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ABSTRACT

QUALITY ASSESSMENT OF DOCKED PROTEIN INTERFACES USING 3D

CONVOLUTION

Proteins play a vital role in most biological processes, most of which occur through interactions

between proteins. When proteins interact they form a complex, whose functionality is different

from the individual proteins in the complex. Therefore understanding protein interactions and

their interfaces is an important problem. Experimental methods for this task are expensive and time

consuming, which has led to the development of docking methods for predicting the structures of

protein complexes. These methods produce a large number of potential solutions, and the energy

functions used in these methods are not good enough to find solutions that are close to the native

state of the complex. Deep learning and its ability to model complex problems has opened up the

opportunity to model protein complexes and learn from scratch how to rank docking solutions. As

a part of this work, we have developed a 3D convolutional network approach that uses raw atomic

densities to address this problem. Our method achieves performance which is on par with state-

of-art methods. We have evaluated our model on docked protein structures simulated from four

docking tools namely ZDOCK, HADDOCK, FRODOCK and ClusPro on targets from Docking

Benchmark Data version 5 (DBD5).
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Chapter 1

Introduction

Protein-protein interactions play a crucial role in cellular mechanisms of all living organisms.

Any deviation from regular protein-protein interactions can lead to disease, which makes them an

important object of study. Protein-protein interactions result from physical contact between two

or more proteins. The resulting interface of the protein complex can be determined accurately

with experimental methods but these experimental methods are time consuming and expensive.

This brings a need for development of computational methods. Docking is one such simulation

method to predict the possible bound structure of the complex resulting from the interaction of the

participating proteins. A docking simulation leads to a large number of possible solutions, which

creates a need for ranking them according to their proximity to the native structure. There are many

docking tools available today, and all of them are associated with a scoring function for assessing

the quality of the interface.

As a part of our research, we propose and evaluate a simple approach to represent the interface

of a complex and use 3D convolutional networks to determine the quality of the predicted interface.

With the emergence of Convolution Neural Networks (CNNs), there has been a massive shift

in the field of machine learning. The availability of improved computing resources and a vast

amount of labeled image data has facilitated the usage of CNNs in computer vision. Inspired by

the dramatic success of CNNs in computer vision, We are borrowing the idea of representing a

protein-protein interface as a 3D grid of atomic densities of the constituting atoms; similar to a 3D

grid representation of RGB values of the pixels composing the image.

This thesis presents a computational technique for the quality assessment of a docked protein-

protein structure. Recent work has demonstrated the potential for modeling protein 3D structure

using 3D convolutional neural networks. The motivation behind these methods is to avoid having

to engineer features, and instead, rely on the network to learn relevant features directly from the

3D structure of the protein.
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The outline of the thesis includes introduction to proteins, protein-protein interactions and

how are they studied. Chapter 2 discusses various experimental and computational methods for

studying protein docking. Chapter 3 explains previous applications of machine learning and deep

Convolutional Neural Networks. Chapter 4 discusses some existing 3D-CNN bases methods for

modeling protein structures. Chapter 5 describes the proposed methodology. Chapter 6 explains

the experimental setup, which includes details about data sources, and data modeling. Chapter 7

discusses results of various experiments carried out as a part of this thesis. Finally, Chapter 8 digs

into some of the potential areas of future work.

1.1 Proteins

Proteins are complex, large molecules that are responsible for various crucial activities in the

body. Body functions such as, regulation of tissues and organs occur due to the interaction of pro-

teins at the cellular level [20]. Enzymes are proteins that accelerate the chemical reactions taking

place in the body. For example, enzymes help in digesting the food and regulating metabolism.

Hormones are proteins that help coordinate by message passing between various parts of the

body [21]. The phenomenon mentioned above occurs as a result of the continuous production

of the proteins inside the cells. This process is known as protein synthesis, and it involves two sig-

nificant steps. The first step is the transcription; during transcription, the enzyme RNA polymerase

utilizes the DNA as a template to produce a pre-mRNA transcript. This pre-mRNA is further pro-

cessed to form a more developed mRNA molecule. The second step is a translation, where mRNA

gets translated into an amino acid sequence of the protein (See fig 1.1 for reference).

2



Figure 1.1: Diagram of the central dogma, DNA to RNA to protein, illustrating the genetic code in
hemoglobin protein. This happens to be the first few amino acids for the alpha subunit of hemoglobin.
The sixth amino acid here (glutamic acid, "E") is mutated in sickle cell anemia versions of the molecule [2].

Amino acids are compounds that contain an alpha carbon at the center surrounded by an amine

group, a hydrogen atom, and a carboxyl group and a sidechain (See fig 1.2 for reference). Amino-

acids thread into polypeptide-chain as a result of linkage between an α-carbon atom of one amino-

acid and an α-carbon of another amino-acid through the formation of a peptide bond [20]. A

polypeptide-chain comprises a recurring unit called the backbone and a variable unit called the

sidechain. The amino acid units participating in the polypeptide chain determine the sidechain.

There are twenty-one different types of amino acids that could substitute sidechain and result in

long amino acid sequences. Sidechains that are oppositely charged tend to attract each other.

For example, hydrophilic side chains attract to sidechains with water molecules, and hydrophobic

sidechains would repel from water molecules. The interactions between amino acids lead to the

folding of amino acid chains, which attribute to the functioning and the three-dimensional structure

of the comprising protein [22].

3



Figure 1.2: There are 21 types of amino acid encoded in eukaryotic DNA which are categorized by their
electrical properties. The image provides the abbrebated and full-names of each of these amino acids. The
structures of these compounds are oriented in such a way that the carboxyl group, α-carbon, and amine
groups are on top, with the side chain extending downwards.

4



1.1.1 3-Dimensional structure of proteins

Figure 1.3: α-helix and β-sheets are the fundamental secondary structural elements in proteins. Image
taken from [3].

The structure of a protein can be studied at three levels: namely primary structure, secondary

structure, and tertiary structure. The amino acid sequence represents the primary structure. The

secondary structure is the result of local interactions of the segments of the amino acid chain, and

the tertiary structure is the result of the folding of the amino acid chain. α-helix and β-pleated

sheets are the primary types of secondary structures [22] (See fig 1.3). The shape of both of these

structures results from the hydrogen bonds forming between the amine group of one of the amino

acids and carboxyl, another amino acid.

As depicted in figure 1.3, an α-helix results due to the bonding between the carbonyl of one of

the residues with the amide group of an amino acid, which is four residues farther over the peptide

chain. The helical turn in an α-helix structure, which also resembles a coiled ribbon is due to the

repeated pattern of the bond between carboxyl and amide group between every four residues [21].

Each turn in an α-helix roughly consists of 3.6 residues. An α-helix is not stable by itself. It

achieves a more stabilized structure through linking with other secondary structural elements.
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On the other hand, a β-sheet results from the side by side alignment of two fragments of a

polypeptide chain. A β-sheet attains its name due to its resemblance to a sheet-like structure

knitted together with hydrogen bonds. The fragments of a β-sheet may be aligned parallel or

anti-parallel (See Figure 1.4).

Figure 1.4: Parallel and Antiparallel β-strands [4]

The tertiary structure of a protein is determined by the interaction between elements of its

secondary structure. In other words, a tertiary structure results from folding of different fragments

of sheets and helices into a three-dimensional shape. A protein’s most stable structure under a

given physiological condition is called its native state [23]. Fig 1.5 represents a schematic diagram

of various levels of the protein structure.
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Figure 1.5: The four levels of protein structure. The final level of a protein structure is its quaternary
structure that results from interaction of multiple protein structures. [5]

Finally, the quaternary structure results from the interaction of multiple protein chains that

interact to form a complex. The resulting complex is referred to as the quaternary structure and

each of the interacting protein molecules is called a subunit. Each of these subunits not only has

their own primary sequence, secondary and tertiary structures but also a significant functionality

that contributes to the overall functioning of the resulting complex. One such example of a complex

is hemoglobin in which one of the proteins in the complex interacts with oxygen and the other one

with carbon dioxide. This phenomenon of protein-protein interactions underly the millions of

cellular level activities taking place in the body.

1.1.2 Protein-Protein interactions

As discussed in the previous section, a quaternary structure of a complex protein is a union of

multiple protein chains in a compactly packed arrangement. Such an arrangement is a result of

physical contact between atoms of the participating protein chains. Physical contacts here refer

to interactions like electrostatic forces, hydrophobic or hydrophilic effects, which is driven by

biochemical events. [24]. The phenomenon of interaction is known as protein-protein interaction

(abbreviated as PPI), and the region of interaction is called a protein-protein interface.
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Protein-protein interactions play a crucial role in many biological activities taking place in

the body. It is important for the subunits to be organized in a particular fashion for the proper

functioning of the entire unit. Any disruption in such interactions may lead to changes in the

biological activity of the whole unit. This is often the case in a disease state. In a disease state

there is often an alteration of the interaction network, leading to a change in the functioning of

other proteins [25].

A close study of protein-protein interactions can yield vital information that could be useful

for both identifying any abnormal body condition as well as for finding better curative drugs for

treating such conditions [26].

Figure 1.6: A ligand interacting with the receptor at the binding site. [6]

In a protein-protein complex, the partner with the longest amino acid chain is known as a

receptor, whereas the shorter one is known as a ligand. Fig 1.6 represents an interaction between

a protein and a ligand. The formation of protein complex results from the binding of a high affinity

ligand at an adequate pose at the binding site of the protein [27]. Here, affinity refers to the

tendency of binding between proteins as a result of chemically attractive force and the binding site

refers to a small pocket like crevice in the 3D-structure of the protein. Here, a ligand could refer

to an ion, a drug molecule, or another protein. This thesis focuses on interactions where both the

receptor and ligands are proteins.
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Several factors determine the binding affinity between proteins. Some of these factors include

micro-environments that catalyze the protein-protein interaction, shape, and accessibility of the

surfaces participating in the interaction.

The forces between the atoms of that are part of the interface determine the stability of the

resulting complex. In general, a residue is considered as a part of the interface if it is in a direct

contact with the residues of the partner protein. Here the term contact refers to any kind of physical

or chemical force acting between the atoms constituing the residues at the interface. Furthermore,

protein complexes can be categorized as homomers and heteromers based on the extent of simi-

larity between the partnering proteins. A complex is said to be a homomer if it is composed of

identical partners; otherwise, it is classified as a heteromer if it is composed of several different

proteins.

Proteins can also be classified based on their ability to exist independently. Obligate complexes

have partnering proteins that are quite unstable individually but attain stability when they partner

with each other. Non-obligate or transient complexes are composed of proteins that can exist

individually. Obligate interactions are usually perpetual, whereas non-obligate interactions are

transient [28]. In this thesis we focus on non-obligate complexes.
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Chapter 2

Methods to study protein-protein interactions

Many techniques have been developed for studying the interactions between the partnering

proteins in a protein complex. In what follows we describe both experimental and computational

methods.

2.1 Experimental methods

2.1.1 X-ray Crystallography

X-ray crystallography is the most accurate technique for discovering the structure of a protein.

When applied to a complex, it provides detailed information about the interaction and its inter-

face. X-ray crystallography uses of x-rays to diffract over the crystal structure of a protein or a

complex to obtain extreme high-resolution microscopic information of its 3-dimensional structure.

The wavelength of X-rays ranges from 0.1 nm to 1Å, which is roughly equal to the distance be-

tween interacting atoms in a molecule. The process begins with first purifying a protein sample

crystallized at a higher concentration. The crystal and loop are cooled under constant liquid nitro-

gen flow to circumvent any impairment to the protein crystal. The atom of the crystal, when struck

with an X-ray beam, produce a diffraction pattern [29]. A ray of X-ray is run through the crystal-

lized protein, and a detector records the diffraction pattern. Several such diffraction patterns are

recorded by rotating the crystal and directing the rays at different positions. An overlap between

the incoming ray and an electron creates a secondary wave. This diffracted wave has the same

wavelength as that of the incoming ray but in a different direction. These diffraction patterns are

then used later to construct a protein structure or its interactions with other proteins in a protein

complex. To build an electron density map from the various diffraction patterns, each point in

these diffraction patterns is indexed, integrated, merged, and scaled, resulting in a single record for

all the diffraction patterns associated with a structure [30].
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Figure 2.1: A schematic diagram representing X-ray crystallography [7] and A schematic diagram of a
cross-section of protein 2BIW electron density map rendered using PyMol [8]

2.1.2 NMR spectroscopy

In the world of biology, some proteins may not crystallize or may not crystallize in a biologi-

cally relevant conformation. Such cases usually occur when the interactions between the proteins

are weak. For such cases, X-ray crystallography may not be the right choice to study protein-

protein interactions. In such instances, NMR spectroscopy may prove to a potential choice because

it is capable of determining the three-dimensional structure of a protein complex without the need

for crystallization. NMR spectroscopy of proteins involves the application of magnetic resonance

spectroscopy to inspect the local magnetic fields around the nucleus of an atom. This method yields

structure not only related information but also the composition of nucleic acids in the protein. The

first step in this process is the sample preparation. An aqueous sample of highly purified protein

is prepared and dissolved in a buffer solution. This sample is then placed in a strong magnetic

field generated through radio frequency signals. The amount of penetration of these signals by the

sample is measured, which yields the distances between atomic nuclei [31]. The shift in the atomic
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nuclei’s energy states is observed when the spin of the nucleus gets interrupted in the presence of

a magnetic field.

2.2 Computational methods

Crystallographic methods provide the most accurate results, but most of these techniques are

expensive, require a considerable amount of manual effort, and are not always successful. The

limitations of experimental techniques bring in the need for computational methods.

The study of protein-protein interface prediction can be framed in two ways : partner-independent

and partner-specific. The partner-independent technique focuses on only one of the partnering pro-

teins. It involves the inspection of residues from the protein of interest which are interacting with

the partnering protein. The partner-specific technique considers both the partnering proteins and

includes assessing a pair of residues for their ability to be a part of the interface. Some of the

most common protein-protein interface prediction techniques include template matching, machine

learning-based methods, and docking.

Template matching and machine learning methods rely heavily on a pre-computed dataset of

known interacting and non-interacting protein pairs [32]. These pairs constitute the positive and

negative samples in the dataset. While creating a positive database is pretty straight forward, it

is quite tricky to create a negative sample set. One of the most commonly used techniques to

create negative datasets is pairing proteins from different cellular locations or randomly pairing

proteins from the positive dataset while ignoring the interacting ones. The template-based match-

ing methods utilize the similarity between the queried protein pairs’ structure to a known protein

pair database. For two proteins X and Y interacting with each other, If there exists a protein X’

which is structurally similar to X and a protein Y’, which is similar to protein Y, it suggests that

proteins X’ and Y’ will also interact.

For machine learning methods, several ideas have been proposed using neural networks and

SVMs [33]. In BLRM: A Basic Linear Ranking Model for Protein Interface Prediction [34],

Shariat, Neumann, and Ben-Hur proposed a methodology for representing the docked interface.
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Each residue pair from ligand and receptor chains are represented as a vector. The motivation here

is to learn a ranking function mapped to these residue pairs. Further, the machine learning task is

modeled as a classification problem where a positive prediction denotes a high-quality interface,

and a negative prediction indicates a low-quality interface. Until the arrival of deep learning,

machine learning methods for the study of protein interfaces required a major effort for feature

engineering, i.e. design of characteristics of the protein structure that are predictive of binding.

In what follows we first describe docking methods which use the 3D conformation of the two

partner proteins to predict the resulting protein complex.

2.2.1 Docking

Docking or molecular docking is a modeling technique that predicts the structure of a protein

complex from its partners. Here, the partnering molecules could be a protein, ion, or a drug

molecule. A docking problem can be considered analogous to putting together pieces of a jigsaw

puzzle [35]. The most significant intermolecular forces between interacting atoms at the interface

include electrical forces, Van Der Waals forces, and the strength of the Hydrogen bond. These

forces are used to determine a score that measures the quality of the docked solution. This score, or

energy function is the objective function used for predicting a large number of candidate solutions

for the protein complex.

Figure 2.2: Docking as an analogy to fitting correct pieces of puzzle together. The part of the protein at
which ligand attaches is known as binding site. A single protein can have multiple binding pockets each of
which is associated with a binding-affinity for the docking ligand [9].
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Docking techniques take the unbound structures of the interacting molecules to determine the

possible bound configurations. Different docking tools use different scoring functions to assess

the stability of a simulated solution. An unbound structure of a ligand or receptor refers to its free

structure while in a non-interacting state. On the other hand, a bound structure of the same refers

to its three-dimensional orientation while in an interacting state. The design of a protein-protein

docking software can be considered as the prediction of complex structure given the structure of

the individual unbound proteins. Figure 2.3 gives a schematic overview of the components that

make up most docking methods. Let us discuss each of them in detail.

Figure 2.3: Components of docking methods [10].

2.2.1.1 Determining the structures

To perform docking, the first requirement is a three-dimensional structure of the participating

proteins. The structures are usually determined using X-ray crystallography or NMR spectroscopy.
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2.2.1.2 Exploring the search space

The search space is a set of all possible orientations of the ligand and the receptor relative to

each other. In reality, it is impossible to exhaust the search space because it takes into account all

possible translations and rotations of each of the partners. The size of the search space could be

reduced by considering the entire conformation space of the ligand or vice-versa and modeling var-

ious receptor poses. Docking methods can be classified as rigid-body and flexible-body docking,

depending on whether they allow for conformational changes in the two partners.

Figure 2.4: Docking mechanism - the receptor is shown in red and the ligand is shown in blue. Docking can
be seen analogous to fitting two pieces of a jigsaw puzzle. These configurations are assessed using docking
scores.

Fig 2.4 shows a schematic representation of rigid vs flexible docking. A rigid body docking

does not allow alteration of bond angles, bond lengths, and torsion angles of one or both of the com-

ponents in the docking process. In other words, a rigid-body docking algorithm performs docking

by keeping either of the receptor or ligand (usually the receptor) as a rigid body and looking for

possible orientation of the other component in the conformational search space. Rigid-body dock-

ing is more straightforward and faster; however, in reality, most of the protein-protein complexes

are formed as a result of conformational changes in the interacting components. Flexible-body

docking takes into account the conformational changes. Flexible docking allows complete move-
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ment of the ligand and receptor in 3D space as well as movement of individual fragments of each

of the components and docking these fragments to obtain the bound conformation.

2.2.1.3 Scoring functions

Exploring the search space yields many potential solutions, and almost all of them are not

good. A docked solution is considered good if it can exist as a stable structure. To asses the quality

of a docked solution produced by a docking algorithm, a scoring function is used. Most of the

scoring functions are base on molecular level force fields that determine the energy of a simulated

pose within the binding site. A lower energy implies a more stable configuration and thus a higher

binding affinity between the two proteins after docking. Apart from energy functions, scoring

functions can also be constructed based on the type of interactions between binding partners, sta-

tistical observations based in inter-molecular contacts as well as using machine learning where the

functional form is inferred directly from the data [36].

2.2.1.4 Assessment of docking solutions

The final step in the docking pipeline is assessing the docked solutions using the scoring func-

tion formulated in the above step. This evaluation can be performed against many docking bench-

mark datasets. One of the most commonly referred docking datasets is DBD (Docking Benchmark

Dataset). CAPRI (abbreviated for Critical Assessment of PRedicted Interactions) is a community-

wide initiative for evaluating computational algorithms for predictions of experimentally deter-

mined 3D structures of protein complexes [37].

2.2.2 Statistical and Machine Learning methods

The problem of protein-protein interface prediction can be treated as a machine-learning classi-

fication problem if we can represent the interface with some features that describe the environment

around it. Once an interface is modeled to fit as input for a machine learning algorithm, a number

of methods such as SVM or Logistic Regression can be easily applied to predict if it is a true in-
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terface or not. The following paragraph gives an overview of a number of machine-learning tools

and techniques developed to predict a protein-protein interface.

SPPIDER uses the predicted and actual relative solvent accessibility differences for a residue

participating at the interface [38]. SPPIDER’s architecture consists of 10 output neurons. Each of

these neurons produces a probability, and the final likelihood is calculated, considering the major-

ity of votes from the ten results. While SPPIDER is a binding site classifier, PINUP is an algorithm

for binding site prediction in monomer proteins that uses a scoring function based on a linear com-

bination of the residue-energy score, residue conservation score, and residue interface propensity

while optimizing two weight parameters [39]. PINUP considers an unbounded structure of a pro-

tein in PDB format and outputs predicted interface residues as well as the hotspot residues. Another

similar method is Cons-PPISP, which is developed for predicting protein-protein interaction site

detection [40]. For any protein structure, Cons-PPISP predicts residues that are a high likelihood

to form an interface with another protein. The neural network input includes solvent accessibilities

and position-explicit details of a residue in the interface region. The output is the probability of

that residue to be a part of the binding site. A couple of methods have also been developed that use

the combined score of the existing structure-based methods to predict a more refined probability

of binding sites. Meta-PPISP [41] and CPORT [42] are two such methods that combine the raw

scores from Cons-PPISP, PINUP, ProMate [39,40,43] and WHISCY, PIER, ProMate, cons-PPISP,

SPPIDER, PINUP, [38–40, 43–45] respectively.

Much of the summary in the above section is compiled from article Computational prediction

of protein interfaces: A review of datadriven methods [46]

2.3 Docking softwares used for constructing the dataset

As a part of this thesis, we have used docked-decoys from four docking tools namely ZDOCK,

Frodock, ClusPro and HADDOCK. Each of them is discussed in detail next.
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2.3.1 ZDOCK

ZDOCK is a protein-protein docking software available as both web-based serves as well as

a standalone software that uses a rigid-body docking technique to predict structures of protein-

protein complexes. ZDOCK uses the Fast Fourier Transform (FFT) to search across all possible

binding models based on pairwise shape complementarity, electrostatic potential energy and de-

solvation energy [47]. ZDOCK is available both as a webserver and a stand alone software, and

the predicted modeles are ranked according to the predicted score. A lower score corresponds to a

higher rank.

2.3.2 Frodock

Frodock is a rigid body docking algorithm that utilizes 3D grid-based potentials and spherical

harmonics approximations to boost the speed of the search process [48]. The resulting docked

solution’s binding energy is approximated as a correlation function based on the van der Waals,

electrostatics, and the desolvation potential. The interaction energy is calculated using a fast and

exhaustive rotational docking search complemented with a simple translational search. Similar to

ZDOCK, Frodock is available as both an online web server and standalone software.

2.3.3 ClusPro

ClusPro is another automated rigid-body docking algorithm for predicting protein-protein in-

teraction complexes. ClusPro is a fully automated web-based docking tool that accepts two pro-

teins to be docking in their PDB formats and generates docking solutions clustered based on their

electrostatic and desolvation free energies [49]. ClusPro uses the Fourier correlation algorithm for

quickly filtering the pool of near-native solutions obtained. This algorithm uses a combination of

desolvation and electrostatic potential, which is determined using Coulombic potential. Further, to

reduce false-positives, the previous step’s acceptable structures are clustered based on the pairwise

RMSD between the calculated and the native binding-site.

18



2.3.4 HADDOCK

HADDOCK (High Ambiguity Driven protein-protein DOcKing) uses the information at the

biochemical and biophysical level like chemical shift perturbation resulting from NMR titration

and mutagenesis experiments [50]. This information is referred to as Ambiguous Interaction Re-

straints that steer the docking process. These restraints are calculated as ambiguous distances

between all the residues participating in the interaction. Using these defined Ambiguous Inter-

action Restraints, HADDOCK searches through all possible solutions around the binding site to

determine the most promising pair of residues from the passive and active residues. Here, the active

residues refer to the residues that exhibit a considerable chemical shift perturbation and bear high

solvent accessibility after the complex formation. Similar to ZDOCK and Frodock, HADDOCK

is also available as a web-based tool and standalone software.

2.4 Assessment of docking solutions with DockQ score

DockQ is a continuous protein-protein docking model quality standard given as a function of

three independent CAPRI standards, namely Fnat, iRMS, and LRMS (described in detail below).

The DockQ score can be used to determine the quality of a protein-protein decoy structure. While

CAPRI uses each of the above-stated standards to assess a decoy structure’s overall quality with

respect to its native structure, DockQ serves as a single standard that considers all these standards.

Fig 2.5 gives a schematic representation of the calculation of each of the parameters involved in

determining the DockQ score.
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Figure 2.5: The different standards used for DockQ score calculation as defined by CAPRI [11].

For a given model and a target structure, with the receptor referenced as R and ligand as L we

determine Fnat, iRMS, and LRMS as follows:

1. Fnat: The ratio of total correct residue-residue contacts in the model structure interface and

the total number of residue-residue contacts in the target structure interface.

2. LRMS: The backbone root-mean-square displacement of the ligand in the model structure

with respect to the target structure’s ligand, when the model ligand is superimposed over the

target ligand.

3. iRMS: The backbone root-mean-square displacement of the interface residues in the model

structure with respect to the target structure’s interface residues, given that the model inter-

face is superimposed over the target interface.

For calculating the iRMS, the interface is extracted by considering only the atoms from both the

interacting partners which are at most 10Ådistance apart from each other. Given each of these

parameters stated above, the DockQ score can be calculated as

20



DockQ =
(Fnat + LRMSscaled,d1 + iRMSscaled,d2)

3
. (2.1)

Here iRMSscaled and LRMSscaled refer to scaled RMS values to avoid large random values.

These values are calculated according to a scaling factor d using inverse scaling technique [51].

RMSscaled,d =
1

1 + (RMS
d

)2
(2.2)

For our implementation of DockQ score we used scaling factors d1 and d2 as 1.5 and 8.5

respectively. These values were selected in order to fit the score range of LRMS and iRMS. Based

on the DockQ scores, a model structure can be placed in one of four categories as defined in table

2.1.

Table 2.1: Quality-categories based on the DockQ score.

Quality DockQ score range

Incorrect 0 ≤ DockQ < 0.23

Acceptable 0.23 ≤ DockQ < 0.49

Medium 0.49 ≤ DockQ < 0.80

High DockQ ≥ 0.80

Since we are proposing to rank the quality of modeled structures(decoys), We would be using

the DockQ scores of the modeled interfaces as labels for training our 3D-CNN model.
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Chapter 3

Artificial Neural Networks

An Artificial Neural Network, abbreviated as ANN, refers to architectures inspired by the bio-

logical nervous system. Let’s begin from the basic building block of a biological neural network

called a neuron. A neuron is a special kind of nerve cell that communicates information across

the body in chemical and electrical signals and there are several types of neurons serving different

purposes from sensory input to motor information. There are two primary components of a neuron

called the axon and soma. Neurons connect to form a network where one neuron’s axon is attached

to another neuron’s soma. The information gets transmitted along this chain from one neuron to

another. Each neuron is associated with an "action potential," that is, the amount of electric signal

needed to excite that neuron. Analogously, an ANN is composed of many interconnected process-

ing elements called neurons [52] which communicate with each other through electrical signals.

An artificial neuron gets simulated the same way as a biological neuron by adding together the

values of the inputs it receives [52] The activation function is similar to the action potential and de-

termines a neuron’s tendency to be triggered. The weight determines the strength of that particular

node.
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3.1 Feed-forward networks
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Figure 3.1: Feed-forward network with a single hidden layer. This image is generated using NN-SVG
online tool [12]

Figure 3.1 depicts a feed-forward network.Feed-forward networks are neural networks with

no cycles in the network, that is the data flows through the network in one direction only. A

feed-forward network can be denoted by f(x | Θ) where x is the input vector and θ is the set of

parameters. In feed-forward network, f is calculated on inputs of a sequence of layers composed

of neurons and produce an output. Mathematically, we can express the output of a layer in a

feed-forward network with a weight matrix W and bias b applied to an input vector x as:

h (x | W, b) = σ (Wx+ b) . (3.1)

Here σ is the activation function and h is the output from the layer. Details about activation

functions are discussed in the next subsection.
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The flow of the data in a neural network architecture begins by feeding the data to the input

layer and subsequently passing through the hidden layers followed by the final output layer. A

feed-forward network is an artificial neural network in which the information propagates in only

one (forward) direction. The number of neurons are fixed for the input and the output layers and

are equal to the input data dimension and the number of outputs to be generated, respectively. The

hidden layers can have any number of neurons, depending upon the complexity of the network we

want to have.

3.1.1 Activation functions for neural networks

We use non-linear activation functions for hidden layers and a linear or non-linear activation

or no activation on the output layer based on the nature of the problem. As in the classification

case, a non-linear function such as softmax is used for the output layer to predict probability values

and a linear function for regression problems. Some of the commonly used non-linear activation

functions include the ReLU function ReLU(x) = max(0, x), the logistic function σ(x) = 1

1+e−x

and the hyperbolic tangent function σ(x) = tanh(x).

3.2 Training of neural networks

Now once the data is propagated through feed-forward network, there is no way to know if

the network is learning correctly or not because it lacks a feedback mechanism. The need for a

feedback mechanism is achieved through the backpropagation technique [53]. In the backpropa-

gation technique, the learning is associated with a penalty which is calculated using a loss or cost

function. Whenever there is a deviation in the predicted and the actual values, the weights of the

hidden layer units are adjusted so as to minimize this deviation and optimize the loss in prediction.

This weight adjustment helps the internal hidden units to capture the patterns in the task and learn

to represent important features corresponding to the task.

24



3.3 Optimizers

Optimizers are methods that help to optimize different attributes of the model simultaneously

while optimizing the loss function. One of the oldest algorithms supporting this technique is Gra-

dient Descent which was first proposed by Augustin-Louis Cauchy [54]. Gradient descent updates

the weights by differentiating the loss with respect to all the neural network parameters and taking

a step in parameter space opposite to the direction of the gradient. Stochastic Gradient Descent

is an improved version of gradient descent, where the weights are adjusted by picking a random

subset of samples from the training set, rather than iterating through the complete dataset for ad-

justing the weights as done in gradient descent [55]. The more robust version of this algorithm is

mini-batch gradient descent [56], in which the network is trained on fixed-sized random subsets of

data, and the weights are updated for every mini-batch.

AdaGrad [57] and RMSProp [58] are two variants of stochastic gradient descent. Adagrad is

usually used in case of sparse data where each parameter is assigned its own learning rate, while

RMSProp is a method that normalizes current gradients based on recent gradients. This is achieved

by decreasing the momentum (step size) for larger gradients to avoid exploding gradients and

reducing momentum for small gradients to avoid vanishing. Adam is another variant of SGD [59].

It uses the feature of AdaGrad to cope with sparse gradients and feature of RMSProp to deal with

noisy gradients. It is one of the most widely used and best performing optimizers for deep neural

networks.

3.4 Regularization for neural networks

Like any other machine learning algorithms, neural networks are also prone to overfitting [60].

Overfitting is a phenomenon in which the network over-learns the training data and, as a re-

sult, loses its capability to generalize to new data. The application of regularization can reduce

overfitting in neural networks. Some of the most commonly used regularization methods include

dropout [61], early stopping [62], and controlling the momentum and decay rate of the learning

rate [63]. Now let us discuss each of these techniques in detail. Dropout randomly deactivates
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some of the neurons while training the model. By deactivating random neurons, dropout makes a

model more robust by making it learn robust functions of its input features. In this way, dropout

improves generalization of the model, and reduces over-fitting. Early stopping is the process of

stopping the training process when the validation or test loss stops decreasing. This prevents the

network from fitting the training data too well, leading to overfitting.

In this context we also mention the technique of batch-normalization. Batch-normalization

helps overcome the problem of exploding and vanishing gradients, usually due to a large range

of values in the input features. Batch-normalization normalizes all the activation values across a

given batch of input data so that the data is scaled down to a smaller range. Batch Normalization

is not a direct regularization technique, but its application produces a regularization effect [64].

In addition to these techniques, data augmentation is one other prominently used technique to

improve generalization. The augmentation of data is one of the basic practices in the case of image

recognition tasks. The augmentation process includes creating synthetic data by making minor

modifications to the original data. [65] For example, in case of image data, data augmentation is

performed by randomly rotating and translating the original images.

3.5 Convolutional Neural Networks

Convolution Neural Networks (CNNs), also known as ConvNets, are a class of neural networks

that have proven to work well on spatial and image data. The connectivity patterns between neu-

rons in the visual cortex is the motivation behind the concept of a CNN [66]. Different neurons in

the visual cortex respond to other stimuli as received by the eye from the visual field. As perceived

by the brain, the visual field’s final image results from the overlap of the receptive field of different

neurons. CNNs overcome overfitting by leveraging the data’s structural pattern to learn much-

sophisticated features and relations between the features. ConvNets operate by the application of

convolution function [67] on the spatial input data.

Like most neural networks, a convolutional neural network architecture comprises an input

and output layer with one or more hidden layers. The hidden layers are the convolution layers that
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convolve over the input received from the previous layer. In mathematical terms, the convolution

operation is a pair-wise sliding dot product. In the case of two-dimensional data, the sliding win-

dow has just length and width while the height gets included in the case of three-dimensional data.

Each of the convolutional layers is associated with an input dimension, kernel size, and the output

dimension.

Figure 3.2: Features of a Convolution Neural Network consisting of multiple channels. The convolution
operation is applied to a patch of the input data over all the channels for every iteration [13].

Besides these attributes, a convolutional layer has two additional features called the stride and

the padding. The stride determines the amount by which the kernel/filter shifts on the input data

while convolving. During convolution, if the spatial size of the data is not preserved, the size of the

data would reduce rapidly eventually resulting in washing away of data at the borders too quickly.

The solution to this problem is using padding at the borders. In padding, empty cells are added at

the perimeter of the input data to increase its dimension and thus preserving the size of the spatial

size of the data at different layers . Figure 3.3 shows a schematic representation of a convolution

filter on two-dimensional data with padding.

For a given dimension d, if the input-size is n,the kernel-size is k, stride is s and padding p, the

output-size can be calculated as:
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Figure 3.3: A 5× 5, two-dimensional data, with a kernel of dimension 3× 3, stride 1, and padding of size
1 [14].

Od =

⌈

n+ 2p− k

s
+ 1

⌉

, (3.2)

where the
⌈

x

⌉

is the ceiling function that returns the smallest integer value that is bigger than

or equal to a number x.

One of the common problems associated with the convolution output feature maps is that they

are sensitive to the location of the significant features in the input [68]. One of the most common

ways to deal with this situation is to down-sample the input using pooling layers [69]. Pooling lay-

ers help in accumulating features from the maps resulting from the convolution layers. Three pool-

ing techniques commonly used with convolution networks are MaxPooling, AvgPooling, Global-

MaxPooling, and GlobalAveragePooling. Figure 3.5 shows a schematic representation of all the

pooling techniques mentioned above. MaxPooling accounts for the maximum value in the pooling

window, whereas AvgPooling accounts for the pooling window’s average. GlobalMaxPooling and

GlobalAveragePooling account for the Global Maximum and Average of all convolving windows,

respectively.

Once the data is processed by the convolutional layers, it is prepared for classification using

dense or fully connected layer(s).
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Figure 3.4: Various pooling techniques applied on a 4 × 4, two-dimensional data, with a pooling filter of
dimension 2× 2.

3.6 Applications of Convolutional Neural Networks

3.6.1 Image recognition

One of the traditional and notable applications of CNNs is image recognition. LeCun and

Bengio first proposed the use of CNN for images [70] at AT&T Bell laboratories in the year 1995.

Subsequently, several architectures were proposed aiming towards better and fast performance,

such as VGG [71], GoogLeNet [72], ResNet [73]. AlexNet [74] is one of the most accredited

architectures that won the ImageNet competition in 2012. An image classification task is associated

with identifying the label of the object(s) contained in the image, where objects to be identified by

a collection of labels. Deep learning on images needs a lot of data and ImageNet is one such

database that contains 14 million images, each hand-annotated with labels corresponding to the

objects contained in the image. The labels are then provided as one-hot encoded vectors.

3.6.2 Video processing

The second most widely used application of CNNs is Video analysis [75]. A video is a spa-

tial representation of a series of images, all associated with a temporal dimension. One of the
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Figure 3.5: A depiction of 2D convolution on the images. The features extracted from the original image
are down-sampled by applying pooling layers of different sizes. [15]

most prominent uses of CNNs is video classification and identifying objects in the videos just as

from images. By learning from the raw pixel position and information from the videos, CNNs

tend to identify objects from the videos. This task is useful for object identification and provides

substantial information to consider a video of a specific category.

3.6.3 Natural Language Processing (NLP)

NLP is a sub-branch of linguistics and artificial intelligence that deals with the interpretability

of human speech and text processing capabilities by a machine. By looking at the pattern of

characters or words in a section of text or speech, a machine can generalize on these patterns

and decipher deep contexts from the input. Just like an image, a part of text or speech could

be represented in a matrix format. The sentence’s words comprise the rows, and the individual

characters of these words include the column. Such representation is well suited for application

of 1D-convolutions [76]. CNN’s have proven to be successful in NLP tasks such as sentiment

analysis and dialogue translation from one language to another. In the last few years, a substantial

amount of work has been done to enhance the NLP tasks. One such prominent technique is the

Convolution augmented Attention model that promotes larger weights to the locations that tend to

bear much important information required for performing the task.
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Chapter 4

Convolutional Neural Networks for Protein

Structures

In this section we discuss prior work on 3D CNNs for modeling protein structures. The driving

motivation behind all these methods is to overcome the need to prepare hand engineered features as

3D-CNNs can learn patterns on their own from the raw data. 3D-CNN have been previously used

for quality assessment of protein structures and assessment of protein-protein docked interfaces.

Quality assessment of protein structures refers to the problem of predicting the quality of protein

structural models to determine how close they are to the corresponding native structure. All the

methods discussed in this section use a 3D-voxel based feature representation and differ in various

ways described below.

Derevyanko, Grudinin, Bengio, and Lamoureux proposed an approach for quality assessment

of tertiary structures of proteins [1]. The authors propose to represent 3D protein structures in

terms of atomic densities that are used to construct 11 channels (details below). For any atom in

the protein complex, its atomic density is stored in a voxel of dimension 1Å. Here the voxel position

is determined by the atom’s actual 3D coordinates in the 3D strcuture of the protein. Each grid has

a dimension of 120 × 120 × 120 cells. The model tries to rank the decoy structures based on the

GDT_TS score [77], which is a measure of the similarity between two protein structures with same

amino-acid sequences but a different tertiary structure. Equation 4.1 provides the mathematical

definition of the atomic-density calculation. For a given coordinate location of an atom in 3D

space, its atomic density ρ(r) is computed over a spherical region of 2Å as a function of the

distance r:

ρ(r) =















e−r2/2, if r ≤ 2Å

0, otherwise.

(4.1)
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Sato and Ishida presented a protein structure assessment method based on local structure qual-

ity [16]. Their method first evaluates the local structure’s quality for each residue and produces

an equivalent local score. These local scores are later summed up to produce a single score cor-

responding to the predicted structure’s overall score. The occupancy of the atoms comprising the

protein are used to build the 3D-voxel input for the 3D-CNN.

Figure 4.1: Residue level feature extraction and global score calculation for the model structure as proposed
by Sato and Ishida [16].

A similar approach was adopted by Kihara, Wang, Christoffer, Terashi, and Zhu in developing

a voxel-based deep neural network for protein-docking evaluation called DOVE [78]. DOVE is

designed to differentiate between near-native decoys and incorrect decoys. The input data includes

atomic positions and atom-wise statistical potentials in a cubic region of 20Å or 40Å aligned to

the interface center. An interface is defined by atoms from the two interacting proteins that are at

most 10Å from each other. The atomic level information is projected to four different channels

corresponding to the atom type of the atom any given spatial location. The first three channels

correspond to the Carbon, Nitrogen, Oxygen respectively while all the remaining atom types are

included in the fourth channel. The number of atoms of the corresponding type is stored in a 1Å

voxel and a 2Å voxel for a 20Å and a 40Å cube, respectively. In addition to these positional fea-

tures, two contact potential features called ITScore [79] and GOAP [80] are used as input features.

Figure 4.2 depicts the 3D-CNN architecture of the DOVE model.
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Figure 4.2: 3D CNN model architecture for DOVE. Picture used by permission

DeepInterface is another method which predicts how close an interface is to the true interface

[17]. The interface is represented as 3D grids with 40 channels. Each of these channels accounts

for the 19 residue types for each of the participating proteins and one channel for each of the

protein’s alpha alpha-carbon. A 3D Gaussian distribution of these amino acids averaged over

C-alpha and C-beta coordinates are used as details for the 3D-voxel grids. Figure 4.3 gives a

schematic representation of the 3D-CNN model for DeepInterface.

Figure 4.3: The 3D CNN model architecture for DeepInterface [17]. Picture used by permission

Altman and Torng proposed a similar way of representing the protein-protein interface for

protein functional site detection using 3D convolution. The method consists of a 3D CNN to
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predict the probability of a residue to be a part of the binding site. It uses four different channels

representing Sulphur, Carbon, Oxygen, and Nitrogen atoms. The occupancy of these atoms is

projected to the corresponding channel. Finally, a Gaussian filter is applied to normalize the counts

across the four channels. For every residue in the protein, the model convolves over the residue’s

local environment and outputs a probability of its likelihood in binding-site formation.

Figure 4.4: Deep 3D Convolutional Neural Network and FEATURE-Softmax Classifier models [18]. Picture

used by permission

Table 4.1 summarizes the various aspects associated with each of the methods discussed in this

section.
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Table 4.1: Table summarizing different methods on protein structure analysis

Summary of the 3D-CNN based methods for assessment of proteins structures and protein-protein interfaces

Method Problem Features Loss function Model architecture

Georgy Derevyanko,

Sergei Grudinin,

Yoshua Bengio,

Guillaume Lamoureux

Quality assessment

of protein folds

11 density maps for

11 different atom types

for the entire

protein structure

Pair-wise

ranking loss

Input Dimension - 120 x 120 x 120

3D convolution layers - 12

Fully connected layers - 3

Rin Sato,

Takashi Ishida

Protein model accuracy

estimation based on

local structure

quality assessment

For each residue ,

14 channels with - 11

for different atom types

and 3 for C-alpha,

backbone chain

and occupancy

cross entropy

at local level

Input Dimension - 28 x 28 x 28

3D convolution layers - 6

Fully connected layers - 3

DOVE
Protein docking

model evaluation

6 channels,

4 for 4 atoms types

and 2 for ITSCORE

and GOAP score

cross entropy

Input Dimension - 20 x 20 x 20

3D convolution layers - 5

Fully connected layers - 3

DeepInterface
Protein-Protein

interface validation

40 channels -

For each protein

19 channels

for 19 residue types

1 channel for

C-alpha atom

cross entropy

Input Dimension - 50 x 50 x 50

3D convolution layers - 4

Fully connected layers - 3

Wen Torng,

Russ B. Altman

Amino acid

environment

similarity analysis

4 channels

for 4 atom types

(C, N, O and S).

Occupancy of each

atom is added to

the corresponding

3D grid.

cross entropy

Input Dimension - 20 x 20 x 20

3D convolution layers - 5

Fully connected layers - 3
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Chapter 5

The proposed method for protein-protein docking

assessment

In this thesis, we propose a 3D-CNN ranking method that is applied to the interface of two

interacting proteins and learns to rank the quality of these docked configurations as measured by the

DockQ score [81]. The proposed method applies to protein complexes consisting of two interacting

proteins (dimers). The following three sections discuss the extraction of the atoms participating in

the interface, representing the interface as a 3D grid and splitting them into multiple channels. This

chapter also gives a detailed overview of the 3D-CNN architecture followed by the loss functions

that have been used. Finally, this section discusses the stratified sampling method we used to deal

with the imbalance in our dataset.

5.1 Docked decoy representation

We are interested in ranking protein-protein docking decoys. As a part of the solution, we

focus on the interface region of the two interacting proteins. To represent the interface we choose

all atoms belonging to residues which are within 10Å of any residue of the other protein (see Figure

5.1).
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Figure 5.1: A cartoon example of a protein-protein interface for the complex 1E96 generated using the
PyMol software [8]. The blue and red colored portion represents the two participating proteins. The orange
and cyan region represents the residues chosen to represent the interface.

Commonly used sources of protein data such as the Protein Data Bank [82] and the Docking

Benchmark Dataset [83], provide the 3D structure of protein complexes. This makes it straightfor-

ward to map these structures to a 3D grid based representation and feed them to 3D convolutional

networks.

We chose to rotate all the protein-protein interfaces parallel to the XY axis for all the experi-

ments conducted. To do this, we first compute the plane that separates the protein-protein interface

and then rotate all the interface atoms along this plane while keeping the interface aligned to the

XY plane. This would not only bring consistent interface representation but would also discard the

need for data augmentation with random rotations and translation of the interface. To achieve this,

we used a 3D-SVM from scikit-learn [84] to find the plane that separates the interface between two

chains in 3D space Fig 5.2 depicts a 3D grid representation of atoms after rotating the interface.

As mentioned in the previous chapter, several approaches have been proposed to represent

protein structures. As a part of this thesis, we use Derevyanko, Grudinin, Bengio, and Lamoureux’s

idea to store the atomic density in a voxel of each 3D grid corresponding to each atom type of

interest (refer to chapter 4). However, we use four channels for four atom types like Kihara,

37



Figure 5.2: A 3D grid representation of atoms at the interface in the protein-protein complex 1S1Q from
DBD4. The green dots represent atoms from the receptor and the red ones represent the atoms from the
ligand. This image is rendered using python’s matplotlib library [19].

Wang, Christoffer, Terashi, and Zhu [78] to represent the protein interface. We also experimented

with using eleven channels for eleven different atom types. Here, the atom types differ from each

other in terms of either element type or molecular characteristics. For example, we considered 3

different channels corresponding to three different hybridization states of carbon. A more detailed

categorization of these atom types is provided in appendix A.
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5.2 3D convolution on protein-protein docked interfaces
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Figure 5.3: The architecture of the proposed 3D CNN. A part of this image is rendered using NN-SVG
software [12]

Our model consists of five convolutional blocks and three dense layers (see Figure 5.3 for a

schematic representation). As we progress from the first convolutional block to the last convolu-

tional block, we increase the number of filters from 16 to 128. Increasing the number of filters not

only improves the model’s sensitivity to the local spatial information, but also allows the represen-

tation of abstractions that capture higher order features. The final convolutional block is connected

to a block consisting of three fully connected layers. All layers have ReLU activation between

them except for the last layer. The final outcome of the fully connected layer is a score predicted

by the network. The total trainable parameters for this network are 330,321.

5.3 Loss functions

Docking decoy assessment can be formulated in two ways. One way is to treat it as a regression

problem by predicting a score corresponding to the interface quality. Secondly, it can be treated

as a ranking problem since we want to rank the decoy structures according to their quality. We
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consider the DockQ [81] score as a label to measure the quality of the docked interface of the

decoy model.

As a part of this thesis, we consider three different loss functions. The first is the Squared

Error, which is typically applied for solving regression problems. Secondly, Absolute Error which

is also a commonly used loss function for regression problems. Finally, we consider a ranking loss

method called the pair-wise ranking loss. The subsequent sections discuss each of them in detail

and their application to protein-protein interface quality assessment. For all the loss function, we

used Adam optimizer [59].

5.3.1 Squared Error

Regression analysis in machine learning refers to a learning method to predict a dependent

(target) variable as a function of independent variables (features). The traditionally used error or

loss function is the squared error (yi− ŷi)
2, where yi is the target value and ŷi is the value predicted

by the network.

subsectionAbsolute Error

Absolute error is another commonly used loss function for regression problems. Absolute

Error, given as |yi − ŷi| is the absolute difference between the actual and the predicted values.

Here, in the equation, yi is the target value and ŷi is the value predicted by the network.

5.3.2 Pairwise Ranking Loss

Tie-Yan Liu first proposed several approaches for ranking loss in the paper "Learning to Rank"

[85]. The training data consists of ordered data samples. The pairwise ranking loss considers a

pair of items at a given time from a list of items that need to be ranked. The goal here is to organize

the paired items so that the produced ranking is optimal and as close as to the ground-truth order

keeping the number of rearrangements as small as possible [86].

We use the same pairwise-ranking loss used by Derevyanko, Grudinin, Bengio and Lamoureux

[1] for quality assesment of protein-folds, based on the work on "Learning to Rank". The pairwise-

ranking loss is defined in terms of the ranking margin. For each pair of decoys, let DockQi
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denote the DockQ of decoy i, and DockQj denote the DockQ of decoy j. Let yij be the ordering

coefficient of decoys i and j, equal to 1 if DockQi ≤ DockQj and to –1 otherwise. Then, the

pairwise loss function can be expressed as:

Lij = wij ∗max [0, 1− yij · (si − sj)] .

Here, si is the score predicted by the network for decoy i, and sj is the score predicted for decoy j.

The coefficient wij is expressed in such a way that decoys with similar DockQ score are eliminated

from the training process. In other words, for a pair of decoys i and j, wij would be 0 if the absolute

difference between the DockQ scores of these decoys is less than the defined threshold τ and equal

to 1 otherwise. For our experiments, we tested with threshold values of 0.2, 0.3. Finally, the loss

is averaged for all targets selected over a mini-batch.

5.4 Stratified sampling

Most of the decoys in our dataset had a low DockQ score (refer fig:5.4). Thus we needed a

sampling method during the training process to preferentially pick a target with a greater number of

good quality decoys. Imbalanced datasets are one of the common issue in classification problems.

With such datasets, the model tends to focus on the categories that have many samples, which

can lead to a model that would put every unseen sample into the category with largest number of

samples. To overcome this issue, we use the concept of Weighted Random Sampling, where each

sample in the training set is assigned a weight based on the number of samples its category has in

the training set.

We categorized the interfaces into three main categories according to their DockQ score:

Low 0 ≤DockQ ≤ 0.23

Acceptable 0.23 ≤DockQ ≤ 0.49

Medium-High 0.49 ≤DockQ ≤ 1.

(5.1)

41



We have added two levels of stratification to our sampling process: At the first level we do a

probability-based picking of targets, and at the second level we randomly select a docking software

available for that chosen target. For performing the first level of selection, we assign probabilities

to all the targets in the training set. This probability is assigned on the basis of the number of

medium-high quality decoys a target has from all the docking softwares. For the second level of

stratification, we choose a random software to avoid a bias in selecting the docking software with

a larger number of good quality decoys.

5.5 DockQ category based binning

As mentioned in the previous sections, our dataset dominantly consisted of low quality decoys,

so we wanted our sampler to include docking solutions from all three DockQ categories to improve

generalization and avoid bias. Fig 5.4 shows decoy distribution in the dataset over three DockQ

categories we chosed for binning.

Figure 5.4: Distribution of decoys from the dataset over three different DockQ categories

Once a target and a random docking software are selected, we bin decoys from each category.

The idea behind the binning strategy here is to pick equal amount of decoys from each of the

DockQ categories for a given batch size. The highest preference is assigned to medium-high
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category followed by acceptable and low categories. If there are insufficient decoys available for

any selected target, we substitute them by binning from the next preferable category.

5.6 Best model selection

The model was trained on a CentOS linux machine with 12GB GPU memory and 16GB CPU

memory. The machine was enabled with a NVIDIA Corporation GV100 TITAN V GPU. It took

around 16 hours to train the model on a single GPU for 100 iterations. For every iteration, we used

200 mini-batches of size 6 and evaluated the model on the entire validation set for that iteration.

Finally, we choose the best weights for the iteration at which the model identified highest number

of natives and first near-natives for validation set targets.

As discussed in this chapter, we have experimented with various methods of interface represen-

tation and various loss functions. In order to select the best configuration amongst the experimented

combinations, we evaluated each of these models on the validation set (discussed in chapter 6, sec-

tion 6.1.2). The model that could identify the largest number of natives and first near-natives for

the targets from the validation set was considered as the best model.
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Chapter 6

Experimental setup

All the experiments described in chapter 5 were evaluated and validated against state-of-the-

art docking software. All the data was prepared using four docking softwares namely ZDOCK,

HADDOCK, FRODOCK, and ClusPro. Each of the docking software is described in chapter 2

section 2.3.4.

6.1 Data

The dataset comes from three sources: Docking Benchmark Data V5 (DBD5) [87] , ProPairs

[88], and Dockground [89]. The sections below provide a brief overview of each of the datasets

used and the techniques used to filter them.

6.1.1 Data sources

Docking Benchmark Data version 5.0

Docking Benchmark Data version 5.0 is a corpus of 3D structures of protein-protein complexes

selected from the Protein Data Bank (PDB) [82] in both bound and unbound conformation. DBD5

is created so that none of the partnering proteins in a complex belong to the same SCOP (Structural

Classification of Proteins) family [90]. DBD5 targets are divided into three categories: rigid body

(easy), medium difficulty, and difficult, based on the extent of the conformational changes they

undergo while forming the bound conformation.

ProPairs

ProPairs is a dataset of non-redundant protein-protein docking complexes obtained from PDB.

ProPairs is based on an algorithm that extracts valid protein docking complex structures and the

unbound structures of the binding partners from PDB. For any bound complex, if either of the

partners’ unbound structure is absent, it is replaced by the unbound structure of another protein

which has a similar structure to the same partner in the bound configuration. This resulted in
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5,642 protein complexes. Finally, after filtering to remove redundancy at a level of 40% sequence

identity, 2070 out of the 5642 complexes remained.

Dockground

Dockground is another dataset that serves as a source for testing and validating different

protein-protein docking techniques. For every protein-protein complex in the dataset, Dockground

provides a bound configuration, the co-crystallized structure of the complex, and an unbound X-

ray structure for each of the partnering proteins. It also provides simulated docking benchmark

sets, model–model docking benchmark sets, scoring benchmarks (docking decoys), and templates

for comparative docking.

6.1.2 Data cleaning

DBD5 includes 23 new targets along with 176 targets obtained from DBD4 [83]. We used

the non-redundant dataset for ProPairs, which consisted of 2070 multimer protein complexes. The

Dockground dataset consists of 99 non-redundant complexes. From all the datasets, we kept the

dimers (dimers are protein complexes with just two interacting proteins). This resulted in 199

targets from DBD5, 1053 targets from PropPairs, and 99 from Dockground.

To remove redundancy and split the data into training, validation, and the test set, we used the

CD-HIT [91] to distribute the dataset into multiple clusters based on the threshold specified. Since

we are more interested in heteromer dimers, we discarded those complexes where both the partici-

pating proteins had similar sequence. In order to do this. We used BioPython’s SeqIO module [92]

to get the sequence of each of the protein and then applying a 90% similarity threshold on the

sequences of both the proteins. At the same time, we also discarded the complexes where either of

the ligand or receptor had less than 40 atoms. After imposing some constraints on the sequences

within each of the targets, then performed a Protein Sequence Identity match with a 95% threshold

between all the targets in the entire dataset to remove redundancy between multiple datasets. To

split this data into training, validation, and test dataset, we again performed a Protein Sequence

Identity match with a 25% against the 23 new targets from DBD5. Initially, we started with a test
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set consisting of 23 targets from the DBD5. Later, if any target from the datasets mentioned above

has S.I greater than 25% against the test set, they are added to the test set otherwise kept in the

training set. Similarly, we moved some targets from the training set to the validation set using an

S.I threshold of 40%. If any two targets in the training set have S.I greater than 40%, they will

only be retained in the training set; otherwise, they will move to the validation set. If a complex is

present in multiple datasets, preference has always been given to DBD5 followed by DockGround

and ProPairs while choosing the bound and unbound structures of the target.

After all the redundancy check, the final dataset consisted of 390 targets in total with 131 from

ProPairs, 60 from the Dockground and 199 from DBD5.

Table 6.1 summarizes the distribution of targets over multiple datasets before and after removal

of redundant targets.

Table 6.1: Table summarizing the initial and final count of targets from each of the dataset before and after
performing the redundancy check over the dataset

Dataset summary - from multiple data sources

DBD5 Propairs Dockground

Initial 199 1053 99

Final 199 131 60

The targets identified previously were distributed into training, validation and test sets. Initially

we had 50 targets in the validation set, but we found that only 20 of them had at least one near

native decoy. Thus, this led us to move those remaining 30 targets into the training set. The final

distribution of the training, validation and the test set are summarized in table 6.2.
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Table 6.2: Table summarizing the distribution of targets over the training, validation and the test

Summary of the final dataset

Training Validation Test

390 20 50

6.1.3 Independent dataset for model evaluation

To test our model performance, we evaluated our model on the combined CAPRI-ScoreSet

and MOAL dataset provided by the publishers of ProqDock [93]. The provided dataset had 19013

models for 15 targets from CAPRI and 56015 models for 118 targets from MOAL. All the targets

for CAPRI and MOAL were selected from Docking Benchmark Data version 4. To obtain a dataset

with low similarity to our training set, we performed a homology sequence comparison of targets

to avoid any similarity or redundancy with respect to the targets in the training and validation

sets. We choe targets from CAPRI and MOAL that were less than 25% similar to our training and

validation set. We further filtered these targets by selecting only the ones that had at least one good

quality decoy. With this, we finally ended up with 6 targets from CAPRI and 29 from the MOAL.

Table 6.3 summarizes number of targets from the CAPRI and MOAL datasets.
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Table 6.3: Table summarizing the number of targets from the CAPRI and MOAL datasets at each level of
refinement.

The CAPRI and Moal dataset refinement summary

CAPRI MOAL

Initial 8 123

Non-redundant 6 81

At least 1 good-

quality decoy

6 29

6.2 Docked decoys dataset

Table 6.4: This table summarized number of targets for which each of the docking software produced
docking solutions.

Dataset summary - targets for each docking softwares.

ZDOCK HADDOCK FRODOCK ClusPro

targets/docking

software

32 38 421 449

As a part of the experiment, we considered docking solutions from all of the docking softwares

mentioned above. Table 6.5 summarized the average number of decoys produced per target from

the corresponding docking software.For ZDOCK, we initially had 50,000 decoys per target, but

the composition consisted of a large number of low-quality decoys, so we ended up selecting the

top 1000 for each of the targets.
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Table 6.5: Table summarizing the average number of decoys per target produced from each of the docking
software.

Number of decoys per target for each software

ZDOCK HADDOCK FRODOCK ClusPro

decoys/target 1000 500 100 100

The ZDOCK [83] and the HADDOCK decoys [94] were obtained from a pre-computed set of

decoys for targets from DBD4 and DBD5 respectively. While for the FRODOCK and ClusPro de-

coys, we used the software on ubound receptors and ligands of targets from ProPairs, Dockground

and DBD5.

6.3 Data augmentation

Data augmentation is a common practice in many deep learning applications [65]. Data aug-

mentation is a method to expand a dataset by adding synthetically generated data or modifying the

existing data. Since deep learning models tend to learn and generalize well on larger datasets, data

augmentation proved to be one of the best techniques to improve model performance, especially

for sparse or imbalanced datasets. As mentioned earlier, our dataset has a high percentage of low-

quality decoys compared to the high-quality ones. As part of our experiments, we augmented our

dataset by randomly rotating the protein-protein interface about the center of the interface. More

information about calculating the angle of rotation is provided in the appendix A.
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Chapter 7

Results and conclusion

This chapter explores the performance of the 3D-CNN model in ranking the quality of protein-

protein interfaces. In this chapter, we frequently use the terms native interface and near-native

interface. Here, a native interface refers to the target’s true/crystal structure interface. In contrast, a

near-native interface refers to a decoy interface whose structure closely resembles the target’s true

structure. This closeness is measured in terms of the decoy’s DockQ score. Since our dataset con-

sists of decoys from various docking softwares, a single target can have many near-native decoys

generated from different docking softwares. To maintain consistency and achieve better compar-

ison, for any target we choose a near-native decoy from a docking software that produces a good

quality decoy in terms of the DockQ score. The goodness of a method is defined as its ability to

identify a native or a near-native interface in top n ranks. We chose five different values of n as 1,

5, 10, 20, and 50.

In this section we compare the performance of models trained using various loss functions

(discussed in section 5.3) on the test data. Then we evaluate the performance of the best model on

the our test data and the independent test data (CAPRI and MOAL). Here we inspect number of

native and near-native interfaces identified by the model in top n ranks. Following this, we compare

the best model’s performance to each of the docking software used to create the dataset except for

ClusPro. Finally we compare our model’s performance against the DOVE model ( referred to in

the chapter 4 ) on the test set. Each of the comparisons mentioned above is made at three different

DockQ thresholds, as discussed in section 5.5.
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7.1 Performance of different 3D-CNN models

This section compares the performance of several models which we have tried and tested as a

part of this thesis. As a part of these experiments we have tested different loss functions. We also

experimented with different regression models. For a single variate regression, we used just the

DockQ as the independent label while for multi-regression, we used all the components of DockQ

(Fnat, Fnonnat, iRMS, and LRMS) along with the DockQ score itself as multiple independent

variables. In addition to this we experimented with using 11 different channels to represent the

interface atom features instead of four, along with data augmentation. The model that uses 11

channels was not competitive with the model that used four channels; those results are in appendix

A.

Figure 7.1: Performance of 3D-CNN models on the test data. Each section in the barplot gives the number
of targets for which each of the models could identify its near-native in the top n ranks.
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Figure 7.2: Performance of 3D-CNN models on the test data. Each section in the barplot gives the number
of targets for which each of the models could identify its native in the top n ranks.

Fig 7.1 shows performance of several 3D CNN models. While looking at the bar plot for near-

native structures, we can see that the Ranking loss gave the best performance overall, being the

only model to identify some near-natives in top 1 rank. For regression loss, the model performs

much better with a Squared Error loss than Absolute Error loss function. We can also see that

there is a slight performance improvement using the multi-variate regression model for both the

Absolute Error and Squared Error loss functions.

Fig 7.2 shows performance of several 3D CNN models for native structures. Again, we can

see that the ranking loss gave the best performance when compared to the two forms of regression

loss. For regression models, we can see that with Absolute Error loss, model is performing well

than with Squared Error loss in case of single-variate regression as well as multi-variate regression.

The performance improvement from single-variable regression to multi-variable regression is quite

similar to the case of near-natives. This improvement is considerably more than to the case of near-

natives.
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7.2 Performance on the test, CAPRI and the MOAL data

Figure 7.3: Model performance on the test data. Here we compare number of natives and different quality
of near natives identified by the model. Each section in the barplot defines the number of targets for which
the model could identify its native/near-native in top n ranks.

Fig 7.3 gives performance of the 3D-CNN model on the test data.The test data had 50 targets

initially and out of these 50 targets, only 17 of them had at least one high quality decoy. So we used

only these 17 targets to report model’s performance on the test set. We can see that as the quality

of the selected near-native decoy increases, the number of targets in top n ranks decreases. Also,

we can see that the model is able to identify more native structures at higher ranks than at lower

ranks. This is because, a native structure would have a higher rank than a near-native structure.

However, there are more near-natives at higher ranks (at rank 20 and rank 50) and these numbers

increase as we relax the DockQ threshold criteria from 0.65 to 0.23. This trend can be justified by

the fact that a low quality decoy is less likely to be identified in top n ranks for a higher evaluation
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criteria. With this, we can say that the model is able to distinguish well between low and high

quality decoys.

Figure 7.4: Model’s performance on CAPRI and MOAL dataset. Each section in the barplot defines the
number of targets for which each of the models could identify its near-native in top n ranks.

Here, we evaluate the model’s performance on the independent dataset of CAPRI and MOAL

discussed in chapter 6, section 6.1.3. Fig 7.4 shows the performance of the 3D-CNN model on

the CAPRI and the MOAL dataset. Like every other evaluation, we evaluated our model on these

datasets at for three different quality of near-natives. For both the datasets, we can see that the
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number of near-natives identified decreases as we increase the DockQ score threshold for the near-

native selection. This trend is justified since it is more likely to find a high number of low quality

decoys at any top n rank as compared to high quality decoys. And vice versa, it is less likely for a

low quality decoy to be present to top 1 ranks. This can be clearly seen from the bar plots as we

get same number of decoys in top 1 ranks irrespective of the quality of the near-native we choose.

This means that the model is able to rank the decoys correctly as it is able to identify same set of

near-natives at top 1 ranks at any level of the criteria.

7.3 Performance of 3D-CNN vs Docking software

This section compares the model’s performance to FRODOCK, and ZDOCK. We had only 3

targets for HADDOCK in the test set, so we discuss the HADDOCK results in appendix A. We

could not acquire rankings for ClusPro software since ClusPro produces decoys in clusters based

on decoys’ quality. That means all similar quality decoys would be clustered together in a group,

and hence there are no formal rankings that the ClusPro associates to the decoys it produces. Here

we evaluate the model and the docking software’s ability in identifying three different quality

near-natives. In addition to this, we might find a different near-native decoy when we change the

selection criteria. This is because, we always pick the first decoy for a target whose DockQ is

closest to the selected threshold.
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7.3.1 3D-CNN vs FRODOCK

Figure 7.5: Model vs FRODOCK performance on test data. Each section in the barplot defined the number
of targets for which the model and FRODOCK could identify its near-native in top n ranks. Here we assess
the performance of model and the docking software for in identifying three different quality of decoys.

Figure 7.5 gives a comparison of model and the FRODOCK docking software’s performance

on 9 targets from the test set. Overall, FRODOCK has outperformed the 3D-CNN model in all

the scenarios by identifying more first near-natives in all top n ranks at all evaluation criterias. For

generating docked solutions for FRODOCK, we used FRODOCK2.0 standalone software. The

underlying literature states that the FRODOCK2.0 was parameterized on a subset of DBD5 targets.

Since our test is composed of DBD5 targets and given that FRODOCK has been fine tuned on a

subset of this data, it is highly probable for FRODOCK to perform well on any similar dataset. This

supports the higher performance of FRODOCK than the 3D-CNN model on our test set. Given

that our model has no prior knowledge of DBD5 targets, it gave a near close performance to the

FRODOCK software.
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7.3.2 3D-CNN vs ZDOCK

Figure 7.6: Model vs ZDOCK performance on test data. Each section in the barplot defined the number of
targets for which the model and the corresponding docking software could identify its near-native in top n

ranks.

Figure 7.6 gives a comparison of model and the ZDOCK docking software’s performance on 9

targets from the test set. We can see that 3D-CNN is able to identify more near-natives in top 20

and top 50 ranks at every DockQ threshold criteria. However, ZDOCK could identify more near-

natives at higher ranks than the 3D-CNN model. Only in the case of high-quality near-natives,

3D-CNN could identify one target in top 1 rank where as ZDOCK could not identify any. As

mentioned in chapter 6, we added some targets from Docking Benchmark Dataset 4 [83] that

were similar to the new targets from Docking Benchmark Dataset 5. The decoy dataset we used

from ZDOCK consisted of decoys from Docking Benchmark Dataset 4, and were generated using

ZDOCK:3.0.2 [95] which was optimized for all the targets from Docking Benchmark Dataset 4.
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This justifies ZDOCK’s better performance as all the decoys we had for ZDOCK in the test set

were from Docking Benchmark Dataset 4. However, our 3D-CNN model is partially trained on

Docking Benchmark Dataset 4 targets,but these targets were highly dissimilar to the test targets.

Stated that, our 3D-CNN model performed nearly equivalent to ZDOCK.

7.4 3D-CNN vs DOVE on the test data

Figure 7.7: Model vs DOVE’s performance on test data. Each section in the barplot defined the number of
targets for which each of the models could identify its near-native in top n ranks.

This section compares our model’s performance against an existing deep learning method

for protein-protein interface assessment called DOVE. However, DOVE is designed to evaluate

protein-protein docking decoys that use 3D-CNNs to identify the resulting interface is a true in-

terface or not. On the other hand, our proposed model is designed to rank the decoy structures.
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Ranking decoy structures is a much harder problem since it is not only associated with identifying

a true interface but also with identifying its ranks with respect to other true interfaces. As a part of

this thesis, our goal is not just to identify a true interface but also to find its order amongst hundreds

and thousands of decoy structures corresponding to a target.

We retrained and tested the DOVE model from scratch on the same training and test set we

used to train and evaluate our model. For the classification task, the decoys are labeled as positive

or negative based on the DockQ cutoffs. The way the DOVE model is designed, it can differen-

tiate between an acceptable and non-acceptable decoy interface. Referring to the DockQ criteria

mentioned in table 6.4, an acceptable decoy has a DockQ score between 0.23 and 0.49. Initially,

we used a DockQ cutoff of 0.23 to get the decoy interfaces’ labels in the dataset. Later, to increase

the DOVE model’s robustness and sensitivity, we generated another set of labels for these decoys

by using a DockQ cutoff of 0.65. the performance of these to independently trained models is

compared against our 3D-CNN model in fig 7.7.

The DOVE model produces a probability value as an output that determines the quality of the

input interface. A higher probability corresponds to a higher quality interface and vice versa. We

used these output probability values to rank the near-native decoys for 12 targets from the test set

which had at least one high quality decoy. Two things can be inferred from fig. Firstly, there

is a slight improvement in DOVE’s performance when the classification criteria were made more

stringent (from DockQ score threshold of 0.23 to 0.65). This improvement can be observed from

the increase in the number of targets identified by DOVE in the top 10 to top 1 ranks. Secondly,

our 3D-CNN model’s overall performance is better to the two DOVE models mentioned above.

However, all the three models could identify same number of targets in top 50, but our model

performed well at all other remaining ranks. Since the probability of a near-native being present in

top n ranks increases as the value of n decreases, so we can say that a model that identifies more

near-natives at higher ranks is a more robust model.
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7.5 Visualization of correct and wrong predictions

In this section, we would be discussing some factors that caused the model to make a correct

or wrong prediction. For each of the following subsections, we choose a decoy from each of the

docking software so as to make a generalized inference.

7.5.1 False positive

(a) Target 1B6C, decoy from ClusPro (b) Target 1E96, decoy from Haddock

(c) Target 1XD3, decoy from ZDOCK
(d) Target 3VLB, decoy from

FRODOCK

Figure 7.8: PyMol visualizations of decoys which have been ranked higher but have a low DockQ score.
Here The two interacting proteins are colored in Red and Blue respectively and the portions of the corre-
sponding proteins participating in the interface are colored in Cyan and Orange respectively

A false positive prediction refers to a mis-classifed decoy that has been ranked higher by the

model but in reality, is a poor quality decoy. From the visualization in fig 7.8, what we can observe

is, whenever the interface region for any one of the participating proteins is small (typically span-
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ning over a very small region) as compared to the other partner, it has caused the model to consider

it as a positive sample.

Typically, for a good quality model, both of the interacting proteins would have a small and

nearly same size of the contributing interface region. So, for any decoy, if the interface region is

small, due to the smaller size of the contributing chain, the model has considered it to be as a good

quality decoy.

7.5.2 False negatives

(a) Target 5DMJ, decoy from ClusPro (b) Target 1E96, decoy from Had-

dock

(c) Target 1EAW, decoy from ZDOCK (d) Target 3K75, decoy from FRODOCK

Figure 7.9: PyMol visualizations of decoys which have been ranked lower but have a high DockQ score.
Here The two interacting proteins are colored in Red and Blue respectively and the portions of the corre-
sponding proteins participating in the interface are colored in Cyan and Orange respectively

A false negative prediction refers to a mis-classifed decoy that has been ranked lower by the

model but in reality, is a good quality decoy. From the visualization in fig 7.9, what we can observe

is, if the size of the interface is large due to the greater width or length of the contributing chain,
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we see a false negative. From the visualization, we can see that either of the participating proteins

has a longer chain and a scattered interface region.

7.5.3 True positives

(a) Target 3VLB, decoy from ClusPro
(b) Target 1E96, decoy from

Haddock

(c) Target 1EAW, decoy from ZDOCK
(d) Target 1B6C, decoy from

FRODOCK

Figure 7.10: PyMol visualizations of decoys which have been ranked higher and have a high DockQ score
as well. Here The two interacting proteins are colored in Red and Blue respectively and the portions of the
corresponding proteins participating in the interface are colored in Cyan and Orange respectively

7.6 Conclusion

In this thesis we presented a 3D-CNN model for quality assessment of docked protein struc-

tures that uses raw atomic densities of atoms comprising the interface of the docked structure.

When compared to the state-of-art docking softwares, we can see that our 3D-CNN model per-

formed closely to FRODOCK and ZDOCK, noting that both the docking tools have been opti-

mized and tuned partially/fully on our test targets. In the case of HADDOCK, our 3D-CNN model
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outperformed the docking algorithm in finding near-natives of all qualities. Our model also out-

performed the existing 3D-CNN method DOVE [78] even when it has been re-trained for a higher

DockQ threshold. To conclude we can say that using simple features like raw atomic densities, our

model has shown a good performance even with a limited good quality training data and has given

on-par performance to some existing interface assessment methods.
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Chapter 8

Future work

In this section, we will be discussing some possible directions for future work. Firstly, we

can experiment with more possible input features. In our case, we consider atomic densities of

the atoms at the docking interface. Likewise, we can consider other physical quantities such as

electrostatic potential or solvent density. In addition to this, it is also possible to include other

structure level features such as sequence conservation that could potentially boost performance.

Secondly, building a larger and better dataset. This can be done by bringing into consideration

other protein database and other docking softwares. As mentioned in chapters 5 and 6, most of

our dataset is composed of low quality decoys. Therefore we expect that adding more decoys with

good quality to the dataset would definitely help the model to generalize well and differentiate

more accurately between good and bad decoys.

Other areas of improvement include enhancing the loss function and its interpret-ability. If we

look at the scores produced by the model, it is quite difficult to make a interpret them at a glance.

For example, looking at the work published by Bau, David and Zhou, Bolei and Khosla [96], it

has been shown that interpret-ability of models in computer vision can be improved by including

fine-grained details about the labels such the bounding boxes and the high level features of the

objects in it. In a similar way, we can use details such as amino acid environment and secondary

structure elements for achieving a more precise judgement. Unlike standard deep learning models,

these features would not be used as input for making predictions, rather they would be used for

enhancing the interpret-ability.

In case of regression loss, we observed better performance when we used multiple labels rather

than just the DockQ score. This definitely indicates that the model is learning better when more

details are added for the label. Therefore we expect that a multi-variate ranking loss could poten-

tially perform better as compared to a single variable ranking loss which we have used as a part of

this thesis.
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There is also a potential to use models that have been pre-trained on protein 3D structures.

Transfer learning is one of most common methods used in deep learning applications [97]. Studies

show that machine learning models that have been trained for a certain application if used as a

starting point for another application, tend to learn and generalize better. Even if the existing and

the new application have a different goal, the model for the existing application could still be useful

for the new problem if they share common input data (e.g. protein 3D structures in our case). 3D-

CNN Models like Proq3D [98] and SASNet [99] are some potential models that can be used as a

starting point to solve our problem of docked protein interface assessment.

There are many modern and enhanced convolutional network architectures like AlexNet [74],

VGGNet [71] etc. that have shown better performance on image data than the standard architecture

we used in this thesis. Since we have used a 3D protein feature representation, it is highly probable

that these architectures, if trained on protein data could potentially give better performance.

Finally, we will discuss the scope of improving the computation speed. The PyTorch 3D-CNN

model used in this application is currently designed to run on a single GPU only. However, it is

very feasible to extend it to run on multiple GPUs simultaneously. This would definitely reduce

the total execution time of the model.
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Appendix A

Supplementary Data

A.1 Atom types used for 11 channels

Table A.1: List of atoms used for 11 channels used as a part of the experiments in this thesis. This table

is obtained from the publication Deep convolutional networks for quality assessment of protein folds by

Derevyanko, Grudinin, Bengio, and Lamoureux [1]

Atoms description

Type Description Atoms

1 Sulfur/selenium CYS:SG, MET:SD, MSE:SE

2 Nitrogen (amide)
ASN:ND2, GLN:NE2
backbone N (including N-terminal)

3 Nitrogen (aromatic) HIS:ND1/NE1, TRP:NE1

4 Nitrogen (guanidinium) ARG:NE/NH*

5 Nitrogen (ammonium) LYS:NZ

6 Oxygen (carbonyl)
ASN:OD1, GLN:OE1
backbone O (except C-terminal)

7 Oxygen (hydroxyl) SER:OG, THR:OG1, TYR:OH

8 Oxygen (carboxyl)
ASP:OD* GLU:OE*
C-terminal O, C-terminal OXT

9 Carbon (sp2)
ARG:CZ, ASN:CG ASP:CG
GLN:CD, GLU:CD, backbone C

10 Carbon (aromatic)

HIS:CG/CD2/CE1,
PHE:CG/CD*/CE*/CZ,
TRP:CG/CD*/CE*/CZ*/CH2,
TYR:CG/CD*/CE*/CZ

11 Carbon (sp3)

ALA:CB, ARG:CB/CG/CD,
ASN:CB, ASP:CB, CYS:CB,
GLN:CB/CG, GLU:CB/CG,
HIS:CB, ILE:CB/CG*/CD1,
LEU:CB/CG/CD*,
LYS:CB/CG/CD/CE,
MET:CB/CG/CE, MSE:CB/CG/CE,
PHE:CB, PRO:CB/CG/CD,
SER:CB, THR:CB/CG2,
TRP:CB, TYR:CB, VAL:CB/CG*,
backbone CA
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A.2 PyTorch model architecture

MaxPool3DWithIndicesBackward

ReluBackward0

CudnnConvolutionBackward

ReluBackward0

CudnnConvolutionBackward

MaxPool3DWithIndicesBackward

ReluBackward0

CudnnConvolutionBackward

MaxPool3DWithIndicesBackward

ReluBackward0

CudnnConvolutionBackward

 (1, 4, 60, 60, 60)  (16, 4, 3, 3, 3)  (16)

 (32, 16, 3, 3, 3)  (32)

 (32, 32, 3, 3, 3)  (32)

 (64, 32, 3, 3, 3)  (64)

 (128, 64, 3, 3, 3)  (128)

Figure A.1: Convolutional layers of the PyTorch model visualized using TorchViz tool. Each layer is

associated with input dimension, filter size and bias for that layer
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architecture contd..

SelectBackward

AddmmBackward

 (1)
FusedDropoutBackward

ReluBackward0

AddmmBackward

 (32)
FusedDropoutBackward

ReluBackward0

AddmmBackward

 (64)
ResizeBackward

ReluBackward0

CudnnConvolutionBackward

TBackward

 (64, 128)

TBackward

 (32, 64)

TBackward

 (1, 32)

Figure A.2: The final convolutional block is connected to a block consisting of three fully connected layers
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A.3 3DCNN vs HADDOCK

Figure A.3: Model vs HADDOCK performance on test data. Each section in the barplot defined the number

of targets for which the model and HADDOCK could identify its near-native in top n ranks. Here we assess

the performance of model and the docking software for in identifying three different quality of decoys.

Lookign at the overall performance of 3D-CNN on HADDOCK decoys, we can say that both

3D-CNN and HADDOCK docking software showed nearly same performance. A fewer number

of targets for HADDOCK in the test set makes this conclusion difficult to justify.
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A.4 Performance of 3D-CNN with 11 channels

We can see that scaling up the atomic density values showed some improvement in case of 11

channels. In addition to this, ranking loss showed better performance than regression loss.
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A.5 Data augmentation experiments on 11 channels

Figure A.4: Data augmentation experiments for 11 channeled 3D-CNN
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We can clearly see that having a fixed axis for the interface helped the model to learn better.

In contrast, having no rotation at all showed a very poor performance. For rotation experiments,

wither we randomly rotated half of the samples from the batch or all of the samples for a batch.

We can see that having all the samples rotated has shown a better performance than having only

few rotated. All the rotations for these experiments we performed on fly, unlike the fixed axis

experiment where the features for the interface we pre-computed before the training process.

A.6 Python dependencies

backports.functools-lru-cache==1.5

biopython==1.72

biopython-extensions==0.18.6

certifi==2019.6.16

chardet==3.0.4

cycler==0.10.0

enum34==1.1.6

fastrlock==0.4

funcsigs==1.0.2

future==0.17.1

graphviz==0.8.4

h5py==2.9.0

idna==2.8

kiwisolver==1.1.0

llvmlite==0.29.0

matplotlib==2.2.4

numba==0.44.1
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Python libraries contd..

numpy==1.16.6

pandas==0.24.2

Pillow==6.0.0

pyparsing==2.4.0

pysam==0.15.2

python-dateutil==2.8.0

pytz==2019.1

PyYAML==5.1.1

requests==2.22.0

scikit-learn==0.20.4

scipy==1.2.2

semantic-version==2.6.0

singledispatch==3.4.0.3

six==1.12.0

subprocess32==3.5.4

tabulate==0.8.3

Theano==1.0.4

torch==1.4.0

torchsummary==1.5.1

torchvision==0.3.0

torchviz==0.0.1

urllib3==1.25.3
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