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ABSTRACT 
 
 
 

GENOMICS-INFORMED CONSERVATION UNITS REVEAL SPATIAL VARIATION IN 

CLIMATE VULNERABILITY IN A MIGRATORY BIRD 

 
 
 

Identifying conservation units (CUs) in threatened species is critical for the 

preservation of adaptive capacity and evolutionary potential in the face of climate 

change. However, delineating CUs in highly mobile species remains a challenge due to 

high rates of gene flow and genetic signatures of isolation by distance. If CUs are 

delineated in highly mobile species, the CUs often lack key biological information about 

what populations have the most conservation need to guide management decisions. 

Here we implement a framework for rigorous CU identification in the Canada Warbler 

(Cardellina canadensis), a high-dispersal migratory bird species of conservation 

concern, and then integrate demographic modeling and genomic offset within a CU 

framework to guide conservation decisions. We find that whole-genome structure in this 

highly mobile species is primarily driven by putative adaptive variation. Identification of 

CUs across the breeding range revealed that Canada Warblers fall into two 

Evolutionary Significant Units (ESU), with three putative Adaptive Units (AUs) in the 

South, East and Northwest. Quantification of genomic offset within each AU reveals 

significant spatial variation in climate vulnerability, with the Northwestern AU being 

identified as the most vulnerable to future climate change. Alternatively, quantification of 

past population trends within each AU revealed the steepest population declines have 

occurred within the Eastern AU. Overall, we illustrate that genomics-informed CUs 
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provide a strong foundation for identifying current and potential future region-specific 

threats that can be used to manage highly mobile species in a rapidly changing world. 
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Introduction 
 
 
 

 Recent estimates of biodiversity loss suggest that up to 60% of animal species 

are at risk of decline (Grooten & Almond, 2018), leading to an urgent need to identify 

and conserve threatened species. Conservation efforts to stop biodiversity loss focus on 

preserving biodiversity at the ecosystem, species, and genetic levels (Coates et al., 

2018). While ecosystem and species level protections have historically been easier to 

quantify and administer, maintenance of genetic diversity is equally important for long 

term ecosystem viability (Exposito-Alonso et al., 2022; Ralls et al., 2018; Ruegg & 

Turbek, 2022). Species with low or declining genetic diversity are threatened by 

inbreeding depression (Frankham, 2003) and the loss of adaptive capacity (Thurman et 

al., 2020), which may lead to high extinction risk (Forester et al., 2022). With climate 

change further accelerating biodiversity loss across biological scales (Dale et al., 2001), 

it is increasingly important to maintain genetic diversity within vulnerable populations to 

allow them to adapt. However, the ability to identify populations most vulnerable to 

climate change and develop strategies for protecting them are not always 

straightforward. 

Current strategies to protect populations or species based on genetic diversity 

often rely on the designation of intraspecific Conservation Units (CUs) to guide 

conservation and management decisions (Paetkau, 1999). There are many approaches 

to designating CUs, depending on the conservation priorities for the species. One of the 

most recognizable intraspecific CUs is the Evolutionarily Significant Unit (ESU). ESUs 

are generally designated as evolutionarily or ecologically distinct populations within a 
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broader species, though exact definitions may vary (de Guia & Saitoh, 2007; Moritz, 

1994; Ryder, 1986; Waples, 1991). Generally ESUs are not legally protected units, but 

can have legal protected status when classified as distinct population segments (DPS) 

under the Endangered Species Act (ESA) in the USA or as designatable units (DU) 

under the Species at Risk Act in Canada (COSEWIC, 2015; USFW & NMFS, 1996; for 

a comparison of the designations see Waples et al., 2013). Alternately, Adaptive Units 

(AUs) are intraspecific groups that share similar adaptive traits and represent groups 

both within and across ESUs that are adapted to similar environments (Barbosa et al., 

2018; Funk et al., 2012). Historically, CU designation was focused on ESUs and 

management units (MUs; smaller demographically independent populations inside 

ESUs), as AUs were difficult to define due to limited genomic tools needed to identify 

adaptive genetic markers (Luikart et al., 2003). However, with the advent of Next-

Generation sequencing and landscape genomic methods it is now possible to identify 

putatively adaptive loci, how they are linked with environmental variation, and how these 

gene environment relationships may change with changing climate conditions. While 

each type of CU is important for preserving different aspects of genetic diversity, here 

we focus on considering both deeper genetic splits representing ESUs and adaptive 

differences that define AUs. Using ESUs and AUs together may illustrate region-specific 

variation in climate change response, as AUs may have different responses to climate 

change in light of locally adaptive differences, while different ESUs may have different 

response to climate change due to long-term isolation.  

Identifying CU boundaries that rigorously integrate key biological information 

critical to conservation in the face of climate change is not always straightforward. One 
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issue that often arises but has not always been adequately dealt with (see Turbek et al 

2023) is the need to identify CUs in highly mobile species. Establishing clear CU 

boundaries in organisms with high capacity for dispersal (e.g., migratory birds, bats, and 

many marine organisms) using genomics alone can be difficult because high levels of 

dispersal can lead to high gene flow between nearby populations. High gene flow can 

then result in a signature of isolation by distance- where increasing distance correlates 

with decreased genetic similarity- that makes it difficult to differentiate CUs despite clear 

genetic variation throughout a species’ range (Kekkonen et al., 2011; Palumbi, 1994; 

Veith et al., 2004). Adding to this complexity, CUs that do not take genetic evolutionary 

potential into account may miss the opportunity to protect populations with the greatest 

conservation need. While metrics such as genomic offset are making it possible to 

estimate which populations will need to evolve most to keep pace with changing climate 

conditions (Capblancq et al., 2020; DeSaix et al., 2022; Fitzpatrick & Keller, 2015; 

Rellstab, 2021; Ruegg et al., 2018), such estimates have not yet been quantified within 

a CU framework. Here we implement a framework for rigorous CU identification in the 

Canada Warbler (Cardellina canadensis), a high-dispersal migratory bird species of 

conservation concern, and demonstrate how key biological information (e.g., genomic 

offset and population demography) can be integrated within a CU framework to guide 

conservation decisions at a region-specific level. 

The Canada Warbler is a migratory songbird whose breeding range extends from 

Northwestern Canada to the Southeastern United States. Populations across the 

breeding range have declined 1.9% per year on average from 1966-2019 (Pardieck et 

al., 2020). Currently, Canada Warblers have federal protection in Canada under the 
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Species at Risk Act (COSEWIC, 2008) but are considered least concern under ICUN 

red-list designation (BirdLife International, 2021) partially due to their large range and 

heterogeneous declines. Previous genetic research, using eight microsatellite markers 

from 3 breeding sites, found that birds in the Southern portion of the range were 

genetically distinct from birds in the Eastern and Northwestern portions of the range, but 

the Eastern and Northwestern birds were not distinct from each other (Ferrari et al., 

2018). Future conservation efforts would be bolstered by more genetic information 

about population structure within the species, whether declines have been focused in 

areas that contain unique genetic diversity, and which populations are likely to be most 

vulnerable to changing climate conditions.  

Here we use whole genome resequencing to examine population structure 

across the Canada Warbler breeding range and identify putatively adaptive loci and 

neutral loci. We adopt the framework proposed by Turbek et al. (2023) to guide CU 

designation in highly mobile organisms. In addition, we quantify abundance and trend 

with demographic data, and genomic offset with adaptive loci both across the breeding 

range and within identified CUs to assess where management interventions would be 

most important. The resulting data provide a framework for integrating CU designations 

with estimates of genomic offset to improve our ability to identify and manage 

vulnerable populations in a changing world.  
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Methods 
 
 
 
Sample collection and DNA extraction 

To obtain create a reference genome, we captured a male Canada Warbler 

(record #SF12T03) on June 12th, 2019 in Rothrock State Forest, Pennsylvania 

(40.733402, -77.755214) to obtain blood for a high molecular weight (HMW) DNA 

sample. We affixed a standard USGS aluminum band (#284029445) and took standard 

measurements and photographs, then drew ~10uL of blood with a capillary tube from a 

brachial vein puncture. Using the blood, we extracted DNA using the Qiagen MagAttract 

HMW DNA Mini Kit (cat. no. 67563) with minor modifications to the standard protocol. 

We found that, likely because avian blood is nucleated such that there is a very high 

amount of DNA, the DNA became tightly bound to the beads, such that the standard 

elution protocol would not yield sufficient HMW DNA. Thus, we eluted in 200uL of water 

and left it on the mixer (at low speed) for approximately 1 hour.  

After obtaining a sample for the reference genome, we collected samples from 

an additional 181 breeding adult Canada Warblers from across the breeding range in 

North America in collaboration with multiple university researchers and state and federal 

agencies (Supplemental Figure 1). For DNA extraction, we collected blood from 134 

individuals (~80 µl), via brachial venipuncture and preserved it in Queen’s lysis buffer 

and stored at room temperature. Blood (50-80 µl) was extracted using Qiagen DNeasy 

Blood and Tissue Kits (QIAGEN) and eluted into 100 µl of provided AE buffer. For the 

remaining 47 individuals, we collected tail feathers by pulling 2 tail feathers from each 

bird and storing feathers at -20C. We cut the calamus of one feather from the shaft and 
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extracted the calamus using the modified Qiagen DNeasy Blood and Tissue protocol 

(Schweizer et al., 2021). After DNA extraction, we quantified samples using Qubit 

dsDNA assay. 

DNA sequencing 

Using the HMW DNA obtained for the reference genome, we used 10X linked 

read sequencing to generate a whole-genome reference sequence of a Canada 

Warbler. Sequencing was part of “CanSeq150” project 

(https://www.cgen.ca/canseq150-project-list) in partnership with Birds Canada / Oiseaux 

Canada. 10X Genomics libraries were prepared at The Centre for Applied Genomics at 

The Hospital for Sick Children (Toronto, Canada) and libraries were sequenced on a 

HiSeq X machine (Illumina, San Diego) lane, with 150-bp paired-end reads.  

After successfully sequencing our reference genome, we prepared the additional 

breeding samples for low coverage whole genome sequencing using a modified 

Nextera prep (Schweizer et al., 2021) with normalized DNA input. We sequenced 

samples in two libraries, 110 individuals on an Illumina HiSeq 4000 using paired end 

150bp reads and 72 individuals on an Illumina NovaSeq 6000 using paired end 150bp 

reads. The 72 individuals on the NovaSeq were sequenced across multiple lanes to get 

to the targeted sequencing depth of 2-3X coverage per sample (for sequencing scheme, 

see Supplemental Table 1) and included replicates of 32 samples with lower than 1.5X 

coverage from the HiSeq 4000 run.  

Bioinformatic processing 

We assembled the reference genome using Supernova 2.1.1 (Weisenfeld et al. 

2017) on the Pennsylvania State University’s Institute for Computational Data Sciences’ 
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Roar supercomputer. After genome assembly, we used Conda v4.13.0 (Anaconda 

Documentation, 2020) environments to manage bioinformatic packages on the RMACC 

Summit supercomputer managed jointly by Colorado State University and University of 

Colorado, Boulder. To process raw fastqs from the 181 individuals that underwent low-

coverage whole genome sequencing, we used Trim Galore v0.6.7 (Krueger, 2012), a 

wrapper for cutadapt v1.18 (Martin, 2011), and FastQC v0.11.9 (Andrews, 2010) to trim 

any remaining Illumina adaptors in the fastqs. Next, based on recommendations for low 

coverage data generated with NovaSeq platforms (Lou & Therkildsen, 2022) we 

performed a sliding window cut of the 3’ end of the reads to remove low quality tails, 

defined as 4 bases in a row with mean QUAL scores less than 20, using fastp v0.22.0 

(Chen et al., 2018). We checked fastqs for quality using FastQC and MultiQC v1.0.dev0 

(Ewels et al., 2016) before and after trimming reads. 

After processing raw fastqs, we aligned samples to the Canada Warbler 

reference genome using Burrows-Wheeler Alignment software (bwa mem, bwa v0.7.17) 

(Li & Durbin, 2009). Then we added read group information using Picard v2.26.11 

AddorReplaceReadGroups (Picard Toolkit, 2019) and marked duplicate reads using 

samtools v1.11 markdup (Danecek et al., 2021) before merging individuals with multiple 

bams. After merging bams, we checked sample coverage using bedtools v2.30.0 

genomecov (Quinlan & Hall, 2010) and samples with less than 1X coverage were 

removed.  

 We used the processed bams to call variants using GATK v4.2.5.0 

HaplotypeCaller (McKenna et al., 2010) and BCFtools v1.15.1 mpileup (Danecek et al., 

2021). Then, we stringently filtered the variant sets using BCFtools, allowing only 
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biallelic sites, a minor allele frequency of greater than 5%, QUAL score of greater than 

30 and less than 10% missing across the 169 individuals. We intersected the filtered 

variant sets from bedtools and GATK to create a high-quality variant set to use for base 

quality score recalibration according to GATK current best practices. Using the 

intersected variants, we recalibrated the sample bams using GATK BaseRecalibrator 

and ApplyBQSR. With the recalibrated bams, we used HaplotypeCaller to call a 

recalibrated set of variants. Then we filtered the recalibrated variant set allowing only 

biallelic sites, a minor allele frequency of less than 5%, QUAL score of greater than 30 

and less than 20% missing data across the 169 individuals. 

 Using the recalibrated, filtered variant set we performed an exploratory analysis 

using R (R Core Team, 2022) and the package srsStuff (Anderson, 2020) to produce 

single-read sampling principal components analysis (PCA) of whole genome structure. 

Instead of population clustering, we found significant platform effects (for example of 

platform effects on low coverage data, see Lou & Therkildsen, 2022). We removed 

platform-associated variants from the dataset and proceeded with the analysis once 

samples no longer clustered in platform groups by PCA (for full methods to remove 

platform effects, see Supplemental Methods).  

ESU identification 

We used Waples’ (1991) definition of an ESU, populations that are reproductively 

isolated and that represent an important evolutionarily or ecologically distinct part of the 

species. To identify ESUs we used the criteria set out in Turbek et al. 2023 as a guide 

to delineate where reproductive isolation exists in a species with high gene flow. We 

decided to delineate ESUs based on population structure that was supported with 2 out 
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of 3 complementary, but different, approaches to finding breaks in genetic variation 

across the breeding range: PCA for a model-free approach, ADMIXTURE for a 

hierarchical model, and EEMS to model potential barriers to gene flow. We investigated 

genome structure using the filtered variant set after removing platform effects. We first 

used single-read sampling PCA to ascertain if there was population genetic structure. 

We used single-read sample PCA as uneven coverage across samples can be 

misinterpreted as population structure in low-coverage data (Lou & Therkildsen, 2022).  

As called genotypes on low coverage data are low confidence and often result in 

missing data for any given SNP, we imputed missing genotypes using Beagle v4.1 

(Browning et al., 2018) using the genotype probabilities from GATK. Using the imputed 

data, we then removed linked SNPs using linkage disequilibrium (r > 0.5) in PLINK v2.0 

(Purcell et al., 2007) and further investigated the potential for population structure using 

the program ADMIXTURE (Alexander et al., 2009). We used 5 runs of ADMIXTURE 

with K values 1-6 with the full set of variants but different random seeds. In order to 

visualize the different values of K and identify the most supported value of K based on 

cross validation we used the R package pophelper (Francis, 2017). 

 To further investigate if structuring within the PCA or ADMIXTURE was due to a 

subtle barrier to gene flow, we used estimated effective migration surfaces (EEMS) to 

check for potential barriers to gene flow (Petkova et al., 2016). Using the imputed 

dataset and 200 demes to test for potential barriers to gene flow we mapped the 

estimated migration rates on the breeding range to visualize barriers across the range.  

AU identification  
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Similarly to ESUs, we used the criteria set out in Turbek et al. 2023 as a guide to 

define how to delineate AUs. We defined AUs as breaks in genetic variation across the 

breeding range using only the adaptive loci set with 2 complementary methods: PCA for 

a model-free approach and ADMIXTURE for a hierarchical model. To select 

environmental variables, we used gradient forest (Ellis et al., 2012), an extension of 

random forest (Liaw et al., 2002), and 23 environmental variables potentially important 

to Canada Warbler breeding ecology based on previous research (Supplemental Table 

3, Fick & Hijmans, 2017; Reitsma et al., 2020). While gradientForest has been 

previously used to identify adaptive loci, we decided to use it to inform our 

environmental variable choice but not identify loci as neutral population structure can 

confound gradientForest (Láruson et al., 2022). Environmental data were extracted from 

each of 16 sampling locations, excluding two sampling sites with fewer than 4 

individuals. We used ANGSD to calculate the allele frequency for the included sampled 

sites from genotype likelihood estimation using only SNPs with a minor allele frequency 

of greater than 5% and removed SNPs that had missing data for any sampled site. 

Gradient forest was run with the R package gradientForest (Ellis et al., 2012) on 5 

different subsets of 50,000 random SNPs using the environmental variables as 

predictors for the genomic data (ntree = 500, nbin = 101, corr.threshold = 0.5). To 

ensure that the models inferred from the data explained more than could be expected 

by random chance, we used 100 different randomizations of the data to create random 

models. Using these random models we compared the distribution of randomized r-

squared values of the SNPs to the r-squared values for the 5 models inferred from the 

data and ensured the models inferred from the data were above than the 95th percentile 
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of the r-squared from the random models. We then chose the top 4 uncorrelated (|r| < 

0.75) variables ranked as most important to explaining genetic variation shared across 

the 5 models inferred from the data. These environmental variables were used as a 

reduced variable set for the rest of the analyses: mean temperature of the warmest 

quarter (BIO10), precipitation of the wettest month (BIO13), precipitation seasonality 

(BIO15), and tree cover.  

To identify putatively adaptive loci, we used two approaches, redundancy 

analysis (RDA) and Latent Factor Mixed Models (LFMM). LFMM is a univariate 

approach that controls for population structure with latent factors, while RDA is a 

multivariate constrained ordination approach that performs better at finding many loci of 

small effect (Forester et al., 2018). To account for population structure in our RDA, we 

generated spatial variables using Moran’s Eigenvector Maps (MEMs) (Dray et al., 2006) 

using the R package adespatial v0.3-16 (Guénard & Legendre, 2022). Then we ran the 

RDA using the R package vegan with individual genotypes as the response and the 

reduced environmental variable set as the predictors, conditioned on the MEMs to 

account for underlying population structure and geographic distance. We selected loci 

that were above 3 standard deviations away from the mean.  

We then used LFMM to find putatively adaptive loci by an alternate method. To 

account for population structure in our LFMM, we used K=3 as there was subtle 

structure within the dataset that would not be accounted for with the most likely K=1. We 

ran LFMM using the R package lfmm (Jumentier, 2021) with individual genotypes as the 

response and, as LFMM is a univariate test, used the first principal component of a PCA 

of the reduced environmental predictors to reduce the need for multiple corrections due 
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to multiple tests. Using LFMM best practices, we adjusted an initial genomic inflation 

factor of >2.5 to 1.0 and identified loci using a false discovery rate of 1%.  

Once loci were identified using both RDA and LFMM, the union of loci discovered 

by both methods was used as our set of candidate adaptive loci. To identify population 

genetic structure among the putatively adaptive loci we used PCA and ADMIXTURE. 

The resulting posterior probabilities of genetic group membership estimated from 

ADMIXTURE were visualized as transparency levels of different colors overlaid and 

clipped to a map of the Canada Warbler breeding range using the R packages SP, 

RGDAL, and RASTER (Bivand et al. 2013, 2017; Hijmans 2017) creating a spatially-

explicit map of adaptive groups. 

Testing for isolation by distance versus isolation by environment  

To determine if the geographically relevant clustering in the PCA and 

ADMIXTURE plot was a result of geography or environment, or both, we used a 

combination of mantel tests, partial mantel tests, and redundancy analysis variance 

partitioning. We generated pairwise FST comparisons using all loci between sites with 

at least 4 individuals, excluding two sampling sites with fewer than 4 individuals, using 

ANGSD v0.935 (Korneliussen et al., 2014). We calculated the site allele frequency 

(SAF) likelihoods for each sampled site from genotype likelihood estimation using only 

SNPs with a minor allele frequency of greater than 5% and less than 30% missingness 

within the sampling site. We then calculated the 2D site frequency spectrum (SFS) for 

each pair of sites and, with the per-site SAF files as priors, we estimated pairwise FST 

between each sampled site. Using this pairwise FST, we linearized FST (
!"#

$%!"#
) values 

for each pairwise comparison. We then calculated pairwise Euclidean distance between 
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each site’s latitude and longitude using the R package sp (Pebesma & Bivand, 2005). 

To determine if genetic variation was more closely linked to environment or geography, 

we extracted environmental values for the reduced environmental variable set for each 

site’s latitude and longitude. Then we centered each environmental variable to control 

for differences in absolute values of each variable, then calculated a pairwise 

environmental distance using the R package stats (R Core Team, 2022). We tested for 

isolation by distance and isolation by environment with Mantel tests in the R package 

vegan v2.6-2 (Oksanen et al., 2022) and partial Mantel tests conditioned on 

environmental distance and geographic distance, respectively.  

Genomic offset analysis 

 Using the adaptive loci found with LFMM and RDA, we ran gradient forest (Ellis 

et al., 2012) and the reduced environmental variable set to generate a model of allele 

frequency turnover across the breeding range. We used this model as a baseline to 

predict expected allele frequencies in 2060-2080 using predicted environmental change 

under Shared-Socioeconomic Pathways 126 and 585 at 100,000 random points 

throughout the breeding range. We calculated the ‘genomic offset’ between current 

allele frequencies and predicted future allele frequencies using a Euclidean distance 

(Bay et al., 2018), as a measure of how much genetic change may be necessary to 

maintain current adaptive patterns (Capblancq et al., 2020; Fitzpatrick & Keller, 2015). 

Given the inherent uncertainty in predicting if or where range shifts will occur (Sofaer et 

al., 2018), we did not predict potential gene-environment associations or genomic offset 

outside of the current breeding range. Using the spatially-explicit map of adaptive 

groups, we created shapefiles of each of the putative adaptive groups identified across 
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the breeding range. We then extracted genomic offset values inside the boundaries of 

each adaptive group shapefile and calculated the median genomic offset within each 

adaptive group. We also extracted the genomic offset values across the entire breeding 

range and calculated the median genomic offset.  

Demographic analysis 

We estimated relative population size indices and 1968-2019 population trends 

for each of the three AUs and for all AUs combined based on the hierarchical over-

dispersed Poisson model of Sauer et al. (2011) applied to Breeding Bird Survey data 

(Pardieck et al., 2020). While there are alternative data sources for estimating trends in 

migratory birds (e.g. eBird), BBS data is one of the longest temporal datasets and it has 

been shown that as species range increases trend estimate differences between data 

sources tends to decrease (Horns et al., 2018). The fixed strata effects in the model 

were defined based on the AUs, with BBS sampling points, called routes, assigned to 

AUs if they ever had a Canada Warbler detection on the route and if the coordinates of 

the route centroid were contained within the AU polygon boundary. In addition, routes 

with Canada Warbler detections that were outside of AU polygons but within a 50-km 

buffer of an AU boundary were assigned to the nearest AU. Population size indices 

were derived by summarizing posterior distributions of mean route-level counts 

weighted by AU area and proportions of routes with Canada Warbler detections (Sauer 

& Link, 2011). We estimated population size indices for each AU by summarizing 

posterior distributions over the most recent 5 years (2015-2019). We also derived 

estimates of population size indices in the year 2069, assuming the current estimated 

trend and annual variance remain constant, based on posterior samples from the model 
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at a time point 50 years in the future. Long-term trends for each AU and for the overall 

population (based on the summed population indices across AUs) were estimated as 

the geometric mean of yearly changes in population size from 1968-2019 (Sauer & Link, 

2011). We implemented the BBS model with JAGS 4.3.1 (Plummer, 2003) via the 

jagsUI (Kellner & Meredith, 2021) package in R (R Core Team, 2022). We assigned 

vague prior distributions for all model parameters and hyperparameters. Posterior 

distributions were derived from 40,000 simulated values of four chains from the 

posterior distribution after an adaptive phase of 20,000 iterations and burn-in of 10,000 

samples of the Gibbs sampler and thinning by 3. Markov chains were determined to 

have successfully converged based on 𝑅#<1.1 for posterior estimates of all parameters 

(Gelman & Hill, 2007).  
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Results 
 
 
 
Bioinformatic processing 

From the 10X sequencing libraries for genome assembly, we received 485.36 

million reads. We produced an assembly with a “raw” coverage of 48.6X, a scaffold N50 

size of 7.51 Mb, and genome size of 1.03 Gbp as estimated by Supernova for 3.04 x 

103 scaffolds greater than 10 kb. The genome assembly is deposited at NCBI with 

accession number PRJNA689308.  

Of the 181 samples from 18 different sites across the breeding range in our initial 

dataset (Supplemental Figure 1), 12 samples with less than 1X average coverage were 

removed as part of quality filtering, leaving 169 total samples (Supplemental Table 2). 

The median number of samples per site was 7.5 (range 3-22), with an average depth of 

coverage of 2.6X (range 1-22X). After filtering out low quality SNPs and indels, we 

found 672,053 variants. After filtering for platform effects (Supplemental Figure 2), we 

retained 654,226 SNPs.  

ESU identification 

 Using PCA, we found there was subtle population structure throughout the 

breeding range (Figure 1A). Groups in the far Northwest and South clustered away from 

each other, with groups in the Eastern portion of the range falling between them, though 

overall variation explained was low- 0.94% and 0.90% on PCs 1 and 2 respectively. We 

filtered out variants in linkage disequilibrium and retained 451,571 SNPs, then assessed 

population structure for values of K 1-6 using ADMIXTURE (Supplemental Figure 4). 

Results from ADMIXTURE suggest that the most supported K was 1.  
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Using EEMS with the whole-genome dataset we found that there is a strong 

barrier to gene flow between the Southern population and the Eastern populations in the 

Pennsylvania/New York region. (Figure 1B).  

 

 

AU identification 

Using 5 random subsets of 50,000 SNPs in a gradient forest, we found more 

genetic variation was explained by the environment than by random chance. In all 5 

cases, r-squared of the non-random model was above the 99th percentile of the 

randomized models (Supplemental Figure 5B). We selected the top four most highly 

ranked uncorrelated variables for a reduced set of variables to use in the rest of the 

analyses (Supplemental Figure 5A): mean temperature of the warmest quarter (BIO10), 

Figure 1: Population structure of Canada Warbler using whole-genome loci of 654,226 SNPs. 
A) Principal components analysis representing whole-genome structure. Northwestern and 
Eastern populations are in gray, while Southern populations are in purple. B) Estimated 
posterior mean migration rates on a log10 scale from EEMS. Areas with positive migration in 
blue are estimated to have greater gene flow than expected, while areas with negative 
migration in red are estimated to have less gene flow than expected. Transparency is scaled 
to reflect magnitude of estimated migration. Black outline reflects the breeding range. 
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precipitation of the wettest month (BIO13), precipitation seasonality (BIO15), and tree 

cover. 

We found 4,832 SNPs associated with the environmental variables using a 

standard deviation of 3 using RDA (Figure 2). To complement the RDA approach, we 

used LFMM to identify putatively adaptive SNPs and found 9,212 SNPs associated with 

the PC1 environmental predictor using a false discovery rate of 1%. We took the unique 

SNPs found by both methods for a dataset of 11,441 SNPs.  

 

 We used PCA with the putatively adaptive SNPs and found three potential 

clusters (Supplemental Figure 6). We used ADMIXTURE to assess population structure 

Figure 2: Principal component analysis of redundancy analysis 
axes 1 and 2. Colored points are individuals sampled with the 
Northwest AU in green, the Eastern AU in blue, and the 
Southern AU in pink. Arrows represent the magnitude and 
direction of environmental variables.  
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for values of K 1 – 6 (Supplemental Figure 7) and found the best supported K was 3 

(CV = 0.33822) for putatively adaptive loci (Figure 3A). We used the best supported K to 

assign individuals to putative AUs and mapped the regions onto the breeding ground in 

a spatially explicit map of adaptive variation (Figure 3B). 

 

Testing for isolation by distance or isolation by environment 

Pairwise FST across all quality-filtered SNPs ranged from 0 to 0.02767 

(Supplemental Table 4). Mantel tests revealed a strong correlation between 

environment and genetics (r = 0.5984, P = 0.001), as well as geography and genetics (r 

= 0.6699, P = 0.001). When we used a partial mantel test, the correlation between 

environment and genetics did not remain significant when accounting for geography (r = 

Figure 3: Putative adaptive units of Canada Warbler using adaptive loci. Colors are used to 
represent AUs, green for the Northwestern AU, blue for the Eastern AU, and pink for the 
Southern AU. A) Best supported ADMIXTURE plot of K of 3 using only putatively adaptive loci. 
B) Map of AU designations. Colors represent the AUs determined by ADMIXTURE groups, 
while points are sampled sites. Transparency is scaled to the predicted accuracy of 
assignment. C) Area-weighted median abundance estimates in each AU. Median estimates 
were calculated for 1968-2019 and a predicted median estimate for 2069. D) Estimated trend 
in area-weighted percent per year for each AU and range-wide calculated for 1968-2019.  
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0.2157, P = 0.1), but the correlation between geography and genetics remained 

significant when accounting for environment (r = 0.4256, P = 0.001).  

Genomic offset analysis 

 Using the model of future climate under the emissions pathway in SSP585 that 

assumes the highest level of emissions pathways, genomic offset was predicted to be 

highest in the Northern-most sections of the breeding range (Figure 4A). When genomic 

offset was assessed by putative adaptive groups, the Northwestern group had the 

highest predicted genomic offset, followed by the Eastern and Southern groups, 

respectively (Figure 4B).  

 

Demographic analysis 

 We used 819 BBS routes from years 1968-2019 to estimate the breeding range 

had a declining trend of -2.05% per year (CI -2.49% – -1.58%). We split the breeding 

range into the 3 putative adaptive units, with 28 routes in the Northwestern AU, 748 

routes in the Eastern AU, and 33 routes in the Southern AU. We found that the Eastern 

Figure 4: Predicted genomic offset across the Canada Warbler breeding range for 2068-2088 
using SSP585. Colors are used to represent AUs, green for the Northwestern AU, blue for the 
Eastern AU, and pink for the Southern AU. A) Map of predicted genomic offset at 100,000 
random points across the breeding range. Colored outlines represent the predicted AUs. B) 
Box plots and density curves of genomic offset values for each AU and the entire range. 
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AU had the highest area-weighted abundance of 0.3763 (CI 0.3020 – 0.4598), followed 

by the Northwest AU with 0.0637 (CI 0.0363 – 0.1141), and then the Southern AU with 

0.0037 (CI 0.0022 – 0.0059) (Figure 2C) when using data from 2015-2019. Trends in 

abundance from 1968-2019 in the Southern AU (0.4416%; CI -0.9532% – 1.7961%) 

and Northwestern AU (-1.0682%; CI -2.8545% – 0.7831%) were not clearly positive or 

negative, but the Eastern AU (-2.1803%; CI -2.6276% – -1.7166%) had a strongly 

negative trend (Figure 3D). Predicted area-weighted abundance 50 years in the future 

in 2069 based on extending current trend estimates was highly variable for both the 

Southern AU (0.0048; CI 0.0017 – 0.0130) and Northwestern AU (0.0363; CI 0.0098 – 

0.1332) making it unclear if there will be declines or increases, but the Eastern AU 

(0.0866; CI 0.0609 – 0.1222) was predicted to decline steeply (Figure 3C).  
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Discussion 
 
 
 
 While preserving genetic diversity is important for the maintenance of current and 

future adaptive potential, defining CUs in high dispersal species remains a challenge. 

Here, we demonstrate the value of a genomics-informed approach for identifying CUs in 

a highly mobile species by identifying CUs in the Canada Warbler, a migratory songbird 

with a large range and heterogeneous declines. We found that overall genomic 

differentiation in Canada Warblers was low, with little population structure across the 

breeding range. In contrast, population structure at putatively adaptive loci was 

associated with significant differences in abundance, trend, and potential vulnerability to 

a changing climate as determined by estimates of genomic offset in the future. Overall, 

our results point more generally to the conclusion that genomics-informed CUs provide 

a powerful tool for incorporating genetic diversity into management in a changing world. 

ESU identification 

 Designating ESUs based on genomics can be challenging in species that remain 

highly connected through immigration and emigration across their range. ESU 

definitions have varied (reviewed in Fraser & Bernatchez, 2001), but using the criteria 

from the Waples’ (1991) definition of an ESU, populations that are reproductively 

isolated and that represent an important evolutionarily or ecologically distinct part of the 

species can be considered ESUs. Here we use a method proposed by Turbek et al 

(2023) for defining CU’s in highly mobile species and find that Canada Warblers fall into 

two ESUs. Specifically, population genomic analysis of all loci revealed two distinct 

groups on PCA, but ADMIXTURE had strongest support for a single ESU (K= 1) with 
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strong isolation by distance across most of the range. However, EEMS predicts a 

barrier to gene flow that exists between the two groups seen on PCA. This barrier to 

gene flow identified by EEMS in the Northeast was concordant with a previously 

documented habitat transition for Canada Warbler from lower elevation breeding sites in 

the North to higher elevation breeding sites found only in Southern Appalachian 

Mountains (Howell, 1910). From a species-specific perspective, these results suggest 

that while gene flow is high across the range, populations on either side of the identified 

barrier are ecologically different and have reduced gene flow compared to the rest of 

the range resulting in two ESUs by our criteria. More generally, these results illustrate 

the utility of programs like EEMS for identifying significant breakpoints in gene flow in 

species with high dispersal, even when isolation by distance appears to be the primary 

genetic pattern.  

AU identification 

 AUs are a relatively recent addition to CU delineation, as it has only recently 

been possible to sequence the large amount of genetic data necessary to identify 

putatively adaptive loci (Funk et al., 2012). For conservation and management of 

species with high dispersal, the utility of AUs lies in finding groups that share adaptive 

differences that may not have strong genetic structure otherwise (de Guia & Saitoh, 

2007; Whitlock, 2014). While neutral genetic diversity may change incrementally across 

the landscape, larger regions of similar environmental variables may lead to selection 

for different adaptive loci (Ackerman et al., 2013; Jackson et al., 2020; Vincent et al., 

2013). Here we analyze population genetic structure at putatively adaptive loci and find 

support for three distinct AUs within the Canada warbler, a Northwest, an East, and a 
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Southern AU, with evidence of admixture between the three. Further, redundancy 

analyses revealed that genetic variation in Southern AU was associated with warmer 

mean temperatures, the Eastern AU was associated with higher amounts of 

precipitation during the wettest month, and the Northwestern AU was associated with 

high seasonality of precipitation. Because each AU is associated with distinct 

environmental parameters, identifying AUs on the breeding range provides a strong 

foundation for analyzing how past and future environmental change may influence 

population trends within and between ecologically distinct regions. 

While it has been recently suggested that whole genome structure could be used 

as proxy for adaptive variation without the need to identify putatively adaptive loci 

(Fernandez-Fournier et al., 2021), here we find that analyzing population structure at 

putatively adaptive loci separately allowed us to identify AUs that may otherwise have 

been overlooked. Specifically, when all loci were analyzed together, the best supported 

K-value was one, but when putatively adaptive loci were analyzed separately, the best 

supported K-value was three. These results were robust to randomizing training and 

test sets, suggesting that they are not a result of ascertainment bias (Anderson, 2020). 

Overall, the difference in the population structure results between the all loci and 

adaptive loci analyses is likely because strong isolation by distance at neutral loci 

swamp signatures of population structure at adaptative loci when all loci are analyzed 

together. Overall, our results support the idea that in highly mobile species with high 

gene flow, putatively adaptive variation may be the strongest signal of genetic 

differentiation (Yeaman & Whitlock, 2011).  

Identifying threats with genomics-informed CUs  



 

 25 

 The fact that highly mobile species like birds, bats, and fish often exhibit 

continuous genetic variation across space, but their exposure to anthropogenic threats 

is often highly discontinuous, has historically posed a challenge to their conservation 

and management (Kekkonen et al., 2011; Palumbi, 1994; Veith et al., 2004). Here we 

use genomics to identify CUs in the Canada Warbler and find that separating the 

species into ESUs and AUs provides a strong foundation for understanding past 

population declines and assessing vulnerability to future environmental threats. Overall, 

the identification of two ESUs with multiple AUs nested between them suggests that 

while gene flow between regions may help with recovery from regional population 

declines, all individuals will not have optimal fitness in all environments. This may be 

important if translocations are being considered as an option for recovery of declining 

populations as previous work has shown translocating individuals from locally adapted 

populations into dissimilar environments can result in poor fitness and failure to meet 

management goals (Frankham et al., 2011; Weeks et al., 2011). Beyond translocations, 

our analysis of past trends, current abundance, and future vulnerability to climate 

change within the ESU and AUs separately highlights the importance of considering 

both region and timescale when attempting to assess threat status across a species 

range.  

 The potential contrast between past, present, and future management priorities for 

the Canada Warbler is perhaps most apparent when we compare the potential threats 

to each AU separately. Overall, our analysis of past population declines across the ESU 

and by each AU separately revealed that while the single species ESU has been 

declining since 1968, declines in the Eastern AU have been most pronounced. In 
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particular, if the rate of past population declines continues into the future, then the 

Eastern AU is predicted to lose 77% of its current abundance by 2068 and thus may 

warrant high priority for conservation. In contrast, if we focus only on the current 

abundance and the existence of a genome-wide barrier to gene flow, then the isolated, 

lowest abundance Southern AU may warrant special attention. Finally, while the method 

is still being validated, genomic offset provides a metric for predicting future vulnerability 

to climate based on the mismatch between current and future gene-environment 

relationships (Capblancq et al., 2020; Rellstab et al., 2021). Based on this metric, the 

Northwest population is predicted to have the most trouble adapting to future climate 

change, with Eastern and then the Southern AU being decreasingly vulnerable, 

respectively. High vulnerability to climate change in the Northwest may be related to the 

predicted faster than average warming at Northern latitudes and shifting precipitation 

regimes (Newton et al., 2021; Rantanen et al., 2022). While ultimately management 

recommendations will depend upon the timescale being considered, one strategy for the 

Canada Warbler may be to focus on current declines (e.g. Eastern AU), while 

monitoring, or taking preventative action, in areas that have yet to decline steeply (e.g. 

Northwestern AU and Southern populations). Overall, our work demonstrates the utility 

of a genomics-informed CU approach for assessing past, present and future 

conservation threats across heterogeneous landscapes.  
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Conclusion 
 
 
 

Here, we adopt a newly proposed framework for designating conservation units 

from Turbek, et al. 2023 and apply it to the Canada Warbler to delineate genomics-

informed CUs. We identified that whole-genome structure in this highly mobile species 

was low and seemed to be driven primarily by adaptive variation. We identified that 

overall Canada Warblers could be considered a single ESU and have three putative 

AUs. In addition, we show that identifying multiple genomics-informed conservation 

units can reveal spatial variation in both current declines and climate vulnerability in a 

species with high dispersal. Using multiple conservation units may clarify what areas 

need protection, or need monitoring, to preserve genetic diversity in a highly mobile 

species with low overall genetic differentiation.  
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Appendix A: Supplemental Methods 
 
 
 

To remove platform effects, we chose to remove variants in two steps. First, we 

used 17 samples that had >1X coverage on both platforms and split each sample into a 

HiSeq-derived bam and NovaSeq-derived bam. We used VCFtools v0.1.16 (Danecek et 

al., 2011) to calculate the pairwise FST between the variants found in the HiSeq-derived 

bams and the variants found in the NovaSeq-derived bams. We predicted since both 

groups were composed of the same samples on different platforms, the highest FST 

values would be associated with platform effects. We tested removing variants identified 

with FST values above the 80th, 85th, 90th, 95th, and 99th percentiles from the entire 

dataset. We identified the 85th percentile as the threshold where PCs 1 and 2 did not 

appear to have platform clustering (Supplemental Figure 2).  

After our initial filtering, we found additional platform specific variants using 

redundancy analysis (Supplemental Figure 3). During our initial round of redundancy 

analysis, we used the environmental variables identified by gradient forest (see 

Methods) and included a variable for platform. We identified variants strongly 

associated with platform with a standard deviation of 3. We decided to lower the 

threshold to a lower standard deviation of 1.5 to find as many potential platform-

associated variants as possible. We identified 138,921 variants and removed them from 

our dataset. Following removal, we re-ran the redundancy analysis using platform as a 

variable and confirmed platform-associated variants were no longer identified at a 

threshold standard deviation of 3. We then removed the variants associated with 
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platform from the entire dataset leaving 738,660 variants. We then quality filtered and 

continued with analysis. 
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Appendix B: Supplemental Tables 
 

 
  

 
 
 
 
 
 
 
 
 
 
 

Supplemental Table 1: Sequencing scheme. Library preparation is noted on the left. Platform and number of times sequenced 
per platform is noted with gray shading.  
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Supplemental Table 2: Sites samples for low-coverage whole genome sequencing. Total number of sequenced samples, QC-
passed sample, latitude, and longitude for each site. Estimated ESU, AU, and demographic group for each site.  

Site # Sampling location Lat Long # sampled # passed QC ESU AU

1 Fort MacKay, AB, Canada 55.285575 -114.770935 8 8 1 Northwest

2 Fort McMurray, AB, Canada 57.24806 -111.73444 14 14 1 Northwest

3 Slave Lake, AB, Canada 56.42 -111.37528 10 5 1 Northwest

4 Rennie, MB, Canada 49.854417 -95.549994 7 7 1 East

5 Finland, MN, USA 44.982778 -70.416389 8 8 1 East

6 Thunder Bay, ON, Canada 47.366667 -91.25 5 3 1 East

7 Eau Claire, WI, USA 45.594306 -67.325582 5 4 1 East

8 Laterrière, QC, Canada 35.06 -83.38 17 17 1 East

9 St-Fulgence, QC, Canada 43.67 -72.05 8 8 1 East

10 McAdam, NB, USA 43.67737443 -74.7249777 17 17 1 East

11 Dallas, ME, USA 48.301667 -88.935 3 2 1 East

12 Canaan, NH, USA 40.777297 -78.210148 22 22 1 East

13 Moose River, NY, USA 40.776047 -78.231172 7 7 1 East

14 Sprague Farm, RI, USA 48.21209882 -71.2426141 4 4 1 East

15 Bright Run, PA, USA 48.55242 -70.89314 5 5 1 East

16 Wolf Run, PA, USA 41.910554 -71.70924 6 6 1 East

17 Richwood, WV, USA 44.7525 -91.480833 13 10 1 South

18 Otto, NC, USA 38.628555 -79.825683 22 22 1 South

Total 181 169
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Supplemental Table 3: Raster names and environmental variable associated with 
raster for initial gradientForest.  
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Supplemental Table 4: Pairwise Fst between all sampled sites with at least 4 samples passing QC. Thunder Bay, ON and Dallas, ME 
were excluded due to low numbers of samples passing QC. 

AB.FortMacKay AB.FortMcMurray AB.SlaveLake MB.Rennie MN.Finland NB.McAdam NC.Otto NH.Canaan NY.MooseRiver PA.BrightRun PA.WolfRun QC.Laterriere QC.StFulgence RI.SpragueFarm WI.EauClaire WV.Richwood

AB.FortMacKay 0 0 0.005108 0.006259 0.004026 0.015394 0.020104 0.014726 0.0134 0.011279 0.017842 0.012713 0.009739 0.013203 0.007537 0.015925

AB.FortMcMurray 0 0.009515 0.007755 0.008048 0.017631 0.021249 0.014039 0.013791 0.015273 0.019668 0.013091 0.011961 0.017606 0.009058 0.021645

AB.SlaveLake 0 0.007569 0.008461 0.017477 0.02767 0.020399 0.020134 0.010516 0.017611 0.018663 0.014743 0.017855 0.003699 0.018948

MB.Rennie 0 0.000196 0.007373 0.017115 0.010175 0.0091 0.002893 0.005317 0.007523 0.004246 0.009963 0 0.011148

MN.Finland 0 0.004008 0.01339 0.005181 0.004212 0.003259 9.27E-03 2.62E-03 0 0.002378 0.00016 0.007824

NB.McAdam 0 0.018067 0.002867 0.004639 0.00631 0.009759 0.002045 0.000881 0.00526 0.005576 0.010129

NC.Otto 0 0.013843 0.014914 0.010293 0.015688 0.014683 0.012926 0.016738 0.018222 0.006327

NH.Canaan 0 0.001569 0.009585 0.014306 0.00027 0.001196 0.004181 0.010022 0.013285

NY.MooseRiver 0 0.010323 0.014883 0.001 0 0.002573 0.009547 0.015473

PA.BrightRun 0 0 0.009508 0.004697 0.010282 0.000613 0

PA.WolfRun 0 0.01371 0.009462 0.016318 0.001153 0.003596

QC.Laterriere 0 0.000411 0.003871 0.00747 0.014013

QC.StFulgence 0 0.002787 0.003805 0.008259

RI.SpragueFarm 0 0.007291 0.013522

WI.EauClaire 0 0.010193

WV.Richwood 0
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Appendix C: Supplemental Figures 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1: Canada Warbler sampling map. Breeding range is outlined in black, sampled 
sites are denoted with black points. Each site has been numbered. 
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Supplemental Figure 2: Principal components analyses of whole-genome variation. A) PCA of initial variant set. Note the 
clustering based on platform on PC1. B) PCA after filtering variants at the 85th FST percentile. 
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Supplemental Figure 3: Redundancy analysis to identify putatively adaptive loci using the 
environmental variables and platform. Notice the separation along the platform axis.  
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Supplemental Figure 4: ADMIXTURE plots of whole-genome loci (543,816 SNPs) for K’s 2-6. 
Each K 1-6 was repeated in 5 runs with different random seeds. Cross validation error and 
standard error are plotted for K’s 1-6. The lowest CV error is at K = 1. 
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Supplemental Figure 5: gradientForest models for selecting environmental variables. A) 
Ranked R2 contribution of 23 environmental variables for the gradientforest model. B) 
Histogram of 100 randomized model R2 values, non-randomized model noted with a red 
line.  
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Supplemental Figure 6: Principal components analysis of putatively adaptive loci (11,441 
SNPs). 
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Supplemental Figure 7: ADMIXTURE plots of putatively adaptive loci (11,441 SNPs) for K 1-6. 
Each K 1-6 was repeated in 5 runs with different random seeds. Cross validation error and 
standard error are plotted for K’s 1-6. The lowest CV error is at K = 3. 


