
THESIS

SOLVING DOTS & BOXES USING REINFORCEMENT LEARNING

Submitted by

Apoorv Pandey

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2022

Master’s Committee:

Advisor: Charles W Anderson

James Ross Beveridge

Edwin K P Chong

Copyright by Apoorv Pandey 2022

All Rights Reserved

ABSTRACT

SOLVING DOTS & BOXES USING REINFORCEMENT LEARNING

Reinforcement learning is being used to solve games which were previously deemed too com-

plex to solve, the most notable example in recent years being DeepMind solving Go. Dots and

boxes is a 2-person game, known by many names across the world and quite popular with chil-

dren. Here, a reinforcement learning agent learns to play the game.

The goal was to develop an agent which would learn to win games, could intelligently execute

complex trapping strategies present in the game, and shed new light on game-playing strategy. A

3x3-sized dots and boxes board was used.

The agent learned to defeat a random opponent with a win rate of over 80%, and the next

version of the agent learned to defeat the previous agent with a win rate of over 99%. A full game

analysis was performed for the agent. Unfortunately, the agent was not intelligent enough to defeat

a human player.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Charles Anderson, for his keen guidance and incredibly

valuable suggestions while performing my research. I would also like to thank the Computer

Science department at CSU for helping me providing me with knowledge and resources required

to perform the experiments for this thesis. Finally, I would like to thank the CSU Graduate School

for their support during the entirety of my graduate program.

iii

DEDICATION

I would like to dedicate this thesis to my parents.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1

Chapter 2 Background and Related Work . 4

2.1 Reinforcement Learning . 4

2.1.1 DeepMind . 6

2.2 Dots & Boxes . 7

2.2.1 Related work . 9

Chapter 3 Methodology . 12

3.1 Game Representation . 12

3.2 Reinforcement Learning . 12

3.3 Training . 14

3.3.1 Initial missteps . 16

Chapter 4 Results . 18

4.1 Simple opponent . 18

4.1.1 Training . 18

4.1.2 Testing . 19

4.2 Random opponent . 20

4.2.1 Training . 20

4.2.2 Testing . 22

4.2.3 Predicted moves . 24

4.2.4 More training . 24

4.2.5 Trapping . 25

4.3 Against itself . 26

4.3.1 Training . 26

4.3.2 Testing . 27

4.3.3 Predicted moves . 30

4.3.4 Trapping . 31

4.3.5 Game-play analysis . 31

Chapter 5 Conclusion . 35

5.1 Comparison again related work . 35

5.2 Future work . 36

Bibliography . 37

v

Appendix A License . 39

vi

LIST OF TABLES

4.1 Hyperparameter values for best network against simple opponent 20

4.2 Hyperparameter values for best network against random opponent 23

4.3 Hyperparameter values for best network against intelligent opponent 28

4.4 Game moves (sequential). Play proceeds left to right across a row and continues on

the next row. 32

4.5 Game moves (continued) (sequential) . 33

vii

LIST OF FIGURES

2.1 Neural network for learning state prediction and Q function 5

2.2 A 2x2 dots & boxes game [1]. Red edges are moves made by Player A and gray edges

are moves made by Player B. In this example, Player A wins with 3 completed boxes,

while Player B only has 1 completed box. 8

2.3 Double Cross strategy [1] . 8

3.1 Game state representation: a.) edge ordering, b.) example state, represented as

[0, 1, 1, 0, 1, 0 . . . , 0] . 13

4.1 Win rate against simple player during training . 19

4.2 Win rate against simple player during testing . 21

4.3 Win rate against random player during training . 22

4.4 Win rate against random player during testing . 23

4.5 Intermediate state of the game . 24

4.6 a.) First action taken by agent for state in Fig. 4.5. b.) Second action taken by agent. . . 24

4.7 Performance of agent during further training. The line represents the average of all

runs, while the shaded area shows the upper and lower bounds of performance of the

agent across all runs. 25

4.8 a.) Position 1 in the double cross strategy depicted in Fig. 2.3. b.) Next action taken

by agent. 26

4.9 Win rate against intelligent player during training . 28

4.10 Win rate against trained player during testing . 29

4.11 Win rate against random player during testing . 29

4.12 Intermediate state of the game . 30

4.13 a.) First action taken by agent for state in Fig. 4.12. b.) Second action taken by agent. . 30

4.14 a.) Position 1 in the double cross strategy depicted in Fig. 2.3. b.) Next action taken

by agent. 31

viii

Chapter 1

Introduction

With increase in computational power, machine learning has become increasingly viable in

solving problems previously deemed too complex to solve programmatically. Reinforcement learn-

ing is a type of approach in machine learning in which the agent receives "reinforcements" based

on whether or not it performed well or poorly. Among the various sub-domains of machine learn-

ing, reinforcement learning has arguably benefitted the most from the power increase, since the

approach focuses on training an agent to achieve its goal an enormous number of times using some

reward policy (of reinforcements).

A major application of reinforcement learning is in solving games. Games align well with

reinforcement learning due to their nature of having definitive step-oriented actions in order to

achieve certain outcomes. Consequently, a lot of research has been done in the space. DeepMind

has been a notable example, developing their own "AlphaGo" program to learn to play the game

of Go and beating world-class human players. Furthermore, they developed the next iteration of it

called AlphaGo Zero, which handily beat AlphaGo, demonstrating the potential of sheer pace of

improvement of game-playing using reinforcement learning.

However, there are certain factors that reinforcement learning algorithms struggle with when

learning to play games. One factor is when the myopic outcome is not necessarily the globally

optimal one, such as sacrificing a chess piece in order to gain a more advantageous position.

This complicates computing and providing reinforcements because the global outcomes need to

be accounted for when providing intermediate move reinforcements. This slows down the rate of

learning, since the same move might work well in a particular chain of events, but be a poor move

in another chain of events.

Another scenario with which reinforcement learning struggles is when the number of moves

for a player is variable, and not periodic. Many games have clauses where making certain moves or

achieving certain intermediate states results in the player receiving another turn. This complicates

1

analysis considerably because the state space becomes much harder to explore. The player might

not encounter certain states whatsoever, despite them being valid states, and thus not learning how

to play in those states.

Keeping the above in mind, I attempted to solve the game of Dots and Boxes, a game I myself

have played a lot. Dots and boxes is a 2-person game, known by many names across the world,

and quite popular with children. More specifically, I attempted to develop an agent that would

never lose a game of Dots and Boxes to a human player, similar to what DeepMind achieved. The

goal was to develop an agent which would learn to win games, could intelligently execute complex

trapping strategies present in the game, and shed new light on game-playing strategy.

However, Dots and Boxes has not one but both of the aforementioned challenges that reinforce-

ment learning struggles with. Further details about the game and its specific rules which lead to

the challenges mentioned are discussed in section 2.2.

In this work, I focused on a 3x3-sized dots and boxes board. The dots were constant, and the

edges were variable. Hence, the game was represented as a list of all edges, where 0 indicated that

the edge did not exist and 1 denoted that the edge exists. The action was represented as a one-hot

encoded vector. Together, they constituted of the 48 inputs, with the 1 output being whether the

agent won or lost (1 for player 1 win, -1 for player 1 loss). Since the board was 3x3 (i.e. 9 boxes)

there was no possibility of a draw game.

A fully connected neural network was used for training the agent. The agent was initially

trained against a simple opponent, which picked the first available move, and learned to handily

beat this opponent. Training against this opponent helped shed light on the hyperparameters which

worked well for training the agent. Next, the agent was trained against a random opponent, and it

took over 400 thousand games for the agent to defeat it with a win rate of over 80%. Finally, a new

agent was trained against the previously trained agent and beat the previous agent with a win rate

of 100% after training for 20 thousand games.

A game-play analysis was performed of the new agent against the previous one, and the agent

made optimal moves towards victory at many opportunities. However, it also attempted to com-

2

plete boxes by itself, often by making a 3rd edge for a box, which is not a good strategy and would

lead to defeat against a human opponent. Training against an opponent without the knowledge to

complete such opportunities led to the agent learning a strategy which was not suitable in a general

adversarial setting.

The methodology chapter details the game representation and training process, as well as out-

lining initial pitfalls that were made when attempting to train the agent. The results chapter details

the best results against each type of opponent, alongside observations about the hyperparameters

which worked best in each scenario. Finally, the conclusion chapter summarizes the outcomes of

this research, and details its comparison against a similar work. It also lists potential suggestions

to improve the current outcomes achieved.

3

Chapter 2

Background and Related Work

This chapter discusses the history and concepts of reinforcement learning. It also talks about

the role of reinforcement learning in solving games. Finally, it provides an introduction to the

games of Dots & Boxes and previous work done to solve it.

2.1 Reinforcement Learning

Reinforcement learning is an area of machine learning which focuses on training an agent using

some reward policy. The agent learns by attempting to achieve its goal multiple times. The agent’s

training is a balance of exploration (of untried actions) and exploitation (of previous experience).

Reinforcement learning is one of the 3 basic machine learning paradigms, alongside supervised

and unsupervised learning. It does not require labeled input/output data, and sub-optimal actions

do not require explicit correction.

Reinforcement learning algorithms are generally model-free, i.e. do not use the transition

probability distribution (and the reward function) associated with the Markov decision process

(MDP) [2]. The transition probability distribution (or transition model) and the reward function

are often collectively called the "model" of the environment (or MDP), hence the name.

SARSA is an algorithm for learning a Markov decision process policy, used in the reinforce-

ment learning. Q-learning is a model-free reinforcement learning algorithm. The goal of Q-

learning is to learn a policy which tells an agent what action to take under what circumstances.

A SARSA agent interacts with the environment and updates the policy based on actions taken,

hence it is an on-policy learning algorithm.

This is done by determining a reward system, which determines a reward for each step taken by

the agent. It makes use of the reward values in subsequent attempts, i.e. exploitation of knowledge.

"Q" names the function that is trained to approximate the sum of future reinforcements.

4

Figure 2.1: Neural network for learning state prediction and Q function

Neural networks have been used for Q function approximation since the 1980’s [3, 4], using

stochastic gradient descent to optimize the Q network’s approximation of the expected sum of

future reinforcements.

The neural network structure used is shown in Figure 2.1. The hidden units of the neural

network form a representation of the game state and action which is then combined by the output

unit to approximate the Q value.

“State” refers to all distinct values for the game representation with which the reinforcement

learning agent interacts. “Action” refers to the decision taken at a state, which alters the state. The

function for updating the Q-value depends on the current state, st, the action the agent choose, at,

the reward, r, the agent gets for choosing at, the subsequent state, st+1, that the agent enters after

taking that action, and finally the next action, at + 1, the agent chooses in its new state. Samples

of (st, at, r, st + 1, at + 1) were collected for training the neural network.

Mini-batches of st, at, reinforcement, rt+1, st+1, and at+1 are collected. Actions are selected

using the ǫ-greedy algorithm. Stochastic Gradient Descent (SGD) was applied to train the output

Q value to approximate the sum of future reinforcements. During this phase the state change

outputs are ignored. The SARSA algorithm [2] is followed to form the error being minimized as

summarized below.

5

The Q output value, Q(st, at), that is output by the network is determined by inputs st and at.

We wish this function to form the approximation

Q(st, at) ≈ E[
∞
∑

k=0

γkrt+k+1],

where 0 < γ < 1 is the discount factor. Actions are chosen using an ǫ-greedy policy π(st),

π(st) =















argmax
a∈A

Q(st, a) with probability 1− ǫ,

z ∼ U(A) with probability ǫ

where z is a uniformly-distributed random variable drawn from the set of valid actions A.

If each mini-batch consists of n samples collected from time t1 through time tn, then the

SARSA error to be minimized for each mini-batch is

tn
∑

t=t1

(rt+1 + γQ(st+1, at+1)−Q(st, at))
2

The gradient of this error for a mini-batch of n samples, (st, at, rt+1, st+1, at+1) for t = t1, . . . , tn,

with respect to the weights of the neural network drives the error minimization performed by

gradient descent.

It is important to not overfit the Q function to each mini-batch of samples. Each mini-batch

is a sample that is limited to the particular sequence of world states experienced. Therefore, the

gradient descent algorithm is applied for a small number of iterations for each mini-batch.

2.1.1 DeepMind

DeepMind, a company famous for its AlphaGo program, developed their system using only

raw pixels as data input. They used deep learning on a convolutional neural network, with a novel

form of Q-learning. While their work was not targeted towards Dots & Boxes, it was a massive

step towards developing reinforcement learning-trained agents for playing 2-player games.

6

In March 2016, their program AlphaGo beat Lee Sedol, a world-class player by 4-1. In 2017,

an improved version, AlphaGo Zero, defeated AlphaGo 100 games to 0. Later that year, Alp-

haZero [5], a modified version of AlphaGo Zero but for handling any two-player game of perfect

information, was able to gain a similar level of ability at chess and shogi.

AlphaGo was developed based on the deep reinforcement learning approach, playing against

itself and learning from both wins and losses. AlphaGo used two deep neural networks: a value

network for evaluating positions and a policy network to predict probabilities. The value network

learned to predict the winners based on policy network’s games, which in turn used supervised

learning and was subsequently refined by policy-gradient reinforcement learning. They then used

the Monte Carlo tree search with policy network predicting high-probability candidate moves and

the value network evaluated positions.[59]

AlphaGo Zero trained using reinforcement learning by playing games against itself, without

learning from games played by humans. It used one neural network instead of separate policy and

value networks, with a simplified tree search to predict positions and sample moves.

2.2 Dots & Boxes

Dots and boxes is a 2-player game. Figure 2.2 illustrates a 2x2-sized game. The initial state is

an empty grid of dots. Both players take turns making a move; a move consists of adding either

a horizontal or vertical line between two non-joined adjacent dots. If making a move completes a

1x1 box, then the player who made that move wins that particular box (essentially, gets a point);

the player also retains their turn. The game ends when there are no more available moves left to

make. The player with the most completed boxes at the end is the winner of the game.

In combinatorial game theory, Dots and Boxes is an impartial game. However, Dots and Boxes

lacks the normal play convention of most impartial games (where the last player to move wins),

which complicates the analysis considerably [6].

The reason for this is the quirk of the game that a player retains their turn when they complete

a box. A common technique used by more experienced players of the game is the double-cross

7

Figure 2.2: A 2x2 dots & boxes game [1]. Red edges are moves made by Player A and gray edges are

moves made by Player B. In this example, Player A wins with 3 completed boxes, while Player B only has

1 completed box.

strategy. Since completing a box causes a player to retain their turn, this can be used to force a

player to enable a longer chain of boxes for the other player, thereby losing the game.

Figure 2.3: Double Cross strategy [1]

8

In Figure 2.3, faced with position 1 (latest move by player B in bold), a novice player would

proceed to complete all boxes in the chain, one after another. At the end of the chain, having

completed a box, they would have retained their turn, and are therefore forced to make a move,

creating position 2. Now player B would complete the other chain, and player A would lose the

game. However, an experienced player would create position 3 instead, where the last 2 boxes of

the first chain are deliberately sacrificed. In this case, player B would complete the last 2 boxes, but

also retain their turn, and they would be forced to enable the longer chain instead, thereby causing

player A to win.

2.2.1 Related work

Like many other games, dots and boxes is a combinatorial game and can be solved mathe-

matically. However, the rules make the state space extremely large to search within for a perfect

solution within a reasonable amount of time. People have made attempts to reduce this search

space [7] and thus make it more feasible to solve the game. Others have attempted to solve the

game of dots and boxes using reinforcement learning [8–10] with artificial neural networks to

further improve the rate at which a solution is discovered.

Barker and Korf [7] attempted to solve the game of Dots and Boxes by optimizing the search

technique. They used an Alpha-Beta minimax search to reduce the state space significantly. Similar

to other 2-player games such as Tic Tac Toe, Dots & Boxes also has the occurence of "chains" of

certain structure during intermediate stages of the game, incomplete boxes with 2 edges filled.

They made use of this observation to help their search algorithm. Using their work, they were able

to solve a 4x5 sized game within a reasonable amount of time.

Zhuang et al. [10] developed an agent called QDab in 2015 to play Dots and Boxes on a 5x5

sized game. They made use of a brand new game representation, using strings and coins, in order

to reduce the search space drastically and then using an artificial neural network in order to learn

the optimal move using backpropagation.

9

The strings and coins representation works by transforming the game into a different represen-

tation. Each potential box is represented using a coin, and it has 4 strings attached to it, which

represent the unmade edges. Once an edge is made/created, the "string" is cut, and once all strings

to a coin are cut, the player making the final cut gets the coin. The benefit of this representation

was that the game board could be represented as being constructed from a finite set of 12 basic

chain structures.

They analyzed the properties of the chains to determine the ones which were preferable, and

created reinforcements to optimize which moves were preferable for each chain structure. Along-

side using a greedy policy, they also made use of min-max searches close to the game end state to

definitively compute the best move in a reasonable amount of time. Additionally, they made use of

random pruning of available moves towards the start of the game to reduce the state space, with the

assumption that enough good moves would be left over (however, they did not provide any proof

towards the same).

Using a combination of the above, the QDab agent performed excellently compared to other

existing agents. It took nearly 20 seconds to compute the steps necessary play the entire game.

In the work done by Miller et al. [8], they expanded on the approach made by Zhuang et al.

and attempted to solve a 6x6-sized game of dots and boxes using reinforcement learning. They

used the Monte-Carlo tree search approach, as well as the strings and coins representation method

of the game.

They designed and trained 4 separate agents, each with a different reward system. Their best

agent was able to do well enough against an opponent which was randomly selecting moves, how-

ever, it was far from being able to beat a human during testing.

In a different approach adopted by Deakos Matthew [9], they made use of convolutional neural

networks for training the agent to play a game of 5x5 instead. Making use of 2 convolutional layers

and 2 fully connected layers, they designed a system in which an agent would play against itself,

and the "opponent" agent would be periodically updated with the learning agent’s parameters, in

order to develop a consistently improving opponent to play against.

10

Their initial training was similar to brute-forcing against a random opponent, however, progress

was slow. The basic approach was modified to look at the next state, and determine if it was won by

the opponent, which helped the convergence significantly. This approach was used to train with a

million games in order to train the model. By utilizing this approach, the agent was able to achieve

a win rate of over 95% against the random opponent after 50 thousand games, and over 90% after

just 10000 games. This work was most closely comparable to the work done in this thesis, and the

results will be compared and discussed in the Conclusion chapter.

11

Chapter 3

Methodology

This chapter outlines the approach taken to train an agent using reinforcement learning. It

elaborates on the specifics, such as the game representation used for training, the training process

and so on. Finally, it touches on the initial missteps that were made when trying to train the agent.

3.1 Game Representation

Determining how to store and represent the game is a bit tricky, since both the dots and their

intermediate edges are valid to the game state. One can, however, observe that the dots are constant

for every state. Hence, a game state can be represented solely by its edges. All edges in the game

are represented as a list (of length 24, since there are 24 edges in a 3x3 size game), with 0 denoting

that an edge does not exist, and 1 denoting otherwise.

The edge ordering being considered is shown in Figure 3.1a. For example, the game state

shown in Figure 3.1b is represented as [0, 1, 1, 0, 1, 0, . . . , 0].

The action was represented as a one-hot encoding in a 24-size list, with the index of the new

edge being set to 1. An action could be taken only if the corresponding edge index was 0. For

example, if edge 1 was 0, and a player wanted to create that edge, the action value would be

represented as [0, 1, 0, 0, ..., 0].

3.2 Reinforcement Learning

The training begins by creating a neural network. The network has 48 inputs, and 1 output.

The 48 inputs are formed by concatenating the state s (represented as a 24-size vector) and one-hot

encoded representation of the move taken a (also represented as a 24-size vector).

The hidden layers of the network are represented using a list, where the value at each index in

the list informs the number of hidden units in the layer. For example, [20, 10] describes a network

with 2 hidden layers, where the first hidden layer has 20 hidden units and the second hidden layer

12

Figure 3.1: Game state representation: a.) edge ordering, b.) example state, represented as

[0, 1, 1, 0, 1, 0 . . . , 0]

has 10 hidden units. As another example, [30, 40, 50] describes a network with 3 hidden layers,

hidden layer 1 with 3 hidden units, hidden layer 2 with 40 hidden units and hidden layer 3 with 50

hidden units.

The probability of the agent making a random move, ǫ is determined for every epoch. The

initial value is set to 1, to allow complete randomness in the beginning, and is slowly decayed by

a constant factor at each epoch during training. A minimum threshold is set for the probability of

randomness, beyond which the probability does not decrease. This threshold is min epsilon.

Each repetition in an epoch constitutes of playing an entire game. The game starts with player

1, the agent’s turn. The move to make is determined using the aforementioned ǫ-greedy policy, and

the next state of the game is compared to the list of existing boxes to determine if a box is created.

If no boxes are created, the player turn is flipped, otherwise the player retains their turn.

Samples are aggregated for all turns of the agent for the games, including the reinforcement

value rt for each state st. rt is defined as:

13

rt =































1 if game is over and agent won,

−1 if game is over and agent lost,

0 if game is not over.

Note that the reinforcement should also be 0 for games which are drawn, but during this research

a 3x3 sized-board was used, with 9 boxes, hence a draw outcome was not possible.

The determination of winning and losing can only be done when the game ends, the winner

being the player who created more boxes throughout the game. Hence, a myopic move might

be globally sub-optimal. The combination of global goal optimization and non-alternating turns

makes the game more complex.

The samples are used for training the neural network, and another parameter trains determines

the size of the mini-batches to be used for training. Two other boolean parameters, SGD and

ReLU are used to determine the optimizer and activation function respectively. Setting SGD to

false resulted in the Adam optimizer being used and setting ReLU to false resulted in hyperbolic

tangent being used as the activation function.

During testing, the trained network is used to play against a random opponent, but no samples

are collected and the network is not updated.

For further training of the network, instead of training a new network from scratch, the network

was instead used with the ǫ-greedy policy. ǫ was set to 0.01 from the beginning, and not varied dur-

ing the training. Thus, the probability of making a random move was 1 in 100 from the beginning

for further training.

3.3 Training

During training, several hyperparameters were varied in order to experimentally determine the

best results:

• Epochs: Determined the number of times the samples were recollected from scratch

14

• Games per Epoch: Determined the number of games for each epoch; all games within an

epoch had the same measure of randomness for the agent (determined by ǫ)

• Network structure: Listed the configuration of the network

• Updates per Epoch: Number of times network was updated while training at each epoch

• Learning rate: Determined the rate at which the learning was performed

• Activation function: TanH (hyperbolic tangents) or ReLU (rectified linear units)

• Optimizer: Adam or SGD (Stochastic Gradient Descent)

• Epsilon Decay Factor: The rate at which the degree of randomness was reduced between

each epoch as a multiplicative factor

• Min Epsilon: This was introduced to maintain a minimum threshold of randomness for the

entirety of the training

A lot of hyperparameter tuning was done based on empirical observations. First, a base set

of good hyperparameter values was determined by training against a simple opponent. A simple

opponent would pick the first available move from the list of available moves. By having such

an opponent, some observations were generalized, which held true across all experiments. For

instance, a 2 layer network with 100-500 units worked out better than 3 layer networks, or 2 layer

networks which were even wider.

After training an agent which did well against a simple opponent, and discovering a good

set of hyperparmeter ranges, the agent was next trained to perform against a random opponent.

A random opponent would select a move at random from the list of available moves. Some of

the previously determined observations for hyperparameters held true, such as network structure,

while others had to be revised, such as the learning rate. After much experimentation, a good set of

hyperparameters were discovered, which allowed for consistent wins against a random opponent.

After this, the predictions and trapping capabilities of the random opponent were tested and the

15

agent was not able to perform trapping. In an attempt to solve this, the agent was trained much

further, with a varying degrees of randomness.

Finally, a new agent was trained from scratch against the previously trained agent. The hope

was that training against a more complex opponent would help the agent learn a more complex

game strategy. To do so, the orientation of the new agent was set as the opposite of the previous

agent (learning to play as player 2, if agent 1 learned to play as player 1). The new agent learned

to perform optimally against the previous agent.

3.3.1 Initial missteps

Initially, the network has 25 inputs only, 24 representing the state of the game and 1 value

representing the action, an integer from [0, 23], denoting the index where the action would be

taken.

However, the model was becoming very strongly biased during training towards the action

input, even after standardizing the action to be between the range of [0, 1]. This bias was hindering

the agent from learning and the win rates would consistently hover around 50%, with no indication

of improvement.

Thus, the methodology was altered to have the action represented as a 1-hot encoded vector

instead. This solved the issue and the agent began to learn more from the state of the game instead

of zeroing in on the action taken.

The facet of non-standard turn alteration posed a problem during training. While determining

the turn could be implemented by checking if a box was being created compared to the previous

state, selecting the correct samples would be a misstep.

The collected samples would have to be at the next turn of the agent, and would have the

reinforcement and the Q value predicted at that stage, and compare it to the previous stage when

the agent had a turn. The number of steps between the two stages when agent had a turn could be

variable, depending on how many boxes the opponent player made during their turn.

16

To fix this, the state and action for the agent would be stored temporarily, and when the agent

gets their turn next, the temporarily stored values would be used to collect the samples correctly.

17

Chapter 4

Results

In this chapter, the results at each step in the process are discussed in detail, from the agent that

plays against a basic player to the one that is able to handily beat a somewhat strategic player. The

predicted moves at intermediate stages are demonstrated, along with analyzing whether the agent

was able to execute a complex trapping strategy. Lastly, an entire game played by the agent was

observed and analyzed.

4.1 Simple opponent

The base approach was against a simple opponent in order to help train the agent, such as

determining the samples collected and tuning the agent’s game-playing ability. It also helped

determine a set of hyperparameters which worked well for training.

4.1.1 Training

Training against a simple opponent, for different parameters, such as the network structure,

the number of epochs and games per epoch, optimizers, activation functions, the most successful

network had a win rate of over 95%. The curvature for the win rate was stable, and to get a better

idea of sustained performance, binning for previous 10 epoch wins was done and plotted.

While the performance of the agent varied across different hyperparameters, there were a few

commonalities observed:

• Network structure: 2 layers with 100 units in each layer worked best; using wider (more

units), shallower (fewer layers) networks did not work as well, and deeper networks with

more layers also overtrained on mini-batches, leading to sharp declines in performance after

gradual improvement when training;

18

Figure 4.1: Win rate against simple player during training

• Learning rate: A learning rate of the order 10−3 led to the most stable training performance;

decreasing the learning rate to 10−4 impacted training speed severely and increasing it to

10−2 made the learning highly unstable;

• Activation function: The hyperbolic tangent TanH activation function worked better than

Rectified Linear Unit ReLU nearly always;

• Optimizer: SGD worked better than Adam, with smoother improvement and better win rate

on average; using Nesterov momentum with SGD helped even further.

Figure 4.1 shows the win rate of the agent against a simple player. The hyperparameters for

the run are listed in Table 4.1.

4.1.2 Testing

Once the trained agent was tested against a simple player, the agent performed perfectly,

achieving a win rate of 100% in all 10 instances. Figure 4.2 shows win rate of the trained agent

19

Table 4.1: Hyperparameter values for best network against simple opponent

Hyperparameter Value

Epochs 50

Games per Epoch 50

Network structure [100, 100]

Updates per Epoch 25

Learning Rate 0.001

Activation Function TanH

Optimizer SGD

Epsilon Decay Factor 0.92

against a simple player for 10 tests. Each test averaged performance for 100 games over 5 runs.

The win rate of the agent was a staggering 100%.

4.2 Random opponent

Playing against a simple opponent only helped the agent learn a very specific strategy, and was

barely usable against an actual player. The hope was that training against a random opponent, the

agent would learn to play much better in general.

4.2.1 Training

Training against a random player, for different parameters, such as the network structure, the

number of epochs and games per epoch, optimizers, activation functions, the most successful net-

work had a win rate of over 80%. The curvature for the win rate was unstable in this case, and

binning for previous 10 epoch wins provided much more coherent performance insight. The num-

ber of runs required compared to train a simple player was far greater, and setting the minimum ǫ to

0.01 (1 in 100 chance of randomness) resulted in overfitting during the latter epochs. Hence, a new

hyperparameter was introduced, Min Epsilon, in order to vary and test the minimum randomness

preventing overfitting.

While the performance of the agent varied across different hyperparameters, there were a few

commonalities observed:

20

Figure 4.2: Win rate against simple player during testing

• Network structure: 2 layers with 100-250 units in each layer worked best; using wider

(more units), shallower (fewer layers) networks did not work as well, and deeper networks

with more layers also overtrained on mini-batches, leading to sharp declines in performance

after gradual improvement when training;

• Learning rate: A learning rate of the order 10−3 led to the most stable training performance;

decreasing the learning rate to 10−4 impacted training speed severely and increasing it to

10−2 made the learning highly unstable;

• Activation function: The hyperbolic tangent TanH activation function worked better than

Rectified Linear Unit ReLU nearly always;

• Optimizer: SGD worked better than Adam, with smoother improvement and better win rate

on average; using Nesterov momentum with SGD helped even further;

21

Figure 4.3: Win rate against random player during training

• Min Epsilon: Setting min ǫ to 0.01 or even 0.02 resulted in overfitting and sharp declines

in performance in the later epochs and a value higher than 0.075 resulted in the win rate de-

creasing; a min ǫ value of 0.05 mitigated the training overfitting issue without compromising

win rate

Figure 4.3 shows the win rate of the agent against a random player. The hyperparameters for

the run are listed in Table 4.2.

4.2.2 Testing

Once the trained agent was tested against a random player, the agent performed very well,

achieving a win rate consistently over 80%. Figure 4.4 shows win rate of the trained agent against

a random player for 10 tests. Each test averaged performance for 100 games over 5 runs. The

performance of the agent was over 80%, and all tests except 2 did better than 85%.

22

Table 4.2: Hyperparameter values for best network against random opponent

Hyperparameter Value

Epochs 500

Games per Epoch 800

Network structure [100, 100]

Updates per Epoch 50

Learning Rate 0.001

Activation Function TanH

Optimizer SGD

Epsilon Decay Factor 0.9925

Min Epsilon 0.05

Figure 4.4: Win rate against random player during testing

23

Figure 4.5: Intermediate state of the game

a. b.

Figure 4.6: a.) First action taken by agent for state in Fig. 4.5. b.) Second action taken by agent.

4.2.3 Predicted moves

When observing an intermediate state, the agent’s move can be observed from Figure 4.6a,

which depicts the move made by the agent from the state in Figure 4.5. Assuming Figure 4.6a

is the state at which agent has a turn instead, the agent takes an unexpected move, which can be

observed from Figure 4.6b. Since the moves are non-alternating, it is possible for the agent to

come across either of states in Figure 4.5 or Figure 4.6a. The agent’s action choice observed in

Figure 4.6b is likely a result of pursuing the globally optimal goal of winning more boxes overall.

4.2.4 More training

Since there was the possibility of further training improving the performance of the agent,

the network was trained further in order to observe the effects. However, further training of the

network did not yield an improvement in performance against a random player, as observed in

Figure 4.7. The Win % is averaged into bins of 10 epochs.

24

Figure 4.7: Performance of agent during further training. The line represents the average of all runs, while

the shaded area shows the upper and lower bounds of performance of the agent across all runs.

An attempt was also made to set ǫ to 1 again and then decay it, in order to observe the effect

of additional exploration with a trained network, but the performance at the beginning plummeted

and did not surpass the performance at the start of this additional training.

Figure 4.7 shows the win rate of the agent against a random player averaged over 5 runs. As

can be observed, while the performance of the agent was over 80%, the win rate did not increase,

but in fact decreased slightly.

4.2.5 Trapping

We attempted to observe if the trapping strategy mentioned in the game background section

was being replicated by the agent, and found out this was not the case, as observed in Figure 4.8b.

The agent did not transition to either states 2 or 3 in Figure 2.3, and lost the game instead. It is

possible that this is due to being trained against a random player.

25

a. b.

Figure 4.8: a.) Position 1 in the double cross strategy depicted in Fig. 2.3. b.) Next action taken by agent.

4.3 Against itself

While playing against a random player helped the player develop a more complex strategy, it

still lacked the intelligence to play against a smart opponent. Hence, the agent was trained to play

against itself, in the hope that playing against a trained agent would help the new agent develop

more complex game strategy.

4.3.1 Training

Training against a random player, for different parameters, such as the network structure, the

number of epochs and games per epoch, optimizers, activation functions, the most successful net-

work had a win rate of over 99%. The curvature for the win rate was extremely unstable in this

case. While previous iterations seemed to improve but suffer from brief bouts of decline due to

overfitting, in case of training against itself, once performance started to decline, it either skyrock-

eted or crashed to zero. Binning for previous 10 epoch wins was done to standardize performance

visualization against previous results.

The number of runs required compared to train a random player was fewer, but the batches were

overfitting very sharply, no matter the variation in hyperparameters. To reduce this, the number

of epochs was increased, and number of games per epoch was reduced significantly. Setting the

minimum ǫ to 0.05 (5 in 100 chance of randomness) resulted in the training going off kilter again

and again and crashing to 0. Hence, the minimum ǫ was set to 0.01.

26

While the performance of the agent varied across different hyperparameters, there were a few

commonalities observed:

• Network structure: 2 layers with 100 units in each layer worked best; using wider (more

units), shallower (fewer layers) networks worked extremely poorly, and deeper networks

with more layers overtrained almost instantly, reducing win rates to near zero;

• Learning rate: A learning rate of the order 10−3 led to the most stable training performance;

decreasing the learning rate to 10−4 impacted training speed severely and increasing it to

10−2 made the learning highly unstable;

• Activation function: The hyperbolic tangent TanH activation function worked better than

Rectified Linear Unit ReLU nearly always;

• Optimizer: SGD worked better than Adam, with smoother improvement and better win rate

on average; using Nesterov momentum with SGD helped even further;

• Min Epsilon: Setting min ǫ to 0.05 resulted in the training increasing performance gradually,

then going the opposite direction sharply, ending up with a win rate below 5%; setting the

minimum ǫ to 0.01 seemed to prevent this.

Figure 4.9 shows the win rate of the agent against the previously trained agent. The hyperpa-

rameters for the run are listed in Table 4.3.

4.3.2 Testing

Once the trained agent was tested against the previous agent, the new agent performed perfectly,

achieving a win rate of 100% in all 10 instances. Figure 4.10 shows win rate of the newly trained

agent against a trained player for 10 tests. Each test averaged performance for 100 games over 5

runs. The win rate of the agent was a staggering 100%.

Attempting to test the new agent against a random opponent instead, the performance dropped

to 55%. This is not surprising, given that once the new agent learns to play against some semblance

27

Figure 4.9: Win rate against intelligent player during training

Table 4.3: Hyperparameter values for best network against intelligent opponent

Hyperparameter Value

Epochs 400

Games per Epoch 50

Network structure [100, 100]

Updates per Epoch 100

Learning Rate 0.001

Activation Function TanH

Optimizer SGD

Epsilon Decay Factor 0.9875

Min Epsilon 0.01

28

Figure 4.10: Win rate against trained player during testing

Figure 4.11: Win rate against random player during testing

29

Figure 4.12: Intermediate state of the game

a. b.

Figure 4.13: a.) First action taken by agent for state in Fig. 4.12. b.) Second action taken by agent.

of strategy, a completely random player would throw off the effectiveness of its newly learned

optimal strategy.

Figure 4.11 shows win rate of the newly trained agent against a random player for 10 tests.

Each test averaged performance for 100 games over 5 runs. The win rate of the agent averaged

around 55%, and did not drop below 50% in any instance.

4.3.3 Predicted moves

When observing an intermediate state, the agent takes a seemingly non-optimal move. This

can be observed from Figure 4.13a, which depicts the move made by the agent from the state in

Figure 4.12.

Assuming Figure 4.13a is the state at which agent has a turn instead, the agent takes another

seemingly non-optimal move, which can be observed from Figure 4.13b. It is possible that these

30

a. b.

Figure 4.14: a.) Position 1 in the double cross strategy depicted in Fig. 2.3. b.) Next action taken by agent.

locally non-optimal moves are globally optimal, since the result of dots and boxes depends on

which player has more boxes at the end of the game.

4.3.4 Trapping

We attempted to observe if the trapping strategy mentioned in the game background section

was being replicated by the agent, and found out this was not the case, as observed in Figure 4.8b.

The agent did not transition to either states 2 or 3 in Figure 2.3, and lost the game instead. It

is likely that training an agent against a previously trained agent is not enough for the agent to

learn such a subtle strategy, and multiple rounds of training against previous best agent might be

necessary for the agent to learn it.

4.3.5 Game-play analysis

An analysis of the performance of the agent is done for a sample game. The agent won the

game, winning 6 of the 9 total boxes.

Since the agent trained as player 2, the previous-agent-as-opponent makes the first move. On

step 8, the agent make a 3rd side to the box, a poor move strategically, and one that any human

opponent would easily capitalize on. The agent does complete the box in the very next turn,

however. In step 11, the agent makes a similar move, but this time does not complete the box in

the next available turn. Furthermore, it does not complete open/available boxes in step 13. Starting

from step 15, the agent quickly takes all available boxes, and then adds a 3rd line to the last open

31

Table 4.4: Game moves (sequential). Play proceeds left to right across a row and continues on the next row.

32

Table 4.5: Game moves (continued) (sequential)

33

box in the chain. The opponent capitalizes on this and takes its first box. Further opportunity

arrives at step 21, when agent takes another 2 boxes. Somewhat disappointingly, on step 23, the

agent chooses the incorrect move, conceding the last 2 boxes to the opponent instead of winning

them itself.

Based on the behavior of the agent, it seems far more inclined towards completing a 3rd side

of a box than it should be. My speculation is that this is because the agent learned against an

agent which itself learned to play against a random opponent. Due to this, the agent learned to

try to complete boxes by itself, including boxes with only 2 sides by making a 3rd side. Since

the opponent was also random initially, it didn’t capitalize on each such opportunity and make the

agent lose games, which is why this strategy likely remained ingrained within the agent. I believe

further training against existing agents as opponents would help the agent learn that such moves are

a poor strategic choice, as the likelihood of opponents capitalizing on such a mistake will increase

with each iteration of the opponent.

34

Chapter 5

Conclusion

This research demonstrates that playing a game of Dots and Boxes can be successfully imple-

mented using reinforcement learning. The game is translated to state and action and fed as input

to a neural network, and the sum of future reinforcements is predicted and improved upon.

The agent improves significantly during training against a random player, despite the complex-

ity of the game. The testing results reinforce the same, with the agent beating a random player

handily. Further training of the agent, even with varying parameters, did not lead to any gains, and

the agent could not breach the 90% win rate barrier, indicating that this might be the best that an

agent can do against a random player using the current approach. The agent’s actions in pursuing

a globally optimal goal sometimes led to actions which were not myopic.

However, the agent was unable to execute the double trapping strategy, likely due to never

encountering it properly when playing against a random player. Furthermore, defeating a random

player is not an accurate metric of game strategy.

To that end, an exploration was done by having the agent train against itself in the hope that

training against an intelligent opponent would help it learn a deeper level of strategy. Nevertheless,

the revised agent was still unable to pick up on the double cross strategy, showing that the new

training was not sufficient.

It is likely that many iterations of training against a previous version will enable the agent to

learn to play the game with a significant level of intelligence.

5.1 Comparison again related work

The work done by Deakos Matthew [9] was most closely related to the work done in this

thesis. They also trained their agent against an opponent agent, albeit using a DQN approach and

with opponent agent updating mid-training.

35

The network used by Deakos was far larger, with 2 convolutional layers of 16 filters and 32

filters respectively, each with a 3x3 kernel and then 2 fully connected layers with 256 units each.

The game board they trained on, however, was also larger at 4x4.

They were able to achieve a win rate of over 90% against a random agent after 10000 games

after implementing their modification, which looked at next state of the game and whether that was

won by opponent, which is impressive. The agent in this thesis took nearly 400 thousand games in

order to converge on a win rate of over 80%.

5.2 Future work

Another aspect of exploration would be to train the agent using images of the game instead,

similar to DeepMind’s approach [5]. This would be a massive paradigm change, and require a large

amount of training data generation, but could yield other benefits. Using a convolutional neural

network for training could significantly reduce overfitting during training, which was a persistent

problem while training the agent and understandably so, given the sheer size of the state space.

Further exploration could also be attempted to use a different Q-learning approach, for instance,

using Double Deep Q Networks, with two different functions for training and selecting actions.

36

Bibliography

[1] Wikipedia contributors. Dots and Boxes. https://en.wikipedia.org/wiki/Dots_and_Boxes,

October 2019.

[2] R. Sutton and A. Barto. Reinforcement Learning: An Introduction, volume 2. The MIT Press

Cambridge, Massachusetts London, England, 2018.

[3] C. Anderson. Learning and Problem Solving with Multilayered Connectionist Systems. PhD

thesis, University of Massachusetts, Amherst, MA, 1986.

[4] G. Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play.

Neural computation, 6(2):215–219, 1994.

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,

D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general rein-

forcement learning algorithm that masters chess, shogi, and go through self-play. Science,

362(6419):1140–1144, 2018.

[6] J. West. Games of No Chance, volume 29, pages 79–84. MSRI Publications, 1996.

[7] J. Barker and R. Korf. Solving 4x5 dots-and-boxes. Proceedings of the AAAI Conference on

Artificial Intelligence, 25(1):1756–1757, Aug. 2011.

[8] A. Miller, N. Phung and D. Dowling. Fun with Dots and Boxes: An Approach Using Q-

learning and Artificial Neural Networks. https://github.com/phung025/Dots_and_Boxes_RL,

June 2021.

[9] M. Deakos. A Deep Reinforcement Learning Approach to "Dots and Boxes". https://github.

com/mattdeak/dots-boxes-RL, June 2021.

37

[10] Y. Zhuang, S. Li, T. Peters, and C. Zhang. Improving monte-carlo tree search for dots-

and-boxes with a novel board representation and artificial neural networks. In 2015 IEEE

Conference on Computational Intelligence and Games (CIG), pages 314–321, 2015.

38

Appendix A

License

Colorado State University LaTeX Thesis Template

by Elliott Forney – 2017

This is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in

source code form or as a compiled binary, for any purpose, commercial or non-commercial, and

by any means.

In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any

and all copyright interest in the software to the public domain. We make this dedication for the

benefit of the public at large and to the detriment of our heirs and successors. We intend this

dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this

software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-

PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-

CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

39

