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ABSTRACT 

The effects of constant value truncation on the dependence property of 

idealized hydrological time series are investigated. This analysis was carried 

out for dependent stochastic components, for periodic component and for the 

sum of stochastic dependent and periodic deterministic components of hydrological 

time series. The random elements of the process were considered for both normal 

and lognormal distributions. For al l cases , the truncation is considered at a 

constant level. Analytical equations were developed in approximate forms for 

correlograms which express the dependence of the truncated time series. Com­

putations of correlograms from these equations were made on a digital computer. 

Two series of daily river flows were used with the truncation at the mean flow 

to compare their correlograms with those of the original daily flow time series . 

vii 



EFFECTS OF TRUNCATION ON DEPENDENCE IN I~DROLOGICAL TIME SERIES 

by 

Rezaul Karim Bhuiya* 

and 

Vujica Yevjevich** 

Chapter I 

Itn'RODUCTION 

1. Character of hydrological timo series. The 
hydrological time series are usually positive valued 
variables which include also the zero value. In many 
cases, the observed time series never show a zero value, 
or the minimal obser ved values are much greater than 
the zoro. The probability of the lowest discharge of 
the Mississippi River being zero is practically zero. 
Also, the probability of monthly precipitation of a wet 
region being zero is very small . However, many hydro­
logical time series include values which are either 
:eros or very close to :ero. 

Hydrological time series are either continuous 
(especially if rates are observed as the precipitation 
intensity, flow discharge, ~ediment discharge, and 
similar) or discrete (if the values are observed at 
discrete times or arc derived from continuous time 
series in the form of daily, monthly or annual values 
of preci.pi tation , river flow, sediment transport , et c . ). 
When a continuous or discrete hydrological time series 
has zero values from time to time and for some period, 
the process is called intermittent. The general pat­
tern for discrete time series is that they are less 
likely to have zero values when the cumulative or aver­
age amounts of a hydrological magnitude are obtained 
over longer time intervals. Every series of daily pre­
cipitation has :ero values. However, the series of 
monthly values may or may not have zero values . It is 
rare that the series of annual precipitation contains 
zeros . If it does the series usually belongs to a 
very arid region or to a desert. 

Therefore, the continuous series of rates of 
several hydrological magnitudes is expect ed to have 
zero values very frequently and with the longer total 
duration than the series of its cumulative discrete 
values of a variable. The continuous series of precipi­
tation intensity has zero values more often and of a 
longer total duration than the series of daily precipi­
tation . In turn, the daily precipitation series has 
zero values more often and of a longer duration than 
the series of monthly precipitation . The same patterns 
occur fo r river flows in intermittent rivers . The 
process of river bed load transport is intermittent, 
either because of the intermittent flow of t he river 
or because the low flows cannot transpprt the bed load. 

Two questions arise in the treatment of hydro­
logical time series with zero values: (1) How to 
interpret these values in the sense of probabil ity 

distribution of the variable; and (2) What is the 
influence of zero values on properties of hydrological 
time series . 

The total probability of zero values may be 
interpreted as the probability of all negative values 
of a distribution function. Therefore, the probability 
distribution is composed of two parts: {1) Probability 
mass for the discrete value of zero; and (2) Probability 
densities for all positive values , zero included . Some­
times, a physical interpretation is attractive for 
these values of :ero . In the case of the series of 
precipitation intensity, the zero values represent the 
times when the opposite process to precipitation or 
the evaporation occurs . In the case of a liquid­
gaseous interface at the ground surface, the flux of 
moisture through it is a continuous process in the form 
of both precipitation and evaporation (intermittently) 
or with positive and negative variabl e values of a 
continuous probabi l ity density. 

In an arid region where the rate of evapo­
ration in the air is very high, a considerable portion 
of precipitation evaporates before it reaches the 
ground . Sometimes the total amount of precipitation 
evaporates, and this fact represents an increase in 
the length of zero values of the precipitation time 
series. 

The second question is the effect of zero 
values on propert ies of hydrological time series, and 
this topic is one of the two subjects of this paper. 
It is logical to expect that the series with zero 
values would have some particular properties, at 
least as it concerns the time dependence and its 
other parameters, if not its general mathematical 
models. 

2 . Truncated series by man-made processes . It 
often occurs that man-made factors either create 
hydrological time series with zero values or decrease 
some values relative to others . The diversion of 
water from one river basin to another is sufficient to 
alter or truncate the distribution of the flow of the 
first river or to alter the distribution of the flow of 
the second river. In this case, the first river shows 
a r eduction in its flow and also increased length of 
zero values if the river is dried up due to diversion, 
while the other river experiences an improved sustained 
flow and increased low flows. It is expected that the 
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simple permanent transfer of water from one river to 
another decreases t ime dependence for the former and 
i ncreases i t for the latter . The analyt ical or experi­
mental studies of these man-made effects are of signifi­
cant practical importance. This is the second subject 
treated in this paper. 

The various practical manipulations of lowest 
river flows (withdrawal for water supply, irrigation, 
recharge of groundwater, flow regulations, etc . ) make 
t he time dependence of the resulting new regime a very 
compl ex p~enomenon. It is treated, however, in this 
paper in a simplified schematic way because the vari­
eties of r esul t ing effects are not an easy subject 
for systematization. 

3. The approach of studying the effect of zer o 
values and man-made withdrawals on the dependence of 
time series. No suitable technique has yet been 

2 

devised to analyze hydrological time series which have 
truncation either by the natural phenomenon or by man­
made withdrawals or additions. Such transformati ons 
distort the structure of the continuous time series 
and" thereby change i ts dependence properties. The 
present day analysis of time series emphasizes the 
study of their structure by their decomposi t ion into 
different components , such as jump or trend , periodic 
component , stochastic component, etc . But time series 
which are truncated either by natural or man-made 
processes should first be studied for the effect of 
truncation before they are st udied for their general 
structure. 

The approach of this i nvestigat ion is to 
determine the effect s of truncation on various com­
ponents of time series, such as pure stochasti c or 
pure deterministic components, or their combination. 



Chapter II 

GENERAL ANALYSIS 

1. Definition of the problem. A time series with 
significant length of zero value for the case of a 
cumulative variable may be considered as truncation by 
a physical process. This truncation can be obtained by 
a deduction from a continuous or discrete time series 
of a constant, of a linear or non-linear deterministic 
model, of a dependent or independent stochastic model, 
or a combination of any or all of these truncations. 
The physical process of truncation or addition may be 
very complex. As the simplest step in the investigation 
of characteristics of a t ime series under various types 
of truncation models, the truncation by deducti on of a 
constant value (c) is first considered in this study. 
The truncation has several effects on a variable and its 
t ime series, but in this paper, the effect of such a 
constant truncation on autocorrelation coefficients 
of time series only is analyzed. 

It is logical first to study t he truncation 
of independent time series. However, this case is 
usually best shown when the dependence parameters are 
equated with their values of independent case , in the 
developed expressions for the case of dependent time 
series . 

2 . Effect of truncation on autocorrelation 
coefficients for the first order ~1arkov linear process. 
Let xt be a discrete time, stationary f irst order 

~1arkov 1 inear process. It is truncated at any real 
constant value c such that 

yt xt - c if xt > c, with -~ < c < ~ , and 

y t = 0 if xt < c 
Cl) 

The autocorrelation function for the truncated process 
is deri ved for the cases when x at any time t is 
(a) normally distributed; and (bJ lognormally distribu­
ted variable. 

3. Normal dependent process. The first order 
Markov l inear model is defined here in the form 

x = \J + p (x - \J ) + • '1"7 t t t-1 v l - p- t (2) 

where ct is an independent normal variable (i ndepen­

dent stochastic component) with t he mean zero Cut = 0), 

and the variance o2 (o2) ; xt is dependent normal 
£ . 

variabl e with the mean ~ and the variance a2 (same 
as ct) and the population autocorrelation coefficients 

T are : P, = p 

The process of eq . (2) is truncated by the 
model of eq. (1) so that 

3 

( 1 (C- \J 2} c- u expr 2 0 ) . (C-\J) [1 - <I> C-o)] C3) 

where <1> (C-IJ) represents the cumulative value of the 
0 

standard normal density function from C-)J 
- .. to a. 

{ 
1 C-IJ 2\ 

exp - 2 C0 ) j + 

+ o2 [1 - <I> CC~IJ)] - ~: exp { - CC~IJ)~ (5) 

To find the autocorrelation f unction, first 
the expected value of the cross-product function is 
obtained as 

f f 
c c 

(x
1
-c) Cx

2
- c) 

2no2 h-p 2 
exp 1 

Standardizing the variables and using the inversion 
theorem for the characteristic function of bivariate 
normal distribution and expanding the integrand in 
ascending power of p

1 
, the above equation becomes 

.. ( -p )j{ .. 
E (y ty t+T) =) -+ J (oxl + jl·C) 

J=o ~ 
a 

exp (- ~ u2 
- iux1) du] dx} · {J"' (ox2 + jl-C) 

J C~IJ 

1 "' . 1 
[2TT f vJ exp (- 2 v2 - i vx2) dv) dx2"} 

(-p,)j . 

-oo 

The coefficient of . , 1s the product of 
J . 

(6) 

(7) 



two integrals of which the first is 

00 

C-JJ f I(-o- x1, u) • ~ (o x1 + JJ-C) 

0 

(8) 

and t he second is I(C~JJ , x2 , v) similar to eq . (8) . 

Both the integrals are essentially the same because xt 

is assumed t o be a stationary Markov process. 

is 
The integral in the square bracket of eq. (8) 

(-i)j Hj (x
1

) a (x
1

) 

where a(x1 ) • ~ exp (- t xf) and Hj (xt) are 

Chebyshev-Hermite polynomials [see reference (1) ). 

For j ; 0 • eq . (8) becomes 

C-IJ .. f 00 ( ox
1 

+ u-c) (0 , x1 , u) 
C-JJ 

0 

H 
0 (xl) a (x1 ) dx

1 = E (yt) 

For j • eq. (8) gives 

C-IJ foo (0 , x1, u) " (-i) (ox1 + IJ -c) 

0 

For j ~ 2 , eq. (8) becomes 

(C- IJ ) (-;)j foo ( ) 
0 , x1, u = L .£:1!.. ox1 + IJ - C 

0 

Using the identity 

(-D)r a (x) = Hr (x) a (x) 

with Dr as the symbol for r-th derivative, and 
integrating by parts, eq. (11) reduces to 

(9) 

(10) 

(11) 

( 12) 

C•IJ . j C-\l C-IJ 
I (-

0
- , x1 , u) = (-~) o Hj_

2
(0 ) a ( --0 ). (13) 

Subst ituting eqs. {9), (10) and (13) into eq. (7), then 

cov (ytyt+l) • p1o2 [l+~(C~IJ) ]2 + ~: exp { -(C~Il)2} 

L (14) 

j=2 

The autocorrelation function is then given by 

P o2 [1 - ~(~)) 2 o2 
T o + 2ii' exp 

4 

2 C-IJ oZ { C- IJ 2 } + o [ 1 - ~ (- ) ) - - exp - (- ) 
0 211 0 

Putting c-+ _ .. in eq. (15), PT(c) = pT as for 
eq. (2). 

(15) 

For the case of an independent normal 
random variable pT=O , and hence for i ndependent 
normal random variable eq. (IS) reduces to pT(c)•O 
This shows that, an independent process remains inde­
pendent after any constant truncation. For the case 
of the first order Markov linear chain, the auto­
correlation coefficients for any constant truncation 
c are given by eq. {15) . 

4. Lognormal dependent process. The lognormal 
variable does not have additive but r ather multiplica­
tive reproducing properties. In order to keep the 
variable lognormal after the application of the first 
order Markov linear process, the process should be 

(16) 

where et is an i ndependent normal variable with 

mean zero and variance on2 , and xt is a dependent 
IJn+ ~on2 

lognormal variable with mean 1J • e and 
. lln+On 2 o 2 

var~ance o2 = e (en 1), where IJ 
is the mean of logarithms of the random va~iable xt . 
Equation (16) can also be expressed as 

IJ +p (!n xt_ 1-un) II-p2 e 
x = en e t 

t 

The autocorrelation coefficients of the dependence 
model of eq. (17) are 

P' "' 
T 

p 0 2 
e ' n - 1 

0 2 
e n - 1 

The process of eq. (17) is truncated 
according to eq . ( 1) for 0 < c < oo , giving 

(17} 

(18) 

(19) 



E(y 2) 
t f

oo (x-c) 2 
--- exp 

c rz; { 
1 ( in X-\.1 )

2
} - 2 on n d in x 

[ (
in C-IJ JJ 

1 - ~ on n - 2on 

[ (
in C-\Jn }] 

1-~ - a 
o n 
n 

+ 

(20) 

From eqs . (20) and (19), the variance of y is 
obtained as var Yt = E(yt2) - [E(yt) l 2 tSimilarly, 
as in eq. (6) but with the use of eq . ( 17) for 
Yt = xt- c , if xt > c or Yt = 0 for x < c 
the expected value of E(YtYt+T) is obtained with 
the replacements in xt = u and in Xt+r = v 

"' {- 1 ,. [!" :.'" )' 2(1-p 2) 

('::·JJ} - 2p T (u::nJ (v::nJ + du dv (21) 

Integrating eq. (21) in the same way as eq. (6), the 
covariance of Yt and Yt+T can be expressed as 

cov (ytyt+r) = p1a~ exp(on+21Jn) [1- ~( in ::\.In- on)]

2 

+ 
{ 

j (tn C-\.ln) 
c E H. k 

k=2 J- 0 n 

exp [-} o~ + \.I n) [ ( 

tn C-\.1 
1- $ n 

0 
n 

(22) 

The aut ocorrelation function is given by 

pto~ exp (o~ + 21Jn) [~-~(in ::\.In- on)] 2 

+ 
{

c f H. k ( i n :-\.In ) ~ ( in
0
C-\.ln) 0~_ 1+ 

k=2 J- n · n 

+ oJ exp - o2 . ( 1 
n 2 n ' 'n) [1-0 I'" ,:-'• •.)]} '! 

5 

- exp(o2 + 2\J ) 
n n 

on)] ~ ( tn ::\.In) + 

• ! •• ::'·I} (23) 

For the case of an independent lognormal 
process, P, = 0 for all t , and eq. (23) reduces to 
P1 (c) = 0 So an independent lognormal process re-
mains independent after any constant truncation . 

Equation (23) is valid for any pos~t1ve 
truncation. For negative truncation, it needs some 
modification. Since the legnorrnal variables have 
only positive values, for any negative truncatio·n 
the mathematical expectation of any function of xt 
is extended over the whole range of the random 
variable xt Therefore set t ing t n c = - oo for 
c ~ 0 , as i f c = 0 , eq . (23) can be simplified to 

p 02 

PT (c) 
e t n - 1 

o2 
e n - 1 

in the same way as eq. (18). Therefore , P, (c) is 
independent of c for c < 0 

(24) 

(25) 

Therefore, from eqs . (23) through (25 ) , i t follows 
that for any negative truncation (c < 0) , only t he 
mean is changed . 

The case of a value of c being negative 
can be easi ly conceived as the constant water dis­
charge diverted into a river with relatively low 
flows . 

As hydrologic time series often have a 
deterministic component (monthly values have the 
yearly cycle, hourly values have the daily cycle) , 
first a simple sine function is investigated in the 
following text, and then a combination of sine func­
tion and a dependent random variable is studied. 
However, it is difficult with this general analysis 
to come very close to the real structure of hydro­
logical t i me series or to the various complex trun­
cation models which occur in practice . 

5. Effect of truncation on autocorrelation 
coefficients for a sinusoidal series . Let xt = A 
sin wt , a continuous deterministic time series be 
truncated as fo l lows: 



yt xt - c if t-
x> '} -A2_C2_A (26) 

y = t 0 if xt < c 

Figure 1 shows: (a) the truncation at 
and (b) the truncation at -A < c < 0 

(a) 

>..=2-rr 
w 

( b ) 

0 < c < A 

Fig. I. Schematic diagram for the lagged cross 
product of a sinusoidal series: (I) sine 
series; (2) shifted series for T 
(3) level of truncation 

The level of truncation can be expressed as 
A sin wtc c , where 

with 

11 < 
2w 

. - 1 s1n c 
A 

then the expected values of yt are 

E (y t )= A[ 
cos wt sin wt c c 

11 2 

sin wt 

J 
c + wt c 11 

[2 
sin2 wt + 1 

E{y2) A2 c 
t 4 

(27) 

(28) 

+ 

(29) 

6 

(2 sin2 wt + 1) wt 
c c 3sin2wtc] 

411 • (30) 

The transformed variable Yt is not a 
continuous function of time. Therefore, to find the 
cross product of the function with respect to any lag, 
it is necessary to look into the length of the series 
where xt 2_ c or yt ~ 0 . When. the series. is 
truncated at its negat1ve values, 1 .e., tc 1s nega­
tive and 11/w + 2tc 2_ T 2_ 11/w - 2tc , the cross 
product with any l ag T is 

11 

[ 
w- tc 

.!_ f (A 
:>- (t+t ) 

sinwt-c)(A sinw(t+t )-c) dt 

c 

11 
- + •-t 
7 c (A sin wt-c)(A sinw(t+<)-c) dt]

1 

2Jr 
- + t 

w c 

which upon integration becomes 

ECr,r,.,l • ~: {[ ';"' - "', • 

sin 2 wtc sin 2:(••tc) J + + cos t -4 

[sin2 - sin2w(<+tc)J sin W't wt -2- -c 

- 2 [cos wt c 
+ cos w (<•tc) J sin wtc + 

+ (n -wt-2wtc) sin2 
wtc} + 

~ { [·,_, sin 2w (•-tc) 
+ - wt + 2TT 2 c 4 

sin ~ wtc J + COS T 

[ 
2 J sin wT sin2 w(T-tc) - sin wtc - 2- - -

+ 

2 [cos w(T -tc) + cos wtcJ sin wtc + 

(wT - 2wt c · 11) sin2 wtc} 

For all truncation when 0 < T < nfw - 2t , the 
second integral in eq. (31) -does not exist and, 
t herefo·re, 

wt + c 4 
+ 

sin 
+ 

2w(r+t ) J 
4 c cos w< -

(31) 

(32) 



sin wt 
-2--

+ 2 [cos wtc + cos w(t+tc) J 

+ (rr - wt - 2wt ) sin2 wt } c c (33) 

Similarly, when rr/w + 2t c ~ t ~ 2rr/w , the first 
integral of eq. (31) does not exist for which case 

E(ytyt+T) • ~ w~-rr - wtc 4 + 
2 {[ sin 2w(t-t c) 

sin wt 
- 2- + 

+ (wt-2wt -rr) sin2 wt } c c (34) 

When tc is positive and rr/w - 2tc ~ t ~ rr/w + 2tc , 
none of the integrals in eq. (31) exists for which 

(35) 

The evaluation of E(ytyt+T) according to 

eqs . (31) through (35) depends on t and the level 

of truncation c By using E(yt) from eq. (29) 

and E(yt2) from eq. (30), the autocorrelation 

coefficients can be computed by 

E(ytyt+t) - [ECyt)J 
2 

E(yt2)- [E(yt)r 
(36) 

6. Effect of truncation on the autocorrelation 
coefficients for a time series composed of a periodic 
component and a stati onary stochastic component. Let 
the discrete process Xt be composed of a determinis­
tic periodic component Pt = A sin wt plus a sto­
chastic component nt , where A is the ampl itude 
of the periodic component, w is the angular fre­
quency and A • 2rr /w becomes the period. The pro­
cess xt is analyzed for truncation when nt at 

any particular time follows (a) a normal distribution 
and (b) a lognormal distribution. 

Let the process xt • nt + A sin wt be 
truncated by any real constant c such that 

nt > c - A sin 

(37) 

0 when xt < c or rtt < c - A sin 

wt} 

wt . 

7 

(a) Normal distribution. Let nt be 

normally distributed with mean 11 and variance· 
It is further assumed that nt follows the first 

order ~larkov l i near model according to eq. (2) . 

Following the truncation of eq. (37) and 
letting 

ht = C - A sin wt and nt+t • c - A sin w(t+t) 

it can be written that 

{-} ("~~~(} 

r 1 [;;, ''P {-} (\" n­
l',- •l { · •[\"!}] 

dn 

Ey2 (t) 
(n-ht)2 { 1 2} --- exp -2 ( n~~~) dn onn 

U. { [ (h,- •l' • ·'] [·-· r\' 1] 

. ";,;) .,, [- } !\TJ} 
To find the autocorrelation function , 

). .. .. 
= .!. I f f 

). t=l ht h t+T 

[ ( n1 :\1 )
2 

("';')J} '"• ,,, 
Following the integration of eq. 

can be obtained that 

•r,r,., • f J. [{ ;,, "P [-} (\')'] 

+ 

(6), it 

(\ -•) [I-t ( h, :'ll} {;;, "P [- t ('';' -• )' 

-",., -·) [ ·-· r··nJ} . 

(38) 

(39) 

(40) 



+ p102 [1-~ {~)] [ 1-~ (\•~- ~ }] • 

2 .. p j { h -~) 
0 L T t 

+ 2i! j .. 2 -j-~ Hj-2 -o- Hj -2 ( ht+:-~) 

•'P{-t[("~-')' . ("·:- 'l'l}j (41) 

The autocorrelation coefficients can be computed with 
Eytyt+T Eyt2 Eyt given by eqs . (38), (39) 

and (41), respectively . 

(b) Lognormal distribution . Let '\ be 

lognormally distributed with ~ and o2 as the 
n n 

mean and variance of the logarithms of the variable. 
Also, .i.n nt follows the first order Harkov linear 

process , so that t he dependence model of nt is 
given by eq. (17) . 

Let the process xt • nt + A sin wt be 

truncated at any level c according to eq. (37) , 
such that 0 ~ c - A sin wt < "' Then substituting 
c - A sin wt = ht and c - A sin w(t+T) = ht+T , it 

can be obtained that 

1 >. { 1 - I exp(- o2 + 
). t=l 2 n 

)J} (42) 

(43) 

8 

.. p j { • I -):, ht 
j=2 . 

+ 0 
n 

The autocorrelation 
from the val ues of 

given by eqs. (42) , 

coefficients can be computed 
Eyt Ey~ and Eytyt+T as 
(43) , and (44) , respectively. 

When ht ~0 or ht+t ~0 , i.e . , 

+ 

c < A sin 2wt or A sin 2w(t+t) , the range of 
expectation of y(t) extends over the entire region 
of the lognormal variable, i.e. , from 0 to"'. 
Therefore, in eqs. (42), (43) and (44), in ht or 

1n ht+T is to be replaced by -"' where ht ~ 0 and 

ht+T ~ 0 \'ihen \ ~ 0 and \+r ~ 0 for all t 
t hen the autocorrelation coefficients for the trun­
cated series can be obtained as 

P,o~ A2 A 
exp (o~+2~n)(e - 1)+ )\ L sinwt sinw(t+t) 

t=l . (45) 
o A2 A 

exp (a2+ 2~ )(e n -1) + f sin2 wt 
n n "'T t;l 

The correlogram of the untruncated series 
c'an also be obtained from eq. (45) since it is inde­
pendent of truncation under t he conditions of its 
derivation . 



Chapter III 

PRESENTATION AND DISCUSSION OF COMPUTATIONAL RESULTS 

1. Computation of correlograms. The effects 
of truncations by constant values of c on the auto­
correlation coefficients of time series can be deter­
mined by two methods as follows : (a) numerical solu­
tions of equations deve l oped in Chapter I I , by 
approximations and (b) generating large samples of 
time series by ~tonte Carlo method (data generation 
method), truncating them with various constant values 
and computing correlograms of the truncated time 
series. The first approach is selected here for sim­
ple cases as investigated in Chapter II. However, 
the second approach is always available for complex 
cases. It is applied here only in two cases of daily 

. river flows and only for a given case of constant 
truncation at the mean value. 

All equat ions theoretically derived in 
Chapter II for the autocorrelation coefficients of 
stochastic processes involve the Chebyshev-Hermite 
polynomials [.1). It was found that for both truncated 
normal and truncated lognormal random variables the 
equations which involve sums of polynomials converge 
for all values of o and for all finite levels of 
truncation to the true finite values as j increases. 
The convergence is faster for lower values of p than 
for higher values , or fewer polynomials are necessary 
for the same accuracy for small p than for large 
p values. In all computations 14 polynomials were 
used. Tables 1 and 2 show the comparison of the first 
serial correlation coefficients computed with 9 poly­
nomials with those computed with 14 polynomials for 

Table 1. Comparative study of the convergence of eq. (15) by using 9 and 
14 Chebyshev-Hermite polynomials in the computation of o1(c) 
for different values of p and different levels of truncation 

Level p ; 0.2 p ; 0.4 p .. 0.6 p = 0.8 
of 

trun- 9 poly- 14 poly- 9 poly- 14 poly- 9 poly- 14 poly- 9 poly- 14 poly-
cation nomials nomials nomials nomials nomia1s nomials nomia1s nomials 

. 2 . 2 .4 .4 .6 . 6 .8 .8 
-1 .18886 .18886 .38149 .38149 .57868 .57868 .78159 . 78162 
-0.5 .17606 .17606 . 36172 . 36172 . 55797 . 55797 . 76671 .76674 

0 . 15587 . 15587 .33086 .33086 .52633 . 52634 . 74538 . 74548 
0.5 .12498 .12498 .28002 .28002 .46827 .46827 .69565 .69575 
1. 0 .08696 .08696 . 21215 . 21215 .38355 .38356 .61314 .61341 
2.0 . 02140 .02140 . 07022 . 07022 .16617 .16618 .33951 . 34003 
3.0 .00155 . 00155 .00863 . 00863 .03232 .03234 .09780 .09835 

Table 2. Comparative study of the convergence of eq. (23) by using 9 and 
14 Chebyshev-Hermite polynomials in the computation of o1(c) 
for different values of p and different levels of truncation 

Level p 0.2 p • 0.4 p • 0 . 6 p 0.8 
of 

trun- 9 poly- 14 poly- 9 poly- 14 poly- 9 poly- 14 poly- 9 poly- 14 poly-
cation nomials nomials nomials nomial s nomials nomials nomials nomia1s 

0 .12885 . 12885 .28623 .28623 .47845 .47845 . 71324 . 7B24 
1 . 10801 .10801 . 25304 . 25304 . 44256 .44256 .68533 . 68533 
2 . 08114 . 08114 .20653 . 20653 .38901 .38901 .64335 .64337 
4 . 05022 .05022 .14809 .14809 .31864 .31864 . 59379 .59385 
6 .03253 .03253 .10908 .10908 .26335 .26335 . 54336 . 54355 
8 . 02218 .02218 . 08276 .08276 .21996 . 21997 . 49402 .49247 

10 .01569 .01569 .06496 .06496 . 18895 .18896 .45860 .45886 
14 . 00889 .00889 . 04352 .04352 .14663 . 14664 .40382 .40426 
18 . 00566 .00566 .03240 . 03240 .12445 .12447 .38181 .38265 
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both normal and lognormal processes. The difference 
is not significant, and, hence, 14 polynomials are 
considered to be adequate for all computations. All 
computat ions are carried out on a high speed digital 
computer (CDC 6600) by using equations theoretical.ly 
derived in Chapter II. 

2. Normal dependent process. For a normal 
dependent stochastic process of the first order Markov 
linear model the autocorrelation coefficients of the 
truncated series were found to be dependent on four 
parameters : (1) p , the first autocorrelation 
coefficient of the Markov model; (2) c , truncation 
constant; ( 3) u , mean of the non-truncated series; 
and (4) a2 , variance of the non-truncated series, 
as it is shown by eq. (15). 

As it is complicated to s tudy the dependence 
of eq. ( 15) i n function of all four param­
case is made simpler by investigating pt(c) 
standardized normal variable with u • 0 

of P, (c) 
eters, the 
only for a 

1.0 {(C) 1.0 {(C) 

and o2 = 1. Also , the truncation constant c is 
expressed in terms of the standard deviation o of 
the original series. Four values of p in the equa-

tion P, = pt are used : p = 0 . 2 , p = 0 .4 , p = 0.6 

and p = 0 . 8 . 

Figure 2 gives four graphs of autocorrelation 
coefficients pt(c) , each for a given value of p 

The first two graphs show three curves (for c = -~ 
c = 0 , and c = o) , and the last two graphs give 
four cur ves (for c • -• , c • 0 , c = o , and 
c = 2o). The case c = -~ corresponds to the first 
order Markov linear model, pt = p'l" , without 
truncation. 

For p = 0 , i t follows that p (c) • 0 
for any c The independent normal protess remains , 
therefore , independent after any constant truncation. 
The effect of the constant truncation c of the 
s tandard normal f irst order Markov linear model on 

1.0 /{;(c) 
(j) p = 0.20 ® p =0.40 @ p =0.60 

0.8 

0.6 

0.0 
0 

0.8 0.8 

0.6 0.6 

C=-oo • - 00 -CD 

0 
0" 

2 

Fig . 2. 

0 .2 

"C o.o 'C" 0.0 
4 6 8 0 2 6 8 0 2 4 8 

1.0 If. (c) 
@ p = 0.80 

Correlograms of the truncated normal process of the first order Markov l inear model for : 
(1) p • 0.20; (2) p = 0.40; (3) p • 0.60; and (4) p = 0.80 . The truncation constants 
c are either -• 0 and o ; or -• 0 o and 2o 
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the first autocorrelation coefficient p 1(c) is 
shown in Fig. 3. 

10 ~(C) 

0 8 
p •0 8 0 

06 
0 60 

0 4 
0.40 

0 2 
0 .20 

o.o -c +C 
-6 - 4 - 2 4 6 6 

Fig . 3. First autocorrelation coefficient as a 
funct i on of the level of truncation c for 
a normal process of the f i rst order Markov 
l i near model, for four values of o1 = p 
0. 20 ; 0.40 ; 0.60 and 0.80 

The means and variances which correspond 
to the analytically derived eqs. ( 3) and (5) , respec­
tively, are computed for various values of truncation 
constant c , for ~ • 0 and o2 = 1 , and are 
presented i n Table 3. 

Table 3. Means and variances of truncated standard 
normal dependent process (v = 0 
o2 • 1 p ) 

Level of 
truncation 

c 
Mean Variance 

-"' .. 1 
- 1 1.08054 . 75186 
-0.5 .69554 ,55189 
0 .39840 . 34127 
0.5 .19554 . 17b09 
1 .08054 . 07406 
2 .00731 .00861 
3 .00022 .00072 

From Fi gs. 2 and 3 i t is seen that all the 
autocorrelat i on coefficients decrease steadily with 
an increase in the level of truncation. For the nor­
mal dependent process the dependence model is almost 
unaffected when the relative level (c-~)/o of trun­
cation is < -2 . The rate of decrease is relatively 
rapid in the range -2 ~ c-u/o ~ 3 . The process 
becomes almost independent when (c-u)/o > 4 It 
can be observed that the autocorrelation coefficients 
of untruncated series are i ndependent of u and o2 , 
whereas for the truncated ser ies the opposite is 
true. 

The closest practical hydrological case t o 
this theoretical dependent time series of normal 
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variable may be found in the time series of annual 
river flows with distributions close to normal, hav­
ing drainage basins with large water storage capaci­
ties (or relatively large changes of water carryover 
in basins from year to year), so that the first order 
~1arkov linear models are approximately applicable. 
The truncations by a constant value would correspond 
to the diversion of a constant annual amount of water 
into other river basins, or the consumption of a 
constant water quantity every year by evaporation and 
evapotranspiration. 

The annual river flows of the Saint Lawrence 
River below the Great Lakes are approximately normally 
distributed with the first serial correlation coeffi­
cient of about p • 0.71. A constant annual with­
drawal from the Great Lakes (and confined or diverted 
in other river basins) would be equival ent to a con-
stant truncation c Therefore, the annual flows 
remaining in the river be l ow the lakes would be less 
dependent in sequence after those constant diversions 
out of the basin. 

3. Lognormal dependent process. As for t he 
normal dependent process, the l ognormal dependent 
stochastic process of eq. (17) of series t r uncated 
by a constant value has autocorrelation coefficients 
o,(c) which are dependent on the following four 
parameters: (1) the first autocorrelation coeffi­
cient p of the correlogram of eq. (18); (2) the 
truncation constant c ; (3) the mean vn of 

logarithms; and (4) the variance o~ of the loga­

rithms of the lognormal dependent random variable ; 
this is shown by eq. (23). 

As for the normal dependent process, t he 
parameters un and o~ are selected as particular 

values , namely u = 0 and o2 = 1 , so that only 
n n 

the relationship of p (c) = f(p , c , <) is investi­
gated by detailed compJtations . Also , the truncation 
constant c is expressed in terms of the standard 
deviation on of the logarithms of the original time 
series. Four values of p in eq . (18) are used: 
0.2 , 0.4 , 0.6 and 0 .8. 

Figure 4 gives four graphs of auto­
correlation coefficients pt (c) , each for a given 
value of p The first two graphs are shown for 
three values of c (c = 0, c = 0.5on, c = an) ' the 
third graph for four values of c (c = 0, c = O.Son• 
c = on, c = 2on), and the fourth also for four values 
of c (c = 0, c • on, c = 2on and c = 3on) . The case 
c • 0 corresponds to the first order ~1arkov model of 
eq. (18). 

For p • 0 , i t follows P,(c) = 0 for any 
c Therefore, an independent lognormal process 
remains independent after any constant truncation. 
The effect of the constant truncation c of the 
lognormal dependent process of eqs . (17) and (18) on 
the first autocorrelation coefficient P1(c) is 
shown in Fig. 5. 

The mean of truncated lognormal dependent 
time series is given by eq. (19), and the variance 
[var yt = E(y~) - E2(yt)) are given by eqs. (20) and 

(19). They are computed for various values of trun­
cation constant c , for u = 0 and o2 = 1 , and n n 
are presented in Table 4, 
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Fig . 4. Correlogr ams of the truncated lognormal process of the first order Markov linear model for : 
(l) p = 0. 20; (2) o • 0 . 40; (3) p : 0. 60 and (4) p • 0.80 . The truncation constant s c 
ar e either 0 , on/2 , on (firs t two graphs) , or 0 , on/ 2 , on , 2on (third graph) , or 

0 , on , 2on , 3on (fourth gr aph) 

t_o P, (C) 

0-8 

Fig. 5. First aut ocorrelation coeffici ent as a f unction of 
the l eve l of truncation c for lognormal process 
of t he fir st or der ~larkov linear model of eqs . ( 17) 
and (18) , for four values of o

1
= o 0 .20 , 0. 40 , 

0. 60 and 0.80 
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Table 4. Means and variances of truncat ed lognormal 
dependent process (IJn • 0 ' 02 .. 1 ' p) n 

Leve l of 
truncation Mean Variance 

c 

0 1.64862 4 . 67077 
1 . 88311 4.17074 
2 .52854 3.29986 
4 . 24515 2. 02526 
6 .13395 1.33399 
8 . 08101 .95680 

10 .05260 . 69867 
12 .03522 . 53504 
14 .02487 . 41307 
16 . 01851 . 32053 
18 .01427 .24993 

As for the normal dependent process, the 
aut ocorrelation coeffici ents of a truncated lognormal 
dependent process steadily decrease with an increase 
of truncation level c Fi gure 5 shows that p_(c) 
continuously decreases with an increase of c from 
zero to greater positive values . It should be noted 
that oT of untruncated series are dependent on 

o2 of logarithms of a lognormal variable, as shown 
n 

by eq . 
P T (c) 

(18), while for the truncated series the values 
ar e al so dependent on ~n or the mean of 

logarithms of a lognormal variable. 

0.4 

0.2 

- 0. 2 

-0.4 

- 1.0 

c = - I ( PT = cosT) 

:-0.707 

0 

0 .707 

As annual flows of many rivers are 
asymmetrically dist ributed (usual l y wel l fitted by 
lognormal dis t ribution) , time dependent because of 
changes in water storage in river basins and often 
well fitted by the first order Markov linear model of 
eq. (17) or similar. The above case of truncated 
lognormal dependent random variables is applicable 
whenever a constant annual amount of water is assigned 
to a diversion or unreturnable consumptive use . The 
above results can be applied to many rivers under 
these approximate condit ions . 

4. Truncation of a sinusoidal series by a 
constant value. The autocorrelation function of a 
truncat ed sinusoidal series depends on the amplitude 
of this series and the level of truncation. The 
autocor relogram of a sinusoidal series is a cosine 
function. The period of the autocorrelogram is the 
same as the period of the original series , and its 
amplitude is uni ty. In eqs . (32) , (33) , (34) and 
(35), a compl ete cyc l e of t he process was considered . 
The correl ogram of t he sinusoidal ser ies at different 
l evels of truncation, vdth both amplit ude and angular 
frequency taken to be equal to unity, is plotted in 
Fig . 6. The total number of t -values in a full 
period A : 2n/~ is taken as 20 for plotting the 
graph in Fig . 6. 

Figure 6 shows that the average abso l ute 
autocorrelation coefficient E{ iot(c ) i } decreases 
wit h an increase of c from c: -1 t o c = •0 . 707 . 
or, in other words, the dependence decreases with an 
increase of c 

Fig. 6 . Autocorrelat ion coefficients of a sinusoidal series x = A sin wt , (with both t he amplitude A 
and angular frequency ~ being unities) truncated a t r our const ant val ues: c = - 1 ; c 2 - .707 
c • 0; and c = 0.707 

13 



5. Truncation of composite series of a 
dependent normal random component and a deterministic 
sinusoidal component. For a series having a periodic 
and a dependent random component, the correlogram 
depends on the variance ratio of the two components. 
Considering the time average over a complete cycle, 
the autocorrelation coefficients of the series com­
posed of a periodic and a normal dependent random 
component truncated at constant levels are computed 
from the values of Eyt , Eyt2 and Eyt yt+t ob-
tained by eqs. (38), (39) and (41). The mean and 
variance of the random component are taken to be 
zero and unity, respectively. Then for different 
ratios of variances of the random co~ponent and the 
periodic component in Fig. 7, Appendix 1, are plotted 
for p = 0 , 0.2 , 0.4 , 0.6 , and 0.8 with the trun­
cation of series at different l evels . The levels of 
truncation are expressed in terms of t he total stand­
ard deviation of the process . 

Figure 7 is presented in Appendix 1 by the 
following scheme of variance ratio and p (the first 
autocorrelation coefficient of untruncated dependent 
normal variable) given in Table 5. 

In the case of a dependent normal random 
variable (first order ~1arkov linear dependence) plus 
the sinusoidal component, when truncated by a con­
stant c (expressed in ratio to a of xt), the 

first few autocorrelation coefficients show the simi­
lar pattern in o, (c) and decrease with an increase 

of c as with a pure dependent normal random variable 
(with no periodic component). However, for larger 
values of t , the autocorrelation coefficients 
pT(c) begin to oscil l ate with the same period as the 

periodic component and with the amplitude which 
depends on the variance ratio and the truncation 
constant as shown in Figs. 7.1 through 7. 15 in 
Appendix 1. 

Table 5. Scheme of the arrangement of Figures in 
Appendix 1 

First 
auto­ Variance Ratio (v.r.) 

correlation -------------------------------------­
coefficient 

0 

0.0 
0.2 
0.4 
0.6 
0.8 

1.0 

Fig. 7.1 
Fig. 7.2 
Fig. 7.3 
Fig . 7. 4 
Fig. 7.5 

2.0 

7. 6 
7. 7 
7.8 
7 .9 
7.10 

3.0 

7. J1 
7.12 
7 . 13 
7. 14 
7.15 

This case of a normally distributed 
dependent random variable superposed on a periodic 
component may roughly approximate the case of monthly 
and dai l y river flows , which have a clear 12-month 
or 365-days cycle in the form of a sine-function, 
plus a normal random variable of the first order 
1-larkov linear dependence. However, this case departs 
from the reality in three ways : (1) it treats the 
population autocorrelation function (no noise in the 
correlogram); (2) the s i ne-cycle means that only the 
cyclicity exists in the mean monthly or mean daily 
flows , while it is known that a corresponding cycle 
exist s in the standard deviations of month l y or 
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daily f l ows; and (3) stochastic components of monthly 
or dai ly f l ows are rar ely normal l y distributed once 
the periodic component (in both mean and standard 
deviation of flow) is removed. Regardless of these 
three limitations, Figs. 7.1 through 7.15 give in­
sight into how the truncation works on a composite 
time series. 

6. Truncation of composite series of a 
dependent lognormal component and a deterministic 
sinusoidal component. Similarly, f or the series with 
a periodic deterministic and a lognormal random com­
ponent, the autocorrelation coefficients are computed 
by the eqs. (42), (43) and (44) or (45) . Figures 8.1 
through 8.15, Appendix 2, give correlograms of trun­
cated series composed of a sinusoidal series super­
posed on a dependent lognormal process according to 
the model of eq. (17) for p • 0 , 0.2 , 0.4 , 0.6 
and 0 . 8. The levels of truncation are expressed in 
terms of the total s t andard deviation of the series, 
and the variance ratios are 1.0 , 2.0 and 3.0. 

Figure 8 is sorted in Appendix 2 as Figs. 
8 . 1 through 8.15 following the same scheme as shown 
for Figs. 7.1 through 7.15 in Table 5. 

Simi lar results are shown in Fig . 8 as in 
Fig . 7, namely, the first few values of p (c) de­
crease both with a decrease of p and an Tincrease 
of c For higher values of pT(c) , the correlo-

gram fluctuates with the same period as the periodic 
component and with the amplitude which depends on 
both the variance ratio and the truncation constant c 

Because of lognormal distribution of the 
stochastic component , this analysis approximates 
better the case of monthly or daily river flows than 
the previous case of normal distribution. However, 
thi s lognormal case still departs significantly from 
the real time series of monthly or daily hydrological 
time series. Though it is only a rough approximation, 
it gives a clear picture of what occurs to correlo­
grams of time series when a given constant wateT 
quantity is either diverted out of a river basin or 
is consumed in it without a return fl ow. 

7. Two examples with hydrological time series 
of daily river flows. In order to show what happens 
to series of daily r iver flows when a large trunca­
tion is made , the truncation constant is taken to be 
the mean discharge. Water withdrawal from a river is 
a physical analogy of truncation and to illustrate 
its effect on the dependence properties the daily 
flows of the Batten Kill River at Battenville, New 
York, and the Madison River at West Yellowstone, 
Montana, have been taken as examples. The time 
series of both rivers are truncated at the mean flow . 
Both correlograms, with and without truncation, are 
shown in Fig. 9 for the Batten Kill River and in 
Fig. 10 for the Madison River. 

The corre l ograms of the truncated series 
of daily flows of t he Batten Kill River and the 
Madison River when truncated shows a reduction of 
the average absolute autocorrelation coefficient. 
Since both series of river flows are periodic and 
the stochastic component follows the first order 
Markov linear model [2), the correlograms of trun­
cated series show the same patterns as the cor relo­
grams obtained by theoretical analysis and shown in 
Figs . 7 and 8. 
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Fig. 9. Correlogram of truncated and untruncated 
series of daily flows of the Batten Ki 11 
River at Battenville, N. Y.: (1) correlo-
gram of untruncated series; and (2) cor-
relogram of truncated ser ies; with c = x 
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Fig. 10. Correlogram of truncated and untruncated 
series of daily flows of the Madison River 
at W. Yellowstone, Montana: (1) correlo-
gram of untruncated series; and (2) cor-
relogram of truncated series; with c " x 
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Chapter IV 

CONCLUSIONS 

TI1e f ol lowing conclusions may be drawn from 
t he previous analytical study of t he effect of trun­
cation on a dependent random process with or wi thout 
a periodic component: 

1. Truncation at any constant level of a 
dependent random process reduces ·the dependence in 
sequence of a t ime series . The magnitude of there­
duction depends on the const ant of truncation . The 
general pattern of correlogr ams for truncated series 
in the case of the first order Markov linear process 
remains similar as for the untruncated case. 
Tilerefore, when analyzing a physical process with 
zero values , a reasonable assumption is t o consider 
it as a truncated process. 

2. First autocorrelation coefficients of 
precipitation series in an arid region should be, in 
general and neglecting other factors which affect 
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the dependence, less on the average than in a wet 
r egion , i f the annual evaporation is assumed to be 
a constant . The mathematical dependence mode l of 
precipitation series for the two regions should how­
ever be the same . Because t he evaporation in a dry 
region is a more complex process than in a humid re­
gion, the above effect may not prevail in the final 
result of al l factors affecting the dependence. 

3. The truncation of a periodic process at a 
constant level reduces the amplitude of the correlo­
gram while the period remains the same . It can also 
be said that the periodic truncation of a purely s t o­
chastic process makes t he correlogram periodic . 

4. Water wi thdrawal from a river will decrease 
the dependence when this process dries up the river 
for some time, thus creating zero values in the 
hydrological time series . 
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APPENDIX 1 

Fi gs. 7.1 through 7.15 Correlogram of 
truncated at constant level for A = 12 
values of p and variance ratios, with 
distributed. 
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xt • A sin wt + ~t, 
and different 
nt normally 
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APPENDIX 2 

Figs . 8 . 1 t hrough 8. 15 Corre l ogram of xt =A sin wt + n , 
truncated at constant level for A = 12 and differ ent values 
of p and variance ratios, with nt lognormally distributed 
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~Words: Hydrological time series, Truncation of time series, Zero values , 
Normal process, Lognormal process, First order Markov linear chain 

Abstract: The effects of the constant value truncation _on the dependence 
property of ideali4ed hydrological time series are investigated. The analysis 
was carried outfor dependent stochastic components, for pure periodic compo­
nent and for a swa of stochastic dependent and periodic deterministic compo­
nents. The random ele~~ents of the process were considered for both normal and 
lognormal distribution. For all cases, the truncation is considered at a con­
stant level. Analytical equations were developed in approxinate for.s for 
correlograms which express the dependence of the truncated time series. 
Computations of correlograms from these equations were made on a digital 
computer. Two series of daily river flows were used with the truncation at 
the mean flow to compare their correlograms with those of the original daily 
flow series. 

~Words: Hydrological time series, Truncation of time series, Zero values, 
Normal process, LognorPal process, First order Markov linear chain 

Abstract: The effects of the constant value truncation .on the dependence 
property of idealized hydrological time series are investigated. The analysis 
was carried out for dependent stochastic components, for pure periodic compo­
nent and for a swn of stochastic dependent and periodic determini stic compo­
nents, The random elements of the process were considered for both normal and 
lognormal distribution . For all cases, the truncation is considered at a con­
stant level . Analytical equations were developed in approximate forms for 
correlograms which express the dependence of t he truncated time series. 
Computations of correlograms from these equations were made on a digital 
computer. Two series of daily river flows were used with the truncation at 
the nean flow to compare their correlograms with those of the original daily 
flow series. 

~Words: Hydrological time series, Truncation of time series, Zero values, 
Normal process, Lognormal process , First order Markov linear chain 

Abstract: The effects of the constant value truncation_on the dependence 
property of idealized hydrological time series are investigated. The analysis 
was carried out for dependent stochastic components, for pure periodic compo­
nent and for a sum of stochastic dependent and periodic deterministic compo­
nents. The random elements of the process were considered for both normal and 
lognormal distribution. For all cases, the truncation is considered at a con­
stant level. Analytical equations were developed in. approximate forms for 
correlograms which express the dependence of the truncated time series. 
Computations of correlograms from these equations were made on a digital 
computer. Two series of daily river flows were used with the truncation at 
the mean flow to compare their correlograms with those of the original daily 
flow series . 

~Words: Hydrological time series, Truncation of time series, Zero values, 
Normal process, Lognormal process, First order Markov linear chain 

Abstract: The effects of the constant value truncation.on the dependence 
property of idealized hydrological time series are investigated . The analysis 
was carried out for dependent stochastic components, for pure periodic compo­
nent and for a sum of stochastic dependent and periodic deterministic compo­
nents. The random elements of the process were consider ed for both normal and 
lognormal distribution. For all cases, the truncation is considered at a con­
stant level . Analytical equations were developed in approximate forms for 
correlograms which express the dependence of the truncated time series. 
Computations of corre lograms from these equations were made on a digi tal 
computer. Two series of daily river fl ows were used with the truncation at 
the moan flow to compare their correlograms with those of the original daily 
flow series. 



PREVIOUSLY PUBLISHED PAPERS 

Colorado State University Hydrology Papers 

No. 23 "An Objective Approach to Definitions and Investigations of 
Continental Hydrologic Droughts," by Vujica Yevjevich, August 1967 

No. 24 "Application of Cross-Spectral Analysis to Hydrologic Time Series," 
by Ignacio Rodriguez-Iturbe, September 1967. 

No. 25 "An Experimental Rainfall-Runoff Facility," by W. T. Dickinson, 
M. E. Holland and G. L. Smith, September 1967. 

No. 26 "The Investigation of Relationship Between Hydrologic Time Series 
and Sun Spot Numbers," by Ignacio Rodriguez-Iturbe, and Vujica 
Yevjevich , April 1'968. 

No. 27 "Diffusion of Entrapped Gas from Porous Media," by Kenneth M. Adam, 
and Arthur T. Corey, April 1968. 

No . 28 "Sampling Bacteria in a Mountain Stream," by Samuel H. Kunkle and 
James R. Meiman, March 1968 . 

No. 29 "Estimating Design Floods from Extreme Rainfall," by Frederick C. 
Bell, July 1968. 

No. 30 "Conservation of Ground Water by Gravel Mulches," by A. T . Corey 
and W. D. Kemper, May 1968. 

Colorado State University Fluid Mechanics Papers 

No. 4 "Experiment on Wind Generated Waves on the Water Surface of a 
Laboratory Channel," by E. J. Plate and C. S . Yang, February 1966. 

No . 5 "Investigations of the Thermally Stratified Boundary Layer, •• by 
E. J. Plate and C. W. Lin, February 1966. 

No. 6 ••Atmospheric Diffusion in the Earth 1 s Boundary Layer--Diffusion in 
the Vertical Direction and Effects of the Thermal Stratification, •• 
by Shozo Ito, February 1966. 

Colorado State University Hydraulics Papers 

No . 1 ••Design of Conveyance Channels in Alluvial Materials, 11 by D. B. 
Simons, March 1966. 

No. 2 ••Diffusion of Slot Jets with Finite Orifice Length-Width Ratios, •• 
by V. Yevjevich , March 1966. 

No.3 ••Dispersion of Mass in Open-Channel Flow," by William W. Sayre, 
February 1968. 


