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Asymptotic Analysis of the MMSE Multiuser Detector for Nonorthogonal
Multipulse Modulation

Michael L. McCloud and Louis L. Scharf, Fellow, IEEE

Abstract—We develop the minimum mean-squared-error
(MMSE) multiuser detector for nonorthogonal multipulse modu-
lation over the noncoherent additive white Gaussian noise channel.
We analyze the asymptotic performance of the detector and show
that, unlike the case of linear modulation, the MMSE detector
does not generally approach the generalized maximum-likelihood
(GML) detection rule as the noise power vanishes. It does,
however, approach a detector which nulls out the multiaccess
interference. This detector is termed the multipulse decorrelating
detector due to its similarity to the linear decorrelating detector.
The probability of error for this detector is derived and used to
find the asymptotic multiuser efficiencies of both the multipulse
decorrelating detector and the MMSE detector. It is shown that
for noncoherent binary signaling, in which the multipulse modu-
lation is two-dimensional, the multipulse decorrelating detector is
superior to the GML detector asymptotically. This result does not
generalize to larger dimensionality signal sets.

Index Terms—Code-division multiple access, minimum mean
squared error detection, multipulse modulation, multiuser detec-
tion, noncoherent detection.

I. INTRODUCTION

ORTHOGONAL signaling is often employed to commu-
nicate over noncoherent channels. However, when mul-

tiple users share such a channel, the assignment of mutually
orthogonal signal sets to each user requires a large bandwidth.
Moreover, if each user employs a signal set which is orthog-
onal but correlated with the other users, then a low complexity
receiver may produce an effective signal constellation which is
no longer orthogonal for each user. For these reasons, we con-
sider the more general case of nonorthogonal multipulse mod-
ulation (NMM) in which each user is assigned a possibly cor-
related signal set; from which one signal is transmitted at each
signaling period. There is also the possibility of bandwidth sav-
ings through the use of NMM. Orthogonal signaling schemes
require a bandwidth which grows linearly with the number of
signals employed, while NMM can generally be made much
more spectrally efficient.

Zero-forcing (or decorrelative) detection of such signals has
been studied recently in [1]–[5]. These detectors act to first re-
move the multiple-access interference (MAI) through a perpen-
dicular projection of the received data out of the span of the
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interfering user’s signals. This operation is followed by either
the asymptotically optimal detector of [5] if the user’s energies
are available or by the generalized maximum-likelihood (GML)
detector [1]–[5] in the absence of this information. In [6], the
authors extended the subspace tracking techniques of [7] to de-
velop a blind GML detector which employs subspace tracking
to estimate the interfering users’ subspace.

In this letter we consider the use of the minimum
mean-squared-error (MMSE) rule for NMM communica-
tion. This detector was previously derived in [6] and it was
noted that for the example therein, the GML detector appeared
to outperform the MMSE detector asymptotically. In this letter
we derive the asymptotic performance of the MMSE detector
and compare it to that of the GML detector derived in [3]–[5].
We first show that unlike the case of linear modulation consid-
ered in [8], the MMSE detector doesnot approach the GML
detector as the noise power vanishes, although it does approach
a detector which completely nulls the MAI. This detector is
termed the multipulse decorrelating (MD) detector, based on
its similarity to the linear decorrelating detector of [9]. The
two-signal version of this detector was independently proposed
in [10], in a somewhat different context. It is shown that the
MD and the MMSE behave differently from the GML detector
for large values of the signal-to-noise ratio (SNR). While there
does not seem to be any reason to prefer the MD or MMSE
detector over the GML detector in general, we prove that the
MD (and hence the MMSE) is asymptotically superior to the
GML detector for binary signaling from a two-dimensional
multipulse signal set. This result does not extend to higher
dimensional signaling. The performance comparison between
the MD and the MMSE detectors at low SNRs is still an open
question. This question is similar in spirit to that addressed in
[11] for coherent, linear, modulation.

II. DISCRETETIME MODEL

The discrete time model for the output of the noncoherent
channel with NMM is [6]

(1)

The matrix contains the signal
vectors for each user with
and is the th signal corresponding to user. The vector

is an vector with
each a column of the identity matrix which selects
the signal transmitted by user. That is, .
The matrix

diag
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contains the user energies and phase terms. The individual gain
parameters, are modeled as having an amplitude,

, which is independent of the transmitted symbol, but a
phase, which may be hypothesis dependent. The addi-
tive noise, , is modeled as zero-mean complex Gaussian with
correlation matrix .

Assuming that the phase terms are independent zero-mean
random variables, the measurementhas first and second order
statistics

and

(2)

where diag .
We may expand this model when theth user is of interest

and has transmitted signal

(3)

where the matrix is formed from the
matrices for and is formed by
stacking the vectors . We assume that the users
communicate independently.

III. MMSE DETECTOR

The MMSE estimator of the vector is given by

(4)

where , , and are defined in Section II. If we consider the
th block of , , we obtain a simple decision rule

for the noncoherent channel

(5)

This is motivated by the fact that the true vector has
the form

(6)

i.e., it is nonzero only in the th position when symbol is
transmitted by user.

Geometrically, we see that the noncoherent detector seeks
the whitenedsignal vector, , which is closest to
thewhitenedmeasurement, , in terms of the magnitude
squared inner product. This MMSE detector chooses the max-
imum of a bank of whitened, noncoherent, matched filters.

IV. MD D ETECTOR

For NMM, the noncoherent GML detector is given by [1]–[5]

(7)

where is the orthogonal projection matrix with null space
,1 the so-called MAI space. For the case of linear, co-

1hAi denotes the subspace spanned by the columns of the matrixA.

herent, modulation, the MMSE detector is known to approach
the GML (decorrelating) detector as the noise power vanishes
[8]. However, the following theorem shows that the MMSE de-
tector isnotgenerally asymptotically equivalent to the GML de-
tector for NMM, although they are both zero-forcing, resulting
in complete MAI removal.

Theorem IV.1:The MMSE detector is asymptotically given
by

(8)

where the superscript denotes the pseudoinverse, so long as
Rank Rank .2 Notice that the MMSE
detector approaches the GML detector only when the interfer-
ence-nulled correlation matrix, , is a scalar
multiple of the identity matrix.

Proof: See Appendix A.
The detector suggested in Theorem IV.1 appears to be original

and we call it the multipulse decorrelating (MD) detector. Using
the results of [12], we find that the MD detector may be derived
by maximizing the likelihood function

(9)
jointly over and , and choosing as the entry of

of largest magnitude. It is, perhaps, worth noting
that the MD detector estimates the signal be-
fore imposing thea priori knowledge that this term is of the
form , whereas the GML detector imposes
this constraint from the outset.

V. ASYMPTOTIC PERFORMANCEANALYSIS

In this section, we analyze the performance of the MD de-
tector. As this performance characterizes the MMSE detector
asymptotically, it is useful in the investigation of both detectors.
We can build asymptotically tight bounds on the probability of
error, , for the MD detector via

—

(10)

where is the probability that theth statistic in (8) is
greater then the th statistic when signal is transmitted. The
upper and lower bounds are asymptotically coincident on the
AWGN channel and so we will concentrate on the lower bound.

2This condition implies thatH(k) andS(k) are linearly independent, i.e.,
that if RankfH(k)g = r and RankfS(k)g = p, then Rankf[H(k) S(k)]g =
p + r. This may be assumed without loss of generality since otherwise userk

is wasting power by communicating along a coordinate vector lying completely
in the span of the interference. This condition doesnot require the matrixH(k)
to be full rank (we can haver < M ).
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Each term, , is found from

Hyp.

Hyp. (11)

where is the th column of the identity matrix,
, and we have dropped the dependency

on .
Let us form the eigendecomposition , where

and Rank . Define

and

(12)

then we have

(13)

We require that the matrix have rank 2, if this condition is not
met then either or resulting
in a probability of error which approaches a constant as the SNR
grows.

The vector is complex normal with correlation matrix
and mean

under hypothesis . We may use the results of [13, Ap-
pendix B] and of [14, Appendix B] to find

(14)
where is the Marcum Q-function, is the zeroth-order
modified Bessel function, and we have defined

(15)

We are interested in the performance as the noise power be-
comes small and so we consider the asymptotic approximation
to found from the relations in [13, Appendix A]

(16)

for small values of . This implies that we should study the
distance measure . This is done in Appendix B of this
letter and we find

(17)
Since the performance is asymptotically dominated by the

largest pairwise error, we find that as the noise power vanishes
we have (18), shown at the bottom of the page.

VI. M ULTIUSER PERFORMANCEMEASURES

In this section, we use our asymptotic expression for the prob-
ability of error to derive the asymptotic multiuser efficiency
(AME) and the near–far resistance of the MMSE and MD de-
tectors. The AME of the th user is defined by [9]

(19)

where is the probability of error for the th user
employing the MMSE (or MD) detector with additive white
Gaussian noise (AWGN) power , and is the
probability of error for the MMSE (MD) detector in the absence
of interfering users ( ) with effective noise power .

Using the asymptotically tight expressions for and
given in (18) (in the latter case we simply set

), we find (20), shown at the bottom of the page. The
near far resistance of the detector is defined as the infimum of
the AME over the possible realizations of the interfering users’
powers. As the MMSE acts asymptotically to null the MAI, we
find that the near–far resistance is simply the AME given in (20).

VII. COMPARISON WITH THEGML RULE

It is interesting to compare the error expression in (18) with
the asymptotic expression for the probability of error of the
GML detector. This latter quantity is known to be [3]–[5]

(21)

(18)

(20)
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Fig. 1. Results for the first example of Section VIII. Plotted are the probability of symbol error for the MMSE detector (solid) along with the asymptotic union
bound of (10) (dashed) and the union bound on the GML detector (circles).

It is clear that the expression in (18) and (21) arenot gener-
ally equal. They are equal for the case of orthogonal signal with
respect to , i.e., , which is clear from the
definitions of the two tests. In general there is no clear reason
to choose the MMSE (MD) over the GML detector, at least in
terms of asymptotic performance. For the case of binary sig-
naling ( ), however, we show in the following section
that asymptotically the MMSE (MD) detector is superior.

A. MMSE Detector is Superior for Binary Signaling

For binary signaling we let . Then the
MMSE (MD) detector has the asymptotic probability of error

with

(22)

where , , and . We have
assumed that is invertible, since otherwise both the MD and
the GML test fail.

In light of (21) we see that asymptotically, the GML rule has
probability of error . The exponential pa-
rameter is given by

(23)

assuming without loss of generality that (if we
simply switch and ).

We are interested in the ratio , noticing that if this
ratio is greater then one we have the MMSE (MD) outper-
forming the GML detector (asymptotically). Assuming that

we have

since

since (24)

The same argument works for the case of and we con-
clude that the MMSE (MD) detector is superior to the GML
detector for large SNRs. Notice that equality is achieved when

.
This appears to be the most general statement that can be

made about the asymptotic performance difference between the
two detectors. For every value of greater then two that we
have considered, we have found signal sets for which

.

VIII. A N UMERICAL EXAMPLE

We consider a noncoherent channel with users, each
employing signals. The signals were taken to be length

Gold codes (user one used codes 5–7, user two used
codes 8–10, etc.), normalized to have unit norm. The user en-
ergies were chosen to be , , and . The
probability of error for the MMSE detector was estimated by
Monte-Carlo simulation. The results are shown in Fig. 1 along
with the union upper bound on the MD detector of (10). Notice
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Fig. 2. Comparison of the union upper bound given in (10) with the exponential approximation of (18) for the example of Section VIII.

that fit between the MMSE performance and the bound on the
MD detector appears quite good for this problem, even at rela-
tively low SNRs. For comparison, we have also plotted the union
bound for the GML detector (see, e.g., [5]). For this example,

and , and the MMSE detector out-
performs the GML, as expected. The exponential bound of (18)
is plotted against the union bound of (10) in Fig. 2. We see that
the two bounds are asymptotically coincident, as predicted.

IX. CONCLUSIONS

In this letter we have studied the MMSE, MD, and GML de-
tectors for noncoherent NMM. It was observed that the former
two detectors are asymptotically superior to the latter for binary
signaling, a result which does not appear to generalize to larger
cardinality signal constellations. The AME and near–far resis-
tance were derived for the MMSE and MD detectors through a
large SNR approximation to the probability of error of the de-
tectors.

The MMSE detector requires knowledge of the users’ energy
levels and of the interfering users’ signal vectors. These require-
ment can be lifted by replacing the measurement correlation ma-
trix by an estimate based on several observations. Blind detec-
tion along these lines is considered in [6].

APPENDIX A
PROOF OFTHEOREM IV.1

Rewrite as , with
and .

Application of the Woodbury identity yields

Let have the eigendecomposition

(25)

Then we have where
and . Notice that

as grows small since .
We next perform the singular value decomposition

, where is a full rank diagonal
matrix, and choose such that the matrix is uni-
tary. It follows that since is orthogonal to

and by our assumption on the
dimension of each subspace. Now consider the matrix

(26)
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where . This result may be resolved
onto the basis as follows:

(27)

since . Now, as , we find

(28)

where we have used the standard construction of the pseudoin-
verse of in terms of its singular value decomposition.
The term is hypothesis independent and may be
dropped.

APPENDIX B
DERIVATION OF THE PAIRWISE ERROREXPONENTS

After straightforward calculation, we find

(29)

where and . To gain insight into this
expression we need to solve for the eigenvalues and eigenvectors
of the matrix . Let and be the th and th column of

, respectively, so that . Let us
define the Gram–Schmidt vectors

and (30)

Then for , we have and conse-
quently the nonzero eigenvalues of the matrix are
equal to the those of . We find the matrix to be

(31)

where

and

(32)

The eigenvalues of are found to be

(33)

To find the eigenvectors of we first notice that if has the
spectral decomposition , then we may decompose

as

(34)

We see that given , we may find the eigenvectors of
through the relation . The eigenvectors of are
given by

(35)

where and .
To resolve the quadratic forms that appear in

(29), we notice that and
by virtue of the definitions of

and the ’s. This allows us to expand the quadratic forms as

(36)

(37)

Substituting in for the values of and , we find the two basic
quantities appearing in (29) to be given by (38), shown at the
top of the page. Substituting these expressions into (29) and
simplifying the resulting expression yields

(39)

(38)
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