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ABSTRACT

LINEAR PREDICTION AND PARTIAL TAIL CORRELATION FOR EXTREMES

This dissertation consists of three main studies for extreme value analyses: linear prediction

for extremes, uncertainty quantification for predictions, and investigating conditional relationships

between variables at their extreme levels. We employ multivariate regular variation to provide

a framework for modeling dependence in the upper tail, which is assumed to be a direction of

interest. Cooley and Thibaud [2019] consider transformed-linear operations to define a vector

space on the nonnegative orthant and show regular variation is preserved by these transformed-

linear operations.

Extending the approach of Cooley and Thibaud [2019], we first consider the problem of per-

forming prediction when observed values are at extreme levels. This linear approach is motivated

by the limitation that traditional extreme value models have difficulties fitting a high dimensional

extreme value model. We construct an inner product space of nonnegative random variables from

transformed-linear combinations of independent regularly varying random variables. Rather than

fully characterizing extremal dependence in high dimensions, we summarize tail behavior via a

matrix of pairwise tail dependencies. The projection theorem yields the optimal transformed-linear

predictor, which has a similar form to the best linear unbiased predictor in non-extreme prediction.

We then quantify uncertainty for the prediction of extremes by using information contained in

the tail pairwise dependence matrix. We create the 95% prediction interval based on the geometry

of regular variation. We show that the prediction intervals have good coverage in a simulation

study as well as in two applications: prediction of high NO2 air pollution levels, and prediction of

large financial losses. We also compare prediction intervals with a linear approach to ones with a

parametric approach.
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Lastly, we develop the novel notion of partial tail correlation via projection theorem in the

inner product space. Partial tail correlations are the analogue of partial correlations in non-extreme

statistics but focus on extremal dependence. Partial tail correlation can be represented by the

inner product of prediction errors associated with the previously defined best transformed-linear

prediction for extremes. We find a connection between the partial tail correlation and the inverse

matrix of tail pairwise dependencies. We then develop a hypothesis test for zero elements in

the inverse extremal matrix. We apply the idea of partial tail correlation to assess flood risk in

application to extreme river discharges in the upper Danube river basin. We compare the extremal

graph constructed from the idea of the partial tail correlation to physical flow connections on the

Danube.
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Chapter 1

Introduction

1.1 Motivation

In 2020, Colorado experienced its largest wildfire, the Cameron Peak Fire, that had burned

more than 200,000 acres west of the city of Fort Collins. The fire’s rapid spread was caused

by extreme temperatures, heavy winds, and low humidity. The fire had destroyed a total of 469

structures including 220 outbuildings and 42 primary residences and forced the evacuation of over

16,000 people. Risks of such extreme events pose great hazards to the environment and to soci-

ety. Extreme value methods are critical to assess risk associated with such extreme events across

multiple disciplines, including hydrology, atmosphere science, engineering, finance, and insur-

ance. Extreme value models can also be utilized in a number of purposes such as detecting and

predicting extremes, and quantifying uncertainty in extremes.

The extremes philosophy is to "let the tail speak for itself". Consequently, statistical approaches

for extremes focus only on large values as it is assumed that information gleaned from the distribu-

tion’s bulk may not be useful for characterizing tail behavior. Extreme value theory (EVT) provides

asymptotic characterizations of a distribution’s tail, which provides a theoretical foundation for in-

ference that extrapolates further into the tail beyond the data’s range. The earliest focus of EVT

was on describing limiting univariate distributions for block maxima and threshold exceedances.

Methods for univariate extremes are well developed, although research continues on improving

estimation and inference. Much recent research in extremes has been focused on describing and

modeling dependence in the tail. There are several related frameworks that are commonly used

for modeling multivariate extremes: the framework provided by characterizations of the multivari-

ate extreme value distributions (De Haan and Ferreira [2007]), that provided by the multivariate

generalized Pareto distributions, or that provided by multivariate regular variation.
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One approach to model multivariate extreme value distributions is the block maxima approach.

As the normalized block maxima converge in distribution to a non-degenerate distribution function,

the limiting distribution can be approximated by a parametric family. There are several parametric

families such as a standard class of the logistic family [Coles et al., 2001], the bilogistic family

[Joe et al., 1992], or the Dirichlet family [Coles and Tawn, 1991]. Another approach is through a

threshold exceedances approach. The classical asymptotic model for excesses over a high thresh-

old is the generalized Pareto distribution [Rootzén and Tajvidi, 2006]. In the multivariate regular

variation, the limiting measure has a radial measure and an angular measure of which they are inde-

pendent. The angular measure describes extremal dependence. Some parametric angular measures

are a Dirichlet model [Coles and Tawn, 1991], a pairwise beta model [Cooley et al., 2010], and

mixture models [Boldi and Davison, 2007]. However, the main challenge in traditional extreme

value analyses is that it is hard to fit multivariate extreme value models in high dimensions.

In this dissertation, we do not aim to fully characterize the tail behavior via a specified model

for an extreme value distribution, a multivariate GPD, or the angular measure of a regular varying

random vector. Rather, we extend the approach of Cooley and Thibaud [2019] who summarize

tail behavior via a matrix of pairwise tail dependencies. Cooley and Thibaud [2019] rely on multi-

variate regular variation to provide a framework for modeling dependence in the upper tail, which

is assumed to be a direction of interest. Cooley and Thibaud [2019] employ transformed-linear

operations to define a vector space on the nonnegative orthant and show these transformed-linear

operations preserve regular variation on the nonnegative orthant. It leads to a new framework that

is tied to well-established linear models in traditional statistics.

Under the framework, we consider the linear prediction that relies on the matrix of pairwise tail

dependencies. The advantage of the linear approach is that it can be fit in high dimensions. Using

the information in the extremal matrix, we quantify uncertainty for the prediction of extremes. We

also consider exploring relationships between variables given all other variables at their extreme

levels. We develop the novel notion of partial tail correlation to investigate conditional relation-

ships at their extreme levels.
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This dissertation is organized as follows. In the remainder of Chapter 1, we provide essential

concepts of EVT to understand the extreme value methods that we develop in the following chap-

ters. We briefly review univariate extremes for block maxima and threshold exceedances and then

introduce multivariate extremes. We introduce the framework of multivariate regular variation and

describe how it is connected to multivariate extreme value models or threshold exceedances.

In Chapter 2, we consider the problem of performing prediction when observed values are at

their extreme levels. Focusing on modeling dependence in the upper tail, we construct an inner

product space constructed from transformed-linear combinations of independent regularly varying

random variables. Instead of fully characterizing the asymptotic dependence in high dimensions,

we summarize pairwise tail dependencies in a matrix. The projection theorem yields the optimal

transformed-linear predictor, which has the same form as the best linear unbiased predictor in

non-extreme prediction.

In Chapter 3, we quantify uncertainty for the prediction of extremes. We construct not only the

95% joint prediction region but the 95% conditional prediction interval by using the information

in the tail pairwise dependence matrix. These intervals are constructed in the polar geometry of

regular variation. We apply the linear approach to both nitrogen dioxide air pollution and financial

losses. For the air pollution application, as a parametric approach for angular measures can be

easily applied to five monitoring sites, we compare prediction intervals with the linear approach to

ones with a parametric approach. Chapters 2 and 3 are based on the manuscript in a preprint on

arXiv [Lee and Cooley, 2021].

In Chapter 4, we develop the novel notion of partial tail correlation in the inner product space

constructed from the previous chapters. The projection theorem provides a natural way of defining

the partial tail correlation in terms of the inner product of prediction errors. We find a connec-

tion between the partial tail correlation and the inverse of the tail pairwise dependence matrix by

matrix inversion. Similarly to Gaussian cases, zero elements in the inverse extremal matrix im-

ply conditional independence-like behaviors between variables at their extreme levels. We use the

idea of partial tail correlation to explore partially correlated variables in extremes. We develop a
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hypothesis test for zero elements in the inverse extremal matrix. The idea of partial tail correlation

is applied to assess flood risk in application to extreme river discharges in the upper Danube river

basin. Lastly, we conclude the dissertation with a summary and future work.

1.2 Univariate Extremes

We introduce two main approaches to modeling univariate extremes; block maxima approach

and threshold excess approach. These reviews are by no means exhaustive. We refer to books that

cover classical extreme value models (e.g., Coles et al. [2001], Beirlant et al. [2004]).

1.2.1 Block Maxima Approach

Classical extreme value theory focuses on the asymptotic behavior of maximum

Mn = max{X1, ..., Xn},

where X1, ..., Xn is a sequence of independent variables having the same distribution F . A typical

example of Mn is the annual maxima when n is a number of measurements in a year,

In the setting of iid cases, we can derive the exact distribution of Mn for all n,

P (Mn ≤ x) = P (X1 ≤ x)× · · ·P (Xn ≤ x)

= [F (x)]n

However, the distribution function F (x) is unknown. Plugging an empirical estimate into F (x) is

also problematic because a small difference in the estimate can cause a huge difference for F (x)n.

Let x+ be an upper end-point for F (x). It is shown that the distribution of Mn is degenerate on the

upper end-point of F (x) since F (x)n → 0, as x → ∞ in (Resnick [2007]).

An alternative way is to find asymptotic families of models for F n by renormalizing the variable

Mn,

Mn − an
bn

,
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where {bn > 0} and {an} are sequences of constants. By the extremal types theorem (Fisher and

Tippett [1928]; Gnedenko [1943]), if there exist {bn > 0} and {an} such that

P
(Mn − an

bn

)
= F n(bnx+ an) → G(x), (1.1)

where G(x) is a non-degenerate distribution function, then G(x) belongs to one of the three possi-

ble families

Type I (Gumbel) : G(x) = exp(− exp(−x)), x ∈ R (1.2)

Type II (Fréchet) : G(x) =





0, x ≤ 0

exp(−x−α), x > 0

(1.3)

Type III (Weibull) : G(x) =





exp(−(−x)α), x ≤ 0

1, x ≥ 0

(1.4)

where the Fréchet and Weibull families have a shape parameter α > 0. The remark on this theorem

is that the normalized Mn with suitable sequences {bn > 0} and {an} is stabilized and its limiting

distribution must belong to one of the three families above.

It may be appealing to choose one of the three families for the data and then perform statistical

inference. However, the problem is that it does not allow us to capture uncertainty for such a deci-

sion, which is important in extreme value analyses. We can circumvent this issue by reformulating

the models in the extreme types theorem. We combine the Gumbel, Fréchet, and Weibull families

into a single family having a distribution form as

G(x) = exp
{
−
[
1 + ξ

(x− µ

σ

)]−1/ξ
+

}
, (1.5)

where {x ∈ R : 1 + ξ(x − µ)/σ > 0}, a location parameter µ ∈ R, a scale parameter σ > 0,

and a shape parameter ξ ∈ R. This family is called the generalized extreme value (GEV) family of
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distributions. The shape parameter ξ is of primary interest in extreme value analyses. The Gumbel

family corresponds to ξ = 0 (taken as a limit) and the tail is considered light. The Weibull family

corresponds to ξ < 0 and the tail is bounded. The Fréchet family corresponds to ξ > 0 and the

tail is considered heavy. With this unification of the three families of extreme value distributions,

we do not need to make a decision about which family to use and we can also quantify uncertainty

associated with the choice of the shape parameter.

1.2.2 Threshold Exceedances Approach

A potential drawback of the block maxima approach is that this method could be viewed as

wasteful of data if data besides the block maxima are informative of the tail. The threshold ex-

ceedance approach is an alternative method which sets a suitably high threshold and utilizes all

data which exceeds the threshold. The classical asymptotic model for excesses over a high thresh-

old is called the genaralized Pareto distribution (GPD) (Balkema and De Haan [1974];Pickands III

[1975]). Let X have distribution F and let F̄ denote the survival function of X. Then, the distri-

bution above the threshold u can be described conditionally:

P (X − µ ≤ x|X > u) =
F (u+ x)

F̄ (u)
.

Since F is unknown, we approximate this conditional distribution by using the approximate

distribution of Mn. From (1.5), for large enough n, we know F n(x) ≈ exp{−[1 + ξ(x−µ
σ

)
−1/ξ
+ ]}.

Taking logs of both sides yields

n logF (x) ≈ −
[
1 + ξ

(x− µ

σ

)]−1/ξ
+

. (1.6)

For large x, − logF (x) ≈ (1−F (x)) by a Taylor approximation. Substituting this into (1.6) gives

1− F (u) ≈ 1

n

[
1 + ξ

(x− µ

σ

)]−1/ξ
+

. (1.7)
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and for x > 0,

1− F (u+ x) ≈ 1

n

[
1 + ξ

(u+ x− µ

σ

)]−1/ξ
+

. (1.8)

Hence, for large u,

P (X > u+ x|X > u) =
1− F (u+ x)

1− F (u)

≈

[
1 + ξ

(
u+x−µ

σ

)]−1/ξ
+[

1 + ξ
(

x−µ
σ

)]−1/ξ
+

=
(
1 +

ξ

σu

x
)−1/ξ
+

, (1.9)

where σu = σ + ξ(u − µ). Over a high threshold u, the conditional distribution of X − u|X > u

is approximately,

P (X − µ ≤ x|X > u) ≈ H(x) := 1−
(
1 +

ξ

σ∗
x
)−1/ξ
+

, (1.10)

where the distribution is defined on {x : x > 0, 1 + ξ
σ∗x > 0}, σ∗ = σ + ξ(u − µ), and H(x) is

called the generalized Pareto family.

The remarkable feature of the generalized Pareto distribution is that its parameters are uniquely

determined by those of the GEV distribution. The shape parameter ξ is identical to that of the GEV

distribution. The shape parameter ξ describes the tail behavior as it does for the GEV distribution.

To fit the GPD, it requires the threshold choice. There are several ways to select the threshold.

Scarrott and MacDonald [2012] provide an overview of existing methods for threshold selection.

One graphical diagnostic method is to use the fact that E(X − u|X > u) is a linear function of

u. If the generalized Pareto distribution is approximated well over the high threshold u, then the

empirical estimate for E(X − u|X > u) should be linear in u. We can choose the threshold at

which the mean residual life plot is approximately linear in u. See more details in Coles et al.

[2001].
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1.3 Multivariate Extremes

Similarly to univariate extremes, the tail behavior of the random vector X = (X1, . . . , Xd)
T

can be described by two approaches: componentwise block maxima and threshold exceedances.

We review these classical multivariate extreme models and its link with regular variation.

1.3.1 Multivariate Extreme Value Distributions

We consider the limiting distribution of the vector of renormalized componentwise maxima.

Let X = (X1, . . . , Xd)
T be a d-dimensional random vector with a distribution function F (x).

Suppose Xi = (Xi,1, . . . , Xi,d)
T is iid copies of X. We define the vector of componentwise max-

ima as

Mn =
(
∨n
i=1 Xi,1, ...,∨n

i=1Xi,d

)T

Mn is a vector composed of the maximum of each component in the sample. Note that Mn does

not necessarily correspond to an observed vector. In other words, maxima do not necessarily occur

simultaneously. Similarly to the univariate block maxima approach, if there exist sequences of

vectors bn > 0 and an ∈ R
d such that

P
(Mn − bn

an

≤ x
)
= F n(anx+ bn)

d−→ G(x), (1.11)

as n → ∞, where vector operations are applied componentwisely, then G(x) is called a mul-

tivariate extreme value distribution (MVEVD). That is, the family of multivariate extreme value

distributions are the limiting distributions of componentwise block maxima. The renormalized

random vectors converge only if all marginals converge,

F n
i (bnx+ an)

d−→ Gi(x),
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for i = 1, . . . , d and where Fi and Gi are the ith marginals of F and G, respectively. Note that

each marginal of Gj(x) is the generalized EVD. It is shown that the MVEVD is represented by

G(x) = exp(−ν[0,x]c]) where ν is called the exponent measure in Resnick [1987].

For analyzing the tail dependence, we typically estimate the marginal distributions Fj to assume

a common margin. For simplicity, we assume the vector X is normalized to standard Pareto mar-

gins. The normalized vector X is said to be in the max-domain of attraction of Z = (Z1, . . . , Zd)

if

lim
n→∞

P (∨n
i=1Xi,1 ≤ nz1, ...,∨n

i=1Xi,d ≤ nzd) = P (Z ≤ z),

where Z is a max-stable with unit Fréchet margins P (Zj ≤ z) = exp(−1/z), z ≥ 0 for j =

1, . . . , d. In this case, P (Z ≤ z) = exp{−ν(z)} := exp{−ν([0, z]c)}, where z ≥ 0 and the

exponent measure ν is defined on the cone E := [0,∞)d \ {0}. The tail dependence structure is

characterized by the exponent measure ν. This exponent measure can be linked to regular variation

described in the next subsection.

Similarly to threshold exceedances approach in univariate case, the idea of thresholding can

also be used for modeling multivariate extremes. The challenge of this approach for multivariate

models is how to define exceedances over multivariate thresholds of a random vector. Rootzén

and Tajvidi [2006] consider the multivariate GPD where a vector x ∈ R
d exceeds a multivariate

threshold u ∈ R
d if at least one component exceeds a high threshold. Furthermore, Rootzén et al.

[2018] provide a wide range of parametrizations, properties for the multivariate Pareto distribution.

1.3.2 Multivariate Regular Variation

Informally, a multivariate regularly varying random variable has a distribution which is jointly

heavy tailed. Regular variation is closely tied to classical extreme value analysis [De Haan and

Ferreira, 2007, Appendix B], and Resnick [2007] gives a comprehensive treatment. Let X be a

p-dimensional random vector that takes values in R
p
+ = [0,∞]p. X is regularly varying (denoted

RV p
+(α)) if there exists a function b(s) → ∞ as s → ∞ and a non-degenerate limit measure νX

9



for sets in E := [0,∞)p \ {0} such that

sPr(b(s)−1X ∈ ·) v−→ νX(·) (1.12)

as s → ∞, where
v−→ indicates vague convergence in the space of non-negative Radon measures

on [0,∞]p \ {0}. The normalizing function is of the form b(s) = U(s)s1/α where U(s) is a slowly

varying function, and α is termed the tail index. For any set C ⊂ [0,∞]p \ {0} and k > 0, the

measure has the scaling property νX(kC) = k−ανX(C). This scaling property implies regular

variation can be more easily understood in a polar geometry.

Given any norm ∥ · ∥, let T : X 7→ (∥X∥,X/∥X∥) = (R,W ) be the polar coordinate

transformation. We can equivalently formulate the regular variation by Resnick [2007],

sPr((b(s)−1R,W ) ∈ ·) ν−→ cνα ×HX , (1.13)

where να is the measure on (0,∞]. The right hand side of (1.13) is a product measure, implying

that the radial and angular measure are independent of each other in the limit. The measure HX

is called the angular or spectral measure on Θ+
p−1. The angular measure HX fully describes tail

dependence in the limit; however, modeling HX even in moderate dimensions is difficult. For a set

C(r, B) = {x ∈ R
p
+ : ||x|| > r,x/||x|| ∈ B} with Borel set B ⊂ Θ+

p−1 = {w ∈ E : ||w|| = 1},

the scaling property of HX implies νX(C(r, B)) = cr−αHX(B). The measure’s intensity function

in terms of polar coordinates is νX(dr × dw) = αr−α−1drdHX(w). There are many possible

normalizations b(s). But, all normalizations are asymptotically equivalent and yield only different

constants by Resnick [2007]. We apply the same normalization b(s) for all components of X and

assume X has common marginal distributions throughout.

Now we describe the link between multivariate extreme value distributions and regular varia-

tion. Given any norm ∥ · ∥ and H , for the set A = [0, z]c, the exponent measure ν corresponding
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to the MVEVD can be expressed in Cartesian coordinates,

ν({A}) =
∫

A

αr−α−1drdH(w)

=

∫

Θd−1
+

∫ ∞

r=∧di=1
zi
wi

αr−α−1drdH(w)

=

∫

Θd−1
+

d∨

i=1

( zi
wi

)−α
H(dw).

Due to the max operation, the tail dependence structure can be more easily understood through the

polar geometry of regular variation.

We describe two important opposite ends of dependence in extremes analyses from Resnick

[2007]: asymptotic independence and asymptotic full dependence. Suppose X is a R
d
+-valued

regularly varying random vector with tail index α such that

nP
[Z
bn

∈ ·
]

ν−→ ν,

where

bn =
( 1

1− F

)←
(n).

And ν(·) is

ν(dx(1), . . . , dx(d)) =
d∑

i=1

δ(dx(1))× · · · × δ(dx(i−1))× ν(dx(i))× · · · × δ(dx(d)).
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Then, X has asymptotic independence. It means that the measure ν puts all masses on the axes

and there is no mass in the interior of the positive orthant. For d = 2 and a constant c ∈ R,

lim
t→∞

P [Z(2) > t|Z(1) > t] = lim
t→∞

P [Z(1) > t, Z(2) > t]

Z(1) > t

= lim
n→∞

P [Z(1) > bn, Z
(2) > bn]

[Z(1) > bn]

= lim
n→∞

cnP [Z(1) > bn, Z
(2) > bn]

= cν(1,∞] = 0

This means if one component is large, the probability that the other component is also large is zero.

In contrast, suppose X is a R
d
+-valued regularly varying random vector whose tail distribution

concentrates on the positive orthant. If the limit measure ν has the form of

ν([0,x]c) = ν(∪d
i=1{y : y(i) > x(i))} = (∧d

i=1x
(i))−α,

then X has asymptotic full dependence. In this case, the limit measure ν puts all masses on 1/||1||.
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Chapter 2

Transformed-linear Prediction for Extremes

2.1 Motivation

Prediction of unobserved quantities is a common objective of statistical analyses. Figure 2.1

shows the one-hour maximum measurements of the air pollutant nitrogen dioxide (NO2) in parts

per billion for four monitoring stations in the Washington DC area on January 23, 2020. Given

these measurements, it is natural to ask what the predicted level would be at a nearby unmoni-

tored location, such as Alexandria VA, which is marked "Alx" in Figure 2.1 and which had NO2

monitoring prior to 2015. Linear prediction methods offer a straightforward answer by simply

applying weights to each of the observations. In spatial statistics, linear prediction is called krig-

ing, which provides the best (in terms of mean square prediction error) linear unbiased prediction

(BLUP) weights given a covariance structure between the observed and unobserved measurements.

Uncertainty is often summarized by the mean-square prediction error and prediction intervals are

commonly based on Gaussian assumptions.

On this particular day however, the measurements are at very high levels–each exceeds each

station’s empirical 0.98 quantile for this year, and the Arlington station (Arl) is recording its highest

measurement for the year. The aforementioned standard approach uses the ’usual’ behavior of the

data to describe relationships between sites and would not take into account that the observed

measurements are at extreme levels. Covariance could be a poor descriptor of dependence in

this distribution’s joint upper tail, and Gaussian assumptions may be poorly suited to describe

uncertainty in the tail. Moreover, public interest is likely highest when pollution levels are high.

In this work, we propose a method which is similar in spirit to familiar linear prediction, but

which is specifically designed for prediction when variables are at extreme levels. We will analyze

only data which are extreme to summarize dependence in the joint tail. To provide a framework for

modeling dependence in the upper tail, we rely on regular variation on the positive orthant. Mod-
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Figure 2.1: Maximum NO2 measurements for January 23, 2020. All observations are above the empirical

.98 quantile for each location.

eling in the positive orthant allows our method to focus only on the upper tail, which is assumed to

be the direction of interest; in this example we are interested in predicting when pollution levels are

high. On the way to developing our prediction method, we will construct a vector space of non-

negative regularly-varying random vectors constructed from transformed-linear operations. We

summarize pairwise tail dependencies in a matrix which has properties analogous to a covariance

matrix. Our transformed-linear predictor has a similar form to the BLUP in non-extreme linear

prediction. Uncertainty quantification is quite different because the geometry of regular variation

is quite different than the elliptical geometry underlying standard linear prediction settings. We

will show that our method has good coverage when applied to air pollution data and also when

applied to a larger financial data set.

2.2 Background

2.2.1 Transformed Linear Operations

In order to perform linear-like operations for vectors in the positive orthant, Cooley and Thibaud

[2019] defined transformed linear operations. Consider x ∈ R
p
+ = [0,∞)p, let t be a monotone

bijection mapping from R to R+, with t−1 its inverse. For y ∈ R
p, t(y) applies the transform
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componentwise. For x1 and x2 ∈ R
p
+ = [0,∞)p, define vector addition as x1⊕x2 = t{t−1(x1)+

t−1(x2)}, and define scalar multiplication as a ◦ x1 = t{at−1(x1)} for a ∈ R. We define the

additive identity as 0x = t(0) and the additive inverse of any x ∈ R
p
+ as −x = t{−t−1(x)}.

It is straightforward to show that R
p
+ with these transformed-linear operations is a vector space

as it is isomorphic to R
p with standard operations. For xj ∈ R+ and aj ∈ R, j = 1, ..., q, a

transformed-linear combination is defined as

a1 ◦ x1 ⊕ · · · ⊕ aq ◦ xq = t
{ q∑

j=1

ajt
−1(xj)

}
. (2.1)

Let A = (a1, ...,aq) be a p × q matrix of real numbers. We define matrix multiplication as

A ◦ x = a1 ◦ x1 ⊕ · · · ⊕ aq ◦ xq = t{At−1(x)} and note that A ◦ x ∈ R
p
+. For the p × p

identity matrix I , I ◦x = t{It−1(x)} = x. For a matrix B ∈ R
r×p, B ◦A◦x = B ◦ t{At−1(x)} =

t{BAt−1(x)} = BA◦x. It coincides with the standard matrix multiplication. To apply transformed

linear operations to non-negative regularly-varying random vectors, Cooley and Thibaud [2019]

consider the specific transform t : R → (0,∞),

t(y) = log{exp(y) + 1}. (2.2)

and its inverse t−1 = log{exp(x) − 1}. This transform is the 1-Lipschitz function widely used in

neural networks. The important property of this transform is limy→∞ t(y)/y = limx→∞ t−1(x)/x =

1, which implies that the transform negligibly affects large values in Figure 2.2. We extend t such

that t(−∞) = 0, t−1(0) = −∞, and t(∞) = t−1(∞) = ∞ so that t : R̄
p → R

p
+, where

R̄
p = [−∞,∞]p and R

p
+ = [0,∞]p. Note that the additive zero vector in R̄

p
+ is a vector of compo-

nents t(0) = log 2. So long as Xi = (Xi1, . . . , Xi,p)
T ∈ RV p

+(α) meets the lower tail condition

sPr{Xi,j ≤ exp(−kb(s))} → 0, k > 0, j = 1, · · · , p, (2.3)
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Figure 2.2: The limit ratio of transform t and its inverse t−1.

as s → ∞, transformed linear operations ’preserve’ regular variation. This boundary condition

ensures that none of marginals have enough non-zero mass at 0. Condition (2.3) is met by standard

regularly varying distributions such as the Pareto and the Fréchet.

More precisely, Cooley and Thibaud [2019] show the following results.

Proposition 2.2.1. Let sPr(b(s)−1Xi ∈ ·) ν−→ νXi
(·), i = 1, 2 and X1,X2 be independent, then

sPr(b(s)−1(X1 ⊕X2) ∈ ·) ν−→ νX1(·) + νX2(·)

Proposition 2.2.2. Let sPr(b(s)−1X ∈ ·) ν−→ νX(·), then for a ∈ R,

sPr[b(s)−1(a ◦X) ∈ ·] ν−→





aανX(·) if a > 0

0 if a ≤ 0

In contrast to Max-linear approaches (e.g., Strokorb and Schlather [2015]), Cooley and Thibaud

[2019] link regular variation to traditional linear algebra via a vector space arising from a trans-

formation of Rp. Propositions above provide a new way for describing extremal dependence and

constructing extremes models in the upper tail.
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Cooley and Thibaud [2019] go on to construct X ∈ RV p
+(α) via transformed linear combina-

tions of independent regularly varying random variables. Under the aforementioned propositions,

we can construct a regularly varying random vector X by applying a matrix A to a vector of in-

dependent regularly varying random variables Z. This construction method is analogous to that

of constructing a Gaussian random vector X ∼ N(0,Σ), where Σ is a covariance matrix. By

applying the matrix A such that AAT = Σ to a Gaussian random vector of Z ∼ N(0, Iq×q), we

can construct X = AZ.

Corollary 2.2.1. Let A = (a1, . . . ,aq) with maxi=1,...p aij > 0 for all j = 1, ..., q, where aj ∈ R
p

and hence A ∈ R
p×q. Let

X = A ◦Z = t(At−1(Z)), (2.4)

where Z = (Z1, . . . Zq)
T is a vector of independent and identically distributed regularly varying

random variables meeting sPr(b(s)−1Zj > z) → z−α for j = 1, . . . , q. Then, X ∈ RV p
+(α), and

when normalized by b(s), its angular measure is

HX =

q∑

j=1

∥a(0)
j ∥αδ

a
(0)
j /∥a(0)

j ∥
(·), (2.5)

where δ is the Dirac mass function. The zero operation a(0) := max(a, 0) will be important

throughout, and is understood to be componentwise when applied to vectors or matrices. The

angular measure HX is consistent with point masses corresponding to the normalized columns of

A.

Note that different matrices can yield the same limiting angular measure. Let A(0) = [a
(0)
ij ].

If A ̸= A′ but A(0) = A′(0), then HA◦Z = HA(0)◦Z . When a regularly varying random vector X

is produced by the construction method in Corollary 2.2.1, the class of regularly varying random

vectors is analogous to the one of random vectors defined by max-linear combinations of indepen-

dent regularly varying random variables (e.g., Schlather and Tawn [2002]; Fougères et al. [2013]).

If we construct A ×max Z = (maxj=1,...,q a1jZj, ...,maxj=1,...q apjZj)
T , then one can show that

HA×maxZ = HA◦Z . But, there is an important distinction between the two constructions. Large
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realizations of the max-linear combination tend to have angular components that correspond ex-

actly to the discrete locations on which the angular masses are placed whereas large realizations of

the transformed-linear construction have angular components close but not exactly located at these

discrete locations.

Proposition 2.2.3 below shows that as q → ∞ the class of angular measures resulting from this

construction method is dense in the class of possible angular measures. We only need to consider

a nonnegative matrix A to construct the dense class.

Proposition 2.2.3. Given any angular measure H , there exists a sequence of nonnegative matrices

{Aq}, q = 1, 2, ... such that HAq◦Zq

w−→ H .

2.2.2 Tail Pairwise Dependence Matrix

If p is even moderately large, it is challenging to describe the angular measure HX for X ∈

RV p
+(α). Rather than fully characterize HX , we will summarize tail dependence via a matrix

of pairwise summary measures. Many bivariate dependence measures have been suggested for

extremes; we choose one which has properties similar to covariance.

Let α = 2 and let X ∈ RV p
+(2) have angular measure HX . Let ΣX = {σXij

}i,j=1,··· ,p be the

p× p matrix where

σXij
=

∫

Θ+
p−1

wiwjdHX(w), (2.6)

and Θ+
p−1 = {w ∈ R

p−1
+ : ||w||2 = 1}. Each element σXij

is essentially the extremal dependence

measure of Larsson and Resnick [2012]; however unlike Larsson and Resnick [2012], we require

that α = 2 and the L2 norm which together make ΣX have properties analogous to a covariance

matrix. Specifically, ΣX can be shown to be positive semi-definite [Cooley and Thibaud, 2019].

Following Cooley and Thibaud [2019], we call ΣX the tail pairwise dependence matrix. This

should not be confused with the ’tail dependence matrix’ of Shyamalkumar and Tao [2020] which

is a matrix of alternate extremal dependence measures χij [Coles et al., 1999] and which is not

guaranteed to be positive definite.
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Larsson and Resnick [2012] also assume HX is a probability measure, giving their extremal

dependence measure a fixed range of values analogous to correlation. We do not require HX to be

a probability measure, and like a covariance matrix the diagonal elements σX ii reflect the relative

magnitudes of the respective elements Xi. Regular variation implies lims→∞ sPr(b(s)−1Xi >

c) = c−2σX ii. Letting x = cU(s)s1/2, there is a correponding slowly varying function such that

the relation can be rewritten as

lim
x→∞

Pr(Xi > x)

x−2L(x)
= σX ii. (2.7)

So the ‘magnitude’ of the elements of X described by the diagonal elements of the TPDM is in

terms of suitably-normalized tail probabilities rather than variance. The presence of the slowly

varying function L(x) in the denominator means it is ambiguous to discuss the ‘scale’ of a reg-

ularly varying random variable, as scale information is in both the normalizing sequence and the

angular measure (and consequently, TPDM). Because the notion of ‘scale’ is inherent in principal

component analysis, Cooley and Thibaud [2019] further assumed that X was Pareto-tailed making

L(x) a constant that was pushed into the angular measure HX and subsequently into the ΣX . Here,

we will not require a Pareto tail, and the random variables we will construct in Section 2.3 will

have a natural normalizing function. The sum of diagonal elements is the total mass of the angular

measure since
∑p

i=1 σXii
=
∫
Θ+

p−1
dHX(w). σXij

= 0 implies asymptotic independence of the

components Xi and Xj since σXij
= 0 if and only if HX({w ∈ Θ+

p−1 : wi > 0, wj > 0}) = 0.

An additional property of the TPDM that is not generally true for covariance matrices is that it

is completely positive. That is, there exists some q∗ < ∞ and a nonnegative p× q∗ matrix A∗ such

that ΣX = A∗A
T
∗ . The value of q∗ is not known, and A∗ is not unique.

If X = A ◦ Z as in (2.4), the TPDM of the resulting vector is ΣA◦Z = A(0)A(0)T . More

specifically, we assume q ≥ p. Using the form of the angular measure in Corollary 2.2.1, we can

denote the (i, k)th element of ΣA◦Z as

σA◦Zik
=

∫

Θ+
p−1

wiwkdHA◦Z(θ) =

q∑

j=1

( a
(0)
ij

||a(0)
j ||

)( a
(0)
kj

||a(0)
j ||

)
||a(0)

j ||22 =
q∑

j=1

a
(0)
ij a

(0)
kj , (2.8)
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Further, if X ∈ RV p
+(2) has TPDM ΣX , the completely positive decomposition implies that

there exists a 0 < q∗ < ∞ and a nonnegative p× q∗ matrix A∗ such that X∗ := A∗ ◦Z has TPDM

ΣX∗
= ΣX . In Section 3, we will use this completely positive decomposition to create prediction

intervals.

2.3 Inner Product Space and Prediction

2.3.1 Inner Product Space Vq

We consider a space of regularly varying random variables constructed from a transformed-

linear combinations. Let Z = (Z1, . . . Zq)
T be a vector of independent Zj ∈ RV 1

+(2) meeting

lower tail condition sPr(b(s)−1Zj > z) → z−α and which have a common normalizing function

limz→∞
P (Zj>z)

z−2L(z)
= 1 for j = 1, . . . , q. For a ∈ R

q, consider the space

Vq =
{
X;X = aT ◦Z = a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq}. (2.9)

Vq ⊂ RV 1
+(2). If X1 = aT

1 ◦ Z and X2 = aT
2 ◦ Z, then X1 ⊕ X2 = (a1 + a2)

T ◦ Z. Also,

c ◦X1 = ca1 ◦ Z for c ∈ R. Any X ∈ Vq is uniquely identifiable by its vector of coefficients a,

thus Vq is isomorphic to R
q. It is straightforward to see that Vq is a vector space; for completeness,

the vector space conditions are shown in Appendix A. Vq differs from the vector space in Cooley

and Thibaud [2019] which was a non-stochastic vector space for R
p
+.

The inner product of X1 = aT
1 ◦Z and X2 = aT

1 ◦Z is defined as

⟨X1, X2⟩ := aT
1 a2 =

q∑

i=1

a1ia2i.

We say X1, X2 ∈ Vq are orthogonal if ⟨X1, X2⟩ = 0. The norm ∥X∥Vq =
√
⟨X,X⟩ defines the

metric d(X1, X2) = ∥X1 ⊖X2∥Vq . We use the subscript Vq to indicate that the norm is based on

the coefficients which determine the random variable. We will further describe the meaning of this

metric in Section 2.4.

20



We will consider vectors X = (X1, . . . , Xp)
T where Xi = ai ◦ Z ∈ Vq for i = 1, . . . , p.

X ∈ RV p
+(2) and is of the form A ◦Z in (2.4). We denote the matrix of inner products

ΓX = ⟨Xi, Xj⟩i,j=1,...p = AAT . (2.10)

2.3.2 Transformed-linear Prediction

As Vq is isomorphic to Hilbert space Rq, the best transformed-linear predictor follows similarly.

Assume Xi = aT
i ◦Z ∈ Vq for i = 1, . . . , p+1. Let Xp = (X1, . . . , Xp)

T . We aim to find b ∈ R
p

such that d(bT ◦Xp, Xp+1) is minimized. Writing in matrix form



Xp+1

Xp


 =



aT
p+1

Ap


 ◦Zq,

where Ap = (aT
1 , . . . ,a

T
p )

T . The matrix of inner products of (Xp+1,X
T
p )

T is

Γ(Xp+1,XT
p )T =



aT
p+1ap+1 aT

p+1A
T
p

Apap+1 ApA
T
p


 :=



Γ11 Γ12

Γ21 Γ22


 . (2.11)

Minimizing d(bT ◦X, Xp+1) is equivalent to minimizing ∥AT
p b−ap+1∥22. Taking derivatives with

respect to b and setting equal to zero, the minimizer b̂ solves (ApA
T
p )b̂ = Apap+1. If ApA

T
p is

invertible, then the solution b̂ is,

b̂ = (ApA
T
p )
−1Apap+1 = Γ−122 Γ21. (2.12)

An equivalent way to think of the best transformed-linear prediction is through the projection

theorem. X̂p+1 is such that Xp+1 ⊖ X̂p+1 is orthogonal to the plane spanned by X1, · · · , Xp.

The orthogonality condition can be stated as < Xp+1 ⊖ X̂p+1, Xi >= 0, for i = 1, · · · , p. This
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condition can equivalently be expressed with the matrix notation.

[
< Xp+1, Xi >

]p

i=1

=

[
< Xi, Xj >

]p

i,j=1

[
bi

]p

i=1

=

[
∑q

k=1 aikajk

]p

i,j=1

[
bi

]p

i=1

(2.13)

Using the matrix notation from above, we require b̂ to satisfy Apap+1 = ApA
T
p b̂ as above.

2.4 Subset Vq
+

We have employed transformed linear operations to construct regularly-varying random vectors

X = A ◦ Z that take values in the positive orthant, and we have tied these vectors’ elements to

the vector space Vq. It is essential that the elements of the coefficient vectors a are allowed to be

negative for Vq to be a vector space. However, negative values in a do not influence tail behavior.

Recalling that if regularly varying Z1, Z2 are independent, P (Z1+Z2 > z) ∼ P (Z1 > z)+P (Z2 >

z) as z → ∞ [cf. Jessen and Mikosch, 2006, Lemma 3.1], we can discuss the magnitude of X ∈ Vq

(as in (2.7)) in terms of the common tail behavior of the generating Zj’s. We call

TR(X) := lim
z→∞

P (X > z)

P (Z1 > z)
=

q∑

j=1

(a
(0)
j )

2
(2.14)

the tail ratio of X and only the positive elements of a contribute. X = a ◦ Z ∈ Vq and X+ =

a(0) ◦ Z have the same tail ratio. Furthermore, if X = A ◦ Z, both it and X+ = A(0) ◦ Z

have the same angular measure: HX = HX+ =
∑q

j=1 ∥a
(0)
j ∥αδ

a
(0)
j /∥a(0)j ∥

(·). X and X+ are

indistinguishable in terms of their tail behavior.

In terms of modeling, it seems reasonable to restrict our attention to the subset

Vq
+ =

{
X;X = aT ◦Z = a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq}, (2.15)

where aj ∈ [0,∞), and Z = (Z1, . . . Zq)
T as in (2.9). Considering inference for a random vector

X ∈ RV p
+, we assume that X = A ◦ Z for some unknown p × q matrix A because it is a simple

and useful modeling framework. Recall such constructions are dense in RV p
+. Inference for X
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will focus on its tail behavior, and since this is indistinguishable from that of X+, it is reasonable

to assume aij ≥ 0 for i = 1, . . . , p, and j = 1, . . . , q, and thus Xi ∈ Vq
+ for i = 1, . . . , p.

Continuing with inference, if p is even of moderate size, then estimating HX is challenging,

so we focus on summarizing dependence via the TPDM. If X = A ◦ Z and all aij > 0, then

ΣX = ΓX = AAT . Furthermore, if inference focuses on the TPDM, then q, the number of

independent Zj’s from which X is generated, does not need to be specified.

Turning our attention toward prediction, it seems reasonable to assume that the elements of

(Xp+1,X
T
p )

T are in Vq
+, and prediction can be done in terms of the TPDM. Considering predictors

of the form bT ◦ Xp and letting Σ(Xp+1,XT
p )T be partitioned as in (2.11), X̂p+1 = b̂T ◦ Xp where

b̂ = Σ−122 Σ21 will minimize ∥Xp+1 ⊖ X̂p+1∥Vq . Because b̂ is not required to consist of nonnegative

elements, the predictor X̂p+1 is not necessarily in Vq
+.

We can now better discuss the meaning of the metric d(X1, X2) = ∥X1 ⊖X2∥Vq . Note

TR(X1 ⊖X2) =

q∑

j=1

(
(a1j − a2j)

(0)
)2 ̸= TR(X2 ⊖X1) =

q∑

j=1

(
(a2j − a1j)

(0)
)2

.

However, because P (max(Z1, Z2) > z) ∼ P (Z1 > z) + P (Z2 > z) as z → ∞,

TR (max((X1 ⊖X2), (X2 ⊖X1))) =

q∑

j=1

(a1j − a2j)
2 = d2(X1, X2). (2.16)

From the probabilistic prospective, the metric d(X1, X2) = ∥X1⊖X2∥Vq based on tail probabilities

penalizes the worst possible tail prediction error on the positive orthant. See more details about the

metric in Appendix B.

Since random vectors with elements in Vq are indistinguishable from those with elements in

Vq
+ we will assume X1, . . . , Xp, Xp+1 ∈ Vq

+, and we will use the TPDM for prediction.

23



Chapter 3

Prediction Error

3.1 Analogue to Mean Square Prediction Error

In the non-extreme setting, the error associated with linear prediction is quantified by the mean

square prediction error (MSPE). As MSPE corresponds to the conditional variance under a Gaus-

sian assumption, it is used to generate Gaussian-based prediction intervals. Our transformed linear

prediction has an analogous quantity

||Xp+1 ⊖ X̂p+1||2Vq : =< Xp+1 ⊖ X̂p+1, Xp+1 ⊖ X̂p+1 >

= (aT
p+1 − b̂TAp)(a

T
p+1 − b̂TAp)

T

= Σ11 − Σ12Σ
−1
22 Σ21 := K.

(3.1)

Importantly, K can be calculated directly from the (estimated) TPDM. Unlike MSPE, K is not

understood via expectation, but instead via tail probabilities as

TR
(
max((Xp+1 ⊖ X̂p+1), (X̂p+1 ⊖Xp+1))

)
= K.

The quantity K is meaningful to minimize and has a probabilistic interpretation, but seems

not very useful for constructing prediction intervals. To illustrate, we simulate n = 20, 000

four dimensional vectors X and obtain X̂4 predicted on (X1, X2, X3)
T . X is generated from a

4 × 10 matrix A applied to a vector Z comprised of 10 independent RV+(2) random variables;

the elements of A are drawn from a uniform(0, 5) distribution. Using the known TPDM to ob-

tain K = 0.224 and known tail behavior of the Zj’s, we calculate P (D ≤ 2.99) ≈ 0.95 where

D = max((Xp+1 ⊖ X̂p+1), (X̂p+1 ⊖Xp+1)) ∈ RV 1
+(2). We observe 0.952 of the simulated D val-

ues are in fact below this bound. However, Figure 3.1 shows that knowledge of K is not useful for

constructing prediction intervals. Unlike the Gaussian case where the variance of the conditional
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distribution does not depend on the predicted value X̂p+1, in the polar geometry of regular varia-

tion, the magnitude of the error is related to the size of the predicted value. In the next sections

we use the polar geometry of regular variation to construct meaningful prediction intervals when

X̂p+1 is large.
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Figure 3.1: Left panel: The plot of D = max(X̂4 ⊖X4, X4 ⊖ X̂4) against X̂4. The horizontal dashed line

indicates the approximate 0.95 quantile for D.

3.2 Prediction TPDM and Completely Positive Decomposition

The vector (Xp+1, X̂p+1)
T ∈ RV 2

+(2), and this vector’s tail dependence is characterized by

H(Xp+1,X̂p+1)T
. While this angular measure is not readily available, its dependence is summarized

by the 2× 2 ‘prediction’ TPDM

Σ(Xp+1,X̂p+1)T
=




a
(0)T

p+1

(b̂TAp)
(0)



[
a
(0)
p+1 (AT

p b̂)
(0)

]
=




Σ11 Σ12Σ
−1
22 Σ21

Σ12Σ
−1
22 Σ21 Σ12Σ

−1
22 Σ21


. (3.2)

We propose a method of using the information in this TPDM to construct a potential angular mea-

sure, and using this to quantify the dependence between X̂p+1 and Xp+1. Because Σ(Xp+1,X̂p+1)T
is

completely positive, there exists a q∗ < ∞ and nonnegative 2×q∗matrix B such that Σ(Xp+1,X̂p+1)T
=

BBT . The matrix B is not unique. In general, finding a completely positive decomposition for a
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p-dimensional matrix can be challenging and q∗ can be quite large. In this case since p = 2, it

is relatively simple. Given any q∗ ≥ 2 and 2 × 2 completely positive matrix Σ(Xp+1,X̂p+1)T
, there

exist nonegative matrices B ∈ R
2×q∗ such that BBT = Σ(Xp+1,X̂p+1)T

, and there exist proce-

dures [Groetzner and Dür, 2020] to find examples of these matrices. See section 3.2.1 below for

more details. Since our goal is to obtain a potential angular measure Ĥ(Xp+1,X̂p+1)T
with TPDM

Σ(Xp+1,X̂p+1)T
, there would seem to be incentive to set q∗ large, thereby distributing the total mass of

the angular measure HB◦Z into q∗ point masses. On the other hand, as q∗ grows, the procedures for

obtaining B require more computation. We take a practical approach. We choose q∗ to be of mod-

erate size, but apply the procedure repeatedly, obtaining nonegative B(k), k = 1, . . . , ndecomp such

that B(k)B(k)T = Σ(Xp+1,X̂p+1)T
for all k. We then set Ĥ(Xp+1,X̂p+1)T

= n−1decomp

∑ndecomp

k=1 HA(k)◦Z ,

and ΣĤ = n−1decomp

∑ndecomp

k=1 B(k)B(k)T = Σ(Xp+1,X̂p+1)T
as required. Ĥ(Xp+1,X̂p+1)T

consists of

ndecompq∗ point masses.

We use a simulation study to illustrate. We again begin by generating a matrix A whose ele-

ments are drawn from a uniform(0,5) distribution; however this time the dimension of A is 7×400

thus the true angular measure consists of 400 point masses. We draw 60, 000 random realizations

of X = A ◦ Z, and use the first 40, 000 as a training set. The largest 1% of this training set

is used to estimate the seven-dimensional TPDM, from which we obtain b̂ and additionally the

estimated prediction TPDM Σ̂(Xp+1,X̂p+1)T
. We then use the completely positive decomposition to

obtain 2× 9 matrices B(k), k = 1, . . . , 51, resulting in an estimated angular measure Ĥ(Xp+1,X̂p+1)T

consisting of 459 point masses in Figure 3.2. We obtain a 95% joint region by drawing bounds at

the 0.025 and 0.975 quantiles of Ĥ(Xp+1,X̂p+1)T
. The right panel of Figure 3.2 shows the scatterplot

of the 20000 remaining test points X̂p+1 and Xp+1 and the 95% joint region. Thresholding at the

0.95 quantile of ∥(Xp+1, X̂p+1)∥Vq , we find that 0.963 of the large values fall within the joint re-

gion. The scatterplot shows asymmetry in the distribution of X̂p+1 and Xp+1. It is not a surprise

that the joint region does not reflect the asymmetry seen in the scatterplot of X̂p+1 and Xp+1, as

any information about asymmetry is not contained in Σ̂(Xp+1,X̂p+1)T
.
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Figure 3.2: (Left) The weighted kernel density estimate in terms of angles. (Right) The estimated joint

95% joint prediction region based on the approximated angular measure Ĥ(Xp+1,X̂p+1)T
. The star indicates

a particular observation which has a predicted value of 33.17 and an observed value of 48.15.

3.2.1 Completely Positive Decomposition

Groetzner and Dür [2020] devise a completely positive factorization problem as a nonconvex

feasibility problem. They propose an alternative projection method by avoiding a second order

cone problem (SOCP) to reduce the computational cost. We briefly introduce their method below

without considering bounds on cp-ranks of a matrix.

While the usual goal of a non-negative factorization of a p × p matrix Σ is to find a non-

negative p×q matrix B with the least dimension q such that Σ = BBT , we need the matrix B with

a large q to better approximate the angular measure. We start with an arbitrary initial factorization

such as the Eigenvalue decomposition or the Cholesky decomposition. The obtained B such that

Σ = BBT is not necessarily non-negative definite. The initial factorization normally provides a

square matrix B. We augment the matrix B by adding additional m columns. In the Cholesky

decomposition, the first positive column can be decomposed into [ 1√
m
b1,

1√
m
b1, ...,

1√
m
b1], where

b1 is the first column vector of B. The augmented matrix B̂ becomes a p × (q + m) matrix

B̂ = [b1, ..., bq−1,
1√
m
b1, ...,

1√
m
b1].

The key idea of completely positive decomposition is to find an orthogonal matrix Q that rotates

the factor B until it satisfies BQ ≥ 0. Groetzner and Dür [2020] propose the alternative way of
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projecting the matrix Q onto the intersection of P and Qq, where P = {Q ∈ R
q×q|BQ ≥ 0} and

Qq is the set of q × q orthogonal matrices. By theorem 4.2 in Groetzner and Dür [2020], given an

initial matrix Q0 ∈ Qq, we keep projecting the kth matrix Qk onto the space Qq and P alternatively

until the convergence of the matrix Qk → Q∗ ∈ P ∩ Qq as k → ∞ is achieved and it meets

Σ = (BQ∗)(BQ∗)T . The initial matrix Q0 ∈ Qq is obtained by projecting an arbitrary matrix

M ∈ R
q×q onto Qq. For example, the arbitrary matrix M can consist of random draws from the

standard normal distribution. The projection of M onto Qq is obtained by the polar decomposition

meaning that there exists a positive semi-definite matrix T and an orthogonal matrix Q such that

M = TQ. See full details in Groetzner and Dür [2020]. The projection of Q onto the space P

is originally tied to solving a second order cone problem (SOCP). But, Groetzner and Dür [2020]

project the matrix BQ onto the nonnegative orthant space D = max(BQ, 0) rather than project

Q onto P so that it reduces the computational cost of solving SOCP. If D = BQ, then BQ ≥ 0.

Hence, Q ∈ P . If D ̸= BQ, then they use the matrix P̂ := B+D+ (I −B+B)Q where B+ is the

Moore-Penrose-Inverse of B to approximate the projection of Q onto P .

3.3 Prediction Intervals for Xp+1 Given Large X̂p+1

The region obtained in the previous section describes the joint behavior of X̂p+1 and Xp+1, but

the quantity of interest is the conditional behavior of Xp+1 given a specific large value of X̂p+1.

Cooley et al. [2012] use the limiting intensity function of regular variation to get an approximate

density of Xp+1 given large Xp. More specifically, they derive an approximate density of Xp+1

given large Xp using the point process argument under L1-norm. The sequence of normalized

point processes, Nn = {Xi/bn}, converges to the limiting point process N with the intensity

measure,

Λ(dx) = ||x||−(p+1)
1 h(x/||x||1)dx. (3.3)

This intensity function is obtained by transforming L1 polar coordinates to Cartesian coordinates

with the Jacobian of the transformation. A joint density of X/bn given ||X||/bn > r∗ is ap-

proximately the product of some high threshold and the intensity function in terms of Cartesian

28



coordinates,

fX/bn(x, r
∗) → r∗||x||−(p+1)

1 h(x/||x||1), for ||X||−p > r∗, (3.4)

where r∗ is some high threshold. After integrating out the variables, X−p = (X1, · · · , Xp−1)
T ,

we can derive the approximate conditional density by dividing by the normalizing constant. They

fit a parametric model for H(Xp,Xp+1)T and transform from polar form to obtain ν(Xp,Xp+1)T (dx).

Cooley et al. [2012] applied their method in moderate dimension (p = 4). Applying their approach

in higher dimensions would require fitting a high dimensional angular measure model. We adapt

the method of Cooley et al. [2012] to model the relationship between Xp+1 and X̂p+1. Regardless

of p, we only need to describe this bivariate relationship.

Changing from polar coordinates to Cartesian, a bivariate regularly varying random vector

(X1, X2) with α = 2 and angular density h(X1,X2) defined on Θ+
1 has limiting measure ν(dx1, dx2) =

2∥x∥−52 x2h(x∥x∥−12 ). Following Cooley et al. [2012], the conditional density of X2|X1 = x1 if

x1 is large is approximately

fX2|X1(x2|x1) = 2c−1∥(x1, x2)∥−52 x2h

(
(x1, x2)

∥(x1, x2)∥−12

)
, (3.5)

where c =
∫∞
0

2∥(x1, x2)∥−52 x2h
(

(x1,x2)

∥(x1,x2)∥−1
2

)
dx2.

We use (3.5) to obtain an estimate of the conditional density of Xp+1 given large X̂p+1. Since

(3.5) requires an angular density, we use a kernel density estimate of Ĥ(Xp+1,X̂p+1)T
. We use the

adjusted boundary bias approach of Marron and Ruppert [1994] for the kernel density estimation

since the support of H(Xp+1,X̂p+1)T
is bounded. See more details in Appendix D. We then take the

0.025 and 0.975 quantiles of this estimated conditional density to obtain a 95% prediction interval

in Figure 3.3. The left panel of Figure 3.3 illustrates the 95% prediction interval for a particular

realization from the aforementioned simulation study where X̂p+1 = 33.17 and with actual value

Xp+1 = 48.15 denoted by the blue star. Because the conditional density changes with X̂p+1, the

units of the horizontal axis are the predicted values and the units of the conditional density are

omitted. The right panel shows a scatterplot of the largest 5% (by X̂p+1) of the test set from the

29



aforementioned simulation along with the upper and lower bounds from the conditional density

approximation. The coverage rate of these intervals is 0.947.
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Figure 3.3: (Left) The approximate conditional density fXp+1|X̂p+1
(Xp+1|x̂p+1 = 33.17) for a particular

realization. The horizontal segments indicate the 95% conditional prediction interval, and the star denotes

the actual value of 48.15. Because the conditional density changes with X̂p+1, the units of the horizontal

axis are the predicted values and the units of the conditional density are omitted. (Right) the scatter plot of

X̂p+1 and Xp+1 with 95% conditional prediction intervals given each large value of X̂p+1.

3.4 Applications

3.4.1 Nitrogen Dioxide Air Pollution.

NO2 is one of six air pollutants for which the US Environmental Protection Agency (EPA)

has national air quality standards. We analyze daily EPA NO2 data1 from five locations in the

Washington DC metropolitan area (see Figure 2.1). The first four stations (McMillan 11-001-

0043, River Terrace 11-001-0041, Takoma 11-001-0025, Arlington 51-013-0020) have long data

records spanning 1995-2020. Alexandria does not have observations after 2016. We will perform

prediction at Alexandria given data at the other four locations. Observations in Alexandria actually

come from two different stations: 51-510-0009 which has measurements from January1995 to

1https://www.epa.gov/outdoor-air-quality-data/download-daily-data
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August 2012 and 51-510-00210 from August 2012 to April 2016. Exploratory analysis did not

indicate any detectable change point in the Alexandria data either with respect to the marginal

distribution or with dependence with other stations, so we treat this data as coming from a single

station. There are 5163 days between 1995 and 2016 where all five locations have measurements.

Because NO2 levels have decreased over the study period, we detrend at each location using a

moving average mean and standard deviation with window of 901 days to center and scale.

Our inner product space assumes each Xi ∈ RV 1
+(α = 2), and the detrended NO2 data must

be transformed to meet this assumption. In fact, it is unclear whether the NO2 data are even heavy

tailed. Nevertheless, we believe the regular variation framework is useful for describing the tail

dependence for this data after marginal transformation. Characterizing dependence after marginal

transformation is justified by Sklar’s theorem (Sklar [1959], see also [Resnick, 1987, Proposition

5.15]), and such transformations are regularly used in multivariate extremes studies. After viewing

standard diagnostic plots, we fit a generalized Pareto distribution above each location’s 0.95 quan-

tile and obtain the marginal estimated cdf’s F̂i which are the empirical cdf below the 0.95 quantile

and the fitted generalized Pareto above. Letting X
(orig)
i denote the random variable for detrended

NO2 at location i, we define Xi = 1/

√
(1− F̂i(X

(orig)
i ))− δ obtaining a ‘shifted’ Pareto distribu-

tion for i = 1, . . . , 5. Each Xi ∈ RV+(α = 2) and the shift δ = 0.9352 is such that E[t−1(Xi)]

= 0. This shift moves the transformed data closer to the axes which we found reduced bias in the

estimation of the TPDM. We assume X = (X1, . . . , X5)
T ∈ RV 5

+(α = 2). Further, we let Xt

denote the random vector of observations on day t, which we assume to be iid copies of X . This

is a simplifying assumption as there is temporal dependence in the NO2 data, but it seems less

informative that the spatial dependence exhibited by each day’s observations.

We first predict during the period prior to 2015 in order that we can use the observed data at

Alexandria to assess performance. Indices are randomly drawn to divide the data set into training

and test sets consisting of 3442 and 1721 observations respectively, and both sets cover the entire

observational period. Using the training set, the five-dimensional TPDM Σ̂X is estimated as fol-

lows. Let xt denote the observed measurements on day t. For each i ̸= j in 1, . . . , 5, let rt,ij =
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∥(xt,i, xt,j)∥ and (wt,i, wt,j) = (xt,i, xt,j)/rt,ij . We let σ̂ij = 2n−1exc

∑n
t=1 wt,iwt,jI(rt,ij > r∗ij),

where nexc =
∑n

t=1 I(rt,ij > r∗ij). We choose r∗ij to correspond to the 0.95 quantile. The constant 2

arises from knowledge that the tail ratio of each Xi is one due to the marginal transformation. This

pairwise estimation of the TPDM differs from the method in Cooley and Thibaud [2019] who used

the entire vector norm as the radial component. Mhatre and Cooley [2021] show that the TPDM is

equivalent whether it is defined in terms of the angular measure of the entire vector or the angular

measure corresponding to the two-dimensional marginals.

From Σ̂X , we obtain X̂t,5 = b̂T ◦ Xt,4, where b̂ = (−0.047, 0.177, 0.192, 0.482)T . We note

that the largest weighted component is Arlington, which is closest to Alexandria. Interestingly,

McMillan has a slightly negative weight. We calculate X̂t,5 for all t, but only consider those for

which X̂t,5 exceeds the 0.95 quantile. The left panel of Figure 3.4 shows the scatterplot of the

values xt,5 versus x̂t,5. By taking the inverse of the marginal transformation, multiplying by the

moving average standard deviation and adding the moving average mean, the predicted value can

be put on the scale of the original data. The center panel of Figure 3.4 shows the scatterplot on the

original scale.

For each large predicted value x̂t,5, we use the method described in Section 3.3 to create 95%

prediction intervals. We chose the matrix B arising from the completely positive decomposition to

again be 2 × 9. On the Pareto scale, these prediction intervals are linear with x̂t,5 and are shown

in the left panel of Figure 3.4. The coverage rate of these intervals is 0.965. The intervals can

similarly be back-transformed to be on the original scale as shown in the center panel of Figure

3.4. The lack of monotonicity in these intervals with respect to the predicted value is due to the

trend in the data over the observation period.

For comparison to standard method, we find the BLUP based on the estimated covariance

matrix from the entire data set, and create Gaussian-based 95% confidence intervals from the

estimated MSPE. When done on the original data, we obtain a coverage rate of 0.88, and when

done on square-root transformed data to account for the skewness, we obtain a coverage rate of

0.78.
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We then apply our prediction method to five dates in 2019 and 2020 when observed values

at the four recording stations were large and no observation was taken at Alexandria. Here, we

use the entire period from 1995-2016 to estimate the TPDM, and we obtain a slightly different

estimate b̂ = (0.026, 0.153, 0.118, 0.461)T . The right panel of Figure 3.4 shows the point estimate

and 95% prediction intervals from our transformed-linear approach in solid line. On the Pareto

scale (not shown), the positive skewness of the conditional distribution (as shown in the left panel

of Figure 3.3) is preserved and the point estimate is lower than the center of the prediction interval.

Transformation back to the original NO2 scale results in the prediction intervals shown in Figure

3.4; the trend at Arlington was used for the unobserved trend at Alexandria. For comparison,

covariance matrix-based BLUP’s and MSPE-based 95% prediction intervals for these dates are

shown in dashed line.
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Figure 3.4: (Left) Scatterplot of X̂5 and X5 with the 95% prediction intervals on the Pareto scale. (Center)

Scatterplot and 95% prediction intervals after transformation back to the original scale of the NO2 data.

(Right) Comparison of the point predictions and 95% prediction intervals using the transformed linear ap-

proach (solid line) and a Gaussian-based approach with the covariance matrix (dashed line) for five recent

dates when Alexandria is not observed.

3.4.2 Industry Portfolios.

We apply the transformed-linear prediction method to a higher dimensional financial data set.

The data set obtained from the Kenneth French Data Library2 contains the value-averaged daily

2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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returns of 30 industry portfolios. We analyze data for 1950-2020, consisting of n = 17911 obser-

vations. Since our interest is in extreme losses, we negate the returns, set negative returns to zero so

that data is in the positive orthant, and apply the transform t to each variable to meet the lower tail

bound condition. Although these data appear to be heavy-tailed, it still requires marginal transfor-

mation so that α = 2 can be assumed. Let X(orig) denote the random vector of the value-averaged

daily returns. For simplicity we use the empirical CDF to perform the marginal transformation

Xi = 1/

√
(1− F̂i(X

(orig)
i )) − δ, which is applied to each industry’s data so that Xi follows the

same shifted Pareto distribution as before. We again assume Xt, the random vector denoting the

observations on day t, are iid copies of X . The data set is randomly split into two sets. The training

set consists of two-thirds of the data (ntrain = 11940) to estimate the TPDM and obtain the vector

b̂. The test set consists of the last one-third of the data (ntest = 5970) to assess coverage rates.

Following similar steps in the previous application, the 30 × 30 TPDM ΣX is estimated first

in the training set. We focus on performing the linear prediction for extreme losses of coal, beer,

and paper. The three largest coefficients in b̂coal are (0.42, 0.36, 0.20) and correspond to fabri-

cated products and machinery, steel, and oil respectively. The three largest coefficients b̂beer are

(0.52, 0.24, 0.12) and correspond to food products, retail, and consumer goods (household). The

three largest coefficients for b̂paper are (0.21, 0.11, 0.08) and correspond to chemicals, consumer

goods (household), and construction materials. Figure 3.5 shows the scatterplot of the observed

daily returns versus predicted daily returns on the Pareto scale for coal, beer, and paper, respec-

tively. The assessed coverage rates of our transformed linear 95% prediction intervals for coal,

beer, and paper are 97.9%, 96.3%, and 98%, respectively.

For the purpose of comparison, we also assessed coverage rates of the MSPE-based 95% pre-

diction intervals. Because the data are strongly non-Gaussian, we use the empirical CDF to trans-

form the marginals to be standard normal before estimating the covariance matrix. The coverage

rates of MSPE-based 95% prediction intervals are 79.3%, 66.6%, and 51.2% for coal, beer, and

paper respectively.
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Figure 3.5: Scatterplot of observed daily returns and predicted daily returns with the 95% prediction inter-

vals on the Pareto scale for coal, beer, and paper from left to right.

3.5 Comparison between Prediction Intervals with Linear Ap-

proach versus Parametric Approach

We aim to compare prediction intervals with linear approach to ones with a parametric angu-

lar approach. We use the point process argument in Section 3.3 to approximate the conditional

angular density given large observed values. For the NO2 air pollution application, it is feasible

to fit a parametric angular measure model because only five monitoring sites are considered. Let

{HX(θ), θ ∈ Θ} be a parametric class of angular measures. There are a number of possible para-

metric angular measures such as the bilogistic model proposed by Joe et al. [1992], the Dirichlet

model by Coles and Tawn [1994], or the pairwise beta distribution by Cooley et al. [2010].

We choose the pairwise beta model by Cooley et al. [2010] for comparison because the model

also describes all pairwise dependencies between variables at extreme levels. Cooley et al. [2010]

construct the pairwise beta distribution by a geometric interpretation of the requirements of angu-

lar measure. They first consider the pairwise beta function as a symmetric beta density between

angular components on the unit ball Θp−1 = {w ∈ R
p−1 : ||w|| = 1},

hi,j(w; βi,j) =
Γ(2βi,j)

Γ2(βi,j)

( wi

wi + wj

)βi,j−1( wj

wi + wj

)βi,j−1
, (3.6)
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where w ∈ Θp−1 and βi,j > 0. The magnitude of the parameter βi,j describes the dependence

between the ith and jth elements.

For each pair of angular components, simply adding up each of the
(
p
2

)
pairwise beta functions

is not suitable because one of the pairwise beta functions containing a strong dependence can yield

some minimal level of dependence across all of the components. To resolve the issue, Cooley et al.

[2010] include an additional parameter α to control the overall dependence in the model.

h(w;α,β) = Kp(α)
∑

1≤i<j≤p
hi,j(w;α, βi,j), (3.7)

where

hi,j(w;α, βi,j) = (wi+wj)
2α−1(1−(wi+wj))

α(p−2)−p+2Γ(2βi,j)

Γ2(βi,j)

( wi

wi + wj

)βi,j−1( wj

wi + wj

)βi,j−1
,

and

Kp(α) =
2(p− 3)!

p(p− 1)
√
p

Γ(αp+ 1)

Γ(2α + 1)Γ(α(p− 2))
.

After preprocessing the data, we implement the maximum likelihood approach to estimate pa-

rameters in the training set. For the largest 5% data (in terms of ||xp+1||) in the test set, resulting in

86 observations, we approximate the conditional density fXt,5|Xt,−5(Xt,5|Xt,−5) for t = 1, . . . , 86,

with the fitted pairwise beta angular density. In contrast, our linear approach approximates the con-

ditional angular density fXt,5|X̂t
(Xt,5|X̂t) for t = 1, . . . , 86, via completely positive decomposition

for the prediction TPDM. Creating the 95% prediction intervals for each approach, we transform

the prediction intervals back to the original scale for comparison.

The assessed coverage rate of 95% prediction intervals is 0.965 and 0.953 for the linear ap-

proach and the pairwise beta approach, respectively. To compare the transformed-linear approach

to the parametric approach, we take the width of the prediction intervals for each approach. Let U

and L denote the upper bound and the lower bound of the prediction interval, respectively. We let

Ut,pair−Lt,pair and Ut,linear−Lt,linear, t = 1, ..., 86, be the widths for a pairwise beta density and a

linear approach, respectively. Rather than taking an average of widths for each approach, we take
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the ratio of the two widths for each prediction interval,
Ut,pair−Lt,pair

Ut,linear−Lt,linear
. We then take the average

of these ratios so that this average is robust to outliers. The average ratio of 1.04 implies that the

prediction interval based on the best linear approach is slightly narrower on average.

3.6 Summary and Discussion

We have constructed an inner product space of nonnegative random variables arising from

transformed linear combinations of independent regularly varying random variables. The elements

of the TPDM correspond to these inner products if one is willing to assume that these random

variables in Vq
+. The projection theorem yields the optimal transformed linear predictor. Our

method for obtaining prediction intervals shows very good performance both in a simulation study

and in two applications. The method is simple and is based only on the TPDM which is estimable

in high dimensions.

We restrict to nonnegative regularly varying random variables to focus attention on the upper

tail. Relaxing this restriction could allow one to use standard linear operations. Even when the data

can be negative, we believe there is value in focusing in one direction. In the financial application,

tail dependence for extreme losses can be different than for gains, and this information is lost when

dependence is summarized with a single number.

The random vectors X = A ◦ Z comprised of elements of our vector space have a simple

angular measure consisting of q point masses where q is the number of columns of A. Previous

models with angular measures consisting of discrete point masses have been criticized as being

overly simple. A difference here is that we do not have to specify q to use this framework to

perform prediction, or more generally, we do not have to really believe that our data arise from

such a simple model. Rather, if we are comfortable with the information contained in the TPDM,

then we can use its information to easily obtain a point prediction and sensible prediction intervals

that reflect the information contained.

In many applications, dependence cannot be measured between the observed values and the

value to be predicted. In kriging for example, a spatial process model is first fit so that covariance
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between any two locations can be quantified. One can imagine modeling the extremal pairwise

dependence as a function of distance before applying the methods here to perform prediction for

extreme levels.

38



Chapter 4

Partial Tail Correlation

4.1 Motivation

For Gaussian random vectors, the covariance matrix provides complete information about de-

pendence between variables. Even so, conditional relationships, which are a key concept for under-

standing causal structures between variables, are not directly apparent from the covariance matrix.

In Gaussian cases, conditional relationships can be completely specified since conditional distri-

butions are obtainable and remain Gaussian. Conditional relationships are more readily apparent

from the the precision matrix (the inverse of the covariance matrix). The conditional relationship

between Xi and Xj given all other elements of a Gaussian random vector (denoted by X\(i,j)) is

related to the (i, j)th element of the precision matrix. Specifically, if the (i, j)th element of the

precision matrix is zero, that is Σ−1i,j = 0, then Xi and Xj are conditionally independent given

X\(i,j).

When a distributional assumption is not made, one cannot fully characterize conditional re-

lationships. However, the notion of partial correlation provides a measure of the strength of the

conditional relationships between two variables. Consider a centered p-dimensional random vector

Xp with covariance matrix Σ. Partitioning into two subvectors, let Xp = (X(1)T ,X(2)T ), where

X(1) = (Xi, Xj)
T and X(2) = XT

\(i,j), and partition the covariance matrix accordingly

Σ =



Σ11 Σ12

Σ21 Σ22


 .

The partial correlation can be connected to the idea of residuals. Consider the matrix

Σ1|2 = E[(X(1) − X̂)(X(1) − X̂)T ],
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where X̂ = (X̂i, X̂j)
T is the vector of best linear predictors. The partial correlation between Xi

and Xj given X\(i,j) is

ρij =
[Σ1|2]12√

[Σ1|2]11[Σ1|2]22
.

Note that ρij = 0 if and only if [Σ1|2]12 = 0. By matrix inversion, we can show that if the (i, j)th

element in the precision matrix is zero, then the partial correlation between Xi and Xj is also zero.

To illustrate conditional relationships between variables, consider the simple 4-dimensional

linear model 


X1

X2

X3

X4



=




1 0 0 0

ϕ 1 0 0

ϕ2 ϕ 1 0

ϕ3 ϕ2 ϕ 1







Z1

Z2

Z3

Z4



,

where |ϕ| < 1 and Zi are uncorrelated noise terms with mean 0 and variance 1. Another way of

thinking of this model is through the equation

Xi = ϕXi−1 + Zi,

which if X0 = 0 a.s., can generate Xi sequentially for i = 1, . . . , 4. The precision matrix of

X4 = (X1, ..., X4)
T is

Q := Σ−1
X4

=




1 −ϕ 0 0

−ϕ 1 + ϕ2 −ϕ 0

0 −ϕ 1 + ϕ2 −ϕ

0 0 −ϕ 1



.

The sparsity seen in the precision matrix can lead to model simplification. In the Gaussian

setting, precision matrices have been linked to Gaussian Markov random fields, which in turn can

be linked to graphical representations for models [Rue and Held, 2005]. Following the convention

in [Rue and Held, 2005] of connecting graph nodes for non-zero entries of the precision matrix
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yields the graph in Figure 4.1 for the illustrative model. Since we have not specified the Xi’s to be

Gaussian, the graph does not imply truly Markov behavior. However, in terms of linear prediction,

the predicted value of Xi given only its neighbors Xi−1 and Xi+1 is the same as if predicted on

X4 \Xi.

Figure 4.1: The graph given by the precision matrix of the illustrative model.

As it is based on covariance, partial correlation describes conditional relationships at the cen-

ter of the distribution and is not well-suited for describing relationships in the tail. In the past few

years, there has been a concerted effort to develop simplified models for high dimensional extremes

based on graphical models and conditional relationships at extreme levels. Gissibl and Klüppel-

berg [2018] develop causal structure for max linear models via directed acyclic graphs. Directed

graphs differ from Figure 4.1 in that the graph edges have direction. Via max linear operations,

Gissibl and Klüppelberg [2018] connect directed acyclic graphs to max stable models, and model

sparsity is achieved from the graph structure simplifying high-dimensional models. In other work,

Engelke and Hitz [2020] develop the notion of conditional independence for a multivariate Pareto

distribution. In particular, Engelke and Hitz [2020] focus on the Hüsler and Reiss [1989] model

which is characterized by a variogram. The graphical structure of the Hüsler and Reiss [1989] can

be described by a sparse pattern from precision matrices. Engelke and Hitz [2020] use AIC to per-

form likelihood-based model selection, and use a greedy algorithm to stepwise search of graphical

models.

In this chapter, we develop a novel method for characterizing and investigating conditional

extremal relationships between pairs of variables. We continue to rely on multivariate regular vari-
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ation on the positive orthant to describe extremal dependence in the upper tail, which is assumed

to be the direction of interest. We develop the projection theorem for the inner product space de-

fined in (2.9), and we consider subspaces spanned by a collection of p variables. Via the projection

theorem, we develop the idea of partial tail correlation. We show that partial tail correlation can

be understood as the inner product of the prediction errors associated with the transformed linear

prediction. Similar to the Gaussian case, we connect partial tail correlation to the inverse of the

inner product matrix, and show that a zero in this inverse implies a partial tail correlation of zero.

Our approach differs from Gissibl and Klüppelberg [2018] in that our approach is more closely

linked to ideas from linear models in non-extreme statistics. Our approach is less model-based

than that of Engelke and Hitz [2020] in that we do not specify the full model, but instead only

work from summaries of pairwise dependence.

We then turn our attention to inference. We connect the matrix of inner products to the TPDM.

We define the observed residuals, which when considered in pairs are regularly varying in R
2

rather than on the positive orthant. Finally, we develop a test for the hypothesis that the partial

tail correlation is zero. We demonstrate the performance of this test via a simulation study, and

we apply the method to assess flood risk in application to extreme river discharges in the upper

Danube basin which was studied in Engelke and Hitz [2020].

4.2 Projection Theorem in Inner Product Space Vq

4.2.1 Inner Product Space Vq

We briefly review the vector space of regularly varying random variables constructed from a

transformed-linear combinations that was introduced in Section 2. For a ∈ R
q, the vector space is,

Vq =
{
X;X = aT ◦Z = a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq},

where Zj ∈ RV 1
+(2), j = 1, . . . , q, are independent regularly varying random variables meeting

lower tail condition sPr(b(s)−1Zj > z) → z−α with a common normalization limz→∞
P (Zj>z)

z−2L(z)
= 1.
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For any X1, X2 in Vq, the inner product of X1 = aT
1 ◦Z and X2 = aT

2 ◦Z is defined as

⟨X1, X2⟩ := aT
1 a2 =

q∑

i=1

a1ia2i.

We define the angle between X1 and X2 to be

θ = cos−1[⟨X1, X2⟩/(||X1|| ||X2||)],

where θ ∈ [0, π]. We say X1, X2 ∈ Vq are orthogonal if ⟨X1, X2⟩ = 0. The norm of X is defined as

∥X∥Vq =
√

⟨X,X⟩. We use the subscript Vq to remind that the norm is based on the coefficients

which determine the random variable and to distinguish from the usual Euclidean norm based on

a location in space. The norm induces the metric of X1 and X2 as d(X1, X2) = ∥X1 ⊖ X2∥Vq =
√∑q

i=1(a1i − a2i)2.

Also recall the tail ratio of X = aT ◦Z ∈ Vq,

TR(X) := lim
z→∞

P (X > z)

P (Z1 > z)
=

q∑

j=1

(a
(0)
j )

2
,

and note that only the positive elements of a contribute. The square in the exponent arises because

we assume α = 2. Unlike the norm which is not estimable since the random variable’s coefficients

are not observable from data, the tail ratio is estimable. However, the metric can be connected to

the tail ratio

TR (max((X1 ⊖X2), (X2 ⊖X1))) =

q∑

j=1

(a1j − a2j)
2 = d2(X1, X2),

because P (max(Z1, Z2) > z) ∼ P (Z1 > z) + P (Z2 > z) as z → ∞. In general, it is required for

α = 2 to connect the inner products of Vq to quantities which are observable from the tail behavior

of the data. We will return to this discussion in Section 4.4.
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For a random vector whose elements are in Vq: Xp = (X1, . . . , Xp)
T where Xi = aT

i ◦ Z ∈

Vq for i = 1, . . . , p, it was shown that Xp ∈ RV p
+(2) and Xp is of the form A ◦ Z, where

A = (aT
1 ,a

T
2 , . . . ,a

T
q )

T by Corollary 2.2.1. We denote the matrix of inner products by

ΓXp
= ⟨Xi, Xj⟩i,j=1,...p = AAT . (4.1)

The angular measure associated with Xp is given by (2.5).

4.2.2 Projection Theorem in Vq

As any X ∈ Vq is uniquely identifiable by its vector of coefficients a, Vq is isomorphic to

R
q with the same inner product. Furthermore, Vq is complete and is therefore a Hilbert space.

We show in Appendix C that Vq is isomorphic to R
q and complete. Let Xi = aT

i ◦ Z ∈ Vq,

i = 1, . . . , p, where p is assumed to be less than q. We consider the subspace VA spanned by a

finite set {X1, . . . , Xp}, where A refers to the matrix which generates Xp = (X1, . . . , Xp)
T . Thus,

VA = {bT ◦Xp; b ∈ R
p}.

For completeness, we develop the projection theorem in the vector space Vq constructed from

transformed-linear combinations. For any X ∈ Vq, we define a transformed-projection mapping

PVA by

PVAX = {bT ◦Xp such that ||X ⊖ (bT ◦Xp)||Vq = inf
Y ∈VA

||X ⊖ Y ||Vq}.

We say PVA is a transformed-linear projection mapping of Vq onto VA. We define the orthogonal

complement of a subset V⊥A ⊂ Vq as

V⊥A = {X ∈ Vq; ⟨X, Y ⟩ = 0 ∀Y ∈ VA};

that is, V⊥A is the set of all elements of Vq which are orthogonal to all elements of VA.
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In Chapter 2, we briefly mentioned the projection theorem as an alternative method to find the

optimal transformed linear predictor of an unobserved Xp+1 given Xp. Here, we present a more

thorough development of the projection theorem. The following development of the projection

theorem and its properties is similar to the the presentation in Brockwell et al. [1991] and Cline

[1983]. Instead of considering transformed linear operations of nonnegative regularly varying

random variables as we do, Cline [1983] considered standard linear combinations of symmetric

regularly varying random variables with α = 2.

Theorem 4.2.1. (Projection theorem) Let VA be the previously defined subspace of the Hilbert

space Vq and X ∈ Vq. Let Xi =
∑q

j=1 aij◦Zj ∈ Vq, i = 1, . . . , p, and let X =
∑q

j=1 a
∗
j ◦Zj ∈ Vq.

Then

i) X̂ := PVAX (X̂ is the projection of X onto VA) has a unique element in VA such that

||X ⊖ X̂||Vq = inf
Y ∈VA

||X ⊖ Y ||Vq , and

ii) X̂ ∈ VA such that ||X⊖X̂||Vq = infY ∈VA ||X⊖Y ||Vq if and only if X̂ ∈ VA and (X⊖X̂) ∈ V⊥A .

Proof. i) Consider Xi =
∑q

j=1 aij ◦ Zj, i = 1, . . . , p, and X =
∑q

j=1 a
∗
j ◦ Zj in Vq. For Xp =

(X1, . . . , Xp)
T , consider bT ◦Xp ∈ VA. ||X ⊖ (bT ◦Xp)||2Vq =

∑q
j=1(a

∗
j − bTa·j)

2 where a·j is

the jth column vector of A. We assume Rank(A) = p. Let Sj = {b ∈ R
p such that bTa·j = a∗}

and fj(b) = (a∗j −bTa·j)
2. For b /∈ Sj ,

∂fj(b)

∂b
= 2a·j[b

Ta·j −a∗j ] and
∂2fj(b)

∂b∂bT
= 2a·ja

T
·j(ba·j −a∗j).

As a·ja
T
·j is nonnegative definite, fj is convex off of Sj . Since fj is minimized on Sj , fj is convex

everywhere. Thus for b1 and b2 and any w ∈ (0, 1),

wfj(b1) + (1− w)fj(b2) ≥ fj(wb1 + (1− w)b2),

where equality above implies bT1 a·j = bT2 a·j . Equality does not hold for every j. ||X ⊖ (bT ◦

Xp)||2Vq =
∑q

j=1 fj is strictly convex since A is full rank. ||X ⊖ (bT ◦ Xp)||Vq → ∞ as

max1≤j≤p |a∗j | → ∞. Thus, ||X ⊖ (bT ◦Xp)||Vq must have a unique minimum.
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ii) Suppose X̂ ∈ VA and (X ⊖ X̂) ∈ V⊥A . For any Y ∈ VA,

||X ⊖ Y ||2Vq = ⟨(X ⊖ X̂)⊕ (X̂ ⊖ Y ), (X ⊖ X̂)⊕ (X̂ ⊖ Y )⟩

= ||X ⊖ X̂||2Vq + ||X̂ ⊖ Y ||2Vq

≥ ||X ⊖ X̂||2Vq ,

with equality iff Y = X̂. Thus, X̂ is such that ||X ⊖ X̂||Vq = infY ∈VA ||X ⊖ Y ||Vq .

Conversely if X̂ ∈ VA and (X ⊖ X̂) /∈ VA, then X̂ is not the element of VA closest to X since

there exists

X̃ = X̂ ⊕ a ◦ Y/||Y ||2Vq

closer to X where Y is any element of Vq such that ⟨X ⊖ X̂, Y ⟩ ≠ 0 and a = ⟨X ⊖ X̂, Y ⟩.

||X ⊖ X̃||2Vq = ⟨X ⊖ X̂ ⊕ X̂ ⊖ X̃,X ⊖ X̂ ⊕ X̂ ⊖ X̃⟩

= ||X ⊖ X̂||2Vq + a2 ◦ 1

||Y ||2Vq

+ 2⟨X ⊖ X̂, X̂ ⊖ X̃⟩

= ||X ⊖ X̂||2Vq − a2 ◦ 1

||Y ||2Vq

< ||X ⊖ X̂||2Vq .

Now, let I be the identity mapping on Vq. The proposition below shows there is a unique

mapping PVA of Vq onto VA such that I − PVA maps Vq onto V⊥A by Theorem 4.2.1.

Proposition 4.2.1. (Property of Projection Mappings) Let PVA be the projection mapping of Vq

onto a subspace VA. Then,

i) PVA(α ◦X ⊕ β ◦ Y ) = α ◦ PVAX ⊕ β ◦ PVAY, X, Y ∈ Vq, α, β ∈ R.
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[That is, the projection mapping PVA is a linear mapping.]

ii) For every X ∈ Vq, there exist an element of VA and an element of V⊥A such that

X = PVAX ⊕ (I − PVA)X

and this decomposition is unique.

Proof. i) (α ◦ PVAX)⊕ (β ◦ PVAY ) ∈ VA since VA is a linear subspace of Vq. In addition,

α ◦X ⊕ β ◦ Y ⊖ (α ◦ PVAX ⊕ β ◦ PVAY ) = α ◦ (X ⊖ PVAX)⊕ β ◦ (Y ⊖ PVAY ) ∈ V⊥A

since V⊥A is a linear subspace of Vq. Thus, these two properties indicates α ◦ PVAX ⊕ β ◦ PVAY

is the projection of PVA(α ◦X ⊕ β ◦ Y ). We note that this linear mapping is not necessarily true

when α ̸= 2.

ii). To show uniqueness of decomposition, let X = Y ⊕ Z, Y ∈ VA, Z ∈ V⊥A be another

decomposition, then

Y ⊖ PVAX ⊕ Z ⊖ (I − PVA)X = 0.

By taking inner products of each side with Y ⊖PVAX , ||Y ⊖PVAX||2Vq = 0 since Z⊖(I−PVA)X ∈

V⊥A . Hence Y = PVAX and Z = (I − PVA)X .

Theorem 4.2.1 shows that X̂ ∈ VA is the unique element closest to X such that

⟨X ⊖ X̂, Y ⟩ = 0 (4.2)

for all Y ∈ VA. The equation (4.2) is called the prediction equation and makes X̂ as the best predic-

tor of X ∈ Vq. Briefly returning to the context of Chapter 2, suppose we observe X1, . . . , Xp and

want to predict an unobserved Xp+1 by using the transformed-linear combination of (X1, . . . , Xp).

The goal is to find X̂p+1 ∈ VA that minimizes ||X̂p+1⊖Xp+1||Vq . The prediction equation is written

as ⟨Xp+1 ⊖ X̂p+1, Xi⟩ = 0, for i = 1, · · · , p. This condition can equivalently be expressed with
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the matrix notation by the linearity of the inner product.

[
< Xp+1, Xi >

]p

i=1

=

[
< Xi, Xj >

]p

i,j=1

[
bi

]p

i=1

=

[
∑q

k=1 aikajk

]p

i,j=1

[
bi

]p

i=1

(4.3)

This in turn yields the form of the best transformed linear predictor given in Equation (2.12).

4.2.3 Inner Product Matrix of Prediction Errors

Here, we change focus from the setting where Xp is observed and Xp+1 is unobserved. We

continue to assume Xp = (X1, . . . , Xp)
T where Xi ∈ Vq, for i = 1, . . . , p,, but assume we

partition the vector so that Xp = (X(1)T ,X(2)T )T , where X(1) has dimension p1 < p and X(2)

has dimension p−p1. Without loss of generality, Xp can be reordered so that X(1) is any subvector

of elements of Xp. Partitioning A yields



X(1)

X(2)


 =



A(1)

A(2)


 ◦Zq.

The matrix of inner products of (X(1)T ,X(2)T )T is

Γ
(X(1)T ,X(2)T )T

=



A(1)A(1)T A(1)A(2)T

A(2)A(1)T A(2)A(2)T


 :=



Γ11 Γ12

Γ21 Γ22


 . (4.4)

We now consider the problem of finding PVAX
(1) via projection theorem. Minimizing d(bT ◦

X(2),X(1)) is identical to minimization of ∥bTA(2) − A(1)∥2Vq . Taking derivatives with respect to

b and setting equal to zero, the minimizer b̂ solves (A(2)A(2)T )b̂ = A(2)A(1)T . If (A(2)A(2)T ) is

invertible, then the solution b̂ is,

b̂ = (A(2)A(2)T )−1A(2)A(1)T = Γ−122 Γ21. (4.5)
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With the best linear predictor, we can then consider the vector of prediction errors X(1) ⊖ X̂ =

(A(1)−bTA(2))◦Z ∈ RV +
p1
(2), and whose elements are in Vq. The inner product of these prediction

errors has a similar form to the conditional covariance matrix under Gaussian assumptions.

∥X(1) ⊖ X̂∥2Vq : = ⟨X(1) ⊖ X̂,X(1) ⊖ X̂⟩

= (A(1) − b̂TA(2))(A(1) − b̂TA(2))T

= Γ11 − Γ12Γ
−1
22 Γ21.

(4.6)

4.3 Partial Tail Correlation

4.3.1 Partial Tail Correlation via the Projection Theorem

We now turn attention to developing the notion of partial tail correlation between pairs of

elements of a vector Xp = (X1, . . . , Xp)
T where Xi ∈ Vq for i = 1, . . . , p. Let X(1) = (Xi, Xj)

T

and X(2) = (Xp \ (Xi, Xj))
T . From a geometric perspective the projection theorem provides a

way of defining the partial tail correlation between Xi and Xj given X(2) as the cosine of the angle

between the prediction errors.

Because we aim to project X(1) onto the space spanned by X(2), we consider the subspace

VA2 spanned by a finite set {X1, . . . , Xp} \ {Xi, Xj}. Note that VA2 ⊂ VA. We define PVA2
as

the projection mapping of Vq onto VA2 . We denote by PVA2
X(1) the projection of X(1) onto the

space VA2 . We call (X(1) ⊖ PVA2
X(1)) prediction errors obtained by projecting X(1) onto the

space VA2 . The orthogonality condition says PVA2
X(1) = bT ◦X(2) is such that X(1) ⊖PVA2

X(1)

is orthogonal to the space VA2 . Proposition 4.2.1 says that X(1) can be uniquely expressed as the

sum of PVA2
X(1) and (I − PVA2

)X(1).

Definition 4.3.1. Let Xi ∈ Vq for i = 1, ..., p. Denote by VA2 the space spanned by the set of

variables X(2) = (Xp \ {Xi, Xj})T . Let Xi ⊖ PVA2
Xi and Xj ⊖ PVA2

Xj be prediction errors ob-

tained after projecting Xi and Xj onto the space VA2 , respectively. Then, the partial tail correlation
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between Xi and Xj is defined as

ρEij =
< Xi ⊖ PVA2

Xi, Xj ⊖ PVA2
Xj >

∥Xi ⊖ PVA2
Xi∥Vq∥Xj ⊖ PVA2

Xj∥Vq

, (4.7)

where the superscript E in ρEij stands for "extreme". ⟨Xi ⊖ PVA2
Xi, Xj ⊖ PVA2

Xj⟩ = 0 iff

ρEij = 0, which we denote by Xi ⊥ Xj|X(2).

As before we denote the inner product matrix of prediction errors by

Γ1|2 :=< X(1) ⊖ PVA2
X(1),X(1) ⊖ PVA2

X(1) >

= Γ11 − Γ12Γ
−1
22 Γ21.

We call Γ1|2 the conditional inner product matrix (IPM). The partial tail correlation can be repre-

sented by elements of the conditional IPM,

ρEi,j =
aij√
aiiajj

, i, j = 1, 2, (4.8)

where Γ1|2 = [aij]i,j=1,2. Note that Γ1|2 is positive semi-definite but not completely positive.

4.3.2 Partial Tail Correlation and Transformed Linear Prediction

We return temporarily to the problem of predicting one variable Xp+1 ∈ Vq given Xp ∈

RV p
+(2). In this setting, the partial tail correlation is related to the coefficients of the vector b for

the best transformed-linear predictor. Importantly, if bi denotes the ith element of b, bi = 0 iff

Xp+1 ⊥ Xi|Xp \X1. This implies that if Xp+1 and Xi given Xp \Xi have partial tail correlation of

zero, then Xi adds no additional information to the transformed-linear prediction of Xp+1. Without

loss of generality, below we consider the specific case where i = 1.

Proposition 4.3.1. Let VA be the previously defined subspace of the Hilbert space Vq. Assume

Xi ∈ Vq, i = 1, ..., p + 1. Then the partial tail correlation between Xp+1 and X1 is zero if
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and only if the ith coefficient of b in the best transformed-linear predictor X̂p+1 = bT ◦ Xp =

b1 ◦X1 ⊕ · · · ⊕ bp ◦Xp is zero.

Proof. By projection theorem, the space VA can be decomposed into two orthogonal subspaces VA1

spanned by (X2, · · · , Xp) and VA⊥
1

spanned by (X1 ⊖ PVA1
X1), respectively. Thus, the projection

of Xp+1 onto the space VA can also be split into two parts,

X̂p+1 = PVAXp+1 = PVA1
Xp+1 ⊕ PV

A⊥
1

Xp+1 = PVA1
Xp+1 ⊕ c ◦ (X1 ⊖ PV

A⊥
1

X1), (4.9)

where c =
<Xp+1,X1⊖PVA1

X1>

||X1⊖PVA1
X1||2 =

<Xp+1⊖PVA1
Xp+1,X1⊖PVA1

X1>

||X1⊖PVA1
X1||2 since PVA1

Xp+1 ⊥ X1 ⊖ PVA1
X1.

We show that c is related to the partial tail correlation between X1 and Xp+1. To find the form

of c, we note that the projection of any variable in Vq onto the space VA1 is represented by the

transformed-linear combination of the remaining variables {X2, · · · , Xp}. The projection of X1

onto VA1 is PVA1
X1 =

⊕p−1
i=1 di ◦ Xi+1 and the projection of Xp+1 onto VA1 is PVA1

Xp+1 =
⊕p−1

i=1 ei◦Xi+1. Substituting these projections into (4.9), X̂p+1 = c◦X1⊕
(∑p−1

i=1 (di−cei)◦Xi+1

)
.

By matching the coefficient c of X1 in (4.9) with the b1 of the best transformed-linear predictor

X̂p+1 = b1 ◦ X1 ⊕ · · · bp ◦ Xp, the coefficient c can be expressed in terms of the inner product of

residuals,

c = b1 =
⟨Xp+1, X1 ⊖ PVA1

X1⟩
∥X1 ⊖ PVA1

X1∥2Vq

=
⟨Xp+1 ⊖ PVA1

Xp+1, X1 ⊖ PVA1
X1⟩

∥X1 ⊖ PVA1
X1∥2Vq

.

Thus, if b1 is zero, then the partial tail correlation between Xp+1 and X1 is zero.

We can also understand PV
A⊥
1

Xp+1 in the regression setting. Let’s consider a simple linear

regression with no intercept, Y = Xβ + ϵ. The projection of Y onto the space spanned by X

is Ŷ = PXY = Xβ̂ where β = (XTX)−1XTy. Note that Ŷ can be expressed as the inner

products, Ŷ = <X,y>
<X,X>

X . By replacing Y and X with Xp+1 and X1 ⊖ PVA1
X1 respectively,

X̂p+1 = PVA1
Xp+1 =

<Xp+1,X1⊖PVA1
X1>

||X1⊖PVA1
X1||2 (X1 ⊖ PVA1

X1).
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4.3.3 Relation between Partial Tail Correlation and the Inverse Inner Prod-

uct Matrix

In non-extreme analysis of dependence, the precision matrix (the inverse of the covariance

matrix) contains information about conditional relationships between variables. In the non-extreme

setting, the partial correlation between Xi and Xj given all other elements of X\(i,j) is related

to the (i, j)th element of the precision matrix. Specifically, Σ−1ij = 0 ⇔ Xi ⊥ Xj|X\{Xi,Xj}.

Analogously, we connect the idea of partial tail correlation in (4.7) to the inverse of the inner

product matrix. The relation between the partial tail correlation and the inverse inner product

matrix can be shown by matrix inversion.

Let Xp ∈ RV +
p (2) be a p-dimensional regularly varying random vector where Xi ∈ Vq,

i = 1, . . . , p. As in Section 4.3.1, partition Xp into two subvectors X(1) := (Xi, Xj)
T and

X(2) := XT
\(i,j). Recall the block form of the inner product matrix of Xp = (X(1)T ,X(2)T )T

ΓXp
:=



Γ11 Γ12

Γ21 Γ22


 , (4.10)

By the matrix inversion in block form,

Γ−1
Xp

=




Γ−11|2 −Γ−11|2Γ12Γ
−1
22

−Γ−122 Γ21Γ
−1
1|2 Γ−122 + Γ−122 Γ21Γ

−1
1|2Γ12Γ

−1
22 ,


 (4.11)

where Γ−11|2 ∈ R
2×2 is the inverse of the conditional IPM. Note that the matrix Γ−11|2 could have

negative off-diagonal elements. Since both of Γ1|2 and Γ−11|2 are a 2 by 2 matrix, we can easily find

the relation between Γ1|2 and Γ−11|2 by the inversion formula,

Γ−11|2 =
1

|Γ1|2|




[Γ1|2]22 −[Γ1|2]12

−[Γ1|2]21 [Γ1|2]11


 , (4.12)
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where [Γ1|2]i,j=1,2 is the element of Γ1|2 and a determinant |Γ1|2| = [Γ1|2]11[Γ1|2]22− [Γ1|2]12[Γ1|2]21.

Thus

ρEi,j =
[Γ1|2]12√

[Γ1|2]11[Γ1|2]22
=

−[Γ−11|2]12√
[Γ−11|2]11[Γ

−1
1|2]22

. (4.13)

Hence, the partial tail correlation between Xi and Xj given X(2) can be represented by the first

block matrix of the inverse IPM. Note that the direction of the partial tail correlation is of the

opposite sign of [Γ−11|2]12. If [Γ−11|2]12 = 0, then it implies that Xi and Xj given X\(i,j) are partially

uncorrelated in terms of tail behavior.

We can also consider the case where we predict one variable Xp+1 ∈ Vq conditioned on Xp ∈

RV p
+(2). Similarly, let Γ(Xp+1,XT

p )T be partitioned in block form,

Γ(Xp+1,XT
p )T =



Γ11 Γ12

Γ21 Γ22


 , (4.14)

where Γ11 ∈ R+ is a scale of Xp+1 and Γ22 ∈ R
p×p
+ is the IPM of Xp. Assume Γ22 is invertible,

then by the inverse formula,

Γ−1
(Xp+1,XT

p )T
=




1
k

− 1
k
Γ12Γ

−1
22

− 1
k
Γ−122 Γ21 (Γ22 − Γ21Γ

−1
11 Γ12)

−1


 =




1
k

− 1
k
bT

− 1
k
b (Γ22 − Γ21Γ

−1
11 Γ12)

−1


 (4.15)

where k = Γ11 − Γ12Γ
−1
22 Γ21 ∈ R. Thus, the inverse IPM can be expressed in terms of the vector

b = Γ−122 Γ21, and we see that if the element of Γ−1 relating Xp+1 to Xi, Γ
−1
1,i+1, equals zero, then

bi = 0.

Again for illustration, we now consider the transformed-linear model




X1

X2

X3

X4



=




1 0 0 0

ϕ 1 0 0

ϕ2 ϕ 1 0

ϕ3 ϕ2 ϕ 1



◦




Z1

Z2

Z3

Z4




(4.16)
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where {Zt} is a sequence of independent regularly varying α = 2 with unit scale. We set ϕ ∈ (0, 1)

to induce a positive dependence in the {Xt}. The sequential generating equation is

Xt = ϕ ◦Xt−1 ⊕ Zt, for i = 1, 2, 3, 4,

where X0 = 0 a.s.

By the matrix inversion in (4.15), the inverse IPM has a sparse pattern.

Σ−1
(Xp+1,XT

p )T
=




1 −ϕ 0 0

−ϕ 1 + ϕ2 −ϕ 0

0 −ϕ 1 + ϕ2 −ϕ

0 0 −ϕ 1



, (4.17)

The partial tail correlation between Xt and Xt−k is zero for |k| > 1. b = Γ−122 Γ21 = (0, 0, ϕ)T .

In terms of transformed linear prediction, consider X̂4 = bT ◦ X3. We find that b = Γ−122 Γ21 =

(0, 0, ϕ)T , implying that given X3, knowledge of X1 or X2 does not provide additional information

about X4.

4.4 Positive Subset Vq
+ as a Modeling Framework

In chapter 2, we introduced the vector space Vq arising from the transformed linear combination

of independent regularly-varying random variables where X = aT ◦ Z ∈ Vq takes values in the

positive orthant. It is essential that the elements of the coefficient vectors a are allowed to be

negative for Vq to be a vector space. However, we know that X = a ◦ Z ∈ Vq and X+ =

a(0) ◦ Z have the same tail ratio because negative values in a do not affect tail behavior. In

addition, Xp = A ◦ Zq and X+
p = A(0) ◦ Z have the same angular measure: HX = H

X
+
p

=
∑q

j=1 ∥a
(0)
j ∥αδ

a
(0)
j /∥a(0)j ∥

(·). Hence, Xp and X+
p are indistinguishable in terms of their tail behavior.

In terms of modeling, it is reasonable to restrict attention to the subset Vq
+ =

{
X;X = aT◦Z =

a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq}, where aj ∈ [0,∞), j = 1, . . . , q, and Z = (Z1, . . . Zq)
T as in (2.9).
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Critically, if Xp = A ◦ Z where A ≥ 0, then ΣX = ΓX = AAT . The assumption Xi ∈ Vq
+ for

i = 1, . . . , p is really essential for modeling as the inner product matrix which forms the basis for

all the work heretofore in Chapter 4 is not estimable as the coefficients which determine X1 are

not observable; however, the TPDM is estimable.

Perhaps most importantly, q is not identifiable, nor does it need to be in order to use the frame-

work for modeling. In fact, we do not need to believe that our data arise from a linear combination

of q regularly varying random variables. The definition of the TPDM is not tied to Vq, these pair-

wise dependence summaries can be estimated for any regularly varying random vector in RV p
+(2).

If we are willing to make the modeling assumption that Xi = aT
i ◦Zq ∈ Vq

+, for i = 1, . . . , p, we

then have all the tools that arise from this inner product space. This is not such a strong assumption

since angular measures arising from p × q matrices A are dense in the class of angular measures

for p-dimensional regularly varying random vectors as q → ∞. [Cooley and Thibaud, 2019].

4.5 Hypothesis Testing for Zero Elements in the Inverse TPDM

4.5.1 Asymptotic Normality of TPDM Estimates

We aim to develop a hypothesis test for H0 : ρEij = 0 versus H1 : ρEij ̸= 0. Towards that aim,

we first review the asymptotic normality of the sample TPDM Σ̂ using results for the extremal

dependence measure by (Resnick [2004];Larsson and Resnick [2012]).

Let Xp ∈ RV +
p (2) be a p-dimensional regularly varying random vector such that

nP (n−1/2Xp ∈ ·) ν−→ νXp
(·),

where νXp
(dr×dw) = 2r−3drdHXp

(w). Let T denote the polar coordinate transformation so that

T : (Xp) 7→ (R,Wp), where (R,Wp) = (||Xp||2,Xp/||Xp||2). The TPDM of Xp is

ΣXp
:=

∫

Θ+
p−1

wpw
T
p dHX(w),
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where HXp
is the angular measure on the L2 unit ball Θ+

p−1 = {w ∈ R
p−1
+ : ||w||2 = 1}. The

(i, j)th element of the TPDM

σij =

∫

Θ+
p−1

wiwjdHX(w),

where σij corresponds to the extremal dependence measure defined by Larsson and Resnick [2012]

if HXp
is assumed to be a probability measure. Because we do not make that assumption, the scale

of the components of Xp is retained in the angular measure. If σij = 0, then the angular measure

HXp
puts all masses on the coordinate axes. In other words, σij = 0 iff HXp

({w ∈ Θ+
p−1 : wi >

0, wj > 0}) = 0 implies asymptotic independence of (Xi, Xj).

Larsson and Resnick [2012] provide an equivalent form of the extremal dependence measure

as

σij = lim
x→∞

mE[WiWj|R > x],

where R = ||(Xi, Xj)||, x is a high threshold, and m = HXp
(Θ+

p−1) is the total mass of the

angular measure. Proposition 4 in Larsson and Resnick [2012] provides a useful interpretation of

the extremal dependence measure as the limit of conditional cross moments of X1 and X2.

This definition gives a natural estimator for σij . Let xℓ = (xℓ,1, . . . , xℓ,p)
T , ℓ = 1, . . . , n be

realizations of iid copies of R
p
+-valued regularly varying vectors with the tail index α = 2. Letting

rℓ = ∥xℓ∥ and wℓ = r−1ℓ xℓ, the natural estimator for σij is

σ̂ij(n) =
m̂

k

n∑

ℓ=1

wℓ,iwℓ,jI[rℓ > r(k)], (4.18)

where m̂ is an estimate of HXp
(Θ+

p−1), and k := k(n) is such that limn→∞ k/n = 0 and r(k) is the

kth upper order statistic in the sample of size n. If we preprocess the data to have a common unit

scale, then m is identical to p. When the data are not preprocessed to have a common unit scale,

an estimator for m is m̂ = (r2(k)/n)k by Cooley and Thibaud [2019].

Asymptotic normality is shown for the estimator of the extremal dependence measure in the

case of iid observations by Resnick [2004] and Larsson and Resnick [2012]. The asymptotic
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normality of σ̂ij(n) is proven under the following condition. Let F be the distribution function of

R and F̄ be its tail probability.

lim
n→∞

√
k
(n
k
mE[WiWjI[R/b(n/k) ≥ t−γ]]−mE[WiWj

n

k
F̄ (b(n/k)t−γ]

)
= 0, (4.19)

holds locally uniformly for t ∈ [0,∞), and assume that τ 2 = m2V ar(WiWj) > 0. Larsson

and Resnick [2012] notes that τ 2 = 0 implies asymptotic independence and the rate factor
√
k

increases too slowly to obtain a non-degenerate limit. This condition implies that the dependence

between (Wi,lWj,l) and Rl must decay fast enough with n as Rl is conditioned to lie above b(n/k).

With this condition, we do not need to make a second-order regular variation condition. By using

an order statistic, it is not required to know the normalization b(·). Under the condition (4.19), the

estimator σ̂ij(n) is asymptotically normal by Larsson and Resnick [2012].

√
k(σ̂ij(n)−mE[WiWj]) ∼ N(0, τ 2ij),

where m is the total mass of HX(·) and τ 2ij = m2V ar(WiWj).

Suppose Xp ∈ RV +
p (2) is constructed by Corollary 2.2.1. That is, Xp = A ◦ Z ∈ RV p

+(2).

We can specify an explicit form of the variance τ 2ij in terms of the angular measure HX on the L2

unit ball given in (2.5). Let Xi = aT
i ◦Z and Xj = aT

j ◦Z in Vq. The (i, j)th element of ΣA◦Z is

σij =

∫

Θ+
p−1

wiwjdHA◦Z(w) =

q∑

l=1

a
(0)
il a

(0)
jl ,

where HX(·) =
∑q

l=1 ||a
(0)
l ||2δal/||al||. To find τ 2ij = m2V ar(WiWj), we first consider

V ar(WiWj) =

∫

Θ+
p−1

(wiwj − E[WiWj])
2dNX(w) = E[W 2

i W
2
j ]− E[WiWj]

2,
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where NX(·) = m−1HX(·) is a probability measure. E[WiWj] =
1
m

∑q
l=1 a

(0)
il a

(0)
jl and E[W 2

i W
2
j ] =

1
m

∑q
l=1

a
(0)2

il

||a(0)
l
||

a
(0)2

jl

||a(0)
l
||
.

V ar(σ̂ij) = V ar
(m
k

n∑

l=1

WilWjlI[Rl > R(k)]
)

=
m2

k
V ar[Wi,1Wj,1] since (Wi,l,Wj,l)’s are iid

We obtain an estimate of V̂ ar(σ̂ij) by estimating V ar(Wi1Wj1). To get V̂ ar(Wi1Wj1), a nat-

ural estimate for E[WiWj] and E[W 2
i W

2
j ] are Ê[WiWj] = 1

k−1
∑k

l=1 wi,lwj,lI[Rl > R(k)] and

Ê[W 2
i W

2
j ] =

1
k−1
∑k

l=1 w
2
ilw

2
jlI[Rl > R(k)], respectively.

4.5.2 Residuals and Asymptotic Normality of the Conditional Inner Product

Matrix

The main goal is to derive the asymptotic normality of the sample conditional inner product

matrix. We assume that we observe iid copies of Xp whose elements are in Vq, from which we

obtain Σ̂, an estimate of the TPDM. A straightforward estimator of the conditional inner product

matrix is

Γ̂1|2 = [Σ̂11 − Σ̂12Σ̂
−1
22 Σ̂21], (4.20)

where Σ̂ij for i, j = 1, 2 are sample block matrices as in (4.10). However, the distribution of Γ̂1|2

is not straightforward to obtain from (4.20).

As the partial tail correlation is tied to the inner product of prediction errors, it is natural to

consider using the observed ‘residuals’ to understand the properties of the sample conditional

inner product matrix. The prediction errors are in Vq and X(1) ⊖ X̂ = (A(1) − bTA(2)) ◦Zq. Thus

Γ1|2 = (A(1) − bTA(2))(A(1) − bTA(2))T ,
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and Γ1|2 is not necessarily completely postive. Unlike the original data where we can assume away

the importance of any negative coefficients as described in Section 4.4, here negative coefficients

are consequential. If we consider the TPDM of the prediction errors,

Σ
X(1)⊖X̂ = (A(1) − bTA(2))(0)(A(1) − bTA(2))(0)

T ̸= Γ1|2.

Furthermore, the order of the definition of the prediction errors matters as the scale of X(1) ⊖ X̂

is (A(1) − bTA(2))(0), and this differs from the scale of X̂ ⊖X(1) which is (bTA(2) − A(1))(0).

As the conditional inner product matrix is not completely positive, the direct use of transformed-

residuals is not suitable for estimation. Instead, we consider the preimages of the prediction errors

in (4.3.1) to account for negative coefficients. Assuming Zj, j = 1, . . . , q, is independent and iden-

tically distributed regularly varying random variable with unit scale meeting lower tail condition

nP (Zj ≤ exp
(
−kn1/2

)
) → 0 for any k > 0, we define the preimages of the transformed-residuals

by

U := t−1(X(1) ⊖ X̂) = (A(1) − bTA(2))t−1(Zq)

which are not restricted to the positive orthant. Lemma A4 in the appendix in Cooley and Thibaud

[2019] implies that U ∈ RV2(2). Let U = (U1, U2)
T and continue to let T denote the polar coor-

dinate transformation, T (U1, U2) = (R,W ), where R = ||(U1, U2)||2 and W = (U1/R, U2/R).

We can summarize the second-order behaviors of U with respect to the angular measure HU . We

define

σUij
=

∫

Θ1

wiwjdHU (w), i, j = 1, 2,

where Θ1 = {w ∈ R : ||w||2 = 1}, and HU is the angular measure of U . Thus, the pairwise tail

dependence matrix of U is ΣU := (A(1) − bTA(2))(A(1) − bTA(2))T identical to Γ1|2. In contrast

to the fact that σX12 = 0 implies asymptotic independence of X1 and X2, σU12 = 0 does not

necessarily mean that elements U1 and U2 are asymptotically independent. Instead this implies

∫

Θ1:w1w2>0

w1w2dHU (w) =

∫

Θ1:w1w2<0

w1w2dHU (w),
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meaning that angular components of (w1, w2) are uncorrelated on the L2 unit ball and quadrants of

(w1, w2) plane are balanced.

The off-diagonal element σU12 in Σ1|2 is of primary interest because it is tied to the idea of the

partial tail correlation ρEij . Following similar steps above, let Uℓ = (Uℓ,1, Uℓ,2), ℓ = 1, . . . , n, be iid

copies of U ∈ RV2(2). We set Rℓ = ||Uℓ||2, Wℓ = (Uℓ,1/Rℓ, Uℓ,2/Rℓ), and k(n) =
∑n

ℓ=1 I[Rℓ >

R(k)], is the number of exceedances over the kth upper order statistic.

Since U is a linear combination of independent Zj’s, its angular measure is discrete and σu
12

has a simple form. Let A(1) − bTA(2) := C = (cT1 , · · · , cTq )T ∈ R
2×q. The (1, 2) element of ΣU is

σu
12 =

∫

Θ1

w1w2dHU (w) =

q∑

i=1

c1ic2i,

where HU (·) =
∑q

j=1 ||cj||2δcj/||cj ||, and δ(·) is a Dirac mass function.

The natural estimator for σu
12 =

∫
Θ1

w1w2dHU (w) = m̃
∫
Θ1

w1w2dNU (w) is given by

σ̂u
12,n = m̃

∫

Θ1

w1w2dN̂U (w) =
m̃

k

n∑

l=1

w1lw2lI[Rl > R(k)], (4.21)

where m̃ is the total mass of the angular measure HU (·) and NU (·) = m̃−1HU (·) is a probability

measure. k =
∑n

ℓ=1 I[Rℓ > R(k)] is such that limn→∞ k/n = 0 and R(k) is the kth upper order

statistic in the sample of size n.

Under the condition (4.19), the scaled estimator σ̂u
12,n is asymptotically normal by Larsson and

Resnick [2012],
√
k(σ̂u

12,n − m̃E[W1,1W2,1]) ∼ N(0, τu
2

),

where m̃ is the total mass of the angular measure HU identical to the sum of diagonal elements of

the conditional TPDM Σ1|2. To obtain τu
2
= m̃2V ar(W1W2), we first consider V ar(W1W2),

V ar(W1W2) =

∫

Θ1

(w1w2 − E[W1W2])
2dNU (w),

60



where NU (·) = m̃−1HU (·).

V ar(σ̂u
12,n) = V ar

(m̃
k

n∑

l=1

W1lW2lI[Rl > R(k)]
)

=
m̃2

k
V ar[W1,1W2,1] since (W1,l,W2,l)’s are iid

Our estimate τ̂u
2

for m̃2V ar(σu
12,n) is obtained in the same manner as above. Under the null

hypothesis H0 : ρ
E
ij = 0, since

√
k(σ̂u

12,n − σu
12) ∼ N(0, τu

2
), we have

σ̂u
12,n√
τ̂u2/k

∼ Tk−1, (4.22)

where Tk−1 denotes a t-distribution with k− 1 degrees of freedom. With the asymptotic result, we

can construct confidence intervals and perform a hypothesis test for zero elements in the inverse

TPDM.

4.5.3 Asymptotic Normality for the Transformed-linear Extreme Illustra-

tive Model

We use a simulation study to illustrate asymptotic normality for the sample conditional inner

product matrix and perform a hypothesis test for zero elements in its inverse. We again consider

the four-dimensional transformed-linear extreme model in (4.3.3) with generating equation

Xt = ϕ ◦Xt−1 ⊕ Zt,

where {Zt} is a sequence of independent regularly varying random variables meeting lower tail

condition, ϕ ∈ (0, 1) and X0 = 0 a.s.

Our simulation study aims to estimate the partial correlation between X2 and X4 given X1 and

X3, and to test whether this is significantly different from zero. We set ϕ = 0.7 and generate

n = 10, 000 four dimensional vectors X4. The largest 2% of the samples is used to find the

estimated TPDM Σ̂X4 .
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Let X(1) = (X2, X4)
T and X(2) = (X1, X3)

T . We find b̂ = Σ̂−122 Σ̂21 and subsequently find

X̂(1). We then obtain two dimensional vectors of residuals U = t−1(X(1))− t−1(X̂(1)). We have

two methods for estimating the conditional inner product matrix. The first is to use the partitions of

the estimated TPDM Γ̂1|2 = Σ̂11 − Σ̂12Σ̂
−1
22 Σ̂21. The second is to estimate Γ1|2 from the residuals.

For this method, we use the largest 2% of angular components. We focus on the off diagonal

element [Σ1|2]12. Figure 4.2 shows the comparison between the kernel density of estimates obtained

from the residuals (solid line) and the kernel density from the partition of the TPDM (dashed line)

under repeated simulations. The figure shows little difference in these methods, and we suggest

using the estimate from the partition as this is immediately available from the estimated TPDM.

Importantly, Figure 4.2 indicates that the variance of the residuals does in fact capture the

uncertainty in the estimates of the conditional inner product matrix. Following the procedure in

Section 4.5.1, we obtain estimated variances for τu
2
. From the equation in (4.22), we construct a

95% confidence interval for each iteration and achieve a coverage rate of 0.95.
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Figure 4.2: The kernel density based on the residuals (solid line) versus the kernel density from the partition

of the TPDM (dashed line).
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4.6 Asymptotic Distribution for the Vector b̂ and Σ̂1|2 when

Predicting Xp+1

Especially in the case where we predict Xp+1 using the best transformed-linear predictor

X̂ = b̂T ◦ Xp, the asymptotic distribution of the estimator for both the optimal weights b and

the conditional TPDM Σ1|2 could be of interest. In Vq
+, the vector b = Σ−122 Σ12 itself is meaning-

ful, and it is also tied to the inverse of Σ(Xp+1,XT
p )T in (4.15). In addition, the conditional TPDM

Σ1|2 plays an role of uncertainty quantification for the prediction of extremes.

First, we derive the asymptotic normality for b̂ via Slutsky’s theorem and asymptotic normality

results by Larsson and Resnick [2012]. Let ΣXp+1 = [σij]i,j=1,...,p+1 be the TPDM of Xp+1. Under

the assumption in (4.19), a natural estimator for each element of the TPDM is asymptotically

normal
√
k(σ̂ij(n)−σij) ∼ N(0, τ 2ij), i, j = 1, . . . , p+1 and σ̂ij(n)

p−→ σij by continuity mapping.

Let ΣXp+1 be partitioned into block matrices,

ΣXp+1 =



Σ11 Σ12

Σ21 Σ22


 ,

where Σ11 is the tail ratio of Xp+1 and Σ22 is the TPDM of Xp.

Minimizing the tail metric ∥Xp+1⊖X̂p+1∥Vq , we obtain the optimized weights b and its natural

estimator is b̂ = Σ̂−122 Σ̂21. To specify the form of b̂, we start with the form of Σ21. We define

R(k,p+1) = ||(Xk, Xp+1)||2 and (Wk,Wp+1) = (Xk/R(k,p+1), Xp+1/R(k,p+1)) for k = 1, . . . , p.

Σ21 =




∫
Θ+

1
w1wp+1dH(X1,Xp+1)(w)

∫
Θ+

1
w2wp+1dH(X2,Xp+1)(w)

...

∫
Θ+

1
wpwp+1dH(Xp,Xp+1)(w)



, (4.23)
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Let R(k,p+1),i = ||(Xk,i, Xp+1,i)|| and let (Wk,i,Wp+1,i) = (Xk,i/R(k,p+1),i, Xp+1,i/R(k,p+1),i) be

iid copies of (Wk,Wp+1) for k = 1, . . . , p, i = 1, . . . , n. The natural estimator for Σ21 is

Σ̂21 =




1
k

∑n
l=1 w1,lwp+1,lI[R(1,p+1),l > R(k)]

1
k

∑n
l=1 w2,lwp+1,lI[R(2,p+1),l > R(k)]

...

1
k

∑n
l=1 wp,lwp+1,lI[R(p,p+1),l > R(k)]



, (4.24)

where R(k) is the kth upper order statistic. Let T̃ = [τ 2ij]i,j=1,...,p be a covariance matrix of Σ̂21. If

T̃ exists, then
√
k(Σ̂21 − Σ21)

d−→ (0, T̃ ). The asymptotic normality of the estimator Σ̂21 leads to

the asymptotic normality for b̂ via Slutsky’s theorem.

Theorem 4.6.1. Let Xi ∈ Vq, i = 1, . . . , p + 1, and Σ(Xp+1,XT
p )T be the TPDM of (Xp+1,X

T
p )

T .

We partition the TPDM as in (4.15). Let T̃ be a covariance matrix of Σ̂21. Assume T̃ exists and

Σ22 is invertible. Under the condition (4.19),

√
k(b̂− b)

d−→ (0, Σ̃),

where k is the number of exceedances, k := k(n) is such that k/n → 0 as n → ∞, b̂ = Σ̂−122 Σ̂21

and Σ̃ := Σ−122 T̃Σ
−1T
22 is a covariance matrix of b̂.

Proof. We use the fact that Σ̂−122

p−→ Σ−122 since Σ̂22
p−→ Σ22 by continuity mapping and

√
k(Σ̂21 −

Σ21)
d−→ (0, T̃ ) under the assumption in (4.19). By Slutsky’s theorem,

√
k(Σ̂−122 Σ̂21 − Σ−122 Σ21)

d−→

(0, Σ̃) holds. As Xp+1 = A ◦ Z ∈ Vq
+ arises from the matrix multiplication, we specify the

form of the covariance matrix T̃ in terms of the matrix A(0). Let Xp+1 = A ◦ Z and hence
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HXp+1 = A(0)A(0)T where each Xi ∈ Vq, i = 1, . . . , p+ 1. The (1, 1) element of T̃ is

V ar(W1Wp+1) =

∫

Θ+
1

[w1wp+1 − E[W1Wp+1]]
2dHA◦Z(1,p+1)

(w)

=

∫

Θ+
1

w2
1w

2
p+1dHA◦Z(1,p+1)

(w)−
[ ∫

Θ+
1

w1wp+1dHA◦Z(1,p+1)
(w)
]2

=

q∑

j=1

a
(0)2

1,j

||a(0)
(1,p+1),j||2

a
(0)2

p+1,j

||a(0)
(1,p+1),j||2

−
[ q∑

j=1

a
(0)
1,ja

(0)
p+1,j

]2

The (1, 2) element of T̃ is

V ar(W1W2W
2
p+1) =

∫

Θ+
2

[w1w2w
2
p+1 − E[W1W2W

2
p+1]]

2dHA◦Z(1,2,p+1)
(w)

=

∫

Θ+
2

w2
1w

2
2w

4
p+1dHA◦Z(1,2,p+1)

(w)−
[ ∫

Θ+
2

w1w2w
2
p+1dHA◦Z(1,2,p+1)

(w)
]2

=

q∑

j=1

a
(0)2

1,j

||a(0)
(1,2,p+1),j||2

a
(0)2

2,j

||a(0)
(1,2,p+1),j||2

a
(0)4

p+1,j

||a(0)
(1,2,p+1),j||2

−
[ q∑

j=1

a
(0)
1,j

||a(0)
(1,2,p+1),j||2

a
(0)
2,j

||a(0)
(1,2,p+1),j||2

a
(0)2

p+1,j

]2

We can specify other elements in a similar way.

We can also employ the Slutsky’s theorem to derive the asymptotic distribution for the sample

conditional TPDM Σ̂1|2 = Σ̂11 − Σ̂12Σ̂
−1
22 Σ̂21. Under some conditions, we use the facts that Σ̂11

p−→

Σ11, Σ̂−122

p−→ Σ−122 , and
√
k(Σ̂21−Σ21)

d−→ (0, T̃ ) by Larsson and Resnick [2012]. We show that the

sample conditional TPDM is asymptotically a non-central Chi-square distribution,

Σ̂11 − Σ̂12Σ̂
−1
22 Σ̂21

d−→ Σ11 − χ2(c),

where c is a vector of noncentrality parameters. As
√
k(Σ̂21 − Σ21)

d−→ N(0, T̃ ), we show that

the quadratic form of Q := Σ̂12Σ̂
−1
22 Σ̂21 is asymptotically distributed to a non-central Chi-square

distribution by Mohsenipour [2012]. By Slutsky’s theorem, Σ̂11 − Σ̂12Σ̂
−1
22 Σ̂21

d−→ Σ11 − χ2(c).
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Specifically, we decompose the covariance matrix T̃ into T̃ = T̃ 1/2T̃ 1/2, where T̃ 1/2 =

PΛ1/2P T and P is the orthogonal matrix composed of eigenvectors of T̃ and Λ = [λij]i,j=1,...,p

is a diagonal matrix of eigenvalues of T̃ . Let

z = T̃−1/2(Σ̂21 − Σ21) ∼ N(0, I).

T̃ 1/2(z + T̃−1/2Σ21) = Σ̂21

Σ̂12Σ̂
−1
22 Σ̂21 = (z + T̃−1/2Σ21)

T T̃ 1/2Σ̂−122 T̃
1/2(z + T̃−1/2Σ21)

Let T̃ 1/2Σ̂−122 T̃
1/2 be decomposed into P ∗Λ∗P ∗

T

. Then,

Σ̂12Σ̂
−1
22 Σ̂21 = (P ∗

T

z + P ∗
T

Σ̃−1/2Σ21)
TΛ∗(P ∗

T

z + P ∗
T

Σ̃−1/2Σ21)

Let U = P ∗
T

z ∼ N(0, I) and c = P ∗
T

T̃−1/2Σ21. We can express Σ̂12Σ̂
−1
22 Σ̂21 in terms of U ,

Σ̂12Σ̂
−1
22 Σ̂21 = (U + c)TΛ∗(U + c)

That is, the quadratic form Q becomes a linear combination of independent non-central Chi-square

variables.

Q =

p∑

j=1

λ∗j(Uj + cj)
2,

where cj, j = 1, . . . , p is a noncentrality parameter.

4.7 Application

4.7.1 Danube River Basin

We apply the notion of partial tail correlation to learn conditional relationships between the

extremes of average daily river discharges in the upper Danube basin. The Danube is Europe’s

second largest river and the upper Danube extends from its source in Germany to Bratislava in
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Slovakia3. To assess flood risks caused by extreme river discharges, there are a number of gauging

stations along the river and its tributaries. The main feature in the upper Danube basin is that there

are physical flow connections among stations. This feature allows us to compare the estimated

graphical structure to the known structure of the river network on the Danube. Figure 4.3 shows

the river network in the upper Danube basin where the path 10 → · · · → 1 is the main channel and

the 21 other locations are on tributaries.

Figure 4.3: Physical flow connections in the upper Danube river basin

We analyze average daily river discharges from 31 gauging stations for 1960-2009. The data

are available in the Bavarian Environmental Agency4. This data set has been widely used across

multiple disciplines to assess flood risk. Asadi et al. [2015] used a spatial extremes model to fit

data from these 31 stations. Engelke and Hitz [2020] fit an extremal undirected graphical model

based on the Hüsler-Reiss model to this data.

3https://www.icpdr.org/main/danube-basin/river-basin

4http://www.gkd.bayern.de
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We follow a similar preprocessing approach as Asadi et al. [2015] in order to compare results.

Engelke and Hitz [2020] and Asadi et al. [2015] only considered June, July, and August because

the main factor causing extreme flooding is extreme precipitation in these summer months. It re-

sults in n = 50× 92 = 4600 daily river discharges where all gauging stations have measurements.

Focusing on the summer period helps remove seasonality. The overall trend in extreme river dis-

charges on the Danube turns out to be insignificant by Katz et al. [2002]. Extreme discharges for

each station occur in clusters because extreme discharges at downstream may occur a few days

later from upstream stations. To remove temporal dependence, they set nonoverlapping timewin-

dows of length p = 9 days and then take the largest value within each window, resulting in a

declustered time series of n = 428 independent data from the original data. However, we decide

to use the whole sample of size n = 4600 to get a large enough sample size by treating the data as

independent samples.

Our inner product space assumes each Xi ∈ RV 1
+(2). Let X

(orig)
i denote the random vari-

able for average daily river discharges at the ith station for i = 1, . . . , 31. For simplicity, we

apply the empirical CDF to perform the marginal transformation Xi = 1/

√
(1− F̂i(X

(orig)
i ))− δ

for each station so that Xi follows the shifted Pareto distribution. Each Xi ∈ RV 1
+(2) and the

shift δ = 0.9352 is such that E[t−1(Xi)] = 0. This shift makes the preimages of the trans-

formed data centered which helps reduce bias in the estimation of the TPDM. We assume X =

(X1, . . . , X31)
T ∈ RV 31

+ (2). We let Xt = (X1,t, . . . , X31,t)
T denote the random vector of the

average daily river discharge on day t, which we treat as iid copies of X.

We first investigate a sub-network for the stations on the main channel, 10 → · · · → 1. The

physical flow connections look similar to a graphical model generated by an AR(1) model or the

Markov chain. The goal is to test whether or not extreme discharges between each pair of stations

exhibit partial tail correlation. To perform a hypothesis test for the partial tail correlation for each

pair of stations, the first step is to estimate the TPDM Σ̂X . Let xt denote the observed average daily

discharge on day t. For each i ̸= j, let rt,ij = ∥(xt,i, xt,j)∥ and (wt,i, wt,j) = (xt,i, xt,j)/rt,ij . We let

σ̂ij = 2k−1
∑k

i=1 wt,iwt,jI[rt,ij > r∗i,j], where k =
∑n

t=1 I[rt,ij > r∗ij] is the number of exceedances.
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We set r∗ij as the 0.95 quantile for radial components. Due to the pairwise estimation for the TPDM,

the total mass 2 arises from the fact that each Xi has the unit scale after preprocessing. We can

then calculate Σ̂−1, which is given in Table 4.1. Our aim can now be described as trying to assess

if each off-diagonal element is significantly different from 0.

Table 4.1: Inverse TPDM for the main path.

1 2 3 4 5 6 7 8 9 10

1 4.33 -5.41 4.62 -2.77 4.74 -4.32 -1.72 2.95 -1.41 -0.78

2 -5.41 29.24 -32.01 8.24 -4.45 3.00 2.17 -2.57 0.72 1.72

3 4.62 -32.01 46.69 -19.71 -5.91 7.00 -1.53 4.99 -4.34 0.31

4 -2.77 8.24 -19.71 39.78 -28.03 2.08 1.76 -4.24 1.15 1.57

5 4.74 -4.45 -5.91 -28.03 123.04 -101.71 11.22 6.83 0.78 -7.34

6 -4.32 3.00 7.00 2.08 -101.71 123.03 -29.01 -13.46 10.06 4.36

7 -1.72 2.17 -1.53 1.76 11.22 -29.01 25.30 -3.89 -2.96 -1.84

8 2.95 -2.57 4.99 -4.24 6.83 -13.46 -3.89 26.37 -22.79 6.03

9 -1.41 0.72 -4.34 1.15 0.78 10.06 -2.96 -22.79 39.47 -20.87

10 -0.78 1.72 0.31 1.57 -7.34 4.36 -1.84 6.03 -20.87 17.66

For each i ̸= j for i, j = 1, . . . , 10, let X
(1)
t = (Xt,i, Xt,j)

T and X
(2)
t = (Xt \ (Xt,i, Xt,j))

T .

Given the estimated TPDM Σ̂X , we obtain X̂t = b̂T ◦X(2)
t ∈ RV 2

+(2), where b̂ = Σ̂−122 Σ̂21. We

compute X̂t for all t but only consider those for which X̂t exceeds the 0.98 quantile. We then

find two dimensional residual vectors Ut = t−1(X
(1)
t ) − t−1(X̂t) = t−1(X

(1)
t ) − b̂T t−1(X

(2)
t ) ∈

RV 2(2). Note that we suppress the index (i, j) in Ut for simplicity.

For each pair of (Xi, Xj)
T given all other components, we estimate the off-diagonal element

of the conditional TPDM [Σ1|2]12 and its variance. Let rt,12 = ∥(Ut,1, Ut,2)∥ and (wt,1, wt,2) =

(ut,1, ut,2)/rt,12. We let σ̂u
12 = m̃∗k−1

∑k
i=1 wt,1wt,2I[rt,12 > r∗12], where k =

∑n
t=1 I[rt,12 > r∗12]

and m̃∗ is an estimate for the total mass of HU (·). We choose r∗12 as the 0.98 quantile for radial

components.

Under the null hypothesis that ρEij = 0, for each i ̸= j, we calculate test statistics t =
√
k(σ̂u

12/τ̂
u), where τ̂u is an estimate for m̃

√
V ar(WiWj). We employ the Tukey’s exact pro-

cedure to adjust for multiple comparisons because the Tukey’s exact procedure is well-suited for

all pairwise comparisons where the number of exceedances is equal across all pairwise compar-
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isons. We consider 10 nodes and 45 possible comparisons. The total number of observations

is N = 92 × 45 = 4140 where each pairwise comparison has the equal number of threshold

exccedances of 92 and there are 45 pairwise comparisons. Hence, the degrees of freedom is

df = N − 45 = 4095. Finding a critical value of tcrit = 5.847, we summarize test statistics

in a matrix (4.2). If |t| < 5.847, then we fail to reject the null hypothesis that ρEij = 0.

Table 4.2: Test statistics for each pair of stations i ̸= j for i, j = 1, . . . , 10 in the main path.

1 2 3 4 5 6 7 8 9 10

1 - 7.62 -3.46 3.12 -0.84 -0.35 4.77 -1.65 -0.18 1.29

2 7.62 - 21.40 -3.52 -1.02 0.43 -0.77 -1.24 -0.01 -0.52

3 -3.46 21.40 - 6.94 0.46 -0.53 -1.91 0.80 -0.06 0.81

4 3.12 -3.52 6.94 - 8.76 -1.66 0.85 3.51 -1.03 -1.73

5 -0.84 -1.02 0.46 8.76 - 16.93 -1.55 -0.88 0.78 -0.20

6 -0.35 0.43 -0.53 -1.66 16.93 - 8.92 -0.26 -0.80 -0.45

7 4.77 -0.77 -1.91 0.85 -1.55 8.92 - 2.82 2.00 0.06

8 -1.65 -1.24 0.80 3.51 -0.88 -0.26 2.82 - 9.62 -3.81

9 -0.18 -0.01 -0.06 -1.03 0.78 -0.80 2.00 9.62 - 15.21

10 1.29 -0.52 0.81 -1.73 -0.20 -0.45 0.06 -3.81 15.21 -

Let G = (V,E) be an undirected graphic with nodes V = {1, . . . , 10} and edge set E. Based

on the test statistics in the table above, we create an undirected graphical model for the main path

by assuming partial tail correlation implies conditional relationships in Figure 4.4. Each circle

indicates a node. Extreme discharges at nearby stations tend to be partially correlated in terms of

tail behaviors. The thickness of lines is proportional to the test statistics, and describes the strength

of the conditional relationship. Focusing on the main stream line, our extremal graph shows a

resemblance to the physical flow connection. The graph from the partial tail correlation has 8

edges determined to be significant, which is a noteworthy reduction from the
(
10
2

)
= 45 possible

edges.

We also investigate the whole river network in the upper Danube basin. Following the similar

steps above, we standardize the off-diagonal element of the conditional TPDM for each pair of

stations in the appendix E.1. We obtain the critical value of 7.189 via the Tukey’s exact procedure.

We then create an undirected graph on the whole river network. Figure 4.5 shows that partial
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Figure 4.4: The known physical flow connections (above) versus the extremal graph induced by partial tail

correlation (below) for the main path 10 → · · · → 1 in the upper Danube river basin. The thickness of edges

corresponds to absolute values of test statistics being greater than 5.847.

tail correlation graph has 192 significant edges out of the 465 possible edges. The graph has a

noteworthy reduction from all possible edges but is quite complicated to interpret.

The graph found by Engelke and Hitz [2020] was much more simple and closely resembled the

physical flow network. However, their approach was much more model-based and used knowledge

of the physical flow graph to perform stepwise model selection based on AIC. In recent work,

Röttger et al. [2021] use a somewhat less model-based approach to fit a graphical model on this

same Danube data and find a more connected network than their earlier estimate, but one which

is still more simple than the one in Figure 4.4. We believe that including too many variables may

introduce noise when estimating the TPDM.

4.7.2 Nitrogen Dioxide Air Pollution

We apply the idea of partial tail correlation to daily EPA NO2 data from five stations in the

Washington DC metropolitan area (see Figure 2.1). We analyze 5163 daily NO2 data between 1995

and 2016 where all five stations have measurements. We follow the same preprocessing process

described in Section 3.4 so that we can assume each variable Xi ∈ RV 1
+(2) for i = 1, . . . , 5. Let

X
(orig)
i denote the random variable for detrended NO2 at the ith location. We apply the empirical
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Figure 4.5: An undirected graphical model for all gauging stations in the upper Danube river basin.

CDF to perform marginal transformation Xi = 1/

√
1− F̂i(X

(orig)
i )−δ for each location so that Xi

follows a ’shifted’ Pareto distribution for i = 1, . . . 5. We assume X = (X1, . . . , X5)
T ∈ RV 5

+(2).

We let Xt = (X1,t, . . . , X5,t)
T denote the random vector of the daily NO2 level on day t, which

we treat as iid copies of X.

We aim to test whether or not extreme NO2 levels between each pair of stations exhibit partial

tail correlation. To perform a hypothesis test, we first estimate the TPDM Σ̂X . Let xt be the

observed daily NO2 level on day t. For each i ̸= j, let rt,ij = ∥(xt,i, xt,j∥ and (wt,i, wt,j) =

(xt,i, xt,j)/rt,ij . We let σ̂ij = 2k−1
∑k

i=1 wt,iwt,jI[rt,ij > r∗i,j], where k =
∑n

t=1 I[rt,ij > r∗ij] is the

number of exceedances. We set r∗ij as the 0.95 quantile for radial components. Due to the pairwise

estimation for the TPDM, the total mass 2 arises from the fact that each Xi has the unit scale after

preprocessing. We can then calculate Σ̂−1 given in Table 4.3. The goal is now to assess if each

off-diagonal element is significantly different from 0.

For each i ̸= j for i, j = 1, . . . , 5, let X
(1)
t = (Xt,i, Xt,j)

T and X
(2)
t = (Xt \ (Xt,i, Xt,j))

T .

Given the estimated TPDM Σ̂X , we obtain X̂t = b̂T ◦X(2)
t ∈ RV 2

+(2), where b̂ = Σ̂−122 Σ̂21. We

compute X̂t for all t but only consider those for which X̂t exceeds the 0.98 quantile. We then find

residual vectors Ut = t−1(X
(1)
t )− t−1(X̂t) ∈ RV 2(2).
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Table 4.3: Inverse TPDM for all pairs of five stations

1 2 3 4 5

1 2.10 -0.54 -0.19 -0.81 -0.23

2 -0.54 2.72 -1.14 -0.31 -0.58

3 -0.19 -1.14 2.28 -0.22 -0.38

4 -0.81 -0.31 -0.22 2.11 -0.47

5 -0.23 -0.58 -0.38 -0.47 2.01

For each pair of (Xi, Xj)
T given all other components, we estimate the off-diagonal element

of the conditional TPDM [Σ1|2]12 and its variance. Let rt,12 = ∥(Ut,1, Ut,2)∥ and (wt,1, wt,2) =

(ut,1, ut,2)/rt,12. We let σ̂u
12 = m̃∗k−1

∑k
i=1 wt,1wt,2I[rt,12 > r∗12], where k =

∑n
t=1 I[rt,12 > r∗12]

and m̃∗ is an estimate for the total mass of HU (·). We choose r∗12 as the 0.98 quantile for radial

components.

Under the null hypothesis that ρEij = 0, for each i ̸= j, we calculate test statistics t =
√
k(σ̂u

12/τ̂
u), where τ̂u is an estimate for m̃

√
V ar(WiWj). We follow the Tukey’s exact procedure

to adjust for multiple comparisons. We have the total number of observations N = 103×10 = 1030

where each pairwise comparison has the equal number of threshold exccedances of 103 and there

are 10 pairwise comparisons. The degrees of freedom is df = N − 10 = 1020. Having a critical

value of tcrit = 4.797, we summarize test statistics in a matrix (Table 4.4). If |t| < 4.797, then we

fail to reject the null hypothesis that ρEij = 0.

Table 4.4: Test statistics for each pair of stations i ̸= j for i, j = 1, . . . , 5

1 2 3 4 5

1 - 1.69 1.69 2.37 9.89

2 1.69 - 6.18 7.83 3.27

3 1.69 6.18 – 2.42 4.50

4 2.37 7.83 2.42 - 5.31

5 9.89 3.27 4.50 5.31 -

Let G = (V,E) be an undirected graphic with nodes V = {1, . . . , 5} and edge set E. We

create an undirected graphical model for five stations by assuming partial tail correlation implies

conditional relationships in Figure 4.6. Each circle indicates a node. The thickness of lines is
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proportional to the test statistics, and describes the strength of the conditional relationship. The

extremal graph from the partial tail correlation has 4 edges determined to be significant from the

(
5
2

)
= 10 possible edges.

Figure 4.6: The extremal graph induced by partial tail tail correlation for five stations. The thickness of

edges corresponds to absolute values of test statistics being greater than 4.797.

4.8 Summary and Discussion

Our inner product space is constructed from transformed linear combinations of independent

regularly varying random variables. In contrast to max-linear models, our framework is well suited

to linear models in traditional statistics. The projection theorem provides a natural way for defin-

ing partial tail correlation in extremes. By matrix inversion, zero elements in the inverse of the

TPDM are naturally connected to the partial tail correlation so that we have the analogue of partial

correlations for extremes.

Using the fact that the natural estimator for the conditional TPDM is asymptotically normal,

we develop a hypothesis test for zero elements in the inverse extremal matrix. We note that since

our framework does not assume densities, it does not lead to causality directly. However, partially

uncorrelated variables in their extreme levels can provide a meaningful interpretation for extremal
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relationships between variables in extremes. We observed that the extremal relationships between

variables are sensibly described by the partial tail correlation in both river discharges application

and an extreme AR(1) simulation. This method allows one to use the idea of the partial tail corre-

lation to explore structural relationships between variables’ extremes as an exploratory analysis.

Since we do not admit densities, finding suitable variable selection criteria or decomposible

graphs would be important for future research. Considering directions between variables in their

tail behaviors would also be important. For the main path 10 → · · · → 1, in the upper Danube

basin, |t| > 5.847 between (X1, X3) and (X1, X4) say (X1, X3, X4) are related to each other.

However, their opposite signs may imply (X1, X3) and (X1, X4) are in fact not partially correlated

in terms of tail behaviors and this apparent relationship may come up because of the confounding

effect.
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Appendix A

Vector Space

We show that the Vq is the vector space in a rigorous way.

Vq =
{
X;X = a1 ◦ Z1 ⊕ · · · ⊕ aq ◦ Zq},

where Zj are independent and identically distributed regularly varying random variables with the

unit scale and meeting the lower tail condition. Let Xi := t(
∑q

j=1 aijt
−1(Zj)) ∈ Vq, for i =

1, 2, . . . ,

1. Closure under addition: For X1, X2 ∈ Vq, X1 ⊕X2 = t
(∑q

j=1(a1j + a2j)t
−1(Zj)) ∈ Vq as

the sum of coefficients is finite.

2. Closure under scalar multiplication: For any b ∈ R, X ∈ Vq, b ◦ X = t(bt−1(X)) =

t
(∑q

j bajt
−1(Zj)

)
∈ Vq.

3. Commutative property: For X1, X2 ∈ Vq, X1 ⊕ X2 = t
(∑q

j=1(a1q + a2q)t
−1(Zq)

)
=

t
(∑q

j=1(a2j + a1j)t
−1(Zj)

)
= X2 ⊕X1.

4. Associative property: For X1, X2, X3 ∈ Vq, (X1⊕X2)⊕X3 =
{
t
(∑q

j=1(a1j+a2j)t
−1(Zj)

)}

⊕X3 = t
(∑q

j=1(a1j+a2j)t
−1(Zj)+

∑q
j=1 a3jt

−1(Zj)
)
= t
(∑q

q=1(a1q+a2q+a3q)t
−1(Zq)

)
=

t
(∑q

j=1 a1jt
−1(Zj) +

∑q
j=1(a2j + a3j)t

−1(Zj)
)
= X1 ⊕ (X2 ⊕X3).

5. Associative property: For α, β ∈ R, X ∈ Vq, (αβ) ◦ X = t
(
(αβ)

∑q
j=1 ajt

−1(Xj)
)
=

t
(
α
∑q

j=1(βaj)t
−1(Xj)

)
= α ◦ (βX).

6. Distributive properties: For α ∈ R and X1, X2 ∈ Vq, α ◦ (X1 ⊕X2) = α ◦ (t(∑q
j=1(a1j +

a2j)t
−1(Zj) = t(α

∑q
j=1(a1j+a2j)t

−1(Zj)) = t(
∑q

j=1 αa1qt
−1(Zj)+

∑q
j=1 αa2qt

−1(Zj)) =

α ◦X1 ⊕ α ◦X2.
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7. Additive identity: For X ∈ Vq, let 0 := 0 ◦ Z1 ⊕ · · · ⊕ 0 ◦ Zn = t(0). Then, X ⊕ 0 =

t(
∑q

j=1 ajt
−1(Zj) +

∑q
j=1 0 · t−1(Zj)) = t

(∑q
j=1(aj + 0)t−1(Zj)

)
= X.

8. Additive inverse: For X ∈ Vq, let −X := t(−
∑q

j=1 ajt
−1(Zj)). Then, X ◦ (−X) =

t(
∑q

j=1 ajt
−1(Zj)−

∑q
j=1 ajt

−1(Zj)) = t(0) = 0.

9. Multiplicative identity: For X ∈ Vq, 1◦X = t(1 ·
∑q

j=1 ajt
−1(Zj)) = t(

∑q
j=1 ajt

−1(Zj)) =

X.
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Appendix B

Tail Metric

Let X̂p+1 = bT ◦Xp where Xp = A◦Z be the best transformed-linear predictor and Xp+1 ∈ Vq

be predictand, where c1j = [bTAp]j is the jth element of bTAp and c2j = [aT
p+1]j is the jth element

of aT
p+1 for j = 1, · · · , q. We show that the tail metric of X̂p+1 and Xp+1 can be expressed in terms

of tail probabilities. Let Y1 := t−1(X̂p+1) and Y2 := t−1(Xp+1) be its preimage. The following

proof is written as the modified version in the context of our framework from Cline and Brockwell

[1985] and Feller [1957]. We start with the tail probabilities of |t−1(X̂p+1) − t−1(Xp+1)|. If the

case of q = 2 is true, then the general case can be extended by induction. For any δ > 0, let

d1 = (c11 − c21) and d2 = (c21 − c22).

d2(t−1(X̂p+1), t
−1(Xp+1)) = lim

z→∞

P (|t−1(X̂2 ⊖X2)| > t−1(z))

P (t−1(Z) > t−1(z))

= lim
z→∞

P (|(c11 − c21)t
−1(Z1) + (c12 − c22)t

−1(Z2)| > t−1(z))

P (t−1(Z) > t−1(z))

≥ lim
z→∞

P (|d1t−1(Z1)| > (1 + δ)t−1(z), |d2t−1(Z2)| ≤ δt−1(z))

P (t−1(Z) > t−1(z))

+ lim
z→∞

P (|d1t−1(Z1)| ≤ δt−1(z)), |d2t−1(Z2)| > (1 + δ)t−1(z))

P (t−1(Z) > t−1(z))

= lim
z→∞

P (|t−1(Z1)| > (1+δ)
|d1| t

−1(z), |t−1(Z2)| ≤ δ
|d2|t

−1(z))

P (t−1(Z) > t−1(z))

+ lim
z→∞

P (|t−1(Z1)| ≤ δ
|d1|t

−1(z), |t−1(Z2)| > (1+δ)
|d2| t

−1(z))

P (t−1(Z) > t−1(z))

= (1 + δ)−α|d1|α + (1 + δ)−α|d2|α,
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d2(t−1(X̂p+1), t
−1(Xp+1)) = lim

z→∞

P (|t−1(X̂p+1 ⊖Xp+1)| > t−1(z))

P (t−1(Z) > t−1(z))

≤ lim
z→∞

P (|d1t−1(Z1)|+ |d2t−1(Z2)| > t−1(z))

P (t−1(Z) > t−1(z))

= lim
z→∞

P (|t−1(Z1)| > t−1(z)/|d1|)
P (t−1(Z) > t−1(z))

+ lim
z→∞

P (|t−1(Z2)| > t−1(z)/|d2|)
P (t−1(Z) > t−1(z))

= |d1|α + |d2|α.

Thus, d2(t−1(X̂p+1), t
−1(Xp+1)) =

∑2
i=1 |di|α for arbitrary δ. By induction,

d2(X̂p+1, Xp+1) = lim
z→∞

P (|t−1(X̂p+1 ⊖Xp+1)| > t−1(z))

P (t−1(Z) > t−1(z))

= lim
z→∞

P (|bTAp − aT
p+1|

∑q
j=1 t

−1(Zj) > t−1(z))

P (t−1(Z) > t−1(z))

= lim
z→∞

P (|bTAp − aT
p+1|

∑q
j=1 t

−1(Zj) > t−1(z))

P (t−1(Z) > t−1(z))

= (bTAp − aT
p+1)(b

TAp − ap+1)
T

=

q∑

j=1

(c1j − c2j)
2
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Now the tail metric of D = max(X̂p+1 ⊖Xp+1, Xp+1 ⊖ X̂p+1) is

d2(D) = lim
z→∞

P (D > z)

P (Z > z)

= lim
z→∞

P (max(X̂p+1 ⊖Xp+1, Xp+1 ⊖ X̂p+1) > z)

P (Z > z)

= lim
z→∞

P (X̂p+1 ⊖Xp+1) > z)

P (Z > z)
+ lim

z→∞

P (Xp+1 ⊖ X̂p+1) > z)

P (Z > z)(
since lim

z→∞

P (X̂p+1 ⊖Xp+1, Xp+1 ⊖ X̂p+1 > z)

P (Z > z)
= 0

)

= lim
z→∞

P (t−1(X̂p+1 ⊖Xp+1) > t−1(z))

P (t−1(Z) > t−1(z)
+ lim

z→∞

P (t−1(Xp+1 ⊖ X̂p+1) > t−1(z))

P (t−1(Z) > t−1(z))

= lim
z→∞

P ((bTAp − aT
p+1)

∑q
j=1 t

−1(Zj) > t−1(z))

P (t−1(Z) > t−1(z))

+
P ((aT

p+1 − bTAp)
∑q

j=1 t
−1(Zj) > t−1(z))

P (t−1(Z) > t−1(z))

= (bTAp − aT
p+1)

(0)(bTAp − aT
p+1)

(0)T + (aT
p+1 − bTAp)

(0)(aT
p+1 − bTAp)

(0)T

=

q∑

j=1

[
(c1j − c2j)

(0)
]2

+

q∑

j=1

[
(c2j − c1j)

(0)
]2

=

q∑

j=1

(c1j − c2j)
2
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Appendix C

Vq is isomorphic to R
q and Complete

Theorem C.0.1. Let Vq be a vector space defined in (2.9). For any X = a1 ◦Z1⊕· · · aq ◦Zq ∈ Vq,

let Ψ : Vq → R
q be defined by Ψ(X) = a. Then, Vq is isomorphic to R

q.

Proof. We need to show Ψ is a linear transformation, one to one, and onto. For scalars c1, c2 ∈ R

and variables X1, X2 ∈ Vq, let X1 = a11 ◦ Z1 ⊕ · · · a1q ◦ Zq and X2 = a21 ◦ Z1 ⊕ · · · a2q ◦ Zq.

Ψ(c1 ◦X1 ⊕ c2 ◦X2) = Ψ
(
t(c1a11t

−1(Z1) + · · ·+ c1a1qt
−1(Zq) + c2a21t

−1(Z1) + · · ·

+ c2a2qt
−1(Zq))

)

= Ψ
(
t((c1a11 + c2a21)t

−1(Z1) + · · ·+ (c1a1q + c2a2q)t
−1(Zq))

)

=
(
(c1a11 + c2a21), · · · , (c1a1q + c2a2q)

)T

= c1(a11, · · · , a1q)T + c2(a21, · · · , a2q)T

= c1Ψ(X1) + c2Ψ(X2).

Thus, Ψ is linear. To show that Ψ is one to one, let X1, X2 ∈ Vq. Assume Ψ(X1) = Ψ(X2). Then,

(a11, . . . , a1q)
T = (a21, . . . , a2q)

T and a1j = a2j for j = 1, . . . , q. That is, X1 = X2 and hence Ψ

is one to one. To show that Ψ is onto, for c = (c1, . . . , cq)
T ∈ R

q, we can find X ∈ Vq such that

X = c1 ◦ Zq ⊕ · · · ,⊕cq ◦ Zq. That is, Ψ(X) = c. Thus, Ψ is onto.

To prove that Vq is complete, we need to show every Cauchy sequence {Xn} converges in

norm to X ∈ Vq. As the metric defined in Section 2.3 is based on the coefficients, we can follow

the proof in classical statistics [Brockwell et al., 1991].

Theorem C.0.2. Vq defined in (2.9) is complete.
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Proof. For Xn = aT
n ◦Z ∈ Vq, if Xn is such that

∥Xn ⊖Xm∥2Vq =

q∑

j=1

|an,j − am,j|2 → 0

as m,n → ∞, then each component j = 1, . . . , q, must satisfy |an,j − am,j| → 0 as m,n → ∞.

There exists aj ∈ R such that |an,j − aj| → 0 as n → ∞ by the completeness of R. Hence, for

X ∈ Vq,

∥Xn ⊖X∥Vq → 0

as n → ∞. Thus, Vq is complete.
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Appendix D

Transformation of data method

The transformation of data method is one of the simple ways to address boundary effects in

kernel density estimation [Marron and Ruppert, 1994]. The idea is to map the bounded support of

data to the real line by a suitable transformation and to fit the regular kernel density to the trans-

formed data. Our goal is to estimate the angular density h(w) evaluated at the bounded support,

w ∈ [0, 1]. Let H(w) = F (t(w)), w ∈ [0, 1] be the distribution of the transformed data. For the

support of w ∈ [0, 1], the Probit transformation t(w) = Φ−1(w) is one option where Φ(w) is the

standard normal distribution mapping w ∈ [0, 1] to R = [−∞,∞]. By taking derivatives with re-

spect to w, h(w) = f(t(w))t′(w), where t′(w) = d
dw

Φ−1(w) = ϕ−1(Φ−1(w)), the adjusted angular

density evaluated at w is g(w) = f(Φ−1(w)) 1
ϕ(Φ−1(w))

, where Φ−1(w) is the inverse CDF of the

standard normal distribution.
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Appendix E

Test statistics table on the whole river network

Table E.1: Test statistics for all pairs of gauging stations i ̸= j for i, j = 1, . . . , 31 in the upper Danube

river basin.
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