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Abstract

There has been significant interest in the periodic behavior,
generally referred to as repeatability, exhibited by a kine-
matically redundant manipulator while performing a cyclic
end-effector motion. Much of the early work in this area has
been restricted to planar manipulators whose configuration

is described in rerms of absolute joint angles to simplify the
problem. Unfortunately, this has resulted in the observation

of certain phenomena that are unique to this special case and
that do not describe the behavior of more complicated ma-
nipulators. The goal of this work is to clarify some possible
misconceptions concerning the limiting behavior of a redun-
dant manipulator under nonconservative control strategies, with
particular emphasis on pseudoinverse control. In particular,
stable surfaces are shown t0 be extremely rare, and a weaker
property, referred 1o as repeatable trajectories, is responsible
for the repeatable behavior observed in previous work. It is
also shown that the Lie bracket condition need not be satisfied
for this type of repeatable behavior to occur and thar such
trajectories need not have Zzero torsion, as has been previously
suggested.

1. Introduction

Kinematically redundant manipulators are robotic sys-
tems that have more degrees of freedom than are required
to perform a specified task. Because of this additional
freedom, such manipulators have an infinite number of
generalized inverse control strategies for solving the
Jacobian equation. These control strategies are not, in
general, repeatable in the sense that when the end effector
follows a closed path, the manipulator does not neces-
sarily return to its initial joint configuration. Klein and
Huang (1983) were the first to observe this for the case
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of pseudoinverse control of a planar three-link manipula-~
tor. Subsequently, Klein and Kee (1989) did a numerical
study of the drift in joint space for the same manipula-
tor performing the cyclic task of repeatedly drawing a
square in the workspace, showing that the drift had a nu-
merically stable limit in some situations. These findings
motivated further research into the repeatability of kine-
matically redundant manipulators (Bay 1992; Luo and
Ahmad 1992; Mussa-Ivaldi and Hogan 1991; Maciejewski
and Roberts 1990; Shamir 1990; Wampler 1989; Angeles
and Mathur 1989; Shamir and Yomdin 1988).
Typically, a robotic system is described by its kine-

matic equation

x = £(8), €))

which relates the Cartesian coordinates of the end effec-
tor, described by the m-vector X, to the n-dimensional
vector 8 of joint values. For kinematically redundant ma-
nipulators 7 is, of course, larger than m. Because (1) is,
in general, very nonlinear, one typically works with the
Jacobian equation, which, for the positional component,
can be found by differentiating (1) to obtain

x=J6. @

The manipulator’s task is usually specified as an end-
effector path so that X is given and the corresponding
joint velocity 8 is to be calculated. Because the manipu-
lator is redundant, (2) is an underdetermined system, and
when the matrix J is of full rank, an infinite number of
solutions exist. Methods from the theory of generalized
inverses can be used to determine a solution of the form

=Gx+dA—-J Dz, 3

where G satisfies JG = 1 at nonsingularities, J* is the
pseudoinverse of J, and z is an arbitrary n-vector.

By imposing additional constraints on the manipula-
tor, one can obtain repeatable control strategies in simply
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connected, singularity-free regions of the joint space.
Augmenting the Jacobian with the appropriate number

of kinematic constraints (Seraji 1989: Egeland 1987) is
one such method of guaranteeing repeatability. The ex-
tended Jacobian (Baillieul 1985) results in a repeatable
control strategy by minimizing an objective function of
the joint variables. It is also possible to obtain repeatable
inverses by writing G as a compliance-weighted pseu-
doinverse (Mussa-Ivaldi and Hogan 1991). One can even
retain some of the desirable properties of a nonrepeatable
inverse by selecting a repeatable inverse that is closest

to the desired inverse (Roberts and Maciejewski 1992;
1993). In all cases, if a control strategy is repeatable, then
no joint movement can result if the end effector is not
moved. Thus the second term of (3) must be zero so that
repeatable control strategies are necessarily of the form

6 = Gx. ®

An interesting problem is to characterize the control
strategies that are repeatable. This differs from the
existence of limit cycles first observed in Klein and
Huang (1983), as no convergence is involved. This
problem was solved by Shamir and Yomdin (1988) us-
ing differential geometric methods from nonlinear control
theory. They have shown that a necessary and sufficient
condition for a control strategy to be repeatable in an
open subset of the joint space is that it satisfy the Lie
bracket condition (LBC) in this region. The strategy is
said to satisfy the LBC if the Lie bracket of any two
columns g; and g; of G is in the column space of G,
where the Lie bracket of the two vector functions g; and
g; is given by

ooy (2% g — (%B)g,
[aha]] - (ag >cl <ae>g] (5)

For the case of pseudoinverse control, the LBC can be
applied to the transpose of the Jacobian instead of the
pseudoinverse itself, which greatly simplifies the compu-
tations involved (Roberts and Maciejewski 1992).

The goal of this work is t0 clarify some possible mis-
conceptions concerning the limiting behavior of a redun-
dant manipulator under nonconservative control strategies,
with pseudoinverse control used throughout as an ex-
ample. The remainder of this article is organized in the
following manner: Section 2 discusses stable surfaces and
their relationship to kinematic singularities. In particular,
it is shown that there are fundamental differences in the
pseudoinverse control of planar manipulators when the
joint variables are expressed in terms of absolute angles
as opposed to the more realistic case of relative angles. A
discussion of the applicability of stable surfaces to fully
general manipulators is presented in Section 3. Section 4
discusses sufficient conditions for the existence of stable

surfaces and illustrates that they do not exist for planar
3R manipulators under pseudoinverse control in terms

of relative angles. Motivated by these resuits, Section 5
discusses a weaker property, the existence of repeatable
trajectories, and illustrates that the LBC is not necessarily
satisfied for this type of repeatable behavior. Section 6
discusses the property of minimum arc length, which has
been attributed to repeatable trajectories, and shows it to
have limited applicability for even very simple manipula-
tors. Finally, the conclusions of this work are presented in
Section 7.

2. Stable Surfaces and Singularities

Planar manipulators serve as an excellent tool for analyz-
ing different control strategies for redundant manipulators
and are a realistic model for robotic fingers. Usually such
systems are described in relative angles, but sometimes
the simpler case of absolute angles is used. One partic-
ular phenomenon that has been observed for the latter
case is what has been called a stable surface, which is an
m-dimensional hypersurface on which the manipulator is
repeatable. Shamir and Yomdin (1988) have shown that a
necessary condition for a stable surface is that the inverse
satisfy the LBC on the surface. Because this is only a
necessary condition, surfaces that satisfy the LBC will be
called candidate surfaces. The notion of stable surfaces
has been previously used t0 explain the cyclic behav-
jor observed when a redundant manipulator performs
the repetitive task of drawing a closed path in rectilinear
space. This explanation was perhaps motivated by the fact
that repeatable inverses have foliations of stable surfaces.
However, much of this work will be dedicated to illus-
trating that the significance of the stable surface property,
defined as an isolated stable surface, is extremely limited.
The presence of stable surfaces has a profound effect
on the control of a manipulator, particularly with respect
to reachability in the joint space. The stable surfaces in
the example in Shamir and Yomdin (1988) effectively
partition the joint space, as, once On the surface, the
manipulator will continue to remain there. Thus two
configurations in the joint space that occur on different
sides of a stable surface are separated; the manipulator
cannot go from one configuration to the other. Now as
long as a singularity is not encountered, the manipulator
can approach but cannot reach a stable surface; other-
wise, by a time-reversal argument, the manipulator could
leave the surface along the same trajectory traversed in
the opposite direction. It is, however, possible to reach
such a surface through an internal singularity as can be
illustrated for the planar 3R manipulator with unit length
links in absolute angles shown in Figure 1. Consider an
initial joint configuration of the formy =[0 T U3 1%
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Fig. 1. Geometry of a 3R manipulator in absolute joint
angles 1. Each link has a length of 1 m. The joint angles
aresetat =0 7 ¢3]T.

The Jacobian at this configuration is

oot 4 )
When sins; # 0 the Jacobian is nonsingular, and the
pseudoinverse is given by
cos Y3 sin 13
@)= Yy {—ci),sl% —siélwa} )

To accomplish counterclockwise motion along the unit
circle, the required end-effector velocity is perpendicular
to the end-effector position and is given by

. —Z2 | _ —sin1/13
X“{xl}_[cos%}’ ®)
which, under pseudoinverse control, yields a joint velocity
.0
P = {O} . ©
1

Thus, if the manipulator starts in the configuration 1 =
[0 = =/2 1%, for example, and traverses a quarter of
the unit circle in a counterclockwise fashion, only the
third joint variable 13 changes until it reaches a value of
7. When o3 = =, J() is singular, and the resulting joint

velocity is
=31
Yp==111.
31

Note that at this point the manipulator is on the stable
surface described by %> = 13 and that the manipulator
can leave this singularity, since the required joint motion

(10)

to maintain the singularity P x [1 1 I]T is not
achieved in (10). Thus, for this example it is possible
to reach a stable surface, but not to leave one, due to
the discontinuity of the pseudoinverse at the singularity.
At the point where the manipulator reaches the surface,
the inverse switches to a form that holds on the stable
surface, and the manipulator cannot return to its previous
configuration.

Important information about a control strategy can
be gained by considering its behavior at singular con-
figurations. At a singularity the manipulator may get
trapped, forced out of the singularity, or its behavior
may depend on the particular end-effector trajectory. In
particular, some additional insight into the case of mul-
tiple stable surfaces can be gained by considering the
outer reach singularities of the Jacobian. An outer reach
singularity occurs when the manipulator is completely
extended, in which case 'the absolute angles have the form
brs = [¥1 %1 91 )7 At such a singularity the Jaco-
bian has the form

—ll sin 1!)1
[y cos iy

—l2 sin ’(/)1
I cos P

J(abrs) = { b Smw‘}. (1)

I3 cos Py

The range of J* () is given by the column space of
JT(<p) so that

h
range{J* (¢rs)} = SPan{ {lz} } (12)

I3

For the special case [; = [, 1 = 1,2, 3, it follows that un-
der pseudoinverse control the manipulator cannot escape
a reach singularity. At such a singularity, the manipulator
is caught between multiple stable surfaces and becomes
trapped (see Figure 1 of Shamir and Yomdin [1988]).
However, if the link lengths are not equal, then the ma-
nipulator can escape the singularity and, in fact, is locally
forced out of the singularity.

The behavior of the planar 3R manipulator described
in relative angles under pseudoinverse control is quite
different from the absolute angle case just discussed. The
Jacobian for this manipulator is given by

-—l] sin 91 - l'_) sin 912 - l3 sin 9123
1y cos By + [ cos By + I3 cos Bya3

Jo) = [

-—lz sin 912 - l3 sin 9123
l?_ cos 912 + Z} Cos 9123

—l3 sin 9133
l3 COS 9123

} , (13

where 6;; = 8; + ;. For the case of relative angles, the
reach singularities are given by 8., = [6; O O]T SO
that at such a singularity, the Jacobian is given by

J(ers) =
{_(ll + L +13)sin6
(h+ 1l +13)cosd

—~(l2 + {3)sin 8,
Iy + I3)cos 6y

--l3 sin 91
l3cos 8,

]. (14)
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It then follows that

L+b+1
range{J (6,5} = span{ { L+1 } } (15)
ls

Thus, if there is any joint movement, ail joint angles will
move. This implies that the manipulator can leave the
singularity, because to maintain this type of singularity,
movement is only allowed in the first joint. An analogous
situation exists for the other singularities, thus proving
that if multipie stable surfaces exist, they do not intersect.
This is a fundamental difference between the pseudoin-
verse behavior of the two Jacobians.

3. Likelihood of Candidate Stable Surfaces

For isolated stable surfaces to be of significant importance
in practical robotic applications, one would like to assume
that they are reasonably likely to exist for an arbitrary
manipulator design. Previous work has implicitly made
this assumption, using a planar manipulator described

in absolute joint angles to justify this position. Unfortu-
nately, it will be shown that it is highly uniikely that any
fully general spatial manipulator will possess a stable sur-
face. This will be done by first presenting an example of
applying the necessary condition imposed by the LBC w0
a specific anthropomorphic manipulator in order to iden-
tify potential candidate surfaces, and then illustrating why
these candidate surfaces cannot be stable surfaces. Insight
obtained from this example will then be used to explain
why it is highly unlikely that isolated stable surfaces
would exist for any general manipulator design.

A typical spatial redundant manipulator design is the
seven-DOF anthropomorphic manipulator described in
detail in Podhorodeski et al. (1991). The Jacobian for this
particular manipulator is given by

$2C3Cs + C254 —53C4
—5253 _03
J = —~5,C384 + C2Cy 5354
- —5253049 - SzS3h —C’3C4g - C3h
—Sngg - SzC3C4h — Ch54h S3g -+ 5304}7,
5,53549 C3549
S 0 0 Ss —C5S6
0 -1 0 —=Cs —S555
Cy 0 1 0 Cs
o -—no0 o o | U9
-hSy, 0 O 0 0
0 0 0 0 0

where S; and C; denote sin §; and cos §;, and the para-
meters g and h are the nonzero lengths of the upper and

lower arms, respectively. The null vector for this manipu-
lator can also be written analytically and is given by

r C3S4S6h 3
—5,535456h

— (829 + $2Csh 4 C2C38:h) 56
ny = 0

5204569 + 525405059 + $-S6h

5254555511

L —5254059 A
A necessary condition for the existence of a candidate

surface under pseudoinverse control is that the system of
equations

a7

0} [J;,J;1=0

determines an m-dimensional invariant hypersurface,
where J; is the ith column of J7. For this to occur, it is
necessary that (18) reduces to a set of r constraints on the
surface, where 7 = n — m is the degree of redundancy in
the robotic system. In this case the degree of redundancy
is one, so that on a candidate surface, the 15 equations
given in (18) must reduce to one independent constraint.

To show that no stable surfaces exist for this manipu-
lator, it is necessary to calculate some of the constraints
given by (18). For example, consider the following con-
straint functions:

o] (1A + 35, Js] = C2C355Ssg™h (19)

07 [Js, Js] = C2C553Ssghlg + Cah) — 5253 Segh*(1 + C3)
20
where each quantity would be identically zero on a can-
didate surface. From these two equations, one can easily
conclude that the following are necessary conditions:

0203‘5’456 =0,

528456 = 0,

where (21) follows directly from (19), while (22) fol-
lows from (20) after applying (21). By adding the square
of (21) and the square of the product of C3 with (22), one
obtains that C25%52 = 0 so that

C38456 = 0.

1<i<j<6 (18)

2D
(22)

(23)

Using (22)—(23) one can obtain the additional constraint
functions
nf [J1,J2 — Ja] = $28:C5Ceg, (24)

0 [J1,Ja] = ~$256(h + Cag), (25)

which are once again required to be zero on a candidate
surface. All of the above constraints can be combined
into the single vector equation given by

C3545
S2545¢
5254C5s

S, S6(h + Cag)

=0. (26)
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For a surface determined by (26) to be a candidate sur-
face, it must be of the same dimension as the workspace,
which in this case is six. By considering the first and
third elements of (26), one can easily see that this is not
the case when S; # 0. Dividing by S; results in the
two constraints C3S5g = 0 and 5,Cs = 0, which are
clearly independent and therefore define a manifold of
dimension five. This would be a valid method for show-
ing that there are no candidate surfaces except for the
fact that the configurations that satisfy (26) correspond
to singularities. Thus it may be possible that the surfaces
satisfying (26) have the appropriate dimension after the
loss of a degree of freedom due to the singularity. How-
ever, this can be shown not to be the case by considering
the form of these singularities. In particular, note that
the singularities of J occur when certain joints take on

a specific value (e.g., o = 0 and 83 = 7/2). Thus, for
the manipulator to remain in a singular configuration, the
joints causing the singularity must maintain their value
(i.e., their time derivatives must remain zero). However,
one can see that any singular configuration can be es-
caped under pseudoinverse control by observing that the
columns of J are always nonzero, which in turn implies
that the rows of J* are never zero; hence it is always
possible to induce motion in any joint by specifying an
appropriate end-effector command %. By escaping the
singularity, the manipulator automatically leaves any
surface satisfying (26), proving that there are no stable
surfaces when S; # 0. If S4 = O because §; = =+,
then one can show that the LBC is satisfied if and only if
g is equal to h. However, this candidate surface is not a
stable surface, since, once again, the fourth column of J
is never zero, so one can always induce motion in 44 to
escape this surface. Therefore, one can conclude that the
7-DOF manipulator whose Jacobian is given by (16) does
not possess the stable surface property under pseudoin-
verse control.

By carefully considering the implications of the LBC,
it becomes clear that one should not expect that a general
manipulator would possess a stable surface. As discussed
earlier, a stable surface is specified by 7 = n — m inde-
pendent equations that constrain the manipulator to lie on
an m-dimensional hypersurface. The number of constraint
equations determined by the LBC is r(77). For planar
manipulators, (') is one so that any planar manipulator
will automatically result in r constraints; however, for
higher dimensional workspaces, this becomes increasingly
more unlikely as m becomes larger. One would then sus-
pect that a fully general manipulator with a workspace of
dimension six would not even possess a candidate sur-
face, let alone a stable surface, as was illustrated in the
above example. It would thus seem that the likelihood of
the existence of a stable surface significantly diminishes
for workspaces of dimension greater than two, implying

74

that stable surfaces are much more likely to occur for
planar manipulators. The next section will consider how
likely it is for a planar manipulator to have the stable
surface property.

4. The Existence of Stable Surfaces

The LBC only provides a necessary condition for the
existence of a stable surface and thus can only be used
for determining possible candidate surfaces. The previous
section has shown that for fully general manipulators,
the existence of a candidate surface is unlikely. This
section discusses a necessary and sufficient condition for
a candidate surface to be a stable surface (Shamir 1990).
As would be expected, this condition further restricts the
class of manipulators that may possess stable surfaces.
Consider a manipulator with a single degree of redun-
dancy that has a candidate surface given by
S(8) =0, @7
where S can be found by applying the LBC. If the equa-
tion does in fact describe a stable surface, then as the
manipulator moves, equation (27) must continue to be
satisfied. Thus the directional derivative of S along
any joint movement determined by the pseudoinverse
is zero; i.e.,

§$=VS-6,=0, (28)

where Qp represents the pseudoinverse solution of & for a
particular end-effector motion. Equation (28) essentially
means that on a stable surface, the LBC continues to
hold (i.e., the time derivative of S(8) is zero). In some
cases, the function S(6) can be viewed as a kinematic
constraint that guarantees repeatability and on which the
stable surface resuits in a control that corresponds to the
pseudoinverse. Since 9,, is exactly determined by the
column space of J7, it follows that

JVS =0, (29)

so that V.S is in the null space of J. For manipulators
with one degree of redundancy, this null space is char-
acterized by the null vector ny. If V.S is not a multi-

ple of ny, then it is possible to choose an end-effector
movement that produces a joint movement with a compo-
nent in the V.S direction, thus pushing it off the surface.
Therefore, for the manipulator to be on a stable surface
described by (27), it is necessary for V.S to be a multi-
ple of ny. This provides an additional tool for checking
candidate surfaces (Shamir 1990).

With this additional constraint, one can easily show
that stable surfaces are not as common as previously
thought. In particular, there do not exist any stable sur-
faces for the planar 3R manipulator under pseudoinverse
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control in relative angles, which is in fact the manipula-
tor that first motivated the problem of repeatability. The
necessary relationship of the joint variables on a stable
surface for this type of manipulator is found using the
LBC and is given by

S(8)=—13 sin #2+1; cos B sin B3+ 13 sin 83 cos(f, +03) =0.

(30)
For this particular manipulator, the null space of J(6) is
characterized by the vector

12l3 sin 93
ny = [—1213 sin s — i3 sin(f, + 93):1 . 3D
lilp sin 6, + l{l3 sin(fs + #3)

For (30) to describe a stable surface, its gradient must be
a multiple of ny. Differentiating (30) yields

VS =

0
[ 1308 B2 — I3 sin 6 sin 85 — I3 sin 03 sin(G2 + 03) }
I> cos 82 cos 83 + 13 cos 83 cos(B2 + 83) — I3 sin s sin(f2 + 63)

(32)

For (29) to be satisfied, either ny and VS must be pro-
portional to each other or V.S must be 0. By comparing
the first element of (31) with (32), it is easily seen that
the first case can only occur when sinf; = 0. If this
is true, then from (30) it can be seen that sin ¢» is also
zero, which would imply that the manipulator is in a
singular configuration; however, it was pointed out in
Section 2 that the manipulator can escape this singular-
ity using pseudoinverse control for relative joint angles.
Now consider the case when V.S = 0. One can show that
the second element of V.S cannot be zero on a surface
described by S by noting that

52+(-ge£)2 =12 +422sin? 63+ (I, — [3)? sin® 65 > 0, (33)
2

where 85/08, is the second element of V.S. Because
(33) holds for the entire joint space, there is no value
of @ such that S = 0 and VS = 0. Thus the surfaces
satisfying (30) are not stable surfaces.

Even for manipulators where it is possible to have sta-
ble surfaces, such surfaces only exist under extremely
restrictive conditions. Consider the n-link planar manipu-
lator shown in Figure 2 described in terms of its absolute
angles. The Jacobian corresponding to this manipulator is
given by

. —ll sim/zl
Jb) = [ 1; cos 1y

—Ip sin
5 cos ln cOS Py

(34)

1, sin 1y, }

Fig. 2. Geometry of a planar revolute n-link manipulator
in terms of relative joint angles 8 and absolute joint

angles .

For the manipulator Jacobian given in (34), the Lie
bracket of the columns Ji(20) and J,(v) of JT ) is
i
12

(@), J2(¥)] = (35)

2

Thus, on a candidate surface of the manipulator described
by (34), the matrix

l% l% e 2
{ Iisinyy lpsinys Insint, } (36)
lycosypy lpcosiyn I COSYp

is not of full rank. This will precisely occur when all of
the minors of (36) are zero; i.e., when

12 12 2

H 7 k
li sin ’l/lz lj sin T,bj lk sin "z,bk =0
l;cosp; ljcostp; lgpcosiy

1<i<j<k<n. (37

Expanding the determinant yields

s sin(tp; —Pr)+1; sin(Pr — i)+l sin(h; — ;) = 0, (38)

which is a necessary relationship between the joint angles
a; on a stable surface. This highly restrictive condition
on the existence of isolated stable surfaces for planar
manipulators can be used to prove the following theorem:

THEOREM 1. The n-link planar revolute manipulator de-
scribed in absolute angles (as given in (34)) has a stable
surface under pseudoinverse control if and only if there
are no more than two distinct link lengths.
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Proof. See Appendix A.

Thus this type of manipulator has z stable surface when
there are no more than two distinct link lengths. If the
two distinct link lengths are L, and L,, then the absolute
angles associated with links of length L, are all equal
and similarly for L. When all link lengths are equal,
there are multiple (but a finite number of) stable surfaces;
in fact, for equal link lengths, there are 2™ — 2 stable
surfaces. For this case the manipulator is on a stable
surface if and only if the absolute angles take on exactly
two distinct values. Physically this means that all but
two of the joints are frozen on a stable surface so that
the manipulator behaves like a planar 2R manipulator,
which is not a very useful control strategy, particularly
with respect to utilizing redundancy. In addition, because
one can never guarantee that the manipulator links are
exactly equal, it is, for all practical purposes, impossible
to even build a planar n-link manipulator that has the
stable surface property under pseudoinverse control.

Although describing a manipulator in terms of abso-
lute angles simplifies the problem, from a physical point
of view, one is typically more interested in minimizing
Joint velocities in terms of relative angles. It is impor-
tant to note that the pseudoinverse for the Jacobian in
absolute angles given in (34) corresponds to a weighted
pseudoinverse for the Jacobian in relative angles given
by (13). The weighting matrix in this case is given by
Q =T7T, where T is the matrix transforming & into
(i.e., ¥ = TO) and is given by

1 00
T={1 ! o}
1 1 1

(39

This implies the important observation that by applying
a weighting to the psendoinverse, one does not simply
warp an existing stable surface but may cause it to cease
to exist. Thus the stable surface property is not preserved
under joint transformations. The popularity of stable sur-
faces in the literature is most likely due to the fact that
the periodic behavior of the equal link length planar ma-
nipulator described in absolute angles was due to the
existence of stable surfaces, and that this was unfortu-
nately attributed to the periodic behavior of the relative
angle case, which- does not have a stable surface.

5. Repeatable Trajectories and the LBC

The above section has shown that the candidate surfaces
for the planar 3R manipulator under pseudoinverse con-
trol using relative joint angles are not stable surfaces.
Therefore, the periodic behavior exhibited by the joint
angle trajectories is due not to the presence of a sta-

ble surface but to the nature of the specified cyclic
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= |
AV\JB
z2=0

Fig. 3. An example of a redundant manipulator that pos-
sesses a large class of repeatable trajectories that do not
satisfy the LBC.

end-effector trajectory. This type of behavior will be
referred to as the existence of repeatable trajectories. It is
natural to ask whether the LBC holds on such repeatable
trajectories, as much of the work on generating repeat-
able behavior relies on this condition as a foundation. It
is easy to show that for some types of manipulators, there
is a large class of end-effector trajectories that always
result in a repeatable joint space trajectory. Consider a
revolute planar three-link manipulator in IR? with an ad-
ditional prismatic joint that moves along the z-axis. An
example of such a manipulator is a SCARA manipula-
tor (e.g., the ADEPT) if the last link length is modified
to be nonzero (Figure 3). The manipulator satisfies the
LBC under the same conditions as the 3R manipulator
without the prismatic joint—namely, when (30) is satis-
fied. Take any small trajectory in the z = O plane that
does not intersect itself and that does not encounter a
singularity. Call the end points of this trajectory A and
B, where A denotes the starting point. When the end ef-
fector reaches point B, let the path continue straight up
from B one unit in the z direction to a point that will

be denoted C. Because movement in the z direction is
only realized by the prismatic joint, the revolute joints
are unaffected by the movement from B to C. Now let
the manipulator traverse the previous path in the opposite
direction except at z = 1, stopping at D, a unit translation
along the z axis from A. By a time-reversal argument, it
readily follows that the revolute joints of the manipula-

“tor at point D would be the same as they were at point

A. Finally, let the end effector move from D to A. The
manipulator would return to its initial configuration. Any
such trajectory for this manipulator possesses the property
that it introduces no drift in the joint space and results
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5(8)
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’ 3 o

Fig. 4. A graph of S(6) along a repeatable trajectory
corresponding to the square end-effector path shown.
Note that S(8) is not identically zero along the trajectory,
thus showing that the LBC does hold on this particular
repeatable trajectory.

in a closed joint space trajectory regardless of whether
the joint space trajectory intersects a candidate surface.
Such “no drift” trajectories are always present when the
joint space—to-workspace mapping is decoupled into re-
dundant and nonredundant components. Describing the
same SCARA manipulator in absolute angles provides an
example of where there is a stable hypersurface but where
there are repeatable trajectories which do not intersect the
hypersurface. ' ‘

Although this example may be considered a special
case, in practice it is quite simple to verify that the LBC
is not satisfied for general trajectories, including those
used in Klein and Huang (1983), by simply calculating
the value of S(8) along a repeatable trajectory, as iilus-
trated in Figure 4. This graph represents the function
S(8) given in (30) for a repeatable trajectory of the 3R
manipulator in relative angles where the link lengths are
1 m. The repeatable trajectory corresponds to a limit cy-
cle for a square end-effector motion. It can clearly be
seen that S(8) is not identicaily zero, so that the LBC
is not satisfied for this repeatable trajectory. The signifi-
cance of this observation lies in the fact that techniques
that have been proposed for obtaining repeatable behavior
that rely on the LBC (Luo and Ahmad 1992) will not be
able to identify these repeatable trajectories. This is par-
ticularly unfortunate in light of the results of the previous
section, which show that stable surfaces rarely exist for
revolute manipulators. Thus the LBC, while providing an
elegant test for repeatability, does not provide as pow-
erful a tool for locating periodic solutions as previously
thought. In particular, one cannot rely on using the LBC
for setting appropriate initial configurations to guarantee
a closed joint space trajectory for a closed end-effector
motion.

6. Minimum Arc Length Trajectories

It has been suggested that the joint space trajectory that
minimizes its arc length subject to satisfying a given
closed end-effector motion is repeatable and that this op-
timal trajectory is obtained under nonweighted pseudoin-
verse control (Bay 1992). A trajectory that minimizes its
arc length subject to staying on the manifold determined
by the end-effector motion would have zero torsion. If the
repeatable trajectories of the nonweighted pseudoinverse
have this property of zero torsion, this can be used for
finding repeatable trajectories.

Minimizing the arc length of the joint space trajectory
corresponds to minimizing

t
/ ’ V8T dt (40)
tO -
subject to
x(t) — £(0) =0, (41)

where x(t) is the given end-effector motion, and o and tf
are, respectively, the initial and final times of the trajec-
tory. Application of the Euler-Lagrange equation results in
the following requirement of an optimal solution:

THEOREM 2. A necessary condition for an extremal
of the problem of minimizing ftif V8T8 dt subject to
satisfying x(¢) — £(8) =0 is

i . ap(ony\, 0-8
—(ny-9) - 6T — 10— — §=0. (42
-0 (53 )0~ 2

Proof. See Appendix B.
It can be shown that the trajectories determined by
pseudoinverse control of the planar 3R manipulator
with unit length links described in absolute angles do
satisfy (42). Because the control is the pseudoinverse,
ny - 8 = 0, which simplifies (42) to
[ Ony\
9T == )6 =0. 4
@y

Once again, because pseudoinverse control is being used,
the joint velocities have the form ¥ = JT(¢p)w, where w
is a 2-vector. With this substitution, (43) becomes

wlMw = 0, (44)
where
_ g P\yr
M—J<a¢>J, (45)
_{—sinyy -—sinygy - sin s
I= [ cosyy  cosya  COSYn } ’ (46)
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6n1 _

50 =
0 —cos(¥s — ) cos(is — 1)
cos(¢y — 9h3) 0 —cos(hy —9s) |,
—cos(tr — 1) cos(dh — 1hy) 0

(47)

and where ny = [sin(33 — ¢1)  sin(y; — ;)

sin(y; — 91))7. It is not hard to verify that the matrix

M is zero on the stable surfaces ¥; = Y5, 1 $% j. Thus,
the necessary condition for minimal arc length subject

to a specified end-effector motion is satisfied for those
repeatable trajectories that are on a stable surface of this
particular manipulator. It should be noted that because the
stable surfaces for this manipulator are, in fact, planar, the
torsion of any trajectory on the surface is zero.

Because the minimum arc length and zero torsion argu-
ments are crucial to the method described in Bay (1992),
an analysis of pseudoinverse control for the 3R manipu-
lator described in the more realistic relative angles will
now be done. For this case the necessary condition can be
easily checked through a simulation. Let

_ 1 8nJ 8nj T
L=3 [(‘55) + ('a?) ’ (48)
and consider the quantity
67Lo
— (49
10112

Now because L is symmetric, its eigenvalues are real, and
by the Rayleigh-Ritz theorem, (49) is bounded above and
below by the maximum and minimum eigenvalues of L,
respectively. As above, if the minimum arc length trajec-
tory is determined by pseudoinverse control, then (49)
must be zero. Figure 5 shows (49) along a repeatable
trajectory corresponding to a square in the workspace. It
can be seen from this graph that the necessary condition
for minimum arc length is not satisfied. The actual joint
space trajectory for this specified end-effector trajectory
is given in Figure 6. Note that from this figure, one can
see that the repeatable trajectory is not a simple planar
curve, since its projection onto the §; — 65 plane appears
to cross over itself. Thus, the minimum arc length prop-
erty of repeatable trajectories appears to be restricted to
a very limited class of manipulators and then only when
using the less useful formulation of absolute joint angles.

7. Conclusions

This article has illustrated that the issue of repeatability
has many subtle aspects that must be considered to ob-
tain practical results. Some of the properties previously
associated with repeatable trajectories, while true for a
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Fig. 5. A graph of the necessary condition for a mini-
mum arc length trajectory along a repeatable trajectory
corresponding to the square end-effector path in Fig. 4.
Note that because this condition is not identically zero
along the trajectory, this repeatable trajectory is not of
minimum arc length.
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8
9
%
Fig. 6. Three orthogonal views of a repeatable trajectory

corresponding to the end-effector trajectory in Figure 4,
illustrating thar ir is not of zero torsion.
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small class of redundant manipulators, have been shown
not to hold in general. In particular, it was shown that the
existence of stable surfaces for revolute manipulators un-
der pseudoinverse control can only be verified for planar
mechanisms with severely constrained link lengths, and
then only when the problem is cast in terms of absolute
angles. The relationship between kinematic singularities
and the possible intersection of stable surfaces was also
used to illustrate the radical difference between problems
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specified in absolute angles and those specified in more
realistic relative angles. It was also shown that repeatable
trajectories under pseudoinverse control need not have
zero torsion. The fundamental conclusion from these re-
sults is that one cannot rely on merely setting the initial
joint configuration of a manipulator to lie on a particular
surface to guarantee repeatable behavior. In addition, this
work has shown that the LBC is not, in general, satisfied
for repeatable trajectories, thus rendering it ineffective as
a method of identifying such trajectories.

Appendix A: Proof of Theorem 1

Lemma 1. Suppose that sinasin = sinasiny =
sinFsiny = Qand that « + 8 + v = 0. Then sina =
sinf3 = siny = 0.

Proof. Because sin asin 8 = 0, it follows that sina =0
or sin 3 = 0. Without loss of generality, one can assume
that sina = 0. Now consider sin 3siny = 0. Because
&+ 3+~ =0, one has that

sin 8 siny = sin G sin{—a — 3)
= sin B{— sin a cos 3 — cos a sin 5] (AD

.2
= —cosasin” j,

implying cosasin? 8 = 0. Because cos o = +1, it follows
that sin 3 = 0. Finally, note that

siny = —sinacos§ —cosasinF = 0. (A2)

a

THEOREM 1. The n-link planar revolute manipulator de-
scribed in absolute angles (as given in (34)) has a stable
surface under pseudoinverse control if and only if there
are no more than two distinct link lengths.

Proof. (<) Because the manipulator is operating un-
der pseudoinverse control, the joint velocities are in the
column space of J7; i.e.,

—{ysint; [ cosiy
—~lysinyy lpcosin

1 € Range : : (A3)
~lnsinYn I, cosv,

Assume that there are no more than two distinct link
lengths, given here as L and L,, where L; = L, when
all link lengths are the same. Let v;,,%;,,...,%;, be the
joint variables associated with the links of length L and
let ¥;,, %5, ..., ¥j,_, be the joint variables associated

with the links of length L, where 1 < p < n. We claim
that the surface parameterized by
wil = T;biz =

=, =y (A4)

Vi =Vp ==Y, _, = (AS)

is invariant under (A3). This will be proven by showing
that for any configuration on the surface, the manipulator
continues to remain on the surface under pseudoinverse
control. With the given assumptions on link lengths, (A3)
becomes

Wi, = —aLysint;, + BLy cosp;,

1<k<p (A6

153': = —alssiny; + Blacosyy;, 1<I<n-—p (A7)

where, for nonsingular configurations, a(,) and 3(t, %)
are given by (JJ7)~'x. Because each ;, is equal on the
surface described by (A4) and (AS), it follows that the
joint velocities 1;, are equal. Similarly, the ;, are also
equal. It then follows that the manipulator remains on the
surface under pseudoinverse control.

(=) Suppose that the three joint links [;, [;, and [y are
distinct. From equation (38) of the text, it follows that a
candidate surface must satisfy

S) = —lis(h; — ¥i) — s — i) — les(; — ;) = 0.
(A8)
The gradient of S is

Lic(s — ) — lec(by — 1)
VS = [—lic(wk — ;) + lge(y; — %)j! , (A9)
lic(hy, — ¥5) — Lie(h; — Pr)

where we abuse notation by only showing the tth, jth,
and kth components. For the candidate surface to be a
stabie surface, JVS = 0; ie.,

[—lib‘?/)i —lks‘wk}
lic; lecty,

—lis;
lics
Lic(i — ) — lke(hy — ;)
X [—lic(¢k — ;) + lre(i; — 1/%')} =0. (Al0)
Lic(r — ¥5) = Lic(s — )

After multiplying and applying the trigonometric substitu-
tions

sin v cos(y — @) — sin G cos(y — 3)
= cos Fsin(y — §) — cosassin(y — a) (All)

and

cos & cos{y — @) — cos Bcos(y — )

= sinasin(y — a) — sin Bsin(y — ), (Al2)
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one obtains

{—le’Lbj - lkcwk
—list; ~ lksor —lisv; ~ leshe —lis; — 55
L;s(e — ;)
X [ljs('@bi - ﬂlk):l =0, (A13)
les(; — ;)
where s and ¢ denote sine and cosine, respectively.
Adding the following vector multiple of (A8),

—lic; — lgehy,  —lic; — ljcwyl

Lic; + Lijcwy + lrewy _
[lisd% + lj's‘(lfj' + lk$¢k} S#) =0, (Al4)
yields
Lis(r — ¥3)
& 1 R
e e B P )]
Premultiplying by
—s;  cys
{ —82/)_7' C’lﬁj } (Alé)
—sr  c¥x
gives
0 Lis(p; —s)  —lks(: — i)
0= {—lis(wj — ) 0 les(r — ;) }
Lis(hy — k) —li8(P — 5) 0
Lis(Pr — ¥5)
X {ljSOﬁi - ?l)k):' (AIT)
les(y — i)

(l§ — 13)s(; — ¥3)s(; — Vi)
= | (1§ — D)s(; — Ya)s(x — ;)
(@ — 1s(; ~ Y)W — ;)
Because [;, [;, and I are assumed to be distinct, it fol-
lows that

s(; — i)s(vr — ¥;)

s(s — Yi)s(x — ¥5)
By the above lemma, s(¥ — ¥;) = s(¥; — ¥x) =
s(w; — ;) = 0, so that ¥; = ; + mm and P = ; + nr.
Note that this implies that for the planar 3R manipulator
in absolute angles with three distinct link lengths, the
only configurations satisfying (A18) are singular, and
the proof would be finished. Now for this relation to
continue to be satisfied, each joint velocity d}i, d}j, and
¥ as determined by pseudoinverse control must be equal
throughout the candidate surface. However, the joint

velocities must satisfy
b —lLisy; L L
[wj} € Range [—ljswj ljc'(_bj} = span{ {:i:lj} }
Lectpr £l
(A19)

Vi ~lksr
Because we have assumed that [;, [;, and [x are distinct,
the joint velocities must also be distinct, contradicting the
requirement that the joint velocities must be equal. a

s(h; — ¥3)s(; — i)
0= { } . (A18)
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Appendix B: Proof of Theorem 2

THEOREM 2. A necessary condition for an extremal
of the problem of minimizing |, tif V8T8 dt subject to
satisfying x(¢) — £(8) = 0 is

%(m.é) - QT(%>9 _8.9 L e=0 @)

o6 ol

Proof. The trajectory 8 that minimizes the arc length
of the joint space trajectory subject to satisfying the de-
sired end-effector motion must satisfy the Euler-Lagrange
equation

OH _dOH _,

86 dt 96 ®2)
where
Ht6,0) = VT8 + \T[x@) — £(6)], (B3)

and x(t) is the given end-effector motion. Substituting the
expression for  into (B2) yields
8 6.9 .
B £0 W _f__ ——8=0,

CIRRTIE B9

which, on premultiplying each side by —||8]|ny”, gives
the condition

. 0-8 ,
n;-@—.—n,-ﬁ:(). (BS)
912
Note that
%(nj-é)=nj-é+m~é (B6)
and
. Omy;
ny = (‘87)3 (B7)

Making the appropriate substitutions, (BS) can now be
rewritten as

%(nJ -9) — éT(anJ>[9 9—'-9-111 -9=0. (B

EZASITIE
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