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Abstract.  The focus of this paper is to develop a multivariate model for modeling the 
annual net basin supplies (NBS) of the Great Lakes.  Not all NBS series show similar 
behavior.  For example, a feature that is apparent in some but not all NBS series is a 
sudden shifting pattern.  In this paper previous studies of univariate shifting mean 
models are expanded to develop multivariate contemporaneous shifting mean models.  
These multivariate models are further mixed with CARMA models in such a way, that 
the lag zero correlation in space is conserved between the underlying processes of the 
different models. The full contemporaneous shifting mean CARMA models are suc-
cessfully applied for modeling jointly the whole Great Lakes system, preserving the 
spatial correlation at lag zero between different lakes, and preserving other important 
statistical characteristics of the individual lakes. 
 
1. Introduction 

The Great Lakes System is one of the major lake systems in the world. It 
involves a series of five interconnected lakes (Superior, Michigan-Huron, St. 
Clair, Erie, and Ontario) that are subject to inter-basin flows and net basin sup-
plies (NBS).  Lake St. Clair is small compared to the other four lakes but being 
the middle lake, it is strategically located.  Lakes Superior and Ontario have 
been regulated for the past several decades while the intermediate lakes are not 
regulated, although modifications in the connecting channels have caused 
some effect on the lake outflows (Quinn, 1985). Regulation of the two lakes 
depends on the expected NBS. In addition, the regulation of Lake Ontario, be-
ing the furthest downstream lake of the system, depends on the characteristics 
of the entire system, such as the expected NBS for all the lakes, the corre-
sponding lake levels, and outflows.  Thus the analysis, modeling and simula-
tion of the NBS series for the various lakes have been of interest not only for 
testing alternative regulation plans but for re-evaluating the capacity of exist-
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ing waterworks, re-examining the performance of existing water systems, and 
assessing the capacity of new water resources systems. 

Several studies have been made in the past for analyzing and modeling the 
NBS series of the entire Great Lakes system based on stochastic techniques.  
The NBS time series show complex patterns that are reflected in some of the 
statistical characteristics such as the mean, variance, persistence, high flow and 
low-flow statistics, short and long memory, and shifting level behavior –
(Rassam et al., 1992).  Some studies have been made attempting to understand 
and model some of the stochastic features of the NBS series.  For example, 
Buchberger (1994) used a conceptual analysis based on water balance of the 
lakes to derive covariance properties of the annual NBS series. 

Direct and indirect modeling schemes (Salas and Fernandez, 1989) have 
been proposed and applied for modeling monthly and quarter monthly NBS se-
ries (Yevjevich, 1975; Loucks,1989; Buchberger, 1992; Rassam et al., 1992). 
Direct modeling schemes imply using (for instance) monthly data and building 
a model to simulate monthly data directly at this time scale. For example, 
Yevjevich (1975) used a multivariate autoregressive (AR) model after season-
ally standardizing the NBS series.  The drawback with this type of modeling 
scheme is that while the monthly statistics are generally well preserved, statis-
tics at higher time scales (for example years) are generally underestimated.  
Likewise, other statistics related to low frequency components such as random 
apparent shifts in the series are not represented.  On the other hand, indirect 
modeling schemes imply modeling and generating monthly NBS in two or 
more steps (stages), that is firstly the time series is modeled at a higher time 
scale such as years so as to reproduce key annual statistics, subsequently an-
nual NBS series generated from such a model are then disaggregated into 
smaller time scales such as months in such a way as to reproduce monthly sta-
tistics.  For example, Rassam et al. (1992) employed one direct and two indi-
rect modeling and generation schemes by using the so-called SPIGOT com-
puter package (Grygier and Stedinger, 1990).  The two indirect approaches in-
cluded, a CARMA(1, 1) model with temporal disaggregation, and a mixture of 
multivariate AR(1) and shifting mean model with temporal disaggregation.  
The shifting mean model was included for generating the annual NBS series of 
Lakes Erie and Ontario because it was capable of reproducing the relevant sta-
tistics related to lake levels and outflows better than the other alternatives.  The 
study suggested the need of further developing multisite shifting mean models. 

In this paper we develop a multivariate modeling framework using shifting 
mean models.  Two contemporaneous models are developed, namely: the con-
temporaneous shifting mean model plus AR(1) persistence dubbed as 
CSMAR(1) and a mixture of contemporaneous shifting mean and a contempo-
raneous ARMA, dubbed CSMAR(1)-CARMA. The CSMAR(1) model is 
based on the single site plus persistence model, SMAR(1), suggested by 
Sveinsson (2006).  In addition, simpler versions of the models assuming no di-
rect AR(1) persistence are included.  The various models are illustrated and 
compared using the annual NBS data of the Great Lakes system.   
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2. Contemporaneous SMAR(1) : CSMAR(1) 
The CSMAR(1) model is a contemporaneous SMAR(1) model that can be 

used to model multiple time series that are correlated in space.  For detailed 
description of the SMAR(1) model refer to Sveinsson (2002) or Sveinsson et 
al. (2006).  If is a column vector of observations at 
time t for n different sites, where each site is assumed to follow a SMAR(1) 
process, then the CSMAR(1) process can be expressed as 

[ T)()2()1( n
tttt XXX K=X ]

 ttt ZYX +=  (1) 
where Yt and Zt are column vectors defined in the same way as Xt.  For a sin-
gle site the noise level process { }tZ  can be written as  
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Xµ  is the mean vector of Xt . In the CSMAR(1) model the 
following assumptions are made about the independent sequences {Yt} and 
{Zt}: 

1. The sequences  are modeled by a contempora-
neous AR(1), CAR(1), process given by 

}{,},{},{ )()2()1( n
ttt YYY K

ttt εYY YY +−Φ=− − )( 1 µµ  
where  is a diagonal n × n matrix, and .  
The CCVF of the processes in the CAR(1) model are given by  
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space as in time.  That is,   for , 
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2. The sequences  are correlated in space only 
at lag zero.  That is, 

}{,},{},{ )()2()1( n
iii MMM K

( ))0(,MVN~}{ MC0M iidi . It can be shown 
that a necessary and sufficient condition for {Zt} to be stationary in the 
covariance is that   is a common sequence for all sites.   In 
that case the   covariance function of   Z

K,, 21 NN
t at lag h  is given by 

   (6) K,1,0)0()1()( =−= hph h
MZ CC

The condition that { }  is a common sequence for all sites may also be 
supported in practice, if the shifts in the means are thought of being caused by 
changes in natural processes, such as changes in climate.  In such cases it 
should be expected that time series of the same hydrologic variable within a 
geographic region would all exhibit shifts at the same times. Thus, in general 
the CSMAR(1) model should not be applied for multivariate analysis of time 
series if it is clear that shifts in different time series do not coincide in time. 
Such cases can come up if a shift in a time series is caused by a construction of 
a dam or other man made constructions, where the construction does not affect 
the other time series being analyzed. Note that if M

∞
=1itN

t is assumed uncorrelated in 
space then the condition for stationarity that { }∞=1itN  is a common sequence for 
all sites is not necessary any more. 
 
2.1. Parameter Estimation for the CSMAR(1) model 

The parameter estimation procedure is relatively simple for the CSMAR(1) 
model.  First the CSMAR(1) model is uncoupled into univariate SMAR(1) 
models.  If the common p is not known, then p(i) is first estimated at each site i  
(Sveinsson, 2002; and Sveinsson et al., 2006).   The common p can then be es-
timated as a weighted average of the s )(ˆ ip
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After estimating the parameters of the univariate SMAR(1) models, what 

remains is estimating the non-diagonal elements of  and . Using 
Eqs (1) and (5)-(6), and the independence of {Y
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Estimates of  and  are obtained by solving  Eq (8) with h = 0 and 
h = 1 for  and .  It follows that   
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2.2. Problems Arising in Parameter Estimation 
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It is required that  and  are symmetric matrixes.  In order for 

 in Eq (10) to be symmetric  a complex relationship is needed between 
 and  (Sveinsson, 2002), this is unlikely to be followed by the data.  

Thus an adjustment is needed to make  symmetric, and the simplest 
such adjustment is to replace all  and  with their respective aver-

ages.  If  is symmetric then no further adjustment is needed in the es-
timation of .  
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3. CSMAR(1)-CARMA(p, q) 

Analyzes of multiple time series of different hydrologic variables may re-
quire mixing of models.  For example shifts in time series of one hydrologic 
variable may not be present in a time series of another hydrologic variable.  Or, 
if different geographic locations are used for analysis of a single hydrologic 
variable, then characteristics of the corresponding times series may be depend-
ent on their geographic location. In such cases mixing of multiple CSMAR(1) 
models and other time series models, such as CARMA(p, q),  may be desir-
able.  In this section we will formulate a mixture of one CSMAR(1) model 
with one CARMA(p, q) model, where the lag zero cross correlation function 
(CCF) in space is preserved between the CARMA(p, q) model and the CAR(1) 
component of the CSMAR(1) model.   

Lets assume that there are total of n sites, of which n1 sites follow a 
CSMAR(1) model and the remaining n2 sites follow a CARMA(p, q)  model.  
The model of the n sites can be presented by Eq (1), where the first n1 elements 
of Xt represent the CSMAR(1) model and the remaining n2 elements of Xt  rep-
resent the CARMA(p, q) model 
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In general the whole vector Yt can be looked at as being modeled by a 
CARMA(p, q) model 
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ARMA(p, q) process.  That is,  is an ARMA(p)(i

tY i, qi) process, , ni ,,2,1 K=

177 



Sveinsson and Salas 

where the pi s can be different and the qi s can be different.  The p and the q of 
the CARMA(p, q) model are ),,,max( 21 npppp K=  and 

. ),,,max( 21 nqqqq K=
The parameter matrixes of the CARMA(p, q) are diagonal, thus estimation 

of parameters of the CSMAR(1)-CARMA model can be done  in a similar way 
as for the CSMAR(1) model, where Eq (13) is uncoupled into univariate 
model.  For the CSMAR(1) portion of Eq (13), parameters are estimated using 
procedures in section 2.1. For estimation of each of the univariate ARMA(pi, 
qi), , models refer to Salas (1993; Hipel and McLeod 
(1994); and Brockwell and Davis (1996). Hipel and McLeod (1994) also give a 
joint multivariate estimation algorithm for estimation of the parameters of the 
CARMA(p, q) model. The algorithm to estimate  is simple, but a neces-
sary condition is that the CARMA(p, q) is causal.  This is equivalent to requir-
ing each of the estimated univariate ARMA(p, q) models to be causal (often a 
common requirement in estimation procedures for ARMA models).  Causality 
implies that Y

nnni ,,2,1 11 K++=
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 4. The Special Case : The CSM-1-CARMA Model  

In the special case with 0=φ  (no persistence in the Yt process) the 
CSMAR(1) model in section 2 reduces to a contemporaneous SM-1 model, 
dubbed here as CSM-1.  Thus, the sequences  are cor-
related in space at lag 0 only, and independent in time, with 
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ttt YYY K

( )0(,MVN~}{ YY CY )µiidt . The properties of the  
do not change.  
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4.1. Parameter Estimation for the CSM-1 model  

The parameter estimation procedure for the CSM-1 model follows the 
same steps as the parameter estimation procedure for the CSMAR(1) model in 
section 2.1.  That is, first the CSM-1 is coupled into univariate SM-1 models 
and the parameters are estimated at each site using procedures in Sveinsson et 
al. (2006).  Then the common p for all sites is estimated as a weighted average 
of the estimated p(i) of the univariate SM-1 models (refer to Eq (7)), and  given 

 the parameters of the univariate SM-1 models are reestimated.  What re-p̂
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mains is estimating the non-diagonal elements of  and .  The 
 is estimated from 
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)0(MC

   (15) )1(ˆ)ˆ1()0(ˆ 1
XM CC −−= p

where if necessary  is made symmetric by replacing  and  

with their respective averages.  Then  is estimated from 
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4.2 Parameter Estimation for the CSM-1-CARMA model 

The CSM-1-CARMA follows the same concept as the CSMAR(1)-
CARMA model in section 3.  Given the CSM-1 model then parameters of the 
CSM-1-CARMA model are estimated using the procedures for estimation of 
the CSMAR(1)-CARMA parameters in section 3, where each of the elements 
of {Yt} corresponding to the CSM-1 process is looked at as being modeled by 
an ARMA(0, 0) process. 
5. The Great Lakes System 

The intent here is to fit a multivariate model to the annual net basin sup-
plies (NBS) of the lakes in the Great Lakes system using the procedures pre-
sented in this paper.  The data were obtained from Hydro-Quebec, and span the 
period 1900-1999 for lakes Erie, Michigan-Huron, Ontario, and Superior, and 
the period 1900-1989 for Lake St. Clair.  Data post 1989 for Lake St. Clair 
were still preliminary, and hence are not used in this study.  The annual NBS 
time series of the Great Lakes and their ACFs can be seen in Fig. 1.  The data 
for Lake Superior and Lake Michigan-Huron in do not seem to exhibit any 
sudden shifts, and in addition the ACFs of the data do not have shapes that are 
expected of the SMAR(1) model.  On the other hand, the data for the other 
lakes in appear to be characterized by sudden shifts.  Furthermore, the cross 
correlation coefficients  at lag zero are significant across all lakes (not shown).  
Thus, contemporaneous models could be used to preserve the lag zero cross 
correlation coefficient between different lakes.   

The sample mean, standard deviation, skewness, Hurst slope K, storage ca-
pacity SC, and the longest drought length DL and the corresponding drought 
magnitude DM based on demand level Xd µ̂=  of the Great Lakes data are 
shown in Table 1.   

Table 1. Sample statistics of the Great Lakes NBS time series.  Fitted 
ACFs for the CSMAR(1) and the CSM-1 models are also shown. 

Statistic Erie Ontario St. Clair Michigan-H. Superior 

Xµ̂ [cms] 574.1 1033 121.7 3177 2043 

Xσ̂ [cms] 265.4 241.6 63.34 737.0 478.8 

Xγ̂ [cms] 0.138 0.491 0.311 -0.091 0.033 
K  0.787 0.786 0.847 0.713 0.654 
SC [cms] 5506 5083 1529 11978 4755 
DL  8 11 9 8 5 
DM [cms] 1720 2034 659.3 6029 3850 
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Figure 1.  Time series of NBS of the Great Lakes System and the corresponding ACFs. 

 
5.1 Fitting a CSMAR(1)-CARMA(p, q)   model to the Great Lakes   

We will attempt to fit a mixture of CSMAR(1) and a CARMA(p, q)  model 
to the data, where the lakes Erie, Ontario, and St. Clair will be modeled by a 
CSMAR(1) model, and the lakes Michigan-Huron and Superior will be mod-
eled by CARMA(p, q) model. The ACF and the partial ACF (not shown) of 
lakes Michigan-Huron and Superior in Fig. 1 suggests a CARMA(0, 0) model 
(a bivariate normal model) or a CARMA(1, 0) model.  Lake St. Clair has 10 
year shorter record than the other lakes.  Thus, the models are fitted to sample 
series of different lengths.  The approach used here preserves the variance of 
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the full records and the lag zero correlation between concurrent records.  For 
further information refer to Sveinsson (2004). 

For the purpose of this study a CARMA(0, 0) model was selected for mod-
eling lakes Michigan-Huron and Superior. The CSMAR(1)-CARMA and the 
CSM(1)-CARMA  models were both fitted to the data, but only the estimated 
parameters of the CSMAR(1)-CARMA model are shown in Table 2.  The fit-
ted ACFs used in parameter estimation of the univariate SMAR(1) models are 
shown in Fig. 1.  

To analyze how capable the fitted models are in preserving the sample sta-
tistics used in the fitting procedures, 1,000 realizations of the same lengths as 
the historical records were generated for the full models in Table 2.  All the 
 

Table 2. Parameters of the fitted CSMAR(1)-CARMA model. 
Parameter Erie Ontario St. Clair Michigan-H. Superior 

Xϕ̂  -0.1170 -0.0162 0.1262   
p̂  0.1574 0.1574 0.1574   

Yµ̂ [cms] 574.1 1033 121.7 3177 2043 
 22401 18016 5519   

)0(ˆ
MC  [cms] 18016 18121 3973   

 5519 3973 2002   
 48058 26654 3445 103113 37944 
 26654 40238 4323 114183 31060 

)0(ˆ
YC  [cms] 3445 4323 2010 20964 7431 

 103113 114183 20964 543228 195286 
 37944 31060 7431 195286 229280 
 47400 26603 3496 103113 37944 
 26603 40228 4331 114183 31060 

)0(ˆ
εC  [cms] 3496 4331 1978 20964 7431 

 103113 114183 20964 543228 195286 
 37944 31060 7431 195286 229280 

 
lakes have historical records of the same length, n = 100, except Lake St. Clair, 
which has a record length n = 90. Thus the generated records for Lake St. Clair 
were truncated to match the length of the historical record.  The average sam-
ple statistics of the 1,000 generated realizations are shown in Table 3.  Com-
paring with the historical sample statistics in Table 1, the mean and the stan-
dard deviation are well preserved for all lakes.   Comparing the storage related 
statistics K, SC, DL, and DM in Table 3 with the corresponding historical sta-
tistics in Table 1, it can be said that they are in general relatively well pre-
served.    Comparing the storage related statistics of the two fitted models, then 
the CSMAR(1)-CARMA and the CSM-1-CARMA give very similar results.  
A reason for the similarity may be that the φ  parameters are close to zero in 
the CSMAR(1) part of the CSMAR(1)-CARMA model.   

In Table 4 the lag 0 and lag 1 historical CCF matrixes are shown along 
with the corresponding CCF matrixes based on the 1,000 realizations of length 
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n.  Comparing the CCF matrixes based on the generated sequences with the 
historical CCF matrixes, then as expected the lag 0 CCF is very well preserved 
between all stations.  The lag 1 CCF for the CSMAR(1) part of the model (the 
upper 3 × 3 submatrix of )1(ˆ Xρ ) may not be exactly preserved due to the ad-
justments to  and  to make them symmetric, but in general the 

off-diagonal averages of   and  should be relatively well pre-
served.  The values of the lag 1 CCF in Table 4 support this.  Note that any lag 
1 CCF including Lake Michigan-Huron or Lake Superior is not expected to be 
preserved. Comparing the results among the two different models (results not 
shown for the CSM(1)-CARMA model),  then again both models give similar 
results. 

)0(ˆ
MC )0(ˆ

εC

)1(ˆ ij
Xρ )1(ˆ ji

Xρ

 
Table 3. Average sample statistics of 1,000 generated NBS series of 
the Great Lakes of the same lengths as the historical records. 

Statistic Erie Ontario St. Clair Michigan-H. Superior 
 CSMAR(1)–CARMA Model 

Xµ̂ [cms] 573.3 1033 121.9 3175 2042 

Xσ̂ [cms] 261.2 237.1 61.33 732.2 474.9 

Xγ̂ [cms] -0.014 0.006 -0.011 -0.010 0.004 
K  0.727 0.730 0.779 0.616 0.617 
SC [cms] 4877 4484 1290 8434 5475 
DL  8.660 8.794 10.87 5.931 5.986 
DM [cms] 2379 2206 760.4 4044 2624 
 CSM(1)–CARMA Model 

Xµ̂ [cms] 573.3 1033 121.9 3175 2041 

Xσ̂ [cms] 261.3 237.0 61.31 732.1 474.9 

Xγ̂ [cms] -0.013 0.008 -0.006 -0.010 0.004 
K  0.728 0.729 0.779 0.616 0.617 
SC [cms] 4890 4490 1300 8433 5476 
DL  8.612 8.707 10.80 5.934 5.991 
DM [cms] 2385 2184 752.5 4036 2624 

   
6. Summary and Final Remarks 

In this paper a multivariate shifting mean modeling framework was devel-
oped.  More precisely, a contemporaneous version of the univariate shifting 
mean autoregressive AR(1) model, SMAR(1), in Sveinsson et al. (2006), was 
developed and dubbed as CSMAR(1).  In addition, a general contemporaneous 
model mixing CSMAR(1) and CARMA models was developed for modeling 
of systems, where some of the sites exhibit sudden shifting patterns while oth-
ers do not.  This model was dubbed as CSMAR(1)-CARMA.  The special 
cases of the above models assuming no direct AR(1) persistence in the 
CSMAR(1) model were also developed.  The special cases were, dubbed as 
CSM-1 and CSM-1-CARMA. A necessary condition for stationarity of the 
CSMAR(1) is that the sequence of the mean level lengths is common for all 
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sites, that is that shifts at different sites coincide in time.  The above models are 
capable of preserving the lag zero cross correlation in space between different 
sites.  In addition, for sites modeled by the CSMAR(1) or the CSM-1 models, 
some characteristics related to the lag one cross correlation in space are also 
preserved. 
 
 

Table 4. Historical and generated cross correlation function (CCF) 
matrixes.  The generated CCF is the average of 1,000 generated NBS 
series of the same lengths as the historical records. 
Statistic Erie Ontario St. Clair Michigan-H. Superior 
 Historical CCF Matrixes 
 1 0.697 0.549 0.527 0.299 
 0.697 1 0.569 0.641 0.269 

)0(ˆ Xρ  0.549 0.569 1 0.452 0.245 
 0.527 0.641 0.452 1 0.553 
 0.299 0.269 0.245 0.553 1 
 0.173 0.198 0.144 0.030 0.156 
 0.220 0.250 0.084 0.151 0.255 

)1(ˆ Xρ   0.393 0.380 0.504 0.196 0.240 
 0.181 0.129 0.027 0.168 0.322 
 0.006 -0.014 0.036 -0.066 0.153 
 CSMAR(1)–CARMA: average generated CCF Matrixes 
 1 0.692 0.521 0.536 0.301 
 0.692 1 0.537 0.652 0.271 

)0(ˆ Xρ  0.521 0.537 1 0.461 0.251 
 0.536 0.652 0.461 1 0.552 
 0.301 0.271 0.251 0.552 1 
 0.142 0.164 0.226 -0.065 -0.036 
 0.204 0.204 0.189 -0.018 -0.005 

)1(ˆ Xρ   0.275 0.232 0.417 0.052 0.029 
 -0.002 -0.004 -0.002 -0.009 0.000 
 -0.001 0.003 -0.001 -0.003 -0.004 

 
Historical records of some of the lakes in the Great Lakes system show 

evidence of sudden shifts in addition to autocorrelation, while records for other 
lakes do not indicate such behavior.  The proposed models, where applied for 
modeling jointly the Great Lakes system as a whole, with lakes Erie, Ontario, 
and St. Clair modeled by contemporaneous shifting mean models, and lakes 
Michigan-Huron and Superior modeled by a CARMA(0,0) model. The models 
were capable of preserving the lag zero spatial correlation between different 
lakes, in addition to preserving other important statistical characteristics of the 
individual lakes.  
  As a general conclusion, the proposed mixture models mixing contempora-
neous shifting mean models and contemporaneous ARMA models appear to be 
robust and seem to have a wide range of applicability for modeling of hydro-
climatic and geophysical systems. 
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