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Asymptotic Analysis of the MMSE Multiuser Detector for Nonorthogonal
Multipulse Modulation

Michael L. McCloud and Louis L. ScharFellow, IEEE

Abstract—We develop the minimum mean-squared-error interfering user’s signals. This operation is followed by either
(MMSE) multiuser detector for nonorthogonal multipulse modu-  the asymptotically optimal detector of [5] if the user’s energies
lation over the noncoherent additive white Gaussian noise channel. are available or by the generalized maximum-likelihood (GML)

We analyze the asymptotic performance of the detector and show - S .
that, unlike the case of linear modulation, the MMSE detector detector [1]-[5] in the absence of this information. In [6], the

does not generally approach the generalized maximum-likelihood authors extended the subspace tracking techniques of [7] to de-
(GML) detection rule as the noise power vanishes. It does, velop a blind GML detector which employs subspace tracking
however, approach a detector which nulls out the multiaccess to estimate the interfering users’ subspace.

interference. This detector is termed the multipulse decorrelating In this letter we consider the use of the minimum

detector due to its similarity to the linear decorrelating detector. .
The probability of error for this detector is derived and used to mean-squared-error (MMSE) rule for NMM communica-

find the asymptotic multiuser efficiencies of both the multipulse tion. This detector was previously derived in [6] and it was
decorrelating detector and the MMSE detector. It is shown that noted that for the example therein, the GML detector appeared
for noncoherent binary signaling, in which the multipulse modu-  to outperform the MMSE detector asymptotically. In this letter
lation is two-dimensional, the multipulse decorrelating detectoris \ya derive the asymptotic performance of the MMSE detector
superior to the GML detector asymptotically. This result does not . . .
generalize to larger dimensionality signal sets. and compare it to thaF of the GML deFector derlved. in [3]—[5].
o . . We first show that unlike the case of linear modulation consid-
Index Terms—Code-division multiple access, minimum mean .
squared error detection, multipulse modulation, multiuser detec- ered in [8], the M_MSE detector' doewmt approaqh the GML
tion, noncoherent detection. detector as the noise power vanishes, although it does approach
a detector which completely nulls the MAI. This detector is
termed the multipulse decorrelating (MD) detector, based on
its similarity to the linear decorrelating detector of [9]. The
RTHOGONAL signaling is often employed to commu-two-signal version of this detector was independently proposed
nicate over noncoherent channels. However, when mit-[10], in a somewhat different context. It is shown that the
tiple users share such a channel, the assignment of mutudip and the MMSE behave differently from the GML detector
orthogonal signal sets to each user requires a large bandwididh large values of the signal-to-noise ratio (SNR). While there
Moreover, if each user employs a signal set which is orthogoes not seem to be any reason to prefer the MD or MMSE
onal but correlated with the other users, then a low complexidgtector over the GML detector in general, we prove that the
receiver may produce an effective signal constellation which#D (and hence the MMSE) is asymptotically superior to the
no longer orthogonal for each user. For these reasons, we coML detector for binary signaling from a two-dimensional
sider the more general case of nonorthogonal multipulse maudultipulse signal set. This result does not extend to higher
ulation (NMM) in which each user is assigned a possibly cogimensional signaling. The performance comparison between
related signal set; from which one signal is transmitted at eadte MD and the MMSE detectors at low SNRs is still an open
signaling period. There is also the possibility of bandwidth saguestion. This question is similar in spirit to that addressed in
ings through the use of NMM. Orthogonal signaling schemé¢sl] for coherent, linear, modulation.
require a bandwidth which grows linearly with the number of
signals employed, while NMM can generally be made much Il. DISCRETETIME MODEL
more SpeCtra”y efficient. . ) . The discrete time model for the output of the noncoherent
Zero-forcing (or decorrelative) detection of such signals h%ﬁannel with NMM is [6]
been studied recently in [1]-[5]. These detectors act to first re-
move the multiple-access interference (MAI) through a perpen- y = HDb+n. 1)

dicular projection of the received data out of the span of thehe matrix# = [H(1), H(2), ..., H(K)] contains the signal
vectors for each user witH(%) = [h; (k), ho(k), ..., ha (k)]
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contains the user energies and phase terms. The individual ga#nent, modulation, the MMSE detector is known to approach
parameters,/E¢/?~(*) are modeled as having an amplitudethe GML (decorrelating) detector as the noise power vanishes
v/E, which is independent of the transmitted symbol, but [8]. However, the following theorem shows that the MMSE de-
phasef,,(k) which may be hypothesis dependent. The addiector isnotgenerally asymptotically equivalent to the GML de-
tive noise n, is modeled as zero-mean complex Gaussian witbctor for NMM, although they are both zero-forcing, resulting
correlation matrix#[nn*] = 2L in complete MAI removal.

Assuming that the phase terms are independent zero-meamheorem IV.1: The MMSE detector is asymptotically given
random variables, the measuremetias first and second orderby
statistics

m=E[y]=0 and R=E[yy']= % HFH* 4 0’1 (k) )
2 = arg lrglxx

* 1 + *pl
(B (b P (k) ) H(k) Py
whereF = diag{ F11, ..., ExI}.

We may expand this model when tkéh user is of interest (8)
and has transmitted signhy,, (k)

m

where the superscript denotes the pseudoinverse, so long as
y = VE& ™, (k) + S(k)S +n (3) RankH(k)} = Rank{P§, H(k)}.2 Notice that the MMSE
detector approaches the GML detector only when the interfer-
where the matrixS(k) € CN*MUE-1 s formed from the ence-nulled correlation matridEl* (k)Pg,,, H(k), is a scalar
matricesH() for I # k andg € CME—Dx1 is formed by multiple of the identity matrix.
stacking the vectors/E;c?* b(k). We assume that the users  Proof: See Appendix A.

communicate independently. The detector suggested in Theorem IV.1 appears to be original
and we call it the multipulse decorrelating (MD) detector. Using
lll. MMSE DETECTOR the results of [12], we find that the MD detector may be derived
The MMSE estimator of the vect@® is given by by maximizing the likelihood function
Db=FH*'R ™'y 4)

£(3) = ﬁexp{—g||y—H<k>D<k>b<k>—swwnj
whereF', 7, andR are defined in Section Il. If we consider the 9)
kth block of Db, D(k)b(k), we obtain a simple decision rulejointly over D(k)b(k) and 3, and choosingn as the entry of
for the noncoherent channel D(k)b(k) of largest magnitude. It is, perhaps, worth noting
2 that the MD detector estimates the sigi(k)D(k)b(k) be-
fore imposing ;[’tj)eli;\ p;j;)ri khnowled?he tg?\zih;s ;cer;n i§ of the
form /Ey.e? (", (k), whereas the etector imposes
= arg max { |h:n(k)R_ly|2} : ®) this cg/rgraint from t(he outset. P

sinyse(k) = arg max |{ D(b(k) }

m

This is motivated by the fact that the true ved®fk)b(k) has V. ASYMPTOTIC PERFORMANCEANALYSIS
the form '
In this section, we analyze the performance of the MD de-
D(k)o(k)=[0 -+ 0 pm(k) 0 -~ 0]" (6) tector. As this performance characterizes the MMSE detector
. . . . ) asymptotically, it is useful in the investigation of both detectors.
i.e., it is nonzero only in thenth position when symbain is  \we can build asymptotically tight bounds on the probability of

transmitted by usek. error, PMP | for the MD detector via
Geometrically, we see that the noncoherent detector seeks

the whitenedsignal vector,Rfl/th(k), which is closest to M M
thewhitenedmeasuremenR ~'/?y, in terms of the magnitude  ax — PMP(m, 1) < PMP < 1 Z Z PMP(m 1)
squared inner product. This MMSE detector chooses the max-#™ B M ==
imum of a bank of\/ whitened, noncoherent, matched filters. e (10)
IV. MD DETECTOR ) . o )
o wherePMP (m, 1) is the probability that théh statistic in (8) is
For NMM, the noncoherent GML detector is given by [1]-{Shyreater then theath statistic when signat: is transmitted. The
Iht ()PL y[? upper and lower bounds are asymptotically coincident on the
(k) = arg max m S(k) (7) AWGN channel and so we will concentrate on the lower bound.
m h:n(k)Pé'(k)hm(k)

2This condition implies thatl(k) andS(k) are linearly independent, i.e.,
1 L o that if RanK H(k)} = r and RankS(k)} = p, then Rank[H(k) S(k)]} =
WherePS k) 1S the OrthOQOnal projection matrix with nl_“'” spacg) + r. This may be assumed without loss of generality since otherwisekuser
(S(k)), the so-called MAI space. For the case of linear, caswasting power by communicating along a coordinate vector lying completely
in the span of the interference. This condition doewrequire the matri (k)
1{A) denotes the subspace spanned by the columns of the matrix to be full rank (we can have < M).
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Each term,PMP(m, 1), is found from We are interested in the performance as the noise power be-
D comes small and so we consider the asymptotic approximation
P¥E(m, 1) to PMP(m, I) found from the relations in [13, Appendix A]

= Prob [|{(G* ())G(k) "G (k)y},, | PMD (g )~ = (/2 (ba)? (16)
< |{(G*(k)G(k))+G*(k)y} |2‘ Hyp.m} for small values of>2. This implies that we should study the
! distance measur@ — ). This is done in Appendix B of this

= Prob [y*G(G*G)* (eme], — ere]) letter and we find
- (G*G)*G*y < 0|Hyp.m] (11) (b—a)? ~ 2
. - : o?(G*G)h,m +(G* Q) +2/(G*G)F 4 ])°
where e,, is the mth column of the identity matrix, ’ ’ (17)
G = Pg,,H(k), and we have dropped the dependency since the performance is asymptotically dominated by the
onk. largest pairwise error, we find that as the noise power vanishes

Let us form the eigendecompositi@G = UI'U", where e have (18), shown at the bottom of the page.
I' € R™" andr = Rank{G}. Define

VI. MULTIUSER PERFORMANCE MEASURES

e_jem +® * +/2 1
w= U(G'G) ?G"y and In this section, we use our asymptotic expression for the prob-
Q =U"(G*G)"%(epel — el )(G*G)T/?U ability of error to derive the asymptotic multiuser efficiency
N0 7 v (AME) and the near—far resistance of the MMSE and MD de-
=[v1 v2] [ 01 )\J [Vi} (12) tectors. The AME of thé:th user is defined by [9]
2
. Py(o?)
then we haVe 7’](/6) = sup {0 S T S 1, 0121210 W < o0 (19)
PMP (1, 1) = Prob[w* Qw < 0[H.]. (13) where P,(o?) is the probability of error for thekth user

employing the MMSE (or MD) detectaf with additive white
We require that the matri® have rank 2, if this condition is not Gaussian noise (AWGN) power?, and Psy(o?/r) is the
met then eitheP (m, 1) = 1 or PMP(1, m) = 1, resulting probability of error for the MMSE (MD) detector in the absence
in a probability of error which approaches a constant as the SIQRinterfering users§ = 0) with effective noise powes? /7.
grows. Using the asymptotically tight expressions 85 (o?) and
The vectorw is complex normal with correlation matrix Psv(o°7~") given in (18) (in the latter case we simply set
E[ww*] = Tand meanE[w] = f = (1/0)U*(G*G)/?e,, P4 = I), we find (20), shown at the bottom of the page. The
under hypothesisn. We may use the results of [13, Ap-near far resistance of the detector is defined as the infimum of
pendix B] and of [14, Appendix B] to find the AME over the possible realizations of the interfering users’
powers. As the MMSE acts asymptotically to null the MAI, we
PMP (1 1y = Q1 (a, b) — wa /w1 67(1/2)(a2+b2)_[0(ab) find that the near—far resistance is simply the AME given in (20).

14+ wg/wl
, , i (14) VII. COMPARISON WITH THEGML RULE
where@ (+) is the Marcum Q-functionly(-) is the zeroth-order o _ o _
modified Bessel function, and we have defined It is interesting to compare the error expression in (18) with

the asymptotic expression for the probability of error of the
2\/2w%w2(a1w2_a2) ) 2\/2w1w§(a1w1+a2) GML detector. This latter quantity is known to be [3]-[5]
a = =

(w1 +w2)? (w1 +we)? PEML o —E} min |[PLh,|I?
1 1 202 mzEl 5 )
W) = — Wy = —— .

L7 2 4 y <1 B |hi, Pahy| )} 21)

= —Anbvitvvl) e =rQL () [P, [[[P&hd )|

-1
pMD . 18
P o2((H*PZH)L, o + (HPSH); | + 2/(HPEH), ) (18)
ming, (HH)F, + (H*H)F,  +2|(H*H)}F

77(/%) _ 1 ( )l,l ( ) s |( )l, 'rn| (20)

ming,,(H* PgH) o + (H*PgH); , + 2|(H*PgH); |
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Probability of Error for User 1
=

1078 —— MMSE simulation  |...............................
:| = = MMSE upper bound
: —e- GML upper bound

10" ' '

SNR/bit, dB

Fig. 1. Results for the first example of Section VIII. Plotted are the probability of symbol error for the MMSE detector (solid) along with the asymiptot
bound of (10) (dashed) and the union bound on the GML detector (circles).

It is clear that the expression in (18) and (21) act gener- assuming without loss of generality that> B (if B > A we
ally equal. They are equal for the case of orthogonal signal wisimply switchA and B).

respect toPg, i.e., H*PéH = 1, which is clear from the = We are interested in the rati®y; /g, noticing that if this
definitions of the two tests. In general there is no clear reasmatio is greater then one we have the MMSE (MD) outper-
to choose the MMSE (MD) over the GML detector, at least iforming the GML detector (asymptotically). Assuming that
terms of asymptotic performance. For the case of binary sig- > B we have

naling = 2), however, we show in the following section

that asymptotically the MMSE (MD) detector is superior. an _ 2A+2|8|/A/B
ag A+ B+2|3]
A. MMSE Detector is Superior for Binary Signalin 2A +2|8|/A/B )
_ o P Y =ignaing > A+ 2BV A/B (sinceA + B < 24)
For binary signaling we le& = P$H = [g;, g2]. Then the 2A 4+ 2|8
MMSE (MD) detector has the asymptotic probability of error >1 (sinceA/B > 1). (24)

exp{—Eray/(20%)} with
The same argument works for the caséof A and we con-

2 clude that the MMSE (MD) detector is superior to the GML
OCM = — — — . . . .
(G*G)l,ll i (G*G)2712 T 2|(G*G)1712| (jlet_ecgr for large SNRs. Notice that equality is achieved when
9 = B.
= PLPpL This appears to be the most general statement that can be
1 + 1 81Pg, Py 22| made about the asymptotic performance difference between the
giPge1  g5Pz (81Pz,81)(85 Pz 82) two detectors. For every value 8f greater then two that we
_2(AB -3 22) have considered, we have found signal sets for whigh >
A+ B+28 an-
whered = HngQ’ B = ||82||2, and3 = glg,. We have VIIl. A N UMERICAL EXAMPLE
assumed tha is invertible, since otherwise both the MD and We consider a noncoherent channel with= 3 users, each
the GML test fail. employingM = 3 signals. The signals were taken to be length

In light of (21) we see that asymptotically, the GML rule hagy = 31 Gold codes (user one used codes 5-7, user two used
probability of errorexp{—Eyaq/(20%)}. The exponential pa- codes 8-10, etc.), normalized to have unit norm. The user en-
rametera is given by ergies were chosento ¢ = 1, B, = 5, andE3 = 5. The

probability of error for the MMSE detector was estimated by
|3] Monte-Carlo simulation. The results are shown in Fig. 1 along
ag =B < B \/E> (23) with the union upper bound on the MD detector of (10). Notice
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Probability of Error for User 1

— Union .upper bdund : : :
10 T R, Exponential approximation ..... ......... AR . S ..... .

-80

-100 . . | | I | | ; L
10 12 14 16 18 20 22 24 26 28
SNR/bit, dB

10

Fig. 2. Comparison of the union upper bound given in (10) with the exponential approximation of (18) for the example of Section VIII.

that fit between the MMSE performance and the bound on tgplication of the Woodbury identity yields
MD detector appears quite good for this problem, even at rela- B
tively low SNRs. For comparison, we have also plotted the union HR-! M <% I+ H*B1H> H'Bly.

bound for the GML detector (see, e.g., [5]). For this example, = By
oy = 0.3445 andag = 0.2674, and the MMSE detector out-

performs the GML, as expected. The exponential bound of (1lg§t B have the eigendecomposition
is plotted against the union bound of (10) in Fig. 2. We see that

the two bounds are asymptotically coincident, as predicted. — [UsUy] Ss+0’T 0 U% (25)
TSN 0 Uy
IX.  CONCLUSIONS Thenwe have?B ! = 0?Us(Es+0°1) U5 +Pg,, where

In this letter we have studied the MMSE, MD, and GML de s = UsUZ‘ andPé(k) Uy Uy . Notice that "B~
tectors for noncoherent NMM. It was observed that the form&is(x) 8o~ grows small since*Us(Zs + o*I) = U% — 0.
two detectors are asymptotically superior to the latter for binar We next perform the singular value decomposmon
signaling, a result which does not appear to generalize to lar S(k) = VAU", where A is a full rank diagonal
cardinality signal constellations. The AME and nearfar res@atr'x and choos8V such that the matriYV. = W] is uni-
tance were derived for the MMSE and MD detectors throught@'y- It follows thatW*H* = 0 since(W) is orthogonal to
large SNR approximation to the probability of error of the deH” PS(k)> and(H") = (H"Pg,,) by our assumption on the
tectors. dimension of each subspace. Now consider the matrix

The MMSE detector requires knowledge of the users’ energy
levels and of the interfering users’ signal vectors. These requitex H*R-
ment can be lifted by replacing the measurement correlation mat
trix by an estimate based on several observations. Blind detec— < Mo?

-1
I+ H*aQB_1H> H*s?’B™!

tion along these lines is considered in [6]. B,
-1
R X - <J\{E" (0?Us(Ss + 0*0) *US + Py,) )
PROOF (F;I}ZE'NHEI())(REM V.1 x H* (0 Us(Zs + o*1) "' U§ + Py,
Rewrite R as R = (E,/M)HH* + B, with = <JV[UQI_|-O—2H*]5‘HJFH*Pé(k)H>1
= (/M) Y. EH()H*(]) + o’T and B}, = E[|u(k)]?. k

Ik x H*(o’F + Pgy)) (26)
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whereF = Ug(Zg + o2I)~1U¥. This result may be resolved Then forZ = [z1, z], we haveZZ*QZZ* = Q and conse-
onto the basi§V W] as follows: guently the nonzero eigenvalues of the maltix= Z*QZ are
equal to the those df}. We find the matrixXT to be

Ek +1—1
utE SN S
=V W ! ! ’Vf
Mo? -1 T =7QZ" = (31)
I+02V*H*FHV +A2 0 v o < Ipl2>
E) Py - - Ll I
% Mo? "o ge!
—1I
Ey where
\ %A *7 2 1 * * * *
X [W*} H"(o°F + Pg(3y) 7 =aja; = (G*G)} . Yo = ajas = (G G)Z’l
Mo? -1 and
_ PAVER & B4 2 * *
_V< o I+0VHFHV+A) p=aja = (G'G); ;. (32)
x V*H*(o’F + Pé(k)) (27) The eigenvalues o} are found to be
sinceW*H"* = 0. Now, ass? — 0, we find A = 3 (’Vl — vtV (n+7)? - 4|P|2) . (33
By rerreal To find the eigenvectors @@ we first notice that ifT’ has the
B RT = VATVIH Py, spectral decompositich = WAW*, then we may decompose
=va iU Qas
= (PguH)* Q = VAV* = ZTZ* = ZWAW*Z". (34)
_ *1yL +1r*pLl
= (H"PgyH)"H P5 (28)  \we see that giverW, we may find the eigenvectors @

where we have used the standard construction of the pseudgi“(-)th the relatiorh’ = ZW. The eigervectors of" are

verse ofPg,, H in terms of its singular value decomposition9"Ve" by
The term (Ex/M) is hypothesis independent and may be 1 __t
dropped. n Wy = e t1 - M (35)
2
T+ ——
APPENDIX B (1 = Aw)?
DERIVATION OF THE PAIRWISE ERROREXPONENTS wheret; = {T}, ; andty = {T}; ».
After straightforward calculation, we find To resolve the quadratic form$*P.f that appear in
(29), we notice thatf*z; = (1/o/71) and f'z; =
(b—a)? —(p/oyi/v2 — |p]2/71) by virtue of the definitions off
2 and theay's. This allows us to expand the quadratic forms as
A=A £°Pyf =" ZwiwiZ f (36)
f*Pif — dof*Pof — 24/ *P.f)(f*Pof 2
O iz I S P
(29) ([t (t M2 | VAr 2 —1ol /|
whereP; = v;v] andP, = vyv3. To gain insight into this @37

expression we need to solve for the eigenvalues and eigenvectigstituting in for the values of andt., we find the two basic

of the matrixQ. Let al_andaQ be themth andith column of quantities appearing in (29) to be given by (38), shown at the
U*(G*G)*/?, respectively, so tha = aiaf — aza3. LELUS 1oy of the page. Substituting these expressions into (29) and
define the Gram—Schmidt vectors simplifying the resulting expression yields

a; (I-ziz])ay 2 2
7, = — and zy= - 17192 30 b—a)? = . 39
L= Tl Sl i ey e =) = e T T 2] (39)
N (’Yl — 2t/ +7)? - 4|p|2)
Pl =—
o \ [(vi +72)2 — 4|2 F (11 + 72 = 2p2/v)vV (0 +72)2 — 4]
2
' L (’71 —nEVn+)? - 4|p|2) : (38)
2vive — PP /m
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