
DISSERTATION

MITIGATING THE EFFECT OF COINCIDENTAL CORRECTNESS IN SPECTRUM

BASED FAULT LOCALIZATION

Submitted by

Aritra Bandyopadhyay

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2013

Doctoral Committee:

Advisor: Sudipto Ghosh

James M. Bieman
Robert B. France
Michelle Mills Strout
Daniel Turk

ABSTRACT

MITIGATING THE EFFECT OF COINCIDENTAL CORRECTNESS IN SPECTRUM

BASED FAULT LOCALIZATION

Coincidentally correct test cases are those that execute faulty program statements but do

not result in failures. The presence of such test cases in a test suite reduces the effectiveness

of spectrum-based fault localization approaches, such as Ochiai and Tarantula, which localize

faulty statements by calculating a suspiciousness score for every program statement from test

coverage information.

The goal of this dissertation is to improve the understanding of how the presence of

coincidentally correct test cases impacts the effectiveness of spectrum-based fault localization

approaches and to develop a family of approaches that improve fault localization effectiveness

by mitigating the effect of coincidentally correct test cases.

Each approach (1) classifies coincidentally correct test cases using test coverage infor-

mation, and (2) recalculates a suspiciousness score for every program statement using the

classification information. We developed classification approaches using test coverage met-

rics at different levels of granularity, such as statement, branch, and function. We developed

a new approach for ranking program statements using suspiciousness scores calculated based

on the heuristic that the statements covered by more failing and coincidentally correct test

cases are more suspicious. We extended the family of fault localization approaches to support

multiple faults.

We developed an approach to incorporate tester feedback to mitigate the effect of coin-

cidental correctness. The approach analyzes tester feedback to determine a lower bound for

the number of coincidentally correct test cases present in a test suite. The lower bound is

also used to determine when classification of coincidentally correct test cases can improve

fault localization effectiveness.

ii

We evaluated the fault localization effectiveness of our approaches and studied how the

effectiveness changes for varying characteristics of test suites, such as size, test suite type

(e.g., random, coverage adequate), and the percentage of passing test cases that are coin-

cidentally correct. Our key findings are summarized as follows. Mitigating the effect of

coincidentally correct test cases improved fault localization effectiveness. The extent of the

improvement increased with an increase in the percentage of passing test cases that were

coincidentally correct, although no improvement was observed when most passing test cases

in a test suite were coincidentally correct. When random test suites were used to localize

faults, a coarse-grained coverage spectrum, such as function coverage, resulted in better

classification than fine-grained coverage spectra, such as statement and branch coverage.

Utilizing tester feedback improved the precision of classification. Mitigating the effect of co-

incidental correctness in the presence of two faults improved the effectiveness for both faults

simultaneously for most faulty programs. Faulty statements that were harder to reach and

that affected fewer program statements resulted in fewer coincidentally correct test cases

and were more effectively localized.

iii

ACKNOWLEDGMENTS

I would not be writing this dissertation, if it was not for the untiring support of my Ph.D.

advisor, Dr. Sudipto Ghosh. From the conception of this work to its execution, refinement,

and presentation, he spent countless hours to help me make my pursuit of the Ph.D. a

successful and fulfilling journey. I particularly thank him for his efforts in meticulously

checking my drafts and providing feedback, not just to improve the drafts but to improve

my ability to think and articulate ideas in general.

As a graduate student, I went through periods of productivity and motivation, as well as

periods of withdrawal and frustration. My advisor supported me not only in my brightest

hours by inspiring me to achieve more and keeping me from falling into complacency, but

also in my darkest hours by being most patient and encouraging me to never stop trying.

At times he was the kindest mentor, while at others, he was the toughest reviewer of my

work. I did not always fully understand his intent, but in retrospect, I realized that I had

always received from him the most appropriate guidance, given the circumstances. Because

of his tutelage, I have grown into a better researcher, a better thinker, and a more self-reliant

person.

I thank my Ph.D. committee members Dr. James Bieman, Dr. Robert France, Dr. Michelle

Strout, and Dr. Dan Turk for carefully reading my dissertation and for providing valuable

feedback. Their evaluation of my work during a number of other prior talks, such as the

Ph.D. preliminary examination, has improved my understanding and helped me refine my

work as well. In particular, I received valuable guidance from Dr. Bieman for correctly

designing my empirical studies.

I thank the staff of the computer science department, especially Kim and Sharon, for

their help in completing paperwork and for explaining official procedures. They are some of

the nicest people I have ever met; their welcoming gestures have brightened my days.

Words will never be strong enough to express my gratitude for my parents, Mrs. Rita

Bandyopadhyay and Dr. Bimal Bandyopadhyay, who dedicated their lives for my happiness.

iv

Everything I achieved was possible because of their unconditional love and limitless sacrifice.

My dear sister, Romani, always stood by my side.

My friends were my sources of strength. Sajib and I perhaps share the strongest form of

friendship and camaraderie. We trust each other with our deepest fears, doubts, and confu-

sion, and always received from reach other the courage and strength to face them. Pramita

always treated my concerns as sincerely as her own. Meghan and I regularly discussed our

goals and progress. She untiringly encouraged me to persevere and never gave up believing

in me. I also thank Apurba, Anant, Claudia, David, Helen, John, Kunal, Nand, Neelam,

and Prathamesh for their incredible friendship.

I am grateful to the organization, Soka Gakkai International (SGI), which promotes the

practice of Nichiren Buddhism worldwide as a means for the empowerment of individuals.

The practice has brought about many positive changes in my life. It has helped me overcome

my negativities and taught me a life-changing lesson – to always seek strength and happiness

within, instead of blaming the environment. I also thank the members of SGI for supporting

me to embrace this practice and to understand its true essence.

v

DEDICATION

To my mother, Mrs. Rita Bandyopadhyay, my father, Dr. Bimal Bandyopadhyay, and my

sister, Mrs. Romani Bandyopadhyay.

vi

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

DEDICATION . vi

1 Introduction . 1

1.1 Context . 1

1.2 Problem . 2

1.3 Approach and Contributions . 4

2 Related Work . 8

2.1 Spectrum Based Fault Localization . 8

2.1.1 Abstractions Used in Fault Localization Approaches 9

2.1.2 Fault Localization Heuristics . 11

2.2 Effect of Test Case Generation, Selection, and Reduction Strategies 15

2.3 Coincidental Correctness . 18

2.4 Algorithmic Debugging . 20

2.5 Clustering Test Cases . 21

2.6 Localizing Multiple Faults . 22

3 Exploratory Approaches and Studies . 24

3.1 Fault Localization Effectiveness for Different Fault Classes 25

3.1.1 Analysis of Fault Properties . 25

3.1.1.1 Accessibility . 26

3.1.1.2 Original State Failure Condition 28

3.1.1.3 Impact . 30

3.1.2 Fault Classification . 31

3.1.2.1 Accessibility-based Classification 32

vii

3.1.2.2 Classification Based on Original State Failure Condition . . 32

3.1.2.3 Impact-based Classification 33

3.1.2.4 Factorial Design . 33

3.1.3 Evaluation . 34

3.1.3.1 Original State Failure Condition Based Classes 34

3.1.3.2 Accessibility and Impact Based Fault Classes 37

3.1.4 Threats to Validity . 40

3.1.5 Conclusions and Lessons Learned . 41

3.2 Proximity Based Weighting of Test Cases for Fault Localization 42

3.2.1 Approach . 42

3.2.2 Evaluation . 45

3.2.3 Threats to Validity . 47

3.2.4 Conclusions and Lessons Learned . 47

3.3 Mitigating the Effect of Coincidental Correctness Using Tester Feedback . . 48

3.3.1 Approach . 49

3.3.2 Estimating the Likelihood of Coincidental Correctness 52

3.3.3 Evaluation . 53

3.3.3.1 RQ1 Results . 55

3.3.3.2 RQ2 Results . 56

3.3.3.3 RQ3 Results . 59

3.3.4 Threats to Validity . 63

3.3.5 Conclusions and Lessons Learned . 64

4 Family of Fault Localization

Approaches . 65

4.1 Family of Approaches . 65

4.2 Classifying Test Cases . 66

4.2.1 Statement Coverage Based Clustering 68

4.2.2 Branch Coverage Based Clustering 69

viii

4.2.3 Function Coverage Based Clustering 69

4.3 Calculating Suspiciousness Scores . 71

4.4 Runtime Complexity Analysis . 73

4.5 Extending the Approaches by Checking the Presence of Coincidentally Correct

Test Cases . 75

4.6 Extending the Approaches for Multiple Faults 76

5 Implementation . 78

5.1 Using the Framework . 78

5.1.1 Use of the Framework by Testers to Localize Faults 79

5.1.2 Use of the Framework by Researchers to Perform Studies 82

5.2 Framework Architecture . 85

5.3 Extending the Framework . 91

5.3.1 Adding a New Classification Approach 92

5.3.2 Adding a New Approach for Calculating Suspiciousness

Scores . 92

5.3.3 Adding a New Coverage Type . 92

5.3.4 Adding a New Programming Language 93

6 Evaluation . 94

6.1 Evaluation of approaches for classification and calculation of suspiciousness

scores . 94

6.1.1 Benchmarks and Test Suites . 96

6.1.2 RQ1: Recall and Precision of the Classification Approaches 97

6.1.3 RQ2: Fault Localization Effectiveness in the Presence of Coinciden-

tally Correct Test Cases . 100

6.1.4 RQ3: Fault Localization Effectiveness in the Absence of Coincidentally

Correct Test Cases . 103

6.1.5 RQ4: Fault Localization Effectiveness with Tester Feedback Based Check105

ix

6.2 Evaluation Addressing Confounding Variables 106

6.2.1 RQ5: Effect of Percentage of Coincidentally Correct Test Cases . . . 107

6.2.2 RQ6: Effect of Test Suite Type . 115

6.2.3 RQ7: Effect of the Size of Test Suites 121

6.3 Evaluation in the Presence of Two Faults . 122

6.4 Threats to Validity . 129

7 Conclusions . 134

8 Future Work . 137

8.1 Short Term Research . 137

8.1.1 Improving the Classification Approaches 137

8.1.2 Improving the Approaches for Calculating Suspiciousness Scores . . . 138

8.1.3 Localizing Multiple Faults . 138

8.1.4 Further Studies . 139

8.2 Long Term Research . 139

8.2.1 Localizing faults in Large Scale Distributed Systems 140

8.2.2 Automatic Program Repair Based on Coincidental Correctness 140

References . 141

x

Chapter 1

Introduction

1.1 Context

Manual program debugging involves searching for faulty statements by inspecting the

execution states of the program at different points. Pan and Spafford [38] described the tasks

developers repeatedly perform while debugging. Developers first determine the parts of the

program involved in the failure, such as execution paths. They use their knowledge of the

program to make a hypothesis about potentially faulty statements. They set breakpoints

at the potentially faulty statements and suspend the program execution for verifying the

program state. These tasks are time consuming and can be expedited by using automated

support for narrowing down the search domain of faulty statements. Fault localization refers

to the task of automatically identifying potentially faulty program statements.

A class of automated fault localization approaches, referred to as spectrum-based fault

localization approaches [2, 9, 21, 29, 41] analyze the spectra of passing and failing test cases

to produce a report of possible fault locations in a faulty program. The spectrum of a test

case contains information associated with the execution of the test case, such as the set of

statements or branches covered by the test case. Some approaches generate a suspiciousness

score for every program statement based on the heuristic that statements executed more often

by failing test cases than passing test cases are highly suspicious. Two such approaches are

Ochiai [2] and Tarantula [29]. The Ochiai suspiciousness score of a statement, s, is calculated

using Equation 1.1. The terms, passed(s), failed(s), and totalFailed, denote the number

of passing test cases that execute s, the number of failing test cases that execute s, and the

total number of failing test cases, respectively.

Ochiai(s) =
failed(s)

√

totalFailed × (passed(s) + failed(s))
. (1.1)

1

The Tarantula suspiciousness score of a statement, s, is calculated using Equation 1.2.

The term, totalPassed, denotes the total number of passing test cases.

Tarantula(s) =
failed(s)

totalFailed

failed(s)
totalFailed

+ passed(s)
totalPassed

(1.2)

The Ochiai and Tarantula suspiciousness scores can also be calculated for other types

of program elements, such as functions, branches, and def-use pairs [43], in terms of the

numbers of passing and failing test cases that cover the program elements.

To localize the faulty statement, all the program statements are ranked in decreasing

order of their suspiciousness scores. A tester inspects each statement in the ranked order

and determines whether the statement is faulty or not. The tester may need to perform

additional tasks, such as setting breakpoints and analyzing the execution states. The tester

repeats the process until the faulty statement is identified. When the rank of the actual faulty

statement is high, the effort needed to locate it is less. One fault localization approach is

considered to be more effective than another if the former ranks the faulty statement higher

than the latter.

1.2 Problem

The presence of coincidentally correct test cases degrades the effectiveness of spectrum-

based fault localization approaches, such as Ochiai and Tarantula. A coincidentally correct

test case is defined to be one that passes in spite of executing the faulty statement. In order

to cause a failure, a test case must execute the faulty statement, result in a local failure

state, and propagate the local failure state to the output [42]. A coincidentally correct

test case executes the faulty statement but either does not result in a local failure state

or results in a local failure state that does not propagate to the output. The Ochiai and

Tarantula approaches assign a higher suspiciousness score to a statement if the statement is

executed by fewer passing test cases and more failing test cases. Coincidentally correct test

cases add to the number of passing test cases that execute the faulty statement and lower

the suspiciousness score of the faulty statement. Wang et al. [48] reported that when the

2

percentage of coincidentally correct test cases increased from 0% to 60%, the percentage of

faults effectively localized in the space [1] program by using the Tarantula approach decreased

from 90% to 25%. In this study, a fault was considered to be effectively localized if the faulty

statement was in the top 5% of the list of statements ranked in decreasing order of their

suspiciousness scores.

There are two challenges in mitigating the effect of coincidentally correct test cases in

spectrum-based fault localization. The first challenge is to classify every passing test case

as coincidentally correct or not coincidentally correct. Since the fault location is not known,

the classification must be based on other information, such as the spectrum of the test cases.

For spectrum-based classification, the research challenge is to identify what characteristics

of a spectrum indicate coincidental correctness.

The second challenge is to effectively use the result of the classification in the calculation

of the suspiciousness scores of statements. Not all approaches for using the classification

results may be effective. For example, one can remove the test cases classified as coinci-

dentally correct and calculate the suspiciousness scores using the remaining test cases [37].

However, removal of test cases causes loss of information by reducing the coverage of the test

suite used for fault localization. For example, suppose that every coincidentally correct test

case is correctly classified and removed. As a result, for the faulty statement and any other

non-faulty statement that is executed by all failing test cases and only coincidentally correct

test cases, the Ochiai and Tarantula suspiciousness scores become 1. For these statements,

in Equations 1.1 and 1.2, failed(s) equals totalFailed and passed(s) equals zero after the

classified test cases are removed. Thus, many non-faulty statements share the same suspi-

ciousness score as the faulty statement, thereby reducing the rank of the faulty statement

and the effectiveness of the fault localization approach.

Masri et al. [37] proposed an approach to mitigate the effect of coincidental correctness.

The approach uses test coverage at different levels of granularity, such as as basic block cover-

age, branch coverage, and def-use coverage, to classify coincidentally correct test cases using

3

the k-means clustering approach. The classified test cases are removed and suspiciousness

scores are recalculated using the remaining test cases.

Masri et al.’s approach leaves new opportunities for improvement and poses new research

challenges. Although the approach used three types of coverage spectra for classification,

further investigation is needed to understand the differences in the recall and precision of

classification using coverage spectra at different levels of granularity. The approach is used to

perform classification even when classification cannot improve fault localization effectiveness,

such as when there are few coincidentally correct test cases or none. The approach removes

test cases, and as described previously, the removal of test cases can lead to reduced fault

localization effectiveness. It is worthwhile to investigate whether the classified test cases,

instead of being discarded, can be used to localize faulty statements more effectively. Masri

et al.’s approach assumes a single fault, but for most real world programs, coincidental

correctness needs to be addressed for multiple faults.

Additionally, any approach that mitigates the effect of coincidental correctness needs

to be evaluated by varying the factors that have been shown to affect the effectiveness of

spectrum-based fault localization approaches. For example, prior studies [7] showed that

the type of test suites used affects how effectively a fault is localized. Thus, approaches for

addressing coincidentally correct test cases need to be evaluated for commonly used types of

test suites, such as random and coverage adequate test suites. Other characteristics of test

suites, such as size and percentage of passing test cases that are coincidentally correct, can

affect the effectiveness of the approaches. Therefore, the effect of these characteristics needs

to be studied as well.

1.3 Approach and Contributions

We present a family of fault localization approaches to mitigate the effect of coincidentally

correct test cases in spectrum-based fault localization. Each approach has two components:

(1) an approach for classifying every passing test case into two classes, coincidentally correct

4

and not coincidentally correct, and (2) an approach for recalculating suspiciousness scores

for statements using the test cases and the information obtained from the classification.

Our classification approaches are based on the heuristic that the passing test cases that

cover similar program elements as the failing test cases are likely to be coincidentally cor-

rect. We expect the heuristic to hold because both the coincidentally correct test cases

and the failing test cases need to execute the program elements on the path to the faulty

statement. As a result, both the types of test cases are likely to cover many similar program

elements. Additionally, in our exploratory studies described in Chapter 3, we also empiri-

cally observed that most coincidentally correct test cases covered similar program elements

as the failing test cases. We use coverage spectra using program elements at three different

levels of granularity: statement, branch, and function. Each level offers unique advantages.

A fine-grained coverage spectrum can improve classification by magnifying the important

differences between a passing test case and a coincidentally correct test case. A coarse-

grained coverage spectrum can result in an accurate classification by abstracting away the

unimportant differences between a passing and a coincidentally correct test case.

The classification approaches use k-means clustering to group the passing test cases into

two clusters. The cluster of test cases that are more similar to the failing test cases is

identified as the cluster of coincidentally correct test cases. We use two similarity measures:

Euclidean distance and average suspiciousness score of covered program elements. Our goal

is to measure the extent to which each passing test case covers similar program elements

as the failing test cases. Euclidean distance was used by Renieris et al. [41] to measure the

similarity of covered program elements between a passing and a failing test case. The average

suspiciousness score of the program elements covered by a passing test case is high if the

test case covers program elements that have high suspiciousness scores. Program elements

with high suspiciousness scores are also covered by the failing test cases. Thus, average

suspiciousness score can be used as a measure of similarity of covered elements between a

passing and a failing test case. Masri et al. [37] also used average suspiciousness score for

classifying coincidentally correct test cases.

5

We developed an approach to recalculate suspiciousness scores based on the Jaccard

similarity metric [24]. The approach assumes the presence of a single fault and uses the

heuristic that among the statements that are executed by all failing test cases, a statement

is more suspicious if it is executed by more coincidentally correct test cases and fewer passing

test cases that are not coincidentally correct. This heuristic is based on the observation that

the actual faulty statement is executed by all the failing test cases as well as by every

coincidentally correct test case, under the single fault assumption.

In some situations, it is not required to address coincidentally correct test cases because

the faulty statement obtains the highest suspiciousness score even when coincidental cor-

rectness is not addressed. This happens when the test suite either does not contain any

coincidentally correct test case or contains too few coincidentally correct test cases to reduce

the suspiciousness score of the faulty statement below that of other non-faulty statements.

Forcing classification of test cases in such situations may reduce the fault localization ef-

fectiveness. We present a method to determine whether or not there is an opportunity to

improve effectiveness by mitigating the effect of coincidentally correct test cases and apply

our approach only if such an opportunity exists.

We extend our family of approaches to support the localization of multiple faults by

modifying (1) our Jaccard similarity based approach for calculating suspiciousness scores,

and (2) our method for determining whether or not there is an opportunity for improving

fault localization effectiveness by mitigating the effect of coincidentally correct test cases.

These modifications are required because in the presence of multiple faults, a faulty statement

may not be executed by all failing test cases.

We implemented a framework of fault localization approaches for mitigating the effect of

coincidental correctness. The framework provides a concrete implementation of our family of

fault localization approaches for localizing faults in C programs, and is also easily extensible

for researchers that need to support: (1) new approaches for classifying test cases, (2) new

approaches for calculating suspiciousness scores, (3) new types of coverage spectra, and

(4) other programming languages.

6

We performed a set of studies to evaluate our family of fault localization approaches. We

studied how the recall and precision of the classification approach varied with the choice of the

level of granularity of the coverage spectrum. We evaluated the fault localization effectiveness

of our approach for calculating suspiciousness scores by assuming perfect classification and

also in combination with the classification approaches. We studied how the effectiveness

of our family of approaches varied with different characteristics of test suites, such as size,

test suite type (e.g., random, statement adequate, and branch adequate), and percentage of

passing test cases that are coincidentally correct.

7

Chapter 2

Related Work

In this chapter, we describe existing spectrum-based fault localization approaches. We

summarize the approaches that mitigate the effect of coincidental correctness in spectrum-

based fault localization. Because mitigating the effect requires classifying and selecting test

cases for fault localization, we also present existing approaches that investigate the effect

of different test selection, generation, and reduction strategies on the effectiveness of fault

localization. Because we use tester feedback, we describe existing algorithmic debugging

approaches that also utilize tester feedback to guide the search for the faulty statement. We

survey applications of clustering approaches to classify test cases. We also discuss existing

research on localizing multiple faults.

2.1 Spectrum Based Fault Localization

Spectrum-based fault localization approaches collect information about the program’s

execution with passing and failing test cases, and analyze the information to produce a report

of possible fault locations. Two attributes characterize the approaches and determine their

effectiveness: (1) abstractions of program executions, and (2) heuristics about fault location.

An abstraction of a program execution contains information about the execution, such as

statement coverage, basic block coverage, and dynamic slices. Based on the abstraction, a

heuristic defines rules for identifying potentially faulty program elements. Each approach

uses a heuristic to calculate a suspiciousness score for every program element (e.g., statement,

branch, or predicate), or identifies a set of suspicious program elements.

8

2.1.1 Abstractions Used in Fault Localization Approaches

Statement coverage spectrum, branch coverage spectrum, and def-use pair

coverage spectrum: The statement coverage spectrum [29] of a test case is the set of

statements executed at least once by the test case. The branch coverage spectrum and the

def-use pair coverage spectrum [43] record the branches and def-use pairs covered by a test

case at least once.

Binary coverage spectra and permutation spectrum: The binary coverage spec-

trum [41] of a test case is the set of basic blocks executed at least once by the test case. The

permutation spectrum [41] of a test case is the sequence of basic blocks executed by the test

case, sorted in the order of their execution counts.

Predicate profile: The predicate profile [34] of a test case records what predicates hold

true during the execution of the test case. The predicates are specified at different locations

in a program, such as branches, function calls, and assignment statements. The predicates

are checked by instrumenting the corresponding program locations. To achieve scalability,

each predicate is randomly sampled during a test execution by executing the corresponding

instrumentation site with some probability.

Path Profile: The path profile [15] of a test case records which intra-procedural, acyclic

path segments are observed or executed. A path is said to be observed by a test case when

the test case visits the start node of the path. An observed path may or may not be executed.

A path is said to be executed by a test case when the test case executes the whole path.

Program slice: Some approaches [5, 21] use dynamic program slices as abstractions. A

program slice with respect to a point of interest consists of those parts of the program that

either affect or are affected by the values computed at that point [47]. The point of interest

is called the slicing criterion and is described by a pair (program point, set of variables). For

example, a program point may be a statement and the corresponding set of variables is any

subset of the set of all variables defined or used at the statement. A backward slice with

respect to a criterion contains the program parts that affect the variables in the criterion. A

forward slice contains the parts affected by those variables.

9

A program slice can be static or dynamic. The former uses only static information about

the program and does not make any assumption about the program input. The latter is

defined in the context of a program execution with a fixed input. A static slicing criterion

consists of a static statement and a set of variables defined or used at the statement. A static

slice with respect to the criterion is computed by tracing the transitive dependencies from

the point specified by the criterion. A dynamic slicing criterion specifies a program input,

occurrence of a statement in the execution and a set of variables defined or used by the

statement. Unlike static slicing, dynamic slicing only traces those transitive dependencies

that occur in a specific execution with a test input.

Program slicing may use one or both types of dependencies: data and control. Data

slices consider only data dependencies, control slices consider only control dependencies, and

full slices consider both types of dependencies. Horwitz et al. [23] defined callstack sensitive

slices. A callstack sensitive slice of a failing test case reduces the size of dynamic backward

slice of the failing test case by leveraging the calls that are active in the stack at the point

when the program fails.

Call sequence sets: A call sequence set [16] of an object in an execution of a test case

is the set of sequences of method calls invoked on, or received by, the object. A call sequence

set may contain only calls received or calls invoked. The calls invoked by an object are used

to analyze how the object uses other objects. The calls received by an object are used to

analyze how the object is used by other objects. The call sequence sets of all the objects of

a class can be aggregated to produce a class-level call sequence set for the class.

The type of spectrum influences how effectively faults are localized and what types of

faults are localized more effectively than others. Santelices et al. [43] showed that using

def-use coverage spectrum results in more effective fault localization than branch coverage

spectrum, which results in more effective fault localization than using statement coverage

spectrum. As will be discussed in Section 2.1.2, fault localization heuristics determine what

program elements appear in the spectra of the failing test cases more often than that of

the passing test cases. The heuristics identify such elements to be suspicious. Thus, which

10

elements are identified as suspicious depends on how the spectra of the failing and the passing

test cases differ. Different types of spectra have different abilities to exhibit differences

between executions of test cases.

2.1.2 Fault Localization Heuristics

Tarantula: The heuristic used in the Tarantula approach states that the statements

executed primarily by the passing test cases are the least suspicious, and the ones executed

primarily by the failing test cases are the most suspicious. For every statement, s, two values

are calculated: color(s) and brightness(s). The terms, %passed(s) and %failed(s), denote

the percentage of passing test cases and the percentage of failing test cases that execute s,

respectively. Equations 2.1 and 2.2 show how color and brightness values are calculated.

color(s) = low color (red) +
%passed(s)

%passed(s) + %failed(s)
× color range (2.1)

brightness(s) = max(%passed(s), %failed(s)) (2.2)

Higher the color value of the statement, the more suspicious is the statement. Two

statements may share the same color value because the value of the ratio in the expression

for color(s) may be the same for them even though they have different values for %passed(s)

and %failed(s). In such situations, the brightness(s) component is used to resolve the tie

by comparing the absolute values of %passed(s) or %failed(s), whichever is larger.

Ochiai: The heuristic used in the Ochiai approach [2] is the same as that used in the

Tarantula approach. However, a different expression is used to calculate the suspiciousness

scores, which is shown in Equation 2.3. The terms, passed(s), failed(s), and totalFailed,

denote number of passing test cases that execute the statement, s, the number of failing test

cases that execute s, and the total number of failing test cases, respectively.

Ochiai(s) =
failed(s)

√

totalFailed × (passed(s) + failed(s))
(2.3)

11

The Ochiai approach has been used with several types of abstractions, such as statement

coverage spectrum [2], branch coverage spectrum [43], and def-use coverage spectrum [43].

Jaccard: The heuristic used by the Jaccard approach [2] is the same as that of the Ochiai

and Tarantula approaches, but is mathematically expressed using the Jaccard similarity

coefficient for binary variables, as shown in Equation 2.4. This equation is different from

our expression for calculating suspiciousness scores presented in Chapter 4, which is based

on the Jaccard metric of the similarity of two sets.

Jaccard(s) =
failed(s)

totalFailed + passed(s)
(2.4)

The Jaccard heuristic has been used with several abstractions, such as statement coverage

spectrum [2] and unserialized interleaving patterns of shared memory access [39].

.

Heuristic for call sequences: Dallmeier et al. [16] proposed the following heuristics

to assign suspiciousness scores to individual call sequences, assuming that fault is localized

using a single failing and multiple passing test runs:

1. If a sequence appears in a failing run, it is more suspicious if it is present in fewer

passing runs. The presence of the sequence in the failing run is the suspected cause of

the failure.

2. If a sequence is missing in a failing run, it is more suspicious if it is present in more

passing runs. The absence of the sequence in the failing run is the suspected cause of

the failure.

Equation 2.5 expresses the heuristics mathematically.

w(p) =

{

k(p)
n

if p ∈ P (r0)

1 − k(p)
n

if p 6∈ P (r0)
(2.5)

In the equation, w(p) denotes the weight of sequence, p. P (r0) denotes the sequence set

of a class obtained from the single failing run, r0. The term, k(p), denotes the number of

passing test cases where the sequence p appears in the sequence set of the class. The degree

12

of suspiciousness of a class is the sum of the weights of all the sequences in the sequence set

of the class.

Union and intersection model: The union and the intersection model [41] assume

the presence of a single failing test case and multiple passing test cases. The union model

uses the heuristic that the statements that are uniquely covered by the failing test cases are

suspicious. Thus, if f denotes the set of statements covered by the failing test case and
⋃

s

denotes the set of statements covered by the passing test cases, the statements in the set

f −
⋃

s are considered suspicious. The intersection model [41] uses the heuristic that the

statements “whose absence is discriminant” in the failing test case are suspicious. Thus the

statements in the set
⋂

s − f are considered suspicious, where
⋂

s denotes the statements

that are covered by every passing test case.

Nearest neighbor model: The nearest neighbor model [41] uses the heuristic that the

basic blocks that are covered by the failing test case but not covered by a passing test case

are suspicious. Additionally, using the passing test case that is most similar to the failing

test case results in the most accurate set of suspicious basic blocks. Similarity is measured

by different coverage spectra, such as the binary coverage spectrum and the permutation

spectrum.

Test case grouping and weighting: The heuristic used in this approach [18] is an

extension of the heuristic of the Tarantula, Ochiai, and Jaccard approaches. In the Tarantula,

Jaccard, and Ochiai equations, every additional passing or failing test case that executes a

statement increases the value of the term passed(s) or the term failed(s), respectively, by a

constant amount. In other words, the contribution of every passing or failing test case to the

calculation of the suspiciousness score of a statement is constant. However, this approach is

based on the heuristic that in the calculation of the suspiciousness score of a statement, the

contribution of every passing or failing test case is larger than that of the next passing or

failing test case that executes the statement. Test cases are distributed in groups and the

groups are assigned decreasing weights. The suspiciousness score of a statement is calculated

13

in terms of the sum of weights of the failing test cases and that of the passing test cases that

execute the statement.

χ2 metric: The heuristic used in this approach [52] is that the degree of suspiciousness

of a statement is proportional to the strength of the relationship between the two variables:

test outcome (pass/fail) and test coverage of a statement (covered/not covered). For each

statement, the approach constructs a 2x2 contingency table with these two variables and

measures the strength of the relationship of the variables by calculating the χ2 metric, which

is used as the suspiciousness score of the statement.

Dicing: Agrawal et al. [5] proposed the heuristic that the statements contained in a dice

are suspicious. They defined a dice as the set difference of the dynamic backward slice of a

passing test execution from that of a failing test execution. Pan et al. [38] proposed a family

of heuristics, including the intersection and the union model, based on backward dynamic

slices of failed and passed test executions.

Failure inducing chops: Gupta et al. [21] used the heuristic that the statements

contained in a failure inducing chop are suspicious. Given a failing test case, a failure

inducing chop is constructed as the intersection of the forward dynamic slice of minimum

failure inducing input and the backward dynamic slice of the failed output.

Statistical bug isolation : Liblit et al. [33, 34] defined a heuristic to estimate the

suspiciousness score of every predicate P . The suspiciounsess score estimates “How much

does P being true increase the probability of failure over simply reaching the line where

P is sampled”. The probability of failure when P is true is denoted by Failure(P). The

probability of failure when P is just sampled is denoted by Context(P). The suspiciousness

score, denoted by Increase(P), is defined by the expression Failure(P) − Context(P).

Failure(P) is measured by the expression F (P)
S(P)+F (P)

, where F (P) and S(P) respectively

denote the number of failing test cases where P was observed to be true, and the number of

passing test cases where P was observed to be true. Context(P) is measured by the expres-

sion F (P observed)
S(P observed)+F (P observed)

, where F (P observed) and S(P observed) denote the number of

14

failing test cases where P was sampled, and the number of successful test cases where P was

sampled, respectively.

Tables 2.1 and 2.2 summarize the fault localization approaches along with their abstrac-

tions and heuristics.

2.2 Effect of Test Case Generation, Selection, and Re-

duction Strategies

Artzi et al. [7] compared the fault localization effectiveness resulting from test suites

generated using different strategies. They used different variants of concolic testing [44] to

generate test cases that are similar. They used two types of similarities: path constraint

based similarity and input similarity. The path constraint based similarity of two test runs

is measured by the number of conditional statements in those runs that evaluate to the

same value. The input similarity between two runs is measured by the number of inputs

that are identical in those runs. The authors performed an empirical study to show that

path-constraint-similar test cases result in higher fault localization effectiveness.

Baudry et al. [13] proposed an approach to optimize a test suite for more effective fault

localization. They state that the more statements a test suite is able to distinguish, the

higher is the effectiveness of fault localization. Two statements are distinguished by a test

suite if the statements are executed by different subsets of the test suite. Their approach to

improve a test suite uses the bacteriologic algorithm, which mutates the test cases in the test

suite. The mutation operator applied to a test case randomly replaces one command in the

test case by another command. After the mutations are performed, the algorithm calculates

the fitness value of the modified test suite. The fitness value is proportional to the degree to

which the test suite is able to distinguish between the statements.

Yu et al. [54] investigated the impact of various test suite reduction strategies on the

effectiveness of fault localization. They used two types of test suite reduction strategies: (1)

statement-based reduction, which selects from a test suite a reduced test suite that covers the

15

Table 2.1: Fault Localization Approaches – 1
Approach Abstraction Heuristic
Dicing [5] Dynamic slice Statements that are in the dynamic slice

of the failing test cases but are not in the
dynamic slice of a passing test case are sus-
picious.

Tarantula [29] Statement coverage
spectrum

Statements executed by more failing test
cases and fewer passing test cases are more
suspicious. The color and brightness val-
ues in Equation 2.1 and 2.2 are used as
measures of how frequently a statement is
executed by failing test cases compared to
by passing test cases.

Nearest Neighbor
Model [41]

Binary coverage
spectrum and per-
mutation spectrum

Basic blocks covered by the failing test case
but not covered by the passing test case
that is closest to the failing test case are
suspicious.

Statistical bug isola-
tion [33, 34]

Predicate profile Predicates that are evaluated to be true
primarily in failing test cases are suspi-
cious. The expression Increase(p) is used
to measure how frequently failing test cases
evaluate a predicate p to be true.

Failure inducing
chops [21]

Dynamic slice Statements that are in the forward dy-
namic slice of a failure inducing input in
a failing test case but are not in the back-
ward dynamic slice of the output of the
failing test case are suspicious.

Dallmeier et al.[16] Method sequence
sets

A method sequence that is covered by a
failing test case and few passing test case
is suspicious. A method sequence that is
not covered by a failing test case and is
covered by many passing test case is sus-
picious. Equation 2.5 is used to evaluate
the suspiciousness of a method sequence.
A class that has more suspicious method
sequences is suspicious.

Ochiai [2] Statement coverage
spectrum

Same as Tarantula but suspiciousness
scores are calculated using Equation 2.3.

Jaccard [2] Statement coverage
spectrum

Same as Tarantula but suspiciousness
scores are calculated using Equation 2.4.

Gupta et al. [56] Data, control, full,
and relevant slices

Statements in the data/control/full slice of
a failing test case are suspicious.

16

Table 2.2: Fault Localization Approaches – 2
Approach Abstraction Heuristic
Crosstab-based
approach [52]

Statement coverage
spectrum

Statements that have a higher value of χ2

metric of the relationship of coverage by test
cases and test outcome are more suspicious.

Fault localization
with multiple cover-
age types [43]

Statement coverage
spectrum, branch
coverage spectrum,
and def-use pair
coverage spectrum

Statements/branches/def-use pairs that are
covered primarily by failing test cases are
suspicious. The Ochiai equation is used
to measure the suspiciousness scores of
statement/branch/def-use pairs.

Callstack sensitive
slicing [23]

Callstack sensitive
slice

Statements contained in the callstack sensi-
tive slice are suspicious.

Test case grouping
and weighting [18]

Statement coverage
spectrum

Statements executed by more failing test
cases and fewer passing test cases are more
suspicious. Additionally, each passing test
case’s contribution is more than that of the
next passing test case.

Falcon [39] Unserialized in-
terleaving pattern
of shared memory
access

Interleaving patterns that are covered pri-
marily by failing test cases are suspicious.
The Jaccard equation is used to measure
how frequently an interleaving pattern is
covered by failing test cases compared to
passing test cases.

Holmes [15] Path profile Path segments that are primarily covered by
failing test cases are suspicious. The expres-
sion Increase(p) is used to measure how fre-
quently failing test cases cover a path seg-
ment.

same statements as the original suite, and (2) vector-based reduction, where the reduced test

suite covers the same set of statement vectors as the original test suite. A statement vector

is the set of statements executed by one test case. They applied the reduction strategy

one by one on the passing test cases, failing test cases, and the entire test suite. Their

results showed that test suite reduction degrades the effectiveness of fault localization in

general. Statement-based reduction significantly affects the effectiveness, while vector-based

reduction has negligible effect.

Jeffrey and Gupta [27] used multiple coverage criteria to reduce a test suite. From a test

suite, they first select a test case t1 that satisfies a requirement of a coverage criterion C1.

17

Among the test cases that become redundant with respect to C1 due to the selection of t1,

they retain a test case t2 that satisfies the requirement of a different criterion C2. The result

of their evaluation shows that the selective retention strategy leads to a smaller reduction of

fault localization effectiveness compared to the strategies that use a single coverage criterion.

2.3 Coincidental Correctness

Abreu et al. [2] studied the effect of coincidentally correct test cases on the effectiveness

of fault localization. They defined the observation quality of a test suite as the percent-

age
#failing tests

#test cases that execute the fault
× 100. They showed that the effectiveness of fault

localization increases with an increase in observation quality.

Wang et al. [48] used context patterns to mitigate the effect of coincidental correctness. A

context pattern corresponding to a type of fault describes the data and control flow patterns

that result in the propagation of a local failure state to the output. The authors specify

context patterns for common fault types. The approach matches the execution of each test

case with all the context patterns. The coverage of a test case is expressed by using a list

of pairs (statement, matched context pattern). The approach uses Tarantula to calculate

the suspiciousness score of each (statement, matched context pattern) pair. The approach

requires that the types of faults be known in advance, which may not be true in practice. It

also requires specification of the context patterns of the faults types, which is an additional

burden on the tester. The approach is computationally expensive because it matches the

context pattern with every test case for every statement.

Masri et al. [37] proposed three classes of approaches for mitigating the effect of coin-

cidentally correct test cases in spectrum-based fault localization. We discuss two of these

classes that were demonstrated by the authors to be more effective than the third. The two

classes are: (1) approaches based on calculating the likelihood of coincidental correctness,

and (2) approaches based on k-means clustering. Each class contains three approaches, each

of which uses a different type of program element (e.g., statements, branches, and def-use

pairs).

18

Approaches based on calculating the likelihood of coincidental correctness use Equa-

tion 2.6 to calculate a value for every passing test case, p, representing the likelihood that p

is coincidentally correct.

CCMasri(p) =

∑

s∈Sp
Tarantula(s)

|Sp|
+

|Sp|
|S| × 100 (2.6)

Tarantula(s) denotes the suspiciousness score of the program element, s. Sp is the set

of program elements that p executes and S is the set of all program elements. Both Sp and

S include only those program elements that have a Tarantula suspiciousness score between

0.5 and 1.

The CCMasri measure has the following two properties:

� If a passing test case, p, primarily executes statements with high suspiciousness scores,

the first term is high, and the measure has a high value.

� If p achieves a higher statement coverage, the measure has a higher value.

A percentage of the passing test cases having the highest value of the CCMasri measure is

classified as coincidentally correct. Masri et al. empirically showed that selecting 60% of the

passing test cases with the highest CCMasri values results in the most accurate classification.

The classified test cases are removed and the suspiciousness scores of the program statements

are recalculated using the remaining test cases.

The k-means clustering based approaches first identify program elements that are “likely

to be correlated with coincidentally correct tests”. Masri et al. stated that such an element

“occurs in all failing runs and in a non-zero but not excessively large percentage of passing

runs”. For identifying these program elements, Masri et al. experimented with different

threshold values for the percentage of passing test cases and concluded that the threshold

value of 70% yields best results. The approaches use the heuristic that coincidentally correct

test cases execute more such elements compared to other passing test cases.

Each test case is associated with a vector of 0s and 1s. Each element in the vector

corresponds to a program element previously identified. If a test case covers the program

element, then the corresponding element in the vector of the test case is 1, and 0 otherwise.

19

Once the test vectors are formed, k-means clustering of the vectors is performed using the

Euclidean distance between the vectors to form two clusters of the passing test cases. The

initial centroids of the clusters are chosen to be the vectors that are separated by the maxi-

mum distance among all pairs of vectors. The cluster containing the coincidentally correct

test cases is determined as follows. First, the Tarantula suspiciousness score, Tarantula(s)

for each program element, s, is calculated. Then, for each cluster, the average Tarantula

score of the elements covered by the test cases in the cluster is calculated. The cluster with

the higher average is selected to be the one containing coincidentally correct test cases.

As a result of the above steps, the classification approaches are expected to classify

passing test cases that are similar to all the failing test cases as coincidentally correct.

Passing test cases that are dissimilar to the failing test cases are expected to be classified as

not coincidentally correct.

The classified test cases are removed and the suspiciousness scores of the program state-

ments are recalculated using the remaining test cases.

2.4 Algorithmic Debugging

Algorithmic debugging approaches [14, 45, 46] use tester feedback to reduce the search

space of a faulty program element. These approaches are applied to functional programs.

Given a program execution, these approaches construct an execution tree. Each node in an

execution tree represents a computation in the corresponding execution. A node’s children

represent the sub-computations of the node’s computation.

A tester using an algorithmic debugging approach traverses the execution tree and an-

swers a question about the correctness of each node. A question is typically of the form

whether or not the run-time values of variables represent a correct program state. Based

on the answer, a set of nodes is pruned from the tree. For example, if a tester reports that

a computation is correct, all nodes in the sub-tree rooted at the computation’s node are

pruned. Advanced techniques use improved searching and pruning strategies that exploit

the structure of the execution tree, such as balancing.

20

The main disadvantages of algorithmic debugging are: (1) the execution tree requires

a large memory space, (2) the questions presented to the tester by the approach can be

complex and large in number, and (3) faults can only be localized at the level of functions.

2.5 Clustering Test Cases

Clustering techniques have been applied to classify test cases for different goals. Leon

et al. [32] applied clustering to select test cases from a large test suite such that the fault

detection ability of the selected suite is as close to the original test suite as possible. They

used a representation of each test case based on the execution profile of the test case and

clustered using the Euclidean distance of the representations. They empirically demonstrated

that the clustering based technique results in at least as effective test suites as the selection

techniques that aim to maximize the coverage.

Yoo et al. [53] proposed an approach that improves human judgment based test priori-

tization approaches by clustering test cases. Test prioritization approaches that use human

judgment require a domain expert to perform pair-wise comparison of all the test cases in

a test suite. However, for large test suites, pair-wise comparison of all the test cases by

a domain expert can be expensive and even infeasible. Yoo et al.’s approach reduces the

number of comparisons performed by a domain expert without reducing the effectiveness of

the prioritized test suites. Test cases are grouped into multiple clusters using the hierarchical

clustering approach. The domain expert performs a pair-wise comparison of the test cases

inside each cluster. From each cluster, a test case is chosen to represent the cluster. The

domain expert performs a pair-wise comparison of the representative test cases to obtain a

prioritized test suite.

Jones et al. [28] and Liu et al. [35] proposed approaches to classify failing test cases such

that the failing test cases resulting from the same fault belong to the same class. For each

failing test case, their approaches calculate the ranking of statements or predicates according

to suspiciousness scores computed by a fault localization approach using that failing test case.

Failing test cases that result in similar rankings are considered to be resulting from the same

21

fault. Failing test cases are classified by the agglomerative clustering [26] approach using

the following steps. Initially, for each failing test case, there is one cluster containing only

that failing test case. At each step, a pair of clusters are selected that are most similar to

each other and are merged together. The merging is repeated until there are two clusters

that have a similarity above a certain threshold.

2.6 Localizing Multiple Faults

Researchers have studied the effectiveness of fault localization approaches for programs

containing multiple faults. DiGiuseppe et al. [17] evaluated the effect of the number of

faults on the effectiveness of the Ochiai approach. They reported that the effectiveness

is not significantly affected by the number of faults. They also observed that for certain

benchmarks, effectiveness improved with an increase in the number of faults.

Spectrum-based fault localization approaches, such as Ochiai and Tarantula, use the

heuristic that the statements that are executed by more failing test cases are more suspicious.

However, this heuristic cannot be directly applied to localize multiple faults because a fault

may only be executed by a subset of the failing test cases. These failing test cases are

typically the ones that fail because of the fault.

Researchers [29, 34] have addressed the above problem by assuming that in the presence

of multiple faults, only a single fault is localized at a time. Each time a fault is localized,

the fault is fixed and fault localization is performed again to localize the remaining faults.

This process is repeated until no failure is observed.

The iterative process of localizing individual faults, removing faults, and performing fault

localization may require many test executions, resulting in poor scalability. Jones et al. [28]

proposed an approach that first identifies specialized test suites for localizing each fault and

then localizes the faults in parallel using the specialized test suites. Ideally, a specialized test

suite for a fault should contain the passing test cases and only those test cases that failed

due to the fault. However, because the faults are not known, test cases that failed due to the

22

same fault are identified by grouping similar failing test cases together. An agglomerative

clustering [26] technique is used to derive the grouping of the failing test cases.

Abreu et al. [3] proposed an approach that identifies and ranks groups of statements

instead of individual statements. Each group is a potential multiple fault candidate. The

approach first uses coverage information of test cases and applies model-based reasoning

to identify multiple fault candidates that are consistent with the test outcomes. The mul-

tiple fault candidates are ranked according to the extent each candidate explains the test

outcomes. The extent to which the multiple fault candidates explain the observations is

measured using Bayes’ theorem.

None of the above approaches mitigate the effect of coincidental correctness in the pres-

ence of multiple faults. We extend our family of fault localization approaches to mitigate

the effect of coincidental correctness in the presence of multiple faults.

23

Chapter 3

Exploratory Approaches and Studies

In this chapter, we present exploratory approaches and studies performed to build the

foundation of our family of fault localization approaches that are described in Chapter 4. We

begin by presenting in Section 3.1 a study of the effectiveness of the Tarantula approach for

different fault classes [10]. The fault classes are obtained from three properties that determine

how a fault results in a failure. This study not only corroborates that coincidentally correct

test cases degrade fault localization, but also provides a number of insights that we use later

to explain the effectiveness of our family of fault localization approaches in Chapter 4.

In Section 3.2, we present a proximity-based weighting approach [11] that quantifies the

importance of a passing test case for effective fault localization. For each passing test case,

a measure of the proximity of the passing test case from the failing test cases is used to

calculate a weight for the passing test case. The measure represents the extent to which a

passing test case covers program elements similar to the failing test cases. Such a notion of

proximity or similarity of two test cases is also used for test case classification, as described

in Chapter 1. The weights calculated for the test cases, instead of the numbers, are used to

calculate suspiciousness scores. Although this approach does not directly target coincidental

correctness, it led us to recognize the need for classifying coincidentally correct test cases.

In Section 3.3, we present our first fault localization approach that mitigates the effect

of coincidental correctness [12]. It measures for every passing test case the likelihood that

the test case is coincidentally correct based on our work on the proximity-based weighting

of test cases. The approach also uses tester feedback to estimate a lower bound for the

number of coincidentally correct test cases. The estimation of the lower bound improves

existing approaches [37] that mitigate the effect of coincidental correctness by ensuring that

one never classifies more coincidentally correct test cases than actually present. This ap-

24

proach improved our understanding of the appropriate use of tester feedback for addressing

coincidental correctness. Based on the insight gained, we improve the use of tester feedback

in our family of approaches presented in Chapter 4.

3.1 Fault Localization Effectiveness for Different Fault

Classes

We present a study of the fault localization effectiveness of the Tarantula approach for

different fault classes. Although fault localization effectiveness is known to depend on the

fault being localized, there is a lack of systematic evaluations that investigate the effect of

fault classes on the effectiveness of fault localization. To our knowledge, this is the first

study that treated fault class as an independent variable to evaluate the fault localization

effectiveness.

To perform such a study, classifying the faults in a manner that is relevant to fault

localization is required. We develop a classification scheme based on the following three

fault properties that affect how faults cause failures [42]: (1) accessibility, (2) original state

failure condition, and (3) impact. Accessibility of a fault addresses how hard it is for a test

to execute the fault. Original state failure condition is the condition that must be satisfied

in order to raise a local failure state upon the execution of the faulty statement. Impact

is concerned about the fraction of the program that is affected by the execution of the

faulty statement. For the original state failure condition, we use the classification of faults

by Richardson et al. [42]. We present our own fault classifications based on accessibility

and impact. We classify faults in the Siemens suite and then study the fault localization

effectiveness of Tarantula for the different classes.

3.1.1 Analysis of Fault Properties

We illustrate with examples how variations in the three properties can cause correspond-

ing variations in the effectiveness of the Tarantula approach.

25

3.1.1.1 Accessibility

Accessibility measures how hard it is for a test execution to access a faulty statement.

Harder to access faulty statements will be executed by fewer test cases. All failings test cases

must execute the faulty statement in order to cause failures. However, a harder to access

faulty statement will be executed by fewer passing test cases. Thus, faults that are harder

to access will result in a fewer coincidentally correct test cases. As a result, these faults will

have a lower value of %passed(s) and a higher suspiciousness score. We use the following

example to illustrate the effect of accessibility.

Table 3.1: Examples of Faults with Differing Accessibility
Original Program Faulty V ersion1 Faulty V ersion2

1 int a,b,c;

2 int r=0;

3 read(a,b,c);

4 if (a >= b){
5 r = a+b;

6 if (b > c){
7 r = r+10;

8 }
9 }
10 print(r);

1 int a,b,c;

2 int r=0;

3 read(a,b,c);

4 if (a >= b){
5 r = a-b;

6 if (b > c){
7 r = r+10;

8 }
9 }
10 print(r);

1 int a,b,c;

2 int r=0;

3 read(a,b,c);

4 if (a >= b){
5 r = a+b;

6 if (b > c){
7 r=r-10;

8 }
9 }
10 print(r);

Table 3.1 shows a program and its two faulty versions. The fault in each version is shown

in bold. The fault in V ersion1 is easier to execute than the one in V ersion2 because the

former is guarded by only one conditional statement, while the latter is guarded by two.

To illustrate the application of Tarantula on the two faulty versions, we consider 6 tuples

that provide input values for (a, b, c): t1 = (1, 2, 3), t2 = (2, 1, 3), t3 = (2, 0, 3),

t4 = (4, 3, 0), t5 = (4, 3, 1), and t6 = (4, 0, 1). Table 3.2 shows the suspiciousness

score for each statement in V ersion1 along with information about which test case executed

the statement (denoted by a
√

mark), and the result of each test case (P = Pass, F = Fail).

26

The statements are arranged in decreasing order of the suspiciousness score. Table 3.3 shows

the same information for V ersion2.

Table 3.2: Suspiciousness Scores of Statements in V ersion1

Statement t1 t2 t3 t4 t5 t6 susp
r=r+10

√ √
1

r=a-b
√ √ √ √ √

0.6
if(b>c)

√ √ √ √ √
0.6

int a,b,c
√ √ √ √ √ √

0.5
int r=0

√ √ √ √ √ √
0.5

read(a,b,c)
√ √ √ √ √ √

0.5
if(a>=b)

√ √ √ √ √ √
0.5

print(r)
√ √ √ √ √ √

0.5
Result P F P F F P

Table 3.3: Suspiciousness Scores of Statements in V ersion2

Statement t1 t2 t3 t4 t5 t6 susp
r=r-10

√ √
1

r=a+b
√ √ √ √ √

0.57
if(b>c)

√ √ √ √ √
0.57

int a,b,c
√ √ √ √ √ √

0.5
int r=0

√ √ √ √ √ √
0.5

read(a,b,c)
√ √ √ √ √ √

0.5
if(a>=b)

√ √ √ √ √ √
0.5

print(r)
√ √ √ √ √ √

0.5
Result P P P F F P

The suspiciousness score assigned to the faulty statement in V ersion1 is 0.6, while the

score of the faulty statement in V ersion2 is 1. Locating the fault in V ersion1 requires us

to examine 2 statements, while locating the fault in V ersion2 requires us to examine only

one statement. The orignial state failure condition for the fault in V ersion1 is is a+b 6=

a-b, which is true, assuming non-zero values for b. The original state failure condition

for the fault in V ersion2 is r+10 6= r-10, which is also true regardless of the value of r.

However, because the fault in V ersion1 is more easily accessible than that in V ersion2, the

former results in more coincidentally correct test cases, which causes the V ersion1 fault to

have a lower suspiciousness score than the V ersion2 fault. This results in a lower rank for

27

the V ersion1 fault because the relative suspiciousness of the remaining statements of the

program is same for both the versions.

In general, for any two faulty versions v1 and v2, if the fault in v1 is more easily accessible

than the one in v2, the probability that an arbitrary test case executes the fault in v1 is

greater than that for v2. Also, suppose that the faults in v1 and v2 have the same original

failure condition. Thus, the likelihood that a test case will pass after executing the fault in

v1 is same as that for v2. With these assumptions, for an arbitrary test suite, the fault in v1

is more likely to result in more coincidentally correct test cases than the fault in v2. As a

result, the suspiciousness score of the fault in v1 is likely to be lower than that of the fault

in v2. If the relative suspiciousness scores of the non-faulty statements remain the same in

both versions, the fault in v1 will rank lower than the fault in v2.

3.1.1.2 Original State Failure Condition

Richardson et al. [42] proposed the RELAY model of fault detection, which provides a

framework for analyzing how a fault causes a failure. In this model, the original failure

condition of a faulty statement is defined as the condition to be satisfied for an execution

of the faulty statement to result in a local failure. To cause a failure at the output, a test

input must satisfy the original state failure condition and propagate the local failure to the

output.

In the following example, we illustrate how the effectiveness of the Tarantula approach

can vary with the original state failure condition. Table 3.4 shows the original program from

Table 3.1, its faulty version V ersion1 and a new faulty version V ersion3. To illustrate the

application of the Tarantula approach on these two versions we again consider the same test

cases described in section 3.1.1.1. Table 3.5 shows which test case executes which statement,

the suspiciousness scores, and the results of the test cases in V ersion3. The statements are

arranged in decreasing order of the suspiciousness score.

The fault in V ersion3 is assigned a suspiciousness score of 1, while the fault in V ersion1

is assigned a suspiciousness score of 0.6. In V ersion3, we need to examine one statement

28

Table 3.4: Examples of Faults with Different Original State Failure Conditions
Original Program Faulty V ersion1 Faulty V ersion3

1 int a,b,c;

2 int r=0;

3 read(a,b,c);

4 if (a >= b){
5 r = a+b;

6 if (b > c){
7 r = r+10;

8 }
9 }
10 print(r);

1 int a,b,c;

2 int r=0;

3 read(a,b,c);

4 if (a >= b){
5 r = a-b;

6 if (b > c){
7 r = r+10;

8 }
9 }
10 print(r);

1 int a,b,c;

2 int r=0;

3 read(a,b,c);

4 if (a >= b){
5 r = 100;

6 if (b > c){
7 r = r+10;

8 }
9 }
10 print(r);

Table 3.5: Suspiciousness Scores of Statements in V ersion3

Statement t1 t2 t3 t4 t5 t6 susp

r=100
√ √ √ √ √

1

if(b>c)
√ √ √ √ √

1

r=r+10
√ √

1

int a,b,c
√ √ √ √ √ √

0.5

int r=0
√ √ √ √ √ √

0.5

read(a,b,c)
√ √ √ √ √ √

0.5

if(a>=b)
√ √ √ √ √ √

0.5

print(r)
√ √ √ √ √ √

0.5

Result P F F F F F

before finding the fault. The statement r = r+10 has the same suspiciousness as the fault

but has a lower brightness value. In V ersion2, one needs to examine two statements before

finding the fault.

The accessibility values for the faults in the two versions are the same but the original

state failure conditions for the faults are different. The original state failure condition of the

fault in V ersion1 is a + b 6= a − b, while the original state failure condition of the fault in

V ersion3 is a + b 6= 100. The input values for a, b, and c in the test cases are each below

10. With such input values, the original state failure condition of the fault in V ersion3 is

easier to satisfy than that of the fault in V ersion1. Thus, in V ersion3, whenever the fault

29

is executed, the program fails. Thus, the faulty statement never results in a coincidentally

correct test case and the faulty statement obtains a suspiciousness score of 1.

On the contrary, in V ersion1, the faulty statement is executed by two passing test cases,

that is, the faulty statement results in two coincidentally correct test cases. This reduces

the suspiciousness score of the faulty statement to 0.6. Because the relative suspiciousness

of the remaining statements are the same, the fault in V ersion3 ranks higher than that in

V ersion1.

3.1.1.3 Impact

Impact measures what fraction of the program statements is affected by the execution

of the faulty statement. Below, we illustrate how impact affects the effectiveness of the

Tarantula approach. We consider an original program and its two faulty versions as shown

in Table 3.6. The faulty statements are shown in bold.

Table 3.6: Examples of Faults with Different Impacts
Original Program Faulty V ersion1 Faulty V ersion2

1 int a,b,c;

2 int r;

3 read(a,b,c);

4 if (a >= b)

5 r = a + b;

6 if (b >= c)

7 r+=foo(b,c);

8 print(r);

1 int a,b,c;

2 int r;

3 read(a,b,c);

4 if (a <= b)

5 r = a + b;

6 if (b >= c)

7 r+=foo(b,c);

8 print(r);

1 int a,b,c;

2 int r;

3 read(a,b,c);

4 if (a >= b)

5 r=a + b;

6 if (b <= c)

7 r+=foo(b,c);

8 print(r);

The faulty statements in V ersion1 and V ersion2 have the same accessibility because

neither is nested within any conditional statement. The original state failure condition for

the fault in V ersion1 is a 6= b, and that for the fault in V ersion2 is b 6= c. Both the

conditions test the equality of two variables using values obtained from the user input before

the values are changed by the program. Since any two randomly selected values from the

domain of integer values are much more likely to be unequal than equal, both the original

state failure conditions are more likely to be satisfied than not for any input. However,

30

the faulty statements have different impacts. The value of the faulty condition in V ersion1

determines whether line 5 is executed or not. The value of the faulty condition in V ersion2

determines whether the function foo is called or not. The function foo may have many

statements in it. Thus, the evaluation of the faulty condition in V ersion2 controls the

execution of more statements than that for V ersion1.

The faulty statements in both V ersion1 and V ersion2 will obtain a suspiciousness score

of 0.5 with any arbitrary test suite. This is because any test case executes both the faulty

statements. In V ersion1, if failing test cases always evaluate the faulty condition to true,

line 5 always gets executed in the failing runs. Thus, line 5 obtains a higher suspiciousness

score than the faulty statement. In V ersion2, if the failing test cases always evaluate the

faulty condition to true, all the statements in foo get executed in the failing test cases, and

obtain a higher suspiciousness value than the faulty statement. This lowers the rank of the

faulty statement in V ersion2. However, if the failing test cases execute the faulty condition

in V ersion2 to false, the statements in foo do not execute in the failing runs and are ranked

lower than the faulty statement. This improves the rank of the faulty statement.

We state that if many statements are directly or indirectly control dependent on the

fault, the fault may have a lower or higher rank depending on how it affects the execution of

the control dependent statements. If the control dependent statements are executed in the

failing test cases, then they obtain higher suspiciousness scores than the faulty statement.

If failure involves non-execution of the control dependent statements, then the fault is likely

to obtain a higher rank.

3.1.2 Fault Classification

We describe the fault classes based on accessibility, original state failure condition, and

impact. We extend the original state failure based classification of faults by Richardson et

al. [42]. We develop measures of accessibility and impact and then present classification

schemes based on the measures.

31

3.1.2.1 Accessibility-based Classification

To measure accessibility, we state that if more conditional statements guard a faulty

statement, then the faulty statement is less accessible. The backward static slice (calculated

using only control dependencies) of the faulty statement contains all such guarding condi-

tional statements. Therefore, we measure accessibility by the size of the backward slice of

the faulty statement as a percentage of the program size. However, this measure does not

address the strength of the conditions in the conditional statements.

We apply the k-means clustering algorithm with k = 2, to divide the slice sizes into

two clusters. k-means is the most commonly used clustering algorithm when the number of

clusters, k, is known and the nature of the distribution of the underlying data is not known.

k-means clustering divides a set of data points into k clusters such that the sum of squares

of distances between the data points and the corresponding cluster centroids is minimal.

The faults in the cluster with the higher mean size of backward slice are called hard to

access faults. The faults in the cluster with the lower mean are called easy to access faults.

This classification is ordinal because there is an ordering relationship between the faults of

these two classes.

3.1.2.2 Classification Based on Original State Failure Condition

We use the fault classification proposed by Richardson et al. [42], which is based on the

original state failure condition. The classification contains six fault classes: (1) constant

reference faults, (2) variable reference faults, (3) variable definition faults, (4) conditional

operator faults, (5) relational operator faults, and (6) arithmetic operator faults.

This classification is nominal because the original state failure condition of one fault class

cannot be compared with that of another fault class. The original state failure conditions

for different classes are derived in different ways.

On inspecting the faulty versions in the Siemens benchmark suite, we found the follow-

ing additional fault classes: (7) missing/ added statement faults, (8) missing/added branch

faults, (9) missing/added conditional clause faults. The above fault classes need to be consid-

32

ered because they have characteristic ways of deriving their original state failure conditions.

This classification is nominal because the original state failure condition of one fault class

cannot be compared with that of another fault class.

3.1.2.3 Impact-based Classification

We measure the impact of a faulty statement by the size of its forward static slice (as

a percentage of the program size) using both data and control dependencies. The forward

static slice with respect to a variable at a statement is the set of statements that are affected

by the value of the variable at that statement through data and control-dependencies. The

static forward slice of a statement is the union of the forward slices of all the variables

appearing in the statement.

Based on the sizes of forward slices, we define an ordinal classification of the faults by

dividing the slice sizes into two clusters using the k-means clustering. The faults in the

cluster with the higher mean value of forward slice size are called high impact faults. The

faults in the cluster with the lower mean value are called low impact faults. This classification

is ordinal due to the ordering relation between the faults belonging to the two classes.

3.1.2.4 Factorial Design

The classifications based on accessibility and impact are both ordinal. We use a factorial

design by crossing the classes from the two classifications to obtain four treatments as shown

in Table 3.7.

Table 3.7: Factorial Design
Treatment Acronym
Hard to access and high impact HH
Hard to access and low impact HL
Easy to access and low impact LL
Easy to access and high impact LH

33

3.1.3 Evaluation

The goal of our evaluation was to investigate the effectiveness of the Tarantula approach

in localizing faults of different classes. Our independent variable was the fault class, de-

scribed in Section 3.1.2. Our dependent variable was fault localization effectiveness, which

is measured as follows. We measure the average number of statements a tester using the

fault localization approach needs to examine in the ranked list of statements before find-

ing the faulty statement. The statements to be examined include all the statements that

have a higher suspiciousness score than the faulty statement, and on average, half the state-

ments that share the same suspiciousness score as the faulty statement. The number of

statements examined is divided by the total number of executable program statements to

obtain the percentage of program statements examined. Higher is the percentage, lower is

the effectiveness.

We considered the nature of the test suite to be a confounding variable in our study.

Previous work (e.g., [7]) on selection of test suites demonstrated that the choice of test suites

affects the effectiveness. To reduce the effect of the confounding variable, we performed our

study with two types of test suites: (1) branch coverage based and (2) random.

We used the Siemens suite for this study. The benchmark suite contains 7 benchmark pro-

grams print tokens, print tokens2, replace, schedule, schedule2, and tot info.

The sizes of the programs range from 141 to 512 lines of code. There are 130 faulty versions

of the programs. We used 20 branch coverage based test suites and 20 random test suites

for each benchmark.

3.1.3.1 Original State Failure Condition Based Classes

To collect data on the effectiveness of the approaches, we executed each test suite on each

faulty version. If at least one test case in a test suite fails for a faulty version, we obtained

the Tarantula rank of the faulty statement for the (faulty version (F), test suite (T)) pair.

If there is no failing run obtained for a (faulty version (F), test suite (T)) pair, then we do

34

not have a data point for that pair. Table 3.8 shows the number of faults and number of (F,

T) pairs for each original state failure condition based fault class.

Table 3.8: Fault Data for Original State Failure Condition Based Fault Classes
#(F, T)

Fault class #faults Branch Random
Arithmatic operator faults 12 132 114
Relational operator faults 18 102 114
Conditional operator faults 6 9 22
Variable definition faults 16 36 32
Variable reference faults 16 58 73
Constant reference faults 21 207 153
Missing/Added conditional clause 23 169 146
Missing/Added statement 6 58 30
Missing/Added branch 15 161 82

To obtain a graphical representation of the fault localization effectiveness of the Tarantula

approach for faults of different classes, we divided the entire range of percentage of code

examined (0-100%) into small ranges. We chose ranges of length 2%. For each range, we

calculated the percentage of (faulty version, test suite) pairs for which the percentage of code

examined belongs to that range. We calculated the cumulative frequency distribution from

this data. We plotted the cumulative frequency distribution in a graph. The x-axis of the

graphs shows the percentage of code examined. The y-axis shows the cumulative percentage

of (faulty version, test suite) pairs. Thus, a point (10, 20) in the graph denotes that for 20%

of the (faulty version, test suite) pairs one needs to examine at most 10% of the program

statements.

Figures 3.1(a) and 3.1(b) show the plots for different classes of faults based on the

original state failure condition, using branch coverage based test suite and random test

suites, respectively.

As shown in Figure 3.1(a), when branch coverage test suites were used, there was no

total ordering between the fault classes in terms of how effectively they were localized. The

curves show that different fault classes were more frequently localized at different ranges of

percentage of program statements examined. For example, missing/added branch faults were

35

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

C
u

m
u

la
ti
v
e

 %
 o

f
(F

,
T

)
p

a
ir
s

% of code examined

Arithmetic operator faults
Relational operator faults
Variable definition faults
Variable reference fault

Conditional operator fault
Conditional clause fault

Missing or added branch fault
Missing or added statement fault

Constant reference fault

(a) Branch Coverage Based Test Suite

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

C
u
m

u
la

ti
v
e
 %

 o
f

(F
,

T
)

p
a
ir
s

% of code examined

Arithmetic operator faults
Relational operator faults
Variable definition faults
Variable reference fault

Conditional operator fault
Conditional clause fault

Missing or added branch fault
Missing or added statement fault

Constant reference fault

(b) Random Test Suite

Figure 3.1: Effectiveness of the Tarantula approach for Original State Failure Condition
Based Classes

more frequently localized within the range, 0–25%, than constant reference faults. However,

36

constant reference faults were more frequently localized within the range, 25–50%, than

missing/added branch faults.

We can observe some partial orders of effectiveness among the fault classes. Arithmetic

operator faults, conditional clause faults, and missing/added statement faults were clearly

more effectively localized than relational operator faults, missing/added branch faults, and

variable reference faults.

The relative effectiveness changed significantly when we used random test suites, as

shown in Figure 3.1(b). We can arrange the following fault classes in the order of how

effectively they were localized (from high effectiveness to low): (1) missing/added branch

faults, (2) variable definition faults, (3) relational operator faults, (4) conditional operator

faults. These orders did not hold for branch coverage based test suites.

In summary, the observations are as follows: (1) Only some partial order of effectiveness

was found between the fault classes, (2) The relative effectiveness varied significantly with

the type of test suites used. This led us to conclude that there was no clear relationship

between the original state failure condition based fault classes and the effectiveness of fault

localization.

3.1.3.2 Accessibility and Impact Based Fault Classes

Table 3.9 shows the accessibility-based faults clusters with the high and low means along

with their corresponding mean values, ranges, and number of faults. The term %Bslice

denotes the backward static slice size as a percentage of the size of the program. Table 3.10

shows the same information as Table 3.9 for the impact based clusters. The term %Fslice

denotes the forward static slice size as a percentage of the size of the program.

Table 3.9: Clusters of Faults Based on Accessibility
Cluster Cluster mean (%Bslice) Cluster range (%Bslice) #faults
High 4.67% 3.56% - 8.55% 57
Low 2.28% 0.6% - 3.42% 73

37

Table 3.10: Clusters of Faults Based on Impact
Cluster Cluster mean (%Fslice) Cluster range (%Fslice) #faults
High 87.3% 63.5% - 99.0% 47
Low 33.7% 2.14% - 54.68% 83

Table 3.11 shows the number of faults for each of the four combinations of accessibility

and impact based fault classes. It also shows the number of (F, T) pairs for each fault class

and for each type of test suite.

Table 3.11: Fault Data for Accessibility and Impact Based Fault Classes
#(F, T)

Fault class #faults Branch Random
HH 4 40 5
HL 53 395 342
LL 30 230 210
LH 43 258 201

Figures 3.2(a) and 3.2(b) show the plots for effectiveness obtained for different fault

classes based on accessibility and impact, using branch coverage based test suites and random

test suites, respectively.

As Figure 3.2(a) shows, when branch coverage based test suites are used, HL faults are

localized most effectively. This supports our earlier analysis that an HL fault is likely to be

most effectively localized because (1) fewer passing test cases execute it, thereby increasing

its suspiciousness score, and (2) fewer statements may have higher suspiciousness scores than

the faulty statement because the execution of fewer statements depends on it.

Although, overall the HL faults are more effectively localized than HH faults, in the range

0-20% of code examined, HH faults are more frequently localized than HL faults. Each of

these HH faults causes failure by not executing the statements that are dependent on it.

This results in higher ranks for such a fault.

Both LH and LL faults are less effectively localized than HL faults. This again supports

our analysis that faults that are harder to access are localized more effectively. The overall

effectiveness for LL and LH faults are comparable. This also suggests that if a fault is easy

38

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

C
u

m
u

la
ti
v
e

 %
 o

f
(F

,
T

)
p

a
ir
s

% of code examined

HH
HL
LH
LL

(a) Branch Coverage Based Test Suite

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

C
u
m

u
la

ti
v
e
 %

 o
f

(F
,

T
)

p
a
ir
s

% of code examined

HH
HL
LH
LL

(b) Random Test Suite

Figure 3.2: Effectiveness of the Tarantula approach for Accessibility and Impact Based Fault
Classes

to access, then the impact of the fault does not appreciably affect the effectiveness of its

localization.

39

The observations are consistent when we use random test suites, as shown in Fig-

ure 3.2(b). HL faults are most effectively localized than all the other types. The effec-

tiveness for LL and LH faults are comparable. We had five data points for HH faults with

the random test suites. In all these cases, the HH faults caused failures by executing the

statements that are control dependent on the faults. Therefore, many statements obtained

higher suspiciousness scores than the faulty statements, thereby decreasing the rank of the

faults.

3.1.4 Threats to Validity

External: Threats to external validity stem from the nature of benchmarks used. The

programs are relatively small, and contain only one fault each.

Internal: There is a threat to internal validity in our study of effectiveness of the Tarantula

approach for the accessibility and impact based fault classes. We did not consider the effect

of the original state failure condition while inferring that faults that are hard to reach and

have low impact are localized most effectively. The high effectiveness for these faults may

have been caused by hard to satisfy original state failure conditions.

Construct: There are several threats to construct validity. The backward static slice of a

faulty statement may not always accurately measure the accessibility of the faulty statement.

A backward static slice is the union of all the statements that affect a given statement

through control dependencies, along all program paths. When a test case executes, the

faulty statement is accessed by a particular path. A faulty statement that can be accessed

by many easily executable paths may have a large backward static slice but still be easily

executable by a single test case.

We use the slice size as a measure of accessibility. However, the number of statements

on which a given statement is control dependent does not always accurately measure the

accessibility of the given statement. Consider a statement s1 that is nested inside two

conditional statements, and another statement s2 that is nested within a single conditional

statement. Thus the accessibility measure of s1 is higher than that of s2, and s1 may be

40

categorized as a hard to access fault, while s2 an easy to access fault. However, s2 may be

harder to access than s1 because the condition guarding s2 may be harder to satisfy than

the conjunction of the two conditions that guard s1.

Forward static slices may not always accurately measure the impact. A forward static

slice contains all the statements dependent on a given statement along any program path. A

test case executes only one path among them, which may result in a small impact. However,

the union of all potentially impacted statements, which makes up the forward static slice,

may be large.

The percentage of code examined may not correctly represent the effort to locate the

faulty statement. This is because a tester examines each statement and determines if the

statement is faulty or not. Determining the correctness of each statement requires an amount

of effort, which may be different for different statements. The percentage of program state-

ments examined does not address these differences in effort.

3.1.5 Conclusions and Lessons Learned

As discussed in Section 3.1.1.1, among any two faults having a similar impact and original

state failure condition, the fault that is easier to be accessed by test cases is likely to cause

test cases to be coincidentally correct more frequently and thus, is likely to be localized

less effectively. This expectation was validated by our study, which showed that the easy

to access faults, in general, are localized less effectively than hard to access faults. Thus,

this study establishes that the presence of coincidentally correct test cases degrades fault

localization effectiveness.

By classifying faults and analyzing the effect of fault classes on fault localization effective-

ness, we also gained insight into how similar a coincidentally correct test case and a failing

test case would be for faults with different levels of accessibility. For hard to access faults,

a coincidentally correct test case is likely to cover similar statements as a failing test case.

For easy to access faults, a coincidentally correct test case may or may not cover similar

program statements as a failing test case. We explain the reason below.

41

For hard to access faults, there are many statements on which the faulty statement is

control dependent. Both a failing and a coincidentally correct test case must reach the faulty

statement and thus, must execute all the statements on which the faulty statement is control

dependent. For faults that are easy to access, the faulty statement is control dependent on

only a few statements, which are covered by both the failing and the coincidentally correct

test cases. However, after executing the fault, the coincidentally correct test case may or

may not execute a similar path as the failing test case. Depending on that, the coverage of

a coincidentally correct test case may or may not be similar to a failing test case. These

insights proved to be valuable when we studied the effectiveness of our family of approaches.

3.2 Proximity Based Weighting of Test Cases for Fault

Localization

Spectrum based fault localization approaches, such as Ochiai and Tarantula, implicitly

assume that all test cases are equally important. However, research on test case generation

and selection techniques [7, 13] has shown that using certain test cases can lead to more effec-

tive fault localization than others. We believe that the knowledge of what test cases lead to

better fault localization should be incorporated into the equations for calculating suspicious-

ness scores, such as in the equations of the Ochiai and Tarantula approaches. We present

an approach that assigns weights to every passing test case representing the importance of

the passing test case in fault localization. The weights, instead of the numbers, are then

used to calculate suspiciousness scores. We present a study of fault localization effectiveness

demonstrating that the weighting of test cases improves fault localization effectiveness.

3.2.1 Approach

We extend the nearest neighbor model [41] to define the relative importance of test cases.

The nearest neighbor model assumes the presence of a single failing test case and multiple

passing test cases. It is based on the heuristic that the statements covered by the failing test

case but not by a passing test case are suspicious. Additionally, selecting the passing test

42

case that is most similar to the failing test case results in the most accurate set of suspicious

statements. The reason behind selecting the passing test case most similar to the failing test

case is that the two test cases would execute the program with similar run-time contexts.

For evaluating the relative importance, we need to extend the heuristic used by the

nearest neighbor model because (1) the nearest neighbor model uses one failing test case,

while the Ochiai approach uses multiple failing test cases, and (2) the nearest neighbor model

only selects the passing test case that is most similar to the failing test case, while the Ochiai

approach includes all the passing test cases to calculate suspiciousness scores.

We address (1) by calculating the average proximity of each passing test case with all

the failing test cases. To address (2), we state that the importance of a passing test case is

proportional to its average proximity (Prox) to the failing test cases. To every test case, we

assign a weight representing its importance. This relationship of weight with proximity is

shown in Figure 3.3(a).

W
ei

g
h

t(
p

)

Prox(p)

(a) Without Thresholds

W
ei

g
h

t(
p

)

Prox(p) HL

(b) With Two Thresholds

Figure 3.3: Variation of Weight with Proximity

However, in our experiments, we observed that this relationship does not hold for some of

the test cases. Test cases that have Prox values lower than a low threshold L, do not execute

the faulty statement. Assigning a low weight to these test cases increases the suspiciousness

scores of other statements but not of the faulty statement, resulting in a decrease in the rank

of the faulty statement.

43

Some passing test cases that have a Prox value higher than H may execute the faulty

statement and execute the program from a similar run-time context as the failing test cases

and still pass. This happens because these passing test cases have run-time contexts that are

different from that of the failing test cases in terms of variable values, not in terms of sets of

covered statements. Assigning a high weight to these test cases decreases the suspiciousness

score of the faulty statement resulting in reduced effectiveness.

To address these two types of test cases, we vary the weight in negative proportions to

proximity, if the proximity is below L or above H . This is shown in Figure 3.3(b).

We measure the code coverage based proximity (CC-Proximity) proposed by Liu et al. [35]

of each passing test case with the failing test cases. CC-Proximity measures the proximity of

two test cases using the Jaccard similarity of their sets of covered statements. If S1 and S2

respectively are the sets of covered statements of two test cases t1 and t2, the CC-Proximity

D(t1, t2) between the test cases given by the expression |S1∩S2|
|S1∪S2| .

If there is more than one failing test case, we calculate the average CC-Proximity of

each passing test case with all the failing test cases, so that each failing test case has equal

contribution in the calculation of the weights. Thus, if F is the set of all failing test cases,

the proximity of a passing test case p, Prox(p) is given by the expression

P

f∈F

D(p,f)

|F | .

Based on the measure of proximity, we measure the weight of each passing test case p,

Wt(p), by Equation 3.1.

Wt(p) =







(1 − Prox(p)) if Prox(p) < L
Prox(p) if L ≤ Prox(p) ≤ H

(1 − Prox(p)) if Prox(p) > H
(3.1)

In order to keep the range of suspiciousness scores unchanged, we multiply the Wt(p) by a

constant k, given by the expression |P |
P

p∈P

Wt(p)
.

We choose the lower threshold to be either the lower tail or the lower quartile. We choose

the upper threshold to be either the upper tail or the upper quartile of a box plot. The tails

result in more conservative choices than the quartiles. Table 3.12 lists different threshold

selections.

44

Table 3.12: Alternatives For Weighting Passing Test Cases
Lower Threshold Upper Threshold Acronym
None None WT-NoThresh
Lower quartile None WT-LQ
Lower quartile Upper quartile WT-LQ-UQ
Lower tail None WT-LT
Lower tail Upper tail WT-LT-UT
Lower tail Upper quartile WT-LT-UQ
Lower quartile Upper tail WT-LQ-UT

We define the weighted Ochiai score, wtSusp(s), of a statement s to be the Ochiai score

of the statement calculated by replacing passed(s) with the total weight of the passing test

cases that execute s. This can be expressed mathematically by Equation 3.2. Ps denotes

the set of passing test cases that execute s.

wtSusp(s) =
failed(s)

√

totalFailed × (
∑

p∈Ps

Wt(p) + failed(s))
(3.2)

A tester using our approach inspects the statements in the decreasing order of wtSusp

values until the faulty statement is found.

3.2.2 Evaluation

We performed an evaluation to investigate whether or not the weighting of passing test

cases improves the effectiveness of fault localization. We evaluated the approaches listed

in Table 3.12. We used the measure of effectiveness of fault localization described in Sec-

tion 3.1.3.

We used the Siemens suite for this study. The suite contains 7 benchmark programs and

130 faulty versions of those programs. We used 50 branch coverage based test suites for each

benchmark.

To collect data on the effectiveness of the approaches, we executed each test suite on

each faulty version. If at least one test case in a test suite failed for a faulty version, we

obtained the Ochiai rank of the faulty statement for the (faulty version, test suite) pair.

45

Table 3.13 shows the benchmark programs and the number of (faulty version, test suite)

pairs producing at least one failing run for each benchmark program.

Table 3.13 also shows the average percentage of program statements examined for each

approach and benchmark over all (faulty version, test suite) pairs. The column ‘benchmark’

shows the benchmark programs. The column #(F,T) denotes the number of (faulty version,

test suite) pairs. Each of the remaining columns shows the fault localization effectiveness of

the corresponding approach. For example, the column ‘WT-LQ’ shows the average percent-

age of program statements examined for each benchmark when the approach ‘WT-LQ’ was

used to localize the fault.

Table 3.13: Average percentage of program statements examined for each benchmark and
each approach with branch coverage based test suite
Benchmark #(F,T) Ochiai WT-

LQ
WT-
LQ-
UQ

WT-
NoTh

WT-
LT-
UT

WT-
LT

WT-
LT-
UQ

WT-
LQ-
UT

print tokens 119 13.8 13.3 14.9 13.3 13.4 13.3 14.9 13.4
print tokens2 380 15.5 15.5 15.7 15.5 15.3 15.6 15.8 15.5
replace 629 9.4 8.7 9.2 8.9 8.7 8.7 9.1 8.9
schedule 153 16.4 15.4 14.9 15.4 15.4 15.4 14.9 15.4
schedule2 38 56.2 56.3 56.0 56.0 56.3 56.3 56.1 56.0
tcas 366 20.0 20.0 20.1 20.1 20.1 20.0 20.1 20.0
tot info 597 25.3 25.7 25.7 25.7 25.7 25.7 25.8 25.6

We make the following observations from the results: (1) For all benchmarks except

for tot info, at least one of the weighting approaches outperforms Ochiai. The weighting

approaches, on average, require 0.1% to 1.5% less code to examine than Ochiai, and (2) For

different benchmarks, different threshold selections lead to the highest effectiveness. No

particular weighting approach can be considered to be the best.

We discuss the reasons why our approach only resulted in only 0.1% to 1.5% improvement

in effectiveness and was not able the improve the effectiveness for some benchmarks. The

goal of calculating weighted suspiciousness scores was to assign higher suspiciousness scores

to the statements that were executed by test cases having lower weight values. However,

Equation 3.2 often failed to assign suspiciousness scores in such a manner. For example, a

46

statement s1 that is executed by n1 test cases having low weight values may obtain a lower

suspiciousness score than another statement s2 that is executed by n2 test cases having high

weight values, if n2 < n1. In our study, the faulty statement was often executed by many

test cases with low weight values, and thus, obtained a lower suspiciousness score than the

non-faulty statements that were executed by a few test cases with high weight values.

Another reason for the limited improvement in effectiveness was that the CC-proximity

measure did not always measure the proximity of run-time context, leading to incorrect

estimation of the importance of the test cases. Also, in the presence of multiple failing test

cases, averaging the CC-proximity values of a passing test case often resulted in moderate

weights for the test case. In such cases, calculating weighted suspiciousness scores did not

significantly change the ranking of statements.

3.2.3 Threats to Validity

External: Threats to external validity stem from the nature of the benchmarks used and

the size of the test suites. Siemens programs are relatively small and they have simple control

structures. We used test suites each containing 15–20 test cases. When larger test suites are

used, the fault localization effectiveness of the Ochiai approach may already be high, and

there may be no opportunity for improving the effectiveness by weighting test cases.

Construct: A threat to construct validity is associated with the measure of the fault local-

ization effectiveness. This threat was discussed in Section 3.1.4.

3.2.4 Conclusions and Lessons Learned

Although the weighting of test cases did not directly address coincidental correctness, we

observed that it is most effective to assign weights to the test cases in such a way that every

coincidentally correct test case obtains a weight lower than the other passing test cases. With

such an assignment of weights, the suspiciousness score of the faulty statement is increased

by the highest amount. Thus, we realized that it is worthwhile to direct our research to

47

the classification of coincidentally correct test cases rather than to the evaluation of relative

importance of test cases.

As we observed, using weighted suspiciousness scores often did not result in higher sus-

piciousness scores for the statements executed by test cases having lower weight values.

Therefore, if coincidentally correct test cases are classified, assigning the classified test cases

low weight values and calculating weighted suspiciousness scores will not be an effective

approach to utilize the classification. Therefore, alternative approaches are needed to incor-

porate the information obtained from the classification in the calculation of suspiciousness

scores.

3.3 Mitigating the Effect of Coincidental Correctness

Using Tester Feedback

In Section 2.3, we described Masri et al.’s [37] approach that evaluates for each test case

the likelihood that the test case is coincidentally correct and then classifies a fixed percentage

of the test cases having the highest likelihood values as coincidentally correct. An approach

that classifies a fixed percentage of test cases as coincidentally correct generates false positives

when the fixed percentage is higher than the actual percentage of coincidentally correct test

cases. If the fixed percentage is lower than the actual percentage, false negatives result.

Masri et al. reports that their approach generated 5.1% and 54% of false positives and false

negatives respectively, with k = 60. It follows from Equation 1.1 that removing false positives

will increase the Ochiai suspiciousness scores of non-faulty statements that are executed by

the false positives, thereby reducing the fault localization effectiveness.

We develop an approach that prevents false positives by ensuring that the number of coin-

cidentally correct test cases classified is always less than the actual number of coincidentally

correct test cases. Our approach iteratively classifies and removes coincidentally correct test

cases. In each iteration, a tester is presented with only those statements that share the high-

est Ochiai suspiciousness score. Based on tester feedback on whether the faulty statement

is one of the presented statements or not, a lower bound n for the number of coincidentally

48

correct test cases is estimated. Then, a measure of likelihood of coincidental correctness is

calculated for every passing test case and n test cases with the highest measure are classified

as coincidentally correct. The classified test cases are removed and the suspiciousness scores

of the statements are recalculated. This process is repeated until the faulty statement is

found. We describe our approach and present the result of an evaluation with the Siemens

suite and Unix utility programs.

3.3.1 Approach

Figure 3.4 shows the procedure describing our approach. The inputs to the procedure are

a list of program statements, allStatements; a list of passing test cases, allPassingTests;

and a list of failing test cases, allFailingTests. Each TestCase instance contains information

regarding what statements are covered by the corresponding test case.

The variables, passingTests and statements, are initialized to allPassingTests and all-

Statements, respectively. The variable, alreadyInspectedStatements, initialized to be an

empty set, contains the statements that are already presented to the tester. The variable,

remainingCC, maintains the number of coincidentally correct test cases remaining to be

classified.

Lines 7–9 calculate the Ochiai suspiciousness scores of the statements. We only use the

statements, passingTests, and all the failing test cases to calculate the suspiciousness scores.

The sets, statements and passingTests, are updated as the tester inspects the statements

and as more coincidentally correct test cases are classified and removed.

Line 11 presents the tester with the statements having the highest suspiciousness score.

In lines 13 and 14, if the faulty statement is found in the list of statements presented, S,

then the procedure returns.

Lines 14–24 show the steps performed when the tester reports that the faulty statement is

not in the list of statements S. The statements in S are added to the set, alreadyInspected-

Statements, and are removed from the set, statements. Next, the number of passing test

cases that execute any statement with the second highest suspiciousness score is determined.

49

1: procedure feedbackDrivenLocalization((List < Statement > allStatements, List <

TestCase > allPassingTests, List < TestCase > allFailingTests)
2: passingTests = allPassingTests

3: statements = allStatements

4: alreadyInspectedStatements = {}
5: alreadyPredictedCC = 0
6: remainingCC = 0
7: repeat

8: for all Statement s ∈ statements do

9: susp(s) = calculateOchiai(statements, passingTests, allFailingTests)
10: end for

11: Present the tester with the set of statements S having the highest susp(s)
12: if tester reports that S contains the faulty statement then

13: return

14: else

15: alreadyInspectedStatements =alreadyInspectedStatements ∪ S

16: statements = statements − S

17: minCC = number of passing test cases that execute the statements
18: sharing the second highest suspiciousness score
19: remainingCC = minCC − alreadyPredictedCC

20: for all TestCase p ∈ passingTests do

21: CC(p) = calculateCCProbability(p)
22: end for

23: selectedCC = remainingCC tests in passingTests having the highest CC values
24: passingTests = passingTests− selectedCC

25: end if

26: until remainingCC ≤ 0
27: ⊲ Presence of false positives is detected. Therefore, use initial Ochiai suspiciousness scores
28: Sunexamined=allStatements−alreadyInspectedStatements

29: Present ranked list of statements in Sunexamined based on initial Ochiai suspiciousness scores
30: return

31: end procedure

Figure 3.4: Procedure describing tester feedback based fault localization

This number is the same as the minimum number of coincidentally correct test cases, minCC,

present in the test suite. This is because the maximum possible suspiciousness score of the

faulty statement is the second highest score. Thus, the minimum number of passing test

cases that execute the faulty statement is the same as the number of passing test cases that

execute the statements with the second highest score. This is because the number of passing

test cases monotonically increases with a decrease in suspiciousness scores.

50

Once we determine minCC, we derive remainingCC, the number of remaining coin-

cidentally correct test cases, by subtracting the number of already classified coincidentally

correct test cases from minCC.

In lines 19–22, we classify the remaining coincidentally correct test cases. For each passing

test case p, we calculate a measure CC(p), representing its likelihood of being coincidentally

correct. In Section 3.3.2, we discuss the details of calculating the likelihood of coincidental

correctness. We sort the passing test cases in decreasing order of CC(p). We select the

first remainingCC number of passing tests in the sorted list and remove them from the

list passingTests. We add the test cases classified as coincidentally correct to the list

alreadyIdentifiedCC. In line 26 we return to the loop if there are more coincidentally

correct test cases to classify.

If remainingCC ≤ 0 and the faulty statement is still not found, we infer that our

classifications contain false positives. A negative value of remainingCC indicates that we

have classified more coincidentally correct test cases than actually present. If remainingCC

is 0 and the faulty statement is still not found, it indicates that we have classified as many

coincidentally correct test cases as actually present, but one or more of the test cases are

classified incorrectly. This is because if we had classified all coincidentally correct test cases

accurately, the faulty statement would have obtained the highest suspiciousness score. Thus,

the faulty statement would have been found in the set of statements presented in the previous

iteration.

When we infer that there are false positives, we terminate the loop. We present the

tester the ranked list of statements, excluding the statements already inspected, based on

the original Ochiai suspiciousness scores. We do not use the suspiciousness scores calculated

in some iteration before the loop terminated, because we cannot determine at which iteration

false positives were introduced.

In any iteration, our approach can result in false negatives. The number of coincidentally

correct test cases that are classified never exceeds the lower bound for the number of actual

coincidentally correct test cases. If the number of actual coincidentally correct test cases is

51

greater than the lower bound, some coincidentally correct test cases will not be classified,

resulting in false negatives.

3.3.2 Estimating the Likelihood of Coincidental Correctness

We define a measure to estimate the likelihood that a passing test case is coincidentally

correct. Our measure is based on the measure defined by Masri et al. [37], which was

described in Section 2.3. We discuss the limitations of the measure and then develop a new

measure that addresses the limitations.

Equation 2.6 shows Masri et al.’s measure for estimating the likelihood of coincidental

correctness for every passing test case. The value of the first term in the measure varies

between 0.5 and 1, while the second term is a percentage that varies between 0 and 100. By

adding the two terms, the measure assigns more importance to statement coverage than the

average suspiciousness score of the covered statements. Thus, even a small difference in cov-

erage can nullify a large difference in the average suspiciousness score of covered statements.

The importance of the two terms can be made commensurate if we consider the frac-

tion of statements covered instead of the percentage. This is given by the the expression
P

s∈Sp
Tarantula(s)

|Sp| + |Sp|
|S| . However, this measure considers the coverage of every statement in

the same way. We state that the coverage of a statement having a higher suspiciousness

score is more important.

We defined our own measure based on the measure proposed by Masri et al. We use

the Ochiai suspiciousness score instead of the Tarantula suspiciousness score. We add the

Ochiai suspiciousness score of all statements covered by a passing test case p, to measure the

likelihood of p being coincidentally correct. Equation 3.3 expresses it mathematically.

CC(p) =
∑

s∈Sp

Ochiai(s) (3.3)

Our measure CC(p) has the following similarities with Masri et al.’s measure CCMasri(p):

� Both the measures produce a high value for a passing test case that primarily executes

statements with high suspiciousness scores.

52

� Both the measures produce a higher value for test cases having a higher coverage.

� CCMasri(p) only considers statements with their Tarantula suspiciousness score be-

tween 0.5 and 1. Our approach excludes all the statements that are not executed by

every failing test case. For the statements that are executed by every failing test case,

the Tarantula score varies between 0.5 and 1. This is because for these statements,

%failed(s) = 100 in Tarantula’s expression %failed(s)
%passed(s)+failed(s)

.

Our measure has the following differences with Masri et al.’s measure:

� CCMasri(p) considers the coverage of every statement equally important. CC(p) con-

siders the coverage of a statement with a higher suspiciousness score more important.

� CC(p) uses the Ochiai score, while CCMasri(p) uses the Tarantula score because the

Ochiai approach has been demonstrated to be more accurate than the Tarantula ap-

proach [2].

3.3.3 Evaluation

We performed an evaluation to investigate the following three research questions:

� RQ1: How accurate is the CC(p) measure in classifying coincidentally correct test

cases?

� RQ2: Is our approach more effective than the Ochiai approach?

� RQ3: Is our approach more effective than classification and removal of fixed percentage

of coincidentally correct test cases?

We evaluated three approaches: (1) Ochiai, (2) our approach, and (3) fixedCC : an ap-

proach based on the classification of a fixed percentage of coincidentally correct test cases.

For the first approach we did not calculate the Ochiai scores of statements that are not

executed by every failing test case. This is to remove bias in favor of our feedback driven

approach, which excludes statements not executed by all failing test cases.

53

The approach fixedCC is adapted from Masri et al.’s approach. We did not compare our

approach directly to Masri et al.’s approach. This is because our goal was to investigate the

relative effectiveness resulting from iterative classification of coincidentally correct test cases

versus the classification using a fixed percentage, rather than the effect of using different

measures for estimating the likelihood of coincidental correctness. Masri et al.’s approach

uses CCMasri(p), while our approach uses CC(p) as a measure of likelihood of coincidental

correctness.

For the fixedCC approach, we used CC(p) to estimate the likelihood of coincidental

correctness. We first calculated the CC(p) for every passing test case. We sorted the passing

test cases in decreasing order of the value of CC(p) and then selected the top 60% of the

test cases as coincidentally correct. We used the top 60% because Masri et al. empirically

showed that selecting them results in the least number of false positives.

Our dependent variable is the effectiveness of fault localization. To measure effectiveness

we calculated the percentage of the program statements a tester needs to examine before

finding the faulty statement.

For the Ochiai approach, the fault localization effectiveness is calculated as described in

Section 3.1.3. We present a mathematical expression for the fault localization effectiveness

of the Ochiai approach to facilitate explaining the calculation of the fault localization effec-

tiveness of our approach. Suppose that the faulty statement is denoted by f . The Ochiai

suspiciousness score of any statement, s, is denoted by Ochiai(s). Equation 3.4 shows the

number of statements examined, numExamined, before finding the faulty statement.

numExamined = |{t : Ochiai(t) > Ochiai(f)}|

+|{t : Ochiai(t) = Ochiai(f)}|/2
(3.4)

We measured the effectiveness of Ochiai by the expression numExamined
n

×100, where n denotes

the number of executable statements in the program. A lower value of the measure indicates

higher effectiveness.

In our approach, the calculation of numExamined depends on whether or not the tester

is able to locate the faulty statement in any iteration. If the faulty statement is located in

54

iteration i, then numExamined is the sum of the number of statements presented in the

iterations 1, 2, . . . , i−1, and the half the statements presented in iteration i. We assume that

on average, a tester inspects half the statements that share the same suspiciousness score as

the faulty statement.

If our approach fails after iteration i due to the identification of false positives, then we

present the tester with the unexamined statements in the set Sunexamined, sorted in the order

of the initial suspiciousness scores. The value of numExamined is the sum of number of

statements presented in iterations 1, 2, . . . , i, and the number statements inspected in the

set Sunexamined, according to Equation 3.4.

We used the Siemens suite containing 7 benchmarks, 4 versions of the Unix grep program,

and 5 versions of the Unix gzip program. We used the test suites included in the Siemens

benchmark. We selected 50 random test suites for this study. For each of grep and gzip,

only a single test suite containing all the test cases is available. We created 50 random test

suites by randomly selecting and grouping test cases.

To collect data on the effectiveness of the approaches, we executed each test suite on each

faulty version. If at least one test case in a test suite failed for a faulty version, we obtained

a Ochiai rank of the faulty statement for the (faulty version, test suite) pair. If there was no

failing run obtained for a (faulty version, test suite) pair, then we did not have a data point

for that pair. To investigate RQ1, we also measured the percentage of test cases that were

not coincidentally correct in the top 60% of test cases having the highest CC(p) measure.

In the following sections, we study the three research questions.

3.3.3.1 RQ1 Results

Table 3.14 shows the percentage of test cases not coincidentally correct (false positives)

in the top 60% of test cases having the highest CC(p) measure and the corresponding

percentage of (faulty version, test suite) pairs. For example, false positives occurred in the

range 80%–100% in 35.6% of the (faulty version, test suite) pairs.

55

For 68.6% of the (faulty version, test suite) pairs, the percentage of false positives was

either in the range 0–20% or in the range 80-100%. This is because for these pairs, either

there were no or few coincidentally correct test cases, or most of the passing test cases were

coincidentally correct. In the former case, the percentage of false positives was high, while

in the latter case the percentage of the false positives was low.

Table 3.14: Distribution of false positives
Percentage of false positives (%) Percentage of (faulty version, test

suite)
0–20% 33.0
20–40% 8.6
40–60% 10.8
60–80% 12.0
80–100% 35.6

3.3.3.2 RQ2 Results

Table 3.15 shows for each benchmark, the percentage of (faulty version, test suite) pairs

for which our feedback based approach performed better than, worse than, or the same as

the Ochiai approach.

Table 3.15: Distribution of the number of change in effectiveness
Program Improvement

(%)
Reduction
(%)

Identical (%)

print tokens 31.2 25.0 43.8
print tokens2 18.6 19.7 61.7
replace 29.7 23.0 47.3
schedule 22.2 31.1 46.7
schedule2 55.0 25.0 20.0
tcas 25.2 24.6 50.1
tot info 35.6 15.4 49.0
gzip 20.2 12.5 67.3
grep 17.3 6.4 76.3

Table 3.16 shows the distribution of the amount of positive improvements for each bench-

mark. Suppose for a (faulty version, test suite) pair, the Ochiai approach requires examining

x% of the code and our feedback based approach y% of the code. If there is an improvement,

56

then y < x. In that case, we define percentage improvement by the expression x−y

x
× 100.

In Table 3.16, we show the mean, median, maximum and the average improvement for each

benchmark.

Table 3.16: Distribution of percentage of improvements
Program Max(%) Min (%) Median (%) Average (%)
print tokens 50.0 2.0 16.7 21.4
print tokens2 40.0 1.3 7.14 11.4
replace 66.6 1.03 16.7 19.2
schedule 50.0 5.7 33.3 27.8
schedule2 40.0 2.8 11.7 15.5
tcas 28.5 3.2 19.4 16.1
tot info 63.3 1.14 9.2 13.8
gzip 33.0 0.3 1.8 7.4
grep 50.6 0.1 2.6 6.3

Table 3.15 shows that there are cases when the effectiveness of the feedback based ap-

proach is better, worse or identical compared to that of the Ochiai approach. In the Siemens

suite, for the benchmarks print tokens2, replace, schedule2, and tot info, the effec-

tiveness of our approach was better more often than it was worse. For the Unix utilities, the

percentage of improvements was significantly more than the percentage of cases when our

approach performed worse. In all the benchmarks except schedule2, the same effectiveness

was observed in at least 40% of the cases. Our feedback based approach achieved up to

67% improvement over the Ochiai approach, for the replace benchmark. Below, we use

examples to illustrate the differences between the performances of the two approaches.

An improvement in effectiveness or an identical effectiveness results when there are no

false positives in the classifications of coincidentally correct test cases. In such cases, the

tester locates the faulty statement during some iteration of the loop in our approach. De-

pending on the order in which coincidentally correct test cases are classified, the effectiveness

may be higher or identical. An improvement occurs when the removal of coincidentally cor-

rect test cases increases the suspiciousness score of the faulty statement but does not increase

the suspiciousness scores of statements with a higher original Ochiai rank. An identical ef-

fectiveness results when the removal of the coincidentally correct test cases increases the

57

suspiciousness scores of all the statements that ranked higher than the faulty statement in

the original ranking.

An example of improvement in the benchmark gzip-1.2.3 is shown in Table 3.17. Each

row of the table shows the set of statements that share the same suspiciousness score. The

suspiciousness score corresponding to a row is greater than or equal to the suspiciousness

score in the row below. The row that contains the faulty statement is shaded. The table

also shows the passing and failing test cases that cover the statements. Each passing test

case is represented by a number that is the index of the test case in a list. A passing test

case p that is classified to be coincidentally correct is shown as p′.

Test cases 152, 137, 197, and 176 are coincidentally correct. Also all of them have been

classified to be coincidentally correct. This increases the suspiciousness score of the state-

ments in the row containing the fault and the statements in the first row. However, the

suspiciousness scores of the statements in the second row are not increased. Thus, a tester

does not need to inspect the statements in the second row, while a tester using Ochiai will

inspect those statements.

Table 3.17: Example of improvement over Ochiai
Statements Passing tests Failing tests
if(backlash), . . . 176′ f1

elseif(p[0] ==′ −′&&p[1]! =′]′), . . . 70, 59, 46 f1

...
...

...
if(!fillsize), . . . 152′, 137′, 197′, 176′f1

False positives in the classification result in identical effectiveness or lowered effectiveness.

Depending on which test cases are false positives, an identical or lower effectiveness may

occur. In either case, false positives cause the remainingCC to reduce to 0 and the loop in

our approach to terminate.

Identical effectiveness occurs when remainingCC turns to 0 before any non-faulty state-

ment’s suspiciousness score exceeds the faulty statement’s suspiciousness score. Table 3.18

illustrates such a scenario with the example of the print tokens benchmark. Passing test

cases 16, 3, and 5 have been already classified to be coincidentally correct. The classification

58

of test case 16 is a false positive. Suppose that the statements in the first row are being

inspected during an iteration. Three test cases are already classified to be coincidentally

correct. The statements sharing the second highest suspiciousness score are executed by

three passing test cases. Therefore, remainingCC is 0. The loop terminates and the tester

is presented with the original ranked list of statements. No non-faulty statement’s suspi-

ciousness score exceeded that of the faulty statement before the termination of the loop.

Thus, thus effectiveness of our approach was identical to that of Ochiai.

Table 3.18: Example of identical effectiveness in presence of false positives
Statements Passing tests Failing tests
case25 :
fprintf(stdout, ”comma.\n”), . . .

16′, 3′, 5′ f1

case22 : return(RSQUARE); , . . . 5′, 11, 12 f1

...
...

...
ch = getChar(. . .), . . . 0, 3′, 5′, 7, 8, . . . f1

Reduction in effectiveness results when some non-faulty statements’ suspiciousness score

exceeds that of the faulty statement before remainingCC turns to 0.

The above analysis shows that the effectiveness of our approach can be identical to that

of the Ochiai approach both in the presence and absence of false positives. This explains the

prevalence of cases where an identical effectiveness was observed.

Our approach performed better than the Ochiai approach more often for the Unix utilities

compared to the Siemens suite. This is because the CC measure estimated the likelihood

of coincidental correctness in the Unix utilities more accurately than in the Siemens suite.

The Unix utilities are larger and have large number of paths, few of which contain the faulty

statement. The statements along those paths obtain higher suspiciousness scores than other

statements. Thus, the CC measures for the coincidentally correct test cases are considerably

higher than that for the passing test cases.

3.3.3.3 RQ3 Results

To investigate RQ3, we compared the effectiveness of our approach with the fixedCC

approach. Table 3.19 shows the distribution of the number of cases when there was an im-

59

provement in the effectiveness, a reduction in the effectiveness, and no change, i.e., identical

effectiveness. Table 3.20 shows the distribution of amount of improvements.

Table 3.19: Distribution of the change in effectiveness
Program Improvement

(%)
Reduction
(%)

Identical (%)

print tokens 52.0 43.8 4.1
print tokens2 57.9 30.3 11.7
replace 60.6 31.9 7.4
schedule 28.8 44.4 26.7
schedule2 40.0 25.0 35.0
tcas 36.5 44.9 18.4
tot info 56.2 22.2 21.6
gzip 50.7 27.9 21.4
grep 74.8 20.6 4.6

Table 3.20: Distribution of percentage of improvements
Program Max(%) Min (%) Median (%) Average (%)
print tokens 83.9 2.0 32.14 33.31
print tokens2 96.0 1.08 77.8 61.8
replace 97.4 1.6 66.1 57.2
schedule 88.6 2.8 56.8 47.6
schedule2 88.3 2.5 18.18 19.8
tcas 91.7 3.22 33.3 47.8
tot info 93.5 1.14 28.6 37.4
gzip 91.0 0.4 26.9 26.1
grep 99.7 0.4 70.4 64.6

For all the benchmarks except schedule and tcas, the percentage of improvement is

considerably higher than the percentage of cases when our approach performed worse. The

feedback driven approach also achieves up to 100% improvement over the fixedCC approach.

We use examples from the benchmarks to illustrate some cases where our approach was

better or worse.

Positive improvements primarily occurred when there were false positives. For the

fixedCC approach, false positives occurred because of one or both of the following two rea-

sons: (1) the number of coincidentally correct test cases is less than 60% of the total number

60

of passing tests, and (2) the measure inaccurately estimated the likelihood of coincidental

correctness.

When false positives appeared for the fixedCC approach exclusively because of (1), our

approach outperformed it, because our approach does not classify more coincidentally correct

test cases than actually present. When false positives occurred due to (2), both our approach

and the fixedCC approach removed passing test cases that are not coincidentally correct.

This resulted in non-faulty statements to be assigned higher suspiciousness scores than the

faulty statement. However, our approach detected the false positives at an early stage by

checking the value of remainingCC, and thus, caused the suspiciousness scores of fewer non-

faulty statements to exceed that of the faulty statement. We use an example in Table 3.21

to illustrate an improvement.

Table 3.21: Ranked list of statements
Statements Passing tests Failing tests
junk = addstr(CCL, pat, j, MAXPAT); , . . .1′, 4′, 5′, 8′, 10, 15 f1

for(k = src[∗i − 1] + 1; , . . . 4′, 5′, 8, 10, 15 f1

...
...

...
if((sub[i] == DITTO)), . . . 16”, 1′, 18”, 3”, 12′, 13”, 14” f1

Table 3.21 presents a ranked list of statements from the faulty version v5 of the replace

benchmark. A passing test case p that is classified as coincidentally correct by the feedback

based approach is shown as p′. All test cases that are classified by the our approach are also

classified by the fixedCC approach. Any passing test case p that is classified by the fixedCC

approach but not our approach is shown as p′′.

The tester inspects the statements in the first row and reports that they are correct. In

the example there are 5 coincidentally correct test cases: 4, 5, 8, 10, and 15. Because the

CC measure inaccurately estimates the likelihood of coincidental correctness, our approach

generates two false positives, 1 and 12. However, during this iteration, remainingCC is 0

because there are already 5 test cases classified and the statements in the second row are

executed by 5 test cases.

61

In this example, the fixedCC approach generates more false positives than our approach

because the fixedCC approach classifies 11 test cases (60% of the total 19), while there

are only 5 coincidentally correct test cases. Thus, false positives are generated, such as

16, 18, 3, 13, and 14, which results in statements in the last row to be assigned a higher sus-

piciousness score than the faulty statement and to be inspected before the faulty statement.

Our approach performs worse than the fixedCC approach when there are few or no false

positives in the top 60% of the passing test cases because the fixedCC approach classifies all

the first 60% of the test cases at the same time. As a result, the suspiciousness score of the

faulty statement exceeds that of more non-faulty statements when the fixedCC approach is

used, than when our approach is used.

Based on the above examples, we infer that our approach is more robust than the fixedCC

approach in the presence of false positives. When there are few false positives, the fixedCC

approach performs better, while our approach performs better if there are many false posi-

tives. To investigate this hypothesis further, we calculated the percentage of false positives

in the top 60% of the passing test cases in every (faulty version, test suite) pair. We plotted

the variation of improvement of the feedback based approach over the fixedCC approach,

against the percentage of false positives. Figure 3.5 shows the plot.

In Figure 3.5 each point corresponds to a (faulty version, test suite) pair. A point (x, y)

represents the (faulty version, test suite) pair for which there were x% false positives in the

top 60% of the test cases having the highest value of CC(p), and also, our approach was

y% more effective than the fixedCC approach. Thus, any point above the 0 value on the

y-axis represents an improvement, while a point below the 0 value represents a reduction

in effectiveness. It is clear from the plot that there were more improvements for the higher

values of false positive percentages, while at lower values, there were more reductions in

effectiveness.

62

-100

-50

 0

 50

 100

 0 20 40 60 80 100

P
e

rc
e

n
ta

g
e

 i
m

p
ro

v
e

m
e

n
t

Percentage of false positives in top 60% test cases

Input

Figure 3.5: Variation of improvement with false positives

3.3.4 Threats to Validity

External: Threats to external validity stem from the nature of the benchmarks used and

the size of the test suites. Siemens programs are relatively small and they have very simple

control structures. Our test suites were small, containing 15-20 test cases each.

Construct: A threat to construct validity lies in the measure of effectiveness of our ap-

proach. Unlike traditional fault localization approaches that present the tester with a ranked

list of all program statements, we present only a subset of the statements at a time. Thus,

the tester needs to interact with our tool by reporting feedback and waiting for a new set of

statements to inspect. In both the Ochiai approach and our approach, the tester determines

whether or not the statements are correct. However, the additional interactions with our

approach may impose more cognitive burden on the tester than the traditional approaches.

Our measure of effectiveness does not address the effect of the interactions.

63

Another threat to construct validity results from the fact that the percentage of code

examined may not correctly represent the effort to locate the faulty statement. This threat

was discussed in Section 3.1.4.

3.3.5 Conclusions and Lessons Learned

Classifying and removing coincidentally correct test cases can improve the effectiveness

of spectrum-based fault localization. A classification that is based on estimating the lower

bound for the number of coincidentally correct test cases is more precise than classifying a

fixed percentage of test cases. However, the limitation of iterative classification and removal

is that it classifies test cases too conservatively, and as a result, the rank of the faulty

statement is not improved by a large amount in a single iteration. This motivates us to

investigate the effect of using tester feedback a limited number times instead of using it

repeatedly. This also suggests that a different classification approach such as clustering,

which does not require specifying the number of test cases to be classified, may be more

advantageous.

Removing test cases is also not the most effective method of using the classification. As we

observed, removal of test cases results in the non-faulty statements executed by any subset of

the classified test cases to obtain higher suspiciousness scores than the faulty statement. As a

result, fault localization effectiveness does not improve even when the actual coincidentally

correct test cases are correctly classified. In the design of our family of approaches, we

investigate more effective methods of using the classification.

64

Chapter 4

Family of Fault Localization
Approaches

In this chapter, we describe our family of fault localization approaches. Section 4.1

presents an overview of the components of our family of approaches. Section 4.2 describes

our classification approaches and Section 4.3 describes our approach for calculating suspi-

ciousness scores. Section 4.4 analyzes the run-time complexity of our approaches. Section 4.5

describes an extension to the approaches to incorporate tester feedback. Section 4.6 presents

the extensions for addressing multiple faults.

4.1 Family of Approaches

Figure 4.1 shows the steps in our family of approaches. The faulty program being de-

bugged is instrumented for collecting test coverage data and the test suite is executed on

the instrumented program. The program spectra of the test cases are collected. We assume

that the expected output of each test case is known so that it can be determined whether

each test case passed or failed.

The passing test cases are classified using a particular type of program spectra. The

spectra of all the test cases and the information obtained from the classification are used

to calculate a suspiciousness score for each statement. Statements are ranked in decreasing

order of their suspiciousness scores.

A new fault localization approach is obtained by using a different combination of a clas-

sification approach and an approach to calculate suspiciousness scores. We use the following

three classification approaches: (1) statement coverage based clustering, (2) branch coverage

based clustering, and (3) function coverage based clustering. Each approach performs k-

means clustering with the corresponding type of coverage spectrum. We use two approaches

65

Figure 4.1: Steps in the Family of Approaches

for calculating suspiciousness scores of statements: (1) susprm, which calculates suspicious-

ness scores by removing the classified test cases and (2) suspJ , which calculates Jaccard

similarity based suspiciousness scores and is described in Section 4.3. Table 4.1 lists the

fault localization approaches of the family. For each fault localization approach, the table

shows the approaches used for classification and for calculation of suspiciousness scores.

4.2 Classifying Test Cases

A fine-grained coverage spectrum can improve classification by magnifying the important

differences between a passing test case and a coincidentally correct test case. A coarse-

grained coverage spectrum can result in an accurate classification by abstracting away the

66

Table 4.1: Family of Fault Localization Approaches
Approach Classification Calculation of Suspiciousness

Scores

StRm Statement coverage based clustering susprm

StJ Statement coverage based clustering suspJ

BrRm Branch coverage based clustering susprm

BrJ Branch coverage based clustering suspJ

FnRm Function coverage based clustering susprm

FnJ Function coverage based clustering suspJ

unimportant differences between a passing and a coincidentally correct test case. Our goal

is to investigate which level of granularity results in the best classification. To illustrate the

1T

Account ac = new Account(0);
ac.deposit(4);
ac.withdraw(1);
assertEquals(ac.balance, 3);

3T

T
4

Account ac = new Account(0);
ac.deposit(4);
assertEquals(ac.balance, 4);

Account ac = new Account(0);
ac.deposit(4);
ac.withdraw(2);
assertEquals(ac.balance, 2);

assertEquals(ac.balance, 0);
Account ac = new Account(0);

2
T

Statement T1 T2 T3 T4 Ochiai(s)

1: public Account (int bal-
ance) {

√ √ √ √
0.5

2: this.balance = balance;
√ √ √ √

0.5

3: } √ √ √ √
0.5

4: public void deposit (int val)
{

√ √ √
0.58

5: balance += val;
√ √ √

0.58

6: } √ √ √
0.58

7: public void withdraw (int
val) {

√ √
0.7

8: if (val <= balance)
√ √

0.7

9: balance = val;
√ √

0.7

10: else 0.0

11: balance = -1; 0.0

12: } √ √
0.7

Figure 4.2: Example for Illustrating Classification

classification approaches, we use the example in Figure 4.2, which shows the execution of

four test cases, T1, T2, T3, and T4, on a faulty program. The test cases are listed on the left.

The table on the right shows for each statement, the test cases that execute it. The column

Ochiai(s) shows the Ochiai suspiciousness score for each statement. The program consists

of a class, Account, with an attribute balance, a constructor, and two methods, deposit

and withdraw. Statement 9 contains the fault because the correct statement is balance -=

67

val. T1 fails for the program, while the other test cases pass. T3 is a coincidentally correct

test case.

4.2.1 Statement Coverage Based Clustering

In this approach, statements are the program elements used for constructing test vectors

to perform k-means clustering. Test vectors are constructed using the statements that are

executed by all the failing test cases and a percentage of passing test cases below the threshold

of 70%.

❵
❵

❵
❵

❵
❵

❵
❵

❵
❵

❵
❵

❵❵

Test Case
Line No.

4 5 6 7 8 9 12 Susp.

T1 (Failing) 1 1 1 1 1 1 1 0.7

T2 0 0 0 0 0 0 0 0

T3 1 1 1 1 1 1 1 0.7

T4 1 1 1 0 0 0 0 0.25

T
3

Cluster 1:

Avg. Susp. Score = 0.7

Cluster 2:

Cluster 1 has a higher average and contains the coincidentally correct test cases

T
42,

T Avg. Susp. Score = 0.12

Figure 4.3: Statement Coverage Based Clustering

Figure 4.3 shows the vectors for the test cases listed in Figure 4.2. For example, the

vector for T3 is (1, 1, 1, 1, 1, 1, 1). Statements 4–9 and 12 are executed by all the failing test

cases and less than 70% of the passing test cases, and thus, only these statements are used

for deriving the vectors. The ‘Susp.’ column shows the average suspiciousness scores of the

statements covered by each test case.

Figure 4.3 also shows the clusters obtained by performing k-means clustering. For each

cluster, it shows the average suspiciousness score of all statements covered by the test cases

in the cluster. Because the average is higher for Cluster 1, it is selected to be the cluster

of coincidentally correct test cases. Thus, T3 is classified as coincidentally correct. T3 also

happens to be the only actual coincidentally correct test case in this example.

68

4.2.2 Branch Coverage Based Clustering

In this approach, branches are the program elements used for constructing test vectors

to perform k-means clustering. Only the branches that are executed by all the failing test

cases and a percentage of passing test cases below the threshold of 70% are used.

There are two branches in the program. The first branch is from statement 8 to statement

9, which is executed when the if-condition at line 8 evaluates to true. The second branch

from statements 10 to 11 is executed when the if-condition at line 8 evaluates to false. Only

the first branch is executed by the failing test case and less than 70% of the passing test

cases. Therefore, only the first branch is selected for deriving the test vectors.

Branch T1 T2 T3 T4 Ochiai(br)

8–9 (True)
√ √

0.7

10–11
(False)

0.0

❳
❳

❳
❳

❳
❳

❳
❳

❳
❳

❳

Test Case
Branch

8–9 Susp.

T1 (Failing) 1 0.7

T2 0 0.0

T3 1 0.7

T4 0 0.0

T
3

Cluster 1:

Avg. Susp. Score = 0.7 Avg. Susp. Score = 0

Cluster 2:

Cluster 1 has a higher average and contains the coincidentally correct test cases

T
42,

T

Figure 4.4: Branch Coverage Based Clustering

Figure 4.4 shows the branches and their Ochiai suspiciousness scores. It shows the vectors

for the test cases listed in Figure 4.2. For example, the vector of test case T3 is (1). The

clusters obtained by performing k-means clustering are shown. For each cluster, the average

suspiciousness score of all the branches covered by the test cases in the cluster is presented.

Because the average is higher for Cluster 1, it is selected to be the cluster of coincidentally

correct test cases. Thus, T3 is classified as coincidentally correct. T3 also happens to be the

only actual coincidentally correct test case in this example.

4.2.3 Function Coverage Based Clustering

In this approach, functions are the program elements used for constructing test vectors to

perform k-means clustering. Compared to statement and branch coverage based clustering,

69

we use a different method for selecting the functions to be used for deriving the vectors. We

select all the functions instead of selecting functions that are executed by a percentage of

passing test cases below a threshold. In our studies, we observed that the function containing

the faulty statement is often executed by a high percentage of passing test cases. Thus, a

threshold based selection of functions can result in excluding the function containing the

faulty statement. Including the function containing the faulty statement in the vectors is

necessary to distinguish coincidentally correct test cases from other passing test cases because

the coincidentally correct test cases will always execute that function, while other passing

test cases may or may not.

Test vectors are constructed using the selected functions and then k-means clustering is

performed. Once the clusters are obtained, one cluster is identified as the cluster of coinci-

dentally correct test cases. Compared to statement and branch coverage based clustering,

we use a different method for identifying the cluster, as described below.

Unlike statement and branch coverage based clustering, we cannot identify the cluster

based on the average suspiciousness score of functions covered by the test cases in each

cluster. The reason is that the suspiciousness score of the function containing the faulty

statement was often observed to be low as the function was often executed by a high per-

centage of passing test cases. Therefore, instead of calculating average suspiciousness scores

of functions, we calculate the average distance of every passing test case in each cluster from

every failing test case and select the cluster having the lowest average.

In statement and branch coverage based clustering as well, one could have identified the

cluster by calculating the average distance from all failing test cases. However, as explained

in Section 4.4, calculating the average suspiciousness score of covered statements/branches

is computationally less expensive than calculating the average distance from all failing test

cases.

In the example in Figure 4.2, there are three functions: the constructor of the Account

class, and the methods, deposit and withdraw. Figure 4.5 shows the vector representations

of all the test cases. For example, the vector of the test case T3 is (1, 1, 1). The ‘Distance’

70

❵
❵

❵
❵

❵
❵

❵
❵

❵
❵

❵
❵

❵❵

Test Case
Function

Account() deposit() withdraw() Distance

T1 1 1 1 1

T2 1 0 0 1.41

T3 1 1 1 0

T4 1 1 0 1

Avg. Distance = 0.5T T
43,

Cluster 1:
T
2

Cluster 2:

Avg. Distance = 1.41

Cluster 1 has the lower average and contains the coincidentally correct test cases

Figure 4.5: Function Coverage Based Clustering

column lists the average distance of each test case from all the failing test cases. The figure

also shows the two clusters obtained, and for each cluster, the average distance of the test

cases in the cluster from the failing test case. The average is lower for Cluster 1, which is

identified as the cluster containing the coincidentally correct test cases. Thus, T3 and T4

are classified as coincidentally correct, while only T3 is the actual coincidentally correct test

case.

4.3 Calculating Suspiciousness Scores

We first present our approach for calculating suspiciousness scores. Then, we describe

our adaptation of Masri et al.’s approach [37] for calculating suspiciousness scores discussed

in Section 2.3. We adapted Masri et al.’s approach in order to perform a fair comparison

with our approach.

Our approach for calculating suspiciousness scores retains test cases classified as coin-

cidentally correct. The approach assumes that a single fault is being localized at a time.

Suppose P, PClass, and PCC denote the set of all passing test cases, the set of test cases

classified as coincidentally correct, and the set of actual coincidentally correct test cases,

respectively. Consider a faulty statement, f , and two non-faulty statements, s1 and s2. Sup-

pose that s1 and s2 are executed by all failing test cases. Suppose Ps1
, Ps2

, and Pf denote

the set of passing test cases that execute s1, s2, and f , respectively.

71

Under the single fault assumption, f is executed by all failing test cases. Pf = PCC

because every passing test case that executes f is coincidentally correct by definition. For

any two statements that are executed by every failing test case, we state that the more

suspicious statement is the one for which the set of passing test cases that execute the

statement is more similar to PCC . Because we do not know PCC , we measure similarity with

PClass, which is an estimate of PCC . We use the Jaccard similarity measure [24]. For any

two sets A and B, the Jaccard similarity measure is defined as |A∩B|
|A∪B| . To every statement

that is not executed by every failing test case, we assign a suspiciousness score of 0, because

these statements cannot be faulty.

Based on the heuristic above, the suspiciousness score of a statement, s, is calculated by

Equation 4.1. The term Ps denotes the set of passing test cases that execute the statement

s. The terms F and Fs denote the set of all failing test cases in the test suite and the set of

failing test cases that execute s, respectively.

suspJ(s) =

{

|Ps∩PClass|
|Ps∪PClass| if Fs = F

0 if Fs ⊂ F
(4.1)

When multiple faults are present in the program, a faulty statement may be executed

only by a subset of the failing test cases. Thus, we cannot assign a statement a suspiciousness

score of 0 if it is executed by a subset of the failing test cases. An extension to our approach

for calculating suspiciousness scores addressing multiple faults is presented in Section 4.6.

We also calculate suspiciousness scores using Masri et al.’s [37] approach that removes the

classified test cases and recalculates scores using the remaining test cases. When we apply

the approach, we calculate Ochiai suspiciousness scores instead of Tarantula suspiciousness

scores because researchers have empirically established that the Ochiai approach results in

more effective fault localization compared to the Tarantula approach [2]. We use the term

susprm to denote the Ochiai suspiciousness scores of statements calculated by removing

classified test cases.

72

4.4 Runtime Complexity Analysis

Consider any approach in the family of fault localization approaches described in Sec-

tion 4.1. Suppose that the program contains S statements and the test suite contains T test

cases. Suppose E is the number of program elements. We present a runtime complexity

analysis of our approach in terms of T , S, and E. We assume that the test cases have

been already executed on the faulty program and the coverage information is available in

the following form. For every test case, there is a list of program elements that are executed

by the test case. We create two types of hash-maps from the information: one maps each

test case to the set of program elements covered by the test case, and the other maps each

program element to the set of passing test cases and the set of failing test cases that covers

that element. Building the first hash-map requires O(TE) time because the list of elements

covered by each test case needs to be processed. Building the second hash-map also requires

O(TE) time. It is built by querying the first hash-map for every element and for every test

case to check whether the test case covered the element. For every different type of program

element, such as statement, branch, and function, a separate hash-map of each of the two

types is maintained. Besides the hash-maps, we maintain a set of all the passing test cases

and a set of all the failing test cases.

Given the above the data structures, one can find the following in constant time: (1) the

set of elements executed by a given test case, (2) the set of passing test cases and the set of

failing test cases that execute a given element, and (3) whether a given element is executed

by a given test case. The sets are implemented using Java SDK’s HashSet, which offers

constant time performance for queries such as set membership and set size.

The first step in our approaches is to classify the test cases. The first task in classification

is to derive the coverage vectors from the coverage information. Deriving the coverage vectors

of all the test cases from the available coverage information requires O(TE) time. It takes

O(E) time to select the program elements to be used for constructing the test vectors.

Selecting these elements involves calculating for each element, the fractions of failing and

73

passing test cases executing that element, which can be performed in constant time using

the constant time queries described above. Deriving the coverage vector of each test case

requires O(E) time. The size of a test vector is O(E). To create a test vector, the value

(0/1) of each of the O(E) elements of the vector needs to be calculated. Calculating each

value takes constant time because it takes constant time to determine if the corresponding

program element was executed by the test case. Thus, creating the test vectors for all the T

test cases requires O(TE) time.

The second task in classification is performing k-means clustering. The k-means clus-

tering technique requires 2Ω(
√

T) iterations for classifying the T vectors[6]. Each iteration

calculates at most k × T distances, where k is the number of clusters. In our case, k = 2.

Each distance calculation requires O(E) time because the size of each vector is O(E). Thus,

each iteration of the k-means clustering requires O(TE) time. The entire clustering process

requires 2Ω(
√

T)TE time.

The identification of the cluster containing the coincidentally correct test cases requires

O(TE) time if the statement and branch coverage based clustering approaches are used, and

O(T 2E) time if the function coverage based clustering approach is used. For statement and

branch coverage based clustering, calculating the average suspiciousness scores of covered

elements for each test case requires O(E) time, and calculating that average for the test

cases in each of the clusters requires O(TE) time. For function coverage based clustering, the

distance between every passing and failing test case needs to be calculated. Thus, it requires

O(T 2) distance calculations, each taking O(E) time because there are O(E) elements in each

test vector.

The second step in our fault localization approaches is to calculate suspiciousness scores

for all the statements. Calculating the susprm score for each statement using the failing test

cases and the information obtained from the classification requires constant time. Calculating

the susprm scores for all statements requires O(S) time.

Calculating the suspJ score for each statement requires O(T) time. It involves calculating

the union and the intersection of sets of test cases. These operations are implemented using

74

the addAll and retainAll methods in the HashSet class, which take O(N) time if the

set size is O(N). In our approaches, the size of the sets of test cases is at most T . Thus,

calculating the suspJ scores of all statements requires O(TS) time. Once the suspiciousness

scores are calculated, sorting the statements in decreasing order of suspiciousness scores

requires O(S log S) time.

As opposed to our family of approaches, the Ochiai fault localization approach builds

the data structures from the coverage information, calculates the suspiciousness score for

each statement, and derives the ranked list. Thus, the runtime complexity of Ochiai is

O(TE + S log S).

4.5 Extending the Approaches by Checking the Pres-

ence of Coincidentally Correct Test Cases

In the absence of coincidentally correct test cases or when there are few coincidentally

correct test cases, there may not be any opportunity to improve fault localization effectiveness

of the Ochiai approach by addressing coincidental correctness. In this situation, forcing

classification may result in false positives, which, in turn, may cause reduction in the fault

localization effectiveness. Thus, our family of approaches should be applied only when there

is an opportunity for improving the fault localization effectiveness.

In Section 3.3, we presented an approach to estimate the lower bound for the number of

coincidentally correct test cases by using tester feedback. We also concluded that repeatedly

estimating the lower bound results in a classification that is too conservative. We present a

simplified user feedback based check that is applied only once to identify whether there is an

opportunity to improve fault localization effectiveness by addressing coincidental correctness.

We apply our family of approaches on identifying such an opportunity. Below, we describe

how the check is performed and how it is combined with our family of approaches.

The Ochiai suspiciousness scores of all the statements are calculated. The set of state-

ments with the highest suspiciousness score is presented to the tester, who reports whether

or not the faulty statement is found in the presented set of statements.

75

If the tester finds the faulty statement, fault localization ends. Otherwise, coincidentally

correct test cases are classified by one of the approaches considering all statements. Then,

suspJ scores are calculated for the statements that have not been inspected by the tester.

4.6 Extending the Approaches for Multiple Faults

Mitigating the effect of coincidentally correct test cases in the presence of multiple faults

requires modifications to our approach. In the presence of multiple faults, a faulty statement

may not be executed by all failing test cases. We list two modifications to our approach and

explain why they are needed.

� Modification to approach for determining the need for addressing coinci-

dental correctness: In Section 4.5, we presented a tester feedback-based check to

determine whether or not addressing coincidental correctness is required in a single

fault environment. The check is based on the observation that if the faulty statement

is not one of the statements having the highest suspiciousness score, then the test suite

must contain coincidentally correct test cases. However, the above statement is not

always true in a multiple fault environment. In the presence of multiple faults, a faulty

statement may be executed by only a subset of the failing test cases and thus, may not

obtain the highest suspiciousness score.

Therefore, we modify the check by having the tester inspect all the statements that are

executed by at least one failing test case but no passing test case. If the tester does

not detect the faulty statement during the inspection, we infer that there exists some

coincidentally correct test cases.

� Modification to the calculation of suspiciousness scores: Equation 4.1 assigns

a suspiciousness score of 0 to any statement that is not executed by every failing test

case. Because in a multiple fault environment, a faulty statement may not be executed

by all failing test cases, we modified the equation to include a term that represents

the fraction of failing test cases that execute a statement. The new term is formulated

76

based on the heuristic that the faulty statements will be executed by a high fraction

of the failing test cases. Equation 4.2 is the modified equation. Te terms failed(s)

and totalFailed respectively denote the number of failing test cases that execute the

statement s and the total number of failing test cases.

suspJ(s) =
|Ps ∩ PClass|
|Ps ∪ PClass|

+
failed(s)

totalFailed
(4.2)

For multiple faults, we use the same classification approaches as for a single fault. Test

cases that are coincidentally correct with respect to a fault are expected to be similar to the

failing test cases that fail due to that fault. Because of that similarity, we expect that the

classification approaches will classify test cases that are coincidentally correct with respect

to at least one fault.

77

Chapter 5

Implementation

We implemented a prototype framework for localizing faults by mitigating the effect

of coincidentally correct test cases. The framework provides a concrete implementation of

the proposed fault localization approaches, and also offers abstractions for implementing new

fault localization approaches. The framework can be used both by testers to localize program

faults and by researchers to perform empirical studies of fault localization effectiveness. In

this chapter, we describe how the framework can be used by testers and researchers. We

present the component architecture of the framework, and describe the key classes in each

component. We also describe the extension mechanisms provided in the framework.

5.1 Using the Framework

A tester can use the framework to perform fault localization on a program that fails for

a given test suite. We assume that the tester has access to the source code of the faulty

program and the test cases in the test suite. We also assume that the tester knows the

expected output of each test case so that the pass/fail outcome of the execution of each test

case can be determined. Given the faulty program and the test suite, the framework applies

the selected fault localization approach to calculate a list of statements sorted in decreasing

order of suspiciousness scores.

A researcher can use the framework to perform studies on the effectiveness of fault local-

ization approaches. A study involves multiple subject programs. For each subject program,

there are multiple faulty versions and multiple test suites. Each test suite is executed on

each faulty version and the effectiveness of the fault localization approaches is calculated

for each (faulty version, test suite) pair. Therefore, the researcher needs to have access to

the source code of all the faulty versions and the test suites for each subject program. The

78

researcher also needs to have access to the source code of the correct version of each subject

program that can be executed to obtain the expected output of each test case. The expected

output of a test case can be used to determine the pass/fail outcome of the test case. In

order to calculate the fault localization effectiveness, the researcher needs to know additional

information about each subject program, such as the size of the program and the line number

of the faulty statement for each faulty version of the program. For ease of use, a researcher

should be able to perform studies using multiple subject programs, faulty versions, and test

suites by executing a single command.

5.1.1 Use of the Framework by Testers to Localize Faults

In the following description, we assume that the tester has already executed the test cases

and determined for each test case whether the test case passed or failed. The tester needs

to provide the following inputs to the framework:

� FaultyDirName: Name of the directory that contains the source files of the faulty

program.

� TestSuiteFileName: Name of the file that contains the commands for executing the

test cases in a test suite. Each line in the file represents one of the following:

– A comment that starts with a ‘#’ and is ignored.

– A set-up command that starts with a ‘:’ and precedes a command for executing a

test case. The set-up command is run to set up the environment for the execution

of the test case.

– A command for executing a test case. Each test case in a test suite requires one

command. Each test case is identified by the index of the corresponding command

in the file. Thus, the ith test case is the one that is executed by the ith command

in the file.

– A clean-up command that starts with a ‘:’, follows a command for executing a

test case, and is run to clean up the effects of the execution of the test case.

79

Figure 5.1.1 shows an example file containing the commands for running two test

cases for the gzip program. The first test case is executed by running the com-

mand gzip /home/gzip/inputs/file9.z -d, which runs gzip to decompress the

file named file9.z. The effect of the execution of the test case is cleaned up by run-

ning /home/gzip/scripts/cpoptd.sh, which moves the decompressed file from its

present location to another directory where output files are stored so that the frame-

work can compare the generated output file with the correct output file.

#test1
gzip /home/gzip/inputs/file9.z −d
:/home/gzip/scripts/cpoptd.sh

#test2
gzip −−decompress < /home/gzip/inputs/file5.z

Figure 5.1: Example File Containing Commands for Running Tests

� TraceDirName: Name of the directory where a trace file for each test case is stored.

The trace file for a test case records what statements, branches, and functions are

covered by the test case.

� TestResultFileName: Name of the file that contains information about which test

case passed and which test case failed. This file contains a line for each test case that

has a corresponding execution command in the file specified by TestSuiteFileName.

The ith line in the file specified by TestResultFileName is P or F based on whether

the ith test case is a passing or a failing test case.

� ApproachName: Name of the fault localization approach to be used. For localizing

a single fault, one of the following names can be used: StRm, BrRm, FnRm, StJ,

BrJ, FnJ, Check+StJ, Check+BrJ, and Check+FnJ. These approaches are described

in Chapter 4. For localizing multiple faults, one of the following names can be used:

Check+StJ+Multi, Check+BrJ+Multi, and Check+FnJ+Multi. These approaches are

extensions to the approaches Check+StJ, Check+BrJ, and Check+FnJ, respectively, as

described in Section 4.6.

80

� ReportFileName: Name of the file where the list of statements ranked according to

their suspiciousness scores will be stored.

A Python script, traceAndLocalize.py, is executed by running the following command:

 <TraceDirName> <TestResultFileName> <ReportFileName>

python traceAndLocalize.py <ApproachName> <FaultyDirName> <TestSuiteFileName>

The script first instruments and compiles the instrumented faulty program. By default, it

is assumed that the source directory contains a Makefile that uses gcc compiler commands

with appropriate flags for instrumenting the program with the coverage tool, gcov. The

script calls the Makefile to perform instrumentation and compilation. Custom mechanisms

for instrumenting and compiling the instrumented programs can be provided in the script by

implementing the functions, instrument(dirName) and compile(dirName), respectively.

The parameter, dirName, denotes the name of the directory containing the source code.

The script executes each test case on the instrumented faulty program, saves the gener-

ated traces for each test case, and then invokes the framework to perform fault localization.

If one of the approaches that use tester feedback is selected, the script prints a set of state-

ments in the standard output and prompts the tester to type “yes” or “no” to report whether

or not the set of statements contains the faulty statement. The tester needs to inspect the

statements and type the response in the standard input.

The output produced by the framework is stored in CSV format in the file specified by

ReportFileName, which contains a row corresponding to every program statement. The

rows are arranged in decreasing order of suspiciousness scores of the statements. For any

statement, the first column shows the line number and the source code of the statement,

and the second column shows the suspiciousness score of the statement. The third and the

fourth column show the list of the passing test cases and that of the failing test cases that

execute the statement, respectively. A list of n test cases is represented by the sequence of n

numbers, where any number, i, denotes the test case that is executed by the ith command in

81

the file named TestSuiteFileName. The output file can be used for localizing both single

faults and multiple faults.

5.1.2 Use of the Framework by Researchers to Perform Studies

As described before, a researcher performing fault localization studies needs to use more

features of the framework and also needs to provide more information to the framework.

To facilitate supplying the additional information to the framework, we provide an abstract

Python class, BenchmarkConstants, as an abstraction of all the necessary data and functions

associated with any subject program. For every subject program, a researcher needs to a

create concrete subclass of this class. The data specific to the subject program is provided by

setting the attribute values of the subclass, and the functions specific to the subject program

are provided by overriding the abstract methods of BenchmarkConstants in the subclass.

Alternatively, the framework could have been designed to accept the subject-specific func-

tions using overridden methods and the subject-specific data through the command line or

configuration data files. However, our goal was to use a single artifact (the concrete subclass)

to provide both the functions and the data.

BenchmarkConstants

−sourceDirName: String

−faultyDirNames: String[]

−testSuiteFileNames: String[]

+runAndCompare()

+instrument()

+compile()

−faultLineNums: Map

−reportDirName: String

Figure 5.2: BenchmarkConstants class

Figure 5.2 shows the attributes and the methods of the BenchmarkConstants class. We

describe the attributes below:

82

� sourceDirName: Name of the directory containing the source code of the correct

version of the subject program.

� faultyDirNames: Names of the directories, where each directory contains the source

code of a faulty version of the subject program. Because each faulty version contain-

ing multiple faults is constructed by combining the faults from multiple single fault

versions, the name of the directory containing a multiple fault version must reflect

the names of the directories containing the corresponding single fault versions. If the

names of the directories for two single fault versions are ‘f1’ and ‘f2’, the name of

the directory containing the multiple fault version constructed from the single fault

versions in ‘f1’ and ‘f2’ must be ‘f1-f2’. Thus, the name of the directory containing a

multiple fault version can be used to determine the corresponding single fault versions.

� testSuiteFileNames: Names of the files, where each file contains the commands

for executing the test cases in a test suite for the subject program. The format of

each file is the same as that of the file specified by TestSuiteFileName described in

Section 5.1.1.

� faultyLineNums: A Python dictionary that maps each faulty version to the line

number of the faulty statement in that version. The dictionary has an entry for each

single fault version. For a multiple fault version, first the corresponding single fault

versions are determined given the naming convention described above, and then the

line numbers of all the faulty statements in the multiple fault version are determined.

� reportDirName: Name of the directory where the results of the study for the subject

program are stored.

The methods, instrument and compile, implement the mechanisms to instrument and

compile the program, respectively. By default, these methods call make assuming that a

Makefile using gcc compiler commands with gcov instrumentation flags is present in each

directory containing the source code of the program. The methods can be overridden to

83

implement a different instrumentation and a compilation mechanism for every program.

The method, runAndCompare, implements the comparison of the outputs of the execution of

the correct program and a faulty version of the program to determine whether or not a test

passed. By default, this method compares the outputs produced in the standard output.

The method can be overridden, for example, to compare the generated error logs along with

the outputs produced in the standard output.

A function, runExperiment(constantsArray), is provided in the Python script, trace-

AndLocalize.py, to perform fault localization with multiple subject programs, faulty ver-

sions, and test suites. For example, in order to run fault localization experiments on three

benchmarks, such as flex, grep, and gzip, a researcher first creates three concrete subclasses

of BenchmarkConstants, namely, FlexConstants, GrepConstants, and GzipConstants.

The code shown in Figure 5.3 is used to run experiments with the benchmarks.

constantsArray = [FlexConstants(), GrepConstants(), GzipConstants()]

runExperiments(constantsArray)

Figure 5.3: Code for Running Experiments

The constantsArray is an array of BenchmarkConstants instances. The first line in

Figure 5.3 creates an instance of each of the classes, FlexConstants, GrepConstants,

and GzipConstants, by calling the corresponding constructors, and stores the instances

in constantsArray. The second line calls runExperiments using constantsArray as an

argument. The implementation of runExperiments spawns a separate thread for localizing

faults in each of the benchmarks. For each benchmark, every test suite specified in the

TestSuiteFileNames attribute is executed on every faulty version located in the directories

specified by faultyDirNames attribute. The framework is invoked to perform fault localiza-

tion for every (faulty version, test suite) pair. For approaches that require feedback on the

correctness of a given set of statements, the framework simulates the feedback by checking

whether or not the faulty statement belongs to the set of statements.

84

The result of the study for the subject program is stored in several files in the directory

specified by reportDirName. A file for each (faulty version, test suite) pair is created in

the directory to store the ranked list of statements for the (faulty version, test suite) pair

in the same format as described in Section 5.1.1. Additionally, another text file is created

in the directory to store for each (faulty version, test suite) pair the data showing the:

(1) effectiveness of the fault localization approaches, (2) actual set of coincidentally correct

test cases, (3) set of classified coincidentally correct test cases, and (4) recall and precision

of the classification approaches.

5.2 Framework Architecture

Figure 5.4 shows the framework components and their usage dependencies. The compo-

nent ProgramInstrumenter is a third party component. We implemented the rest of the

components, among which the component FaultLocalizer was implemented in Python,

while all the others were implemented in Java. In the following sections, we discuss the key

classes and associations of each component.

Component FaultLocalizer :

This component acts as a driver of the framework. It uses the third party component

ProgramInstrumenter to collect the traces of test executions. Then it invokes other compo-

nents in the framework to obtain ranked lists of statements or to perform studies of fault

localization effectiveness using the collected traces. This component is implemented in the

Python script, traceAndLocalize.py, and the Python class, BenchmarkConstants, and its

subclasses described in Section 5.1.

Components ProgramInstrumenter, CoverageInterpreter, and CoverageMatrix :

These components together obtain the coverage of the test cases and convert the coverage

information to a suitable representation. The ProgramInstrumenter component represents

85

���������	
�����
�� ��

���

�����
��
������
	�

�������
��

����
���������

����������
��� ��

���������������

��

��������	

����	
��

����
��������
��	��
���

Figure 5.4: Framework Components

an external tool that can be used to instrument a program and generate coverage data for

test executions.

The CoverageInterpreter component generates the representation of coverage informa-

tion, defined by the CoverageMatrix component, from the trace files of test executions. A

key interface in the CoverageInterpreter component is CoverageAdapter, shown in Fig-

ure 5.5. The interface defines a method, getTestExecutionResult. An implementation of

the method creates a representation of the coverage information from the trace files. For

example, the GcovOutputAdapter class implements the method to generate an internal rep-

resentation of coverage information from the coverage data stored in the ‘.gcov’ files, which

are the trace files generated by the gcov coverage measurement tool.

The component, CoverageMatrix, defines a representation of the coverage information.

The key classes and associations in the component are shown in Figure 5.6. The abstract

86

��� !�" #"�$% &'()�*%+ ,-

./0123415637812

9:/0;<87<85637812

Figure 5.5: CoverageInterpreter Component Classes

=>?@ABACDEAFAGHIJKG HAIH L MAIHNCAGHKOKABP

=>?@ABKGQMAIHIJKG AEAFAGH L DEAFAGHP

=REEMAIHIJP

STUVWXTYZV[\]^TUZ_V

`KIaRKEKGQ L b??E

STUVcdT]V[e[Tf W_TgT]V

`AEAFAGHIhiij

kVWXTYZV[\]^TUZ_V lfWXTYZV[\]^TUZ_V m]WXTYZV[\]^TUZ_V

ÈKGAn? L KGH

kVoVTgT]V

ÈKGAn? L KGH

`IApn? L KGH

lfo]Yq

ÈKGAn? L KGH

`GRFA L IHBKGQ

mZ]YV[\]

`rRIIKGQMAIHI

hiij

`ORKEKGQMAIHIhiij

s\tTfouTc]e\

H̀AIH

h

`>?@ABACDEAFAGHI

viij

Figure 5.6: CoverageMatrix Component Classes

class, Element, represents the type of program elements. The concrete subclasses represent

specific types of elements such as statements, branches, and functions. Each concrete subclass

has its own set of attributes that characterize the type of program element the subclass

represents. For example, the Statement, Branch, and Function classes have a lineNo

attribute that represents the line number in the source code that the element is associated

87

with. The Branch class also contains a sequenceNo attribute that is used to identify the

specific branch associated with a particular line in the source code.

A TestIdentifier instance represents a test case and contains a boolean attribute,

isFailing, to denote whether the test case is failing or passing. The TestIdentifier class

is associated with the CoverageInfo class, which in turn, is associated with the Element

class. These associations are implemented as hash-maps to store the program elements

covered by each test case. The Element class has two associations with the TestIdentifier

class. These associations represent the set of passing test cases and a set of failing test cases

that cover each element and are implemented as hash-maps.

TestExecutionResult is the abstract class acting as the container of all the test cases,

elements and coverage information. TestExecutionResult provides methods for retriev-

ing the set of passing/failing test cases, retrieving the passing/failing test cases that cover

a specific element, and for retrieving the set of all the elements. Each concrete sub-

class of TestExecutionResult represents to a particular type of coverage. For example,

StExecutionResult represents the statement coverage.

Component TestClassifier :

The TestClassifier component is responsible for classifying test cases. As Figure 5.7

shows, the component consists of the abstract class TestClassifier and its concrete sub-

classes. TestClassifier defines an abstract method classifyCC(), which returns the set of

test cases classified as coincidentally correct. Each concrete subclass overrides classifyCC()

by implementing a specific classification approach. For example, FnBasedClustering imple-

ments the function coverage based clustering approach for classifying coincidentally correct

test cases. Each TestClassifier instance has a reference to a TestExecutionResult in-

stance that is used for obtaining the coverage information.

Component SuspiciousnessCalculator :

This component provides the implementation of the approaches for calculating suspi-

ciousness scores and also collaborates with the classes in the TestClassifier component to

88

wxyz{{|}~����

��������������

����������������� ����������������� �����������������

����������������������{���{�y�

�

Figure 5.7: TestClassifier Component Classes

implement the family of fault localization approaches. Figure 5.8 shows the key classes

of this component. SuspiciousnessCalculator is an abstract super class of the classes

that implement the approaches for calculating suspiciousness scores. It defines a method

getScore(Statement st) for calculating the suspiciousness score of a given statement, st.

The concrete subclasses, RemovalBased and JaccardBased, override the method to imple-

ment susprm and suspJ approaches, respectively. SuspiciousnessCalculator is associated

with TestExecutionResult, which is used to obtain the coverage information for calculating

suspiciuosness scores. It is also associated with a collection of test cases that are classified

as coincidentally correct by the TestClassifier class.

�� ¡¢£¤ ¥¦¥�§

¨©ª«¬­®¯ª°±²³«́ µ

¢¢¶§¤·�¸¹§º

¨©ª«»¼½¾ª́ ²® ³« ¿ »«­«ªÀª®«µ

ÁÂ Ã¥Ä¥¹Â Å� ¢¤£ÄÂ£¤¡¹§

Æ¤ÄÄ¤§ÇÈ¤ �Ç É�·¹Ê¤£È¤ �Ç

�� ¡ËÌ�ÄÂ¡¥¹ÅÉ� Â£¡�� ¡ÍÇ�Å¡¥¦¥�§

Î¼Ï­³³²Ð²ª¾

Ñ Ñ

Ñ

Î¼­Ï¼ÒÏ­«½¾Ñ

Î¼Ï­³³²Ð²ª°ÓÓ

ÔÕÕÖ Ñ Ñ

Î¾ª³ÒÏ«

Ñ

Figure 5.8: SuspiciousnessCalculator Component Classes

89

The CCFramework class integrates the classification approaches and the approaches of

calculating suspiciousness scores. It is associated with the TestClassifier class and the

SuspiciousnessCalculator class. It also has a method getRankedList(), which is imple-

mented by first using the TestClassifier class to obtain the set of classified coincidentally

correct test cases, then using the SuspiciousnessCalculator class to calculate the suspi-

ciousness scores of all the statements, and finally by sorting the statements according the

suspiciousness scores.

Component TesterFeedbackProcessor :

This component implements the functionality for collecting a feedback from the tester,

processing the feedback, and incorporating the feedback in fault localization. Figure 5.9

shows the classes in the component.

×ØØÙÚÛÜÝÞÛßØÙàáÜÛâãäÛåãáæ
×ØØÙÚÛÜÝçèáÜØßßáè

×ØØÙÚÛÜÝ

éé×èÛêØëáèÝ

ìåÛåØêØæå

íîïïðñòóôõö÷óïøø÷ö

ù ù

ù

íîïïðñòóô

ù
ù

íøúòúïûïüúø

ùýýþ

éÿØÜÝØÙ×ØØÙÚÛÜÝÞÛßØÙ �åØèÛåã�Ø×ØØÙÚÛÜÝÞÛßØÙ

Figure 5.9: Classes of FeedbackBasedFL Component

FeedbackBasedLocalization extends the CCFramework class and represents fault lo-

calization approaches for mitigating the effect of coincidental correctness by incorporating

90

tester feedback. It is associated with the FeedbackProcessor class that obtains tester feed-

back and processes the feedback. The result of the processing is represented by the Feedback

class. At present, the feedback is the set of statements inspected and reported correct by the

tester. Thus, a Feedback instance contains references to multiple Statement instances. The

subclasses of FeedbackBasedLocalization implement different methods of incorporating

tester feedback. For example, the CheckedFeedbackBased class implements the approach

described in Section 4.5 by obtaining the feedback once and performing fault localization if

an opportunity for improving effectiveness is determined. The IterativeFeedbackBased

class implements the approach presented in Section 3.3 by iteratively obtaining tester feed-

back and classifying coincidentally correct test cases.

Component FaultLocalizationMetrics:

This component is used in the studies performed by researchers to calculate various

metrics, such as the effectiveness of fault localization approaches, and the recall and precision

of classification approaches. The component is invoked by FaultLocalizer, which provides it

with information about a faulty program, such as the program size and the line number of

the faulty statement. FaultLocalizationMetrics uses SuspiciousnessCalculator to obtain a

ranked list of statements and calculates fault localization effectiveness using the ranked list,

the line number of the faulty statement, and the program size. In order to calculate recall and

precision, FaultLocalizationMetrics uses TestClassifier to obtain the classified coincidentally

correct test cases, and uses CoverageMatrix and the line number of the faulty statement to

determine the actual coincidentally correct test cases.

5.3 Extending the Framework

The framework can be easily extended to support: (1) a new classification approach that

uses an already supported coverage spectrum, (2) a new approach for calculating suspicious-

ness scores, (3) a new type of coverage spectrum to support classification using the coverage

91

spectrum, and (4) other programming languages. In the following subsections, we discuss

the steps in implementing the extensions.

5.3.1 Adding a New Classification Approach

For this extension, the only required step is to create a concrete subclass of the Test-

Classifier class that implements the new classification approach. Any existing approach

for calculating suspiciousness scores can be combined with the new classification approach

to perform fault localization. For example, the lines of code shown in Figure 5.10 per-

form fault localization by combining the new classification approach implemented in the

NewClassifier class with the Jaccard similarity based approach for calculating suspicious-

ness scores.

TestClassifier newClassifier = new NewClassifier(testExecutionResult);

SuspiciousnessCalculator jaccardBased = new JaccardBased();

CCFramework framework = new CCFramework(newClassifier, jaccardBased);

framework.getRankedList();

Figure 5.10: Code for Adding a New Classification Approach

5.3.2 Adding a New Approach for Calculating Suspiciousness
Scores

For this extension, first, a concrete subclass of SuspiciousnessCalculator must be

created to implement the new approach for calculating suspiciousness scores. Then, the new

approach can be combined with any classification approach to perform fault localization.

For example, the lines of code shown in Figure 5.11 perform fault localization using the

function coverage based classification with the new approach for calculating suspiciousness

scores implemented in the class NewCalculator.

5.3.3 Adding a New Coverage Type

Suppose that the framework needs to be extended to support the classification of test

cases based on def-use pair coverage. In the CoverageMatrix component, a new concrete

92

TestClassifier classifier = new FnBasedClustering(testExecutionResult);

SuspiciousnessCalculator calculator = new NewCalculator();

CCFramework framework = new CCFramework(classifier, calculator);

framework.getRankedList();

Figure 5.11: Code for Adding a New Approach for Calculating Suspiciousness Scores

subclass, DUPair, of the Element class, needs to be created to represent the def-use pairs.

Then, a new concrete subclass, DUPairExecutionResult, of TestExecutionResult, needs

to be created to represent information about the coverage of def-use pairs. If collecting def-

use pair coverage does not require using a new coverage tool, a new method in the subclass

of CoverageAdapter corresponding to the coverage tool should be implemented for creating

DUPairExecutionResult instances from the trace files of the test cases. If a new coverage

tool is used for collecting def-use pair coverage, a new concrete subclass of CoverageAdapter

needs to be created to process the output of the coverage tool.

Then, the classification approach based on def-use pair coverage information needs be

implemented as a subclass, DUPairBasedClassification, of the TestClassifier class. To

implement a fault localization approach that uses the new classification approach, DUPair-

BasedClassification can be used with any existing class that implements an approach

for calculating suspiciousness scores. The required code will be similar to the code shown in

Figure 5.10.

5.3.4 Adding a New Programming Language

Adding a new programming language requires implementing a new subclass for Coverage-

Adapter to process the output of a coverage tool that collects the coverage data obtained

from the execution of programs in the new language. The rest of the framework is generic

with respect to programming languages. Thus, once the new CoverageAdapter subclass

creates an appropriate TestExecutionResult instance, the framework classes can be used

to perform fault localization for the program in the new language.

93

Chapter 6

Evaluation

In this chapter, we present three studies of our family of approaches. Section 6.1 presents

the first study, in which we compared the classification approaches for their precision and

recall, and the fault localization approaches for their effectiveness. The fault localization

approaches studied include (1) our family of fault localization approaches described in Sec-

tion 4.1, (2) approaches for calculating suspiciousness scores, described in Section 4.3, com-

bined with perfect classification, and (3) our fault localization approaches combined with

the check for the presence of coincidentally correct test cases described in Section 4.5.

Section 6.2 presents the second study, in which we assessed the effect of several con-

founding variables on the effectiveness of our family of approaches: (1) percentage of passing

test cases that are coincidentally correct, (2) test suite type, such as random, statement

adequate, and branch adequate, and (3) size of test suites.

Section 6.3 presents the results of the third study, in which we evaluated the fault local-

ization effectiveness of our approaches in the presence of two faults.

6.1 Evaluation of approaches for classification and cal-

culation of suspiciousness scores

This group of evaluations are based on the following research questions:

RQ1: What are the recall and precision of the classification approaches?

Recall is defined as the ratio of the number of coincidentally correct test cases classified

correctly to the total number of actual coincidentally correct test cases. Suppose that PClass

and PCC denote the set of test cases classified to be coincidentally correct and the set of actual

coincidentally correct test cases, respectively. Then recall is measured by the expression

|PClass∩PCC |
|PCC | .

94

Precision is defined as the ratio of the number of test cases correctly classified as coinci-

dentally correct to the total number of test cases classified as coincidentally correct. Thus,

it is measured by the expression |PClass∩PCC |
|PClass| .

Fault localization effectiveness depends on the recall and precision of the classification of

coincidentally correct test cases. Thus, evaluating the recall and precision of the classifica-

tion approaches will facilitate the understanding of the effectiveness of the fault localization

approaches.

RQ2: When coincidentally correct test cases are present, how does the fault

localization effectiveness of the approaches compare with each other and with

the Ochiai approach that does not address coincidental correctness?

We compare the approaches with the Ochiai approach because Abreu et al. [2] showed that

Ochiai is the best fault localization approach that does not address coincidental correctness.

Effectiveness of a fault localization approach is measured as follows. We measure the average

number of statements a tester using the approach needs to examine in the ranked list of

statements before finding the faulty statement. The statements to be examined include all

the statements that have a higher suspiciousness score than the faulty statement, and on

average, half the statements that share the same suspiciousness score as the faulty statement.

We divide the number of statements examined by the total number of executable program

statements to calculate the percentage of program statements examined. Higher is the

percentage, lower is the effectiveness.

Inspecting each statement and determining whether or not it is faulty may require a tester

to perform additional tasks such as setting breakpoints and analyzing execution states. Our

measure does not account for the additional effort for inspecting each statement. To compare

the effectiveness of each of our approaches with that of the Ochiai approach, we measure the

difference between the effectiveness of the Ochiai approach and that of the approach.

The effectiveness of each approach is limited by the recall and precision of the classifi-

cation approach used. Thus, the effectiveness that results when all coincidentally correct

95

test cases are correctly classified defines an upper bound for the effectiveness of each of our

approaches. We calculate two types of upper bounds, OptRm and OptJ, which denote the

effectiveness resulting from correctly classifying all coincidentally correct test cases and lo-

calizing the fault using susprm scores and suspJ scores, respectively.

RQ3: How does the fault localization effectiveness of the approaches compare

with each other and with the Ochiai approach in the absence of coincidentally

correct test cases?

When there are no coincidentally correct test cases, fault localization effectiveness cannot

be further improved by addressing coincidentally correct test cases. Applying our approaches

may even reduce the effectiveness if passing test cases are incorrectly classified as coinciden-

tally correct.

RQ4: How does the effectiveness of the approaches combined with check compare

with each other?

The goal of this research question is to investigate whether or not combining the ap-

proaches with the check for the presence of coincidentally correct test cases improves the

fault localization effectiveness.

6.1.1 Benchmarks and Test Suites

We used three benchmarks obtained from Software-artifact Infrastructure Repository [1].

They are the Unix utilities, flex, grep, and gzip, with several faulty versions of each program.

Table 6.1 shows the benchmarks together with their description, size, and the number of

faulty versions. We used only those faulty versions for which there was at least one failing

test case.

Each faulty version contains exactly one fault. Each benchmark comes with a large pool

of test cases. For each faulty version, we created 50 test suites by randomly selecting between

1–4 failing test cases and 15 passing test cases from the pool. We kept the ratio of the number

96

Table 6.1: Benchmark Characteristics
Program Description LOC #Faulty Ver-

sions
gzip-1.1.2 Compression utility 1743 16
gzip-1.2.2 2045 7
gzip-1.2.3 1889 10
gzip-1.2.4 1918 12
gzip-1.3 2018 14
grep-2.2 Text search utility 3197 18
grep-2.3 3363 8
grep-2.4 3445 18
grep-2.4.1 3465 12
flex Lexical analyzer generator 10459 6

of failing test cases to the number of passing test cases low. We assume that our approaches

are applied when all the faults that are easy to detect have already been removed. Thus,

test failure is less frequent than test success.

6.1.2 RQ1: Recall and Precision of the Classification Approaches

We executed each faulty version with each test suite. For each (faulty version, test suite)

pair, we classified the test cases using the clustering approaches and then calculated the recall

and the precision. We only considered the (faulty version, test suite) pairs having at least one

coincidentally correct test case because recall is undefined in the absence of coincidentally

correct test cases. Figure 6.1(a) and 6.1(b) show the average recall and precision of each

clustering approach and each benchmark, respectively.

The recall values of the coarser grained coverage based clustering approaches were higher.

Function coverage based clustering approach had the highest recall, followed by the branch

coverage based and the statement coverage based clustering approaches. Recall increases

if more actual coincidentally correct test cases are correctly classified. Coincidentally cor-

rect test cases that were similar to the failing test cases were classified correctly by all the

classification approaches. As explained in Section 2.3, the approaches are expected to cor-

rectly classify the passing test cases that are similar to the failing test cases. However,

for the benchmarks we studied, there were also coincidentally correct test cases that were

97

Function based clusteringStatement based clustering Branch based clustering

Flex Grep Gzip

Benchmarks

R
e
c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) Recall

Flex Grep Gzip

Benchmarks

P
re

c
is

io
n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) Precision

Figure 6.1: Recall and Precision of the Classification Approaches for Random Test Suites

not similar to the failing test cases. These test cases were more often correctly classified

by a coarse-grained coverage based approach than a fine-grained coverage based approach.

A coarse-grained coverage based approach abstracts away the differences between two test

cases by a greater extent than a fine grained coverage based approach. For example, the

function coverage based approach abstracts away the differences in the branches covered by

two test cases within the same function. Thus, a coincidentally correct test case dissimilar

to the failing test cases with respect to branch coverage often was similar to the failing test

cases with respect to function coverage. As a result, the branch coverage based clustering

approach failed to classify such a test case as coincidentally correct, while the function cov-

erage based clustering approach correctly classified the same test case, leading to a higher

recall. A similar argument applies with statement coverage based clustering and branch

coverage based clustering approaches.

All the approaches had lower recall values for flex compared to the other two benchmarks.

For flex, there was a prevalence of faults for which the coincidentally correct test cases were

not similar to the failing test cases. Such coincidentally correct test cases were not always

correctly classified because the classification approaches are expected to classify coinciden-

tally correct test cases that are similar to the failing test cases. For flex, many faults lie in the

98

main function or in functions directly called from main, such as the flexinit function that

initializes flex, or the readin() function that reads the input file containing the specification

of the language for which a lexical analyzer is to be generated. Many coincidentally correct

test cases executed these faults but then executed paths that were different from the failing

test cases. Our approaches failed to classify these test cases as coincidentally correct.

For gzip, the recall was higher than that for flex because there were fewer coincidentally

correct test cases that were dissimilar to the failing test cases. The test cases in gzip were

of two types: those that performed compression and those that performed decompression.

These two types of test cases always formed their own clusters because the test cases of

one type covered many different program elements compared to the test cases of the other

type. Suppose that a faulty statement lay in the compression code. For this fault, (1) the

failing test cases and the actual coincidentally correct test cases also performed compression

and (2) the cluster containing the test cases that performed compression was identified as

coincidentally correct because these test cases were more similar to the failing test cases.

Thus, all coincidentally correct test cases were classified correctly, resulting in a recall of 1.

For the same reason, when a fault was in the decompression code, the recall was 1. For gzip,

most faults were either in the compression code or in the decompression code. Thus, a recall

of 1 was obtained when the coincidentally correct test cases for those faults were classified.

For grep, most coincidentally correct test cases were similar to the failing test cases as

well. The grep program first compiles a pattern then matches it with the input file. Test

cases that used legal patterns executed the code for both pattern compilation and pattern

matching. Test cases that used illegal patterns did not execute the pattern matching code due

to unsuccessful pattern compilation. These two types of test cases always formed their own

clusters due to their difference in the coverage of the pattern matching code. Most faults in

grep were in the pattern matching code. In order to reach the faulty statement in the pattern

matching code, a test case must have used a legal pattern. Thus, for these faults, both the

failing and the actual coincidentally correct test cases used legal patterns. The cluster of

99

test cases that used legal patterns was also identified as the cluster of coincidentally correct

test cases. Thus, a recall of 1 was obtained.

Precision decreases when a test case that is not coincidentally correct is classified as

coincidentally correct. For our approaches, this happens if a passing test case is not coinci-

dentally correct even though it is similar to the failing test cases. We observed that all our

approaches resulted in a high precision for all benchmarks because passing test cases that

are similar to the failing test cases were coincidentally correct in most cases.

6.1.3 RQ2: Fault Localization Effectiveness in the Presence of

Coincidentally Correct Test Cases

Figure 6.2 shows the box-plots of the difference in effectiveness of the approaches from

the Ochiai approach for all (faulty version, test suite) pairs for which there was at least one

coincidentally correct test case. For flex, grep, and gzip, there were 254, 151, and 209 such

pairs, respectively. The figure also shows the boxplots of the difference in effectiveness of

OptRm and OptJ from the Ochiai approach. Each box-plot corresponds to a benchmark. The

x-axis of each box-plot represents the fault localization approaches. The y-axis represents

the difference in effectiveness from the Ochiai approach.

Most box plots lay above the value of 0. Thus, all approaches were more effective than

the Ochiai approach when coincidentally correct test cases were present. The median of the

difference in effectiveness varied from 0% to 15%.

Approaches using function coverage based clustering were more effective than the ap-

proaches using branch coverage based clustering, which, in turn, were more effective than

the approaches using statement coverage based clustering. Function coverage based clus-

tering resulted in the highest recall while achieving similar precision values compared to

statement and branch coverage based clustering. A classification with a low recall value

means that only a subset of all coincidentally correct test cases were classified correctly. As

a result, non-faulty statements executed by the classified subset of the coincidentally cor-

rect test cases obtain a suspiciousness score equal or higher to that of the faulty statement.

100

StRm StJ BrRm BrJ FnRm FnJ OptRm OptJ

−
1
0

0
1
0

2
0

3
0

4
0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(a) flex

StRm StJ BrRm BrJ FnRm FnJ OptRm OptJ

−
1
0

0
1
0

2
0

3
0

4
0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(b) grep

StRm StJ BrRm BrJ FnRm FnJ OptRm OptJ

−
1
0

0
1
0

2
0

3
0

4
0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(c) gzip

Figure 6.2: Difference in Effectiveness from the Ochiai approach in the Presence of Coinci-
dentally Correct Test Cases

Thus, a lower recall results in lower effectiveness. Therefore, function coverage clustering

based approaches were more effective than the other approaches. For grep, the effectiveness

of the function coverage clustering based approaches were not appreciably higher than that

of the other approaches because the recall of function coverage based clustering was not

appreciably higher than that of the other classification approaches.

Based on the pairwise Student’s t-test, for the benchmarks flex and gzip, approaches

using function coverage based clustering were significantly more effective than those using

branch and statement coverage based clustering, within 95% confidence interval. However,

such statistical significance was not observed for grep.

101

Approaches using suspJ were more effective than the ones using susprm. We explain

the reason assuming a perfect classification. For such a classification, suspJ assigned the

faulty statement and the non-faulty statements executed by every coincidentally correct

test case the highest suspiciousness score. However, susprm assigned the faulty statement

and non-faulty statements executed by any subset of the coincidentally correct test cases

the highest suspiciousness score. Thus, while both susprm and suspJ assigned the faulty

statement the highest score, susprm assigned more non-faulty statements the highest score

compared to suspJ and resulted in a lower effectiveness. Based on the pairwise Student’s

t-test, approaches using suspJ were significantly more effective than those using susprm,

within 95% confidence interval, for all the benchmarks.

An example of a gzip fault shown in Table 6.2 illustrates why suspJ based approaches per-

formed better than susprm based approaches. The table shows two statements, the passing

and failing test cases that execute the statements, and the susprm and suspJ scores assigned

to the statements, assuming that both the recall and the precision of the classification is 1.

The statement shown in bold is faulty. Test cases 36, 56, 86, 126, and 176 are coincidentally

correct. The statement in the first row is executed by a subset of coincidentally correct test

cases. When all the coincidentally correct test cases are removed to calculate susprm, neither

statement is executed by any passing test case. Thus, they both have a suspiciousness score

of 1. However, when suspJ is calculated, the faulty statement obtains a higher score than

the non-faulty statement.

Table 6.2: Comparison of susprm and suspJ

Statements Passing Tests Failing

Tests

susprm suspJ

if (len >= nice match)

break;

56, 86, 126, 176 13, 113 1.0 0.8

if (compr level >= 3) 36, 56, 86, 126,
176

13, 113 1.0 1.0

The FnJ approach resulted in the highest effectiveness for all the benchmarks, among

which the highest effectiveness was observed for flex. This can be explained by comparing

the OptJ effectiveness for the three benchmarks. The OptJ effectiveness for flex was higher

102

than that for the other benchmarks. This is because most flex faults were located close

to the program entry, such as in the main function or functions directly called by main.

Coincidentally correct test cases that executed these faults covered different paths in the

remainder of the program. Thus, there were many non-faulty statements that were covered

by some but not all coincidentally correct test cases. The suspiciousness score of the faulty

statement assigned by the OptJ approach surpassed that of these non-faulty statements

because statements that are executed by every coincidentally correct test case obtained the

highest score in OptJ. For grep and gzip, the effectiveness of the OptJ approach was less

than that for flex because the faulty statements were not close to the program entry. The

FnJ approach performed nearly as effectively as OptJ because the recall and precision of

function coverage based clustering were both close to 1. Thus, the effectiveness of FnJ was

higher for flex compared to the other two benchmarks.

We also observed that for flex, the effectiveness of OptRm was lower than that of the other

susprm based approaches, such as StRm, even though OptRm assumes perfect classification.

For flex, the number of coincidentally correct test cases in the test suites was high. In

the OptRm approach, all the actual coincidentally correct test cases were removed and the

resulting loss of information caused a reduction in effectiveness. However, for the susprm

based approaches, such as StRm, because the classification usually achieved an average

precision close to 1 and an average recall of 0.4, only a subset of the actual coincidentally

correct test cases was removed. Thus, the resulting loss in information was lower than that

for OptRm and consequently, the effectiveness was higher.

6.1.4 RQ3: Fault Localization Effectiveness in the Absence of Co-
incidentally Correct Test Cases

We followed the same method as in the study of RQ2 to obtain the box plots of the

difference in effectiveness values for RQ3. For RQ3, we only considered the (faulty version,

test suite) pairs for test suites that did not contain any coincidentally correct test case for the

faulty version. For flex, grep, and gzip, there were 248, 251, and 389 such pairs, respectively.

103

Figure 6.3 shows the box plots. We do not show plots for OptJ and OptRm because it is

not meaningful to measure the upper bound of effectiveness for RQ3.

StRm StJ BrRm BrJ FnRm FnJ

−
6

0
−

4
0

−
2

0
0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(a) flex

StRm StJ BrRm BrJ FnRm FnJ

−
6

0
−

5
0

−
4

0
−

3
0

−
2

0
−

1
0

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(b) grep

StRm StJ BrRm BrJ FnRm FnJ

−
6

0
−

5
0

−
4

0
−

3
0

−
2

0
−

1
0

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(c) gzip

Figure 6.3: Difference in Effectiveness from to the Ochiai approach in the Absence of Coin-
cidentally Correct Test Cases

All the approaches had a lower fault localization effectiveness compared to the Ochiai

approach. This is expected because classifying coincidentally correct test cases when there

is none can only result in false positives. Calculating suspiciousness scores using the clas-

sification results in non-faulty statements executed by these false positives to obtain higher

suspiciousness scores compared to the faulty statement, thereby reducing fault localization

effectiveness.

Approaches based on suspJ reduce the effectiveness by a larger amount compared to

the approaches based on susprm. In the absence of coincidentally correct test cases, suspJ

104

assigns the faulty statement a 0 suspiciousness score because Ps becomes φ in Equation 4.1

for the faulty statement. Thus, suspJ causes the faulty statement to obtain the lowest

suspiciousness score.

For susprm, the suspiciousness score of the faulty statement, f , remains 1, as passed(f) =

0 and failed(f) = totFailed in Equation 1.1, after removing the test cases. However, after

removing the test cases, the non-faulty statements that are executed by all failing test cases

and the removed passing test cases also obtain a suspiciousness score of 1. Thus, susprm

causes these non-faulty statements to obtain the same suspiciousness score as the faulty

statement, thereby reducing effectiveness. However, the extent of this reduction is lower

than that for suspJ .

6.1.5 RQ4: Fault Localization Effectiveness with Tester Feedback
Based Check

To study RQ4, we only considered the combination of the check with each of the three

classification approaches and the Jaccard similarity based approach for calculating suspi-

ciousness scores. We did not use susprm scores as suspJ scores have been shown to result

in more effective fault localization compared to susprm scores. This results in the following

three approaches: Check+StJ, Check+BrJ, and Check+FnJ, which denote the check com-

bined with statement, branch, and function coverage based clustering, respectively, along

with the Jaccard similarity based suspiciousness score calculation.

Figure 6.4 shows the effectiveness of the three approaches for all (faulty version, test

suite) pairs, which include both the pairs with coincidentally correct tests as well as those

without coincidentally correct tests.

As the figures show, the lower-quartile of all boxes are greater than or equal to 0. Due to

the introduction of the check for the presence of coincidentally correct tests, (1) the effective-

ness was not reduced for the (faulty version, test suite) pairs without coincidentally correct

test cases and (2) the effectiveness was improved for the pairs with coincidentally correct test

cases. Approaches based on function coverage clustering performed better than the other

105

Check+StJ Check+BrJ Check+FnJ OptJ

0
1

0
2

0
3

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(a) flex

Check+StJ Check+BrJ Check+FnJ OptJ

0
1

0
2

0
3

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(b) grep

Check+StJ Check+BrJ Check+FnJ OptJ

0
1

0
2

0
3

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s
 f

ro
m

 O
c
h

ia
i

(c) gzip

Figure 6.4: Difference in Effectiveness of the Approaches Applied with Check from Ochiai

types of clustering based approaches. The effectiveness for flex was higher compared to the

other two benchmarks. These results are consistent with RQ2 results.

6.2 Evaluation Addressing Confounding Variables

We present further evaluation of Check+StJ, Check+BrJ, and Check+FnJ approaches to

address the effects of three confounding variables. We state the following research questions

to define our goals.

RQ5: How does the effectiveness of each approach vary with varying levels of

percentage of the passing test cases that are actually coincidentally correct?

106

Wang et al. [48] showed that if a higher percentage of the passing test cases is coinci-

dentally correct, the fault localization effectiveness of the Ochiai approach is lowered. Thus,

with a higher percentage, there is more opportunity to improve the fault localization effec-

tiveness by applying our approaches.

RQ6: How does the effectiveness of each approach vary for different types of

test suites, such as random, statement coverage adequate, and branch coverage

adequate?

We consider the type of test suites to be a confounding factor because previous stud-

ies have shown that fault localization effectiveness varies with the type of the test suites.

We consider three types of test suites: (1) random, (2) statement coverage adequate, and

(3) branch coverage adequate. These types of test suites are commonly used in industry and

research.

RQ7: How does the effectiveness of each approach vary for test suites of different

sizes?

A test suite containing more test cases can achieve higher coverage, which can provide

more information for fault localization. We suspect that when large test suites are used,

fault localization effectiveness using the Ochiai approach may already be high, leaving less

opportunity for improving the effectiveness by addressing coincidental correctness.

6.2.1 RQ5: Effect of Percentage of Coincidentally Correct Test

Cases

We evaluated our approaches with test suites containing five levels of percentage of co-

incidentally correct test cases: 20%, 40%, 60%, 80%, and 100%. To create a test suite

containing k% coincidentally correct test cases, we randomly selected 1–5 failing test cases

and 20 passing test cases among which k/5 were coincidentally correct. We used 10 test

suites for each percentage level and for each faulty version.

107

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e
c
a
ll

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e
c
a
ll

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e

c
a

ll

(c) Function Coverage Based Clustering

Figure 6.5: Variation of Recall for flex with Percentage of Coincidentally Correct Test Cases

The box-plots in Figures 6.5, 6.6, and 6.7 show how the recall of each classification ap-

proach varied with the percentage of coincidentally correct test cases for each benchmark.

The x-axis of each box-plot represents the percentage of passing test cases that are coinci-

dentally correct, and the y-axis represents recall. We explain with an example what each

box-plot represents. In Figure 6.5(a), the box-plot corresponding to the value 80 on the

x-axis shows the distribution of the recall values obtained when coincidentally correct test

cases were classified using the statement coverage based clustering approach, for the faulty

versions of flex, using test suites for which 80% of the passing test cases were coincidentally

correct.

As the figures show, the recall was generally reduced when the percentage of coincidentally

correct test cases increased. The test suites with higher percentage levels contained more

108

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e
c
a
ll

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e
c
a
ll

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e

c
a

ll

(c) Function Coverage Based Clustering

Figure 6.6: Variation of Recall for grep for Varying Percentage of Coincidentally Correct
Test Cases

coincidentally correct test cases that were not similar to the failing test cases. As explained

in Section 6.1, such coincidentally correct test cases were not correctly classified by the

approaches, thereby reducing recall. Selecting more coincidentally correct test cases in the

test suites with the higher percentage levels increased the likelihood of selecting coincidentally

correct test cases that are dissimilar to the failing test cases.

The recall of statement coverage based clustering was lower than the other two clustering

approaches. This is consistent with our earlier observation presented in Section 6.1.

The box-plots in Figures 6.8, 6.9, and 6.10 show how the precision of each classification

approach varied with the percentage of coincidentally correct test cases for each benchmark.

These box-plots can be interpreted in a similar way as the box-plots for recall. As the

109

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e
c
a
ll

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e
c
a
ll

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

R
e

c
a

ll

(c) Function Coverage Based Clustering

Figure 6.7: Variation of Recall for gzip for Varying Percentage of Coincidentally Correct
Test Cases

figures show, the precision generally increased for all the approaches with an increase in the

percentage of coincidentally correct test cases. This is expected because when k% of the

passing test cases are coincidentally correct, the probability that even a randomly selected

test case is coincidentally correct is k/100. Additionally, for lower percentage levels, the

test suites contained more passing test cases that were not coincidentally correct but still

similar to the failing test cases. This type of passing test cases were incorrectly classified

as coincidentally correct because the classification approaches always classify passing test

cases that are similar to failing test cases. Thus, this type of test cases resulted in reduced

precision. Because test suites with low percentage levels selected more test cases that were

110

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(c) Function Coverage Based Clustering

Figure 6.8: Variation of Precision for flex with Percentage of Coincidentally Correct Test
Cases

passing but not coincidentally correct, these test suites were more likely to contain the type

of passing test cases that caused a reduction in precision.

Figures 6.11, 6.12, and 6.13 show the effectiveness of the Check+StJ, Check+BrJ, Check+FnJ,

and OptJ approaches for the benchmarks flex, grep, and gzip, respectively. The plots cor-

responding to OptJ are shaded grey. The x-axis of each plot shows the percentage of coin-

cidentally correct test cases and the y-axis shows the difference in effectiveness from to the

Ochiai approach.

For flex, the medians and quartiles of the OptJ box-plots for levels of the percentage of

coincidentally correct test cases between 40% and 80% were nearly the same. Thus, the OptJ

effectiveness did not increase with the increase in the percentage of coincidentally correct

111

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(c) Function Coverage Based Clustering

Figure 6.9: Variation of Precision for grep for Varying Percentage of Coincidentally Correct
Test Cases

test cases. This is due to the nature of flex faults. Most faults in flex were in the main

function or in functions directly called by main. Most passing test cases were coincidentally

correct for these faults. The passing test cases that were not coincidentally correct were

the ones that printed usage and covered only a few statements. Coincidentally correct test

cases covered most of the program. Thus, increasing the percentage of coincidentally correct

test cases decreased the Ochiai suspiciousness score of most statements and the rank of the

faulty statement was not altered. Thus, the opportunity of improving the rank by addressing

coincidental correctness was also unaltered. The difference in effectiveness of OptJ from the

Ochiai approach did not increase with an increase in the percentage of coincidentally correct

test cases. Because OptJ defines the upper bound on the effectiveness, the difference in

112

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.2

0
.4

0
.6

0
.8

1
.0

Percentage of Coincidentally Correct Tests

P
re

c
is

io
n

(c) Function Coverage Based Clustering

Figure 6.10: Variation of Precision for gzip for Varying Percentage of Coincidentally Correct
Test Cases

effectiveness from the Ochiai approach did not increase for the Check+StJ, Check+BrJ, and

Check+FnJ approaches as well.

For both grep and gzip, the difference in effectiveness of OptJ from the Ochiai approach

increased with the percentage of coincidentally correct test cases. Unlike flex, most gzip and

grep faults were not located close to the program entry, such as in the main function. Thus,

coincidentally correct test cases did not cover most of the program and the opportunity for

improving the rank of the faulty statement increased with the increase in the percentage of

coincidentally correct test cases.

The difference in effectiveness from the Ochiai approach of the Check+StJ, Check+BrJ,

and Check+FnJ approaches initially increased with an increase in the percentage of coinci-

113

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(a) Check+StJ

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(b) Check+BrJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(c) Check+FnJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(d) OptJ

Figure 6.11: Variation of Effectiveness for flex for Varying Percentage of Coincidentally
Correct Test Cases

dentally correct test cases. However, when the percentage was above 60 or 80, the difference

in effectiveness of the approaches was reduced. The difference in effectiveness initially im-

proved because with more coincidentally correct test cases there was more opportunity for

improvement. At high percentages our approaches could not capitalize on the opportunity

because when most test cases were coincidentally correct, most non-faulty statements were

also executed by coincidentally correct test cases. Thus, addressing coincidental correctness

increased the suspiciousness score of both the faulty and non-faulty statements. Therefore,

the rank of the faulty statement did not improve relative to the non-faulty statements.

We did not perform pairwise Student’s t-test to investigate whether or not the observa-

tions above were statistically significant. Student’s t-test is not applicable because the test

114

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(a) Check+StJ

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(b) Check+BrJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(c) Check+FnJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(d) OptJ

Figure 6.12: Variation of Effectiveness for grep for Varying Percentage of Coincidentally
Correct Test Cases

suites used for the different levels of the percentage values were different. Therefore, two ef-

fectiveness values obtained using test suites containing two different levels of the percentage

of coincidentally correct test cases cannot be compared in pairs.

6.2.2 RQ6: Effect of Test Suite Type

We performed a study with random, statement adequate, and branch adequate test

suites. We created coverage adequate test suites of size similar to the random test suites.

Each coverage adequate test suite contained 1–5 failing test cases and 20 passing test cases

except when satisfying the coverage criteria required more test cases. We did not control

the percentage of coincidentally correct test cases and the ratio of the number of failing test

115

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(a) Check+StJ

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(b) Check+BrJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(c) Check+FnJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Percentage of Coincidentally Correct Tests

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(d) OptJ

Figure 6.13: Variation of Effectiveness for gzip for Varying Percentage of Coincidentally
Correct Test Cases

cases to the number of passing test cases. It was not always possible to control the above

variables while satisfying the coverage criteria.

In Section 6.1, we described the method used to select random test suites. Below, we

describe the method used to select the coverage adequate test suites. We selected each

statement (or branch) coverage adequate test suite such that it achieved the same statement

(or branch) coverage as the entire pool of test cases. The pools of test cases contained between

75% to 85% statement and branch coverage. To generate each test suite, we first selected

a random failing test case. We continued selecting one additional failing test case at each

step until the selected failing test cases achieved the same statement (or branch) coverage as

all the failing test cases in the pool. At each step the failing test case was selected using a

116

greedy strategy. We selected the test case that covered the maximum number of statements

(or branches) that were not covered by the already selected test cases. We applied the

same strategy to select a set of passing test cases that covered the statements (or branches)

executed by the passing test cases in the pool. Sometimes test adequacy was achieved with

less than 20 passing test cases. We randomly selected additional passing test cases until the

test suite contained 20 passing test cases.

Function based clusteringStatement based clustering Branch based clustering

Flex Grep Gzip

Benchmarks

R
e

c
a

ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) Recall Statement Adequate

Flex Grep Gzip

Benchmarks

R
e

c
a

ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) Recall Branch Adequate

Flex Grep Gzip

Benchmarks

P
re

c
is

io
n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) Precision Statement Adequate

Flex Grep Gzip

Benchmarks

P
re

c
is

io
n

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(e) Precision Branch Adequate

Figure 6.14: Recall and Precision of the Classification Techniques for Coverage-Adequate
Test Suites

In Figure 6.1, we presented the recall and precision of the classification approaches using

random test suites. Figure 6.14 shows the recall and precision of the classification approaches

117

using statement coverage adequate and branch coverage adequate test suites. Comparing

with random test suites, we observed that when coverage adequate test suites were used,

the recall remained high but the precision was reduced. The reduction in precision can be

attributed to one or more of the following reasons:

� In many statement coverage and branch coverage adequate test suites, only less than

10% of the passing test cases were coincidentally correct. When the number of coin-

cidentally correct test cases is low, a classification approach is less likely to classify

only the actual coincidentally correct test cases. This results in low precision. The

low number of coincidentally correct test cases resulted from the greedy method of

selecting test cases. If two test cases had similar coverage and one was selected, our

method did not select the other. For many faults, the coincidentally correct test cases

had similar coverage. Thus, selecting a few of them precluded the selection of the rest.

� During our test selection process, at each step, we selected a test case that had the

maximum possible distance from the already selected test cases. This prevented the

formation of natural clusters in the test vectors and resulted in the test vectors to

be spread out in the space of vectors as much as possible. In the absence of natural

clusters, k-means clustering was less accurate.

� The coverage adequate test suites often contained passing test cases that were not

coincidentally correct but were similar to the failing test cases. Satisfying the coverage

criteria often required the inclusion of these test cases while creating the test suites as

these test cases often covered statements/branches that other test cases did not.

The precision of statement and branch coverage based clustering approaches were higher

than that of function coverage based clustering approaches. This happened due to the

presence of the passing test cases that were not coincidentally correct but were similar to

the failing test cases. These test cases often executed the function containing the faulty

statement but did not execute the faulty statement. Function coverage based clustering

abstracted away the differences within individual functions and failed to distinguish these

118

test cases from the actual coincidentally correct test cases. Statement and branch coverage

based clustering approaches magnified the differences within each function and often were

able to distinguish these passing tests from the actual coincidentally correct test cases.

Check+StJ Check+BrJ Check+FnJ OptJ

−
2

0
−

1
0

0
1

0
2

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(a) flex Statement Adequate

Check+StJ Check+BrJ Check+FnJ OptJ

−
2

0
−

1
0

0
1

0
2

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(b) flex Branch Adequate

Check+StJ Check+BrJ Check+FnJ OptJ

−
2

0
−

1
0

0
1

0
2

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(c) grep Statement Adequate

Check+StJ Check+BrJ Check+FnJ OptJ

−
2

0
−

1
0

0
1

0
2

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(d) grep Branch Adequate

Check+StJ Check+BrJ Check+FnJ OptJ

−
2

0
−

1
0

0
1

0
2

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(e) gzip Statement Adequate

Check+StJ Check+BrJ Check+FnJ OptJ

−
2

0
−

1
0

0
1

0
2

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(f) gzip Branch Adequate

Figure 6.15: Difference in Effectiveness from the Ochiai Approach for Test Suite Types

119

In Figure 6.4, we presented the box-plots for the difference in effectiveness of the ap-

proaches from the Ochiai approach obtained by using random test suites. Figure 6.15 shows

the difference in effectiveness when statement and branch adequate test suites were used.

The effectiveness for flex did not change. This is because in most test suites the number

of coincidentally correct test cases was low. The faulty statement already had the highest

suspiciousness score and was identified during the Checking phase of our approach. For grep,

the effectiveness was reduced for all the approaches due to the reduction in the precision of

the classification. The incorrectly classified passing test cases had a high coverage and using

them to calculate suspiciousness scores caused many non-faulty statements to be ranked

higher than the faulty statement.

For gzip, the effectiveness of the approaches improved despite the reduction in precision

because the incorrectly classified passing test cases had a low coverage and affected the sus-

piciousness scores of only a few statements. For example, each coverage adequate test suite

in gzip contained three types of passing test cases: (1) test cases that caused the program

to print usage information, (2) test cases that performed compression, and (3) test cases

that performed decompression. Inclusion of all these three types of test cases was required

to achieve the target coverage. When the faulty statement was in the code for compression,

the coincidentally correct test cases were also the ones that performed compression. When

clustered, test cases of type (2) clustered with test cases of type (1), while the test cases

of type (3) formed a different cluster. The reason is that while the test cases of type (1)

were dissimilar to both the test cases of types (2) and (3), the dissimilarity with test cases

of type (3) was larger. The test cases of type (1) neither covered the program elements in

the compression code, nor the ones in the decompression code, but the compression code

comprised fewer program elements than the decompression code. Because the compression

test cases were classified as coincidentally correct, test cases that caused printing usage in-

formation were also classified as coincidentally correct. However, this incorrect classification

did not affect effectiveness because these incorrectly classified test cases covered only a few

statements.

120

We did not perform pairwise Student’s t-test to investigate whether or not the observa-

tions above were statistically significant. Student’s t-test is not applicable because the test

suites of different types contained different test cases. Therefore, two effectiveness values

obtained using test suites of two different types cannot be compared in pairs.

6.2.3 RQ7: Effect of the Size of Test Suites

We evaluated our approaches with test suites of 5 different sizes: 20, 40, 60, 80, and 100.

Test suites of each type were constructed by randomly selecting passing and failing test cases

from the test pools. We maintained the ratio of failing and passing test cases at 1/5 in all

the suites. We did not control for the percentage of coincidentally correct test cases because

for some faults there were not enough coincidentally correct test cases to maintain a fixed

percentage for large test suites.

The box-plots in Figures 6.16, 6.17, and 6.18 show how the recall of each classification

approach varied with the size of test suites for each benchmark. The box-plots in Fig-

ures 6.19, 6.20, and 6.21 show similar plots for precision. There was no strong evidence

suggesting that test suite size impacts recall and precision.

Figures 6.22, 6.23, and 6.24 respectively show the effectiveness of the approaches for

variation in the size of test suites for the benchmarks flex, grep, and gzip. There was no

strong evidence suggesting that test suite size affects effectiveness. The OptJ effectiveness

did not vary with test suite size, indicating that the opportunity for improving effectiveness

by addressing coincidentally correct test cases also did not change with size of test suites.

We did not perform pairwise Student’s t-test to investigate whether or not the obser-

vations above were statistically significant. Student’s t-test is not applicable because the

test suites of different sizes contained different test cases. Therefore, two effectiveness values

obtained using test suites of two different sizes cannot be compared in pairs.

121

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e
c
a
ll

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e
c
a
ll

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e

c
a

ll

(c) Branch Coverage Based Clustering

Figure 6.16: Variation of Recall for flex with Size of Test Suites

6.3 Evaluation in the Presence of Two Faults

We evaluated the fault localization effectiveness of Check+StJ, Check+BrJ, and Check+FnJ

for programs containing two faults, based on the following research questions:

RQ8: What is the effectiveness of the approaches for each of the faults?

Our goal is to investigate how the effectiveness of localizing each fault improves by ad-

dressing coincidentally correct test cases. We assume that a tester will localize each fault

separately based on the fault localization results.

122

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e
c
a
ll

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e
c
a
ll

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e

c
a

ll

(c) Function Coverage Based Clustering

Figure 6.17: Variation of Recall for grep with Size of Test Suites

RQ9: How is the effectiveness for one fault associated with the effectiveness for

the other fault?

We want to answer this research question because we speculate that classifying test cases

as either coincidentally correct or not coincidentally correct may favor one fault more than

the other. Thus, upon addressing coincidentally correct test cases, the effectiveness for one

fault may improve, while that for the other fault may be reduced.

We first created faulty versions each containing two faults, by activating all possible

pairs of single faults in version-1 of flex, version-3 of grep and version-1 of gzip. We could

not use version-1 and version-2 of grep because every test case failed for every multiple fault

program created for those versions. We executed each 2-fault version with the large pool of

test cases available for the corresponding benchmark. Finally, for each version, we created

123

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e
c
a
ll

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e
c
a
ll

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

R
e

c
a

ll

(c) Function Coverage Based Clustering

Figure 6.18: Variation of Recall for gzip for with Size of Test Suites

test suites containing 1–5 failing test cases and 20 passing test cases by randomly grouping

failing and passing test cases from the large pool. For each (faulty version, test suite) pair,

we applied the approaches Check+StJ, Check+BrJ, and Check+FnJ. We only considered the

pairs for which each faulty statement was covered by at least one failing test case. This is

because a fault cannot be localized if no failing test case that executes the faulty statement

is available. In each (faulty version, test suite) pair, among the two faults, we denoted the

faulty statement ranked higher with respect to the Ochiai suspiciousness scores by fault1,

and the fault ranked lower by fault2.

Figure 6.25 shows the distribution of the difference in effectiveness of our approaches from

the Ochiai approach for each of fault1 and fault2 in each benchmark. The figure shows that

the approaches improved the effectiveness for both fault1 and fault2 in all the cases with

124

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(c) Function Coverage Based Clustering

Figure 6.19: Variation of Precision for flex with Size of Test Suites

the exception that the effectiveness of Check+FnJ for flex was reduced for fault2 compared

to the Ochiai approach. For flex, 50% of the faults were located in make tables() function.

These faults are hard to reach because they are guarded by many conditions. Less than 1%

of the passing test cases for these faults were coincidentally correct. Because the execution of

make tables() often did not result in the execution of the faults, function coverage based

clustering resulted in incorrect classification of coincidentally correct test cases for these

faults.

Given the above argument, function coverage based clustering should have performed

poorly when these faults were present individually. However, in single fault cases, the coin-

cidentally correct test cases often did not get selected in the test suites because there were

many passing test cases. Among the test cases that passed in the presence of a single fault,

125

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(c) Function Coverage Based Clustering

Figure 6.20: Variation of Precision for grep with Size of Test Suites

many failed when multiple faults were present. Thus, in the presence of multiple faults,

because there were fewer passing test cases, the likelihood of selecting the coincidentally test

cases increased while creating the test suites. The test suites contained the coincidentally

correct test cases more often.

Figure 6.26 addresses the second research question. It shows the percentage of the fol-

lowing three types of cases for each benchmark:

1. Both improved : Cases where the effectiveness for both faults improved at the same

time.

2. Exactly one improved : Cases where the effectiveness improved for exactly one fault.

3. None improved : Cases where the effectiveness did not improve for any fault.

126

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(a) Statement Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(b) Branch Coverage Based Clustering

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Size of Test Suites

P
re

c
is

io
n

(c) Function Coverage Based Clustering

Figure 6.21: Variation of Precision for gzip with Size of Test Suites

The effectiveness for both faults improved simultaneously in the majority of the cases.

For such cases, the passing test cases that are coincidentally correct for one fault were also

coincidentally correct for the other. Thus, when the coincidentally correct test cases were

classified with high recall and precision for one fault, the coincidentally correct test cases for

the other fault were also classified with high recall and precision.

Deeper analysis of the above three cases revealed that cases (1) and (3) happened when

the functions containing the two faults had a caller-callee relationship directly or through

other intermediate calls. Under such situations, the coincidentally correct test cases that

executed one faulty statement also executed the other. Therefore, test cases that were

coincidentally correct with respect to one fault covered a similar set of statements compared

to those that are coincidentally correct with respect to the other fault. Thus, the classification

127

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(a) Check+StJ

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(b) Check+BrJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(c) Check+FnJ

0 20 40 60 80

−
2

0
0

1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(d) OptJ

Figure 6.22: Variation of Effectiveness for with Size of Test Suites

approaches either correctly classified the coincidentally correct test cases for both faults

resulting in case (1), or for none, resulting in case (3). Due to a similar reason, when the

functions containing the faults did not have a direct or indirect caller-callee relationship, the

coincidentally correct test cases for the two faults covered very different sets of statements.

Thus, clustering was able to classify the coincidentally correct test cases for one fault but

not for the other. This resulted in case (2).

Based on this observation, we recommend that a tester follow the strategy described

below while localizing multiple faults. If a faulty statement is identified in the ranked list

of statements, a tester has two choices: (1) continue inspecting the ranked list to find more

faulty statements, or (2) fix the already found fault and perform fault localization again. We

128

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(a) Check+StJ

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(b) Check+BrJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(c) Check+FnJ

0 20 40 60 80

−
2

0
0

1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(d) OptJ

Figure 6.23: Variation of Effectiveness for grep with Size of Test Suites

recommend that the tester should inspect a few more statements to exploit the possibility of

finding faults that are located in functions having direct or indirect caller-callee relationships.

However, if none of the closely ranked statements are faulty, addressing coincidentally correct

test cases for one faulty statement must have caused a reduction in the ranks of the other

faulty statements. Therefore, the tester should fix the already identified fault and perform

fault localization again.

6.4 Threats to Validity

External: Threats to external validity stem from the nature of benchmarks used. The

programs are relatively small and may not represent all real world programs. The runtime

129

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(a) Check+StJ

20 40 60 80 100

−
2
0

0
1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n
c
e
 i
n
 E

ff
e
c
ti
ve

n
e
s
s

(b) Check+BrJ

20 40 60 80 100

−
2

0
0

1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(c) Check+FnJ

0 20 40 60 80

−
2

0
0

1
0

2
0

3
0

4
0

Size of test suites

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(d) OptJ

Figure 6.24: Variation of Effectiveness for gzip with Size of Test Suites

of our approaches depends on the number of program elements, which is large for large

programs. Thus, the approaches, particularly the ones using fine-grained coverage spectra

may not scale for large programs. However, this is true for any fault localization approach

that uses program spectra.

Internal: Distribution of the types of faults presents a threat to internal validity. Depending

on the location and nature of faults, coincidentally correct test cases for some faults may be

classified more accurately compared to other faults. We plan to study the effectiveness of

our approaches for faults of different types at diverse program locations. A mutation tool

such as MuJava [36] can be used for this purpose.

130

Check+BrJ Check+FnJ Check+StJ

−
4

0
−

2
0

0
2

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(a) flex, fault1

Check+BrJ Check+FnJ Check+StJ

−
4

0
−

2
0

0
2

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(b) flex, fault2

Check+BrJ Check+FnJ Check+StJ

−
4

0
−

2
0

0
2

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(c) grep, fault1

Check+BrJ Check+FnJ Check+StJ

−
4

0
−

2
0

0
2

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(d) grep, fault2

Check+BrJ Check+FnJ Check+StJ

−
4

0
−

2
0

0
2

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(e) gzip, fault1

Check+BrJ Check+FnJ Check+StJ

−
4

0
−

2
0

0
2

0
4

0

Approaches

D
if
fe

re
n

c
e

 i
n

 E
ff
e

c
ti
ve

n
e

s
s

(f) gzip, fault2

Figure 6.25: Difference in Effectiveness of the Approaches from the Ochiai approach for Each
Fault in Programs Containing Two Faults

Another threat to internal validity arises from the nature of the test cases. All test

cases that we used are system test cases. Clustering test cases based on a coarse-grained

131

Flex Grep Gzip

Benchmarks

P
e

rc
e

n
ta

g
e

 o
f

C
a

s
e

s
0

2
0

4
0

6
0

8
0

1
0

0

Both Improved

Exactly One Improved

None Improved

Figure 6.26: Distribution of the Cases When the Effectiveness Improved for Both Faults,
Exactly One Fault, and for No Fault

coverage metric, such as function coverage may have been more accurate because of the use

of system test cases. In the presence of unit test cases, a coarse-grained coverage may not

be as accurate for the classification of coincidentally correct test cases. A unit test typically

tests a single function, and will only cover the function under test and the functions called

by the function under test. Thus, function coverage will not provide adequate information

for distinguishing the coincidentally correct test cases.

Other threats to internal validity arise due to the characteristics of test suites that we did

not control for. In our studies to evaluate the effect of test suite size and test objective on

the fault localization effectiveness, we did not control the percentage of coincidentally correct

tests. Maintaining a certain percentage was not always feasible because a sufficient number

of coincidentally correct test cases was not always available. However, the percentage of

coincidentally correct tests may have an effect on the fault localization effectiveness. In the

study for evaluating the effect of test objectives, we did not control the ratio of the number

of failing test cases to the number of passing test cases. It was not possible to control the

ratio and satisfy the coverage criteria at the same time. The variation of the ratio could have

an effect on the fault localization effectiveness. Abreu et al. [2] showed that increasing the

number of failing test cases, up to a certain number, improves the effectiveness of the Ochiai

132

approach. Thus, increasing the ratio of the number of failing to the number of passing test

cases may reduce the opportunity of improving fault localization effectiveness by addressing

coincidental correctness.

In the study for evaluating the change in fault localization effectiveness with different

types of test suites, we selected the test suites for each benchmark from a large pool of test

cases for the benchmark such that each selected test suite achieved the same coverage as the

pool of test cases. However, the pools for different benchmarks and program versions did not

have the same level of coverage. Thus, the coverage of the test suites was different for different

benchmarks, and the difference may have influenced the fault localization effectiveness for

the benchmarks.

Construct: A threat to construct validity results from the fact that the percentage of

code examined may not correctly represent the effort to locate the faulty statement. As

a tester inspects statements in descending order of suspiciousness scores, the effect needed

for determining the correctness of each statement may differ for different statements. The

percentage of code examined does not address these differences in effort, although it is a

currently accepted way of measuring effectiveness [8, 29].

133

Chapter 7

Conclusions

We summarize our conclusions on (1) the benefits of mitigating the effect of coinciden-

tally correct test cases for fault localization, (2) the choice of the granularity of coverage

spectra in classifying coincidentally correct test cases, (3) the comparison of the approaches

for calculating suspiciousness scores, (4) the role of tester feedback in mitigating the effect of

coincidental correctness, (5) the effect of the characteristics of test suites on our approaches,

and (6) localizing multiple faults using our approaches.

Benefits of Mitigating the Effect of Coincidental Correctness: Overall, our ap-

proaches can improve the fault localization effectiveness. In our studies, the median im-

provement in fault localization effectiveness for all the approaches and benchmarks varied

between 0% to 15%. For faulty statements that were close to the program entry point, the im-

provement in fault localization effectiveness was higher compared to other faulty statements.

In general, the extent of the improvement depends on the accuracy of the classification of

coincidentally correct test cases and on the extent to which the presence of coincidentally

correct test cases lowers the rank of the faulty statement.

Choice of the Granularity of Coverage Spectra: For randomly selected test suites,

classifying test cases with a coarse-grained coverage spectrum, such as function coverage,

led to more accurate classification compared to other fine-grained coverage spectra, such as

statement or branch coverage. The coarse-grained coverage spectrum resulted in a more

accurate classification by abstracting away unimportant differences between the passing test

cases and the actual coincidentally correct test cases. However, when coverage adequate test

suites were used, the coarse-grained coverage spectrum failed to magnify the important dif-

134

ferences for some coincidentally correct test cases and resulted in less accurate classification

compared to the fine-grained coverage spectra.

Comparison of the Approaches for Calculating suspiciousness Scores: Our Jaccard

similarity based approach of using the classified coincidentally correct test cases to calcu-

late suspiciousness scores is more effective compared to calculating suspiciousness scores by

removing the coincidentally correct tests. The former approach resulted in a median im-

provement in effectiveness of up to 15%, while the latter approach resulted in a median

improvement in effectiveness of only up to 2%.

Role of Tester Feedback: Utilizing tester feedback to determine the lower bound for the

number of actual coincidentally correct test cases can result in a more precise classification.

However, repeatedly using tester feedback to determine the lower bound can lead to clas-

sifications that are too conservative and result in many false negatives. Therefore, tester

feedback can be used, but only once to check for the presence of coincidentally correct test

cases.

Effect of the Characteristics of Test Suites: Addressing coincidental correctness can

result in more improvement in effectiveness if a higher percentage of the passing test cases

is coincidentally correct. We observed that effectiveness increased by up to 10% when the

percentage of coincidentally correct tests increased by 40%. However, when most of the test

suite was coincidentally correct, addressing coincidental correctness did not result in any im-

provement in fault localization effectiveness. Effectiveness was lower for coverage-adequate

test suites compared to random test suites.

Localization of Multiple Faults: In the presence of two faults, addressing coincidentally

correct test cases can improve the fault localization effectiveness for at least one fault. Effec-

135

tiveness for both faults improved in at least 50% of the cases. In at least 30% of the faulty

programs, effectiveness improved for one fault but not for the other.

136

Chapter 8

Future Work

This dissertation unveils new research directions and poses new research questions. We

discuss the short term research opportunities for improving the work presented in this dis-

sertation as well as the long term opportunities for applying our research to improve the

state of the art of software debugging.

8.1 Short Term Research

In the short term, our approaches for classifying test cases and for calculating suspicious-

ness scores can be improved. Our fault localization approaches can be extended to better

support the localization of multiple faults. Large scale empirical studies addressing various

confounding factors can also be performed.

8.1.1 Improving the Classification Approaches

We used the Euclidean distance metric with the k-means clustering technique for clas-

sifying coincidentally correct test cases. Other distance metrics that have been used by

researchers for clustering, such as Minkowski metric [51] and mutual neighbor distance [20],

can be explored. Different clustering approaches, such as hierarchical clustering [25], search-

based clustering [31], and graph-theoretical clustering [55], can also be used.

We used the heuristic that coincidentally correct test cases are similar to the failing test

cases. During our experiments, we observed exceptions to this heuristic. Therefore, rather

than relying on the domain knowledge, a supervised learning based approach, such as support

vector machines (SVM) [22], can be used to classify coincidentally correct test cases. SVMs

can be trained with test cases labeled coincidentally correct or not coincidentally correct for

a set of known faults. Then, the trained SVMs can be used for classifying coincidentally

137

correct test cases for unknown faults. One challenge is to find a suitable representation for

the test cases for training and classifying. The representation should capture the differences

between coincidentally correct test cases and the passing test cases that are not coincidentally

correct. Another challenge is to select the known faults for training. The known faults used

for training should cover a fault model such that the SVM is trained to classify coincidentally

correct test cases for all types of faults.

8.1.2 Improving the Approaches for Calculating Suspiciousness
Scores

Our current approaches for calculating suspiciousness scores use the number of passing,

failing, and classified coincidentally correct test cases, and do not take into consideration

what caused a test case to be coincidentally correct. Thus, a possible improvement would

be to identify the statements/branches/conditions/run-time values that participate in sup-

pressing the local failure states in coincidentally correct test cases through examining the

differences between a failing and a coincidentally correct test case. The faulty statement

must have some dependence on the elements that participate in suppressing the failure

state. Therefore, these elements can be used as slicing criteria for calculating static and

dynamic slices to localize the faulty statement. The resulting slices can be more accurate

than slices derived using program outputs as the slicing criteria.

8.1.3 Localizing Multiple Faults

In the presence of multiple faults, the binary classification of passing test cases as coinci-

dentally correct or not coincidentally correct is not adequate. A test case may be coinciden-

tally correct with respect to one fault, but may not be coincidentally correct with respect to

another fault. To mitigate the effect of coincidental correctness in the presence of multiple

faults, passing test cases can be classified into multiple classes such that each class contains

the test cases that are coincidentally correct with respect to one fault. Existing techniques

for failure clustering [35] can be used to classify the failing test cases into classes F1, . . . , FN ,

such that each class contains the failing test cases that failed due to the same fault. Then,

138

the passing test cases can be classified into classes P1, P2, . . . , PN+1 such that the class Pi

contains the test cases that are coincidentally correct with respect to the same fault that

caused the failing test cases in Fi, and the class PN+1 contains the passing test cases that

are not coincidentally correct with respect to any fault.

Once the classes of failing and passing test cases are derived, fault localization can be

performed. For each statement, for i = 1, . . . , N , a suspiciousness score can be calculated

using Pi, Fi, and PN+1. The maximum suspiciousness score of each statement can be used

to derive the ranked list of statements. This approach can be evaluated with programs

containing multiple faults.

8.1.4 Further Studies

Our studies revealed that the fault localization effectiveness of our approaches depends

on the type and the location of a fault. The fault localization effectiveness of our approaches

needs to be evaluated by systematically varying the type and the location of faults. A

mutation tool, such as MuJava [36], can be used to seed mutation faults. We have already

developed concrete and measurable fault properties, such as accessibility and impact, which

characterize fault type and location. The correlation of accessibility and impact of faults to

the fault localization effectiveness of our family of approaches needs to evaluated.

The fault localization approaches also need to be evaluated with large scale benchmarks

and using new types of test suites, such as data-flow coverage adequate test suites.

8.2 Long Term Research

In the long term, the use of spectrum-based fault localization approaches for localizing

faults in large scale distributed systems can be explored. Analysis of coincidental correctness

can be applied to improve the existing approaches for automatically repairing programs.

139

8.2.1 Localizing faults in Large Scale Distributed Systems

Spectrum-based fault localization approaches have primarily been studied with small

scale standalone systems. Existing approaches [40] for fault localization in distributed sys-

tems collect and analyze traces to identify nodes and links that are most likely to be faulty.

Research can address the following questions on localizing faults in distributed systems:

� How can spectrum based fault localization approaches be applied to large scale dis-

tributed systems?

� To what extent do coincidentally correct test cases affect the fault localization effec-

tiveness in distributed systems?

� To what extent is our heuristic for classifying coincidentally correct test cases applicable

to test cases in distributed systems?

� Can we leverage the knowledge of system topology, caching, and replication for classi-

fying coincidentally correct traces?

� How can we adapt spectrum-based fault localization approaches to localize faults online

by continuously monitoring a running system and analyzing the generated traces?

8.2.2 Automatic Program Repair Based on Coincidental Correct-

ness

Researchers have proposed approaches [4, 19, 30, 49, 50] for automatically repairing a

faulty program. These approaches represent the problem of repairing a program as a search

problem to find the correct repair among all possible changes in a program. The approaches

generate tentative repairs and evaluate the fitness of a tentative repair as a measure of how

close the tentative repair is to the actual repair. These approaches require many program

executions, and thus, often do not scale for large programs.

We believe that coincidentally correct test cases can be analyzed to derive possible re-

pairs for a fault. Recall that a coincidentally correct test case can result if a local failure

140

state is suppressed. The statements/branches/conditions/run-time values that participate

in suppressing the local failure states for a coincidentally correct test case can be determined

through examining the differences between a failing and the coincidentally correct test case.

Analyzing the effect of these statement/branches/conditions can provide the condition that

needs to satisfied to suppress the effect of the fault. Possible repairs for the fault can be

derived from the condition.

141

References

[1] Software-artifact infrastructure repository. http://sir.unl.edu.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy of
spectrum-based fault localization. In Proceedings of the Testing: Academic and
Industrial Conference Practice and Research Techniques, Windsor, UK, 2007.

[3] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Spectrum-based multiple
fault localization. In Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering, pages 88–99, Auckland, New Zealand, 2009.

[4] Thomas Ackling, Bradley Alexander, and Ian Grunert. Evolving patches for software
repair. In Genetic and Evolutionary Computation, pages 1427–1434, Dublin, Ireland,
2011.

[5] Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. Fault
localization using execution slices and dataflow tests. In Proceedings of the Sixth
International Symposium on Software Reliability Engineering, pages 143–151,
Toulouse, France, 1995.

[6] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In
Proceedings of the 22nd Annual Symposium on Computational Geometry, pages
144–153, Sedona, Arizona, USA, 2006.

[7] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test generation for
effective fault localization. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, pages 49–60, Trento, Italy, 2010.

[8] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Fault localization for
dynamic web applications. IEEE Transactions on Software Engineering,
38(2):314–335, 2012.

[9] George K. Baah, Andy Podgurski, and Mary Jean Harrold. The probabilistic program
dependence graph and its application to fault diagnosis. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, pages 189–200, Seattle,
WA, USA, 2008.

[10] Aritra Bandyopadhyay and Sudipto Ghosh. On the effectiveness of the tarantula fault
localization technique for different fault classes. In Proceedings of the 13th IEEE
International Symposium on High-Assurance Systems Engineering, pages 317–324,
Boca Raton, FL, USA, 2011.

[11] Aritra Bandyopadhyay and Sudipto Ghosh. Proximity based weighting of test cases to
improve spectrum based fault localization. In Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering, pages 420–423,
Lawrence, KS, USA, 2011.

142

[12] Aritra Bandyopadhyay and Sudipto Ghosh. Tester feedback driven fault localization.
In Proceedings of the 5th International Conference on Software Testing, Verification
and Validation, pages 41–50, Montreal, QC, Canada, 2012.

[13] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Improving test suites for efficient
fault localization. In Proceedings of the 28th International Conference on Software
Engineering, pages 82–91, Shanghai, China, 2006.

[14] Rafael Caballero, Christian Hermanns, and Herbert Kuchen. Algorithmic debugging
of Java programs. Electronic Notes in Theoretical Computer Science, 177:75–89, June
2007.

[15] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and Kapil Vaswani.
Holmes: Effective statistical debugging via efficient path profiling. In Proceedings of
the 2009 IEEE 31st International Conference on Software Engineering, pages 34–44,
Vancouver, Canada, 2009.

[16] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight defect
localization for Java. In Proceedings of the 19th European Conference on
Object-Oriented Programming, pages 528–550, Glasgow, Scotland, 2005.

[17] Nicholas DiGiuseppe and James A. Jones. On the influence of multiple faults on
coverage-based fault localization. In Proceedings of the 20th International Symposium
on Software Testing and Analysis, pages 210–220, Toronto, Canada, 2011.

[18] W. Eric Wong, Vidroha Debroy, and Byoungju Choi. A family of code coverage-based
heuristics for effective fault localization. Journal of Systems and Software,
83(2):188–208, 2010.

[19] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. A genetic
programming approach to automated software repair. In Proceedings of the 11th
Annual conference on Genetic and Evolutionary Computation, pages 947–954, 2009.

[20] K. Chidananda Gowda and G. Krishna. Agglomerative clustering using the concept of
mutual nearest neighbourhood. Pattern Recognition, 10(2):105–112, 1978.

[21] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty code
using failure-inducing chops. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pages 263–272, Long Beach, USA,
2005.

[22] Marti A. Hearst, ST Dumais, E Osman, John Platt, and Bernhard Scholkopf. Support
vector machines. Intelligent Systems and their Applications, IEEE, 13(4):18–28, 1998.

[23] Susan Horwitz, Ben Liblit, and Marina Polishchuk. Better debugging via output
tracing and callstack-sensitive slicing. IEEE Transactions on Software Engineering,
36:7–19, 2010.

143

[24] Paul Jaccard. Étude comparative de la distribution florale dans une portion des Alpes
et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.

[25] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., 1988.

[26] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clustering: A review.
ACM Computing Surveys, 31(3), 1999.

[27] Dennis Jeffrey and Neelam Gupta. Improving fault detection capability by selectively
retaining test cases during test suite reduction. IEEE Transactions on Software
Engineering, 33(2):108–123, 2007.

[28] James A. Jones, James F. Bowring, and Mary Jean Harrold. Debugging in parallel. In
Proceedings of the 2007 International Symposium on Software Testing and Analysis,
pages 16–26, London, UK, 2007.

[29] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering, pages 467–477, Orlando, Florida, 2002.

[30] Christian Kern and Javier Esparza. Automatic error correction of Java programs. In
Formal Methods for Industrial Critical Systems, pages 67–81. Springer, 2010.

[31] W. L. G. Koontz, P. M. Narendra, and K. Fukunaga. A branch and bound clustering
algorithm. IEEE Transactions of Computers, 24(9):908–915, September 1975.

[32] David Leon and Andy Podgurski. A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test cases. In Proceedings of
14th IEEE International Symposium on Software Reliability Engineering, pages
442–456, Denver, Colorado, 2003.

[33] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via
remote program sampling. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, pages 141–154, New York, NY,
USA, 2003. ACM.

[34] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scalable
statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 15–26, Chicago, IL, USA,
2005.

[35] Chao Liu, Xiangyu Zhang, and Jiawei Han. A systematic study of failure proximity.
IEEE Transactions on Software Engineering, 34:826–843, November 2008.

[36] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. MuJava: a mutation system for Java.
In 28th International Conference on Software Engineering, pages 827–830, Shanghai,
China, 2006.

144

[37] Wes Masri and Rawad Abou Assi. Cleansing test suites from coincidental correctness
to enhance fault-localization. In Proceedings of the 3rd International Conference on
Software Testing, Verification, and Validation, pages 165–174, Paris, France, 2010.

[38] Hsin Pan and Eugene H. Spafford. Heuristics for automatic localization of software
faults. Technical Report SERC-TR-116P, Purdue University, 1992.

[39] Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon: fault localization
in concurrent programs. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, pages 245–254, Cape Town, South
Africa, 2010.

[40] Pawan Prakash, Ramana Rao Kompella, Venugopalan Ramasubramanian, and
Ranveer Chandra. dfault: Fault localization in large-scale peer-to-peer systems. In
Proceedings of the 11th ACM/IFIP/USENIX International Middleware Conference,
pages 252–272, Bangalore, India, 2010.

[41] Manos Renieris and Steven P. Reiss. Fault localization with nearest neighbour queries.
In Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, pages 30–39, Montreal, Canada, 2003.

[42] Debra J. Richardson and Margaret C. Thompson. An analysis of test data selection
criteria using the relay model of fault detection. IEEE Transactions on Software
Engineering, 19:533–553, 1993.

[43] Raul Santelices, James A. Jones, Yu Yanbing, and Mary Jean Harrold. Lightweight
fault-localization using multiple coverage types. In Proceedings of the 31st IEEE
International Conference on Software Engineering, pages 56–66, Vancouver, Canada,
2009.

[44] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for
C. SIGSOFT Software Engineering Notes, 30:263–272, September 2005.

[45] Ehud Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA,
USA, 1983.

[46] Josep Silva. A survey on algorithmic debugging strategies. Advances in Engineering
Software, 42:976–991, November 2011.

[47] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3:121–189, 1995.

[48] Xinming Wang, S. C. Cheung, W. K. Chan, and Zhenyu Zhang. Taming coincidental
correctness: Coverage refinement with context patterns to improve fault localization.
In Proceedings of the 31st International Conference on Software Engineering, pages
45–55, Vancouver, Canada, 2009.

145

[49] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen.
Automatic program repair with evolutionary computation. Communications of the
ACM, 53(5):109–116, 2010.

[50] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically finding patches using genetic programming. In Proceedings of the 31st
International Conference on Software Engineering, pages 364–374, 2009.

[51] D. Randall Wilson and Tony R. Martinez. Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, 6(1):1–34, 1997.

[52] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A crosstab-based statistical method
for effective fault localization. In Proceedings of the International Conference on
Software Testing, Verification, and Validation, pages 42–51, Washington, DC, USA,
2008.

[53] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. Clustering test cases to
achieve effective and scalable prioritisation incorporating expert knowledge. In
Proceedings of the Eighteenth International Symposium on Software Testing and
Analysis, pages 201–212, Chicago, IL, 2009.

[54] Yanbing Yu, James A. Jones, and Mary Jean Harrold. An empirical study of the
effects of test-suite reduction on fault localization. In Proceedings of the 30th
International Conference on Software Engineering, pages 201–210, Leipzig, Germany,
2008.

[55] C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions of Computers, 20(1):68–86, January 1971.

[56] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. A study of effectiveness of dynamic
slicing in locating real faults. Empirical Software Engineering, 12(2):143–160, 2007.

146

