecting joints ¢ — 1 and ¢ + 1 where it is assumed
that the failure has occurred in joint ¢. One can then check
to see if the links of the new manipulator are collinear. This
is illustrated for a planar 3R manipulator in Fig. 1. For this
simple manipulator it is easy to geometrically identify the
failure intolerant configurations and to develop a physical
intuition into the meaning of failure intolerance. For example,
from Fig. 1(a) it is clear that a failure in joint one will result in
a singular configuration whenever #3 = k7 since this failure
is physically equivalent to having a two-link manipulator that
is at a reach singularity. A failure in joint two will result in a
singular configuration whenever the origins for link one, link
three, and the end effector are collinear, which is illustrated in
Fig. 1(b). A similar geometric argument identifies the family
of configurations represented in Fig. 1(c) as being intolerant
to failures in joint three. It is important to note that the image
of the fault intolerant configurations is the entire workspace.
In other words, for each end-effector position in this example
there is a fault intolerant configuration. This is easy to see from
Fig. 1(c) since this configuration can put the end effector at
any distance from the base. This is in contrast to end-effector
positions that correspond to the kinematic singularities that, for
this example, partition the workspace into regions for which
one would not need to worry about singularities. Thus, as this
example illustrates, one cannot guarantee fault tolerance by
simply restricting the workspace of the manipulator.

The ability to identify failure intolerant configurations from
purely geometric arguments becomes much more difficult for
more general manipulators [6], [12]. Fortunately, a more an-
alytical method for determining fault intolerant configurations
can be derived. The following theorem illustrates this for
arbitrary manipulators that have a single degree of redundancy.

Theorem 1: Consider a manipulator with a single degree of
redundancy. Suppose that for the configuration 8*, J(6*) is of
full rank and that its null vector n;(6*) is known. Then the
configuration #* is fault intolerant with respect to joint 7 if and
only if n;(#*) = 0 where n; is the i-th component of n;.

Proof: (=) If *J(#*) is not of full rank, it has a nonzero
null vector

w=[wy wo w1

Let

w = [w1 Ws; 1 0 Wy, ’LUn_l]T

Then clearly
JO)io =*T(0")w =0 (5)

so that @ is a nonzero null vector of J(6*). As the nullity of
J(6%) is one, it follows that n;(#*) is a nonzero multiple of
w, proving that n,;(6*) = 0.

Fig. 1. The planar 3R manipulator configurations shown represent examples
of the three types of fault intolerant configurations for this manipulator.
These configurations correspond to situations in which a single locked joint
failure will effectively result in a 2R manipulator in a singular configuration.
Configurations of the type shown in (a) are intolerant with respect to failures in
joint one. These configurations are characterized by €3 = k. Configurations
of the type shown in (b) are intolerant to failures with respect to joint two.
These configurations are characterized by the end effector, joint one, and joint
three being collinear. Configurations of the type shown in (c) are intolerant
to failures with respect to joint three. Analogous to the other two cases, these
configurations are characterized by the end effector, joint one, and joint two
being collinear.

(<) Suppose n;(8*) = 0. Let w denote the (n — 1)-
vector that is obtained by deleting the i-th component of
ny(6%). It is easy to see that w is a nonzero vector satisfying
(0w = J(6*)ns(0*) = 0. Hence the square matrix *J(6*)
has a nontrivial null space, proving that it is not of full rank.l@

Thus, the question of whether a particular joint failure
results in a singular Jacobian has been reduced to merely
checking the corresponding component of the null vector. As
an application of this result, one can see that a seven degree-of-
freedom anthropomorphic arm is fault intolerant with respect
to an elbow joint failure since the corresponding element of
the null vector is always zero (e.g., see [25]). This is physically
explained by noting that the only joint in the human arm that
can change the distance from the shoulder to the wrist is the
elbow joint. In most cases, the elements of the null vector will
not be identically zero but will only be zero for certain special
configurations. For example, consider the same simple planar
manipulator shown in Fig. 1. For the configuration shown in
Fig. 2, the null vector is given by [1 0 0]7 which shows that
locally all of the redundancy is located in joint one and that the
manipulator is intolerant to failures in either joint two or three.



ROBERTS AND MACIEJEWSKI: LOCAL MEASURE OF FAULT TOLERANCE FOR KINEMATICALLY REDUNDANT MANIPULATORS 545

CA——K¢)

Fig. 2. A planar 3R manipulator with unit length links in a configuration
for which the null vector is given by ny = {1 0 0]7. This also corresponds
to having 3; = O which physically means that the motion of joint one has
no effect on the velocity of the end effector. Since all of the redundancy is
effectively located in joint one for this configuration, a failure in joint one
has no effect on the motion of the end effector. Conversely, the manipulator
is intolerant to a failure in either joint two or joint three.

This characterization of fault intolerant configurations can
also be used in conjunction with an augmented or extended
Jacobian technique to devise a control strategy that will keep
the manipulator away from these configurations [2], [10],
[22]. For example, one could require that the product of the
elements of the null vector remain at a constant nonzero value
throughout the desired end-effector motion. However, as with
any extended Jacobian technique, algorithmic singularities can
limit the usefulness of such an approach [2], [5].

III. RELATIVE MANIPULABILITY INDICES

One shortcoming of the characterization given in Theorem 1
is that it does not say anything about the reduced performance
of the resulting manipulator other than determining whether
it would be in a singularity. There are a variety of kinematic
measures proposed to quantify the performance of a kinemati-
cally redundant manipulator [1],[14]. These measures are often
used to define optimal operating configurations. One particular
measure is the manipulability index [27] defined as

w(J) = \/det(JJT). 6)

The manipulability index is a nonnegative quantity that takes
on the value zero precisely at the singular configurations of
the robot. Configurations that result in a relatively large ma-
nipulability index are usually considered to be good operating
configurations. However, the emphasis in this section will
be in determining configurations for which a joint failure
will not result in a small manipulability index. This work
investigates the fault tolerance of kinematically redundant
manipulators by examining the manipulability indices of the
reduced Jacobians ®J relative to the manipulability index of
the original Jacobian. Configurations that result in a minimal
reduction of the manipulability index for any joint failure are
determined. Such configurations are locally fault tolerant in
the sense that the robot would not have a substantial reduction
in its manipulability index afier a joint failure.

To pursue this approach, we define the :-th relative manip-
ulability index 7; to be the ratio of the reduced manipulability

index to the original manipulability; i.e.,

7”1‘(6’) = 1112((;]))

where w;(J) = w(*J).! This quantity provides a measure of
the amount of manipulability retained after a failure in the ¢-
th joint. The relative manipulability indices clearly range from
zero to one and are independent of the scaling applied to the
linear or rotational components of J due to the normalization.
In particular, if r; is zero, then the manipulability index of
*J is also zero so that the manipulator is in a configuration
that is fault intolerant with respect to joint 4; in this case, a
failure in the ¢-th joint is critical since it essentially renders the
robot singular. At the other extreme, if 7; is one, then a failure
of the i-th joint has no effect on the manipulability of the
robot at that configuration. This is clearly true when the i-th
column of J is the zero vector; after developing the necessary
machinery, it should also be clear that the converse to this
statement holds. This is precisely the situation illustrated in
Fig. 2 where j; = 0 and thus the local behavior of the end
effector is completely unaffected by a failure in joint one.

If all joint failures are equally likely, then one possible
measure of fault tolerance is to maximize the minimum relative
manipulability index, i.e., to maximize

miin r:(6). ®)

(w(J) #0) @)

If certain joints are more likely to fail than other joints, one
may instead want to maximize

miin a;r:(6) ®

or

Z a;ri(6) 10)
i=1

where the nonnegative scalar quantities a; represent some
weighting [21].

To determine the relative manipulability indices, one can
clearly calculate the reduced manipulability for each joint
failure and divide by the manipulability of the original manip-
ulator. However, it is possible to determine this information
directly from a knowledge of the null space. This will first be
done for manipulators with a single degree of redundancy and
then generalized to the case of multiple degrees of redundancy.
The case of multiple failures will be considered in the next
section.

It is first noted that by the Binet-Cauchy Theorem,

det(JJT) = >

i1 <dg <L <l

2

(detly,, i, )

an

where the summation is taken over the (™ ) subdeterminants of
J. For the case of a single degree of redundancy, this becomes

det(JJT) = Zn:[det(llf)]2

i=1

(12)

I'The case where w(.J) = 0 is considered in Section V.
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so that

w(J) = V[wi (D + fwa (D] + -+ [w, ()2

(13)

where once again w;(J) = w(*J). This gives a simple
relationship between the overall manipulability index and the
resulting manipulability indices due to a single joint failure.
This can be rewritten as

ri4e4rl=1 (14)
Equation (14) shows how the relative manipulability indices
are distributed and clearly illustrates that the overall fault
tolerance to all joint failures must be considered. In particular,
if 7; = 1 for some joint j, then the manipulator’s configuration
is fault intolerant with respect to any of the other joints. Once
again, this is the case illustrated in Fig. 2, where r; = 1 and
ry = r3 = Q.

It is important to note that the relative manipulability indices
are intimately related to the null space of the Jacobian [7]. To
see this, first note that for manipulators with a single degree
of redundancy, a null vector n; can be determined by using

ni=(=1)"det(*J)  i=1,2,---,n (15)
where n; is the i-th component of n. Equation (15) follows
from the Laplace expansion of the determinant, which, for the
special case of a 2 x 3 Jacobian, results in n; being simply
the cross product of the two rows of J. By taking absolute
values of both sides of (15), one has

[ni| = |det(*J)| = w;(J) (16)
which gives the result that
w(J) = ng|. (17)
By letting %y be the unit length null vector
Ay = g (18)
l[ns]l
one has
w;(J) = |ni| = A |w(J) (19)

where 7; is the i-th component of 7 7. Hence the relative
manipulability indices are given by

The values of |#;] and w(.J) are given directly by the singular
value decomposition J = USV™ as |f;] = |v;,| and w(J) =
0102 - -+ 0m Where vy, is the (4,n) element of V. Thus

wi(J) = lvinlo1os -+ o 2n

Note that (19) implies Theorem 1. One can also conclude
from (20) that Jacobians for which the components of the
null vector n; are of equal magnitude are optimal in terms of
maximizing the minimum relative manipulability index given
in (8). Consider the optimally fault tolerant configurations for

Fig. 3. A contour plot showing the minimum reduced manipulability index,
min(w;), for a planar 3R manipulator with equal link lengths. The boldface
line indicates the configurations that possess the optimal value of 1/V/3 for
the minimum relative manipulability index.

a planar 3R manipulator. If each link is of unit length, the
null vector is

sin 3
—sin f3 — sin(92 + 93)
sin 0y + sin(é’g + 93)

ny = (22

Optimally fault tolerant configurations have the property that
each component of (22) has the same magnitude. One can
show that this is equivalent to 8, + A5 = kr. These are
illustrated by the boldface lines in the contour plots of Fig. 3
and Fig. 4. It is important to note that the image of the surface
{0102 + 03 = (2k + 1)x} is the unit circle {z| ||z|| = 1}
centered at the base in the workspace while the image of
the surface {f{0, + 63 = 2kn} is all of the workspace
except the open unit disk centered at the base, i.e., {z|]1 <
llz]| < 3}. Thus a significant portion of the workspace can
be covered with the manipulator in an optimally fault tolerant
configuration. Note that (20) can also be used to calculate
optimal solutions to (9) and (10). In particular, the Jacobians
that maximize (9) are characterized by having a;|n;| = ajlngl
while the Jacobians that maximize (10) are characterized by
the null vector being a nonzero multiple of [a;+as - - - +a,]7.

One can also consider the dynamics of a manipulator
experiencing a locked joint failure [15]. In this case, one
is interested in the dynamic manipulability index, JH -1
where H is the moment of inertia matrix [28]. This will,
of course, modify the measure of failure tolerance for the
various manipulator configurations due to the effect of the
inertia matrix. Thus the relative dynamic manipulability will,
in general, differ from the relative kinematic manipulability, as
will the optimally failure tolerant configurations. However, it is
important to note that the failure intolerant configurations will
not be changed since they are strictly due to the singularities
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Fig. 4. A contour plot showing the minimum relative manipulability index,
min(r; ), for a planar 3R manipulator with equal link lengths. The boldface
fine indicates the configurations that possess the optimal value of 1/+/3 for
the minimum relative manipulability index.

in *J. Thus if one is concerned with identifying a region in
the joint space that is guaranteed to not be failure intolerant,
one need only consider the kinematics [15].

The above results have been illustrated for manipulators
with a single degree of redundancy. These ideas can be easily
generalized to include multiple degrees of redundancy as the
following theorem shows.

Theorem 2: Let J be an m by n manipulator Jacobian of
full rank and let J = UX[V; Va]T be its SVD where V5 is
a matrix of n — m orthonormal n-dimensional vectors in the
null space of J. Then the manipulability index after a failure
of the ¢-th joint is given by

w(*J) = [|Nillw(J) (23)
where Ni is the i-th column of VgT. Hence the relative
manipulability index r; is given by ||N;||. Furthermore,

n
E rZ =n—m.
i=1

Proof: See Appendix A.

Like the one-dimensional case, this theorem has a very
elegant physically intuitive interpretation. The magnitude of a
joint’s contribution to the null space, i.e. || N, is effectively
a measure of how much of the manipulator’s total redundancy
resides in that particular joint. Thus the more redundancy
associated with a joint, the more tolerant the manipulator is to
a failure in that joint. It is important to note that the matrix
V, from the SVD of J is not unique; however, the space
spanned by this matrix is unique and all possible V, matrices
are related by orthogonal transformations. Since orthogonal
transformations are norm-preserving, the results of the theorem
are independent of the particular choice of V5.

(24)

Once again, one should not make the manipulator com-
pletely fault tolerant to a particular failure unless it is known
which particular joint failure is imminent. By Theorem 2,
this would mean that [|[N;|| = 1. Due to the fact that V is
orthogonal, the norm of the 4-th column of V;T would then be
0 so that the i-th column of .J is the zero vector. Hence, having
the manipulator in a configuration where there would be no
loss of manipulability after a failure in joint ¢ means that joint
will not be able to contribute to the end-effector motion prior
to a failure. Optimal Jacobians would have similar null space
properties as before. For example, a Jacobian with the property
that each column of VT is of equal norm is optimal in terms
of maximizing the minimum relative manipulability index (see
(8)). Such a Jacobian will be said to have the optimal reduced
manipulability property.

IV. MULTIPLE JOINT FAILURES

It is possible that a configuration that is optimally fault
tolerant in the sense of (8) may not be fault tolerant for two
or more joint failures. For example, consider the Jacobian

10 -1 0
J= [0 1 0 —1}
which is clearly fault tolerant to a single joint failure since
joint three duplicates the motion of joint one and joint four
duplicates the motion of joint two. A planar 4R manipulator
configuration that corresponds to this Jacobian is given in

Fig. 5(a). One can see that J maximizes its minimum relative
manipulability index since the columns of the matrix

25)

Loy Loy
vi=|V2 \f . 26)
V2 V2

are all of the same norm, thus satisfying the conditions of
Theorem 2. However, if the second and fourth joints both
fail, then the rank of the resulting Jacobian is one. Likewise,
failures of the first and third joints also result in a zero
manipulability index. Thus, while (25) is optimally fault
tolerant to single joint failures, it is not fault tolerant to
multiple failures.

In this section, conditions are derived for guaranteeing op-
timal fault tolerance with respect to multiple failures. As with
the case of a single joint failure, the reduced manipulability
resulting from multiple joint failures can also be determined
from the SVD of J. For the case of two joint failures in say
joints ¢ and j, the manipulability index becomes

wis(7) = w( I N2 12 — (N - )2
= w() NIV, || sin g5

@n

where ¢;; denotes the angle between the vectors Ni and
N ;- Note that the effect of two failures on the reduction of
the original manipulability is not simply the product of the
individual joint failures. The manipulability will be reduced
by a factor that is the product of the magnitudes of N; and

N, ie., the reduction due to considering the joint failures
individually, along with the magnitude of the sine of the angle
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(b)

Fig. 5. Both of the planar 4R manipulator configurations shown are optimal
in terms of failure tolerance with respect to a single locked joint failure.
The configuration in (a), however, is intolerant to two locked joint failures if
either joints one and three or joints two and four fail. The configuration in
(b) is optimally failure tolerant with respect to any two locked joint failures.
Note that failure tolerance can be geometrically related to the degree that the
columns of the Jacobian overlap with each other.

between N; and N ;- Physically this makes sense, since the
angle between N; and N ; is related to how much the end-
effector motion due to joints ¢ and j are correlated. If the
sine of the angle between these vectors is zero, then these two
joints not only contribute to the same direction of end-effector
motion, but they are also the only joints that contribute to this
particular direction (assuming a nonsingular .J), thus resulting
in a zero value of reduced manipulability. This is exactly the
case illustrated by the Jacobian in (25) and its corresponding
null vectors given in (26). The general case for an arbitrary
number of joint failures is given by the following theorem
along with a relationship between the relative manipulability
indices.

Theorem 3: Suppose that a manipulator is in a nonsingular
configuration and that there are f < n — m distinct joint
failures occurring in joints ¢q,%s,:--,%. Then the reduced
manipulability index is given by

where ]\Af,-h...,i denotes the (n—m) x f matrix composed of the
columns of VQ& associated with the failed joints. Furthermore,
if the relative manipulability index 7, ... ;.(J) is defined to
be w;, ..;,(J)/w(J), then the following relationship holds
for n — m joint failures:

S R () =1

1 <i2 < <dpom

29

Proof: See Appendix B.

Once again, it is important to note that all V¥’ matrices for
a Jacobian differ only by a premultiplication of an orthogonal
matrix. Since any such premultiplication by an orthogonal
matrix preserves the inner product of the columns as well
as the column norms, (28) does not depend on the particular
choice of Vi .

Theorem 3 can be used for identifying and designing
configurations that are multi-fault tolerant. For example, using
(27) and some purely geometric arguments, one can choose
a V5 that is optimally fault tolerant to any two joint failures.

One such V5 is
-1
2

0
-1

1
22
Each column of (30) has length 1/ V2 in order to guarantee
maximum worst-case manipulability for single joint failures,
and each column (or its reflection) is at an angle of 180/n =
45 degrees from some other column in order to guarantee
maximum worst-case manipulability for two joint failures. Ob-
viously, since there are only two degrees of redundancy, any
failure in three joints results in zero manipulability regardless
of V5. An example of a Jacobian corresponding to the V, in
(30) is given by ‘

Vi = (30)

]
N =

N =D =

1 ~1

1 — 0 —
J=| V2 v 31

VAR

which is optimally fault tolerant in a worst-case sense with
respect to reduced manipulability for any set of joint failures.
A planar 4R manipulator configuration that corresponds to
this Jacobian is given in Fig. 5(b). It is important to note that
maximizing the angle between any two N; and Nj can allow
one to also spread out the columns of the Jacobian so that for
any j; (or its reflection) there is a j; that is 45 degrees away.
This makes sense from a physical point of view since it makes
the velocity that any two joints can impart to the end effector
overlap as much as possible. The more the columns of J
overlap, the more other joints can compensate for a failed joint.
To quantify this qualitative description, note that like (26), any
single joint failure results in a reduced manipulability index
of w(J)/V2 so that 70.71% of the original manipulability
index is retained. However, for two joint failures, the reduced
manipulability index becomes either w(J)/2 or w(J)/(2v/2),
which corresponds to retaining 50% or 35.36% of the original
manipulability, respectively.

Thus, (28) can be very useful for identifying configura-
tions that optimize worst-case reduced manipulability in the
presence of possible joint failures. If two particular joints are
more likely to fail, then by (27), one may want to keep the
corresponding columns of Vi orthogonal to each other. One
may especially want to do this when the failure of one joint
becomes more likely with the failure of the other. If statistical
data are known concerning the likelihood of the individual
joint failures, this could be used to modify the criterion for
optimal fault tolerance, e.g., maximizing the expected value
of the reduced manipulability.

V. DISCUSSION

This work has presented a local failure tolerance measure
that is based on the classic definition of dexterity given by
the manipulability index. The value of the manipulability
index following a locked joint failure is one useful metric for
determining the absolute amount of dexterity available. The
relative manipulability index was also introduced to provide a
measure of fault tolerance relative to the manipulability prior
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to a failure. The relative index proved useful for gaining insight
into the distribution of redundancy throughout the joints.
However, it is important to emphasize that one should not use
the relative index by itself since if the original manipulability
index is small, then that configuration is probably not a
desirable operating configuration, even though it may be
optimal in terms of relative fault tolerance. This will be
illustrated through a specific example.

Consider the standard planar 3R manipulator with unit
length links. Contour plots for the minimum manipulability
index following a single locked joint failure are shown in
Fig. 3. Note that this measure is independent of #;. The
corresponding contour plots for the minimum relative ma-
nipulability index are shown in Fig. 4. In comparing these
two plots, the immediate obvious feature is that the zeros
of these two functions coincide, as is expected, and that in
general, larger values of reduced manipulability correspond
to larger values of relative manipulability. However, it is
imperative to appreciate that this is not always the case.
For example, consider the optimal configurations in terms of
relative manipulability. These configurations are characterized
by lines of slope -1 that pass through the kinematically singular
configurations of the original manipulator, i.e., where 65 and
f3 are integer multiples of 7 (See Fig. 4). While the relative
manipulability stays constant at its maximum value of 1/v/3,
the reduced manipulability index (see Fig. 3) varies from its
maximum to its minimum value along this line of configura-
tions. Clearly, the optimal value of the relative manipulability
in these cases is a misleading indicator of the dexterity of the
manipulator configuration. A redundancy resolution scheme
that attempted to simply track the optimal value of the relative
manipulability would have no indication of the reduction in the
original manipulability and thus could inadvertently blunder
into a kinematically singular configuration.

Even though relative manipulability indices are not defined
at singularities due to w(.J) being zero, one can extend the
definition using the concept of a “constrained manipulability
index.” The constrained manipulability index can be defined
as the product of the p nonzero singular values of J, where p
is the rank of J. The -th relative constrained manipulability
index r; can now be defined as the ratio of the constrained
manipulability index of *.J over the constrained manipulability
index of J. One can show that

ri = ||V 32)
where the (n — p)-vector N; is the i-th column of V. Note
that (24) now becomes

(33)

Similarly, the relative constrained manipulabilty index for
the case of multiple failures has the same form as given in
Theorem 3 where ]\Af.“,.“’if is now an (n —p) X f matrix. Like
the nonsingular case, the relative constrained manipulability
index at a singularity gives an indication of how much further
dexterity is lost by locking a joint. In particular, when r; = 0,
deleting the i-th column of J results in reducing the rank of

J by one. Physically, this means that locking the ¢-th joint
would result in a further reduction in the space of possible
local end-effector motions.

It is also important to note that a decrease in the mini-
mum relative manipulability index does not inherently imply
a poorer level of failure tolerance. In particular, since the
sum of the squares of the relative manipulability indices are
constrained to be constant (see (24)), the minimum 7; can be
decreased by simply increasing the reduced manipulability of
the other joints faster than that associated with the minimum
ri. Clearly, from a practical point of view, the resulting
Jacobian would have increased its intuitive measure of failure
tolerance.

VI. SPATIAL MANIPULATORS

The results developed in the previous sections are com-
pletely general and can be applied to manipulators with an
arbitrary number of degrees of freedom. However, when
dealing with spatial manipulators one must be careful to
consider the implications of the manipulability index. This
section will comment on some of these issues and present
a specific example of how to calculate a manipulator Jacobian
that possesses an optimal relative manipulability index.

For a spatial manipulator, each column of the manipulator
Jacobian will consist of a twist denoted

v;
Ji = (34)
Wi

where w; is the orientational velocity and w; is the linear
velocity at the end effector resulting from joint <. The units
of the resulting manipulator Jacobian are not homogeneous
so that an appropriate scaling of the rows associated with
the linear components must be performed before the ma-
nipulability index is meaningful. There are many ways in
which to select this scale factor that, of course, must be in
units of inverse length. For example, in cases where the task
being performed imposes a preferred precision in linear versus
rotational errors then this scaling should be used so that least
squares solutions produce the desired results. In the absence
of task specific scalings, one can scale the linear velocity
components by the maximum reach of the manipulator, the
maximum singular value of the linear Jacobian, or by the
characteristic length [23]. Once scaled by an appropriate factor
whose units are of inverse length, column norms become
meaningful, as does the manipulability index. It should be
pointed out that when scaling the linear part of the manipulator
Jacobian by ), the manipulability index becomes A* times
the manipulability index of the unscaled manipulator Jacobian.
Hence, as mentioned earlier, the relative manipulability indices
(7) are completely independent of whatever scaling is chosen
since they are ratios of manipulability indices and thus not
affected by this scaling.

As a specific example of applying the results of the previous
sections, consider a spatial manipulator consisting of seven ro-
tational joints. By Theorem 2, a unit null vector corresponding
to an optimally failure tolerant Jacobian for this manipulator
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TABLE 1
DENAVIT-HARTENBERG PARAMETERS FOR THE JACOBIAN IN (36)

[ a; d; [e 54 0‘-

1 0.3970 1.3170 1.2151 -2.7616
2 -1.3051 -2.4429 1.0699 1.4139
3 0.0262 1.3302 1.7002 -1.4640
4 -0.3970 -1.7480 1.2151 -0.4220
5 1.6172 0.0162 2.2081 1.6939
6 -0.1724 -2.0224 1.2552 -2.8837
7 1.0000 1.2279 0.0000 0.9543

is given by

1
Y%

There is a whole family of manipulator Jacobians that have
this null vector. One particular example is (36), shown at
the bottom of the page. As required each column satisfies
the condition that the positional part is orthogonal to the
orientational part. Note that for this particular example the
norms of the linear velocity components are equal to the norms
of the rotational components. One can interpret this to mean
that each of the joint axes is constrained to be separated from
the end effector by a distance that is equal to the characteristic
length [23]. The reduced manipulability index is

ny 11111 17" (35)

wi(J) = 4.452 = \/i?w(.f) 37
for all joint failures 7 where
w(J) = 11.78. (38)

The Denavit-Hartenberg parameters for a manipulator that is
in a configuration that possesses this optimal Jacobian can be
identified in a straightforward manner [11] and are given in
Table 1.

VII. CONCLUSIONS

This article discussed two local measures of fault tolerance
based on the manipulability index as a measure of dexterity.
The reduced manipulability index was defined as the value
of the manipulability following a locked joint failure and the
relative manipulability index was defined to quantify the rela-
tive loss of manipulability due to a joint failure. A convenient
method was developed for determining these measures from
the null space of the manipulator Jacobian. Using this result,
one can determine configurations that are locally optimal with
respect to these measures of fault tolerance. These results
‘impact the design of failure tolerant manipulators as well as the
design of their intended workspace. In addition, they provide

a basis for utilizing manipulator redundancy in anticipation of
possible joint failures.

APPENDIX A
PROOF OF THEOREM 2

Lemma 1: Let J be a full rank m X n matrix and N be
a matrix whose rows are orthonormal and orthogonal to the

rows of J. If
J
=[]
then w(J) = w(Jy).
Proof: Let J = UX([V; V3]T be the SVD of J. Then
Je = [U O][s o]V
Y=o r]lo 1||N

where § = diag(oy,---
index of Jy is

(A1)

(A2)

y0m). Clearly, the manipulability

w(IN) =0103 0l 1= 01000 = w(J). (A3)

-]

Lemma 2: Let V4 and W, be two n X s matrices (s<n),

each with the property that its columns are orthonormal. If the

column spaces of these two matrices are identical then there
exists a s X s orthogonal matrix @ such that Wy = V20.

Proof: Let Vi be an n X (n — s) matrix whose columns

are orthonormal and orthogonal to the columns of V5. The

existence of such a matrix is guaranteed by the Gram-Schmidt

orthogonalization procedure. It then follows that [V; V3] and

Vi Wa] are n x n orthogonal matrices so that

VoV =1, - vVl = wow?. (A%)

Let Q = V,"W5. Then the s x s matrix @ is orthogonal since

QTQ = WiV VI Wy = WIWoaWIW, = I, (A5)
where we have used the fact that WZT Wy = I,. We only need
to show that W5 = V5(Q); this follows from

VaQ = VoVl Wo = Wo W Wy = W, (A6)
B
Theorem 2: Let J be an m by n manipulator Jacobian of

full rank and let J = UZ[V; V5)7 be its SVD where V; is

a matrix of n — m orthonormal n-dimensional vectors in the

null space of J. Then the manipulability index after a failure

of the i-th joint is given by (23), where N, is the i-th column
of V. Hence the relative manipulability index r; is given by
|NV;]|. Furthermore, (24) holds.

1 —-0.6839 —0.1534 0.9590 —0.4717 —-0.3391 —0.3108
0 02330 —0.7082 —0.0417 0.4486 0.9365 —0.8682
J— 0 06914 —0.6891 02804 —0.7591 0.0896 0.3869 (36)
0 —0.6051 —0.9831 0.0417  0.7956 —0.1432 0.8942
1 0.3482 0.0387  —0.9576 —0.1547 —0.1455 —0.1291
0 -0.7159 0.1790 —0.2850 —0.5858 0.9789 0.4287
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Proof: Let N be an (n —m — 1) X n matrix whose rows
are orthonormal and orthogonal to the rows of J and whose
t-th column is the zero vector. The existence of such a matrix
is guaranteed by the fact that dim(ker(.J)) = n — m. Let Jy
be defined as in (A1). By Lemma 1

w(J) = w(Jy). (A7)
Furthermore, because the i-th column of N is the zero vector,
the rows of N are orthonormal and orthogonal to the rows
of *J so that

w(*J) = w(*Jn). (A8)
Let 7 be the unit length null vector of Jy. We have already
shown in the text (cf. (19)) that the reduced manipulability for
the single degree of redundancy case is simply the product of
the original manipulability with the absolute value of the i-th
component of the unit length null vector. Thus,

w(*Jyn) = |filw(Jx) (A9)

where 71; denotes the i-th component of 7. It then follows that

w(*J) = |iw(J). (A10)
Now by Lemma 2, there exists an orthogonal matrix ) such
that

[ﬁ] =QVy. (A1)
Since @ preserves norms, the norm of the ¢-th column of (A11)
is equal to the norm of the i-th column of V;I. Since the i-th
column of N is the zero vector, it follows that the norm of
the i-th column of (A11) is |#;]. Hence |7;| = || N]], proving
the result.

To prove (24), note that 7, 72 is the sum of the squares
of the magnitudes of Ni, which is also equal to the sum
of the squares of the magnitudes of the n — m columns of
V5. Since each column of V5 has unit norm, it follows that
oori=n-—m. ]

APPENDIX B
PROOF OF THEOREM 3

Theorem 3: Suppose that a manipulator is in a nonsingular
configuration and that there are f < n — m distinct joint
failures occurring in joints 41,42, --,¢7. Then the reduced
manipulability index is given by (28), where Nih.%i ; de-
notes the (n — m) x f matrix composed of the columns
of Vi associated with the failed joints. Furthermore, if the
relative manipulability index r;, ...;,(J) is defined to be
Wiy i, (J)/w(J), then the relationship for n — m joint
failures given by (29) holds.

Proof: 1t is sufficient to prove the result for the case
where the failures occur in the first f joints; one can appropri-
ately rearrange the columns of .J if necessary. Furthermore, by
using a slight variation of the QR factorization and Lemma 2 of

Appendix A, one can assume that the null space component
of J has the form

vi= |0 & (B1)

By Theorem 2, a failure in joint 1 results in a reduced
manipulability of wy(J) = |di|w(J). Since all but the first
component of the first column of V" are zero, the matrix

d2 * * k... %
0 d ®2)

is the null space component of 'J. It then follows that a
failure in joint 2 results in a manipulability index wy5(J) =
|da|w1(J) = |dids|w(J). Continuing this process, one obtains
the result that

’w12.“f(J) = |d1d2~--df|w(J) (B3)
for f < n — m failures.
Next, observe that for
’le * * ]
0 da :
R C *
Nig=lo . 0 ds (B4)
0 0 0
Lo 0 0]
{dl * «17T
& o 0 do
N N s = s
ES
i 0 dy]
dy -
0 ds (B5)
S . %
0 - 0 ds
It then follows from the theory of determinants that
det(NE Ny..p)=di--d2 (B6)

so that wy,... ;(J) = y/det(NT ,Ny..p)w(J). Note that

orthogonal transformations preserve norms and inner products
so that the result holds for any representative V> of the null

space.
Now consider (29). Suppose f = m — n. It was shown that
2 (D =det(VE o Nii ). B7)

Since Nil,.“,in»m is a square matrix, it follows that
12 i () = [det(Nyy o, )] (B8)
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_m) possible indices, one has

Z Tz'zl,m,i%m(»])

i <dp <o Lpem

- ¥

i <idp < <tpem

Summing over the (,

[det(Ni, ... )% (BY)

However, by the Binet-Cauchy Theorem, the right hand side
of (BY) is just the determinant of V,' Vs = I,,_.,, so

> 17 i (J) =det(V'V3) =1 (B10)
ig <ip <o <dpem
proving the result. |
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