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Abstract

A Study of Low Cloud Climate Feedbacks Using a Generalized

Higher-Order Closure Subgrid Model

One of the biggest uncertainties in projections of future climate is whether and how

low cloudiness will change and whether that change will feed back on the climate system.

Much of the uncertainty revolves around the difference in scales between the processes that

govern low cloudiness and the processes that can be resolved in climate models, a fact that

relegates shallow convection to the parameterization realm with varying levels of success.

A new subgrid-scale parameterization, named THOR, has been developed in an effort to

improve the representation of low cloudiness via parameterization in climate models. THOR

uses the higher-order closure approach to determine the statistics describing subgrid-scale

processes. These statistics are used to determine a trivariate double-Gaussian PDF among

w, θil, and qt. With this information, one can diagnose what portion of the grid cell is

cloudy, subgrid-scale cloud water content, and subgrid-scale vertical cloud water flux. In

addition, samples are drawn from the trivariate PDF in order to drive the microphysics

and radiation schemes. Although schemes similar to THOR have been developed over the

past decade, THOR includes several novel concepts, like the generalization of the saturation

curve to include condensation over both ice and liquid substrates, the determination of

the PDF parameters from the given turbulence statistics, the introduction of a stochastic

parcel entrainment process for the turbulence length scale, and a sub-column approach for

calculating radiative transfer using the PDF.

The new model is evaluated by simulating five test cases spanning a wide range of bound-

ary layer cloud types, from stratocumulus to cumulus and the transition between the two.
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The results are compared to an ensemble of LES models running the same cases, with par-

ticular attention paid to turbulence statistics and cloud structure. For all cloud types tested,

THOR produces results that are generally within the range of LES results, indicating that

the single-column THOR is able to reproduce the gross characteristics of boundary layer

clouds nearly as well as three-dimensional LES. Sensitivity to vertical grid spacing, diagnos-

tic/prognostic third-order moments, choice of turbulence length scale entrainment process,

and whether or not PDF sampling is used to drive the microphysics and radiation schemes is

assessed for all test cases. Simulation of the cumulus regime was degraded when vertical grid

spacing exceeded 200 m, when more third-order moments were predicted, when higher parcel

entrainment rates were assumed, and when PDF sampling for the microphysics scheme was

omitted. Simulation of stratocumulus was degraded with grid spacing larger than 100 m,

when PDF sampling for microphysics was omitted, and when PDF sampling for radiation

was included.

Lastly, THOR is used to study low cloud climate feedbacks in the northeastern Pacific

Ocean in the context of the CGILS project. Initial conditions and forcings are supplied at

13 points along the GPCI cross-section that spans from the ITCZ northeast to the coast

of California transecting regions of shallow cumuli and stratocumuli, for both the current

climate and a climate with a +2K SST perturbation. A change in net cloud radiative forcing

of 0-8 W m -2 was simulated along the cross-section for the perturbed climate, representing

neutral to weak positive feedback. The responsible mechanism appeared to be increased

boundary layer entrainment and stratocumulus decoupling leading to reduced maximum

cloud cover in the cumulus regime and reduced liquid water path in the stratocumulus

regime.
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CHAPTER 1

Background

For a casual observer of the tropical atmosphere, perhaps it is easy to overlook the seem-

ingly passive and numerous shallow cumulus clouds or even the persistent shields of stra-

tocumulus that form in subsidence regions in favor of the impressive masses of deep, heavily-

precipitating cumulonimbi that form along the intertropical convergence zone (ITCZ), within

convectively-coupled equatorial waves, or tropical disturbances. After all, deep convection

actively transports mass, heat, moisture, momentum, and chemical constituents vertically,

significantly alters the local radiation budget, and produces latent heating that helps to

drive the Hadley circulation and determine the mean temperature profile for much of the

tropics. The ascending branch of deep convection has a very powerful effect, but its areal

extent is small compared to the accompanying descending branch, so that the area covered

by active deep convective cores is a very small percentage of the tropics at any one time.

Shallow convection, on the other hand, participates in transport, radiation, and latent heat-

ing, but with much reduced magnitudes and with compressed vertical profiles. While the

local effect of shallow convection may be comparatively subtle, its global effect is magnified

by its frequency of occurrence and its vast areal extent. In addition, shallow convection is

controlled by many intricate processes, the balance of which is potentially easily disturbed in

a changing climate. Therefore, the importance of shallow convection for the climate system

is profound.

As with all clouds, shallow clouds interact with incoming and outgoing radiation and

have a significant impact on the local radiative balance. Incoming shortwave radiation is

reflected very effectively by cloud droplets, reducing the radiation that reaches the surface
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and creating a surface cooling effect. Outgoing longwave radiation is absorbed and reemitted

by the same cloud droplets according to their temperature. Some of the longwave radiation

that would have escaped into space had a cloud not been present is reemitted back toward

the surface, creating a warming effect. The net radiative forcing of a cloud is the sum of

these two effects. For low, shallow clouds, since the temperature at cloud top is only slightly

cooler than the surface, the longwave warming effect is small compared to the shortwave

cooling effect during the day. As a result, shallow clouds exert a net cooling effect locally.

Shallow clouds cover a significant portion of the world in the annual mean. Observations of

shallow cloud fraction have been made using passive satellite sensors (International Satellite

Cloud Climatology Project (ISCCP), Rossow and Schiffer (1999)), active satellite sensors

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Medeiros

et al. (2010)), and from the surface (Norris 1998). These studies estimate annual mean low

cloud amount to be in the range 23 - 30%. Given the extensive low cloud coverage and the

associated relatively strong surface cooling, the impact of low clouds on Earths radiation

budget is substantial. Hartmann et al. (1992) estimated using Earth Radiation Budget

Experiment (ERBE) data that low clouds contribute 16 W m-2 of cooling in the annual

mean, roughly 60% of the total net cloud radiative forcing determined in that study.

Shallow convection, particular shallow cumulus, may play an important role in the initia-

tion and development of many larger-scale phenomena. The shallow diabatic heating profile

associated with shallow cumulus creates a shallow circulation with low-level convergence and

mid-level divergence (Zhang and Hagos 2009). Since the mean moist static energy profile

features high values at the surface and lower values in the middle troposphere, the circulation

induced by shallow cumulus is a net importer of moist static energy in a vertically-integrated
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sense. The import of moist static energy into the column and the redistribution of moisture

from the boundary layer to the middle troposphere is thought to precondition the atmosphere

for deeper convective events. Peters and Bretherton (2006) examined composite mesoscale

precipitation events and convectively-coupled Kelvin waves in the tropics and found that the

shallow diabatic heating mode associated with shallow cumulus precedes the larger events

by a few days, gradually moistening the middle troposphere and creating an environment

where moist, buoyant updrafts are less diluted by the entrainment of dry air. Benedict and

Randall (2007) identified a similar mechanism in advance of the onset of the Madden-Julian

Oscillation. Neggers et al. (2007) studied a mechanism called the “shallow cumulus humid-

ity throttle” whereby the intensity of shallow convection in the subsiding subtropical regions

determines the amount of moisture fluxed into the free troposphere to fuel deep convection

in the ITCZ, ultimately modulating its width and strength.

Due to their role in the physical mechanisms described above, shallow clouds exert con-

siderable influence on the current climate and how the climate system responds to imposed

changes via feedbacks. While cloud feedbacks have long been recognized as a leading source

of uncertainty in climate projections (Cess et al. 1990), they remain so to this day (Bony et al.

(2006); Randall et al. (2007); Soden and Vecchi (2011)). Of the climate feedbacks examined

by Bony et al. (2006) (water vapor, lapse rate, albedo, and cloud feedbacks), cloud feed-

backs exhibited the largest variance among the feedbacks diagnosed from the participating

climate models of the Fourth Assessment Report (AR4) of the Inter-governmental Panel on

Climate Change (IPCC). Further, the uncertainty associated with cloud feedbacks in general

is mostly attributable to uncertainty of feedbacks from low clouds (Webb et al. (2006); Bony

and Dufresne (2005); Soden and Vecchi (2011)). Cloud feedbacks can be divided into two
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terms: one term that is a function of the change in the cloud area and one term that is a

function of the change in cloud optical depth or albedo (Stephens 2010). Proposed positive

and negative feedbacks are associated with both terms. Whether the proposed feedbacks

operate in nature, how much they contribute to the climate sensitivity, and to what extent

they are represented by current climate models remain unclear.

Of the two terms contributing to the low cloud feedback, the term involving the change in

cloud area has garnered more attention in the literature. One negative feedback mechanism

is based on the observed positive correlation relationship between lower tropospheric stability

and low clouds. Klein and Hartmann (1993) and Miller (1997) argue that subtropical marine

low cloud cover is not only a function of local sea surface temperature (SST), but also of

the larger dynamical regime in which it resides. Given only an increase in SST, the lower

tropospheric stability in the vicinity of low clouds would decrease, indicating a decrease in

total low cloud cover. However, an increase in SST across the tropics leads to more latent

heat release in regions of deep convection. Since the tropical troposphere is unable to support

strong temperature gradients, the increased temperatures found in the free troposphere in

deep convective regions is translated throughout the tropics and subtropics. The change in

temperature in the free atmosphere is greater than the change in local SST in regions of

low clouds, causing the lower tropospheric stability to increase, leading to an increase in low

cloud cover. This mechanism represents a negative low cloud feedback since an increase in low

cloud cover opposes the original warming. Wood and Bretherton (2006) clarified the apparent

relationship between lower tropospheric stability and low clouds by focusing on the strength

of the trade inversion. They argue that the strength of the trade inversion is the physical

control on low clouds and that the reason the lower tropospheric stability measurement
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(defined as the potential temperature difference between 700 hPa and the the surface) has

any predictive power is that it is a bulk measure of the strength of the inversion. Using this

more precise relationship and its associated measurement, “estimated inversion strength”

(EIS), has a different implication for the strength of the feedback mechanism. Most of the

gain in lower tropospheric stability in a warming climate is likely due to the change in the

temperature profile above the inversion, with estimated inversion strength (EIS) remaining

mostly unchanged. As a result, this implies that the magnitude of the negative feedback

associated with this mechanism may have been overestimated.

One positive feedback mechanism associated with the change in low cloud amount has

been identified using observations. Clement et al. (2009) argue that high SSTs are correlated

with a weakening of the subtropical high. This weakening is consistent with reduced subsi-

dence and reduced EIS, allowing a transition from stratocumulus to cumulus, reducing cloud

fraction. A reduction in low cloud amount reduces the shortwave cooling produced and leads

to further increases in SST. Eitzen et al. (2011) argue that a similar process occurs, but they

say that it does not necessarily rely on a weakening subtropical high or reduced subsidence.

Instead, all that is needed is a local increase in SSTs to decrease EIS and aid the transition

from stratocumulus to cumulus, creating a positive feedback using the mechanism above.

Soden and Vecchi (2011) indicate that some climate models that predict a positive low cloud

feedback have a feedback mechanism different than the one described using observations,

whereby subtropical subsidence is increased and leads to a reduction in lower tropospheric

relative humidity. Apparently, for the models used in this study, the drying of the lower tro-

posphere by subsidence trumps the effect of increasing EIS on low level clouds, contradicting

observations of increasing low cloud amount with EIS. Further, Soden and Vecchi (2011)
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show that the climate models that exhibit a higher climate sensitivity have a very active and

positive low cloud feedback and a large reduction in marine low level clouds. This suggests

that the highly sensitive climate models may be erroneously so, since the positive low cloud

feedback operating in them is not consistent with the positive low cloud feedback identified

from observations.

Although cloud feedbacks due to the change in cloud amount have received more atten-

tion, cloud feedbacks due to the change in cloud optical depth may be relevant as well. One

of the first low cloud feedbacks proposed in the literature is the negative feedback associ-

ated with the Clausius-Clapeyron relationship. As temperature rises, assuming a constant

boundary layer relative humidity, the amount of moisture available for boundary layer clouds

increases, making them optically thicker and more reflective (Betts and Harshvardhan 1987).

More recent observational data from ISCCP and ERBE suggest that this proposed feedback

may not be operating in nature since the observed low cloud optical depth actually decreases

as temperature rises, creating a positive feedback (Tselioudis and Rossow (1994); Bony et al.

(1997)). The physical mechanism responsible for such a decrease in optical thickness with

temperature is unclear, but it is hypothesized that increases in precipitation efficiency or

dry air entrainment with temperature or perhaps changes in the character of aerosols may

be responsible (Tselioudis et al. (1998); Stevens and Feingold (2009)). Stephens (2010) com-

pared low cloud optical depth in two atmospheric models with observations and determined

that the models overestimate the optical depth of low clouds by a factor of two, causing an

overestimate in shortwave cooling due to low clouds. Further, the modeled low cloud optical

depths are so thick that they are in a regime where a change in optical depth produces little

change in albedo, whereas clouds in the real world operate in a regime where a small change
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in optical depth creates a large change in albedo. For this reason, Stephens (2010) asserts

that the low cloud optical depth feedback in models is not nearly sensitive enough and an

important negative feedback may be missing.

Given the importance of low clouds through their modulation of the climate system, it

is critical that they are properly represented in climate models. Unfortunately, the repre-

sentation of low clouds and their effects in climate models has been a longstanding issue.

Findings from numerous studies suggest that low clouds are misrepresented in at least three

ways. The first and perhaps most obvious misrepresentation is their areal extent. Not only

is the low cloud amount underestimated in the subsiding regimes of tropical and subtropical

oceans (Zhang et al. (2005); Tselioudis and Jakob (2002); Lin and Zhang (2004); Ringer and

Allan (2004); Webb et al. (2001); Marchand et al. (2009); Marchand and Ackerman (2010)),

but also in the midlatitude extratropics (Zhang et al. (2005); Klein and Jakob (1999); Norris

and Weaver (2001)), and even over calm subsiding regions over land (Tselioudis and Jakob

2002). The second misrepresentation of low clouds is their optical thickness. Most of the

same models that underestimate the low cloud areal extent also overestimate the optical

thickness of the low clouds that are produced (Zhang et al. (2005); Lin and Zhang (2004);

Klein and Jakob (1999); Tselioudis and Jakob (2002); Weare (2004)). Such a combination

of errors can mask model deficiencies since they tend to compensate for each other in the

computation of shortwave cloud forcing (Zhang et al. (2005); Tselioudis and Jakob (2002);

Lin and Zhang (2004); Webb et al. (2001)). The third misrepresentation of low clouds is

the underestimation of low cloud top heights. This error is especially prevalent in the trade-

wind cumulus regions of the tropical oceans (Norris and Weaver (2001); Tselioudis and Jakob

(2002); Webb et al. (2001); Marchand et al. (2009)).
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The misrepresentation of low clouds has important implications for climate models feed-

backs and overall climate sensitivity. Norris and Weaver (2001) found that low clouds in the

National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3)

are more sensitive to changes in sea level pressure changes than sea surface temperature

changes, indicating that the low clouds in the model are controlled more by large-scale dy-

namics and subsidence then by local SST, counter to observational studies Eitzen et al.

(2011). The overestimate of low cloud optical thickness in many climate models leads to an

insensitivity to cloud optical depth feedbacks since the low clouds are so thick that they are

seen as black in the infrared (Weare 2004). Such an insensitivity has been documented in

the Community Atmosphere Model (CAM) (Stephens 2010), European Centre for Medium-

Range Weather Forecasts (ECMWF) and Goddard Institute for Space Studies (GISS) climate

models (Tselioudis and Jakob 2002), Hadley Centre climate model (Ringer and Allan 2004),

Super-parameterized Community Atmosphere Model (SPCAM) (Marchand and Ackerman

2010), and others (Weare 2004). Models with such a misrepresentation are also implied to

be insensitive to direct and indirect aerosol effects and their associated feedbacks since small

variations in cloud optical properties created by these effects are insignificant when cloud

optical depths are high (Weare 2004). Further, Weare (2004) shows that some Atmospheric

Model Intercomparison Project (AMIP) II models have a negative correlation between low

cloud amount and low cloud optical depth, opposite of what is observed. A positive corre-

lation in the natural world implies that a change in either cloud amount or cloud optical

depth by some physical mechanism causes the other metric to change in the same sense,

amplifying the original response in terms of cloud radiative forcing. A negative correlation
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in the models implies that a change in either variable is opposed by the change in the other,

unrealistically muting any model feedbacks.

Many authors have offered reasons as to why specific climate models represent low clouds

poorly and others have demonstrated improvements in their representation using a variety of

methods. It has long been recognized that the horizontal and vertical resolution of climate

models is inadequate to simulate most shallow convection processes (Zhang et al. (2005);

Ringer and Allan (2004)), and that sub-10 m resolution might be required for proper simu-

lation of updrafts and downdrafts and entrainment in stratocumulus (Stevens et al. 2005).

Nevertheless, grid-spacing sensitivity tests have shown that some improvement in the repre-

sentation of low clouds can be obtained by increasing vertical resolution modestly in climate

models (Tselioudis and Jakob (2002); Marchand and Ackerman (2010)). In much of the

tropics and subtropics, shallow convection is limited by the strength of subsidence and the

height of the trade inversion – thus it is part of a larger circulation that is at least partially

controlled remotely. For this reason, it is necessary (but not sufficient) for climate models

to properly calculate the large-scale conditions and the strength of the tropical circulation

in order to properly simulate low clouds in this region. Webb et al. (2001) list errors in

the large-scale subsidence as one reason why the Hadley and Laboratoire de Météorologie

Dynamique (LMD) climate models misrepresent shallow convection. Medeiros and Stevens

(2011) point out, however, that even if several aquaplanet atmospheric general circulation

models (AGCMs) produce similar and reasonably correct large-scale conditions, the models

still seem to have a wide range of representations of low clouds and exhibit large magnitude

errors, suggesting that subgrid scale (SGS) parameterizations may be to blame. The bound-

ary layer turbulence scheme has been singled out by many authors as a potential source of
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low cloud misrepresentation (Ringer and Allan (2004); Lin and Zhang (2004); Zhang et al.

(2005); Tao et al. (2009)). Others have shown that improving the boundary layer turbulence

scheme can lead to improvements in the representation of low clouds (Zhang et al. (2005);

Noda et al. (2010); Cheng and Xu (2011); Bogenschutz et al. (2012)).

The picture that has emerged from the last several decades of research is that low, shallow

clouds are very important for the climate system. They cool the surface with a strongly

negative cloud radiative effect, are instrumental in preconditioning the middle troposphere for

deeper convection, and represent an important cog in the cloud-climate feedback machinery.

Less clear is the precise role they play in those feedbacks. Both positive and negative feedback

mechanisms have been proposed for the low cloud amount and the low cloud optical depth.

Whether low clouds amplify warming from anthropogenic sources or dampen it is an active

and sometimes polemical topic of research. The current generation of climate models could

potentially shed some much-needed light on the debate, but unfortunately, they suffer from

a varied misrepresentation of low clouds. Errors in low cloud amount are often radiatively

compensated for by errors of the opposite sign in low cloud optical depth, complicating

interpretations of modeled feedbacks and sensitivity. Improving the representation of low

clouds in climate models should therefore by a high priority.

The research presented in this study is intended to make progress toward that goal.

Based on the encouraging work of others who have demonstrated improvement in bound-

ary layer cloud representation by improving boundary layer turbulence schemes, the main

thrust of this research is to develop a new state-of-the-art SGS parameterization that more

accurately represents the processes important for the prediction of boundary layer clouds.

Chapter 2 presents this new model in great detail, from the underlying higher-order closure
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turbulence scheme to the determination of SGS cloudiness and its interaction with SGS

motion, precipitation generation, and radiative transfer. Next, the new model is evaluated

by running many standard test cases and comparing its output to the detailed evolution of

clouds predicted by an ensemble of large eddy simulations (LESs). In addition, tests are run

in order to determine model sensitivities to various configurations and model algorithms.

Evaluation of the model and its sensitivities are discussed in chapter 3. An application of

the newly created model is demonstrated in chapter 4 where it is run at multiple points

along a strategic cross-section in the northeastern Pacific Ocean in order to study low cloud

feedbacks and to provide potential insights into the new model’s performance if used as a

SGS parameterization in a global climate model. Finally, the study is tied together with

concluding remarks in chapter 5.
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CHAPTER 2

Model Description

Traditionally, SGS models have been called “boundary layer” or “turbulence” schemes,

but perhaps neither are appropriate titles for a new, Two-and-a-Half ORder closure scheme

called THOR presented in this work. THOR attempts to bridge the spatial scale gap between

processes that can adequately be represented on a very large scale grid in an AGCM and

processes that occur on a very fine scale that cannot be adequately represented on such a grid.

At its core, THOR uses a higher-order closure scheme that calculates quantities that can be

interpreted as the statistical state of SGS processes: variances of variables like temperature,

humidity, and momentum and covariances among the same variables. Chief among the

quantities needed by AGCMs and provided by such a scheme are the “turbulent” fluxes of

heat, moisture, and momentum, which are themselves covariances. These “turbulent” fluxes

are not only the product of what one may consider classical turbulence, but also processes

more akin to ordinary advection (on scales between the classical turbulence scale and the

resolved), and physical processes like condensation/evaporation, precipitation, and radiation

that occur on scales closer to the molecular level than the grid scale. So, what many may call

“turbulence” terms are not really representing turbulence alone, but all processes occurring

under the umbrella of subgrid scale. In addition, these SGS processes are not merely confined

to the boundary layer, and presumably take place throughout the depth of the atmosphere.

Given the variances and covariances calculated by a higher-order closure scheme that

describe the statistical state of SGS processes, improvements may be made to other tra-

ditional parameterizations which have heretofore used AGCM grid scale mean variables as
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their input. THOR uses the so-called “assumed probability density function (PDF)” ap-

proach to accomplish these improvements. This technique uses the grid-scale mean values

of temperature, humidity, and vertical velocity from the AGCM together with their vari-

ances, covariances, and skewnesses calculated from the higher-order closure model to define

a specific trivariate PDF that describes how the variables interact with each other in each

grid cell. This PDF provides the probability of finding a particular temperature, humidity,

and vertical velocity triplet in each grid cell. One could imagine that the highest probability

triplet would be found around the grid-scale mean triplet, and that there is a spread of values

around the triplet whose width in each variate direction (and the tilt between variables) is

controlled by the SGS processes occurring in that particular grid cell. With this probability

information, one can inform the condensation, microphysics, and radiation schemes. For

example, one may call many instances of a traditional radiation scheme with varying values

of temperature and cloud water based on their probability of occurrence in the column to

get a more accurate representation of radiative transfer than using the AGCM grid cell mean

values alone.

In the following sections of this chapter, a detailed description of how THOR is formu-

lated and implemented is provided. First, the core higher-order closure model and length

scale algorithms are discussed. Next, the new assumed PDF parameter estimation algorithm

is included, followed by a discussion of a new SGS condensation scheme that natively in-

cludes ice. The next two sections involve using the diagnosed PDF to drive interchangeable

microphysics and radiation parameterizations. Next, a new surface layer scheme is explained.

The chapter concludes with a short discussion about model implementation and efficiency.
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2.1. Higher-Order Closure Model

In an atmospheric model, whether or not it is explicitly stated, it is implicitly assumed

that variables being calculated at grid centers are values representing the mean state of the

entire grid cell. As a consequence of this relationship, the predictive equations for all variables

of interest must be Reynolds averaged so that the evolution of the grid cell mean quantities

are predicted. For example, the momentum equation with the Boussinesq approximation

valid at each infinitesimal point may be written in Einstein notation as

∂ui
∂t

= −uj
∂ui
∂xj

+
θ′v
θv0

g + fεij3uj −
1

ρ0

∂p

∂xi
+ ν

∂2ui
∂x2

j

(1)

where the terms on the right-hand side of (1) represent advection, the gravitational ac-

celeration, the Coriolis force, the pressure gradient force, and the frictional drag due to

molecular viscosity, respectively. To derive an analogous equation for the grid cell mean

value of momentum, Reynolds decomposition is used, whereby the momentum variable, ui,

is divided into its grid-cell mean value and its fluctuation about the grid-cell mean value.

The momentum equation is then Reynolds averaged, yielding the following

∂ui
∂t

= −uj
∂ui
∂xj
− g + fεij3uj −

1

ρ0

∂p

∂xi
+ ν

∂2ui
∂x2

j

−
∂u′iu

′
j

∂xj
(2)

where every term in equation (2) has an analogous term in equation (1) except for the last

term of (2). This term is known as the “turbulence” term and represents the effects of

SGS processes on the evolution of the mean momentum field. Such a term is present in the

Reynolds averaged thermodynamic and moisture equations too. If one prefers to think in

statistical terms, these terms may be thought of as the gradients of variances and covariances.
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The term “higher-order closure” model has to do with how the turbulence terms are

calculated. A first-order closure model assumes that the turbulence terms act as diffusion,

smoothing out gradients in the mean quantities. Such a closure only requires the gradients

of the mean quantities themselves and a diffusion coefficient, often signified by the letter K

(hence the term “K-theory”). Higher-order closure models (a general term for any closure

higher than first) are based on the idea that one can derive predictive equations from first

principles in order to calculate the turbulence terms. These higher-order equations, however,

contain terms that cannot be explicitly calculated from quantities known by the host model.

For example, the second-order equation for the momentum turbulence term (known as the

Reynolds stress equation) contains third-order moments, terms involving the correlation

between subgrid pressure perturbations and momentum perturbations, and terms involving

the destruction of momentum variance, or turbulence dissipation. Assumptions must be

made about each of these terms in order to close the equation set. It should be noted that

each order of equations has terms of the next highest order; e.g. second-order equations

contain third-order moments, third-order equations contain fourth-order moments, etc. The

order of the closure is determined by the order where one makes a simplifying assumption

about the nature of the next highest order. It is assumed (but not necessarily true) that

errors introduced by simplifying assumptions at higher orders are less offensive than those

at lower orders.

The THOR model uses a so-called “two-and-a-half” order closure scheme. Predictive

equations are derived for the second- and third-order moments from first principles. Next,

closure assumptions are made about the pressure correlation and dissipation terms in both

the second- and third-order moment equations and about the fourth-order moments in the
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third-order moment equations. Finally, the tendency terms in the third-order moment equa-

tions are assumed to be small and are set to zero. Such an assumption is equivalent to stating

that the third-order moments change very slowly in time. This allows the third-order mo-

ment equations to be manipulated into simple algebraic relations, reducing the computational

complexity of the model without sacrificing the underlying physics. This last assumption is

what distinguishes this model from a fully third-order closure model, and why it is deemed

a two-and-a-half order closure. A detailed derivation of the scheme can be found in Firl

(2009), and is based on the dry higher-order closure model of Cheng et al. (2005), although

the scheme has been greatly extended for a mixed-phase moist atmosphere. Changes since

the work of Firl (2009) include using ice-liquid water potential temperature,θil, as the ther-

modynamic energy variable to easier facilitate mixed-phase clouds (instead of θl), changing

the dissipation terms of the turbulence kinetic energy (TKE) component equations, altering

constants used in the various closure assumptions, and a few changes in the calculation of

the diagnostic third-order moments. The latter two are discussed further below.

The predictive second-order moment equations in Einstein notation with parameteriza-

tions for the pressure correlation and dissipation terms are as follows.

∂u′iu
′
j

∂t
= −w′u′i

∂uj
∂z
− w′u′j

∂ui
∂z
−
∂w′u′iu

′
j

∂z
− 2c4

τp

(
u′iu
′
j −

2

3
δije

)
+ δij

g

θv
w′θ′v

[
2δ3i + c5

(
2

3
− 2δ3i

)]
− 4

3
δij
e

τ

(3)

∂w′θ′il
∂t

= −w′2∂θil
∂z
− ∂w′2θ′il

∂z
+ (1− c7)

g

θv
θ′ilθ

′
v −

2c6

τp
w′θ′il (4)

∂w′q′t
∂t

= −w′2∂qt
∂z
− ∂w′2q′t

∂z
+ (1− c7)

g

θv
q′tθ
′
v −

2c6

τp
w′q′t (5)
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∂θ′2il
∂t

= −2w′θ′il
∂θil
∂z
− ∂w′θ′2il

∂z
− 4c2

τ
θ′2il (6)

∂θ′ilq
′
t

∂t
= −w′θ′il

∂qt
∂z
− w′q′t

∂θil
∂z
− ∂w′θ′ilq

′
t

∂z
− 4c2

τ
θ′ilq

′
t (7)

∂q′2t
∂t

= −2w′q′t
∂qt
∂z
− ∂w′q′2t

∂z
− 4c2

τ
q′2t (8)

where i = 1, 2, 3 and e = 1/2

(
u′2 + v′2 + w′2

)
is the TKE and all buoyancy terms (those that

involve θv) are given by the relation

χ′θ′v = χ′θ′il + ε1θv0χ
′q′t +

(
Lv
cpπ
− ε2θv0

)
χ′q′l +

(
Ls
cpπ
− ε2θv0

)
χ′q′i (9)

In equation (9), χ denotes any of the variables w, θil, or qt, ε1 = 1−ε
ε

, ε2 = 1
ε
, ε = Rd

Rv
, Rd is

the gas constant for dry air, Rv is the gas constant for water vapor, Lv and Ls are the latent

heats of vaporization and fusion, cp is the specific heat of dry air at constant pressure, and

π =
(
p
p0

)Rd
cp

is the Exner function. The last two terms of (9) contain correlations involving

cloud water, and must be calculated with the SGS condensation scheme discussed in section

2.4. Note that equations (3) - (8) assume that turbulence in the horizontal orientation is small

compared to the vertical orientation (an assumption based on the asymmetry of atmospheric

model grids). Therefore, only vertical derivatives are kept, and horizontal fluxes are ignored.

Due to this assumption, this equation set expanded from Einstein notation represents 10 total

predictive equations (equation (3) describes the evolution of u′2, v′2, w′2, w′u′, and w′v′). It

should be noted that only four of the second-order moments are needed directly by the

host model predicting grid-cell mean quantities: w′θ′il, w
′q′t, w

′u′, and w′v′. The other 6

variances and covariances calculated in this set are needed to close the set of equations

through the buoyancy, pressure correlation, or dissipation terms. In addition, θ′2il , θ
′
ilq
′
t, and
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q′2t are instrumental for calculating SGS condensation and other parameterizations included

in THOR. The quantities u′v′, u′θ′il, u
′q′t, v

′θ′il, and v′q′t are neglected.

The variances and covariances predicted in THOR are subject to some realizability con-

straints. For example, since all variances are positive-definite quantities, if the model predicts

a negative variance, the offending quantity is simply set to a very small positive number.

Since variances are not conserved, this correction is sufficient. In addition, the covariances

w′θ′il, w
′q′t, and θ′ilq

′
t must be checked to ensure that their associated correlations are realistic,

i.e.

−1 ≤ w′θ′il√
w′2θ′2il

≤ 1

−1 ≤ w′q′t√
w′2q′2t

≤ 1

−1 ≤ θ′ilq
′
t√

θ′2il q
′2
t

≤ 1

(10)

The two types of closure assumptions included in equations (3) - (8) are pressure cor-

relations and turbulence dissipation. The parameterizations are listed in tables 2.1 and 2.2

and are exactly as described in Cheng et al. (2005). The pressure correlation closure con-

tains two terms: a so-called “return-to-isotropy” term and a buoyancy-related term. The

return-to-isotropy term is formulated to act slowly to destroy anisotropic fluxes and the

buoyancy-related term is formulated to act quickly and counteracts the buoyancy produc-

tion term of the TKE components and scalar fluxes. The dissipation closure simply damps

the TKE components and scalar variances and covariance according to a turbulence time

scale, τ .
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Table 2.1. Pressure correlation parameterizations for the second-order mo-
ment equations

Moment Parameterization

u′iu
′
j

2c4

τp

(
u′iu
′
j −

2

3
δije

)
+ c5

g

θv
w′θ′vδij

(
2

3
− 2δ3i

)
w′θ′il

2c6

τp
w′θ′il + c7

g

θv
θ′ilθ

′
v

w′q′t
2c6

τp
w′q′t + c7

g

θv
q′tθ
′
v

Table 2.2. Dissipation parameterizations for the second-order moment equations

Moment Parameterization

u′iu
′
j −4

3
δij
e

τ

θ′2il −4c2

τ
θ′2il

θ′ilq
′
t −4c2

τ
θ′ilq

′
t

q′2t −4c2

τ
q′2t

The dissipation time scale is defined as

τ =
L

e
(11)

where L is the turbulence length scale that provides a measure of the largest energy-

containing eddies (discussed in section 2.2). It can therefore be interpreted as an average

residence time in an energy-containing turbulent eddy. The return-to-isotropy timescale, τp,

is defined as

τp =


τ

1 + 0.04N2τ 2 if N2 > 0

τ if N2 ≤ 0

(12)
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where N2 is the Brunt-Väisälä frequency. This timescale is identical to the dissipation time

scale under neutral or unstable conditions, but is smaller than the dissipation timescale for

conditions of greater stability. This formulation leads to increased destruction of anisotropic

fluxes in stable environments. Use of a return-to-isotropy timescale has not been universal

for these types of models in the literature, but was used in the higher-order closure models

of Cheng et al. (2005) and its precursor Canuto et al. (1994). The latter work claims that

use of (12) improves the behavior of the higher-order closure model near inversions.

The closure constants are tunable parameters and have taken on a range of values in

the literature. The constant c2 controls the rate of dissipation of scalar covariances and is

set to 0.2. The constants c4 and c6 come from the return-to-isotropy terms of the pressure

correlation closure. These are set at 2.0 and 2.5, respectively. The constants c5 and c7 come

from the buoyancy-related terms of the pressure correlation closure. While c5 is set to 0, it

was found that a single value for c7 was an inappropriate choice. A higher value of c7 leads to

better simulations in cumulus regimes, whereas a lower value leads to better simulations in

stratocumulus and stratus regimes. A physical explanation for this is unknown, but it seems

that the pressure correlation term more effectively balances out the production of turbulent

fluxes due to buoyancy in cumulus regimes versus more stratified cloud regimes. Perhaps

the lack of an appropriate single value to use speaks to the inadequacy of the pressure

correlation closure for cloudy boundary layers, as it was devised assuming a dry atmosphere.

Nevertheless, a procedure has been implemented to provide an appropriate value of c7 to use

in THOR depending on the state of the mean thermodynamic profiles.

Work by Wood and Bretherton (2006) has shown that there is a very good correlation

between a quantity known as estimated inversion strength (EIS) and low cloud cover. This
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work has built on the well-known relationship between lower tropospheric stability (LTS)

and low cloud cover, but provides an even more robust relationship and is thought to be more

applicable even in a changed climate. The EIS-low cloud cover relationship is useful in this

context because EIS is a very simple quantity to calculate in a model and it provides a good

indication of whether the model is operating in an environment more conducive to stratified

cloud cover or cumulus-like cloud cover, and therefore what value of c7 is appropriate to use.

The relationship is used in the following way to determine c7. First, the EIS is calculated

according to appendix A. Then, the following linear relationship from Wood and Bretherton

(2006) is used to determine an EIS cloud fraction:

EIS cloud fraction = 0.14 + 0.06 ∗ EIS (13)

Finally, the value of c7 is equal to its cumulus-like value under a certain EIS cloud fraction

threshold and equal to its stratiform-like value over a certain EIS cloud fraction threshold.

In between, the value of c7 is interpolated:

c7 =



0.9 EIS cloud fraction < 0.32

0.9 + EIS cloud fraction−0.32
0.60−0.32

(0.6− 0.9) 0.32 ≤ EIS cloud fraction < 0.60

0.6 EIS cloud fraction ≥ 0.6

(14)

Such a formulation provides an adequate value of c7 to use under any regime and facilitates

good simulation of all boundary layer cloud types. It should be noted that there is precedent

for attempting to fine-tune higher-order closure constants. Golaz et al. (2007) found that

varying model constants according to the skewness of the vertical velocity could improve a

higher-order closure model’s simulation.
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The last pieces of information required to close equations (3) - (8) are the variance and

covariance transport terms made up of third-order moments. A list of the necessary third-

order moments are shown in table 2.3. As mentioned previously, the third-order moments

are diagnostic and are adapted from the work of Cheng et al. (2005). The relations for

calculating them are given by equations (15)-(26).

Table 2.3. Third-order moments calculated in THOR

w′w′u′, w′w′v′, w′u′u′,

Moments from Equations (3)-(8) w′v′v′, w′w′w′, w′w′θ′il, w
′w′q′t,

w′θ′ilθ
′
il, w

′θ′ilq
′
t, w

′q′tq
′
t

Add’l Moments for PDF Diagnosis θ′ilθ
′
ilθ
′
il, q
′
tq
′
tq
′
t

w′3 =
3τ

2c8 + p1 + 3(1− d1)τ ∂w
∂z

(
−w′2∂w

′2

∂z
+ λw′2θ′v

)
(15)

w′w′θ′il =
1

2c8+p2
τ

+ 2 (1− d3) ∂w
∂z

(
−w′θ′il

∂w′2

∂z
− 2w′2

∂w′θ′il
∂z

+ 2λw′θ′ilθ
′
v

−(1− d2)
∂θil
∂z

w′w′w′
) (16)

w′w′q′t =
1

2c8+p4
τ

+ 2 (1− d7) ∂w
∂z

(
−w′q′t

∂w′2

∂z
− 2w′2

∂w′q′t
∂z

+ 2λw′q′tθ
′
v

−(1− d6)
∂qt
∂z

w′w′w′
) (17)
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w′w′u′ =
τ

(2c8 + p17) + τ (1− d31) ∂w
∂z

(
−w′u′∂w

′2

∂z
− 2w′2

∂w′u

∂z
+ 2λw′u′θ′v

−2(1− d32)
∂u

∂z
w′w′w′

) (18)

w′w′v′ =
τ

(2c8 + p23) + τ (1− d46) ∂w
∂z

(
−w′v′∂w

′2

∂z
− 2w′2

∂w′v

∂z
+ 2λw′v′θ′v

−2(1− d47)
∂v

∂z
w′w′w′

) (19)

w′θ′ilθ
′
il =

1
2c8+p3

τ
+ (1− d5) ∂w

∂z

(
−2w′θ′il

∂w′θ′il
∂z

− w′2∂θ
′2
il

∂z
+ λθ′ilθ

′
ilθ
′
v

−(2− d4)
∂θil
∂z

w′w′θ′il

) (20)

w′θ′ilq
′
t =

1
2c8+p6

τ
+ (1− d12) ∂w

∂z

(
−w′q′t

∂w′θ′il
∂z

− w′θ′il
∂w′q′t
∂z
− w′2∂θ

′
ilq
′
t

∂z

+λθ′ilq
′
tθ
′
v − (1− d10)

∂θil
∂z

w′w′q′t − (1− d11)
∂qt
∂z

w′w′θ′il

) (21)

w′q′tq
′
t =

1
2c8+p5

τ
+ (1− d9) ∂w

∂z

(
−2w′q′t

∂w′q′t
∂z
− w′2∂q

′2
t

∂z
+ λq′tq

′
tθ
′
v

−(2− d8)
∂qt
∂z

w′w′q′t

) (22)
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w′u′u′ =
1

2c8+p11
τ

+ (1− d20) ∂w
∂z

(
−2w′u′

∂w′u′

∂z
− w′2∂u

′2

∂z
+ λu′u′θ′v

−2(1− d19)
∂u

∂z
w′w′u′

) (23)

w′v′v′ =
1

2c8+p14
τ

+ (1− d26) ∂w
∂z

(
−2w′v′

∂w′v′

∂z
− w′2∂v

′2

∂z
+ λv′v′θ′v

−2(1− d25)
∂v

∂z
w′w′v′

) (24)

θ′ilθ
′
ilθ
′
il =

τ

2c10 + p7

(
−3w′θ′il

∂θ′2il
∂z
− (3− d13)

∂θil
∂z

w′θ′ilθ
′
il

)
(25)

q′tq
′
tq
′
t =

τ

2c10 + p10

(
−3w′q′t

∂q′2t
∂z
− (3− d18)

∂qt
∂z

w′q′tq
′
t

)
(26)

where λ = τl
τ

(1− c11) g
θv

and τl = MIN(600 s, τ). Such a capping of τl was necessary to

prevent the third-order moments from growing too large when there is little turbulence or

when the length scale is long (when τ is large).

As with the second-order moments, equations (15)-(26) include closures for the pressure

correlation and dissipation terms, but also for the fourth-order moments. They were derived

in the same manner as the second-order moment equations (see Firl (2009) for details).

The full prognostic third-order moment equations were derived from first principles and

the closure assumptions from Cheng et al. (2005) were substituted for the unknown terms.

Finally, the time rate-of-change terms were assumed to be zero. The terms in the pressure

correlation closure are analogs to the same terms in the second-order moments. There is a
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slow-acting return-to-isotropy term that damps the third-order moments, governed by the

constant c8, and a fast-acting buoyancy term that counteracts the buoyancy production term,

governed by the constant c11. These constants are set equal to 3.25 and 0.4, respectively. The

dissipation closure term is a simple damping, governed by the turbulence time scale, τ , and

modified by the constant c10, set at 2.0. The fourth-order moment closure is effectively an

extension of the typical one used in third-order closure models that is based on the idea that

fourth-order moments may be parameterized using the so-called “quasi-normal assumption”,

i.e. a′b′c′d′ = a′b′ ∗ c′d′ + a′c′ ∗ b′d′ + a′d′ ∗ b′c′. Cheng et al. (2005) extend this closure by

including an additional damping term, governed by the constants pn using the τ timescale,

and a term that partially negates the so-called mechanical production terms, governed by

the constants dn. The authors claim that these additional terms help to account for the non-

Gaussian portion of the fourth-order moments that is neglected with the classic quasi-normal

assumption. Using LES data, they determine that the best values of the constants dn to

use completely negates the mechanical production terms. Initial tests with THOR, however,

indicate that using the values for the dn constants suggested by Cheng et al. (2005) damps

the values of θ′ilθ
′
ilθ
′
il and q′tq

′
tq
′
t too much. Therefore, values of dn in THOR follow those used

in Cheng et al. (2005), except for those associated with θ′ilθ
′
ilθ
′
il and q′tq

′
tq
′
t, d13 and d18, which

are set to 0. Such a modification improves the magnitudes of these particular third-order

moments and leads to better performance of the SGS condensation scheme, which uses these

moments to estimate the assumed PDF parameters.

The third-order buoyancy terms are given by a similar equation to (9):

χ′1χ
′
2θ
′
v = χ′1χ

′
2θ
′
il + ε1θv0χ

′
1χ
′
2q
′
t +

(
Lv
cpπ
− ε2θv0

)
χ′1χ

′
2q
′
l +

(
Ls
cpπ
− ε2θv0

)
χ′1χ

′
2q
′
i (27)
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where the symbols χ1 and χ2 correspond to any of the variables u, v, w, θil, or qt. If one were

to use equation (27) in its entirety, it would require an additional 16 third-order moments to

close the system, a significant increase in complexity and computational burden. In THOR,

however, it is assumed that the cloud water terms (the last two terms in (27)) dominate

the buoyancy terms and that there is significant cancelation between the first two terms,

making their sum small, and allowing their neglect. In initial tests with THOR using the

additional 16 third-order moments and equation (27) in its entirety, two undesirable effects

were noted. First, significant noise was introduced into the solution, affecting the model’s

stability. Second, transport of TKE and heat and moisture fluxes were underestimated,

especially in cumulus regimes, due to the buoyancy terms having the wrong sign at the top

of the cloud layer. Perhaps further research is warranted to understand why the inclusion of

the proper terms leads to undesirable effects in this model.

2.2. Turbulence Scales

The turbulence length scale used in THOR is mostly the same as that used in Firl (2009)

with the addition of an option to use an updated parcel entrainment algorithm. The over-

arching concept remains – the length scale is based on the mean free path of a parcel as

in Bougeault and André (1986). Parcels are initialized with the environmental values of

liquid-ice potential temperature and moisture content and given an initial kinetic energy

equal to the environmental TKE. They are allowed to ascend and descend, losing or gaining

kinetic energy due to the buoyancy accelerations of the environment. As a parcel ascends

or descends, it may undergo condensation, generating parcel cloud water or ice. Further, as

parcels move through the environment, they entrain environmental air into them. The stan-

dard formulation of THOR uses a constant fractional entrainment rate of of 6.0× 10−4 m−1,

26



as done in Golaz et al. (2002). An option has been added in THOR to relax the assumption

of constant entrainment and to use a more physically realistic entrainment parameterization

instead. The new parameterization treats entrainment as a stochastic Poisson process, incor-

porating discrete entrainment events following the LES study of Romps and Kuang (2010).

THOR’s sensitivity to this new entrainment option is tested and discussed in chapter 3.

For both entrainment options, the master length scale is defined as

L =
√
LupLdown (28)

where Lup and Ldown are the upward and downward mean free path distances for a parcel

originating at any level and are themselves defined by

z0+Lup∫
z0

g

θv

[
θvparcel(z)− θv(z)

]
dz = −e(z0) (29)

and
z0∫

z0−Ldown

g

θv

[
θvparcel(z)− θv(z)

]
dz = e(z0) (30)

For a discretized model, the algorithm for determining Lup is as follows. For each level in

the model with height of z0, initialize a parcel with the environmental values at that level

θilparcel = θil(z0)

qtparcel = qt(z0)

energyparcel = e(z0)

(31)

While the parcel energy is greater than zero, attempt to lift the parcel one grid level upward,

to height z1 = z0 + ∆z.
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As the parcel ascends, it may undergo entrainment. Assuming a constant entrainment

rate, the thermodynamic properties of the parcel at height z1 would be

θilparcel(z1) = θilparcel(z0) + ∆z
{
−µ
[
θilparcel(z0) − 1/2

(
θil(z0) + θil(z1)

)]}
qtparcel(z1) = qtparcel(z0) + +∆z

{
−µ
[
qtparcel(z0) − 1/2 (qt(z0) + qt(z1))

]} (32)

where µ is the fractional entrainment rate. If the assumption of constant entrainment is

relaxed, it is recognized that as the parcel ascends, it has a certain probability of undergoing

an entrainment event, and the process for determining entrainment is as follows. According

to the stochastic parcel model of Romps and Kuang (2010), the probability that a parcel

undergoes an entrainment event over a distance ∆z is given by ∆z
λ

where λ is the mean

distance between entrainment events in meters. To determine whether an entrainment event

has occurred as the parcel ascended one level, draw a uniform random number on the interval

(0, 1]. If the random number is less than ∆z
λ

, then an entrainment event has occurred.

Otherwise, θilparcel and qtparcel remain the same. If an entrainment event has occurred, one

still needs to determine the proportion of the parcel’s mass that is replaced by the entrained

environmental air. Romps and Kuang (2010) assume that the fractional mass of entrained

air follows an exponential distribution. Using this assumption, one may obtain a value for σ,

the ratio of entrained mass to parcel mass, if one knows σ, the mean value of the exponential

distribution. A random value of σ is generated from the exponential distribution using the

formula

σ = − σ

ln (x)
(33)
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where x is a uniform random number on (0, 1]. Finally, the new parcel values of θil and qt

are calculated with

θilparcel(z1) =
1

1 + σ
θilparcel(z0) +

σ

1 + σ
1/2
(
θil(z0) + θil(z1)

)
qtparcel(z1) =

1

1 + σ
qtparcel(z0) +

σ

1 + σ
1/2 (qt(z0) + qt(z1))

(34)

Romps and Kuang (2010) determined that the best fit values for λ and σ for shallow cu-

mulus using LES and a parcel model are λ = 226 m and σ = 0.91. This corresponds to a

fractional entrainment rate of about 4.0× 10−3 m−1. Note that this is considerably stronger

entrainment than is assumed by the similar length scale parameterization of Golaz et al.

(2002) where the fractional entrainment rate is assumed to be a constant value of 6.0× 10−4

m−1. For the sensitivity test, the value of σ is reduced to 0.1356, which corresponds to the

lower fractional entrainment rate of Golaz et al. (2002), so that the stochastic entrainment

algorithm is more easily compared to the the constant entrainment rate case.

Regardless of the entrainment process chosen, as the parcel ascends, its temperature and

pressure decrease, and it is possible that the initially dry parcel may reach saturation and

form a cloud. Since condensation releases latent heat, the formation of a cloud in the parcel

would boost its buoyancy relative to the environment, so potential condensation should be

accounted for in the parcel model. The parcel θv is given by

θvparcel = θilparcel + ε1θv0qtparcel +

(
Lv
cpπ
− ε2θv0

)
qlparcel +

(
Ls
cpπ
− ε2θv0

)
qiparcel (35)

After entrainment has been taken care of, θilparcel and qtparcel are known and only liquid and

ice water contents are needed to determine the parcel θv. One can determine qlparcel and
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qiparcel using a procedure similar to that found in the SGS condensation scheme (see section

2.4), minus the SGS variability aspect. The simplified procedure is included in appendix B.

At this point, θvparcel is known and one can determine whether it has enough energy to

have ascended the distance ∆z. To do this, the convective available potential energy (CAPE)

over ∆z needs to be calculated. Since θvparcel and θv are known at z0 and z1, the CAPE is

calculated as

z1∫
z0

g

θv

[
θvparcel(z)− θv(z)

]
dz = 1/2

{[
g

θv(z1)

(
θvparcel(z1)− θv(z1)

)]
+

[
g

θv(z0)

(
θvparcel(z0)− θv(z0)

)]}
(z1 − z0)

(36)

This quantity represents the CAPE (or convective inhibition (CIN)) between the levels z0

and z1. If positive, the parcel is accelerated upward, and, if negative, the parcel energy is

decreased by the CIN and it decelerates. Further, if

energyparcel(z0) + RHS(36) > 0 (37)

then the parcel has sufficient energy to ascend by ∆z, and Lup for the parcel originating at

z0 increases by ∆z. The parcel energy is then updated for the level z1

energyparcel(z1) = energyparcel(z0) + RHS(36) (38)

and the process is repeated for the parcel over the next vertical grid space, including potential

entrainment and condensation.

If, on the other hand,

energyparcel(z0) + RHS(36) ≤ 0 (39)
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then the parcel does not have sufficient energy to ascend the entire ∆z distance and the

precise level of neutral buoyancy between z0 and z1 needs to be determined. Consider

equation (29) modified so that the upper limit reflects the height of neutral buoyancy

znb∫
z0

g

θv

[
θvparcel(z)− θv(z)

]
︸ ︷︷ ︸

B

dz = −e(z0) (40)

The B term, while it only has values at discrete levels in a model, can be determined at any

height between z0 and z1, z, using linear interpolation

B(z) =
B(z1)−B(z0)

z1 − z0

(z − z0) +B(z0) (41)

Substituting equation (41) into equation (40) yields the integral

znb∫
z0

B(z1)−B(z0)

z1 − z0

(z − z0) +B(z0)dz = −e(z0) (42)

Integration yields

B(z1)−B(z0)

z1 − z0

(
z2
nb

2
− z2

0

2
− znbz0 + z2

0

)
+B(z0) (znb − z0) + e(z0) = 0 (43)

Solving for znb yields the following quadratic equation in znb

B(z1)−B(z0)

2(z1 − z0)
z2
nb+

(
B(z0)− B(z1)−B(z0)

z1 − z0

z0

)
znb+

B(z1)−B(z0)

2(z1 − z0)
z2

0−B(z0)z0 +e(z0) = 0

(44)

If B(z1) = B(z0) then znb reduces to

znb = z0 −
e(z0)

B(z0)
(45)
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Note that the second term must be positive since B(z0) must be negative if a parcel’s energy

is to be “consumed” by the buoyancy force. If B(z1) 6= B(z0) then

znb = z0 −
(z1 − z0)

B(z1)−B(z0)

B(z0) +

√
B2(z0)− 2e(z0) (B(z1)−B(z0))

z1 − z0

 (46)

where the negative root of equation (44) is the physical solution. Every parcel reaches its

neutral buoyancy level at some point, so equation (45) or equation (46) is the last step for

determining Lup for every parcel after it has ascended any number of grid levels. A similar

procedure is used for determining Ldown.

As in Firl (2009) and Golaz et al. (2002), both Lup and Ldown are “nonlocalized” by

considering parcels originating at other levels. For Lup, if a parcel originating below a given

level, say, from the surface, reaches a height higher than a parcel originating at that level,

then Lup is calculated using the height reached by the higher-ending parcel. Similarly, for

Ldown, parcels originating above a given level may descend further than parcels originating

at the given level. In this case, Ldown is calculated using the lower-ending parcel. This

procedure significantly improves continuity in the calculation of the length scale and reduces

computational noise.

The procedure for calculating the turbulence length scale is called at a longer time step

than the prognostic variables (on the order of 1 minute) since it is assumed that this quantity

changes more slowly than the second-order moments. This speeds up the computation while

affecting the solution very little. In addition, a minimum value of the master length scale,

L is assumed to be related to the grid spacing (Lmin = 1
4
∆z), a minimum value of TKE is

assumed to be 0.01 m2s-2, and the maximum value of τ is assumed to be 2000 s.
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2.3. Trivariate Double-Gaussian PDF Parameter Estimation

Between a host model providing grid-cell mean quantities and the higher-order closure

model discussed above providing information about the SGS variability within each grid cell,

there is almost enough information to diagnose a trivariate PDF among vertical velocity, ice-

liquid water potential temperature, and total water specific humidity so that one has a good

estimate of the probability of finding a particular (w, θil, qt) triplet in each grid cell. The

remaining requirement is that one assumes a particular PDF family, i.e. single Gaussian,

beta, double Gaussian, etc. The choice of PDF family should depend on how well it can

describe the SGS variability of the atmospheric conditions of interest.

A single joint Gaussian distribution would be appropriate if one expected very similar

or homogeneous conditions throughout the grid box, with only a simple spread around the

mean values. Indeed, early versions of SGS condensation schemes assumed a simple single

joint Gaussian PDF between θl and qt (Sommeria and Deardorff (1977), Mellor (1977)). Such

a scheme has the practical advantage of not needing any third-order moments to calculate

its parameters. In practice, however, a grid box may often contain two or more distinct

areas with very different properties. For example, a grid box may contain both cloudy and

clear portions and contain both updrafts and downdrafts. A bimodal distribution such as

a double joint Gaussian PDF would be able to describe such a situation more accurately

since it can represent two “populations” of air parcels within one box. It also has the

benefit of being able to reduce to a single Gaussian in more homogeneous environments. In

addition, a double Gaussian PDF is capable of representing skewed variability, a property

thought to be especially important in a more actively convective environment and one which
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a single Gaussian cannot represent. For these reasons, it is prudent to assume that the SGS

variability is represented by a joint double Gaussian PDF.

To calculate the parameters of a joint double Gaussian PDF, one needs several third-

order moments. Since predicting more third-order moments has traditionally been seen as

too computationally expensive, several authors have developed schemes to work with fewer

third-order moments. Lewellen and Yoh (1993) created a scheme that needs θ′3l , q′3t , and w′3

and Larson et al. (2002) developed a scheme that uses w′3 as the only third-order moment.

Bogenschutz et al. (2010) compared schemes based on double joint Gaussian PDFs with

those based on a single joint Gaussian PDF and a double delta PDF. They found that one

scheme of Larson et al. (2002) that only requires w′3 performed the best of those tested when

compared with LES output. It is interesting to note that the double joint Gaussian scheme

that uses fewer third-order moments actually performed better than a scheme that uses

more, suggesting that additional third-order moments may not be necessary to accurately

represent the SGS variability. Despite the success of the joint double Gaussian scheme found

in Larson et al. (2002) that only uses one third-order moment, a different scheme is employed

in THOR – one that attempts to relax some hard-to-justify assumptions. The new scheme

is described below.

A double Gaussian PDF for a single variable is defined as the weighted sum of two single

Gaussian PDFs as in Randall (2012):

f (x;x1, σx1 , x2, σx2 , a) =
(1− a)

σx1
√

2π
e
−1/2

(
x−x1
σx1

)2

+
a

σx2
√

2π
e
−1/2

(
x−x2
σx2

)2

(47)

To define such a double Gaussian requires five parameters listed as arguments in (47): the

relative weight of one of the single Gaussians, a, the means of each single Gaussian, x1 and

34



x2, and the standard deviations for each single Gaussian, σx1 and σx2 . It as assumed that

the first three moments of x are known, x, x′2, and x′3. It can be shown (as in Randall

(2012)) that

x = (1− a)x1 + ax2 (48)

x′2 =
[
(1− a)σ2

x1
+ aσ2

x2

]
+ a (1− a) (x2 − x1)2 (49)

x′3 = a (1− a) (x2 − x1)
[
3
(
σ2
x2
− σ2

x1

)
+ (x2 − x1)2 (1− 2a)

]
(50)

so that the higher-order moments are expressed in terms of the bias, (x2 − x1), and the

“sub-plume” variances, σ2
x1

and σ2
x2

.

We wish to define the complete set of parameters for the double Gaussian using only the

first three moments of x, although the problem in its current state contains five unknowns

with only three equations. In order to solve this problem, some simplifying assumptions must

be made. Perhaps the simplest assumption is to assume σx2 = σx1 = 0 to reduce the double

Gaussian PDF into a double delta PDF as is done in Randall et al. (1992). Then, the system

can be solved for a, x1, and x2 using equations (48) - (50). Another simplifying assumption

is to assume σx2 = σx1 = cx′2 where c is some constant, as was done by Larson et al. (2001a).

With this assumption, it is also straightforward to solve for the remaining three parameters

given equations (48) - (50). Lewellen and Yoh (1993) solve this problem in a different way,

using a transcendental equation for a and other nontrivial assumptions. The validity of the

sub-plume variance assumptions mentioned above is drawn into question when considering

the variables of interest in the atmosphere, namely w, θil, and qt. Given the dimensions of

grids used in most atmospheric models, the assumption of zero sub-plume variance, although

conceptually useful, is obviously suspect. Further, assuming that each of the two Gaussian
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plumes have equal variances is also problematic. Observations and intuition suggest that

the Gaussian plume with the smaller weight, that which represents convective updrafts, for

example, should have a higher sub-plume variance than the Gaussian with the larger weight,

which represents the surrounding environment.

Given the limitations imposed by the assumptions mentioned above, we seek an alternate

parameterization that relaxes the assumptions, or at least incorporates assumptions more

in-line with physical principles. Recalling also that we seek a trivariate double Gaussian in

the variables w, θil, and qt, it is apparent that solving for the Gaussian weight, a, is not a

trivial endeavor, and it should depend not only on the moments of one variable, but all of

them if it is to represent the weight of one of the trivariate Gaussian plumes. Given this

reality, the first assumption to be made is that a is known a priori, and its parameterization

will be discussed following the determination of the biases and sub-plume variances for each

variable.

After eliminating a from the list of needed parameters, one more assumption is required

to reduce the parameter number to three, where the system is solvable. The final assumption

constitutes a parameterization of the sub-plume variances. Consider the following relation-

ships:

σ2
x1

= x′2thresh +
σ2
x

1− a

σ2
x2

= x′2thresh +
σ2
x

a

(51)

where x′2thresh is a threshold value near zero, whose value sets a floor for the host model’s

variance. Such a nonzero threshold is important to avoid divisions by zero in a numerical

model. This parameterization is based on the physical principle that the sub-plume variance
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of the minor Gaussian plume should be greater than the sub-plume variance of the major, or

“environmental,” plume. This parameterization reduces the two sub-plume variance param-

eters to one parameter, namely σx, and brings the problem into balance in terms of equations

and unknowns.

Consider the new solvable system, equations (48) - (50) rewritten with the substitution

of the parameterization in equation (51).

x1 = x+ a (x2 − x1)

x2 = x− (1− a) (x2 − x1)

(52)

x′2 =

[
(1− a)

(
x′2thresh +

σx
1− a

)
+ a

(
x′2thresh +

σ2
x

a

)]
+ a (1− a) (x2 − x1)2

(53)

x′3 =a (1− a) (x2 − x1){
3

[
x′2thresh +

σ2
x

a
−
(
x′2thresh +

σ2
x

1− a

)]
+ (x2 − x1)2 (1− 2a)

} (54)

Equation (52) is used only to calculate the means of the two Gaussian plumes from the bias

using x, and can be utilized after equations (53) and (54) are used to solve for the bias,

(x2 − x1), and σ2
x. Equations (53) and (54) can be simplified considerably to yield

x′2 = x′2thresh + 2σ2
x + a (1− a) (x2 − x1)2 (55)

x′3 = 3 (1− 2a) (x2 − x1)σ2
x + a (1− a) (1− 2a) (x2 − x1)3 (56)
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The cubic in equation (56) can be further simplified using (55):

x′3 = (1− 2a) (x2 − x1)
[
σ2
x +

(
x′2 − x′2thresh

)]
(57)

Of course, the system (55), (57) must be solved for the three variables of interest, replacing

x in equations (47) - (57) with w, θil, and qt. Appendix C outlines one method of solving the

nonlinear system that relies on a look-up table rather than going through the considerable

computational expense of solving a nonlinear system at every grid point at every time step.

We return now to the determination of the Gaussian weight, a. As mentioned previously,

for a trivariate double Gaussian, the weight should really be a function of all of the variables

of interest, instead of just one variable, as has been assumed by previous authors (Larson

et al. 2002). The parameterization of a combines ideas from Larson et al. (2002) and Lewellen

and Yoh (1993) and is a function of the skewnesses of the variables of interest. From the

former, we’ll incorporate the assumption that σ2
x1

= σ2
x2

= σ2
constant (only for the calculation

of a), and from the latter, we’ll incorporate the idea that the value of skewness used in the

formula will be the maximum value of skewness among w, θil, and qt. The formula for a is

therefore

a = 1/2

[
1− skew

(
1

4 (1− σ2
constant)

3
+ skew2

)]
(58)

where skew = MAX (|skeww|, |skewθil |, |skewqt |) and σ2
constant ≤ 0.5. The value of σ2

constant

moderates how quickly a becomes small as skew increases. Values closer to 0.5 cause a

to be small for lower values of skew than values closer to 0. Larson et al. (2002) used

σ2
constant = 0.4 and this value is retained in THOR. In the future, it may become desirable to

relax the constant σ2
constant assumption and instead parameterize it as a function of skewness

as well.
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Since a is calculated independently of the nonlinear system, it is possible that the pa-

rameterization in equation (58) might produce values of a where no solution exists for the

system for one of the variables of interest. We would like to determine the maximum value

of a for which there is a solution to the nonlinear system (55), (57). From equations (55)

and (57), the bias can be written as

(x2 − x1) =

√√√√(x′2 − x′2thresh)− 2σ2
x

a (1− a)
(59)

and

(x2 − x1) =
x′3

(1− 2a)
[(
x′2 − x′2thresh

)
+ σ2

x

] (60)

The maximum value of the bias calculated from (59) occurs when σ2
x = 0. There can be no

solution to the system if the maximum value of the bias from (59) is less than the value of the

bias calculated from (60) when σ2
x = 0. This provides a constraint on a, and its maximum

value can be calculated by equating equations (59) and (60) when σ2
x = 0 and solving for a.

√√√√(x′2 − x′2thresh)
a (1− a)

=
x′3

(1− 2a)
[(
x′2 − x′2thresh

)] (61)

Solving for a yields

a = 1/2

1− 1√
1 + 4

skew2

 (62)

This is the maximum value for a for which a solution to the system exists. In practice, for

each variable of interest, the maximum value of a is calculated using (62). If a calculated

from (58) exceeds the maximum allowable value for a given variable, the skewness of the

offending variable is truncated to its maximum possible value to guarantee a solution to the
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system can be found. The maximum allowable skewness is found by solving (62) for skew:

skew =

√
4

1
(1−2a)2

− 1
(63)

Another constraint on a is that it cannot be equal to 0.5 since it would lead to a singularity

from equation (60). In practice a is constrained by amin < a ≤ 0.49 where amin is calculated

from (58) with a maximum value of skewness in the model, currently set to 4. It should

also be noted that since a is constrained to be less than 0.5, the solution generated by the

system (55), (57) will always have a positive bias. Therefore, the sign of the bias is modified

according to the sign of the skewness of the variable of interest. Negative skewness translates

to negative bias. In addition, when the magnitudes of skewness are high, leading to values

of a near zero, this scheme can produce large values of third-order moments. To combat this

issue, values of the turbulence time scale, τ , are adjusted for the third-order moments when

a < 0.1 according to

τ =
τ

1 + (1− 10a)
(64)

Equation (64) reduces τ and the magnitudes of third-order moments by up to a factor of

two for low values of a. A similar adjustment is made in Golaz et al. (2002) for values of a

less than 0.05, although in that paper, τ is reduced by up to a factor of 4.

Although all of the parameters for the individual single variate double Gaussians have

been calculated, there are still six correlations between the single variate PDFs that must

be specified. As done in previous works, it will be assumed that rw,qt1 = rw,qt2 = rw,qt ,

rw,θil1 = rw,θil2 = rw,θil and rθil,qt1 = rθil,qt2 = rθil,qt . However, unlike Larson et al. (2002), it

will not be assumed that rw,qt = rw,θil = 0. Using only the covariance second-order moments
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and already-calculated parameters, the correlations are given by the formulas

rθil,qt =
θ′ilq

′
t − (1− a) (qt1 − qt)

(
θil1 − θil

)
− a (qt2 − qt)

(
θil2 − θil

)
(1− a)

√
σ2
qt1
σ2
θil1

+ a
√
σ2
qt2
σ2
θil2

rw,θil =
w′θ′il − (1− a) (w1 − w)

(
θil1 − θil

)
− a (w2 − w)

(
θil2 − θil

)
(1− a)

√
σ2
w1
σ2
θil1

+ a
√
σ2
w2
σ2
θil2

rw,qt =
w′q′t − (1− a) (w1 − w) (qt1 − qt)− a (w2 − w) (qt2 − qt)

(1− a)
√
σ2
w1
σ2
qt1

+ a
√
σ2
w2
σ2
qt2

(65)

Finally, a few notes on some implementation details are in order to handle computational

singularities and to reduce noise. First, since skewness requires both second- and third-order

moments to calculate (skewness = x′3

x′2
1.5 ) and since second- and third-order moments are

defined on different grid levels (see section 2.8 for grid placement), some interpolation is

necessary. In THOR, the PDF parameters are calculated on grid interfaces, so the skewness

of a variable, x, is calculated on grid interface, k + 1/2, using the following formula

skewnessxk+1/2
=

1

2

(
x′3k+1

MAX(x′2k+3/2, x′2k+1/2)1.5
+

x′3k

MAX(x′2k+1/2, x′2k−1/2)1.5

)
(66)

The value of a calculated with the skewness is smoothed in both space and time in order to

help control unphysical oscillations. The value of a is smoothed in space with

ak+1/2 =
1

3

(
ak−1/2 + ak+1/2 + ak+3/2

)
(67)

and ak not allowed to change more than 1
2

∆t
7200s

in one time step. Lastly, the denominators in

equation (65) lead to computational noise when they are close to 0. A minimum threshold

is set to prevent such noise.
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2.4. Mixed-Phase Subgrid-Scale Condensation

With the joint double Gaussian PDF determined, one can use the PDF to calculate

many cloud-related properties in each grid cell, such as the cloud fraction, cloud liquid

water, cloud ice, and second- and third-order correlations involving cloud water, which are

critical for determining buoyancy terms of the higher-order closure model. One important

difference between THOR and its predecessor models is how it directly accounts for ice.

Previous models assume cloud formation only happens in a liquid state, and only ex post

facto convert a portion of the cloud liquid to ice. An approach that includes liquid, ice, and

mixed-phase cloud formation should be used to improve the generality of the host model so

that it may confidently be used in higher latitudes and altitudes where freezing temperatures

are commonplace. A description of the mixed-phase cloud permitting SGS condensation

scheme included in THOR is discussed next.

First, consider the arbitrary joint Gaussian PDF found in figure 2.11. It shows a typical

spread of θil and qt values in a grid cell at 900 hPa. The contours represent deciles of the

likelihood of finding a particular (θil, qt) pair in that grid cell. Black solid and dashed lines

denote the actual saturation curve and linearized saturation over liquid, respectively, while

red solid and dashed lines denote the actual saturation curve and linearized approximation

over ice, respectively. The final black dash-dotted line represents the freezing point of water.

Assuming liquid clouds only (and no supersaturation), one could integrate over the portion

of the PDF that lies above the black saturation curve to obtain the cloud fraction and

cloud water content. Of course, when one considers a mixed-phase cloud, the situation is

muddled. Some condensation occurs over liquid water and some occurs over ice. Which

1Although a double joint Gaussian PDF is used in THOR, a single joint PDF is used in this discussion for
clarity.
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saturation curve would be appropriate to use in order to estimate cloud fraction and cloud

water content?

Figure 2.1. Typical joint-Gaussian PDF of θil and qt in a grid cell. The lines
are qs over liquid (black solid), qs over ice (red solid), linear approximation to
qs over liquid (black dotted), linear approximation to qs over ice (red dotted),
θil of freezing point (black dash-dotted).
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Figure 2.2. As in figure 2.1, but “zoomed in.”
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Figure 2.3. As in figure 2.2, but the mean θil is 10 K colder.

In addition, performing the integration of the portion of the joint Gaussian PDF that lies

on one side of a nonlinear curve is impossible analytically and time-consuming numerically.

The problem becomes tractable if one approximates the saturation curve as a line, as has been

done by many authors, including Sommeria and Deardorff (1977) and Mellor (1977). The

black and red dotted lines in figure 2.1 represent the linear approximations of the saturation

curves over liquid and ice, respectively, using a Taylor series approximation evaluated at

the mean value of the joint Gaussian PDF as done in Sommeria and Deardorff (1977) and

Mellor (1977). From the zoomed-in perspective in figure 2.2, it becomes obvious that the

linear saturation approximation over ice (red dotted) is a better approximation to the actual

saturation curve in the freezing portion of the PDF, but diverges from the actual saturation

curve in the warm portion. Likewise, the linear saturation approximation over liquid is a

better approximation on the warm side and diverges from the saturation over ice on the

frozen side of the PDF. Although the difference in the magnitude of the errors between the
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two linear approximations may seem small in this example, as the mean temperature drops

well below freezing, the increasing discrepancy between the actual saturation curves over ice

and liquid causes their linear approximations to diverge further as well (see, e.g. figure 2.3).

An appropriate linearized saturation curve for warm, mixed-phase, and ice clouds can be

obtained by combining the linearizations over liquid and ice in the following way. Define θil

and Til as

θil = θ −
(
p0

p

)κ(
Lv
cp
ql +

Ls
cp
qi

)
Til =

(
p

p0

)κ
θil

(68)

As in Sommeria and Deardorff (1977), the linearization of the saturation curve over liquid

is given by the following first-order Taylor polynomial

qsl = qslil +

(
∂qsl
∂T

)
T=Til

(
T − Til

)
(69)

where qslil is the saturation specific humidity over liquid evaluated at Til and

(
∂qsl
∂T

)
T=Til

=
εqslilLv

RdTil
2 (70)

is the Clausius-Clapeyron relationship over liquid, also evaluated at Til. Similarly, the lin-

earization of the saturation curve over ice is given by

qsi = qsiil +

(
∂qsi
∂T

)
T=Til

(
T − Til

)
(71)
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where qsiil is the saturation specific humidity over ice evaluated at Til and

(
∂qsi
∂T

)
T=Til

=
εqsiilLs

RdTil
2 (72)

is the Clausius-Clapeyron relationship over ice. Equations (69) and (71) can be combined

using a simple weighting system

qs = wnqsl + (1− wn) qsi (73)

where wn is a weight that should be equal to unity for temperatures above freezing and

transition to zero as supercooled liquid is completely taken over by ice. The weight could

conceivably be a function of many variables (e.g., temperature, ice condensation nuclei, etc.)

although for THOR’s implementation, it is only a function of temperature.

Before expanding equation (73) with equations (69) and (71), it is useful to write the

term
(
T − Til

)
in terms of the variables θil, ql, and qi as is done in Mellor (1977):

(
T − Til

)
=

(
T − T

θ
θil

)
=

[
T − T

θ

(
θ − θ

T

Lv
cp
ql −

θ

T

Ls
cp
qi

)]
=

(
T − T +

Lv
cp
ql +

Ls
cp
qi

)
=

(
T ′ − Lv

cp
q′l −

Ls
cp
q′i +

Lv
cp
ql +

Ls
cp
qi

)
=

(
T

θ
θ′il +

Lv
cp
ql +

Ls
cp
qi

)

(74)
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Substituting equations (69) - (72) and (74) into equation (73) gives the generalized saturation

curve linearization as

qs =wn

[
qslil +

εqslilLv

RdTil
2

(
T

θ
θ′il +

Lv
cp
ql +

Ls
cp
qi

)]
+

(1− wn)

[
qsiil +

εqsiilLs

RdTil
2

(
T

θ
θ′il +

Lv
cp
ql +

Ls
cp
qi

)] (75)

This linearization is equivalent to the black linear approximation in figures 2.1 - 2.3 for

temperatures above freezing and to the red linear approximation below some threshold tem-

perature where presumably only ice exists. For temperatures in between, equation (75)

provides a linear approximation between the two extremes.

Having obtained a suitable saturation curve linear approximation, the next step is to

determine the portion of the PDF that is saturated. In order to do so, a useful variable

transformation is performed. Following Mellor (1977), Larson et al. (2002), and Chen (1991)

define a quantity, s as

s ≡ qt − qs (76)

It is equal to the total cloud condensate, qc = ql + qi, when positive and is a measure of

subsaturation when negative. Combining equations (75) and (76) yields

s = (qt + q′t)− wn

[
qslil +

εqslilLv

RdTil
2

(
T

θ
θ′il +

Lv
cp
ql +

Ls
cp
qi

)]
−

(1− wn)

[
qsiil +

εqsiilLs

RdTil
2

(
T

θ
θ′il +

Lv
cp
ql +

Ls
cp
qi

)] (77)

Although ql and qi are unknown at this point, the assumption is made that they are related

to the total cloud condensate by the same weighting used to determine the general linearized
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saturation:

ql = wnqc

qi = (1− wn) qc

(78)

Since it is the goal to determine the cloud properties of the grid cell, it is only of interest

when s > 0, or when s = qc. Using this fact, the substitution of equation (78) into equation

(77) after solving for s yields

s = cqt

{
qt −

[
wnqs

il
+ (1− wn) qsiil

]}
+ cqtq

′
t − cθilθ′il (79)

where

cqt =
1

1 + ε

cpRdTil
2

{
[wnLv + (1− wn)Ls]

[
wnLvqslil + (1− wn)Lsqsiil

]} (80)

and

cθil =
T

θ

ε

RdTil
2

[
wnLvqslil + (1− wn)Lsqsiil

]
cqt (81)

The formulation of s in equation (79) is very similar to that found in Mellor (1977), Larson

et al. (2002), and Chen (1991) except for the substitution of weighted linear combinations for

the saturation specific humidities, latent heats, and Clausius-Clapeyron relationships. The

quantity s can be split into a mean and a deviation

s =cqt

{
qt −

[
wnqs

il
+ (1− wn) qsiil

]}
s′ =cqtq

′
t − cθilθ′il

(82)
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with a variance of

s′2 = c2
qtq
′2
t − 2cqtcθilθ

′
ilq
′
t + cθilθ

′2
il

or

σ2
s = c2

qtσ
2
qt − 2cqtcθilrθilqtσqtσθil + cθilσ

2
θil

(83)

With the new definition of s and its variance, the integrals over the joint Gaussian PDF are

preformed exactly the same as in the other previously mentioned studies:

R = 1/2

[
1 + erf

(
Q1√

2

)]
qc = Rs+

σs√
2π

exp

(
−Q2

1

2

) (84)

where R is the cloud fraction and Q1 = s
σs

.

All that remains to close the SGS condensation parameterization is the weight, wn. As

stated previously, it is assumed in THOR that it is only a function of temperature, and it is

taken to be the same weighting formula used in the System for Atmospheric Modeling (SAM)

microphysics parameterization (Khairoutdinov and Randall 2003)

wn = max

[
0,min

(
T − T00

T0 − T00

)]
(85)

where T00 = 253.16 K and T0 = 273.16 K.

Since the temperature itself is a function of the cloud condensate, an iterative procedure

is needed to calculate it. The following algorithm is used:

(1) If Til > 273.16 K then wn = 1, and no iteration is needed.

(2) Otherwise, calculate the first guess wn assuming no cloud condensate (T = Til).
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(3) Calculate cqt and cθil according to (80) and (81), s according to (82), and σs accord-

ing to (83).

(4) Using values calculated in step 3, calculate the values of SGS cloud fraction and

cloud condensate using (84).

(5) Partition cloud condensate into liquid and ice using (78) and calculated a new

estimate of temperature using the definition of Til (68).

(6) Calculate a new estimate for wn using (85).

(7) Repeat steps 2 - 6 until the change in temperature estimates is below some threshold,

currently 0.001 K.

As mentioned previously, this discussion has been carried out for only one of the two

Gaussian plumes. In practice, the preceding algorithm must be performed for the first

Gaussian plume using w1, θil1 , qt1 , σqt1 , σθil1 , and rθilqt1 to determine R1, ql1 , and qi1 , and

then for the second Gaussian plume using the same parameters with a 2 subscript. The

values for the two plumes are then combined using the Gaussian mixture parameter, a:

ql = (1− a) ql1 + aql2

qi = (1− a) qi1 + aqi2

R = (1− a)R1 + aR2

(86)

In addition to cloud fraction and mean values of cloud liquid and ice, second- and third-

order cloud liquid and ice correlations are needed from the parameterization to close the

buoyancy terms in the higher-order moment equations (see, e.g. equation (27)). They can

be calculated from the PDF parameters and calculated cloud properties using the following
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formulas. For second-order liquid:

w′q′l = (1− a)
[
(w1 − w) ql1 + w′q′l1

]
+ a

[
(w2 − w) ql2 + w′q′l2

]
θ′ilq

′
l = (1− a)

[(
θil1 − θil

)
ql1 + θ′ilql1

]
+ a

[(
θil2 − θil

)
ql2 + θ′ilq

′
l2

]
q′tq
′
l = (1− a)

[
(qt1 − qt) ql1 + q′tq

′
l1

]
+ a

[
(qt2 − qt) ql2 + q′tq

′
l2

]
(87)

where

w′q′ln =wnRn

(
cqtσwnσqtnrw,qt − cθilσwnσθilnrw,θil

)
θ′ilq

′
ln =wnRn

(
cqtσθilnσqtnrθil,qt − cθilσ

2
θiln

)
q′tq
′
ln =wnRn

(
cqtσ

2
qtn
− cθilσθilnσqtnrθil,qt

)
(88)
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and n = 1, 2. For third-order liquid:

w′2q′l = (1− a)
{[

(w1 − w)2 + σ2
w1

]
(ql1 − ql) + 2 (w1 − w)w′q′l1 + w′w′q′l1

}
+ a

{[
(w2 − w)2 + σ2

w2

]
(ql2 − ql) + 2 (w2 − w)w′q′l2 + w′w′q′l2

}
w′θ′ilq

′
l = (1− a)

{[
(w1 − w)

(
θil1 − θil

)
+ rw,θilσw1σθil1

]
(ql1 − ql)

+ (w1 − w) θilql1 +
(
θil1 − θil

)
w′q′l1 + w′θ′ilq

′
l1

}
+ a

{[
(w2 − w)

(
θil2 − θil

)
+ rw,θilσw2σθil2

]
(ql2 − ql)

+ (w2 − w) θilql2 +
(
θil2 − θil

)
w′q′l2 + w′θ′ilq

′
l2

}
w′q′tq

′
l = (1− a)

{[
(w1 − w) (qt1 − qt) + rw,qtσw1σqt1

]
(ql1 − ql)

+ (w1 − w) qtql1 + (qt1 − qt)w′q′l1 + w′q′tq
′
l1

}
+ a

{[
(w2 − w) (qt2 − qt) + rw,qtσw2σqt2

]
(ql2 − ql)

+ (w2 − w) qtql2 + (qt2 − qt)w′q′l2 + w′q′tq
′
l2

}
θ′2il q

′
l = (1− a)

{[(
θil1 − θil

)2
+ σ2

θil1

]
(ql1 − ql) + 2

(
θil1 − θil

)
θ′ilq

′
l1 + θ′ilθ

′
ilq
′
l1

}
+ a

{[(
θil2 − θil

)2
+ σ2

θil2

]
(ql2 − ql) + 2

(
θil2 − θil

)
θ′ilq

′
l2 + θ′ilθ

′
ilq
′
l2

}
θ′ilq

′
tq
′
l = (1− a)

{[(
θil1 − θil

)
(qt1 − qt) + rθilqt1σθil1σqt1

]
(ql1 − ql)

+
(
θil1 − θil

)
q′tq
′
l1 + (qt1 − qt) θ′ilq′l1 + θ′ilq

′
tq
′
l1

}
+ a

{[(
θil2 − θil

)
(qt2 − qt) + rθilqt2σθil2σqt2

]
(ql2 − ql)

+
(
θil2 − θil

)
q′tq
′
l2 + (qt2 − qt) θ′ilq′l2 + θ′ilq

′
tq
′
l2

}
q′2t q

′
l = (1− a)

{[
(qt1 − qt)

2 + σ2
qt1

]
(ql1 − ql) + 2 (qt1 − qt) q′tq′l1 + q′tq

′
tq
′
l1

}
+ a

{[
(qt2 − qt)

2 + σ2
qt2

]
(ql2 − ql) + 2 (qt2 − qt) q′tq′l2 + q′tq

′
tq
′
l2

}

(89)
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where

w′w′q′ln =wn
1√

2πσsn

(
w′q′ln
wnRn

)2

e
−1/2

(
sn
σsn

)

w′θ′ilq
′
ln =wn

1√
2πσsn

(
w′q′ln
wnRn

)(
θ′ilq

′
ln

wnRn

)
e
−1/2

(
sn
σsn

)

w′q′tq
′
ln =wn

1√
2πσsn

(
w′q′ln
wnRn

)(
q′tq
′
ln

wnRn

)
e
−1/2

(
sn
σsn

)

θ′ilθ
′
ilq
′
ln =0

θ′ilq
′
tq
′
ln =0

q′tq
′
tq
′
ln =0

(90)

For the second- and third-order ice correlations, the formulas are exactly the same as (87)-

(90) except for ql being replaced by qi everywhere and wn being replaced by (1− wn).

Furthermore, another variable, t, is introduced. It is orthogonal to s in the same way that

θil is orthogonal to qt so that transformations can be made between a (θil, qt) pair and a (s, t)

pair. Such a transformation is needed for the PDF sampling scheme discussed in section 2.5.

This facilitates a straightforward method to draw from the cloudy or clear portion of the

diagnosed PDF since the line s = 0 divides the two portions. It is defined as

t = t+ t′

where

t = 0

t′ = cqtq
′
t + cθilθ

′
il

(91)
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and its associated second-order moments are

t′2 = c2
qtq
′2
t + 2cθilcqtθ

′
ilq
′
t + c2

θil
θ′2il

s′t′ = c2
qtq
′2
t − c2

θil
θ′2il

or

σ2
t = c2

qtσ
2
qt + 2cqtcθilrθilqtσqtσθil + cθilσ

2
θil

rs,tσsσt = c2
qtσ

2
qt − c

2
θil
σ2
θil

(92)

2.5. Microphysics Driver and Scheme

Although precipitation processes occur on a scale closer to molecular level than climate

model grid scale, it is often implicitly assumed that microphysical processes can be param-

eterized using climate model grid scale variables alone. Ignoring SGS variability has been

shown to lead to underestimation biases for processes such as precipitation generation, col-

lection, coalescence, and aggregation (Larson et al. 2001b). Use of a SGS condensation

parameterization provides a wealth of information about variability within a grid cell that

may be used to more accurately simulate mircophysical processes. Indeed, Larson et al.

(2005) have shown that such underestimation biases can be improved by utilizing informa-

tion about SGS variability to drive a microphysics parameterization. They developed a PDF

sampling system that can be used to drive any microphysics parameterization. It uses the

so-called“latin hypercube” sampling method that is similar to a Monte Carlo method but

includes additional steps to ensure samples are sufficiently spread out over a given PDF.

This method was shown to reduce the noise introduced by random sampling by preventing
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the samples from aggregating together in sample space as much as in the standard Monte

Carlo approach.

The latin hypercube PDF sampling approach of Larson et al. (2005) is used in THOR as

a microphysics package driver. This allows potentially any microphysics parameterization

to be substituted for the current included scheme. Although the authors give an example

of using this approach with a microphysics scheme that needs w, θl, qt, the cloud droplet

number mixing ratio, and the drizzle mixing ratio, THOR’s implementation uses a micro-

physics scheme that only requires θil and qt as input. In addition, the procedure outlined

in Larson et al. (2005) only includes samples from the cloudy portion of the PDF. THOR’s

implementation includes samples from the clear portion of the PDF as well. While much of

THOR’s implementation follows from the mentioned work, its precise algorithm is presented

in detail in this document for reference and to point out any differences that exist.

The best possible estimate of microphysical processes given a joint PDF of temperature

and humidity would require a large number of samples (infinite?) so that all portions of the

PDF are sampled equally. Since a microphysics routine is called for each sample, the more

samples taken from the PDF, the more computationally expensive it is. If one assumes that

the joint PDF varies slowly in time, taking a few samples each time step would create a good

estimate of microphysics processes over a sufficiently long period of time as all portions of

the PDF are sampled eventually. The introduced variability is highest if one sample is taken

each time step, and is reduced with more samples.

The first step for implementation of the latin hypercube sampling method consists of

generating a number of latin hypercube samples from a uniform distribution. This must be

performed d+1 times where d is the number of variables needed as input for the microphysics
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parameterization. The number of samples for each variable, nt, is somewhat of an arbitrary

parameter, but must be equal to the number of samples taken in one time step, n, times

some integer, i. Since there is “overhead” computational expense associated with producing

the uniform latin hypercube samples, it makes sense to calculate enough samples at one time

to last several time steps. For example, if one desired two samples per time step, one could

use nt = 12 so that enough samples are generated at a time to last 6 time steps.

To generate the uniform latin hypercube samples, two nt×(d+1) matrices are created, Π

and U , shown as equations (93) and (94). For THOR, d = 2, corresponding to θil and qt. The

additional column is needed to choose which Gaussian plume of the double joint Gaussian

PDF is sampled, as will be described soon. Each column in Π consists of a permutation

of integers of the interval [0, nt − 1], whereas each member of U is an independent random

number on the interval (0, 1). The matrices Π and U are combined using (95) to form the

matrix V which holds the actual latin hypercube samples for a uniform distribution. Each

row in V holds one sample that will be converted to a (θil, qt) pair and each column in V

contains values on the range (0, 1) that are guaranteed to span that range without “clumping”

together. Since the SGS condensation parameterization allows for partial cloudiness and

since different microphysical processes happen within clouds (autoconversion, aggregation,

etc.) and outside of clouds (evaporation), two sets of samples are needed – Vcld and Vclr.

It should be pointed out that THOR differs from Larson et al. (2005) with the treatment

of clear samples – THOR handles clear samples separately, whereas Larson et al. (2005)
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neglects them.

Π =

d+1︷ ︸︸ ︷
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



nt (93)

U =

d+1︷ ︸︸ ︷
RND(0, 1) · · · RND(0, 1)

...
. . .

...

RND(0, 1) · · · RND(0, 1)




nt (94)

Vij =
1

nt
Πij +

1

nt
Uij (95)

Next, the samples from the uniform distribution need to be converted to samples from

the actual diagnosed joint Gaussian PDF. Since there are two Gaussian plumes from which

to draw a sample, it first must be decided from which plume to draw. This is accomplished

using the last columns in Vcld and Vclr. For each cloudy sample in Vcld (each row), the sample

should be drawn from the first Gaussian plume if the value from the last column of Vcld is

less than the probability of a point being in the cloudy portion of the first Gaussian plume.
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Namely, the Gaussian plume chosen is given by

Gaussian plume chosen =


1 Vcld3,j <

(1− a)R1

(1− a)R1 + aR2

2 otherwise

(96)

where a is the Gaussian mixture parameter, and R1 and R2 are plume cloud fractions from

section 2.4. For each clear sample, the first Gaussian plume should be chosen if the value

from the last column of Vclr is less than the probability of a point being in the clear portion

of the first Gaussian plume. Namely,

Gaussian plume chosen =


1 Vclr3,j <

(1− a) (1−R1)

1− [(1− a)R1 + aR2]

2 otherwise

(97)

With the Gaussian plume chosen for each sample in Vcld and Vclr, the next task is to use

the diagnosed PDF parameters to find a specific (s, t) pair for each sample. The procedure

that is detailed in Larson et al. (2005) follows the conditional distribution approach whereby

one finds the s value using the marginal distribution of s followed by the calculation of the t

value from the conditional distribution of t, given the value of s. Their procedure relates the

sample values from the uniform PDF to a Gaussian PDF that has been truncated at s = 0.

They found the the s value for a cloudy sample is related to the samples in Vcld by

ssample = σsiF
−1
G

[
Vcld1,jRi + (1−Ri)

]
+ si (98)

where i denotes the Gaussian plume chosen and F−1
G is the inverse of the standard normal

cumulative distribution function. It should be noted that equation (98) is slightly different
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than equation (28) in Larson et al. (2005) since they derived the formula for a standard

normal distribution, whereas (98) is valid for a Gaussian distribution with mean si and

standard deviation σsi . Although not included in Larson et al. (2005), the same procedure

produces the following relation for the clear samples in Vclr

ssample = σsiF
−1
G

[
Vclr1,j (1−Ri)

]
+ si (99)

A t value corresponding to each s sample is calculated using the following method. According

to Larson et al. (2005), the conditional PDF of t given the samples’s value of s is a Gaussian

PDF with mean and variance given by

µ = ti +
s′t′i

s′2i
(ssample − si)

Σ = t′2i −
s′t′i

s′2i

(100)

For both cloudy and clear samples, the uniform PDF samples in Vcld and Vclr are related to

the Gaussian PDF with mean and variance given in (100) by

tsample =

√
t′2i −

s′t′i

s′2i
F−1
G (V2,j) +

s′t′i

s′2i
(ssample − si) (101)

Finally, θil and qt values can be retrieved from the (s, t) sample using the definitions (82)

and (91). Combining equations for s′ and t′ yield

θ′il =
t′sample − s′sample

2cθil

q′t =
t′sample − s′sample

2cqt

(102)
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where s′sample = ssample − si and t′sample = tsample (since t = 0). Retrieving the whole values

of θil and qt (mean plus perturbation) yields

θilsample = θili +
t′sample − (ssample − si)

2cθil

qtsample = qti +
t′sample − (ssample − si)

2cqt

(103)

where i once again denotes from which Gaussian plume the sample is drawn from.
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Figure 2.4. Shown are latin hypercube samples for different levels of satu-
ration. Asterisks denote cloudy samples and boxes denote clear samples. The
solid lines denote saturation. Black contours and lines are for the less dominant
Gaussian plume; red lines are for the dominant Gaussian plume.
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Figure 2.4 shows an example of the latin hypercube sampling process for a typical double

Gaussian PDF at different levels of saturation. For each panel, notice how the samples are

more likely to be drawn from the vicinity of the mean of each plume yet the samples are

adequately spread out to cover the PDF. For a more efficient algorithm, only clear samples

are drawn from a PDF with a cloud fraction below a threshold (top left panel) and only

cloudy samples are drawn from a PDF that is saturated above a threshold (bottom right).

For partial cloudiness (top right and bottom left), both sets of samples are drawn.

From the samples of θil and qt, the microphysics parameterization needs the actual tem-

perature, cloud liquid and ice water contents, and water vapor specific humidity. These are

calculated in the following way. For clear samples, the procedure is quite straightforward.

Assuming no cloud liquid water or ice (qlsample = 0 and qisample = 0), the temperature of the

sample is

Tsample =

(
p

p0

)κ
θilsample +

Lv
cp
qr +

Ls
cp

(qg + qs) (104)

where subscripts r, s, and g denote rain, snow, and graupel, respectively. Also, trivially for

clear samples, qvsample = qtsample . For cloudy samples, however, the temperature depends on

the sample cloud liquid and water contents, all of which are unknown. As before, a simple

iterative procedure is used.

(1) If Tilsample > 273.16 K then qlsample = ssample, and no iteration is needed.

Tsample =

(
p

p0

)κ
θilsample +

Lv
cp

(
qlsample + qr

)
+
Ls
cp

(qg + qs) (105)

(2) Otherwise, calculate the first guess wn assuming no condensate
(
Tsample = Tilsample

)
.

wn = max

[
0,min

(
1,
Tsample − T00

T0 − T00

)]
(106)
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(3) Using the weight from step 2, calculate the sample’s cloud liquid and ice content.

qlsample = wnssample

qisample = (1− wn) ssample

(107)

(4) Calculate a new sample temperature using

Tsample =

(
p

p0

)κ
θilsample +

Lv
cp

(
qlsample + qr

)
+
Ls
cp

(
qisample + qg + qs

)
(108)

(5) Calculate a new estimate for wn using (106).

(6) Repeat steps 3 - 5 until the change in temperature estimates is below some threshold,

currently 0.001 K.

Finally, for the cloudy sample, qvsample = qtsample − qlsample − qisample .

The microphysics scheme used in THOR is the simple bulk scheme of Khairoutdinov and

Randall (2003) from the SAM model. It requires one to predict qp, the precipitating water

mixing ratio, and to partition it amongst rain, snow, and graupel using the mean temperature

of a grid cell. The physical processes included in this scheme are rain autoconversion, ice

aggregation into snow, collection of cloud water by all precipitation species, collection of

cloud ice by all precipitation species, and evaporation of all precipitation species. Formulas,

constants, and thresholds for these processes are exactly as described in Khairoutdinov and

Randall (2003) except that the inputs to the scheme are samples and not grid-cell mean

values and the threshold for rain autoconversion has been reduced from 1.0 g/kg to 0.65

g/kg to better match results with observations. The formulas implemented are recreated in

appendix D, where it is shown how the samples generated in this section are used. Since it

is possible that any number of samples are used in any timestep with the sampling method
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described, multiple estimates of the microphysical processes may be generated. Ultimately,

all of the estimates of the process rates are averaged using the arithmetic mean over the

samples so that only one rate is generated at each time step for each process.

2.6. Radiation Driver and Scheme

Clouds and radiation strongly affect each other. Clouds are effective “trappers” of long-

wave radiation and reflectors and scatterers of shortwave radiation. Radiative cooling can

drive circulations that perpetuate clouds, like stratocumulus fields, and shortwave heating

at cloud top can thin or dissipate clouds. A parameterization designed to better simulate

clouds and their effects should therefore include an accurate representation of radiative trans-

fer. Typically in large-scale models, the radiative transfer scheme utilizes one-dimensional

columns and neglects 3D radiative transfer. In addition, accounting for SGS cloudiness

with such a scheme can be difficult. In the popular Rapid Radiative Transfer Model for

GCMs (RRTMG) radiation scheme, the default behavior of the parameterization is to as-

sume 100% cloud cover if any cloud water is found in a grid cell. An elegant solution to

the problem of solving radiative transfer in heterogeneous cloud fields has been proposed by

Pincus et al. (2003), called the Monte Carlo Independent Column Approximation (McICA).

This approach hinges on the generation of “sub-columns” that each contain a random sample

of the SGS cloud field. Each sub-column is then used for one band of a broadband radiative

transfer calculation. The individual band calculations from the random sub-columns are

then combined to form a single profile of radiative heating rate. This approach is nearly

as efficient as a normal broadband radiative transfer calculation, except for the overhead

associated with generating the random sub-columns since each band is only calculated once.

To use the McICA approach, one needs to be able to modify the actual radiation code in
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order to calculate each individual band with a different sub-column input. For THOR, it is

desirable to create a radiation driver that uses aspects of the McICA approach but leaves the

radiation code unmodified so that different radiation schemes may be substituted. Therefore,

THOR’s radiation driver is designed to create the random sub-columns with cloud properties

according to the diagnosed PDF, and to call a chosen broadband radiative transfer calcula-

tion for each sub-column. This approach is not as efficient as the McICA approach since all

bands are used for each sub-column rather than one band per sub-column.

The sub-column generator follows the approach of Räisänen et al. (2004). Although

the radiation scheme requires profiles of the input variables from the entire domain, the

sub-column generator only provides binary cloud values and random cloud water samples

drawn from the PDF for levels between the cloud top and the cloud base. Starting from

the cloud top, the generator draws a random number from [0,1]. If the random number is

less than the cloud fraction at that layer, then the sub-column is deemed cloudy, otherwise

it is deemed clear. If the sub-column is cloudy, an additional random number from [0,1] is

drawn to determine the cloud water. The second random number is considered the cumu-

lative frequency distribution of cloud water, and the actual value of cloud water is found

by taking the inverse of the cumulative frequency distribution for the assumed cloud water

distribution, in THOR’s case a Gaussian distribution. For subsequent levels below the cloud

top height, one needs to determine the cloud overlap. The Räisänen et al. (2004) method

uses a generalized overlap assumption that assumes the actual cloud overlap falls between

maximum and random. It is based on the idea that cloud layers close together are more

likely to overlap in a maximal way, whereas cloud layers separated by a vertical distance have

a greater probability of overlapping in a random way. Precisely how the overlap relationship
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is determined is controlled by an exponential function based on the distance between lay-

ers and a so-called “decorrelation depth.” There are separate decorrelation depths for cloud

fraction and cloud water, and their values are estimated according to observational data.

The algorithm is described in detail below.

Since the radiative transfer scheme is usually called at a longer time step than other

quantities, the following algorithm is used with time-mean profiles calculated since the last

radiation time step. The first step is to determine the lowest and highest levels of cloud

fraction in the domain, denoted by ztop and zbot. Above ztop and below zbot, the sub-column

profiles are identical and equal to the time-mean profiles. Where cloud fraction exists in

the domain, between zbot and ztop, the following algorithm is used to construct the cloud

property sub-columns.

For each sub-column, at ztop, determine which Gaussian plume to draw a sample from.

Gaussian plume chosen =


2 RND1 ≤ aztop

1 otherwise

(109)

where RND1 (and all random numbers in this algorithm) is a random number on [0,1] and

aztop is the Gaussian weight from section 2.3 at the cloud top level. Let n be the Gaussian

plume chosen. Next, determine whether there is cloud at the current level for the Gaussian

plume chosen in (109). Let xztop = RND2. Then

cloud fractiontop =


0 xztop ≤ 1−Rnztop

1 otherwise

(110)
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where Rnztop
is the cloud fraction for plume n at cloud top. If cloud fractiontop = 1, then

determine the cloud water at this level. Let yztop = RND3 which is the value of the cumulative

distribution function. To retrieve the cloud water sample, use the following formula that

uses the inverse of the cumulative distribution function using the diagnosed PDF at this

level (same as the formula for the microphysics sampling algorithm).

qctop = σsnF
−1
G

[
yztopRn + (1−Rn)

]
+ sn (111)

where all values on the RHS of this equation are at the cloud top level.

For levels between ztop and zbot, the cloud properties depend on the cloud overlap and

an additional step is added to determine whether the overlap is maximum or random. An

“overlap parameter” between two levels is calculated according to

ocld = e
− (zk+1−zk)

Lcf

oqc = e
− (zk+1−zk)

Lqc

(112)

where k is the index of the current level, k + 1 is the index for the level above, Lcf is the

decorrelation depth for cloud fraction, and Lqc is the decorrelation depth for cloud water.

Discussions about appropriate values of the decorrelation lengths can be found in Pincus et al.

(2005) and Barker (2008). For THOR, constant values of Lcf = 2000m and Lqc = 1/2Lcf were

used. As in the top cloud layer, the Gaussian plume is chosen with an additional random

number using

Gaussian plume chosen =


2 RND4 ≤ ak

1 otherwise

(113)
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Next, the value of xk is determined according to

xk =


xk+1 RND5 ≤ ocld

RND6 otherwise

(114)

This determines whether maximum overlap (xk+1) or random overlap (RND6) is chosen.

Once again, it must be determined if this level is cloudy or not:

cloud fractionk =


0 xk ≤ 1−Rnk

1 otherwise

(115)

If cloudy, it must be determined whether to use maximum or random overlap for cloud water:

yk =


yk+1 RND7 ≤ oqc

RND8 otherwise

(116)

Finally, the cloud water sample value is chosen given the cumulative distribution function,

yk:

qck = σsnF
−1
G [ykRn + (1−Rn)] + sn (117)

For all levels, the cloud liquid and ice are partitioned according to

ql = wqck

qi = (1− w)qck

(118)

where w = ql
ql+qi

. For each sub-column, the profiles of water vapor, cloud liquid water, cloud

ice water, and absolute temperature are calculated and used as input into the broadband
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radiative transfer scheme RRTMG. The longwave and shortwave fluxes are averaged over

all sub-columns, and the heating rates are calculated using the averaged radiative fluxes.

Any number of sub-columns may be used, although an additional radiation calculation is

required for each sub-column, so it may significantly slow down the integration. For the

results presented in this work, the number of sub-columns used was 10.

2.7. Surface Layer Scheme

The portion of the Earth’s boundary layer closest to the surface is often called the“surface

layer” or “constant flux layer,” and it is often treated differently than the remainder of the

boundary layer. It is in this layer that Monin-Obukhov similarity theory is often applied

to provide surface fluxes, variances, and covariances and even to provide diagnostic values

of state variables at given heights within the layer. The central idea of the theory is that

the variables of interest in the surface layer (fluxes, variances, mean state variables, height)

can be combined into nondimensional groups and that the empirical relationships derived

from observations between the nondimensional groups are universal. If the relationships are

universal, it follows that the empirical relationships derived from a particular dataset are

applicable for conditions much different than those used to derive the original relations. For

example, the so-called “Businger-Dyer” relationships relate fluxes of momentum and heat

to their mean profiles as a function of height and stability (Businger et al. 1971). Their

relationships were calculated using data from a field experiment in southwestern Kansas,

and yet their relationships based on Monin-Obukhov similarity theory have been used suc-

cessfully to represent surface layers around the world with vastly different geographies and

meteorological conditions.
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Although questions have been raised regarding the applicability of the original Businger-

Dyer relationships to more extreme static stabilities (both positive and negative), many

recent “state-of-the-art” surface layer schemes still use formulas very close to the original

ones. The surface layer scheme used in THOR was recently developed for use in the Weather

Research & Forecasting model by Jimenez et al. (2012), but it can be thought of as using

the same ideas and relationships as Businger et al. (1971) fine-tuned to be more applicable

for very stable and very unstable conditions. What follows is a description of the surface

scheme used in THOR, including any deviations from the Jimenez et al. (2012) formulation.

surface layer

Figure 2.5. Surface Layer Grid

THOR’s grid near the surface is shown in figure 2.5. Mean state variables reside in the

cell centers and second-order moments reside on cell interfaces, with the bottom interface

representing the roughness length, z0. It is assumed that second-order moments are constant

in the surface layer so that the calculation of the fluxes at z1 is sufficient to know the surface
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fluxes. The surface fluxes are given by the following bulk aerodynamic formulas

τ = ρu2
∗ = ρCdU

2
1

H = −ρcpu∗θ∗ = −ρcpChU1 (θa − θg)

LH = Lvρu∗q∗ = LvρMCqU1 (qg − qa)

(119)

where τ , H, and LH represent the surface momentum, sensible heat, and latent heat flux,

Cd, Ch, and Cq are the bulk transfer coefficients for momentum, heat, and moisture, U1 is

the wind speed, subscript a denotes values at z1, subscript g denotes values at or just above

the physical surface, M is a measure of soil moisture availability (supplied by a land surface

parameterization in the future), u∗ is the friction velocity, θ∗ is the temperature scale, and

q∗ is the moisture scale. The bulk transfer coefficients from Jimenez et al. (2012) can be

written

Cd =
k2

A2

Ch =
k2

A

[
ln

(
z + z0h

z0h

)
− ψh

[
ζ
(

1 +
z0h

z

)]
+ ψh

(
ζ
z0h

z

)]
Cq =

k2

A

[
ln

(
ku∗z

Ka

+
z

zl

)
− ψh (ζ) + ψh

(
ζ
zl
z

)]
where

A =ln

(
z + z0

z0

)
− ψm

[
ζ
(

1 +
z0

z

)]
+ ψm

(
ζ
z0

z

)
,

(120)

k is the von Kármán constant (taken as k = 0.4), z0 is the roughness length for momentum,

z0h is the roughness length for scalars, and Ka is described as the the “background molecular

diffusivity” in Grell et al. (1994). Its value is taken to be Ka = 2.4× 10−5 m2s−1. The symbol
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zl is the depth of the viscous sublayer (0.01 m) over land and equal to z0h over the ocean.

Note that while Jimenez et al. (2012) assume that z0 and z0h are equal, that assumption is

relaxed here.

The symbols ψm and ψh are integrated forms of the Monin-Obukhov similarity functions

with their inputs following. The symbol ζ is known as the nondimensional Monin-Obukhov

stability parameter and is defined as ζ = z
L

where L is the Obukhov length defined by (Stull

1988)

L =
−θvu3

∗

gkw′θ′vs
(121)

Since ζ depends on values of the surface fluxes which themselves depend on ζ, iteration is

often used to solve the system. However, ζ can be approximated as a function of the bulk

Richardson number, Rib, alone. The bulk Richardson number is calculated as

Rib =
gz1

θa

(
θva − θvg
U2

1

)
(122)

where the windspeed U1 is enhanced by w∗ to account for gustiness in a convective boundary

layer following Beljaars (1995):

U1 =
√
u2

1 + v2
1 + w2

∗ (123)

The 1 subscripts denote that they are values from the lowest model level and the convective

velocity w∗ is given by

w∗ = 3

√
gzi
θva

w′θ′vs (124)

The boundary layer height, zi, is approximated to 1000 m for this calculation and the

buoyancy flux w′θ′vs is taken from the previous time step since the addition of w∗ in equation
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(123) is itself an approximation. To calculate the Monin-Obukhov stability parameter, ζ,

as a function of Rib, THOR uses the method of Li et al. (2010). Their method has been

tested using a wide range of roughness lengths and atmospheric stabilities and was found to

be superior to previous non-iterative methods for determing ζ and can be summarized with

ζ =



(as11α + as21)Rib + bs11α + bs21β + bs22 Rib > 0.2

[(aw11β + aw12)α + (aw21β + aw22)]Ri
2
b+

[(bw11β + bw12)α + (bw21β + bw22)]Rib

0 < Rib ≤ 0.2

0 Rib = 0

au11αRi
2
b +

[
(bu11β + bu12)α

2 + (bu21β + bu22)α+

(
bu31β

2 + bu32β + bu33
)]
Rib

Rib < 0

(125)

where α = ln
(
z
z0

)
, β = ln

(
z0
z0h

)
, z0h is the roughness length for heat and the constants are

given in table 2.4.

Table 2.4. Constant values for the ζ function of Li et al. (2010)

Constant Value Constant Value Constant Value

as11 0.7529 aw11 0.5738 au11 0.0450

as21 14.9400 aw12 -0.4399 bu11 0.0030

bs11 0.1569 aw21 -4.9010 bu12 0.0059

bs21 -0.3091 aw22 52.5000 bu21 -0.0828

bs22 -1.3030 bw11 -0.0539 bu22 0.8845

bw12 1.5400 bu31 0.1739

bw21 -0.6690 bu32 -0.9213

bw22 -3.2820 bu33 -0.1057
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With ζ calculated, one can determine the integrated universal functions needed for the

bulk transfer coefficients using the following from Jimenez et al. (2012):

ψm (ζ ′) =



−a ln
[
ζ ′ +

(
1 + ζ ′b

)1/b
]

Rib > 0

0 Rib = 0

ψKm (ζ ′) + ζ ′2ψCm (ζ ′)

1 + ζ ′2
Rib < 0

(126)

ψh (ζ ′) =



−c ln
[
ζ ′ +

(
1 + ζ ′d

)1/d
]

Rib > 0

0 Rib = 0

ψKh (ζ ′) + ζ ′2ψCh (ζ ′)

1 + ζ ′2
Rib < 0

(127)

where ζ ′ are the input values listed in the bulk aerodynamic coefficient formulas (equation

(120)). The ψKh,m and ψCh,m in the formulas for the unstable Richardson numbers come

from the fact that Jimenez et al. (2012) used the Monin-Obukhov similarity functions from

the Kansas experiments (the Businger-Dyer relationships) for near-neutral stability values

and different similarity functions for more unstable conditions. These integrated universal
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functions are

ψKm (ζ ′) = 2 ln

(
1 + x

2

)
+ ln

(
1 + x2

2

)
− 2 tan−1x+

π

2

ψKh (ζ ′) = 2 ln

(
1 + x2

2

)
ψCh,m (ζ ′) =

3

2
ln
(
y2 + y + 1/3

)
−
√

3 tan−1

(
2y +

1√
3

)
+

π√
3

where

x = (1− 16ζ ′)
1/4

y = (1− αm,hζ ′)1/3

(128)

and αm = 10 and αh = 34. The constants a, b, c, and d in equations (126) and (127) are

a = 6.1, b = 2.5, c = 5.3, and d = 1.1.

At this point, there is enough information to calculate the total momentum flux, τ , from

equation (119) using Cd from equation (120). To calculate the remaining fluxes, one needs

to first calculate the friction velocity, u∗ from

u∗ = MAX

(
0.001,

√
CdU2

1

)
(129)

With u∗, the remaining sensible and latent heat fluxes may be calculated with equations

(119) and (120). The component momentum fluxes, w′u′ and w′v′ are calculated from u∗

using

w′u′ =

(
u1

U1

)
u2
∗

w′v′ =

(
v1

U1

)
u2
∗

(130)
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The surface fluxes of θil and qt can be trivially calculated from H and LH in equation (119)

with

w′θ′il =
H

ρcp

w′q′t =
LH

Lvcp

(131)

In addition to the fluxes of momentum, heat, and moisture in the surface layer, one needs

values of the other second-order moments in the surface layer as boundary conditions. The

relationships listed in Stull (1988) based on the surface layer static stability are used in this

case. For stable conditions, Rib ≥ 0, the following relationships are used

u′2 = v′2 = 4.25u2
∗

w′2 = 2.5u2
∗

θ′2il = 4θ2
∗

q′2t = 4q2
∗

θ′ilq
′
t = 4θ∗q∗

(132)
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where θ∗ =
w′θ′il
u∗

and q∗ =
w′q′t
u∗

. For unstable conditions, Rib < 0, the following relationships

are used instead.

u′2 = v′2 = 4.25u2
∗

w′2 = 3.6 (−ζ)2/3 u2
∗

θ′2il = 0.9 (−ζ)−2/3 θ2
∗

q′2t = 0.9 (−ζ)−2/3 θ∗q∗

θ′ilq
′
t = 0.9 (−ζ)−2/3 q2

∗

(133)

Finally, although a host model for the THOR parameterization is expected to provide

values for the roughness lengths over land from a land surface model or from a land surface

categorization technique, a simple parameterization for the roughness lengths over the ocean

is provided in THOR. For the momentum roughness length over the ocean, Charnock’s

relation (Charnock 1955) is used: z0 = 0.015u
2
∗
g

. For the scalar roughness length, the formulas

for the roughness lengths for heat and water vapor found in Brutsaert (1982) are averaged

together: z0h = 0.51ν
u∗

where ν = 1.4× 10−5 m2s−1 is the kinematic viscosity of air.

2.8. Implementation Notes

The continuous predictive equations presented in this chapter must be discretized in order

to be useful in a numerical model. The choice of grid construction and derivative discretiza-

tion follows Firl (2009), and the model grid is shown in figure 2.6. THOR uses a staggered

grid approach with mean quantities and third-order moments at grid centers (dashed lines)

and second-order moments and PDF samples at grid interfaces (solid lines). This grid allows

a simple two-point centered spatial derivative discretization that is second-order accurate in
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space. The time-stepping scheme chosen for THOR is the simple forward Euler scheme for

the same reasons given in Firl (2009), namely simplicity, continuity with past schemes, and

the scheme is reasonably stable for diffusion problems (the closest simple analog to THOR).

The predictive equation for precipitating water and the calculation of subsidence forcing are

the only exceptions. These processes are discretized using the upstream scheme.

Figure 2.6. A depiction of THOR’s staggered grid and the placement of variables.

Due to the many different types of parameterizations in THOR and the complexity of the

higher-order closure model, it is difficult to obtain a precise stability criterion. Firl (2009)

determined that a useful guide for determining computational stability can be gleaned by

considering the discretization of the transport terms of the second-order moments. For

example, consider the discretized form of the predictive equation for w′2 in equation (3)

77



with only the transport term kept and neglecting the third-order moment buoyancy term in

equation (15):

w′2
t+1

k+1/2 − w′2
t

k+1/2
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w′2

t

k+1/2 + w′2
t

k−1/2

) w′2tk+1/2 − w′2
t

k−1/2

∆z

)
(134)

One can recognize equation (134) as the discretized form of the diffusion equation for w′2k+1/2

with the diffusion constant, K, equal to:

K =
3τw′2

2c8 + p1 + 3(1− d1)τ ∂w
∂z

(135)

For centered spatial derivatives and the forward Euler time-stepping scheme, the stability

criterion for the diffusion equation is given by

K∆t

(∆z)2 ≤
1

2
(136)

Using this relationship, one can get a good estimate of the maximum usable time step for a

given grid spacing if K is known. Of course, the same analysis is valid for all of the other

second-order moments calculated in THOR, but, in practice, the K value for w′2 has the

greatest magnitude. Table 2.5 gives the maximum values of K for four of the simulations

used in this study, together with the grid spacing used, the maximum theoretical time

step from equation (136), and the actual maximum time step determined from test runs.
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The theoretical maximum time steps are within 10-20% of the actual maximum time steps

determined from test runs.

Table 2.5. Theoretical and actual maximum time steps for four test cases.

Case max K ∆z theoretical ∆t actual ∆t

[m2s-1] [m] [s] [s]

BOMEX 100 100 50 60

DYCOMS 100 25 3.125 3.85

RICO 300 40 2.67 2.9

ASTEX 75 25 4.17 4.5

To get an idea of algorithm efficiency, runtimes were recorded for four test cases run

on an Apple Macbook Pro built in late 2011 with a 2.5 GHz Intel Core i7 processor. The

statistics of the four runs are recorded in table 2.6. The runtimes range from 43 milliseconds

for the 6 hour BOMEX run with 30 grid levels to 17.06 seconds for the 40 hour ASTEX run

with 120 levels. The BOMEX run is most efficient, taking 0.006 seconds per simulated grid

level per simulated day, and the RICO case is least efficient taking 0.112 seconds per grid

level per simulated day.

Table 2.6. Runtimes for four test cases

Case ∆t # of levels simulated time runtime efficiency

[s] [day] [s] [s level-1 day-1]

BOMEX 50.0 30 0.25 0.043 0.006

RICO 2.8 100 1.0 11.237 0.112

DYCOMS 3.8 60 0.25 1.31 0.087

ASTEX 4.5 120 1.67 17.06 0.085
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Figure 2.7. Runtimes divided into model functions for the five experi-
ments listed in the text. The functions are divided into “MEANS” (predic-
tion of mean quantities), “SOMS” (prediction of the second-order moments),
“TOMS” (calculation of the third-order moments), “FORCING” (calculation
of large-scale forcing), “SGS COND” (all calculation related to SGS conden-
sation), “TURB SCALES” (all calculation involved with turbulence length
and time scales), “MICRO” (all calculation involved with microphysics), and
“RAD” (all calculation involved in calculating radiative transfer). The interior
labels denote the increase in computation time from experiment 1.

In figure 2.7, the runtimes of the individual model components are shown for five different

model configurations, all using the ASTEX case. Experiment 1 uses the most efficient

algorithms including diagnostic third-order moments, a constant turbulence length scale

entrainment rate, and no PDF sampling for either the microphysics or radiation schemes.

Experiment 2 is run to determine the expense of using prognostic third-order moments and

is set up exactly like experiment 1 except for the third-order moment algorithm. Experiment

3 is designed to determine the added expense of using the stochastic turbulence length scale

algorithm and is set up exactly like experiment 1 except for that algorithm. Experiment

4 is run to determine the added expense of using latin hypercube PDF sampling for the

microphysics scheme, and it is exactly like experiment 1 except for the microphysics PDF
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sampling. Experiment 5 is designed to determine the added cost of using PDF sampling for

both microphysics and radiation, and it is exactly like experiment 1 except for the addition

of both PDF sampling algorithms. First, it is apparent that the prediction of grid-cell

mean quantities and the calculation of the large-scale forcing are the least computationally

expensive components of THOR. The core higher-order closure model consists of the second-

and third-order moment calculations, and takes up about 40% of the computational load

for the simplest run (experiment 1). The time required to run these components stays

consistent throughout the experiments as well, although the proportion of the total runtime

changes depending on the complexity of the other model components. The calculation of

the SGS condensation scheme (including diagnosis of the PDF) accounts for about 40% of

experiment 1 as well, with the radiation, microphysics, and turbulence length and time scale

calculations taking up the remaining roughly 15% of the time. Experiment 2 shows that

there is relatively little added computational expense of using full predictive equations for

the third-order moments, a roughly 6% time penalty. Experiment 3 shows that using the

stochastic algorithm for calculating the turbulence length scale increases the cost associated

with calculating this quantity by roughly eight-fold, although the impact on the model

as a whole is still somewhat minor at about an 11% penalty. Experiment 4 shows that

sampling the PDF for the microphysics scheme (using 2 samples per time step) increases

the cost associated with microphysics by another eight-fold or so over the non-sampling run

and increases the overall runtime by over 34%. Once again, experiment 5 demonstrates an

approximate eight-fold increase in computation time when sampling is added for the radiation

scheme (with 10 subcolumns generated per radiation time step), leading to a combined

81



increase of over 100% in execution time for using both sampling processes compared to the

most efficient run without sampling.
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CHAPTER 3

Model Evaluation and Sensitivities

THOR was designed to be a “general” SGS model in the sense that the goal was to be

able to adequately parameterize SGS processes under any type of cloud regime, from clear

sky to cumulus regimes with cloud fractions significantly less than one to stratocumulus

and stratus regimes with cloud fractions close to one. In addition, should the parameter-

izatiodn be used throughout the model domain in a AGCM, it should be able to handle

deep convection. In order to test THOR’s ability, several test cases were chosen spanning a

range of atmospheric conditions and cloud types including non-precipitating shallow cumulus

(BOMEX), slightly more active and precipitating shallow cumulus (RICO), nocturnal driz-

zling stratocumulus (DYCOMS), mixed-phase arctic precipitating stratocumulus (MPACE),

and transitional stratocumulus-to-cumulus clouds (ASTEX). All test cases are idealized to

some extent and have been previously utilized for LES intercomparison studies, whereby

many LES models from different institutions simulate the same case, compare their results

to each other and to observations. The LES models provide a detailed three-dimensional

evolution of the cloud field and their conglomerate results will be used as a standard to which

THOR’s results are compared.

Since THOR includes many novel components, several sensitivity tests were performed for

each case to determine what effect various parameterization algorithms have on the simulated

atmosphere. Perhaps the simplest and most obvious sensitivity test is to determine how

THOR behaves with different vertical grid spacing, especially considering that THOR may

be run at a coarse resolution in a AGCM for computational economy. One would expect the

simulation of stratocumulus clouds to be quite sensitive to changes in vertical grid spacing
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given their finely balanced nature and their dependence on sharp temperature inversions to

regulate entrainment and to trap moisture close to the surface. The simulation of cumulus

would seem to be less sensitive to grid spacing, although subtle gradients important for

defining cloud base and cloud top could easily be “smoothed out” at coarser resolutions.

The sensitivity to grid spacing is tested for all cases.

Another sensitivity test is performed to determine what effect there is from using diagnos-

tic third-order moments versus fully or partially prognostic third-order moments. Although

André et al. (1976) and Krueger (1988) determined that third-order closure is required to ad-

equately represent a convective boundary layer, it is less clear whether all of the third-order

moments must be calculated with full predictive equations as was done by these two authors.

Other modelers have opted for the so-called “intermediately prognostic” approach whereby

only some of the third-order moments are predicted, as in Lappen and Randall (2001), Golaz

et al. (2002), and Cheng and Xu (2006). Only the third-order moment of vertical velocity

is predicted in the first two references, while the latter predicts the third-order moments of

vertical velocity, liquid-water potential temperature, and total water mixing ratio. Using an

even more simplified approach, Zeman and Lumley (1976), Canuto et al. (1994), and Cheng

et al. (2005) have shown that fully diagnostic third-order moments are sufficient for modeling

buoyancy-driven boundary layers. In this study, a sensitivity test will be performed for each

case to determine the effects of a fully prognostic, partially prognostic, and fully diagnostic

third-order closure on the simulated atmosphere.

A third sensitivity test involves the entrainment process in the calculation of the tur-

bulence length scale. Recall from the definition of the turbulence dissipation time scale

(equation (11)), that the turbulence length scale, L, determines the rate at which turbulence
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is dissipated in THOR. The length scale, L, and the dissipation time scale, τ , are directly

proportional so that a long length scale equates to a greater time scale. When the turbu-

lence length scale and dissipation time scale are high, it takes longer for turbulence to be

dissipated and the second- and third-order moments will have a larger magnitude. When

they are low, turbulence is dissipated quickly and the second- and third-order moments will

be reduced. Also recall that the turbulence length scale is calculated using a parcel model.

As a parcel ascends or descends, it entrains environmental air. The rate at which it entrains

effects the distance a parcel travels, and therefore the length scale. All things being equal, a

high entrainment rate leads to a lower turbulence length scale, faster turbulence dissipation,

and reduced second- and third-order moments. The stochastic entrainment process adds a

realistic randomness to the calculation of the length scale that can potentially alter the be-

havior of THOR’s simulated cloud fields. The stochastic entrainment operating on released

parcels generates parcels of both high and low relative buoyancy, and the higher buoyancy

parcels can penetrate a cloud-top inversion more easily, potentially smoothing out gradients

there and allowing deeper convective elements. Sensitivities to mean entrainment rate and

whether the parcel entrainment is stochastic are investigated for all cases.

The fourth sensitivity test included in this study is whether the ice phase is considered in

the SGS condensation scheme. Recall from section 2.4 that the SGS condensation schemes of

Mellor (1977) and Larson et al. (2002) were extended in THOR to account for mixed-phase

and ice clouds via the generalization of the linearized saturation curve. In addition, covari-

ances and third-order moments involving cloud water and ice are modified to acfcount for

such clouds. By taking saturation over ice into account, THOR’s SGS condensation scheme

should calculate more cloud ice and liquid in mixed-phase or ice cloud regimes compared to
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the alternative liquid-only schemes. In addition, buoyancy-related terms in the second- and

third-order moment equations will be increased slightly due to the inclusion of the latent heat

of fusion in the cloud water correlation terms where ice is present. The effect of including

the ice phase will be examined for the MPACE case, the only one in this study where an

appreciable amount of ice was present in the clouds.

The last two sensitivity tests both have to do with how the use of the assumed PDF

approach can improve existing external parameterizations, namely the microphysics and

radiation parameterizations. Larson et al. (2005) have shown that using a technique whereby

samples are drawn from the assumed PDF to drive a standard microphysics parameterization

can be successful in reducing systematic biases produced by driving the microphysics scheme

with grid-cell mean variables, as is typically done. The approach is mirrored with THOR and

the effects of including this technique are quantified for the cases that involve precipitation,

RICO, DYCOMS, MPACE, and ASTEX. The sampling approach used to drive the radiation

scheme is similar in many respects, but uses a straight Monte Carlo technique rather than

the latin hypercube sampling in the microphysics driver. The effects of using the assumed

PDF to generate sub-columns to calculate radiative transfer are assessed using two cases

that call for an active radiation scheme, MPACE and ASTEX.

3.1. Shallow Cumulus Cases

Seemingly quiescent, it might be somewhat surprising to learn that accurately parame-

terizing shallow cumulus on the SGS is actually a greater challenge than doing so for active

and dynamic stratocumulus. The key difficulty lies in the spatial distribution and spatial

and temporal scale of these clouds in nature. For an atmosphere conducive to cumulus
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convection, the majority of the spatial extent of the cloud layer is occupied by slowly de-

scending, clear air, which by its vertical movement, gradually dries and warms the cloud

layer. The remainder of the spatial extent of this layer contains the clouds that define the

layer. The clouds are created by relatively small scale and ephemeral buoyant thermals,

whose thermodynamic and dynamic properties differ greatly from the majority surrounding

environment. The rising thermals reach the lifted condensation level, condense some of their

water vapor releasing latent heat, and gain kinetic energy due to their buoyant advantage

over the surrounding environment. Throughout their lifetimes, turbulence eddies on the

edges of the clouds mix relatively dry and cool air from the surrounding environment, dilut-

ing the original thermals and robbing them of their kinetic energy and buoyancy, eventually

leading to their demise. By this physical arrangement, that the greatest extent of the cloud

layer consists of slowly warming and drying clear and nearly stationary air and only a small

portion contains the active heat-, momentum-, and moisture-transporting elements, the sta-

tistics of such a layer are more difficult to describe by a subgrid model than a stratocumulus

layer that can be considered more homogeneous in comparison. In statistical parlance, the

thermodynamic and dynamic properties of a cumulus cloud layer can therefore be highly

skewed – the probability density function that describes the distribution of vertical velocity,

for example, has a component that has a small spread around a small negative value and

a component that has a large spread around a larger positive value. Properly representing

such skewness requires a good handle on the third-order moments in such a layer, and as

discussed previously, higher-order moments can be more difficult and costly to accurately

estimate and are more poorly constrained by observations.
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In order to determine how well THOR can parameterize shallow cumulus convection,

two cases from the GASS1 boundary layer cloud working group have been simulated. One

case is based on the Barbados Oceanographic and Meteorological Experiment (BOMEX)

measurement campaign and the other is based on the Rain In Cumulus over the Ocean

(RICO) field program. For both cases, the results will focus on the simulated cloud structure

and the turbulence statistics, and where possible, the results are compared to the published

results from the LES intercomparisons for each case. Along with results from the control

simulation, results from the various sensitivity test are discussed as well.

3.1.1. BOMEX Case. The BOMEX case is based on an undisturbed and steady period

of shallow cumulus convection that was observed during the field campaign. The case co-

ordinators provided profiles of the initial mean potential temperature, water vapor content,

and horizontal winds. The surface heat and momentum fluxes are all prescribed, and the

modeled atmosphere is subjected to weak subsidence, a large-scale pressure gradient, and

weak horizontal advection of moisture. The radiative heating rate is prescribed and assumes

only longwave cooling. For complete details of the case specifications and LES results, the

interested reader is directed to the paper by Siebesma et al. (2003). The LES models pro-

duced a cloud field with a maximum cloud fraction near 6%, a cloud base around 500 m and

a cloud depth of between 1 and 1.5 km.

Using the initial profiles and forcings as specified in Siebesma et al. (2003), for the control

simulation, THOR used a grid spacing of 100 m and a time step of 1 s. The domain size was

3 km and the simulation was run for 6 hours of simulated time. For all profiles produced for

this case, the output was averaged over the last 3 hours of the simulation. Each set of plots

1GASS is an acronym that stands for Global Atmospheric Systems Study and is part of Global Energy and
Water Exchanges Project (GEWEX). GEWEX is a core project of the World Climate Research Programme
(WCRP). GASS has been previously known as GEWEX Cloud Systems Study (GCSS).
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shows many pieces of information. First, the initial profiles are denoted by a dotted black

line. The results from the LES intercomparison are displayed using the following convention:

the mean of the LES results is plotted with a thick black dashed line, and the range of LES

values are denoted by thinner black dashed lines. Output from THOR is displayed with

thick solid lines; black will always denote the control simulation. Thick solid colored lines

will denote specific sensitivity experiment values from THOR.
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Figure 3.1. Profiles of θil (left) and qt (right) for the grid spacing sensitiv-
ity test. Solid lines denote THOR output. The black sold line denotes the
control THOR simulation. Colored solid lines denote output from sensitivity
tests. The black dotted line denotes the initial profile. The black dashed lines
denote output from the LES intercomparison; the thickest dashed line is the
LES mean, while the thinner dashed lines denote the minimum and maximum
values from the LES intercomparison.

Figure 3.1 shows the mean thermodynamic profiles for the BOMEX case. Four distinct

stability zones are evident: a shallow neutral sub-cloud layer up to about 500 m, a condi-

tionally unstable cloud layer from 500 m to about 1400 m, a stable inversion layer from 1400

m to about 2000 m and the near pseudo-adiabatic free troposphere above about 2000 m.
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Moisture decreases from the sub-cloud layer up to the free troposphere as the distance from

the ocean source increases. Of note if the very tight packing of lines in both plots. There is

very little difference among the control, the three sensitivity tests, the LES simulations, and

the initial conditions. Of course, one might expect the mean profiles to change little given

weak forcing, but there are a few minor differences worth noting. The first is that the inver-

sion layer is slightly warmer and drier in the THOR profiles than the LES simulations. The

reason for this, as will be shown in subsequent plots, is slightly underestimated convective

transport due to clouds. To keep the mean profiles in steady-state, the SGS transport of θil

and qt must balance the warming and drying due to subsidence. In the inversion layer in the

THOR simulations, the subsidence forcing overcomes the turbulent convective transport. In

addition, the sub-cloud layer is slightly too moist in the THOR simulations compared to the

LES simulations. This too can be attributed to turbulent transport out of the sub-cloud

layer that is slightly too weak. Nevertheless, it seems encouraging that the THOR simula-

tions match the LES simulations pretty closely, with the THOR profiles nearly universally

staying within the range of the LES results. In addition, there seems to be little difference

among the different grid-spacing choices, signaling that THOR is relatively insensitive to the

choice of grid-spacing for this cloud regime.

The cloud structure simulated by THOR is shown in figures 3.2 and 3.3. For all grid-

spacings less than 200 m, THOR produces a cloud field that has a maximum near 500 m

with a cloud fraction between 6 and 9%. The cloud fraction decreases to a minimum near

1000 m and a secondary maximum appears below the cloud top of around 1500 m. THOR’s

results mirror the LES simulations nicely, although the cloud base is perhaps 100 m too low

and the cloud top is a couple hundred meters too low. Both of these biases are consistent
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Figure 3.2. Profiles of cloud fraction (left) and ql (right) for the grid spacing
sensitivity test. Lines are as in figure 3.1

with the mean profiles discussed above, that the convective turbulent transport produced

by the cloud field is a bit too weak in THOR, causing a cloud base and top that are a bit

too low. The cloud water profile is consistent with the cloud fraction profile, and the cloud

water predicted by THOR is within the range of LES results for all grid spacings except

for 200 m. For the coarsest grid spacing tested, 200 m, both the cloud fraction and water

content diverge slightly from the finer grid spacing and LES results, as the gradients in the

flux profiles are somewhat smoothed out, and the maximum of the turbulent transport is

found slightly lower in the column (see figure 3.4).

The time evolution of the cloud field is shown in figure 3.3 with a time-height cross-

section from the control simulation and a time-series of cloud liquid water path. From the

time series of cloud liquid water path, it is evident that a quasi-steady state was reached in

the simulations for all grid-spacings (except for perhaps the 200 m test) by about 3 hours into

the simulation. The liquid water path from the THOR simulations compares quite favorably
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Figure 3.3. Time-height cross section of cloud fraction from the control case
(top) and time series of liquid water path for all runs of the grid spacing
sensitivity test (bottom). Lines are as in figure 3.1

to the LES results, generally falling within their simulated range. Small oscillations with

a period of a few minutes appear in the three THOR runs with grid spacing less than 200

m. Inspection of the cloud fraction time-height cross section reveals that the oscillation
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is confined to the levels near cloud base. It appears that the oscillation develops as the

cloud base transition from the 650 m level to the 550 m level. It is interesting to note

the development of the the two levels of maximum cloud fraction. Initially, cloud is only

diagnosed near cloud base, but as the atmosphere evolves to its steady state, two distinct

maxima emerge: the cloud base and the cloud top, where the cumulus clouds tend to reach

neutral buoyancy and the cloud properties are mixed or “detrained” into the environment.

The two maxima are somewhat more distinct in THOR than in the LES results according to

figure 3.2, but a cloud fraction maximum near the detrainment zone is a feature that is often

observed in nature. The differences apparent in the THOR 200 m simulation are perhaps

indicative of under-resolving the cumulus clouds. The liquid water path time series for the

200 m test shows an initial underestimation and subsequent “bursts” of convective activity,

contributing to the increased variance of the liquid water path in time.

Profiles of selected second-order moments are shown in figure 3.4. For turbulent moments,

comparison of THOR’s results with LES is a little complicated since the LES results encom-

pass both resolved and SGS contributions. For the LES models, since they are designed

to resolve most of the “energy-containing” eddies, the majority of the turbulent moments

come from the resolved component, and the remainder SGS component is usually calculated

with a simple first-order scheme. For THOR, all of the turbulent moments are from the

subgrid scale, as there are no explicitly resolved eddies in the one-dimensional model. In

addition, since THOR is being used as a single-column model, there is no calculation of a

mean vertical velocity and so the advection terms of all turbulent moments have been as-

sumed to be zero. When THOR is used as a parameterization for a three-dimensional host
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Figure 3.4. Profiles of vertical velocity variance (top left), TKE (top right),
and sensible (bottom left) and latent heat fluxes (bottom right) for the grid
spacing sensitivity test. Lines are as in figure 3.1

model where vertical velocity is calculated, the advective terms should be properly calcu-

lated. With these caveats, a comparison of THOR’s second- and third-order moments to

LES results can still be instructive. For all second-order moments shown, the profiles from

THOR are much “shorter” than their LES counterparts, i.e. the second-order moments go to
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zero near 1500 m (coinciding with cloud top in THOR), whereas turbulent fluxes of heat and

moisture extend perhaps another 500 m in LES and TKE extends nearly up to the domain

top. Few differences can be found among the different grid spacing tests except for the 200

m test. The results from this test show that the cloud layer depth has been further decreased

and the maximum values of the second-order moments are found lower in the column. This

can be explained by examining the third-order moments responsible for transporting the

moisture and heat fluxes and TKE components upward in the column, namely the moments

w′2q′t, w
′2θ′il and w′3, respectively, in figure 3.6. The magnitude of these moments has been

reduced since the mechanical production terms contain gradients that have been smoothed

over by use of the higher grid spacing. In addition, buoyancy terms calculated from the SGS

condensation scheme are a function of skewness. When skewness values are decreased, the

buoyancy production terms decrease with them.
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Figure 3.5. Profiles of the terms in the moisture flux equation for the control
BOMEX simulation. T stands for the transport (third-order moment) term,
M is for the mechanical production term, B is for the buoyancy production
term, and P is for the pressure correlation term. Refer to equation 5 for the
specification of the terms.
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Some of the discrepancy between THOR’s results and LES can be explained by the lack

of advection from resolved eddies as discussed above, but one can also examine second-

order moment budgets to determine if perhaps errors in specific terms create a bias. Figure

3.5 shows the moisture flux budget, or the individual terms in the moisture flux equation.

Although the budget terms are not available for the LES results, one can still get a good

idea as to which terms may lead to THOR’s underestimation of the moisture flux (and

by extension the heat flux) in the cloud layer. From about the middle of the cloud field

and below (about 1000 m), an upward moisture flux is generated by the mechanical and

buoyancy terms and is opposed by pressure correlation term. The transport term transports

the upward moisture flux from the bottom half of the cloud to the top half. Above about

1000 m, the buoyancy and pressure correlation terms reverse their roles. The buoyancy term

contributes to a downward flux of moisture and is opposed by the mechanical, transport and

pressure terms. Since the buoyancy term is the only negative term in the top half of the

cloud, and this appears to be where the moisture flux diverges most from the LES profiles,

this indicates either that the buoyancy term is too strongly negative in this region or that

some combination of the transport, mechanical and pressure terms are too weakly positive

in this region. Given that the magnitude of TKE is more in line with LES results, the

mechanical term is probably not to blame.

Further, mean profiles of several third order moments are shown in figure 3.6. Although

only w′3 was available from the LES results in Siebesma et al. (2003), figures 3 and 4 from

a paper by Larson and Golaz (2005) show the other third-order moments included in figure

3.6 for both the Regional Atmospheric Modeling System (RAMS) LES and the Cloud Layers

Unified By Binormals (CLUBB) model for a general idea as to how THOR compares. The

96



−0.2 −0.1 0.0 0.1 0.2 0.3
 w’3

 (m3 s−3  )

0

500

1000

1500

2000

2500

h
e
ig

h
t 
(m

)

 

 

−0.04 −0.03 −0.02 −0.01 0.00 0.01
 θl’

3
 (K3 )

 

 

−0.05 0.00 0.05 0.10 0.15 0.20 0.25
 qt’

3
 (g3  kg−3 )

 

 

−0.08−0.06−0.04−0.02 0.00 0.02 0.04
 w’2 θl’
 (K m2 s−2  )

0

500

1000

1500

2000

2500

h
e
ig

h
t 
(m

)

 

 

−0.05 0.00 0.05 0.10 0.15 0.20
 w’2 qt’
 (g kg−1  m2 s−2  )

 

 

ctl
25M
50M
200M

Figure 3.6. Profiles of selected third-order moments for the grid spacing
sensitivity test. Lines are as in figure 3.1

magnitude of w′3 compares well with the LES models, but, as with the second-order moments,

the maximum occurs too low in the column. As for the other third-order moments included

in figure 3.6, compared with the models tested in Larson and Golaz (2005), THOR produces

magnitudes of the third-order moments that agree better with LES than CLUBB, although

they still suffer from the underestimation of the cloud top height. Given the relatively good

agreement of the third-order moments with LES, the underestimation of the moisture and

heat fluxes discussed previously probably boils down to the interplay between the buoyancy

and pressure correlation terms in those equations.

As mentioned in the chapter introduction, two additional sensitivity tests were conducted

using the BOMEX case. The next sensitivity test to be discussed explores the effect of using
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Figure 3.7. As in figure 3.3 but for the third-order moment sensitivity test.

diagnostic versus intermediately prognostic versus fully prognostic third-order moments. The

time-height cross-section of cloud fraction for the fully prognostic test and time-series for all

tests in shown in figure 3.7. Upon inspection and comparison with figure 3.3, the immediately

obvious difference is the existence of an oscillation in the cloud field. Such an oscillation has
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Figure 3.8. As in figure 3.2, but for the third-order moment sensitivity test.

been simulated before with similar models (see Firl (2009) and Cheng et al. (2004)). In fact,

the results from THOR reproduce the findings of Cheng et al. (2004), that the oscillation

in the cloud field is worst for a fully prognostic model and can be reduced by switching

to an intermediately prognostic approach. A fully diagnostic approach almost completely

eliminates the oscillation. It is interesting to note that the period of the oscillation changes

depending on how many third-order moments are prognosed. For a fully prognostic approach,

the period seems to be on the order of 15 minutes, but for the intermediately prognostic

approach, the period is closer to 10 minutes.

In addition to the oscillation, using fully or partially prognostic third-order moments

changes the vertical structure of the cloud cover. The fully diagnostic approach has the

most pronounced cloud base and the intermediately prognostic approach has the thinnest

cloud base. The fully prognostic version features a cloud water maximum near mid-cloud

instead of near cloud base. The additional cloud water near the middle of the cloud deck
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causes the liquid water path to be highest for the fully prognostic test case as well, yet even

the worst case still has reasonable agreement with the LES results. It is interesting to note

that despite the significant difference in the time-evolution of the cloud field, the cloud depth

is identical for all methods.
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Figure 3.9. As in figure 3.4, but for the third-order moment sensitivity test.
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Figure 3.10. As in figure 3.6, but for the third-order moment sensitivity test.

Despite the oscillation, the mean profiles of the second- and third-order moments for

the last three hours of all the third-order moment sensitivity simulations are quite similar as

shown in figures 3.9 and 3.10. Although not shown, the oscillation is also present in quantities

such as the moisture flux, but the minimums and maximums appear to cancel each other

out to create mean profiles that very nearly resemble the more steady-state solution of the

control diagnostic simulation. Minor differences exist among the test simulations, including

a slight increase in magnitude and a minor decrease in elevation of the maximum of the heat

and moisture fluxes. Remarkably, even the third-order moment profiles are nearly the same.

There are slight increases in the magnitudes of the skewness of θil and qt as the number

of third-order moments prognosed is increased, but the differences seem minor. Since the

magnitudes and shapes of the third-order moment profiles are nearly the same regardless

101



of the method of calculation, and since the fully diagnostic approach provides the steadiest

solution and weakest oscillation, this sensitivity test seems to provide further encouragement

that the fully diagnostic approach to solving for the third-order moments is a fine choice for

a higher-order closure model.
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Figure 3.11. Shown are the mean turbulence length scales calculated for the
different sensitivity test runs. Dotted lines denote the upward length scale,
dashed lines denote the downward length scale, and the solid lines denote the
“master” turbulence length scale, the geometric mean of the downward and
upward length scales. The control simulation (black lines) uses a constant low
entrainment rate. The NONE (purple) simulation uses no parcel entrainment.
The lines labeled STO (blue and red) use the stochastic parcel entrainment
algorithm, and the lines labeled RK (green and red) use a higher parcel en-
trainment rate.

The last sensitivity test performed in conjunction with the BOMEX case examines the

affects of using different methods and rates of parcel entrainment for the calculation of the

turbulence length scale. Recall from the chapter introduction that higher entrainment rates

tend to reduce the turbulence length scale, increase turbulence dissipation, and generally re-

duce the strength of the parameterized SGS convective overturning. The stochastic entrain-

ment algorithm being tested generates pseudo-random entrainment rates centered around a
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mean rate and calculates a mean length scale from the release of many independent parcels.

Also recall from section 2.2 that the two mean entrainment rates being used are a lower rate

from Golaz et al. (2002) and a higher rate from the Romps and Kuang (2010) paper (hence

RK). The length scales calculated from the various sensitivity test runs are shown in figure

3.11. The greatest difference among the test runs is with the upward length scale. Since

the “master” turbulence length scale is the geometric mean of the downward and upward

length scales, the differences in the master length scale are not as pronounced as with the

upward length scale. The two tests using the higher entrainment rate have the smallest

length scales. It is interesting to note that the control simulation that uses a low, constant

parcel entrainment rate and the test that assumes no parcel entrainment produce the same

length scale, signaling that it might be possible to save computational expense and assume

that no parcel entrainment takes place when simulating a cumulus cloud regime. When

using the low entrainment rate with the stochastic algorithm, there is a slight reduction in

the upward length scale in general, although the profile is smoothed out near the top and

bottom of the domain.

What effect do the different length scales have on the simulated cloud field? According to

figures 3.12 - 3.14, for all cases that assume a low entrainment rate or no entrainment, there

is virtually no difference in the simulations, regardless of whether the stochastic algorithm

was used or not. When the higher entrainment rate is introduced, however, differences

begin to emerge. The run using a constant, high entrainment rate produces a cloud that

is shallower and thicker, leading to the highest cloud liquid water path of those tested.

When the stochastic algorithm is combined with the higher entrainment rate, there is a

little noise introduced into the solution (upon inspection of the liquid water path), but the
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Figure 3.12. As in figure 3.2, but for the length scale entrainment sensitivity test.

solution produces a taller and slightly optically thinner cloud than for the high, constant

entrainment case. The stochastic algorithm doesn’t completely negate the effects of using a

high entrainment rate, but it does seem to improve the simulation if a higher entrainment

rate is used. The second-order moment profiles shown in figure 3.14 confirm the hypothesis

that using a higher entrainment rate leads to decreased turbulence length scales and more

turbulence dissipation. The runs using a higher entrainment rate show reduced vertical

velocity variance and TKE and the maxima of the vertical heat and moisture fluxes are

found lower in the column, signifying reduced convective overturning.

3.1.2. RICO Case. The RICO case shares many characteristics with the BOMEX case.

The initial profiles and large-scale forcings describe a state of the atmosphere conducive to

shallow cumulus and the case specifications were created from observations during a several-

week relatively undisturbed period that featured shallow, lightly precipitating cumulus. As
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Figure 3.13. Time-series of liquid water path for the length scale entrain-
ment sensitivity test. Lines are as in figure 3.1

with BOMEX, this case can be considered a “composite” case, where the atmospheric con-

ditions are based on an averages over a sufficiently long time period, and therefore the model

results should not be compared with observations from a specific time period within the

observational campaign. A key difference between the two cases are that the RICO field

campaign featured slightly more robust cumuli with appreciable precipitation. One of the

goals of the LES intercomparison featuring this case was to examine the impact of differ-

ent microphysical parameterizations on the precipitation generated by shallow cumuli and

to determine what affect differences in precipitation might have on the cumulus cloud field

(vanZanten et al. 2011).

Interested readers are directed to vanZanten et al. (2011) for a complete description

of the case simulated here, although pertinent details are included below. As with the

BOMEX case, initial profiles are provided for potential temperature, water vapor specific

humidity, and the horizontal components of momentum. Throughout the simulation, these

mean variables are modified by prescribed surface fluxes, prescribed large-scale horizontal

105



w’2

0.0 0.2
w’2

(m2 s−2  )

0

500

1000

1500

2000

2500

3000
h
e
ig

h
t 
(m

)
TKE

0.0 0.2 0.4 0.6
TKE (m2 s−2  )

ctl
NONE
STO
RK_CONST
RK_STO

w’θil


−20 −10 0
w’θil


 (W m−2  )

0

500

1000

1500

2000

2500

3000

h
e
ig

h
t 
(m

)

 

 
w’qt’ 


0 50 100 150
w’qt’
 (W m−2  )

 

 

Figure 3.14. As in figure 3.4, but for the length scale entrainment sensitivity test.

advection of temperature and moisture, prescribed subsidence, prescribed geostrophic winds,

and a prescribed radiative heating rate. The resultant cloud field produced by the LES

participants was an approximately 2000 m deep field of shallow cumulus with a maximum

cloud fraction at cloud base (∼500 m) of around 6%. THOR was run for 24 hours of

simulated time with a grid spacing of 40 m (for the control) and a time step of 1 s over a
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4000 m domain. The results presented in this section feature profiles averaged over the last

4 hours of the simulation, and the convention for plot lines and colors follows section 3.1.1.
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Figure 3.15. Mean profiles of θil (left) and qt (right) for the last four hours
of the control and grid spacing sensitivity test runs. Solid lines denote THOR
output, with the black representing the control run and colors indicating sen-
sitivity test runs. Black dashed lines denote LES ensemble results, with the
thickest dashed line denoting the LES ensemble mean and the thinner dashed
lines denoting the LES ensemble range. The black dotted lines denote initial
conditions.

The mean profiles for the ice-liquid-water potential temperature and total water specific

humidity are shown in figure 3.15 for the control grid spacing and for tests using 20 m, 80 m,

160 m, and 320 m. Overlaid are the LES intercomparison results in black dashed lines, with

the heaviest dashed line being the mean and the lighter dashed lines denoting the range of

LES results. Although the profiles are initialized with only two layers (a subcloud layer with a

neutral profile and a free atmosphere layer near pseudoadiabatic), four distinct layers develop

during the simulation due to the imposed forcing (just like BOMEX): a subcloud layer, a

cloud layer, an inversion layer, and a free tropospheric layer. In general, the agreement

between THOR and the LES models is good, although there are some notable differences.
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As with the BOMEX case, the subcloud layer (below about 500 m) is considerably too moist,

with all THOR runs producing profiles outside of the range of LES results. In addition, the

inversion layer in THOR is too low by several hundred meters, signifying that the convective

flux underestimation problem noted in section 3.1.1 is again present in the RICO case.

Notable differences among the grid spacing tests do not begin to show up in the mean

thermodynamic profiles until the 320 m test. For this test, the inversion layer is even lower

than for the other runs.
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Figure 3.16. Mean profiles of cloud fraction (left) and ql (right) for the grid
spacing sensitivity test runs. Lines are as in figure 3.15.

The simulated cloud structure is shown in figure 3.16. All THOR runs certainly produce

cumulus-like profiles with the maximum cloud fraction approaching 19% in the worst simu-

lation (the 320 m run). Both cloud fraction and cloud liquid water content magnitudes are

generally in line with the LES results for all grid spacings below 320 m, although cloud height

is underestimated in all simulations compared to LES. An interesting difference is exposed

when examining the cloud structure produced by THOR with different grid spacings. For fine
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grid spacings, 80 m or below, a tri-model structure is evident with local maxima near cloud

base, near the middle of the cloud field, and at cloud top. For the 160 m grid spacing test,

a familiar bi-modal structure develops with maxima at cloud base and in the detrainment

zone at cloud top. For the coarsest grid spacing, 320 m, there is only a single, overestimated

cloud fraction maximum near the middle of the cloud field. To dig a little deeper into the

tri-model structure simulated with finer grid spacing runs, it is useful to recall how the mean

cloud fraction is calculated at each level, in equation (86). The mean cloud fraction is the

sum of the cloud fraction diagnosed from each Gaussian plume multiplied by the weight of

each Gaussian plume. It turns out that the middle maximum is a product of cloud being

diagnosed in the “environmental” plume (plume 1), which can be interpreted as non-core

or non-dynamically active cloud. So, while the tri-modal structure may be erroneous, it is

diagnosed from a portion of the PDF that is much less active in determining the buoyancy

terms that influence the turbulence calculated by the higher-order closure model.

Figure 3.17 displays the time evolution of the cloud field. The cloud fraction time-height

cross-section shows that after an initial burst of cloud activity during the spin-up period, a

smooth evolution of the cloud field ensues, as the cloud base slowly lowers to about 400 m and

the cloud top slowly rises to about to about 2000 m. The erroneous middle-cloud maximum

is evident and seems to rise at the same rate as the cloud top. The liquid water path for grid

spacings below 80 m are consistent with each other and is slightly underestimated compared

to the LES mean although well within the range of LES results. Since the magnitude of

the cloud water content is very similar for THOR and the LES models, the underestimation

of cloud liquid water path is attributable to the underestimation of cloud top height. For

grid spacings of 160 and 320 m, the liquid water path increases, although it is not until
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Figure 3.17. Time-height cross-section of cloud fraction for the control run
(top) and liquid water path time-series for the control run and grid spacing
sensitivity runs. Lines are as in figure 3.15.

320 m until the liquid water path predicted by THOR begins to reach the maximum values

obtained by LES.
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To gain a better understanding of the cloud field produced by THOR, it is interesting

to look at trivariate double-Gaussian PDFs that are diagnosed from the predicted higher-

order moments. Figures 3.18 - 3.20 depict the actual PDFs diagnosed in THOR for three

regions in the atmospheric column: sub-cloud (figure 3.18), cloud base (figure 3.19) and mid-

cloud (figure 3.20). For each of these figures, the cloud fraction time-height cross-section is

displayed in the bottom right corner with a red X to denote the point in time and space

where the PDF is taken from. Overlaid green contours in this plot show lines of constant

TKE. The two plots on top and the one furthest right are single-variate PDFs for w, θil

and qt, with the the solid lines denoting the total (weighted sum of both Gaussian plumes)

PDF, the dashed lines denoting plume 1 (the “environmental” plume), and the dotted lines

denoting plume 2 (the active or “updraft” plume). The three remaining plots show the

bivariate joint PDFs between w and qt (center left), θil and qt (center right), and w and θil

(bottom left). The solid contours in each of these plots show deciles of probability while the

dashed contour shows 0.01% of the maximum probability. Points plotted with symbols in

the w-qt bivariate PDF denote mean values of the individual Gaussian plumes, a + symbol

for plume 1 and a * symbol for plume 2. The solid line in the θil-qt joint PDF represents the

generalized and linearized saturation curve. Points above this line are saturated while points

below are unsaturated. Finally, the blue and red asterisks in the θil-qt joint PDF plot show

the actual (θil, qt) samples chosen from the latin-hypercube sampling algorithm to drive the

microphysics parameterization, where the blue symbols are in-cloud and the red symbols are

extra-cloud.

The sub-cloud PDF plot (figure 3.18) shows that there is considerable variability in w

and qt, but little in θil. Plumes 1 and 2 are relatively equally weighted (since the dashed
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Figure 3.18. Graphical representation of the trivariate double-Gaussian
PDF for the sub-cloud layer of the RICO control simulation. The bottom
right plot is for orientation purposes and shows the cloud fraction in white
contours and the TKE in green contours, with the red X denoting the partic-
ular point in time and space for the PDFs shown in the rest of the plots. The
top and right plots show single-variate PDFs whereas the middle and bottom-
left plots show bivariate PDFs. The axes labeled on the exterior of the plots
are valid for the interior plots as well. Symbols and contours for the PDF plots
are explained in the text.
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and dotted lines in the single-variate PDFs are roughly the same magnitude), signifying that

turbulence is somewhat isotropic in this layer and upward- and downward-fluxing eddies are

in rough balance. There is little skewness in any of the variables, and the mean values for

each plume are close to the grid-cell mean values. This particular grid cell is completely

clear with none of the θil-qt bivariate PDF above the saturation line. The only bivariate

PDF that shows much correlation is the w-qt bivariate PDF which is positively correlated

(due to its tilt), although you might expect this since w′θ′il and θ′ilq
′
t are both small below

cloud base (see figures 3.21 and 3.22).

At cloud base (figure 3.19), the PDF changes significantly. First, from looking at the

univariate PDFs, it is apparent that the environmental plume dominates in terms of weight.

The PDFs from plume 2 are barely visible in any of these plots since the value of a, the

Gaussian weight of plume 2, is very small (on the order of 1/100). One can get an idea for

how the plume 2 PDF affects the total PDF by examining the bivariate PDFs. The dashed

contours show that while the total PDFs are dominated by the lower-variance environmental

plume, the higher-variance plume 2 adds significant variance to the “tails” of the total PDF.

On which side of the mean value the tail is weighted is governed by the skewnesses of the

variables. Skewnesses for w and qt are strongly positive since their PDF tails are strongly

weighted toward the positive side. In fact, the mean values of w and qt for plume 2 are

about 1 m s-1 and 1 g kg-1 higher than for plume 1. In addition, some of plume 2 is above

the condensation line, signifying the presence of cloud. Finally, while the latin hypercube

samples for the clear portion (red) are tightly packed in the low-variance environmental

plume, the cloudy samples (blue) are spread out more, reflecting the higher variance of the

updraft-containing plume 2.
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Figure 3.19. As in figure 3.18, but for a representative cloud base location.

In the middle of the cloud, the PDF changes more subtly. The variances of θil and qt in

the environmental plume increase as one gets closer to the subsidence inversion. In addition,

the w-θil and θil-qt bivariate PDFs show significant negative correlation as the correlation

in the w-qt bivariate decreases, which is again consistent with the profiles of w′θ′il, w
′q′t, and

θ′ilq
′
t closer to the inversion. The increasingly negative correlation in the θil-qt bivariate PDF,
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Figure 3.20. As in figure 3.18, but for a representative mid-cloud location.

together with increasing environmental variances of these variables, tilts this bivariate PDF

to a more favorable position for the SGS condensation scheme to diagnose condensation in

the environmental plume, which might help to explain the tri-model structure discussed in

conjunction with figure 3.16. Lastly, there is significant skewness for all variables since the

PDFs are weighted toward one side of the mean values for each variable. The mean values
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of plume 2 are over 1 m s-1 higher for w, about 0.4 g kg-1 higher for qt and about 0.5 K lower

for θil than plume 1 at this time and height.

For the RICO case, the profiles of the vertical fluxes of θil and qt and the variance of w

look pretty similar in comparison to LES than they do for the BOMEX case. The vertical

velocity variance is too high in the sub-cloud layer and in the cloud layer, although the shape

of the profile is what one would expect. The magnitude of TKE in the cloud layer is very

close to what is calculated for the LES models, but is underestimated in the subcloud layer.

This suggests that the horizontal components of TKE must be significantly underestimated,

but this is not that surprising of a result since the LES models are probably capturing a

lot of lateral movement due to cold pools at the surface and detrainment and entrainment

activity in the cloud layer that is missing in THOR. The underestimation of the vertical

thermodynamic fluxes continue to be an issue as well, although they generally fall within

the range of LES results. For all profiles in figure 3.21, all grid spacing tests yield similar

results with the exception of the 320 m test, which tends to place maxima even lower in the

column than the others.

The thermodynamic variances and covariance are shown in figure 3.22. As with other

second- and third-order moments, the profiles are too short, maxing out near the cloud top

simulated by THOR around 2000 m. The inversion maxima for these quantities are greater

than LES for several reasons. First, the subsidence inversion in the THOR runs ends up being

sharper than the one created by LES. In an LES, presumably there are many convective

elements as in nature, where some are more buoyant and dynamically active than others and

ultimately reach higher heights. Perhaps some of these elements reach above the inversion

layer, providing a type of “diffusion” that helps to smooth out the profiles near the inversion.
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Figure 3.21. Mean profiles of the vertical velocity variance (top left), TKE
(top right), sensible heat flux (bottom left), and latent heat flux (bottom right)
for the control and grid spacing sensitivity runs. Lines are as in figure 3.15.

THOR seems to have trouble representing this process with a higher-order closure statistical

approach. Nevertheless, a sharper inversion leads to higher thermodynamic variances in

the inversion layer through the mechanical production term. Second, turbulent transport

due to the third-order moments could be too strong, transporting too much variance to the
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inversion layer. This seems unlikely, as the the magnitude of the third-order moments seems

to be well in-line with LES results for the shallow cumulus regime and these terms simply

transport variance, and a resultant underestimation or minimum of variance would need to

be present in other layers, which is not the case with THOR. Third, the turbulence time

scale could be too large in the inversion layer, leading to turbulence dissipation that is too

weak. While this is a possibility, it is difficult to test this hypothesis, since this quantity

is seldom measured. If anything, however, it would seem that turbulence dissipation is too

strong near and above the inversion since the profiles of all turbulence statistics are too short

in general.
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Figure 3.22. Mean profiles of the ice-liquid water potential temperature vari-
ance (left), ice-liquid water potential temperature-total water specific humidity
covariance (center) and total water specific humidity variance for the control
and grid spacing sensitivity runs. Lines are as in figure 3.15.

As with the BOMEX case, additional sensitivity tests were performed to determine

THOR’s sensitivity to different model formulations. Two of the sensitivity tests that seemed

to have the largest impact for the BOMEX case are repeated for the RICO case: the turbu-

lence length scale entrainment sensitivity test and the third-order moment diagnostic versus

prognostic sensitivity test. Given the similarities of the simulated atmospheres between the

BOMEX and RICO cases, one would expect similar sensitivities for these tests, and this is
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largely the case, so less detail is included in the analysis of these sensitivity tests. Pertinent

plots are included for the interested reader as verification for the sensitivities discussed in

the previous section.

Figures 3.23 and 3.24 show the vertical structure and evolution of the cloud fields pro-

duced from the length scale entrainment sensitivity runs. As with the BOMEX case, runs

that used lower entrainment rates produced deeper and thinner clouds with more realistic

profiles. Although the liquid water path for the lower entrainment runs are underestimated

compared to the LES mean, this is mostly an artifact of too-shallow cloud depths. The

higher entrainment rate run using the stochastic algorithm produced a liquid water path

with better agreement to the LES mean, although the profiles show that both cloud fraction

and liquid water are considerably overestimated in the mid and upper portions of the cloud

field.
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Figure 3.23. Time-series of liquid water path for the length scale entrain-
ment sensitivity runs. Lines are as in figure 3.15.

Next, the profiles and time evolution of the cloud field for the diagnostic versus prognostic

third-order moment sensitivity test are include in figures 3.25 and 3.26. The cloud fraction
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Figure 3.24. As in figure 3.16, but for the length scale entrainment sensitiv-
ity test.

time-height cross-section in figure 3.25 shows the evolution of the cloud field for the fully

prognostic third-order moments run. As with the BOMEX case, it features an oscillation,

but with a longer period, on the order of 20 minutes (compared to about 15 for the BOMEX

case). Also confirming the sensitivities discussed in the previous section, the more third-order

moments are predicted, the higher the liquid water content of the clouds and the higher the

erroneous mid-cloud peaks in cloud fraction and cloud water content.

One sensitivity test not included for the BOMEX case is the elimination of the latin

hypercube sampling algorithm for driving the microphysics parameterization since micro-

physical processes were excluded from that case. Since microphysics is a main thrust of the

LES intercomparison of vanZanten et al. (2011), it is prudent to include microphysics for

the RICO case and, further, to determine the effect of not using a sampling algorithm to

drive the microphysics scheme. In the plots that follow, the run that uses grid cell mean

values to drive the microphysics scheme is labeled NO-LH (for no latin hypercube sampling).
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Figure 3.25. As in figure 3.17, but for the third-order moment calculation
sensitivity test.

Figure 3.27 shows the surface precipitation rate for the control case versus the NO-LH test.

The control simulation produces a surface precipitation rate that agrees well with the LES

ensemble mean, and the surface precipitation rate seems to level out near the end of the
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Figure 3.26. As in figure 3.16, but for the third-order moment calculation
sensitivity test.

simulation around 0.4 mm day-1. The NO-LH simulation shows that when PDF sampling is

turned off, THOR produces no precipitation whatsoever. The reason for this is straightfor-

ward. In the RICO case, all precipitation is generated by the so-called “warm rain” process,

meaning that precipitation is only generated in the microphysics parameterization through

the rain autoconversion process. This term generates rain when cloud water exceeds a cer-

tain threshold. For the shallow cumulus clouds generated in the RICO case, there is never

enough cloud water to trigger this process. Of course, the microphysics parameterization

could be “tuned” to include a lower autoconversion threshold, but such a tuning would likely

introduce a systematic overestimation bias for clouds with higher water contents. The rain

autoconversion term for the control simulation with the latin hypercube sampling active is

shown in figure 3.28, and demonstrates the random nature of the sampling process nicely.

Although in the grid cell mean sense there is not enough cloud water content to create rain

(according to the NO-LH test), there are presumably pockets in the cloud where local water
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contents are high enough to have larger droplets that end up falling as rain. The sampling

process seems to mimic nature satisfactorily by randomly selecting areas of the PDF where

cloud water contents are high enough to produce rain. The time-height cross-section shows

that the highest autoconversion rates are scattered in the middle part of the cloud and lighter

rates are generated more consistently near cloud top and cloud base.
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Figure 3.27. Time-series of surface precipitation rate for the control and
NO-LH sensitivity run. Lines are as in figure 3.15, although the red line is
along the abscissa axis.

Since the disabling of the PDF sampling feature in the NO-LH run effectively shut off

all precipitation, what effect will this have on other atmospheric variables? The mean ther-

modynamic profiles are shown in figure 3.29 for both runs. There are a couple of differences

that bear discussion. The first is that the subsidence inversion is higher for the NO-LH

test and the second is that there is more total moisture higher in the column and less in

the sub-cloud layer for the NO-LH test. This is consistent with the absence of precipitation

because the cloud water stays suspended higher in the column and there is no precipitation

to evaporate in the sub-cloud layer to moisten it.
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Figure 3.28. Time-height cross-section of the rain autoconversion rate cal-
culated in THOR for the control simulation.

The cloud fraction difference time-height cross-section is shown in figure 3.30. Not sur-

prisingly, the cloud fraction increases substantially when precipitation is effectively shut

down. In addition, the cloud top and cloud base both rise. Without precipitation robbing

the cloud of moisture, loading the updrafts with falling mass, and moistening the sub-cloud

layer through evaporation, the simulated cloud is slightly more energetic, reaching a higher

altitude, and cloud base is raised a tad without the extra sub-cloud moisture to bring it

downward. With a cloud layer that is slightly deeper and moister, the liquid water path for

the NO-LH test is increased compared to the control simulation (figure 3.31).
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Figure 3.29. As in figure 3.15, but for the no-latin-hypercube-sampling sen-
sitivity test.

Lastly, the turbulent flux and TKE profiles are shown in figure 3.32 for the no-PDF-

sampling sensitivity test. From examining the mean thermodynamic profiles, it was deter-

mined that the simulation without PDF sampling produced slightly more energetic clouds,

and the figure 3.32 confirms this. Both the vertical velocity variance and the TKE were

increased substantially throughout the cloud layer. In addition, the turbulent fluxes of θil

and qt are significantly stronger throughout much of the column and especially in the cloud

layer. The reasons for this are that the mechanical production and buoyancy terms in the

w′θ′il and w′q′t equations were increased in the absence of precipitation.
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Figure 3.30. Time-height cross-section of the difference in cloud fraction
between the NO-LH run and the control.
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Figure 3.31. Time-series of the liquid water path for the no-latin-hypercube-
sampling sensitivity test. Lines are as in figure 3.15.
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Figure 3.32. As in figure 3.21, but for the no-latin-hypercube-sampling sen-
sitivity test.

3.2. Stratocumulus Cases

The challenge in simulating stratocumulus stems from the finely balanced nature of these

cloud systems. The synoptic conditions under which these clouds usually form consist of

strong, deep anticyclonic subsidence over a relatively cool ocean surface. The sea provides

127



a constant supply of moisture and energy to the boundary layer in the form of moderately

strong latent heat fluxes and relatively weak sensible heat fluxes. The warming and drying

caused by the subsidence aloft tends to create a distinct boundary between the warm, dry

free tropospheric air aloft and the cool, moist boundary layer air below. Thus, the first form

of balance is between the strength of the subsidence and the magnitude of the surface heat

fluxes. Tip the balance in favor of the surface heat fluxes, and the boundary layer deepens.

Tip the balance in the other direction, and the subsidence drags the the temperature inversion

lower.

Between the trapped boundary layer moisture and the cool temperatures, it is relatively

easy to reach the condensation threshold and stratocumulus clouds readily form. As the

vapor condenses, it releases latent heat that adds buoyancy and helps to generate TKE.

Since the TKE is simply a measure of the strength of the individual turbulent eddies, higher

TKE air contains individual eddies with sufficient energy to overcome the strong stability

associated with the temperature inversion. These eddies participate in entrainment, mixing

cool, moist air out of the boundary layer but also bringing in warmer and drier air into

the boundary layer. The warm, dry air is then mixed well by other turbulent eddies in the

boundary layer, and in this way the mean boundary layer properties are modified. Thus, a

second balance is recognized. Latent heating generated by the stratocumulus clouds helps to

generate TKE. The strength of the in-cloud TKE influences how much dry air is introduced

into the boundary layer. Such entrainment adds mass to the boundary layer and deepens it.

However, when enough dry air is entrained, it can thin or dissipate the clouds, cutting off

the supply of TKE, decreasing entrainment, and lowering the inversion once again.
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The balance is further complicated by radiative transfer, drizzle, and cloud top evapo-

ration. The presence of thick cloud cover generates strong cloud-top radiative cooling and

much weaker radiative warming near cloud base. The strong radiative cooling at cloud top

together with evaporative cooling from dry, entrained air generates TKE by the circulations

induced by sinking, negatively-buoyant parcels. The weak radiative heating at cloud base

enhances latent heating there, further adding to the turbulent circulations in the cloud. If

drizzle is being generated by the cloud, it can serve to reduce the cloud’s water content

and associated cloud-top radiative and evaporative cooling. Further, drizzle serves to redis-

tribute latent heating, depending on where the precipitation ends up. If it evaporates in the

sub-cloud layer, it removes the potential evaporation in the cloud layer, effectively leaving

its latent heat there, and cools the sub-cloud layer where it evaporates. The heating-over-

cooling profile adds static stability to the layer where this mechanism takes place, while

reducing static stability immediately above and below this layer, with heating-below and

cooling-above profiles, respectively. If the drizzle reaches the surface, then only the latent

heat of condensation is left in the cloud, while the potential evaporation ends up in the

ocean.

The stratocumulus story is yet more complicated when one considers the role of cloud

condensation nuclei (CCN) and their potential influence on drizzle and cloud albedo. In

regions of high CCN, a given amount of cloud water condenses to form relatively more

numerous cloud droplets. Large populations of small cloud droplets are not conducive to

efficient generation of precipitation, so whatever the role that precipitation plays is reduced

or muted in regions of high CCN. In addition, many small cloud droplets increase the

reflectivity of stratocumulus clouds and may enhance cloud-top radiative cooling as well as
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cloud-top evaporative cooling. The opposite is true if there are few CCN. The available

water condenses to make fewer but larger cloud droplets, increasing precipitation efficiency,

decreasing cloud albedo, and cloud-top cooling.

Despite the complex and subtle balance associated with stratocumulus clouds, it is im-

portant that atmospheric models be able to represent some of their key features given their

important role in the climate system. In this study, THOR’s ability to simulate these clouds

and its sensitivities to several model formulations are investigated. Two challenging test

cases are used toward this purpose: one based on the Second Dynamics and Chemistry of

Marine Stratocumulus (DYCOMS) field campaign that took place off the coast of southern

California and one based on the Mixed-Phase Arctic Cloud Experiment (MPACE) that took

place off the north slope of Alaska. As with the two cumulus cases, analysis will focus on the

simulated cloud structure and the turbulence statistics for each case and the results from

THOR, including sensitivity tests, will be compared with results from LES models.

3.2.1. DYCOMS Case. The DYCOMS case is based on an idealization of the second

research flight, named RF02, of the DYCOMS II field campaign. The flight measured popu-

lations of both open-cell stratocumulus with significant drizzle and closed-cell stratocumulus

with little precipitation. Details of the simulation setup and the LES intercomparison results

can be found in Ackerman et al. (2009). The simulation is initialized with profiles of potential

temperature, total water mixing ratio, and horizontal wind components that represent an

average of both open and closed cell observations. Forcings include prescribed subsidence,

a large-scale pressure gradient, prescribed surface fluxes, and a simple longwave radiation

parameterization that depends on the liquid water path. In addition, a cloud droplet sed-

imentation flux parameterization is included in the forcing. The control THOR simulation

130



uses a uniform 25 m grid spacing and a 1 s time step. The simulation is run for 6 simulated

hours and the domain is 1500 m. Note that for simplicity, the grid was assumed uniform for

the THOR runs, while the LES models used in the intercomparison used a stretched grid

with 5 m grid spacing near the surface and the inversion, stretched to 25 m in the interior

of the boundary layer and up to 80 m above the boundary layer.
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Figure 3.33. Mean profiles of θil and qt for the last three hours of the control
and grid sensitivity test runs. As in the previous cases, solid lines represent
output from THOR with the black denoting the control run and colors denoting
sensitivity test runs. Black dashed lines represent the LES ensemble results,
with the thick dashed line denoting the LES ensemble mean, and the thin
dashed lines representing the range of LES ensemble results. The thin black
dotted line represents the initial conditions.

The mean profiles of θil and qt for the last 3 hours of the simulation are shown in

figure 3.33 for the control simulation, all grid spacing sensitivity tests, and the LES models,

together with the initial profiles. At first glance, it appears that all models do a reasonably

good job, but there are certainly differences among the various grid spacing runs that bear

discussion. First, the run that most faithfully reproduces the LES mean values is the 10 m

grid spacing run. As grid spacing increases, the sharp inversion at cloud top is smoothed out
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and it appears that the mixed layer becomes shallower. In addition, the mixed layer becomes

moister and cooler. This could be the result of a reduced cloud-top entrainment rate. If

the inversion layer is “perceived” to be 50 or 100 m thick, perhaps it becomes more difficult

for the model to accurately represent the SGS entrainment process statistically. Further

analysis is needed to confirm this, however.
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Figure 3.34. Mean profiles of the cloud fraction (left) and ql (right) for the
control simulation and grid spacing sensitivity tests. Lines are as in figure
3.33.

The time mean and temporal evolution of the cloud structure is presented in figure 3.34

and 3.35. As with the mean thermodynamic profiles, the smallest grid spacing seems to

represent the cloud structure best, although even at 10 m, the simulation is not in perfect

agreement with the LES ensemble mean. The cloud base is perhaps 50 m too low and the

maximum cloud water content is underestimated by about 0.1 g kg-1. Coarser resolutions

have better agreement with the maximum liquid water content, but the cloud base becomes

lower with increasing grid spacing along with the smoothed out cloud-top inversion. Looking

at the time-series of the cloud liquid water path, the deeper simulated stratocumulus deck
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Figure 3.35. Time-height cross-section of the cloud fraction (top) and time-
series of the cloud liquid water path (bottom) for the control and grid spacing
sensitivity test runs. Lines are as in figure 3.33.

in the coarser resolutions leads to a significant overestimation, whereas the underestimated

cloud liquid water content of the finest resolution run leads to an underestimation of the

liquid water path, although still within the range of LES results. Another significant aspect
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of the error introduced for the coarser resolution runs is the fact that the liquid water path

is still increasing at the end of the simulation while it is decreasing for the finer resolution

runs and for the LES models. The control simulation’s liquid water path matches the LES

results the best, although it appears to be due to compensating errors, as the cloud is both

too deep and too low on liquid water content compared to the LES mean.

Profiles of selected second- and third-order moments are shown in figures 3.36 - 3.39.

The two finest resolution THOR runs seem to produce the correct magnitude of vertical

velocity variance in the cloud layer, but all tests overestimate this quantity in the sub-cloud

layer. Interestingly, although w′2 is in good agreement or slightly overestimated, the TKE

profiles from THOR all show a significant underestimate of TKE throughout the boundary

layer. Perhaps the single-column model framework is to blame for the underestimations of

the horizontal TKE components. The profiles of the fluxes of w′θ′il and w′q′t are particularly

interesting. Although the LES models can most likely explicitly resolve the turbulent ed-

dies that participate in the cloud-top entrainment process, a higher-order closure model like

THOR most certainly cannot. Such models can only describe the statistics of what is hap-

pening at cloud top, and how well the cloud-top entrainment process is represented can be

gleaned from examining these profiles. The entrainment process consists of eddies bringing

warm, dry air downward and cool, moist air upwards, contributing to a negative value of

w′θ′il and positive w′q′t. With figure 3.36, analysis is a little muddled by the fact that these

quantities were supplied from the LES model intercomparison as “total” fluxes of θil and

qt, which includes things like the radiative fluxes and the precipitation fluxes. Regardless,

one can get a reasonable idea as to how well the higher-order closure scheme is representing

cloud-top entrainment by comparing these quantities with LES. For both quantities, the 10
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Figure 3.36. Mean profiles of vertical velocity variance (top left), TKE (top
right), sensible heat flux (bottom left), and latent heat flux (bottom right) for
the control and grid spacing sensitivity test runs. Lines are as in figure 3.33.

m and 25 m grid spacing runs seem to be doing a good job, as their profiles straddle the

LES ensemble mean values. For coarser resolutions, the agreement is considerably worse,

although still mostly within the range of LES models. Another measure of cloud-top entrain-

ment is the depth of the boundary layer. For this case, the boundary layer top is defined as

135



the height at which the total water mixing ratio crosses 8 g kg-1. Figure 3.37 shows that the

boundary layer depth for the control case and for the 10 m grid spacing case rises monoton-

ically, the 10 m case rising somewhat faster than the LES ensemble mean and the control

simulation rising slightly slower than the LES ensemble mean. Both of these are consistent

with the flux profiles. The coarser grid spacing test cases show little or no boundary layer

deepening, suggesting the cloud top entrainment is too weak is these runs.
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Figure 3.37. Time-series of boundary layer top height for the control and
grid spacing sensitivity test runs. Lines are as in figure 3.33.

For the thermodynamic variances, the maximum values are underestimated compared

to LES mean values. This results contrasts with the cumulus cases, where these quantities

were overestimated, especially near the inversion layer. The rest of the these profiles are

somewhat unremarkable, although as with other turbulence quantities, the coarser resolution

test runs show worse agreement. This is not surprising, however, given that the mechanical

production terms for these quantities are the main producers of the variance, and these terms

contain gradients of the mean quantities, which are smoothed out for coarser resolutions.The

only third-order moment reported from the LES intercomparison was the vertical velocity
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skewness. Interestingly, THOR underestimates this quantity through most of the boundary

layer except near cloud top. In fact, THOR calculates low values of skewness for all variables

throughout the column except for near cloud top. As with the second-order variances, the

courser resolutions produce reduced third-order moments compared to the finer resolutions.
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Figure 3.38. Mean profiles of the ice-liquid water potential temperature vari-
ance (left), ice-liquid water potential temperature-total water specific humidity
covariance (center) and total water specific humidity variance for the control
and grid spacing sensitivity runs. Lines are as in figure 3.33.

The diagnosed trivariate double Gaussian PDFs for mid-cloud and cloud-top points are

given in figures 3.40 and 3.41, respectively. At mid-cloud, Gaussian plumes 1 and 2 are of

nearly equal weight, and, with little skewness for any variable, the means of each plume are

very close to the grid-cell mean for each variable. The similarity between the “updraft” and

the “environmental” or “downdraft” plumes is what one would expect in a stratocumulus

cloud since they are considerably more homogeneous than, say, a cumulus cloud field. The

bivariate θil-qt PDF shows that most of the diagnosed PDF is above the saturation line, and

the samples chosen for the microphysics scheme are tightly packed near the mean (θil,qt)

pair, as expected. Near cloud top, recall from figure 3.39 that there is a thin strip of higher

skewness values. This changes the diagnosed PDF considerably. Near the inversion layer, the

thermodynamic variances are near their maximum, and the weight of plume 2 is significantly
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Figure 3.39. Mean profiles of selected third-order moments for the control
and grid spacing sensitivity test runs. Lines are as in figure 3.33.

lower than the weight of plume 1 due to the higher skewness values. Although most of the

bivariate θil-qt PDF is still above the saturation line at this point, the increased variance of

θil and qt together with the covariance θ′ilq
′
t cause a growing fraction of the PDF to be below

the saturation line. One interpretation of this is the inclusion of the above-inversion dry,

warm air into the mostly cloud-filled boundary layer – a peek into the representation of the

entrainment process in THOR.

Although all of the sensitivity tests run for the cumulus cases were run for this case,

the simulated stratocumulus fields were almost entirely insensitive to the turbulence length

scale entrainment rate and whether the third-order moments were diagnosed or prognosed.

The only remaining sensitivity was to the inclusion of the latin hypercube PDF sampling
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Figure 3.40. As in figure 3.18, but for mid-cloud for the DYCOMS control run.

algorithm. Figures 3.42 - 3.47 show results for this sensitivity test, starting with the surface

precipitation rate. While the LES ensemble mean surface precipitation hovers around 5 W

m-2, the control simulation of THOR has considerably heavier drizzle reaching the surface,

about 15 W m-2. Most of the difference in these surface precipitation rates is a result of
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Figure 3.41. As in figure 3.18, but for cloud top for the DYCOMS control run.

decreased sub-cloud evaporation in the THOR simulations due to the slightly higher sub-

cloud relative humidity (not shown). As with the RICO case, turning off the PDF sampling

algorithm results in a complete loss of precipitation for that simulation, so this sensitivity

test can be interpreted as the difference between a non-precipitating and lightly precipitating

stratocumulus cloud field.
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Figure 3.42. Time-series of the surface precipitation rate for the control and
NO-LH sensitivity runs. Note that the curve for the NO-LH run is along the
abscissa axis.
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Figure 3.43. Time-height cross-section of the difference between the cloud
fraction in the NO-LH and control simulations for the DYCOMS case.

Without precipitation to remove cloud water from the column, the cloud fraction and

cloud water contents are unsurprisingly greater for he NO-LH case. Figures 3.43 and 3.44
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Figure 3.44. Time-height cross-section of the difference between the cloud
water content in the NO-LH and control simulations for the DYCOMS case.

show the difference between the cloud fraction and cloud water content between the NO-LH

and control simulations. The figures show that there is increased cloud water content

throughout the depth of the cloud, but especially in the middle and low portions of the

cloud. In addition, the lack of drizzle creates a deeper cloud, with most of the increased

cloud fraction showing up at cloud base. The deeper and thicker clouds without precipi-

tation obviously have a large effect on the cloud liquid water path, increasing it to values

above the range of the LES results.

With the increased liquid water content throughout the cloud depth, one might guess

that the additional latent heating would generate higher values of TKE throughout the cloud

depth. According to figure 3.47, this is not the case. Instead the higher values of w′2 and

TKE appear in the lower half of the cloud and sub-cloud zones. Perhaps one reason for this

is that for the NO-LH case, there is no cooling caused by evaporating drizzle in the lower
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Figure 3.45. Time-series of the liquid water path for the control and no-
latin-hypercube-sampling sensitivity test.
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Figure 3.46. As in figure 3.37, but for the no-latin-hypercube-sampling sen-
sitivity test.

cloud and sub-cloud layers, slightly decreasing the static stability there in comparison to the

control case, and leading to higher-energy turbulent eddies. Although the thermodynamic

flux profiles show increased magnitudes for the NO-LH run, the cloud-top entrainment as

gauged by the boundary layer depth only increases slightly. This is likely the result of the
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Figure 3.47. As in figure 3.36, but for the no-latin-hypercube-sampling sen-
sitivity test.

fact that the increased turbulence generated by the increased latent heating occurs away

from the cloud-top inversion.

3.2.2. MPACE Case. While the MPACE test case features stratocumulus clouds, the

simulated atmosphere that generates the clouds is drastically different than for the DYCOMS
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case. The MPACE field campaign took place in the Beaufort Sea, between a region of sea

ice to the north and the north slope of Alaska to the south. Synoptic conditions featured

cold northeasterly winds under a high pressure system blowing over the open ocean. The

observed stratocumulus clouds were organized in “cloud streets,” and the boundary layer

was well-mixed by vigorous turbulence generated both by high surface fluxes and strong

cloud-top radiative cooling. Although the temperature at cloud top was considerably below

freezing (around -15◦C), the observed clouds contained more supercooled water than ice and

generated significant quantities of precipitation, mainly in the form of snow. As mentioned

in the model intercomparison paper written by Klein et al. (2009), this case was particularly

challenging for most models to simulate with accuracy due to the fact that the partitioning

between cloud water and ice in arctic stratocumulus clouds is extremely complex. The

amount of ice in the cloud is only a weak function of temperature and depends more on the

number, size, and chemical composition of ice nuclei present.

The case simulated here is based on the observational period that featured a single layer

of stratocumulus clouds, known as the “B” period within the MPACE study. As with

previous cases, the model is initialized with given profiles of θil, qt, u, and v and is forced

with prescribed surfaces fluxes, large scale horizontal advection tendencies, and constant

prescribed subsidence. Rather than using a large-scale pressure gradient, winds are relaxed

back to the initial profile. A major difference between this case and the others discussed

so far is that this case uses an active radiation scheme rather than prescribed radiation

or radiative heating rates. The control simulation uses a 1 s time step and a 50 m grid

spacing. The simulation is run for 12 simulated hours with a domain of 3000 m. Although

both single column models and three-dimensional models participated in the MPACE study,
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THOR’s results are only compared with the LES models in the following plots, and each

plot represents averages over the last 3 hours of the simulation. The only sensitivity tests

discussed for this case are the grid-spacing, omission of PDF sampling for the radiation

scheme, and the omission of ice processes tests, since the other tests demonstrated little or

no sensitivity.
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Figure 3.48. Mean profiles of θil and qt for the last three hours of the control
and grid sensitivity test runs. As in the previous cases, solid lines represent
output from THOR with the black denoting the control run and colors denoting
sensitivity test runs. Black dashed lines represent the LES ensemble results,
with the thick dashed line denoting the LES ensemble mean, and the thin
dashed lines representing the range of LES ensemble results. The thin black
dotted line represents the initial conditions.

The initial and steady-state thermodynamic profiles are shown in figure 3.48. They are

initially perfectly well-mixed up to the inversion. By the end of the simulation, the LES

models diffuse the initially sharp inversion and develop significant gradients in the boundary

layer, especially in the moisture field. THOR, by comparison, tends to keep a sharper cloud-

top inversion and keeps the profiles more well-mixed. The fact that the moisture profiles

from the THOR model are better mixed probably means that there is stronger turbulence in
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the mixed-layer in this model compared to the LESs, although turbulence statistics are not

included in the LES model output for this case for comparison. In addition, THOR predicts

a slightly drier boundary layer than the LES models, by about 0.3 g kg-1 in the sub-cloud

layer and by a significant amount in the inversion layer. Since the surface latent heat fluxes,

subsidence, and horizontal advection terms are the same for all models, this suggests that

THOR must be entraining dry air at a higher rate or perhaps precipitating at a higher rate.
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Figure 3.49. Mean profiles of cloud fraction (left) and ql for the control and
grid spacing sensitivity test runs for the MPACE case. Lines are as in figure
3.48.

The cloud structure for the control and grid-spacing sensitivity tests are shown in figures

3.49 and 3.50. There is virtually no difference among runs with grid-spacing 50 m and

below with all of these models simulating a roughly 600 m thick stratocumulus cloud with

a maximum cloud water content of about 0.2 g kg-1. Coarser grid spacing runs simulate

slightly deeper clouds with a lower peak water content. Interestingly, the LES ensemble

mean produces some cloud fraction all the way to the surface. Unlike the DYCOMS case,
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the LES models produce deeper clouds than THOR, a consequence of the LES models

predicting a much moister sub-cloud and inversion layer.

The cloud liquid and ice water paths in figure 3.50 paint an interesting picture. The

colored solid and dashed lines denote the liquid and ice water paths from the THOR runs,

respectively. The red and blue dotted lines denote the liquid and ice water paths for LES

models, respectively. The proportion of the simulated cloud that is ice in THOR’s simulations

is about 70% versus less than 10% in the LES models (which agree better with the available

observations). This highlights a key weakness of THOR’s microphysics scheme. Klein et al.

(2009) explain that there are four basic types of microphysics schemes in the models that

participated in this case. The first category is representative of THOR’s scheme (which

is identical to the SAM LES model), called a “single-moment with T-dependent partition-

ing” scheme. Recall that THOR diagnoses the total cloud condensate mass and partitions

the cloud water into liquid and ice with a function only dependent on temperature. The

other three categorizes of microphysics schemes include the so-called “single-moment with

independent liquid and ice,” “double-moment” that predicts both liquid and ice mass and

droplet number concentrations, and “bin microphysics” that predict the evolution of differ-

ent size classes of droplets. All three of these types of schemes are more complex and are

capable of partitioning cloud liquid water and ice in a more realistic way that takes ice nuclei

into account. The fact that THOR predicts an ice-dominated cloud instead of a supercooled

liquid-dominated cloud has important repercussions. First, the ratio of ice to liquid in clouds

plays a key role in determining their albedo and therefore processes like cloud-top radiative

cooling and the net cloud radiative forcing that is so important for the climate. Second, pre-

cipitation processes are significantly different in ice clouds versus liquid clouds. Precipitation
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Figure 3.50. Time-height cross-section of the cloud fraction for the control
run (top) and the time-series of cloud water path (bottom) for the control and
grid spacing sensitivity runs. Solid black and colored lines denote THOR’s
liquid water path output, whereas black and colored dashed lines denote the
ice water path output from THOR. The red dotted lines represent the liquid
water path values of the LES ensemble, with the thicker dots denoting the
mean and the thinner dots denoting the range. The blue dotted lines are for
the ice water path for the LES ensemble.

149



tends to be generated more readily and in higher amounts in ice clouds versus liquid clouds.

In fact, the differences in THORs simulations compared to the LES models can largely be

explained by the fact that THOR produces precipitation-heavy ice-dominated clouds that

end up drying out the boundary layer (in a relative sense) and producing a thinner cloud

deck.
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Figure 3.51. Time-height cross-section of the difference between radiative
heating rates for the no radiation PDF sampling (NO-RS) and control simu-
lations.

Next, THOR’s sensitivity to omitting the PDF sampling procedure (denoted NO-RS)

for the radiation scheme will be discussed. The difference between radiative heating rates

calculated with and without the PDF sampling is shown in figure 3.51. The major difference

is that in the absence of PDF sampling, the cloud top radiative cooling is more temporally

consistent and slightly higher in the column. The PDF sampling scheme allows for occasional

random temporary “gaps” in the stratocumulus cloud where cloud-top radiative cooling is

150



θil


270 275 280 285
θil (K)

0

500

1000

1500

2000

2500

h
e
ig

h
t 
(m

)

ctl
NO_RS

qt


0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
qt (g kg−1  )

Figure 3.52. As in figure 3.48, but for the no-radiation-sampling sensitivity test.

reduced, weak low- and sub-cloud heating is weaker, and weak radiative cooling is allowed

further down in the boundary layer. Such gaps in stratocumulus clouds that alter their

radiative properties are present in nature as well. The combined effect of using the PDF

sampling algorithm is to slightly weaken the cloud radiative forcing and radiatively-driven

turbulence. As a consequence, in the NO-RS simulation where radiative forcing is stronger,

cloud-top entrainment is slightly stronger, creating a slightly warmer and drier boundary

layer, and a stratocumulus cloud that is slightly higher in the column that maintains its

peak liquid water content and cloud fraction (figures 3.52 and 3.53).

The last sensitivity test to be discussed in conjunction with this case is the omission of

ice processes. Figures 3.54 - 3.57 show that the simulated atmosphere with ice processes

neglected is considerably different than the control case that includes ice processes. Without

ice processes, the simulated cloud is almost twice as deep with over twice the amount of

cloud water content (all liquid, of course). The much thicker cloud creates a strong response
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Figure 3.53. As in figure 3.49, but for the no-radiation-sampling sensitivity test.

in the radiative cooling, modifying the well-mixed θil profile by over 1 K. The boundary layer

moisture is nearly 0.5 g kg-1 higher, especially near the surface, and the profile is less well-

mixed in the cloud layer. The liquid water path in figure 3.56 continues to monotonically

increase throughout the simulation and is about four times the cloud water path in the

control case by the end of the simulation.

How does the omission of ice account for such a large difference in the simulated at-

mospheres? Recall from previous paragraphs that the control THOR simulation generates

an ice-dominated cloud where precipitation is generated in relative copious amounts by the

Bergeron-Findeisen process. Without ice, this relatively prolific production of precipitation

is shut off and the relatively inefficient warm rain process produces very little precipitation

in comparison (see figure 3.57). With continued strong surface latent heat fluxes, moisture

continues to build up in the boundary layer, producing thick, all-liquid clouds. The same

sensitivity test was performed with the participant models in the intercomparison project
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Figure 3.54. As in figure 3.48, but for the no-ice sensitivity test.
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Figure 3.55. As in figure 3.49, but for the no-ice sensitivity test.

of Klein et al. (2009). They note that the same mechanism produces high sensitivity to

the omission of ice processes, especially in models that produced ice-dominate clouds in the

control simulation.
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Figure 3.56. Time-series of the cloud water path for the control and no-ice
sensitivity test. Lines are as in figure 3.50.
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Figure 3.57. Time-series of surface precipitation rate for the control and
no-ice sensitivity test. In this plot, solid lines denote surface rain and dashed
lines denote combined surface snow and graupel. The green dotted lines denote
LES ensemble surface rain and blue dotted lines denote LES ensemble surface
snow, with the thickest dotted lines representing the LES ensemble means.

3.3. Transitional Case

The maritime subtropical high pressure systems off of the western coasts of continents

are a prominent feature of the Earth’s climate system. These expansive regions of subsidence
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compose the sinking arm of a planetary-scale direct thermal circulation, known as the Hadley

cell, that is driven by the maximum in solar heating and subsequent deep convection near

the equator. As the air descends it turns equatorward to complete the direct circulation and

is turned to the west by the Coriolis force to create the trade winds. In a Lagrangian sense

(following the air motion), the entire air mass that makes up the massive stratocumulus fields

is advected westward and equatorward by these trade winds. As the air mass moves, it is

constantly modified by the sea surface below and the weakening subsidence as it heads equa-

torward. Eventually, the air mass is no longer conducive to producing stratocumulus clouds.

The cloud cover undergoes a complicated transition to the much sparser cloud arrangement

of shallow cumuli. The precise placement and timing of this transition is of critical impor-

tance for the climate system. If the transition takes place sooner (in a Lagrangian sense),

the relative area of the much thicker and reflective stratocumulus clouds is reduced, elimi-

nating area that had previously contributed to a strongly negative cloud radiative forcing.

Of course, the converse is true as well. From a climate modeling standpoint, it is thought

that the lack of skill in simulating this transition contributes to one of the greatest sources

of error in climate simulations. The work of Teixeira et al. (2011) demonstrates that there is

a substantial spread in the ability of current state-of-the-art climate models to predict this

all-important transition with accuracy.

The physical mechanisms responsible for the transition are still an active area of research,

but a good review of the current state of knowledge can be found in chapter six of Cotton et al.

(2011). The two main drivers of the transition from stratocumulus to cumulus are thought to

be decreasing subsidence and increasing SSTs. All things being equal, decreasing subsidence

allows the boundary layer to deepen, and, in conjunction with rising SSTs, the boundary
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layer eddies become more buoyant and energetic. The higher-energy eddies, combined with

a weakening cloud-top inversion due to decreased subsidence, entrain more warm, dry free

tropospheric air into boundary layer, eventually creating a minimum in the buoyancy flux

below cloud base and a layer of slightly higher static stability there as well. This layer of

higher stability decouples the boundary layer, effectively dividing it into two dominant areas

of eddy activity with limited transfer between: the cloud layer and the surface-based layer.

The decoupling effectively cuts off the supply of moisture to the stratocumulus deck, and

the cloud-top radiative and evaporative cooling driven circulation within the cloud continues

to entrain dry air from above, evaporating its liquid water. All the while, the surface-based

eddies are capped by the stable layer. Periodically, driven by surface fluxes, some surface-

based eddies garner enough energy to break through the stable layer, condensing as they

go, creating a cumulus-under-stratocumulus boundary layer. The strong eddies found in

the cumulus clouds reach from the surface to the boundary layer top, depositing episodic

injections of moisture into the stratocumulus deck, but also penetrating the inversion layer,

increasing the rate of dry air entrainment. Between the surface moisture supply being

diminished and the increased entrainment of dry air into the stratocumulus deck, the cloud

thins and the stratocumulus circulation is further weakened by the reduction in cloud-top

radiative and evaporative cooling. Eventually, the combined processes have evaporated the

entire stratocumulus deck, leaving nothing but the shallow cumulus layer.

It is with this background that the ASTEX (Atlantic Stratocumulus Transition Exper-

iment) Lagrangian stratocumulus-to-cumulus test case was developed. Although previous

model intercomparisons have also used data from ASTEX, the current case is the first time
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that it has been done with large-domain LES models as participants for a 40-hour simu-

lation that spans several of the research flight observational periods. The goal of the joint

GASS/EUCLIPSE2 project was to be able to study the transition in detail with state-of-the-

art LES models and single-column model (SCM) versions of current operational numerical

weather prediction and climate models. To that end, the case setup follows the previous

ASTEX cases to a large extent, featuring a Lagrangian framework where large-scale hori-

zontal advection can be neglected and the subsidence rate and SST are allowed to change

relatively quickly. Initial profiles of θil, qt, and u and v are supplied and are representative

of a well-mixed stratocumulus boundary layer. The surface fluxes are calculated by the

individual models with a SST that rises 4 K in the 40 hour simulation as shown in figure

3.58. Other forcings include subsidence that weakens linearly throughout the simulation

and geostrophic winds representative of a large-scale pressure gradient. The diurnal cycle is

included, and models are expected to use their own radiation schemes to calculate radiative

transfer. Full details can be found in the LES intercomparison paper (van der Dussen et al.

2013). The control simulation of THOR uses 25 m grid spacing, a 1 s time step, and a 3000

m domain.

The time series of the EIS is shown in figure 3.58 and the time-height cross-section of the

cloud fraction for the control simulation together with the time-series of liquid water path

for the grid-spacing sensitivity test is shown in figure 3.59 to give the reader a quick idea of

how the simulation evolves. The EIS goes from a high of about 4 K at the beginning of the

simulation to a low of about 0.5 K by the end of the simulation, moving almost in lock-step

with the increasing SST. Given this decrease in EIS, one would expect via the cloud amount

2GASS stands for the Global Atmospheric Systems Study and EUCLIPSE stands for European Union Cloud
Intercomparison, Process Study and Evaluation
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Figure 3.58. Time-series of estimated inversion strength (solid) and sea sur-
face temperature (dashed) for the ASTEX control simulation.

relationship discovered in Wood and Bretherton (2006) and repeated in equation (13), that

the cloud fraction should decrease considerably throughout the simulation.

Figure 3.59 shows how the cloud cover evolves throughout the simulation. For reference,

the sun comes up around hours 6 and 30, sets around hour 21, and local noon is at hours

13 and 37. Cloud fraction and liquid water path reach their peak at the first sunrise and

decrease precipitously throughout the first day, leveling off in the THOR simulations and

slightly increasing in the LES models in the late afternoon. The second night features a

steadily deepening boundary layer with the stratocumulus deck remaining fairly steady, if

not decreasing in amount somewhat. After sunrise on the second day, the stratocumulus

cloud continues to break up and by the end of the simulation, the boundary layer resembles

a cumulus-under-thin-stratocumulus regime, not having transitioned to a strictly cumulus

layer yet by this point. There is significant spread in the liquid water paths both in the

LES models and in the grid-spacing sensitivity results of THOR. The 50 m run seems to

match the LES results best, although the finer grid spacing runs do a good job too despite
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Figure 3.59. Time-height cross-section of cloud fraction for the control simu-
lation (top) and time-series of liquid water path (bottom) for the grid spacing
sensitivity test. As in the previous cases, solid lines represent output from
THOR with the black denoting the control run and colors denoting sensitivity
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coming in on the low end of the LES range. The 100 m run is significantly different than

the others and falls above the range of LES results, suggesting that 100 m might be too

coarse of a vertical grid spacing to capture the processes necessary to simulate the transition

successfully.

Unlike the previous test cases included in this study, the ASTEX case is not run to

a steady state, so examining only the final mean state profiles would have limited utility.

Instead, mean profiles are shown for three times throughout the simulation, with each profile

representing the mean over the previous hour. The times chosen coincide with those used

in van der Dussen et al. (2013), hours 8, 19, and 36. These times are representative of

the near-maximum liquid water path stratocumulus phase, the end of the first day after

significant cloud stratocumulus rising and thinning, and the second day noon hour after the

boundary layer has reached its highest height, there are significant holes in the stratocumulus

deck and cumulus towers begin to dominate. Figure 3.60 shows the mean profiles for the

thermodynamic variables for the specified times, together with the initial profiles in the first

row. For every time, the inversion height calculated in THOR is too low compared to the LES

ensemble mean, but the bulk characteristics of the evolving boundary are well-simulated: the

initially well-mixed layer in hour 8, the development of slightly stable layer and moisture

gradient near cloud base at hour 19, and the continued increasing depth of the stable layer

and drying out of the cloud layer by hour 36. As with the previous cases, however, by the

time the boundary layer is cumulus dominated in hour 36, the sub-cloud layer is too moist

compared to LES. Of the grid spacings tested in THOR, the 50 m run tends to produce the

closest results to LES and the 100 m run tends to produce the worst simulation, significantly

smoothing out gradients.
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Figure 3.60. Mean hourly-averaged profiles of θil (left) and qt (right) for
hours 8 (top), 19 (center), and 36 (bottom) for the control and grid spacing
sensitivity test runs. Lines are as in figure 3.59.
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Figure 3.61. Mean hourly-averaged profiles of cloud fraction (left) and ql
(right) for hours 8 (top), 19 (center), and 36 (bottom) for the control and grid
spacing sensitivity test runs. Lines are as in figure 3.59.
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The evolution of the cloud structure is shown in figure 3.61. Although the underestima-

tion of the boundary layer top is obvious, the shapes of the profiles are promising. During the

stratocumulus phase at hour 8, THOR’s cloud field is too deep with a particularly low cloud

base while simultaneously underestimating the peak liquid water content, matching biases

discovered for the previous stratocumulus cases. By hour 19, two prominent features begin

to show up. The first is the thinning of the stratocumulus deck. Cloud fractions decrease

from near 100% at hour 8 to around 80% at hour 19. The second is the development of a

secondary cloud base around 500 m, indicative of a budding cumulus zone. These features

are more distinct in the LES by this point in the simulation and are separated by a greater

distance due to the faster rising inversion in the LES models. By hour 36, near noon on the

second day, the stratocumulus has thinned to the point that it covers half or less of the area

at its thickest point, while the cloud base of the cumulus deck is still evident. Liquid water

contents have decreased considerably as dry air envelops the boundary layer from above and

the layer becomes more cumulus-like.

Turbulence statistics profiles are shown in figures 3.62 - 3.64 in order to help determine

why THOR’s simulated cloud field differs from the LES models. First, the vertical velocity

variance profiles show that initially, the turbulent eddies extend through the entire boundary

layer, signaling that the stratocumulus top is coupled with the surface. By hour 19, a bi-

model structure develops. This is indicative of a decoupled boundary layer, where the

two peaks in w′2 show the centers of the two zones of convective turbulent eddies. These

structures at both 8 and 19 hours are shared by the LES models. By hour 36, the boundary

layer remains decoupled with two distinct maxima. The LES models simulate a sub-cloud

maximum below an approximately 1000 m deep layer of very low w′2 associated with the
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Figure 3.62. Mean hourly-averaged profiles of w′2 (left) and TKE (right) for
hours 8 (top), 19 (center), and 36 (bottom) for the control and grid spacing
sensitivity test runs. Lines are as in figure 3.59.
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simulated cumulus deck, topped by a maximum at cloud top associated with the thinning

stratocumulus clouds. The 50 m THOR run is able to simulate a structure like this, but the

10 m and control 25 m simulations have a broad maximum throughout much of the cumulus

layer. The TKE magnitude is generally underestimated compared with LES in hour 8,

simulated well in hour 19 and overestimated in hour 36, although both the underestimation

in hour 8 and the overestimation in hour 36 is more in line with the observations plotted in

van der Dussen et al. (2013).

The thermodynamic flux profiles in figure 3.63 show relatively poor agreement with LES

in hour 8, improved agreement in hour 19, and worse agreement again by hour 36. In hour 8,

the weaker fluxes of both θil and qt help to explain the relatively slow growth of the boundary

layer during this time compared to the LES models. Since these quantities are a proxy for

the entrainment rate, the fact that these are underpredicted in THOR suggest that cloud-top

entrainment is too weak. The differences between the LES and THOR moisture flux profiles

explains why the mean moisture profiles are different in figure 3.60. In the LES moisture flux

profiles for hours 19 and 36, there is a distinct minimum below the stratocumulus cloud base.

This creates a positive gradient with height up to the stratocumulus cloud top. A negative

gradient with height implies moisture is being deposited in these layers, whereas a positive

gradient with height implies moisture is being taken from these layers. The negative gradient

under a positive gradient in the LES models implies moisture is being added to the sub-cloud

layers (from the surface), and it is being taken from the layers below the stratocumulus

cloud top to supply the top of the boundary layer with moisture. This is consistent with the

concept of cumulus-under-stratocumulus. The fact that all THOR runs (with the exception

of the 50 m run) have a more-or-less monotonically decreasing moisture flux throughout the
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Figure 3.63. Mean hourly-averaged profiles of w′θ′il (left) and w′q′t (right) for
hours 8 (top), 19 (center), and 36 (bottom) for the control and grid spacing
sensitivity test runs. Lines are as in figure 3.59.

166



boundary layer in hours 19 and 36 suggest that cumulus-under-stratocumulus in THOR are

not transporting enough moisture upward. The lack of moisture transport by cumulus in

THOR seems to be an issue that needs to be addressed for future improvement.
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Figure 3.64. Mean hourly-averaged profiles of w′θ′v for hours 8 (left), 19
(center), and 36 (right) for the control and grid spacing sensitivity test runs.
Lines are as in figure 3.59.

One of the keystones of the decoupling concept is a minimum in the buoyancy flux below

cloud base. Figure 3.64 shows that THOR does generated a minimum in the buoyancy flux

below cloud base, but unlike the LES models, the buoyancy flux does not go negative at any

point below the cloud top. Despite this fact, other metrics do point to the fact that a type

of decoupling has taken place in THOR. The fact that there are two peaks in the vertical

velocity variance profiles in figure 3.62 and the fact that the master length scale is reduced

above cloud base (figure 3.65). The master length scale is a good indicator of boundary

layer coupling since it is based on the mean free path of a parcel originating at each level.

Before hour 12 or so, the maximum in the length scale appears roughly in the middle of

the boundary layer, signifying that parcels originating at cloud top reach all the way to

the surface and surface parcels reach all the way to cloud top. After hour 12, the parcels

originating at the surface may have enough energy to reach the boundary layer top, but
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parcels originating in the stratocumulus layer are blocked from reaching the surface. This

creates a maximum in the master length scale on top of the sub-cloud layer but produces

reduced length scales above this layer.

0 10 20 30 40

0

500

1000

1500

2000

2500

0 10 20 30 40
time (hours)

0

500

1000

1500

2000

2500

h
e

ig
h

t 
(m

)

Lmaster       (m)

0 10 20 30 40

0

500

1000

1500

2000

2500

0.10.5

   0.  192.  385.  577.  770.  962. 1155.

Figure 3.65. Time-height cross-section of the master turbulence length scale
for the control ASTEX simulation.

Next, the results of the other sensitivity tests will be discussed. Results from the third-

order moment diagnostic versus prognostic sensitivity test are not shown because there is

very little difference in the simulated clouds or the timing of the transition. When the en-

trainment rate in the turbulence length scale is altered, the simulation changes as one would

expect, given the response to this alteration in previous test cases. It should be noted at

this time that the term entrainment is being used for two different things. For this sensitiv-

ity test, the entrainment rate refers to the rate at which a rising (or falling) parcel in the

parcel model mixes with its environment as it ascends (or descends). This is different than

the stratocumulus cloud-top entrainment that brings warm, dry free tropospheric air into
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Figure 3.66. As in figure 3.61, but for the length scale entrainment sensitiv-
ity test.
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the boundary layer. Both are mixing processes, but are in different spatial contexts. For a

stratocumulus-topped boundary layer, the entrainment rate in the length scale calculation

seemingly has no effect on the simulation. As the boundary layer transitions into cumulus,

however, the length scale entrainment rate can have a big difference. For the higher entrain-

ment rates (denoted with the prefix RK), turbulence is damped more in the cloud layer,

leading to thicker stratocumulus clouds. With the higher length scale entrainment rate, the

stochastic parcel process tends to somewhat cancel out the effects of the higher rate. If no

parcel entrainment is assumed, turbulence is strongest in the cloud layer, resulting in more

cloud top entrainment and a drier boundary layer. Given these profiles, the cloud liquid

water path shows that stratocumulus breakup is somewhat sped up when no length scale

parcel entrainment is used, and is slowed down when a constant higher parcel entrainment

rate is assumed.
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Figure 3.67. Time-series of liquid water path for the length scale sensitivity
test. Lines are as in figure 3.59.

If grid-cell mean values are used to drive the microphysics scheme instead of the PDF

sampling scheme, the surface precipitation rate is greatly reduced (figure 3.68). Precipitation
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Figure 3.68. Time-series of the surface precipitation rate for the control and
no-latin-hypercube-sampling sensitivity test. Lines are as in figure 3.59.

only occurs near the maximum of liquid water path right before sunrise on the first day. The

impact on the cloud field is as one would expect from the previous test cases. Without

PDF sampling, the cloud produced is deeper with more available water content and a lower

cloud base (see figure 3.69). The difference is greatest during the stratocumulus stage, but

remains throughout the transition. During hour 19, the extra cloud water and associated

latent heating generates more turbulence and cloud-top entrainment, raising the height of the

boundary layer top. This process continues as the transition enters the cumulus-dominated

phase, represented by the hour 36 plots. The liquid water path time series in figure 3.70

shows a much higher peak during the stratocumulus phase, but is actually in much better

agreement with the LES after noon on the first day when precipitation is overestimated

compared to the LES in the control case.

Perhaps the most interesting sensitivity test performed for the ASTEX case is the test

where PDF sampling is omitted for driving the radiation scheme, denoted as NO-RS. The

time-height cross-sections of the radiative heating rates for the control simulation and the
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Figure 3.69. As in figure 3.61, but for the no-latin-hypercube-sampling sen-
sitivity test.
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Figure 3.70. As in figure 3.67, but for the no-latin-hypercube-sampling sen-
sitivity test.

sensitivity test without PDF sampling for radiation are shown in figures 3.71 and 3.72, re-

spectively. When PDF sampling is enabled, a few differences are noted. First, significant

noise is introduced into the solution. Second, cloud top radiative cooling is not as con-

stant as in the NO-RS test, since the sampling algorithm occasionally samples “gaps” in

the relatively homogeneous cloud field where more shortwave radiation is allowed into the

boundary layer and more longwave radiation out. The difference in the two simulations

becomes greater as the stratocumulus cloud fraction decreases, allowing more and more gaps

in the stratocumulus to be sampled. The radiative heating rates during the second night

are particularly different. The NO-RS simulation produces strong and constant cloud-top

cooling throughout the second night, helping to drive the in-cloud turbulence and cloud-top

entrainment, creating a considerably deeper boundary layer.

Interestingly, the NO-RS sensitivity test compares most favorably to the mean of the LES

ensemble out of all of the THOR simulations. Profiles of the mean thermodynamic variables

along with the cloud structure and TKE are shown in figures 3.73 - 3.75. For all three
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Figure 3.71. Time-height cross-section of the radiative heating rate for the
control ASTEX simulation.
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Figure 3.72. Time-height cross-section of the radiative heating rate for the
no-radiation-sampling sensitivity test run.
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Figure 3.73. As in figure 3.60, but for the no-radiation-sampling sensitivity test.
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times, the profiles of the thermodynamic variables look better for the NO-RS simulation.

The boundary layer height is within the range of LES results, the stable layer depth and

strength is nearly perfectly simulated along with the near neutral sub-cloud and cloud-top

layers at 19 and 36 hours. In addition, the sub-cloud moisture is almost in perfect agreement

with the LES results, and the drier air in the cumulus layer at hour 36 is much better versus

the control. The fact that the mean profiles are in such good agreement suggests that

the stronger cloud-top radiative cooling calculated using the mean grid-cell quantities in

the radiation scheme is more realistic for this case, leading to better representation of the

turbulence and cloud-top entrainment processes.

Not surprisingly, the cloud structure in the NO-RS test is in better agreement with the

LES results as well (figure 3.74). While the cloud base height is still lower than LES at every

time, the cloud top height is in much better agreement. For hours 8 and 19, the change in

how radiation is calculated does not seem to affect either the magnitude of the peaks in cloud

fraction or liquid water content, but it certainly affects their vertical placement. By hour

36, however, the stratocumulus layer in the NO-RS test remains more “filled-in” yet not as

deep as the control case, which is also in better agreement with the LES. Despite the better

vertical arrangement of the cloud cover in the NO-RS run, the liquid water path remains

virtually the same, generally underestimated after the first sunrise (not shown). In addition,

the vertical profiles of w′2 and TKE are improved in the NO-RS case by maintaining higher

magnitude peaks higher up in the column while reducing overestimations in the cumulus

and sub-cloud layers. This improvement is associated with the increased cloud-top radiative

cooling which drives more energetic turbulence at cloud top and the stronger cooling under
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Figure 3.74. As in figure 3.61, but for the no-radiation-sampling sensitivity test.
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heating signature below cloud top (especially during the second night) that increases static

stability and hinders turbulence somewhat there.
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Figure 3.75. As in figure 3.62, but for the no-radiation-sampling sensitivity test.
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CHAPTER 4

Low Cloud Feedback Experiments

Although it is a well-recognized problem that low cloud feedbacks are one of the main

drivers of variability in future climate simulations, the AGCMs used to draw this conclusion

may not the best tool for studying and rectifying this problem. The reason for this is the

inherent inability of such models to sufficiently resolve the processes that are important for

modulating low cloud cover or even the low clouds themselves. Unfortunately, models capa-

ble of resolving low clouds and their intricately balanced processes, such as cloud-resolving

models (CRMs) and LESs, are incapable of running over the entire globe for centuries-long

simulations due to the massive computational expense. An intermediate approach could

therefore be useful to illuminate physical mechanisms responsible for low cloud feedbacks,

provide a better estimate of the sign and magnitude of low cloud feedbacks, and to perhaps

inform modelers to generate new parameterizations that adequately capture the salient pro-

cesses with low computational expense so that they may be included in the centuries-long

AGCM simulations.

The framework espoused by the CGILS1 intercomparison project seems like a step toward

this intermediate approach. The general idea of the CGILS project is to develop initial

profiles and large-scale forcings for the present day climate and for a warmed climate in

order to use them to drive low-cloud-resolving large eddy and single column models. By

simulating low clouds in detail in the same locations for the current climate and a warmed

climate scenario, one can straightforwardly compare the cloud structure between the two

1CGILS is a multiple-nested acronym that stands for the CFMIP-GASS Intercomparison of LES and SCMs
where the GASS acronym has been discussed previously and CFMIP stands for the Cloud Feedback Model
Intercomparison.
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atmospheric states and potentially extrapolate the calculated cloud feedbacks to other areas

of the Earth with similar changing conditions. While this approach could theoretically be

used anywhere on the planet, the creators of the project derived forcing only for a strategic

area of the world where particular insights may be gained about low cloud feedbacks. The

strategic area consists of the GPCI2 cross-section shown in figure 4.1, reproduced from figure

1 of Teixeira et al. (2011). This cross-section is particularly strategic because it transects

areas of coastal stratocumulus, shallow cumulus, deep convection and transitions in between.

By studying and simulating this cross-section, one can sample the regions most important

for low cloud feedbacks and any understanding gained about them should be representative

of similar areas around the world.

Global Energy and Water Cycle Experiment (GEWEX)
Cloud Systems Study (GCSS) in the early 1990s (Browning
et al. 1993; Randall et al. 2003). The research efforts in
GCSS have been divided into different cloud types
(boundary layer clouds, cirrus, frontal clouds, deep con-
vection, and polar clouds) and have extensively used
large-eddy simulation (LES) and cloud-resolving models
(CRM) to assess and develop parameterizations for single-
column models (SCM), which are one-dimensional ver-
sions of weather and climate prediction models.

The traditional GCSS strategy can be divided in the
following steps: (i) create a case study using observations;
(ii) evaluate CRM/LES models for the case study; (iii)
use SCMs to evaluate the parameterizations; and (iv) use
the statistics from CRM/LES to develop and improve
parameterizations. This strategy has been quite successful
in improving CRM/LES models, in helping to define and
understand fundamental cloud regimes (e.g., Duynkerke
et al. 1999; Bretherton et al. 1999; Bechtold et al. 2000;
Redelsperger et al. 2000; Stevens et al. 2001; Randall et al.
2003; Siebesma et al. 2003) and in developing new pa-
rameterizations for clouds and the cloudy boundary layer
(e.g., Cuijpers and Bechtold 1995; Lock et al. 2000; Golaz
et al. 2002; Teixeira and Hogan 2002; Cheinet and Teixeira
2003; Lenderink and Holtslag 2004; Bretherton et al. 2004;
Soares et al. 2004; Bretherton and Park 2009).

2. GCSS/WGNE Pacific cross-section
intercomparison

a. Introduction

Despite its successes, the current GCSS strategy of
using only one-dimensional subsets (SCMs) of weather
and climate prediction models falls short of addressing
the fundamental role of clouds in climate since it does not
allow for feedback to the large-scale dynamics. The latter
can only be achieved by using fully three-dimensional
models of the atmosphere. In turn, the analysis of such
models is notoriously difficult owing to the large amount
of information required for meaningful conclusions to be
drawn.

In this paper, a model evaluation strategy is adopted
in which weather and climate prediction models are ana-
lyzed along a cross section in the Pacific Ocean, from the
coast of California to the equatorial region, as illustrated
in Fig. 1. The figure also depicts the low (boundary layer)
cloud cover climatology from the International Satellite
Cloud Climatology Project (ISCCP) (Rossow and Schiffer
1999) for the June–July–August (JJA) season. This ap-
proach aims at complementing the more traditional ef-
forts in GCSS by providing a simple framework for the
evaluation of weather and climate prediction models

that encompasses several fundamental cloud regimes,
such as stratocumulus, shallow cumulus, and deep cu-
mulus, as well as the transitions between them. The fact
that data is only needed along a model transect allows for
a technically less involved intercomparison.

The overall goal is to use the GPCI framework to un-
derstand cloud regimes and regime transitions in the
tropics and subtropics and to characterize the main de-
ficiencies in climate models in terms of the representa-
tion of clouds and cloud-related processes. These analyses
should lead to the development of new parameteriza-
tions of clouds, boundary layer, and convection and con-
sequently contribute to more accurate predictions of
climate change. Ultimately, it is the combination of the
model and the satellite data and the use of new analysis
techniques that will improve our ability to not only es-
tablish the model shortcomings but also to gain insight in
the physical reasons leading to these deficiencies.

Preliminary studies using a similar cross section across
the Pacific Ocean were performed in the context of a
European Cloud Systems Study (EUROCS). While im-
portant, the EUROCS results (Siebesma et al. 2004) were
limited due to coarse temporal resolution (only monthly
mean values at four different times per day were avail-
able) and the absence of some critical observational data
sources for the evaluation of the model results, such as
information about the tropospheric temperature and
humidity structure.

As a summary, the main general motivations for
GPCI are

d to study important cloud regimes and transitions—
stratocumulus, shallow cumulus, and deep convection;

d to evaluate models and observations in the tropics and
subtropics in terms of the atmospheric hydrologic
cycle;

d to utilize a new generation of satellite datasets;
d to help the development of new cloud, convection, and

turbulence parameterizations in weather and climate
models;

FIG. 1. The GCSS/WGNE Pacific cross section, from the stra-
tocumulus regions off the west coast of California, across the trade
cumulus regions, to the equator together with the ISCCP low cloud
cover (%) climatology for the June–July–August season.

15 OCTOBER 2011 T E I X E I R A E T A L . 5225

Figure 4.1. Figure 1 from Teixeira et al. (2011); contours denote low cloud
cover percentage from the ISCCP climatology for JJA. The black line is the
location of the GPCI cross-section.

In the following sections, a brief description of the experimental setup for the CGILS

cases will be included, followed by results from THOR for the three locations along the GPCI

2GPCI stands for the GCSS/WGNE Pacific Cross-section Intercomparison where GCSS/WGNE stands for
GEWEX Cloud Systems Study/Working Group on Numerical Experimentation.
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cross-section used in the CGILS study representing shallow cumulus (location S6), cumulus-

under-stratocumulus (location S11) and coastal stratocumulus (location S12). The results

will focus on the change in simulated states between the current and idealized perturbed

climates as well as a comparison of the implied feedbacks calculated in the THOR model

with those calculated in the CGILS LES intercomparison. In addition to the discussion of

results from points S6, S11, and S12, the final section will explore the simulated low cloud

changes in THOR along the majority of the GPCI cross-section, from point S5 poleward.

4.1. CGILS

Full details of the CGILS model setup are found in Zhang et al. (2012), and a brief

summary is included here. For the idealized setup for the current climate run, data from the

Interim ECMWF Re-analysis (ERA-Interim) along the GPCI for July of 2003 is used for the

initial profiles of θil, qt, u, and v (see figure 4.2). Although only points S6, S11, and S12 are

used in the CGILS study, corresponding to latitude 17◦N, 32◦N, and 35◦N, initial profiles

and forcings for the entire cross section are calculated and included in the following plots.

The cross-section captures many prominent features, including the relatively large surface

temperature gradient going poleward and the associated water vapor gradient, the weak

temperature gradient aloft, the strong subsidence inversion north of about 22◦N, the very

dry air just above the inversion north of about 26◦N, and the lower tropospheric northerly

and easterly winds in the subtropical latitudes. Figure 4.3 is a plot of the SST and surface

pressure as a function of latitude, and clearly shows the 10+ K gradient from the ITCZ to

35◦N (evenly raised by 2K in the warmed climate run), the surface low associated with the

ITCZ and the surface subtropical high pressure maxing around 30◦N.
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Figure 4.2. Plots show the initial conditions of T (top left), qv (top right),
u (bottom left) and v (bottom right) as a function of latitude and pressure
along the GPCI cross-section.

Other large-scale forcings such as the subsidence rate and horizontal advection of tem-

perature and moisture are more complicated. First, the profiles of subsidence rate are cal-

culated using the steady-state balance in the free troposphere between large-scale horizontal

advection of temperature, subsidence warming, and the net clear-sky radiative cooling. A

representative profile shape with a maximum at 750 hPa is assumed for the subsidence rate,

with the magnitude of the profile governed by the balance of the forces mentioned previously

from the ERA-Interim data from 900 to 300 hPa at point S12. For other points along the
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Figure 4.3. The sea surface temperature (solid lines) for the control (black)
and perturbed climate (red) and the surface pressure (dashed) along the GPCI
cross-section.

cross-section, the shape of the profile is the same as that at S12, but the magnitude is modu-

lated by the ratio of the ERA-Interim subsidence rate to that calculated at S12. Zhang et al.

(2012) point out that this procedure is used since it is relatively straightforward to apply

for the current climate and for the perturbed climate and its simplicity aids in interpreting

model results. The horizontal advection terms are calculated using winds and temperature

and moisture gradients from the ERA-Interim data from the surface to 900 hPa. Above 800

hPa, these terms are calculated as residuals using the balance of forces discussed above since

the subsidence has been specified and the radiative cooling rate can be readily calculated

with the state variables from ERA-Interim. In between 800 and 900 hPa, the horizontal ad-

vective terms are calculated from simple linear interpolation. These large-scale forcings for

the current climate are shown in figure 4.4. Prominent features include cooling and drying

in the boundary layer due to horizontal advection and generally warming and moistening
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above. The subsidence rate has a maximum magnitude at the northernmost point, S12, de-

creases to a local minimum at 26◦N, point S9, and increases slightly again between latitudes

14◦N and 23◦N. The ITCZ is evident in this plot as the region of rising motion (negative ω)

between 0◦N and 11◦N.
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Figure 4.4. The horizontal advection of temperature (top left) and moisture
(top right) and the large-scale pressure velocity (bottom left) for the control
climate as a function of latitude and pressure along the GPCI cross-section.

For the perturbed, warmed climate simulations, the driver of the change is a +2 K change

in SST. The temperature change for the troposphere is calculated using a surface parcel at

10◦N with 80% relative humidity rising pseduo-adiabatically to the tropopause. The tem-

perature change for the rest of the cross-section is calculated using the weak temperature
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gradient hypothesis. The change in water vapor is calculated assuming that relative humid-

ity remains constant from the control simulation using the perturbed climate temperature.

Both horizontal wind components are assumed to be the same as for the control climate.

The perturbed climate subsidence rate is calculated using the same method as for the control

climate using the radiative heating rate for the perturbed climate and assuming the vertical

integral of the horizontal advection of temperature remains the same as for the control case

at point S12. Subsidence profiles at other points are calculated as in the control case using

the same scaling factors from the ERA-Interim data used in the control climate. Finally,

horizontal advection terms are again calculated as residuals using the perturbed case radia-

tive transfer and subsidence rates. The change in tropospheric temperature and water vapor

are shown in figure 4.5 together with the change in large scale forcings for the perturbed case

in figure 4.6. The change in temperature gradually changes from 2 K near the surface to a

little over 5 K aloft using the adiabatic parcel method, and the change in water vapor follows

the change in temperature via the Clausius-Clapeyron relationship. Subsidence is weakened

approximately 10% in the perturbed climate, consistent with the hypothesis of a slowed

Hadley cell in a warmed world. The change in horizontal advection terms includes increased

boundary layer drying and very slightly decreased boundary layer cooling. In Zhang et al.

(2012), the forcings calculated for the CGILS experiment are broadly consistent with the

control and warmed climate states in the CAM, GFDL AM2, and SPCAM climate models

used for comparison in that paper, but without biases and influences from individual climate

models, a major goal satisfied by the CGILS experiment organizers.
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Figure 4.5. The change in the temperature (left) and moisture (right) in the
perturbed climate scenario compared to the control climate as a function of
latitude and pressure along the GPCI cross-section.
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Figure 4.6. The change in large-scale horizontal advection (top) and pressure
velocity (bottom) in the perturbed climate compared to the control climate as
a function of latitude and pressure along the GPCI cross-section.
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For THOR and the other models participating in the intercomparison, in order to re-

duce inter-model differences, the radiation schemes are configured to use constant diurnally-

averaged insolation and all models are asked to use a common cloud droplet number concen-

tration and effective cloud droplet radius calculation. In addition, all models use a common

surface flux scheme and strong nudging of the horizontal winds to the initial profiles. Ad-

ditional case specifications for LES model participants are included in Blossey et al. (2013)

and are followed by THOR. These are generally minor modifications to the existing setup,

like adding a moisture floor where spurious dry layers tend to develop above cloud top,

nudging thermodynamic variables aloft, and slightly reduced subsidence rates at point S12

to eliminate erroneous stratocumulus breakup. For all CGILS simulations, THOR is run for

100 simulated days with 30 m grid spacing at point S6 and 15 m grid spacing at S11 and S12

with timesteps of 1 s and half a second, respectively. Model domains differ depending on

the expected depth of the simulated clouds. For all mean profiles presented in this chapter,

values were averaged over the last 50 days of the solution.

4.2. Location S6

At location S6, corresponding to latitude 17◦N and representing the shallow cumulus

regime, the initial and steady-state profiles of θil and qt for the control case and the steady-

state solution for the perturbed climate case (denoted as P2K from here on) are shown in

figure 4.7. Aside from the obvious shifts to higher temperature and moisture values, the

profile shapes are remarkably similar. As with previous shallow cumulus cases, four layers

are present: the sub-cloud layer (below about 350 m), the cloud layer (from about 350 m to

2800 m or 3050 m), the inversion layer (about 2800 m or 3050 m), and the free troposphere

above the inversion layer. The most striking difference between the control (hereafter CTL)
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and P2K simulations is the rise in inversion height. According to table 4.1, the inversion

height (defined as the height where the relative humidity first crosses the 50% threshold)

increases by 270 m while cloud base remains unchanged.
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Figure 4.7. Steady-state profiles of θil (left) and qt (right) for the control
(black) and perturbed climate (red). The initial conditions for the control
case are shown with the black dotted lines.

Table 4.1. Steady-state values for location S6; the included values are inver-
sion height (zi), cloud base height (zcb), surface sensible heat flux (shf), surface
latent heat flux (lhf), liquid water path (lwp), maximum cloud fraction (cld
cvr), surface precipitation (src precip), shortwave cloud radiative forcing (sw
crf), longwave cloud radiative forcing (lw crf), and net cloud radiative forcing
(net crf).

Run zi zcb shf lhf lwp cld cvr sfc precip sw crf lw crf net crf

[m] [m] [W m-2] [W m-2] [g m-2] [mm day-1] [W m-2] [W m-2] [W m-2]

ctl 2788 337 8.63 122.67 36.54 0.196 0.684 -52.32 6.02 -46.30

p2k 3057 336 8.12 133.64 37.49 0.177 0.809 -50.24 5.63 -44.60

∆ 270 -1 -0.51 10.97 0.95 -0.018 0.124 2.08 -0.39 1.69
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Figure 4.8. Steady-state profiles of cloud fraction (left) and ql (right) for the
control (black) and perturbed climate (red).

The vertical cloud structure and time evolution are shown in figures 4.8 and 4.9. While

the liquid water path seems to reach an equilibrium value after a couple of days, the cloud

depth continues to increase until about 16 days into the simulation when a steady-state is

reached. For both simulations, cloud fraction maxes out less than 20% toward the upper

middle of the cloud layer with only a small secondary maximum at cloud base. In the P2K

run, the cloud top height is extended with the inversion by about 270 m, although it seems

to grow in height at the expense of cloud water slightly lower in the column. The increased

depth of the cloud is almost completely compensated by the decrease in cloud liquid water

further down in the column so that the liquid water path of the P2K run is increased by less

than 1 g m-2, or about 2.5%. The cloud cover, defined as the maximum cloud fraction in the

column, is decreased by about 10% of the CTL value in the P2K run.

The increase in surface temperature increases the surface latent heat flux by about 11 W

m-2, or about 9%, from the control simulation while the surface sensible heat flux decreases

190



0

1000

2000

3000

4000

5000

6000

0

1000

2000

3000

4000

5000

6000
h

e
ig

h
t 

(m
)

Cloud Fraction

0

1000

2000

3000

4000

5000

6000

0.0010.001

0.001

 0.00  0.17  0.33  0.50  0.67  0.83  1.00

Cloud Water Path

0 500 1000 1500 2000
Time (h)

0

10

20

30

40

L
W

P
 (

g
 m

−
2   
)

Figure 4.9. Time-height cross-section of cloud fraction for the control cli-
mate (top) and the time-series of liquid water path for the control (black) and
the perturbed climates (red).

by about 6%, or about a half W m-2. Between the increased inversion height and increased

buoyancy flux throughout the cloud layer driven by the increased moisture flux, the turbulent

eddies within the cloud layer are slightly more energetic with higher values of w′2 and TKE.
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The third-order moments of w, θil, and qt are increased by between 15 and 50% in the cloud

layer (not shown), indicating that transport by the turbulent eddies is the shallow cumulus

cloud layer is considerably stronger in a warmed climate.
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Figure 4.10. Steady-state profiles of vertical velocity variance (top left),
TKE (top right), sensible heat flux (bottom left) and latent heat flux (bottom
right) for the control (black) and perturbed climates (red).
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Blossey et al. (2013) compare results from six LES models running the CGILS case. The

LES simulations evolve similarly to the THOR simulation. Most LES models simulated a

cumulus-under-stratocumulus regime for the first several days, but the stratocumulus top

thinned and was dissipated in half the models by the end of their 10 day simulation. THOR

does not seem to produce a stratocumulus-topped layer at any time, although the first 10

days do feature a higher cloud fraction near the boundary layer top. Blossey et al. (2013)

point out that the simulated cloud layer is considerably deeper than observed by between 1

and 2 km. They blame the deeper cloud layer on errors in the CGILS forcing, particularly

the horizontal advection of moisture. They argue that this term is supposed to offset drying

due to subsidence, but it ends up moistening the upper portions of the cloud layer. This

may also explain the top-heavy shape of the cloud profile simulated by THOR, which does

not match general observations for shallow cumulus layers that have a distinct maximum

cloud fraction at cloud base.

The authors of the LES intercomparison study claim that precipitation plays a central role

in modulating the cloud field at point S6. They argue that cloud deepening (and therefore

boundary layer deepening) halts when precipitation begins to be generated efficiently, and

that increased precipitation in the P2K run reduces cloud top entrainment so that the

increase in the boundary layer height is stunted. In the LES models, surface precipitation

is increased by between 8 and 40% and boundary layer heights only increase by between 0

and 170 m, or generally less than 5%. In THOR, surface precipitation is increased by about

18% and the boundary layer depth increased by about 10% in the P2K run, so it seems

that precipitation is less successful at modulating cloud-top entrainment in THOR. Surface

precipitation rates range between 0.4 and 1.5 mm day-1 in the LES models according to
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Blossey et al. (2013) with the majority of models producing rain rates greater than 1 mm

day-1. THOR produces slightly lighter precipitation rates in the 0.7-0.8 mm day-1 range, so

the reduced precipitation in THOR might account for some of the greater entrainment rate.

In addition, the increase in transport by the third-order moments and turbulence intensity

in THOR’s P2K run that leads to stronger cloud-top entrainment is also influenced by the

radiative cooling. The shortwave cloud forcing is about -50 W m-2 in THOR compared with

-15 to -31 W m-2 in the LES models. Shortwave cooling is stronger in THOR due to its

slightly greater liquid water path and cloud fractions as compared to the LES models.

Despite the differences between THOR and the participating LES models in Blossey et al.

(2013), all models produce the same magnitude of cloud feedback. The cloud feedback, as

diagnosed from the change in net cloud radiative forcing, is very small and positive at 1.69

W m-2. The small positive feedback in THOR appears to be driven by slightly stronger

cloud-top entrainment that brings more dry air into the boundary layer near the cloud top.

This reduces cloud fraction and liquid water there compared to the control simulation, so

although the cloud is deeper with a slightly higher liquid water path in the warmed climate

run, the reduction in cloud coverage near cloud top reduces shortwave reflection by a small

amount, leading to a small positive feedback.

4.3. Location S11

Location S11 is located at 32◦N and features a cumulus-under-stratocumulus regime.

The mean profiles of the thermodynamic variables for the CTL and P2K for the last 50

days of the simulations are shown in figure 4.11 together with the initial conditions for the

CTL case. Although initial profiles from the ERA-Interim are only well-mixed up to about

500 m, THOR develops a boundary layer at steady-state that is about 1150 m deep in the
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CTL simulation and about 1300 m deep in the P2K simulation. There is some evidence of

stratocumulus decoupling, as one would expect in a cumulus-under-stratocumulus boundary

layer. Both simulations have a sub-cloud well-mixed layer below about 600 m. Above this

layer is a subtle, shallow layer of slightly increased stability with a weak moisture gradient,

most prominent in the P2K run but also evident in the CTL run. The top of the boundary

layer is once again well-mixed and neutral. The steady-state inversion height in the CTL

case reaches 1146 m versus 1278 m for the P2K case, a difference of 132 m.

θil


290 295 300 305 310
θil (K)

0

500

1000

1500

2000

h
e
ig

h
t 
(m

)

ctl
p2k

qt


4 6 8 10 12
qt (g kg-1  )

Figure 4.11. As in figure 4.7, but for location S11.

Table 4.2. Steady-state values for location S11; as in table 4.1, but with the
addition of the stratocumulus base height (zb).

Run zi zb zcb shf lhf lwp cld cvr sfc precip sw crf lw crf net crf

[m] [m] [m] [W m-2] [W m-2] [g m-2] [mm day-1] [W m-2] [W m-2] [W m-2]

ctl 1146 787 495 5.62 94.99 92.68 0.976 0.132 -168.42 9.92 -158.50

p2k 1278 921 491 4.96 108.93 91.68 0.976 0.129 -165.90 10.70 -155.20

∆ 132 134 -4 -0.67 13.94 -0.99 0.000 -0.003 2.52 0.78 3.30
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Figure 4.12. As in figure 4.8, but for location S11.

The vertical cloud structure and evolution are shown in figures 4.12 and 4.13. A steady

state is achieved after about 10 days of simulation, and the simulated clouds cover a maxi-

mum of 97.6% of the area in both simulations. The maximum liquid water content is about

the same in both cases, but the P2K run features a smoother gradient below cloud base,

suggesting a more decoupled layer with more cumulus underneath the stratocumulus layer.

From table 4.2, one can calculate the thicknesses of the stratocumulus and underlying cu-

mulus layers using the inversion height, zi, stratocumulus cloud base (defined as the height

below the height of maximum cloud fraction where the cloud fraction is equal to 50% of

the maximum), zb, and cloud base (defined as the height at which cloud fraction is equal to

0.1%), zcb. For the CTL case, the stratocumulus deck is 359 m thick and the cumulus layer

is 292 m deep. For the P2K case, the stratocumulus layer is approximately the same depth,

357 m, but the cumulus layer is significantly deeper at 430 m. Despite a deeper cumulus

layer and an identical stratocumulus water content, there is an approximately 1% decrease
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in liquid water path in the P2K run versus the control. Since the cumulus layer is deeper

in the P2K case, the slight reduction in liquid water path for this case must come from a

slightly thinner stratocumulus cloud.
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Figure 4.13. As in figure 4.9, but for location S11.
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Further evidence of the increased decoupling of the stratocumulus layer from the sub-

cloud layer is found in figure 4.14. The profiles of w′2 and TKE show that the minimum

values near the stratocumulus cloud base are significantly lower in the P2K case, indicating

that the eddies driven by surface forces and those driven by cloud-top radiative cooling are

more separated in that run. Interestingly, the magnitudes of the maximum values of w′2,

TKE, w′θ′il, w
′q′t, and w′θ′v in the stratocumulus layer are all the same or slightly greater

in the P2K run versus the CTL run, indicating that although decoupling is greater in the

P2K simulation, the layer is receiving enough moisture from the sub-cloud layer to thicken

and deepen the stratocumulus layer and the increased cloud-top radiative and evaporative

cooling is sufficient to sustain the “healthy” stratocumulus deck.

The evolution of the cloud deck simulated at point S11 by the CGILS LES models as

discussed in Blossey et al. (2013) is similar to that of THOR, featuring a stratocumulus cloud

rising to an equilibrium level with cumulus underneath. The LES models simulate a deeper

stratocumulus cloud that reaches up to 1400-1500 m, but this overshoots the observations

at this latitude by quite a margin, and THOR’s results are more in-line with observations.

In the LES results, the deeper boundary layer is evidence of stronger cloud-top entrainment.

In the warmed LES climate simulations, the strong entrainment warming and drying of the

boundary layer together with strong decoupling below the stratocumulus layer overcomes the

increased surface moisture flux, and the cloud layer thins. For all LES models, the change in

net cloud radiative forcing is weak but positive, leading to a weakly positive feedback at this

point. It appears the same mechanism is operating in THOR, as the very slight decrease in

liquid water path leads to reduced shortwave cloud forcing and weak, positive feedback of

3.3 W m-2.
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Figure 4.14. As in figure 4.10, but for location S11.

4.4. Location S12

Location S12 is the northernmost point simulated in the GPCI cross-section and it is

closest to the coast of California. It features the strongest subsidence and the strongest

inversion. The mean steady-state thermodynamic profiles for this location for both climate

states are shown in figure 4.15 along with the initial profiles for the control case. Of note

199



are the extremely sharp inversions that develop in the steady state and the constant mois-

ture profile above the inversion. The constant moisture profile above the inversion is the

result of the “quick fix” moisture floor as part of the CGILS setup for the S12 location to

fix the overactive combined subsidence and advection drying above the boundary layer top.

Without the moisture floor above the inversion, excessive drying above cloud top affects the

clouds simulated through excessive entrainment drying. Although artificial-looking, the case

coordinators maintain that the simulations produced with these modified forcings are repre-

sentative of the stratocumulus regime at this location. Both the CTL and P2K simulations

develop well-mixed layers with very little evidence of decoupling. In the P2K simulation, the

boundary layer height increases by about 100 m from 476 m to 575 m, due to the decreased

subsidence and the increased latent heat flux.
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Figure 4.15. As in figure 4.7, but for location S12.

The steady-state vertical cloud structure and time evolution are shown in figures 4.16

and 4.17. At first glance, the changes between the CTL and P2K simulations seem minor.
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Table 4.3. Steady-state values for location S12; as in table 4.2.

Run zi zb zcb shf lhf lwp cld cvr sfc precip sw crf lw crf net crf

[m] [m] [m] [W m-2] [W m-2] [g m-2] [mm day-1] [W m-2] [W m-2] [W m-2]

ctl 476 255 169 15.19 61.10 42.80 0.966 0.033 -110.67 3.17 -107.50

p2k 575 335 236 11.48 72.79 46.03 0.954 0.044 -109.21 3.63 -105.59

∆ 98 80 67 -3.72 11.69 3.23 -0.012 0.011 1.46 0.46 1.92

In the P2K simulation, there is a very small reduction in the maximum cloud fraction in the

stratocumulus layer, from 96.6% to 95.4%, although the maximum liquid water content is

increased by about 4%, consistent with the negative cloud feedback mechanism of Betts and

Harshvardhan (1987) relating to the increase in available cloud water due to the Clausius-

Clapeyron relationship. The depth of the stratocumulus layer calculated from zi and zb is

221 m for the CTL simulation versus 240 m for P2K. The combined effect of the deeper

stratocumulus layer with more liquid water is an increase in liquid water path of about 7.5%

in the P2K simulation.
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Figure 4.16. As in figure 4.8, but for location S12.
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Figure 4.17. As in figure 4.9, but for location S12.

The mean profiles of w′2, TKE, w′θ′il, and w′q′t are shown in figure 4.18 for completeness.

The reduced minimum in the w′2 profile in the P2K run together with the slightly smoothed

out gradient in cloud water at cloud base indicates that the boundary layer might be trending

toward a decoupled boundary layer in a warming climate, but this effect is subtle. Other
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notable changes include a decrease in the surface sensible heat flux and an increase in the

surface latent heat flux, but these are expected given the +2K increase in SST.
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Figure 4.18. As in figure 4.10, but for location S12.

In the context of the simulated clouds at point S12, Blossey et al. (2013) discuss the

competing thermodynamic and dynamic effects of a warmed climate on stratocumulus clouds.

They complete an additional simulation at point S12 that uses all of the changes in initial
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state and forcings associated with a +2K SST perturbation except for the subsidence, which

they keep the same as the control case. With this additional run, the authors are able to

separate the changes in stratocumulus cloud due to the increased temperature alone and

the dynamics effect of reduced subsidence. Using this technique, they are able to determine

that a stratocumulus deck thins due to the thermodynamic effect and thickens due to the

dynamic effect. There is competition and cancellation between these two effects, and in the

LES models, the dynamic effect seems to hold greater influence, as the S12 point features

thicker clouds in a warmed climate and a small negative feedback. In THOR, although the

liquid water path is increased in the P2K simulation, the change in net cloud radiative forcing

is actually positive, at 1.92 W m-2. This is likely due to the fact that the maximum cloud

fraction has decreased in the P2K simulation. The mechanism that seems to be operating is

that the increased entrainment rate induced by the decreased subsidence causes more dry air

to evaporate larger “gaps” in the stratocumulus cloud, making them slightly less reflective

for shortwave radiation, despite there being slightly higher water content where cloud does

exist.

4.5. Cross Section Results

Although the CGILS LES intercomparison only used model runs at three points, broadly

representing the shallow cumulus, stratocumulus, and transitional cloud regimes, initial con-

ditions and large-scale forcing profiles were calculated for all points along the GPCI cross-

section. It would be extremely computationally demanding to run control and perturbed

climate simulations to steady state at all points along the cross-section with LES models, but

it can be done with relatively little expense using THOR. In this study, results are presented

from simulations of all CGILS points where subsidence exists aloft, where low clouds are
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expected to form. All points north of point S5 at latitude 14◦N are simulated, covering an

additional five points for both the control and perturbed climate. At point S8 (23◦N) and

southward, THOR is run for 100 simulated days with a grid spacing of 30 m and a domain

of between 4000 and 4500 m. For points north of 23◦N, grid spacing is reduced to 15 m to

better simulate stratocumulus-topped boundary layers and the domain is reduced to better

coincide with the expected cloud top height.
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Figure 4.19. Cloud fraction as a function of latitude and height along the
GPCI cross-section for the control climate.

The steady-state cloud fraction along the cross-section simulated for the control climate

is shown in figure 4.19 along with the change in cloud fraction in the perturbed climate in

figure 4.20. The analogous plots for the cloud liquid water are shown in figures 4.21 and

4.22. In the control simulation there is a relatively sharp gradient in maximum cloud fraction

between latitudes 26◦N and 29◦N. This coincides with the transition from stratocumulus to

shallow cumulus regimes. THOR is able to correctly simulate the lifting of the stratocumulus

layer with weakening subsidence and warmer SSTs that occurs in nature at these locations.

As discussed in the previous sections, points S12 and S11 (coinciding with latitudes 35◦N
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Figure 4.20. The change in cloud fraction from the control climate to the
perturbed climate as a function latitude and height along the GPCI cross-
section.

and 32◦N, respectively), feature a well-mixed stratocumulus layer and an elevated stratocu-

mulus layer with a very shallow layer of cumulus underneath, respectively. The transition

from cumulus-under-stratocumulus to a purely shallow cumulus regime continues to take

place from latitude 29◦N all the way to latitude 23◦N. At 29◦N, the stratocumulus deck still

provides nearly 100% coverage, even though the inversion height has risen to nearly 2000 m,

and the underlying cumuli are becoming deeper and more energetic. At 26◦N, the stratocu-

mulus deck has thinned nearly completely, although the slight cloud fraction maximum at

cloud top combined with the higher inversion height there due to cloud-top radiative cooling

provide evidence that it remains intact to some extent. At 23◦N and southward, THOR

tends to predict a similar shallow cumulus cloud structure, although minor differences in

inversion height and maximum cloud fraction exist.

In the perturbed climate, the most obvious change is the rise in the inversion height,

indicated by the positive/negative pairs in the cloud fraction and cloud water change plots.
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Figure 4.21. Cloud liquid water content as a function of latitude and height
along the GPCI cross-section for the control climate.
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Figure 4.22. The change in cloud water content from the control climate to
the perturbed climate as a function latitude and height along the GPCI cross-
section.

The rise in inversion height increases as one goes poleward from 35◦N. There is little apparent

change from 23◦southward, although it appears as though cloud fraction and liquid water

content is reduced in the middle and upper portions of the cumulus field and is displaced

upward. The biggest change happens at point S9, at 26◦N. Recall that at this point in the
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control simulation, a cloud field consisting mostly of cumuli was topped by a thin, broken

layer of stratocumulus on the order of 30% cloud fraction. In the perturbed climate, the

stratocumulus deck appears to fill in appreciably, to well over 50% areal coverage. In addition,

between the increased cloud-top radiatively driven turbulence and weakened subsidence at

this location, the boundary layer entrains significantly more free tropospheric air, and the

boundary layer depth rises to the highest level at any point along the cross-section.

Values of many diagnostic quantities along the cross-section for both the control and

perturbed climate runs are shown in figure 4.23. A common characteristic over the subtrop-

ical ocean, the Bowen ratio is quite low throughout the cross-section, and the surface latent

heat flux increases as one goes southward, toward warmer SSTs. A +2K SST perturbation

is translated into an approximately 10 W m-2 increase in the latent heat flux for all points

and a very small, roughly 1 W m-2 decrease in the sensible heat flux. There is nearly a

monotonic increase in inversion height going from 35◦N southward along the cross-section

except for the “bump” in inversion height near 26◦N associated with a local minimum of

subsidence in the forcing. Cloud base is nearly constant from north to south at around

500 m, and the stratocumulus depth increases from about 200 m near the coast at 35◦N

to a maximum of 400 m at 29◦N. South of this point, stratocumulus depth decreases as it

is thinned away. The liquid water path has a relatively low constant value from latitudes

14◦N to about 23◦N. Northward of this point, the shallow cumulus regime transitions to the

cumulus-under-stratocumulus regime from latitudes 26◦to 32◦N where a maximum in liquid

water path is collocated. The liquid water path decreases from this point toward the coast

as the regime switches to thinner stratocumulus. The maximum cloud fraction plot shows

a rather sharp transition from a low cloud cover of around 20% to nearly full coverage over
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Figure 4.23. Sfc. fluxes (first), boundary layer height, Sc base height, and
cloud base height (second), liquid water path (third), max. cloud fraction
(fourth), sfc. precip. (fifth), longwave CRF (sixth), shortwave CRF (seventh),
and net CRF (eighth) for the control climate (black) and the perturbed climate
(red) as a function of latitude along the GPCI cross-section.
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two simulation points. Surface precipitation decreases monotonically from south to north

along the cross section as the more efficient precipitation processes in cumulus give way to

the lighter drizzle found in stratocumulus.

The bottom three plots in figure 4.23 show the longwave, shortwave, and net cloud

radiative forcing, respectively. The longwave radiative forcing is a function of cloud top

temperature in relation to the SST and cloud water content, and therefore the shape of its

curve is somewhat determined by a combination of those representing the inversion height,

zi, and the liquid water path. It is weakest near the coast where the cloud is very close

to the ground and the cloud-top temperature and SST are very close, and increases as the

boundary layer depth and liquid water path increase between latitudes 26◦and 32◦. The

shortwave radiative forcing is determined by how much incoming solar radiation is reflected

by clouds compared to reflection by the surface, and is therefore a function of both the liquid

water path and the areal cloud cover. The shape of the shortwave cloud radiative forcing

is nearly a mirror image of the liquid water path curve. When liquid water path is high,

reflection due to clouds is also high, and shortwave cloud forcing is strongly negative. The

net cloud radiative forcing is a combination of these two, and is dominated by the shortwave

component.

Figure 4.24 summarizes the changes simulated by THOR between the control and per-

turbed climate states. The rise in inversion height is generally consistent, between 100-200

m, but is considerably higher, as discussed previously, at 26◦N due to weaker subsidence,

the thickening of the stratocumulus layer, and the resultant increased cloud top cooling

and entrainment. The change in liquid water path in the perturbed climate has an inter-

esting pattern. There are modest increases in liquid water path south of 20◦N and at the
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northernmost point, but there is a loss of liquid water path in between, with relatively large

reductions between 26◦and 29◦N. The reasons for the reduction in liquid water path for 32◦N

have been discussed, and it appears to be due to the combined effects of stronger cloud top

entrainment mixing bringing in warm and dry air into the boundary layer and greater de-

coupling of the stratocumulus layer from the moisture-supplying surface layer. The process

seems to be stronger at 29◦N than at 32◦N (point S11), and the associated drop in liquid

water path is therefore significantly larger. The increase in liquid water path at 35◦N was

determined to be due to fact that warmer air is able to have more water vapor at a given

relative humidity and the fact that increased cloud-top entrainment does not quite balance

out increased moisture input from surface fluxes. The small increases of liquid water path

in the shallow cumulus regime is thought to be the result of slightly deeper cumuli.

There is little change in the maximum cloud fraction in a warmed climate for most

latitudes, except for at 26◦N. The small reduction in maximum cloud fraction in the cumulus

latitudes is thought to mainly be due to increased entrainment of dry air at cloud top,

slightly reducing cloud fractions in the detrainment zone. The large increase in maximum

cloud fraction at S9, as discussed previously, is due to the transition from shallow cumulus

to a cumulus-under-stratocumulus regime at this location in a warmed climate. This change

seems to be radiatively driven in THOR. The cloud field initially evolves as cumulus with a

very thin, broken stratocumulus layer on top. As the simulation progresses in the warmed

climate, there is slightly more liquid water in the stratocumulus layer with slightly stronger

radiative cooling. At some point, the radiative cooling seems to reach a threshold where a

positive feedback between the condensation and radiation schemes develops, perpetuating

the thicker stratocumulus layer, not unlike the physical process of sustaining stratocumulus
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layers in nature. The switch from the cumulus to cumulus-under-stratocumulus at 26◦N in

the perturbed climate run ends up reducing surface precipitation since much of the cloud

water that had been part of relatively deep cumulus towers is instead dispersed in thin

stratocumulus at the boundary layer top where precipitation processes are less efficient.

Surface precipitation for the shallow cumulus latitudes is generally increased by about 0.1

mm day-1 with the slightly deeper cumulus towers and increased surface flux of moisture,

and, as discussed in Blossey et al. (2013), the increase helps to modulate the growth of the

boundary layer.

The change in the longwave cloud radiative forcing is negligible at every point aside from

26◦N. The roughly 12 W m-2 increase in the longwave radiative forcing (surface warming) at

this location is due to the almost 500 m increase in the boundary layer height and associated

drop in cloud top temperature together with the displacement of liquid water upward in the

column. The increase in longwave cloud radiative forcing is almost entirely offset by the

increased cooling due to the shortwave cloud radiative forcing at this location that is the

result of the increased coverage of highly reflective stratocumulus clouds. At every other

location along the cross-section, cooling due to the reflection of shortwave is decreased (a

positive change in shortwave cloud radiative forcing, or warming). At latitudes 23◦, 29◦, and

32◦N, the reduction in shortwave cooling is the result of decreased liquid water path, and

also the decreased cloud cover at 23◦N. At latitudes 17◦, 20◦, and 35◦N, the reduction in

shortwave cooling must be due to the decrease in cloud cover, since the liquid water path has

increased at all of these points. The final balance between longwave and shortwave radiative

forcings is the net radiative forcing, shown in the bottom plot in figure 4.24. Except for

latitude 14◦N, where a vanishingly small negative net cloud radiative forcing is calculated, a
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positive feedback is calculated at all latitudes. This means that, according to this experiment

conducted with THOR, the change in low clouds in a warmed climate is expected to enhance

the original warming.
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CHAPTER 5

Conclusion

Guided by the need to improve the simulation of low cloud cover in AGCMs in order to

reduce uncertainties in the projections of future climate, a new, generalized SGS parameter-

ization called THOR has been developed. It was designed to bridge the spatial gap between

those processes that are well-represented on a large-scale climate model grid and those that

occur on the micro-scale, including what is commonly referred to as turbulence, but also

processes like small-scale advection that cannot be captured by larger grids. THOR uses

a two-and-a-half order turbulence scheme as its base in order to calculate the statistics of

SGS processes. Using the variances, covariances, and skewness values calculated from the

turbulence scheme, a trivariate probability density function is diagnosed among the verti-

cal velocity, ice-liquid water potential temperature, and total water specific humidity. The

PDF describes exactly how these variables relate to one another, giving the probability of

finding a particular (w, θil, qt) triplet within a given grid cell. Using this information, one

can calculate what percentage of a grid cell is covered with clouds, how much liquid and

frozen water is contained in those clouds, and the statistics of how the water is being moved

through the grid cell. In addition, such a PDF can be used to more accurately determine

how precipitation and radiation interact with the clouds within the grid cell.

At least four novel concepts are included in THOR. The first has to do with how turbu-

lence is dissipated in the two-and-a-half order turbulence scheme. Turbulence is dissipated,

or damped, on a time scale that is related to the average time a parcel spends in the largest of

the turbulent eddies. The size of these eddies is determined by calculating a quantity called

the master turbulence length scale. In order to calculated this length, a parcel model is
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used. Parcels are released, given a specific amount of kinetic energy and are tracked as they

rise or fall. The distance that the parcels move from their original location is determined

both by their initial energy and the static stability of the environment that they encounter.

In addition, as the parcels move upward or downward, they are allowed to mix with their

environment. The standard way of calculating how much the parcels mix with their environ-

ment is to assume that they do so at a low, constant rate. A new procedure was introduced

that assumes that entrainment happens as discrete events. How much mixing takes place

is determined by the likelihood that a mixing event occurs and the the probability that a

mixing event exchanges a certain amount of air with its environment. The sensitivity to the

new way of calculating turbulence dissipation was investigated in this study.

The second novel concept that is introduced in THOR is the new way to diagnose the

trivariate PDF from the turbulence statistics. Although many previous studies have assumed

that the diagnosed PDF is in the double-Gaussian family, many dubious assumptions have

been made in order to arrive at a particular PDF, given a set of turbulence statistics. Some

have assumed that vertical velocity skewness is representative of the skewness of temperature

and moisture, and therefore only require one third-order moment. Others have assumed that

sub-plume variance is zero or that the sub-plume variance of one Gaussian plume is equal to

that of the other Gaussian plume. THOR calculates the double Gaussian PDF parameters

using the skewnesses of all variables, and it parameterizes the sub-plume variances so that

the minor Gaussian plume that represents the active, or updraft portion of the cloud field,

has a higher variances than the major Gaussian plume that represents the environment. In

addition, although previous studies have assumed that correlations between vertical velocity

and temperature and moisture are zero, THOR relaxes this assumption. Although THOR’s
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solution requires that a two-equation nonlinear system be solved at each grid level and time

step, an efficient algorithm is developed that uses a look-up table that only depends on a

variable’s skewness and the Gaussian mixture variable.

The third new development included in THOR is the inclusion of a way to calculate

condensation over ice in a SGS condensation scheme. Subgrid condensation schemes have

existed since the late 1970’s, but to the author’s knowledge, they have always assumed

that condensation takes place over a liquid substrate. Ice is only considered after cloud

condensate has been calculated by using a microphysics scheme to freeze some of the con-

densate. The approach used in THOR generalizes the linearized saturation curve used to

calculate what portion of the diagnosed PDF is supersaturated. The linearization approx-

imates the Clausius-Claperyon relationship over ice for extremely cold temperatures, the

Clausius-Clapeyron relationship over liquid for temperatures above freezing, and interpolates

between the two relationships for temperatures conducive to supercooled cloud droplets.

The fourth novel concept introduced is the use of the diagnosed PDF to calculate radiative

transfer through a partially cloudy grid cell. Perhaps the most efficient way to do this would

be to use the McICA approach from Pincus et al. (2003) whereby sub-columns that sample

the SGS cloudiness are generated and used for each band of a broadband radiative transfer

calculation. Due to the complexities of implementing this approach with the current SGS

cloudiness scheme, one would probably be tied to using one particular radiation transfer

scheme with THOR. To mimic this approach without having to modify the radiation scheme,

THOR generates sub-columns that sample the SGS cloudiness, but use a full broadband

radiative transfer calculation with each sub-column. Depending on how many sub-columns

are generated and how long the radiation time step is, this method can introduce numerical
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noise into the simulation and add considerable computational cost. These drawbacks are

balanced by the ability to use different radiation schemes, however.

In order to evaluate THOR, five test cases representing a wide range of marine boundary

layer clouds were run. For each case, results generated by THOR are compared with an LES

ensemble, the members of which participated in published intercomparison studies. Using

the LES ensemble as a benchmark, THOR’s results were analyzed in order to determine how

well it represented various types of boundary layer clouds. Specific attention was paid to the

vertical structure of turbulence statistics and simulated cloud structure. Where discrepancies

or errors were noted, attempts were made to determine their cause in order to facilitate future

improvement and to understand model bias.

After the two shallow cumulus cases were run, the following strengths and weaknesses

were determined. In general, THOR produced cloud fields that greatly resembled those

produced by LES with well-defined cloud bases and a secondary maximum in cloud fraction

in the detrainment zone at cloud top. Cloud liquid water content was well within the range

of LES results too. Both cumulus cases, however, developed a sub-cloud layer that was too

moist and a cloud layer that was too shallow. The turbulent fluxes of θil and qt were found

to be slightly too weak, although generally still within the range of LES results. Since third-

order moment transport terms were determined to generally be of the proper magnitude,

it was determined that the weak turbulent fluxes are probably the result of an improper

balance between the pressure correlation and buoyancy terms.

Of the two stratocumulus cases simulated, THOR had better success simulating the

subtropical DYCOMS case. THOR was able to simulate and sustain a stratocumulus field

of the appropriate thickness with seemingly the right cloud-top entrainment rate as judged
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by the inversion rise and cloud top fluxes of θil and qt. Profiles of w′2, w′θ′il, and w′q′t were all

very close to the LES ensemble mean. The MPACE case was considerably more challenging

for THOR. Although a steady-state stratocumulus cloud was simulated, it was too thin.

The biggest error was in the composition of the cloud. THOR produced a cloud that was

ice-dominated and relatively heavily-precipitating, whereas LES and observations feature

liquid-dominated clouds and lighter precipitation. Most of the issues with the MPACE

simulation can be traced back to the temperature dependence used for determining the

partition between liquid and ice, copied from the SAM microphysics scheme.

The ASTEX case featured a Lagrangian-style transition from stratocumulus to cumulus

as an air mass moved equatorward toward warmer SSTs and weaker subsidence. THOR

simulated the gross features of the transition well with thick, precipitating stratocumulus

the first night, a thinning and rising cumulus-under-stratocumulus layer during the first

day and second night, and finally a cumulus layer under a thin and sparse stratocumulus

layer toward the end of the simulation. Throughout the simulation, however, the boundary

layer was simulated as too shallow, the result of a weak convective flux of moisture by the

cumulus-under-stratocumulus, too much precipitation, and weak cloud-top entrainment.

In addition to evaluating THOR’s performance relative to LES models, six sensitivity

tests were conducted on the five test cases, where appropriate, to determine how sensitive

THOR is to various model formulations. The effect of changing grid spacing was evaluated

for all test cases. For the cumulus cases, THOR’s results were relatively insensitive to the grid

spacing below about 200 m. Above this level, gradients in mean quantities and turbulence

statistics were smoothed out, resulting in errors of various significance. In the RICO case,

the number of cloud fraction maxima was a function of grid spacing: for grid spacing finer
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than 80 m, a trimodal structure developed, whereas for the 160 m run, a bimodal structure

developed and a single maximum in the middle of the cloud layer developed for the 320

m case. More significant differences were evident for the stratocumulus cases, as expected.

Cloud-top entrainment seemed to be strong function of grid spacing, with coarser resolutions

leading to weaker entrainment and a moister and cooler boundary layer with thicker, deeper

clouds. For the DYCOMS case, significant errors began to develop in the simulation at grid

spacings of 50-100 m, whereas for the MPACE case, the limit seemed to be in the 100-200

m range.

Unlike the grid spacing sensitivity test where the stratocumulus cases displayed greater

sensitivity, the cumulus cases show greater sensitivity to how the third-order moments are

calculated (the stratocumulus cases showed no sensitivity whatsoever). In addition to the

control setup where all third-order moments are diagnosed, all cases were run with the

intermediately prognostic (IP) setup where only w′3, θ′3il , and q′3t are predicted and the fully

prognostic (FP) setup where all third-order moments are predicted. In both the BOMEX

and RICO cases, an oscillation on the order of 10-15 minutes developed when either the

IP or FP configurations were used, with the oscillation being strongest in the FP runs. In

addition, the IP and FP runs tended to reduce the cloud fraction maximum near cloud base

and increase the cloud fraction in the middle and/or upper portions of the cloud. The FP

runs for the cumulus cases also had the highest liquid water path of those tested.

Another sensitivity test that seemed to have little effect on the stratocumulus cases but

a substantial effect on the cumulus cases was the turbulence length scale entrainment sensi-

tivity test. Three entrainment rates and two entrainment methods were tested. The control

simulations used a lower constant rate consistent with observations of shallow cumulus and

220



previous studies. The higher rate was tested following the work of Romps and Kuang (2010),

whose study also led to the development of the stochastic parcel entrainment algorithm. It

was found that the higher parcel entrainment rate significantly reduced the turbulence length

scale, leading to reduced turbulence and cumulus clouds with higher cloud fractions and liq-

uid water contents, especially near cloud top. Whether the stochastic parcel entrainment

algorithm was used or not did not seem to matter much if a lower entrainment rate was

assumed. If a higher entrainment rate was assumed, however, the stochastic parcel entrain-

ment algorithm was found to lengthen the turbulence length scale somewhat and to reduce

the negative effects of using the higher entrainment rate. For the ASTEX transitional case,

the length scale entrainment sensitivity tests did not change the results during the thick

stratocumulus phase of the runs, but did influence the simulation when cumuli were intro-

duced below the stratocumulus deck. The higher parcel entrainment rate tended to slow the

transition to cumulus, while the lower entrainment rates sped up the transition.

The efficacy of the latin hypercube PDF sampling algorithm was tested by switching the

algorithm off and instead calculating microphysics terms using the grid-cell mean variables.

For cases with low liquid water content, like the RICO and DYCOMS cases, turning off the

PDF sampling algorithm effectively eliminated all precipitation. The grid-cell mean cloud

water was not enough to trigger the autoconversion process in the microphysics parame-

terization. The effect of eliminating precipitation in the cumulus case was to dry out the

sub-cloud layer and moisten the middle and upper cloud layers. The increased in-cloud mois-

ture led to more latent heat release and more energetic turbulence through the buoyancy and

mechanical production terms, eventually leading to increased cloud-top entrainment and a
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deeper boundary layer. For the DYCOMS stratocumulus case, the elimination of precipita-

tion increased cloud water and cloud fraction throughout the cloud layer, but especially at

cloud base. The increased latent heating at cloud base did not seem to effect the strength

of cloud-top entrainment for that case. Interestingly, the sensitivity test where ice processes

were neglected for the MPACE mixed-phase stratocumulus case had a very similar effect.

Since the control simulation produced an ice-dominated cloud, and since ice clouds tend

to precipitate at a lower cloud water content, the control simulation produced relatively

high precipitation. When ice processes were neglected, the cloud water was insufficient to

generate precipitation, so the cloud grew increasingly thick, and significantly increased the

cloud-top radiative cooling. Due to the strong subsidence however, the additional turbulence

generated by latent heating and radiative cooling did not seem to increase the entrainment

rate in that case.

The last sensitivity test performed tested the effect of using grid-cell mean values to

calculate the radiative transfer instead of sampling the diagnosed PDF. This test was per-

formed for the MPACE and ASTEX cases. For both cases, it was determined that using the

PDF sampling scheme to drive the radiative transfer significantly reduced cloud-top radia-

tive cooling. The effect that this had on the simulated cloud field varied. For the MPACE

case, the reduced cloud-top cooling did reduce the entrainment rate leading to a cooler and

moister boundary layer, but the diagnosed cloud was affected little. For the ASTEX case, it

was found that turning off the PDF sampling scheme significantly improved the simulation

of the transition between stratocumulus and cumulus as compared to the LES ensemble

mean. It seems as though the algorithm developed for THOR to drive radiation based on

the SGS variability leads to a significant underestimate of cloud-top radiative cooling, and

222



further work should be done to rectify this issue. However, a sensitivity test was performed

for the shallow cumulus location of the CGILS experiment that tested the sampling scheme

for the radiative transfer (not shown) and it was found that the sampling scheme substan-

tially improved radiative transfer for that case. If grid-cell mean values were used in that

case, strong radiative cooling persisted at cloud top, and a cumulus-under-stratocumulus

regime was simulated instead of the shallow cumulus regime. It seems as though the PDF

sampling scheme is useful for cumulus regimes, but detrimental for use with stratocumulus

regimes. Further research is warranted in order to improve the algorithm.

In addition to running standard test cases to evaluate the new model, an additional

experiment was performed to investigate low cloud feedbacks as simulated by THOR. As

part of the CGILS project, idealized initial profiles and large-scale forcings largely based

upon ERA-Interim data along the GPCI cross-section in the northeastern Pacific Ocean were

developed. The main goal of the project was to be able to study low cloud feedbacks using

LESs and SCMs in an area of the world where low clouds dominate and where transitions

between different low cloud regimes can be included. Initial conditions and forcings for both

the current climate and a perturbed climate with a +2K SST change were produced to drive

the participating models. Three points along the cross-section were chosen to represent the

shallow cumulus, cumulus-under-stratocumulus, and coastal stratocumulus regimes for the

LES intercomparison. Simulations were performed using THOR for all three locations for

both the control and perturbed climate states in order to compare the change in clouds

simulated by THOR with those simulated by LES.

For the cumulus regime location, the simulated cloud field became deeper along with the

lifting of the subsidence inversion. The slightly deeper cumulus deck ended up with slightly
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lower areal coverage and lower water content, especially near cloud top. These changes

combined to have little effect on the liquid water path, but shortwave cloud radiative cooling

was slightly reduced owing to the slight reduction in cloud cover. The weak positive feedback

was similar to the weak positive feedbacks produced by the LES ensemble. For the cumulus-

under-stratocumulus point, the simulated cloud field was more decoupled in the perturbed

climate with a deeper and more active cumulus layer underneath the stratocumulus layer.

The increased cloud-top entrainment slightly thinned the stratocumulus layer, leading to

reduced liquid water path, and less shortwave cooling. The consensus of THOR and the LES

ensemble was a weak positive feedback for this point. The northernmost point was forced by

the strongest subsidence and featured a well-mixed stratocumulus-topped boundary layer.

In the perturbed climate, THOR simulated a boundary layer and a slightly deeper cloud

layer with a higher maximum liquid water content. However, the reduced areal coverage

simulated by THOR led to a very weak positive feedback, counter to the results of the LES

ensemble that produced a weak negative feedback.

The CGILS project was extended in this study by simulating five additional locations

along the GPCI cross-section, so that the entire subsiding portion of the cross-section was

simulated (from 14◦N to 35◦N). THOR simulated shallow cumulus from 14-23◦, cumulus-

under-stratocumulus from 26-32◦, and well-mixed stratocumulus at 35◦N. The boundary

layer depth rose nearly monotonically from the northernmost point to the southernmost

point, consistent with observations. A relatively sharp transition between low cloud coverage

and high cloud coverage is simulated in both climate states, with the transition occurring

between 26◦and 29◦in the control climate and between 23◦and 26◦in the perturbed climate.

Although this seems like an expansion of the areal coverage of the reflective stratocumulus
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shield, the liquid water path was simulated to decrease in the transitional zone due to

greater boundary layer decoupling and stronger cloud-top entrainment drying. There was

little change in the longwave cloud radiative forcing except for at 26◦N, where the increase

in cloud coverage and the rise in the boundary layer height caused longwave warming to

increase by a large margin. The increased shortwave radiative cooling at the same location

nearly compensated for the longwave increase, but the net change in cloud radiative forcing

at this location was still positive, signifying a positive feedback. At other locations along

the cross section, either decreases in liquid water path or areal coverage led to a decrease

in shortwave cooling and a positive net change in cloud radiative forcing. For all locations

along the cross-section, a positive or neutral feedback was calculated.

Potential exists for considerable future work with THOR. First, it was determined that

THOR tends to underestimate the convective moisture and heat fluxes in shallow cumulus

layers. The deficiency seems to be rooted in the balance between production of fluxes by the

buoyancy terms and destruction of fluxes by the pressure correlation terms. An improved

parameterization of the pressure correlation terms for cloudy boundary layers should be a

priority for future work. Second, improvements should be made to how cloud water is parti-

tioned between liquid and ice. More accurate methods that include information about cloud

condensation nuclei and ice nuclei have been developed and would be a logical step forward.

Third, turbulence dissipation seems to be influenced more by the rate of parcel entrainment

than by the particular method used to determine parcel mixing. Rather than slowing THOR

down with the stochastic Poisson process entrainment, perhaps one could use a single vari-

able entrainment rate that might be a function of parcel speed, buoyancy, and some measure

of its size. Fourth, although the PDF sampling algorithm for the radiative transfer scheme
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improves radiative transfer in cumulus regimes, it appears to underestimate the radiative

flux divergence at cloud top in stratocumulus regimes. This algorithm should be improved

to work better in such regimes. Fifth, although a few preliminary deep convective cases

have been simulated using THOR (not shown), more work needs to be done to determine

its efficacy for simulating these types of clouds if THOR is to be utilized in a AGCM.

The details of THOR’s formulation have been discussed at length in this work, including

the underlying higher-order closure scheme, the parcel method for determining the turbu-

lence length scale, the new algorithm for determining the trivariate PDF parameters, the

improved SGS condensation scheme that accounts for condensation over ice, a new surface

layer scheme, and PDF sampling methods for driving any chosen microphysics and radiation

parameterizations. Test cases were simulated that represent both shallow cumulus, stratocu-

mulus, and transitional regimes and results were compared with LES ensembles. Finally, an

example of the applicability for using THOR to study low cloud feedbacks was presented

following the work done as part of the CGILS project along the GPCI cross-section. Despite

the shortcomings discovered by simulating standard test cases and running sensitivity tests,

THOR has proven to be a useful tool for understanding boundary layer clouds. It remains

to be seem whether the advances put forth in this work can be successfully transferred to a

AGCM and whether they will improve the representation of boundary layer clouds in climate

simulations, but at the very least, they represent progress toward this goal.
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APPENDIX A

Estimated Inversion Strength Calculation

Wood and Bretherton (2006) define the EIS as

EIS = LTS− Γ850
m (z700 − LCL) (137)

where LTS is the lower tropospheric stability defined as

LTS = θ700 − θsfc (138)

and Γ850
m is the moist adiabatic lapse rate at 850 hPa, LCL is the lifted condensation level,

and z700 is the height of the 700 hPa surface. The moist adiabatic lapse rate can be calculated

with

Γm(T, p) =
g

cp

[
1−

1 + Lvqs(T,p)
RaT

1 + L2
vqs(T,p)
cpRvT 2

]
(139)

where g is the gravitational acceleration, cp is the specific heat of dry air at constant pressure,

Lv is the latent heat of vaporization, Ra is the dry air gas constant, Rv is the water vapor

gas constant, and qs is the saturation specific humidity. The LCL may readily be estimated

by the Epsy formula (Lawrence 2005)

LCL = 125
(
Tsfc − Tdsfc

)
(140)

The dewpoint temperature can be calculated by solving Teten’s saturation formula for T :

Td =
35.86 ∗ ln

(
e

6.1078

)
− 17.2693882 ∗ 273.16

ln
(

e
6.1078

)
− 17.2693882

(141)

where e is the water vapor partial pressure, easily calculable from the specific humidity with

a standard formula.

Of course, this formula is only applicable for model domains that extend up to 700 hPa.

Using a shallower domain can be warranted for study of low clouds. In such a case, EIS is
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approximated by the formula

EISapprox = (θmodel top − θsfc)− Γmodel midpoint
m (zmodel top − LCL) (142)
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APPENDIX B

Parcel Condensation

It is assumed that the values of θil, qt, and p are known from the parcel model. First,

calculate the parcel ice-liquid temperature since the parcel pressure is known.

Tilparcel =

(
pparcel

p0

)κ
θilparcel (143)

If, Tilparcel > 273.16, then there is only the potential for liquid condensate, and the saturation

specific humidity using the liquid water temperature is calculated with

qslil =
εes

pparcel − (1− ε)es
(144)

where es is given by Teten’s formula

es = 6.1078e

17.2693882

(
Tilparcel

−273.16

)
Tilparcel

−35.86
. (145)

The quantity s is calculated using

sparcel = cqt

(
qtparcel − qslil

)
(146)

where

cqt =
1

1 +
εL2
vqslil

cpRdT
2
ilparcel

(147)

Finally, the parcel liquid water content is given by

qlparcel = MAX (sparcel, 0) (148)

If, Tilparcel ≤ 273.16, then the parcel condensate will contain at least some ice. The amount of

ice depends only on the parcel temperature as determined in the SAM model microphysics.

Since the parcel temperature depends on the parcel liquid and ice condensate, a simple

iterative procedure is used:
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(1) Calculate the saturation specific humidities over liquid and ice using (144) and (149).

(2) Calculate the first guess wn assuming no cloud condensate (T = Til) using equation

(85).

(3) Calculate cqt according to (151) and s according to (152).

(4) Using values calculated in step 3, calculate new values of parcel water and ice using

equations (153) and (154).

(5) Calculate a new estimate of temperature using the definition of Til (68).

(6) Calculate a new estimate for wn using (85).

(7) Repeat steps 3 - 6 until the change in temperature estimates is below some threshold,

currently 0.001 K.

The following equations are used in the iterative procedure:

qsiil =
εesi

pparcel − (1− ε)esi
(149)

esi = 6.112e

22.46

(
Tilparcel

−273.15

)
272.62+

(
Tilparcel

−273.15

)
. (150)

cqt =
1

1 + ε
cpRdT

2
ilparcel

{
[wnLv + (1− wn)Ls]

[
wnLvqslil + (1− wn)Lsqsiil

]} (151)

sparcel = cqt

{
qtparcel −

[
wnqslil + (1− wn) qsiil

]}
(152)

qlparcel = wnMAX (sparcel, 0) (153)

qiparcel = (1− wn)MAX (sparcel, 0) (154)
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APPENDIX C

Notes on Solving the Nonlinear System

Let p = (x2 − x1) and q = σx. Then the system (55), (57) becomes

2q2 + a (1− a) p2 −
(
x′2 − x′2thresh

)
= 0

(1− 2a) p
[
q2 +

(
x′2 − x′2thresh

)]
− x′3 = 0

(155)

Many methods exist for solving a system of nonlinear equations, including Newton’s method,

Broyden’s method, and Powell’s method. One popular FORTRAN package that uses Powell’s

method is MINPACK, and it is used here. Powell’s method requires the Jacobian of the

system, and although MINPACK contains routines to calculate the Jacobian numerically, it

is easy enough to calculate the Jacobian analytically for this system:

J =

 2a(1− a)p 4q

(1− 2a)
[
q2 +

(
x′2 − x′2thresh

)]
2 (1− 2a) pq

 (156)

Figure C.1 shows the solution to the system as a function of skewness with assumed

variance of unity for different values of a. Solid lines denote the bias whereas dashed lines

denote σ2
x. Note that there is a maximum value of skewness below which a valid solution

to the system exists for each a. Regardless of the value of a, for zero skewness the bias is

zero (as expected) and the value of σ2
x is at a maximum, namely x′2−x′2thresh

2
. As skewness

increases, the bias increases and the sub-plume variance decreases regardless of a, although

the higher a is, steeper the increase in the bias and the decrease in the sub-plume variance.

Interestingly, the sub-plume variance tends to stay near its maximum through much of

the range of permissible skewness values, and only drops off appreciably as the skewness

approaches its maximum value for a given a. Likewise, the bias seems to increase linearly

with skewness until its growth accelerates as the skewness approaches its maximum value.

Unfortunately, solving this simple nonlinear system at every level in the model domain

every time step using MINPACK is very expensive. Compared to using a purely analytical
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Figure C.1. The solution to the nonlinear system (55),(57) for various values
of a as a function of skewness. The input variance is 1. Solid lines are the
bias. Dashed lines are σ2

x.

scheme as in Larson et al. (2002), using this method is nearly an order of magnitude slower.

A significant improvement in algorithm efficiency can be achieved by making use of a look-

up table for solving the nonlinear system. The lookup table is constructed as a function

of skewness and a. The domain of skewness is [0, 3] and the domain of a is [0, 0.49]. The

system is solved at one million points in the two-dimensional domain using MINPACK and

an assumed value of variance of 10. The lookup table needs only to be generated once

and requires about 8 MB of computer storage/memory with double precision floating point

values. Since the actual magnitudes of the variances among w, θil, and qt varies by several

orders of magnitude (from 0-10 m2s−2 for w variance to 0-1x10−4kg2kg−2 for qt variance),

it is necessary to scale the lookup table output to the appropriate variance at each point in

space-time. Exchanging the nonlinear system solver in the model for the simple interpolation

required for the lookup table increases the efficiency of the algorithm about an order of

magnitude so that this parameterization is comparable in speed to a purely analytical one.
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Figures C.2 and C.3 display the calculated lookup table for a skewness domain of [0, 5]. The

dotted lines in both plots denote the maximum value of a where a solution exists for each

value of skewness.

bias
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Figure C.2. The bias calculated for all values of interest as a function of
a and skewness with an assumed variance of 1. The dotted line denotes the
maximum value of a for which a solution exists at a given skewness.
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Figure C.3. The parameter σ2
x calculated for all values of interest as a func-

tion of a and skewness with an assumed variance of 1. The dotted line denotes
the maximum value of a for which a solution exists at a given skewness.
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APPENDIX D

Microphysics Scheme

Rain Autoconversion: 1

(
∂qp
∂t

)
auto

= max
[
0, α

(
qlsample − qc0

)]
(157)

Ice Aggregation:

(
∂qp
∂t

)
aggr

= max
[
0, βe0.025(Tsample−273.16) (qisample − qi0)] (158)

Accretion of Cloud Water and Ice:

(
∂qm
∂t

)
accr,l

= Aamqlsampleq
(3+bm)/4
m (159)

where Aam is given by

Aam =
π

4
amN0mEmlΓ (3 + bm)

(
ρ0

ρ

)0.5(
ρ

πρmN0m

)(3+bm)/4

(160)

and the subscript m represents rain, snow, or graupel precipitation species. Accre-

tion of cloud ice is a similar formula but with an additional temperature dependence.(
∂qm
∂t

)
accr,i

= Aamqisampleq
(3+bm)/4
m (161)

Aam =
π

4
amN0mEmiΓ (3 + bm)

(
ρ0

ρ

)0.5(
ρ

πρmN0m

)(3+bm)/4

e0.025(Tsample−273.16) (162)

Evaporation:

(
∂qm
∂t

)
evap

=
2πCmN0m

ρ (A+B)

[
Aemq

0.5
m +Bemq

5+bm
8

m

]
(S − 1) (163)

1All unexplained constants and symbols are described in detail in the“List of Contents” table in Appendix
B of Khairoutdinov and Randall (2003).
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where Aem and Bem are

Aem = afm

(
ρ

πρmN0m

)0.5

Bem = bfm

(
ρam
µ

)0.5

Γ

(
5 + bm

2

)(
ρ0

ρ

)0.25(
ρ

πρmN0m

)(5+bm)/8
(164)

The quantities A, B, and S differ based on whether evaporation of liquid or ice is

being calculated. For liquid,

A =
Lv

KaTsample

(
Lv

RvTsample
− 1

)
B =

RvR

Daesatl

S =
qtsample
qsatl

(165)

where esatl is the saturation vapor pressure over liquid and qsatl is the saturation

mixing ratio over liquid. For evaporation of ice hydrometeors,

A =
Ls

KaTsample

(
Ls

RvTsample
− 1

)
B =

RvR

Daesati

S =
qtsample
qsati

(166)

where esati is the saturation vapor pressure over ice and qsati is the saturation mixing

ratio over ice.

Precipitation Fluxes:

Precipitation fluxes are calculated exactly as in Khairoutdinov and Randall (2003)

with grid-cell mean precipitation mixing ratios:

Pm =
amΓ (4 + bm)

6
(πρmN0m)−bm/4

(
ρ0

ρ

)0.5

(ρqm)1+bm/4 (167)
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List of Acronyms

AGCM: atmospheric general circulation model

AMIP: Atmospheric Model Intercomparison Project

AR4: Fourth Assessment Report

ASTEX: Atlantic Stratocumulus Transition Experiment

BOMEX: Barbados Oceanographic and Meteorological Experiment

CALIPSO: Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CAM: Community Atmosphere Model

CAPE: convective available potential energy

CCM3: NCAR Community Climate Model

CCN: cloud condensation nuclei

CFMIP: Cloud Feedback Model Intercomparison

CGILS: CFMIP-GASS Intercomparison of LES and SCMs

CIN: convective inhibition

CLUBB: Cloud Layers Unified By Binormals

CRM: cloud-resolving model

CTL: control simulation

DYCOMS: Dynamics and Chemistry of Marine Stratocumulus

ECMWF: European Centre for Medium-Range Weather Forecasts

EIS: estimated inversion strength

ERA-Interim: Interim ECMWF Re-analysis

ERBE: Earth Radiation Budget Experiment

FP: fully prognostic
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GASS: Global Atmospheric Systems Study

GCSS: GEWEX Cloud Systems Study

GEWEX: Global Energy and Water Exchanges Project

GISS: Goddard Institute for Space Studies

GFDL AM2: Geophysical Fluid Dynamics Laboratory Atmospheric Model V.2

GPCI: GCSS/WGNE Pacific Cross-section Intercomparison

IP: intermediately prognostic

IPCC: Inter-governmental Panel on Climate Change

ISCCP: International Satellite Cloud Climatology Project

ITCZ: intertropical convergence zone

LES: large eddy simulation

LMD: Laboratoire de Météorologie Dynamique

McICA: Monte Carlo Independent Column Approximation

MPACE: Mixed-Phase Arctic Cloud Experiment

NCAR: National Center for Atmospheric Research

NO-LH: no latin hypercube sampling

NO-RS: no radiation PDF sampling

P2K: +2K SST simulation

PDF: probability density function

RAMS: Regional Atmospheric Modeling System

RICO: Rain In Cumulus over the Ocean

RRTMG: Rapid Radiative Transfer Model for GCMs

SAM: System for Atmospheric Modeling
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SCM: single-column model

SGS: subgrid scale

SPCAM: Super-parameterized Community Atmosphere Model

SST: sea surface temperature

TKE: turbulence kinetic energy
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