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The system of equations that govern kinematically redundant robotic mani-
pulators is commonly solved by finding the singular value decomposition (SVD)
of the corresponding Jacobian matrix. This can require a considerable amount
of time to compute, thus a parallel SVD algorithm reducing execution time is
sought. The approach employed here lends itself to parallelization by using
Givens rotations and information from previous decompositions. The key con-
tribution of this research is the presentation and implementation of parallel
SVD algorithms to compute the SVD for a set of Jacobians that represent
various different joint failure scenarios. Results from implementation of the
algorithm on a MasPar MP-1, an IBM SP2, and the PASM prototype parallel
computers are compared. Specific issues considered for each implementation



include: how data is mapped to the processing elements, the effect that increasing
the number of processing elements has on execution time, the type of parallel
architecture used, and trade-offs betweenmodes of parallelism.

KEY WORDS: IBM SP2; redundant manipulator; MasPar MP-1; robotic
control; singular value decomposition.

1. INTRODUCTION

The singular value decomposition (SVD) of a matrix is a fundamental
matrix decomposition that provides information useful for a wide range
of applications (e.g., feature extraction, data reduction, and low rank
approximation (1)). In many applications, rapid computation of the SVD is
necessary, e.g., when the SVD is used for solving the systems of equations
for real-time motion control of robotic manipulators. Consider the kine-
matics of a robotic manipulator with n

b
joints operating in m

b
dimensions.

Jacobians of size m=6 and n=7 were chosen for this study because they
represent the minimum size for a redundant manipulator operating in three
dimensions and manipulators of this size are commercially available.
However, the algorithms presented are completely general and can be used
for arbitrary values of m and n. Let ẋ

b
¥ Rm specify the manipulator’s end-

effector velocity, ḣ
¯
¥ Rn denote the joint velocities of the manipulator, and

J
¯
¥ Rm×n be the manipulator Jacobian matrix. The kinematics of the

robotic manipulator can then be represented by the equation ẋ=Jḣ. The
ability to compute the SVD of J in real time allows for evaluation of
proximity to singularities and dexterity optimization. (2)

In general, techniques for computing the SVD of an arbitrary matrix
involve iterating an unknown number of times until a data-dependent con-
vergence criterion is met. Therefore, the number of operations required is
not known a priori and guaranteeing real-time computation of the SVD is
difficult. However, for this application the current Jacobian matrix, J(t),
can be regarded as a perturbation of the previous Jacobianmatrix, i.e., J(t)=
J(t−Dt)+DJ(t). Knowledge of this previous state can be used to decrease
computational complexity during calculation of the current SVD. (3, 4)

This article presents a technique based on research performed by
Maciejewski and Klein (3) and Roberts and Maciejewski (5) for real-time
calculation of the SVD of a Jacobian for a manipulator experiencing
locked-joint failures. The performance of this technique is analyzed on
three different parallel architectures: an SIMD (single instruction stream,
multiple data stream) MasPar MP-1, (6) an MIMD (multiple instruction
stream, multiple data stream) IBM SP2, (7) and the mixed-mode PASM
(partitionable SIMD/MIMD) prototype. (8, 9) Specific issues considered for
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each implementation include how data is mapped to the processing ele-
ments, the effect that increasing the number of processing elements has on
execution time, the type of parallel architecture used, and trade-offs
between modes of parallelism. Case studies, such as the one presented here,
are a necessary step in developing software tools for mapping an applica-
tion task onto a single parallel machine, and for mapping an application
task onto a heterogeneous suite of parallel machines, where a choice among
different types of machines is possible.

The remainder of this article is arranged as follows. The SVD procedure
fromMaciejewski and Klein (3) is reviewed in Section 2. Section 3 describes an
SVD technique for a set of Jacobians representing various different joint
failure scenarios. Section 4 examines different mappings of this technique
onto parallel machines. The results obtained from the MasPar MP-1, IBM
SP2, and PASM prototype are summarized in Sections 5–7, respectively.
Finally, Section 8 summarizes the results of this application study.

2. BACKGROUND INFORMATION

2.1. Kinematically Redundant Manipulators

Robotic manipulators play a key role in structured industrial settings
as well as in remote and/or hazardous environments such as in space or
undersea exploration. Failures in these robots can have significant conse-
quences, ranging from economic impact to potentially catastrophic inci-
dents. As mentioned in Section 1, the kinematics of a manipulator with n
joints operating in m dimensions is typically described by the equation

ẋ=Jḣ (2.1)

where ẋ ¥ Rm specifies the manipulator’s end-effector velocity, ḣ ¥ Rn

denotes the joint velocities of the manipulator, and J ¥ Rm×n represents the
manipulator Jacobian matrix.

One method used to increase fault tolerance, and prevent the conse-
quences just mentioned, is to use kinematically redundant manipulators.
Kinematically redundant robotic manipulators have a greater number of
independently controlled joints than are necessary to achieve the desired
degree of motion, i.e., m < n. The available redundancy in these manipula-
tors allows for optimization of some secondary criterion once the require-
ments of the specified end-effector velocity are met. Section 3 will discuss
one such criterion, fault tolerance. Other secondary criteria that have been
investigated include obstacle avoidance, (10) singularity avoidance, (11) and
dexterity optimization. (2)
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Fig. 1. Figure showing the relationship represented by ẋ=Jḣ for a kinematically
redundant manipulator with n=7 joints operating in m=6 dimensions (3 transla-
tional and 3 rotational).

Figure 1 shows an example manipulator with n=7 joints operating in
m=6 (three linear and three rotational) dimensions. In Fig. 1, each hi
represents the velocity for joint i. The manipulator is maneuvering the end-
effector to the desired position and orientation, shown in the upper-right of
Fig. 1.

2.2. The SVD and Pseudoinverse

The underlying mathematical background behind the SVD and Givens
rotations is presented in the rest of this section. The equations derived will
form the basis of the computations performed on the parallel architectures,
as explicated in subsequent sections.

For a matrix J ¥ Rm×n, let U
a

¥ Rm×m denote an orthogonal matrix of
output singular vectors, V

a
¥ Rn×n represent an orthogonal matrix of input

singular vectors, and D
a

be a nonnegative diagonal matrix. Then, the SVD
of J is defined as the matrix factorization

J=UDVT=C
m

i=1
si ûi v̂

T
i (2.2)
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where D has the form

D ¥ Rm×n=|
s1 0 · · · 0 0 · · · 0

0 s2 z x 0 · · · 0

x z z 0 x x

0 · · · 0 sm 0 · · · 0

} (2.3)

and ûi and v̂i represent the ith column of U and V, respectively. The singu-
lar values, s

¯
i, are ordered so that s1 \ s2 \ · · · \ sm \ 0. It is assumed in

Eq. (2.3), and for the remainder of this paper, that m [ n.
Once the SVD has been computed, it can easily be manipulated to

form the pseudoinverse, J
¯
†, of the matrix J. The pseudoinverse is given by

the equation

J†=VD†UT=C
m

i=1

1
si
v̂i û

T
i (2.4)

where J† ¥ Rn×m and D
a
† is defined as

D† ¥ Rn×m=|
1
s1

0 · · · 0

0
1
s2

z x

x z z 0

0 · · · 0
1
sm

0 · · · 0

x x

0 · · · 0

} (2.5)

with the ith diagonal term equal to 0 if si=0. The pseudoinverse can then
be used to find a solution to Eq. (2.1). That is, ḣ can be found via ḣ=J†ẋ,
giving the minimum joint velocities to move the end-effector as close as
physically possible to the manner specified by ẋ. In addition, the n−m
portion of V that provides an orthonormal basis for the null space of J
allows one to characterize all solutions of Eq. (2.1).
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An efficient algorithm for computing the SVD of a Jacobian matrix is
therefore useful for the control of redundant manipulators. The most common
technique for computing the SVD of a matrix is the Golub–Reinsch
algorithm. (12) However, when attempting to parallelize this method, there
are two drawbacks. First, it is not straightforward to incorporate into this
method information from the SVD of a perturbed matrix to update the
SVD. Secondly, this method is relatively sequential in nature. Therefore,
algorithms more receptive to parallelization are desirable.

2.3. Givens Rotations

While there have been several parallel SVD algorithms written and
implemented on various machine architectures, (13–17) they do not exploit any
particular characteristic of the matrix being decomposed. For this work,
the fact that the current Jacobian matrix is a perturbation of the previous
Jacobian matrix can be exploited.

The techniques studied here are based on a methodology presented in
Maciejewski and Klein. (3) This algorithm uses Givens rotations (18, 19) to
orthogonalize two columns of a matrix. Givens rotations are orthogonal
transformations that can be represented as a matrix multiplication of the
form

Qij=|
1 · ·

z · ·

1 · ·

· · · cos(f) · · · − sin(f) · · ·

· 1 ·

· z ·

· 1 ·

· · · sin(f) · · · cos(f) · · ·

· · 1

· · z

· · 1

} i
j

i j
(2.6)
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where Qij orthogonalizes columns i and j. All other elements not shown off
the main diagonal in Eq. (2.6) are zero. The matrix Qij can be interpreted
geometrically as a rotation of f radians in the i–j plane. Notice that post-
multiplication by Qij will only affect columns i and j of a matrix.

2.4. Using Givens Rotations to Find the SVD

Consider an orthogonal matrix V, generated by successive Givens
rotations. (The actual construction of this V matrix is discussed shortly.)
Assume that this V matrix results in

JV=B (2.7)

where B
a
¥ Rm×n, and the columns of B, denoted bi, are orthogonal. The

matrix B can then be decomposed into two matrices, an orthogonal matrix
(U) and a diagonal matrix (D) resulting in

B=UD (2.8)

This is accomplished by letting the columns of U, denoted ûi, be equal to
the normalized versions of the columns of B, i.e.,

ûi=
bi
||bi ||

(2.9)

and then defining the diagonal elements of D to be equal to the norm of
the columns of B, i.e.,

si=||bi ||, where ||bi ||=`b
T
i bi (2.10)

Using Eq. (2.8) in Eq. (2.7) and solving for J results in the SVD of J, as
given in Eq. (2.2).

The critical step in the above procedure is determining the orthogonal
matrix V that will orthogonalize the columns of J in Eq. (2.7). This V
matrix is constructed as a product of Givens rotations, each of which is
designed to orthogonalize two columns. Consider the ith and jth columns
of an arbitrary matrix A

a
. Post-multiplication by a Givens rotation results in

two new columns, a −i and a
−

j, given by

a −i=ai cos(f)+aj sin(f) (2.11)

a −j=aj cos(f)−ai sin(f) (2.12)

Parallel Approaches for Singular Value Decomposition 7



The constraint that these columns be orthogonal results in cos(f) and
sin(f) terms that are calculated using formulas given in Nash. (20) These
formulas are based on the following terms:

p=aTi aj (2.13)

q=aTi ai−a
T
j aj (2.14)

c=`4p2+q2 (2.15)

For cases when q \ 0

cos(f)== c+q
2c

and sin(f)=
p

c · cos(f)
(2.16)

and when q < 0

sin(f)=sgn(p)= c−q
2c

and cos(f)=
p

c · sin(f)
(2.17)

where

sgn(p)=˛1 if p \ 0
−1 if p < 0

(2.18)

The two sets of formulas [Eqs. (2.16) and (2.17)] are given so that ill-con-
ditioned equations resulting from the subtraction of nearly equal numbers
can always be avoided. [For example, if during the computation of the
Givens rotation q % −c, then cos(f) % 0 and there would be a serious loss
in precision when calculating sin(f) using Eq. (2.16).]

The preceding discussion describes a single Givens rotation that will
orthogonalize two columns of a given matrix. For a matrix with n columns,
n(n−1)/2 rotations are required to orthogonalize each possible pair of
columns. This set of n(n−1)/2 rotations is referred to as a sweep. (12) Mul-
tiple sweeps are generally required to obtain a fully orthogonal matrix. The
matrix V in Eq. (2.7) can therefore be computed based on J as the series of
sweeps such that

V= D
# sweeps

1D
n−1

i=1
D
n

j=i+1
Qij 2 (2.19)
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Unfortunately, the number of sweeps required to orthogonalize the
columns of J is usually not known a priori. However, this problem can be
circumvented by considering the current Jacobian matrix to be a perturba-
tion of the previous Jacobian, i.e.,

J(t)=J(t−Dt)+DJ(t) (2.20)

Using this information, it was shown that a good approximation for the
current SVD could be obtained from the previous SVD information in a
single sweep if DJ is small. (3) That is, using

U(t) D(t)=B(t) % J(t) V(t−Dt) (2.21)

and applying one sweep of Givens rotations, the current SVD can be
found. Note that the accuracy of this approximation depends on the size
of Dt, i.e., the control cycle time of the robot. Therefore, in this work,
Eq. (2.19) is calculated using

V(t)=V(t−Dt) 1D
n−1

i=1
D
n

j=i+1
Qij 2 (2.22)

Thus, the previousVmatrix is updated using only a single sweep. Because it is
known a priori that only one sweep of rotations will be performed, the com-
putational expense associated with iterating to convergence is eliminated.
Note that the initial V matrix can either be computed or assumed to be
known based on the initial starting position of the manipulator.

2.5. Summary

This section reviewed the SVD, the pseudoinverse, and an SVD algo-
rithm that uses Givens rotations. The penalties of convergence checking
and uncertainty in the number of iterations are removed by this metho-
dology. This approach assumes that SVD information from the previous
state is available, and considers the current Jacobian matrix to be a per-
turbation of this previous state [Eq. (2.20)].

The approach described begins with an initial estimate of the current B
matrix [Eq. (2.21)]. Givens rotations [described by Eqs. (2.6), (2.11)–(2.18)]
are then applied to complete the orthogonalization of B. These same
Givens rotations are then applied to V [Eq. (2.22)]. The result of these
rotations is Eq. (2.7). From Eq. (2.7), the current SVD is easily derivable
via Eqs. (2.8)–(2.10).
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3. ALGORITHM DESCRIPTIONS

3.1. Motivation

A robotic manipulator can have joint failures. The calculations
described by the equations in Section 2 assume no joint failures, and thus
determine the fault-free SVD. However, the goal of this study is not only to
find the fault-free SVD, but also to find the SVD of these Jacobians should
a single joint fault occur in the manipulator. It is assumed that such a
single joint fault can be detected by the manipulator and the joint locked
into position. Let the columns of the Jacobian matrix be denoted ji. There-
fore, the Jacobian for the post-fault manipulator, denoted fJ, becomes
fJ=[ j1 j2 · · · jf−1 0 jf+1 · · · jn], where joint f

a
has failed and the column jf

is replaced with jf=0. The SVD of each fJ is referred to here as the post-
fault SVD. The post-fault SVDs are computed for the manipulator even
when no faults have occurred because this information can be used in
several ways, including trajectory planning for maintaining maximum
failure tolerance. (5, 21)

The next technique described for finding the fault-free SVD and post-
fault SVDs was implemented on three different parallel machines: the
MasPar MP-1, the IBM SP2, and the PASM prototype. The study of par-
allel approaches is justified because the algorithm is applicable for the real-
time control of arbitrarily large arms and arm systems and can be applied
to combinations of multiple joint failures.

3.2. Single Sweep SVD Approximation

Figure 2 shows the basic single sweep SVD algorithm. In step 1, the
previous V matrix and the current J matrix are used to calculate a good
initial estimate for the current B matrix. This is done using Eq. (2.21).

Fig. 2. High-level single sweep SVD algorithm using Givens rotations.
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Step 2 performs the single sweep of Givens rotations. First, based on
the selected columns of the current B, values for p, q, and c are calculated
using Eqs. (2.13)–(2.15). Next, cos(f) and sin(f) are calculated using
Eqs. (2.16) or (2.17). Then, a Givens rotation is performed on columns i
and j of B. This is done using bi and bj for ai and aj, respectively, in
Eqs. (2.11) and (2.12). Now, the V matrix must also be updated (to main-
tain Eq. (2.7)). Therefore, a Givens rotation is also performed on columns i
and j of V, denoted v̂i and v̂j. This rotation is done using v̂i and v̂j for ai
and aj, respectively, in Eqs. (2.11) and (2.12). Note that both rotations use
the same sin(f) and cos(f) values.

It is assumed in step 2 that the use of the previous decomposition
information allows the algorithm to converge in a single sweep. Step 3 then
provides the current singular values through the straightforward computa-
tions in Eqs. (2.9) and (2.10).

3.3. Fault-free and Post-fault SVD Approximations

The post-fault approximation technique assumes that the decomposi-
tion information available from the previous time period includes post-
fault matrices. That is, to compute the current post-fault singular values,
fD(t), for the current post-fault Jacobian, fJ(t), the previous post-fault
matrix, fV(t−Dt), is used in Eqs. (2.21) and (2.22). Thus, the post-fault
SVD approximation technique can be represented by the equations

fJ(t) fV(t−Dt) % fU(t) fD(t) (3.1)

fV(t)=fV(t−Dt) 1 D
n−1

i=1
D
n

j=i+1
Qij 2 (3.2)

To compute the fault-free and post-fault SVD approximations, the
algorithm from Fig. 2 is simply performed n+1 times, as shown in Fig. 3.
Using this notation, f=0 represents the calculation of the fault-free
SVD, i.e., the SVD for the Jacobian with no columns zeroed out, and f=
1,..., n represent the n post-fault Jacobians with column 1,..., n zeroed out,

Fig. 3. To compute the fault-free SVD and all post-
fault SVDs, the algorithm in Fig. 3 is executed n+1
times.
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respectively. Given that computing fJ(t) is simply replacing jf with jf=0,
and the assumption that fV(t−Dt) is available from the previous time
period, each iteration of the for all f loop in Fig. 3 is independent of pre-
vious iterations. Thus, on a parallel machine with enough processors, the
entire algorithm from Fig. 3 could be performed such that each processor
would only have to perform one instance of the algorithm from Fig. 2
(e.g., processor i could perform the algorithm from Fig. 2 for fJ with
f=i, 0 [ i [ n).

3.4. Generation of Test Data

To evaluate the performance of the proposed SVD algorithm, a set of
test Jacobian matrices was generated. The input to the SVD algorithm is
the current Jacobian matrix J(t) (each fJ(t) is generated within the algo-
rithm itself ). Because it is assumed that the SVD of the previous Jacobian,
J(t−Dt), is available from the previous control cycle time, these values had
to be computed a priori.

To accurately represent all possible scenarios, the 6×7 Jacobian
matrices were randomly generated, uniformly distributed over all possible
Jacobians for rotary jointed manipulators. Each column of these Jacobians
is of the form

j i=r
vi
ŵi

s (3.3)

where ŵi is of unit-length, and pointing uniformly over all directions.
Given ŵi, the vectors vi have directions uniformly distributed over the
subspace orthogonal to ŵi, with a length that is uniformly distributed over
[0, 2]. This distribution was intended to represent a reasonably normalized
Jacobian that has accounted for the disparity in units between linear and
rotational velocities. (21) This file represented the current Jacobian matrices,
J(t), for which the new SVD was desired.

Next, the Denavit–Hartenburg parameters (22) for each Jacobian matrix
were found. The configuration of the manipulator, given by h, was then
perturbed by a small amount, ||Dh||, simulating movement by the mani-
pulator. For the experimental timing results in subsequent sections, the
value ||Dh||=0.57 degrees (0.01 radians) was used. The Jacobian corre-
sponding to this new, perturbed configuration was used to represent the
‘‘previous’’ Jacobian matrix, J(t−Dt). Then, the SVD for each previous
Jacobian matrix and each previous single joint, post-fault Jacobian matrix
was computed using MATLAB. (23)
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Recall Fig. 1, which illustrates an example manipulator with n=7
joints operating in m=6 (three linear and three rotational) dimensions. In
Fig. 1, the vector v represents the linear velocity required to maneuver the
end-effector of the manipulator to the desired position. The vector ŵ
represents the rotational velocity required to rotate the end-effector of the
manipulator to the desired orientation.

4. PARALLEL MAPPINGS CONSIDERED

4.1. Overview

Distributed memory parallel architectures generally consist of a
number of processing elements (PEs). A PE is a combination of a processor
and a memory module, allowing the processor fast access to the local
memory. This section focuses on techniques to efficiently distribute the
data and computations of the single sweep SVD algorithm among the PEs
of a parallel architecture, with the goal of decreasing overall execution
time. These techniques are easily extended to the fault-free and post-fault
SVD algorithm. Specifically, three data mapping techniques are described:
1CPP, 2CPP, and column segmentation.

4.2. One Column Per PE (1CPP)

From the algorithm in Fig. 2, notice that no inter-PE communication
is required in step 1 if each PE has one column of V, a copy of the entire
Jacobian matrix, and one column of B. In step 3, single-column operations
can also be performed simultaneously on n PEs. The columns of U and the
singular values of D are computed from the corresponding columns of B.
Again, no inter-PE communications are required.

Step 2, however, cannot be performed without inter-PE communica-
tions for this one column per PE (1CPP) distribution. Consider the n
columns currently held on n PEs, one per PE. For a given pairing of PEs,
there are n/2 PE pairs, and hence n/2 column pairs. Let the parallel exe-
cution of a Givens rotation on n/2 column pairs by the PEs be defined as a
rotation step. Then, a minimum of n−1 rotation steps must be performed
to generate all n(n−1)/2 possible column pairings that constitute one
sweep. During each rotation step (step 2), the 1CPP approach used here
performs several inter-PE communications. Columns of B are exchanged
and columns of V are exchanged [to form new column pairs, used in
Eqs. (2.11) and (2.12), and to compute p in Eq. (2.13)]. The PEs also
exchange bTi bi to calculate q [Eq. (2.12)]. [Note: An alternative would be
to let two PEs calculate both bTi bi and b

T
j bj locally (i.e., redundantly), for a
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given i and j. For the machines considered, the exchange approach taken
was based on the system architectures.]

The 1CPP communication pattern that was employed is shown in Fig. 4.
This column transfer method formed all possible column pairings using only
n−1 column transfers. This was implemented as follows. Assume there are
n PEs, numbered from 0 to n−1. PE i always contains the most recent
version of column i+1 (columns are numbered 1 to n). In the kth rotation
step, 1 [ k < n, PE i exchanges its column of data with PE i À k, where À
is the bit-wise exclusive-or (for all i, 0 [ i < n).

4.3. Two Column Per PE (2CPP)

A two column per PE (2CPP) approach that distributes pairs of
columns of V and B to n/2 PEs was also implemented. This 2CPP
approach reduces the frequency and complexity of the inter-PE communi-
cations (because each PE will hold a pair of columns to be orthogonalized).
For the 2CPP approach, step 1 and step 3 are performed concurrently
without any inter-PE communications, similar to the 1CPP approach.

Using the 2CPP approach, the first rotation step of step 2 can be per-
formed without any inter-PE communications. In contrast to the 1CPP
method, the 2CPP method only requires the exchange of columns bi and v̂i so
that each PE can obtain a new column pair for orthogonalization. (There is
no need to exchange bTi bi and b

T
j bj because both are located on the same PE,

so q can be calculated locally without any redundant computations.)
Although it is obvious that step 1 and step 3 of the single sweep SVD

algorithm will take twice as long to compute using the 2CPP distribution
versus the 1CPP distribution, the 2CPP implementation does not require twice
as much total time to execute. This is due to the fact that the highest percentage
of the total execution time for the single sweep SVD algorithm is spent per-
forming step 2, where 2CPP has the advantage of fewer communications.

The 2CPP communication technique implemented is shown in Fig. 5.
Initially, all PEs being used are in a single communicating subgroup. Let
each PE contain two columns, x and y. All possible column pairs are
formed by repeating the following process. In the first phase, all y columns
are shifted right one PE at a time through all other PEs in the subgroup. In
the second phase, each subgroup is split into two new subgroups, the left
subgroup and the right subgroup. The PEs in the left subgroup exchange
their y column with an x column from the right subgroup. This two phase
process is repeated with the new subgroups until all n−2 column transfers
have been performed. Different 2CPP procedures can be found in Chuang
and Chen, (15) Maciejewski and Reagin, (4) and Schimmel and Luk. (17)
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Fig. 4. Method for performing inter-PE column transfers for one sweep in the 1CPP algo-
rithm mapping.
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Fig. 5. Method for performing inter-PE column
transfers for one sweep in the 2CPP algorithm mapping.

4.4. Column Segmentation

One goal of this study was to extract as much parallelism as possible
from both the algorithm and the target machines to reduce execution time.
The technique described here divides each column vector of the B and V
matrices into r

¯
segments, where r is a power of two. This variable r repre-

sents the column segmentation of the data (and operations) among PEs and
increases the total number of PEs used by a factor of r. Values of r ¥
{1, 2, 4, 8} were implemented. When r > 1, each PE only operates on a
column segment (column segments are numbered 0 · · · r−1). The goal of
this column segmentation was to decrease execution time by decreasing the
number of computations per PE, while incurring a minimum number of
additional communications.
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This segmentation of the column data does not interfere with the inter-
PE column transfers for the 1CPP and 2CPP methods. Column transfers
simply take place between PEs containing the same segment number. Inter-
PE communication also occurs among PEs containing different segments of
the same column (e.g., to add up partial sums).

Figure 6 outlines how column segmentation affects the matrix multiply
during step 1 of the single sweep SVD algorithm (Fig. 2). Step 1 of the
SVD algorithm finds an initial estimate for the B matrix by multiplying the
current Jacobian by the previous V matrix, based on Eq. (2.21). Each PE
has a copy of the entire J matrix, but columns of V (and the resulting
columns of B) are distributed among multiple PEs. The figure shows the
multiplication of J by v̂i to find column bi when the columns are divided
into r=4 segments.

The diagonally cross-hatched segment of v̂i in Fig. 6 is the only
segment of v̂i resident on the PE under consideration. Therefore, this PE is
responsible for deriving the corresponding segment of bi that is also shown
with diagonal cross-hatching. To fully derive this segment of bi, the entire
column of v̂i must be multiplied by the section of J shown between the two
dashed lines. However, because only the diagonally cross-hatched segment
of v̂i is resident on the PE, the only information that is obtainable by this
PE is a partial sum of the entire column bi. This partial sum for the entire
column bi is calculated by multiplying the resident segment of v̂i by the
corresponding columns of J. These columns of J, and the resulting partial
sum for bi, are shown by the jagged cross-hatching in Fig. 6. (Segments
with no cross-hatching of any kind in Fig. 6 are unused or unavailable on
this PE.)

Fig. 6. Diagram of matrix multiply to find the partial sum of
bi=J×v̂i resident on this PE, with column segmentation r=4.
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After all r PEs that contain segments of v̂i perform the partial matrix
multiplication, each of these PEs contains a unique partial sum of the
entire column bi. For any PE to obtain the final result for its segment of bi,
that PE must combine its partial sum of the segment with the corresponding
partial sums of the segments from the r−1 other PEs. That is, for the PE in
Fig. 6 to obtain the final result for the diagonally cross-hatched segment
of bi, it must obtain the corresponding segment of bi from the other r−1
PEs that have a segment of v̂i, and add the partial sums together. Likewise,
the PE in Fig. 6 will send its r−1 segments of bi with jagged cross-hatching
to the corresponding PEs combining those partial sums.

Several methods were investigated for performing this combining of
partial sums. First, standard recursive doubling (24) was considered. In
standard recursive doubling, the r PEs containing segments of bi are parti-
tioned into two halves. Each PE in one partition sends its partial sum to a
PE in the other partition. The sending PEs then become disabled. PEs
remaining enabled add this partial sum to their own, and the process is
repeated. The result is eventually found in a single PE. This method would
require log2(r)×r inter-PE communication steps to find the final sum for
each of the r segments. Each block of data transferred would have size Kmr L,
and each enabled PE would perform Kmr L additions after each communica-
tion. All n groups (of r PEs each) can do this simultaneously.

Next, full recursive doubling (24) was implemented. Typically, in this
variation of recursive doubling, each of the r PEs sharing a column remains
enabled, and performs the send-receive-add sequence. The result will then
end up on all PEs involved in the recursive doubling. Therefore, only
log2(r) such recursive doubling steps are required. However, because each
PE is computing a different final sum, each transfer consists of m column
elements, and each PE must perform m additions after each communica-
tion. Again, all n groups (of r PEs each) can do this simultaneously.

A third method, called segment combining was also investigated. This
method requires fewer communication steps than standard recursive
doubling, and smaller blocks of data being transferred than full recursive
doubling.

Segment combining is illustrated in Fig. 7. In Fig. 7, the arrows indi-
cate source/destination positions of column segments, and are meant to
wrap around the diagram from right to left. Segment combining requires
r−1 communication steps. There are r=4 column segments, so three
combining steps are required. The diagonally cross-hatched sections show
the segments being combined by each PE. PE (i+n) in Fig. 7 is meant to
represent the same PE that was considered in Fig. 6. That is, the column bi
with diagonal and jagged cross-hatching in PE (i+n) in Fig. 7 corresponds
to the same column and cross-hatching from Fig. 6.
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Fig. 7. Diagram of segment combining method for a single column with
r=4. PE (i+jn) accumulates the values for segment j of bi.

Recall that each PE contains a unique partial sum of the entire column bi.
Each PE is responsible for computing the final result for only its segment
of column bi. To do this, each PE must obtain the corresponding segment
of column bi from the other r−1 PEs. Let z denote the current communi-
cation step, 1 [ z [ r−1. During each communication step of segment
combining, each PE sends a different segment of bi to a different destina-
tion PE. The segment that each PE sends and the destination for that
segment is based on modulo r addition.

For example, in Fig. 7, let, r=4, z=1, and n=8. Also, for the sake
of explanation, assume there are only rn=32 PEs, numbered from 0 to 31.
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In general, PE k will operate on segment j=Nk/nM of column (k mod n).
During the first communication step (i.e., z=1), PE k sends its copy of
segment ((j+z)mod r)=((j+1)mod 4 to PE (k+(zn)mod(rn))=(k+
(8) mod 32). This is repeated for z=2 and z=3. After which, every PE
will have received every partial sum that it needs.

Thus, column elements are combined by making each PE sequentially
transfer the partial sums only of the column segments for which it is not
responsible. Each segment transfer is made to the PE that is responsible for
the corresponding segment in its final result. To perform concurrent trans-
fers, all PEs will have a unique destination PE (i.e., transfer the partial sum
for a unique segment) during each of the r−1 combining steps. This is
done concurrently for all columns, in groups of r PEs each.

Therefore, segment combining requires r−1 communication steps,
data transfers of size Kmr L, and each PE only performs Kmr L additions after
each communication. For the cases considered in this study (m=6 and
n=7), segment combining generally performed the best for step 1 of the
single sweep SVD algorithm, and so it was used. (For larger values of m
and n, the other approaches may perform better.) The reason it outper-
formed the more popular recursive doubling techniques was because a
unique final sum was being computed on each PE. In situations where the
same final sum was required on each PE with data from the same column
(e.g., to compute p, q, and c), full recursive doubling performed better and
was used. Thus, all implementations here used segment combining for
step 1, and full recursive doubling for steps 2 and 3.

5. SIMD ARCHITECTURE EXPERIMENTS

5.1. Algorithm Implementation Details

This section presents the parallel implementations of the fault-free and
post-fault SVD algorithm on an SIMD architecture. (25) SIMD machines
consist of a collection of PEs, a central control unit (CU), and an inter-
connection network. The CU broadcasts instructions to all PEs, forming a
single instruction stream. Each instruction is performed synchronously on
all enabled PEs.

The SIMD machine used in this study was a MasPar MP-1 system (6)

with 16,384 PEs located at Purdue University. The MP-1 provides two dif-
ferent high-speed PE interconnection networks, the X-Net and the global
router. The X-Net connects a PE to its eight nearest neighbors and pro-
vides fast communications for PEs in close proximity. The global router is a
multistage interconnection network that connects groups of 16 PEs and is

20 Braun, Ulrey, Maciejewski, and Siegel



faster for communications between PEs that are further apart. Data trans-
fers using the X-net between nearest neighbors can achieve 18 GB/s for a
16,384 PE machine, and 1300 MB/s using the global router.

There are four different implementations of the fault-free and post-
fault SVD algorithm for the MP-1, based on two different design options:
data distribution (1CPP or 2CPP) and interconnection network selection
(X-Net or global router). All implementations were written in MPL, a
variant of C developed by MasPar for the MP-1. Each implementation also
utilized column segmentation for r ¥ {1, 2, 4, 8}. Thus, at most (n×r×
(n+1))=512 PEs are required.

To take advantage of as much parallelism as possible in the global
router implementations, only one PE per global router group was used to
reduce contention. The PEs used were spread out as much as possible, to
reduce contention at the lower levels of the multistage global router. If
r > 1, the additional column segments were distributed to PEs within
groups with separate connections to the global router.

In contrast, implementations using the X-Net selected a collection of
PEs that were all adjacent, to keep inter-PE distances short and inter-PE
communications fast. For example, if r=1 and n=7, PEs 0 to 6 were used
for one matrix. If r=2 and n=7, PEs 0 to 6 hold segment 0, and PEs 128
to 134 hold segment 1 (there are 128 PEs per row in the MP-1).

For step 1 of Fig. 2, each PE contains the entire J matrix, and only a
segment (for r > 1) of each column of V, so matrix multiplications are per-
formed as concurrent vector–vector multiplications. This creates an m×1
vector of partial sums on each PE. These partial sums were then added
using segment combining to form the unique solution for each PE.

Step 2 performs one sweep of rotations on the columns of B and V. To
do this, all possible combinations of pairs of columns of B must be formed.
The same must also be done for V. This makes step 2 the most communi-
cation-intensive step, especially for the 1CPP distribution. The 1CPP
method requires n−1 B column transfers, n−1 V column transfers, and
n−1 scalar transfers to calculate q. The 2CPP approach only requires n−2
B column transfers and n−2 V column transfers, one after each rotation
step. Both approaches also require additional communications for combin-
ing column segments, performed here by full recursive doubling because
the same sum (and not a different sum for each segment) is required on
each PE with data from the same column. The full recursive doubling is
done in log2(r) steps, in groups of r PEs for all groups concurrently.

Step 3 of the SVD algorithm normalizes the columns of the B matrix
to obtain the columns of the U matrix, as well as the singular values,
according to Eqs. (2.9) and (2.10). Full recursive doubling is repeated for
obtaining the final results.

Parallel Approaches for Singular Value Decomposition 21



5.2. Timing Results

Experimental timing results for the 1CPP, 2CPP, X-net, and global
router implementations were obtained. Only instructions directly relating to
computation or communication in the algorithms were timed. Procedures
such as file I/O were not timed to reduce possible disruption by events
beyond the control of the programmer, e.g., operating system interrupts.

The timings shown represent the average time to calculate the SVDs of
all eight fJ matrices corresponding to one Jacobian matrix. This average is
taken over 1000 different randomly generated matrices. Even though the
MP-1 is an SIMD machine, meaning it operates synchronously and there
should be no variation in timings, averages were still taken because of data
conditional execution of statements within the code.

Figure 8 shows a direct comparison between the 1CPP and 2CPP dis-
tribution execution times on the MP-1 for the global router fault-free and
post-fault SVD calculation. The execution times are grouped in terms of
the number of active PEs, which was always set to be a power of two. (In
some cases, columns were padded with zeros, because m=6 is not a power
of two. This does not affect the final outcome of the singular values.)

Fig. 8. Comparison between 1CPP and 2CPP average execution times for the
MasPar MP-1 global router implementation, in terms of number of active PEs.
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From Fig. 8, when comparing cases that have an equal number of
active PEs, the 2CPP method has a higher degree of column segmentation
and thus more column combining operations. The 2CPP communication
pattern also requires more PE enabling and disabling statements than the
1CPP method (e.g., computing new subgroups, and checking for the x or y
column). Thus, the communication time for the 2CPP method is greater
than the 1CPP method for an equivalent number of PEs.

Examining the communication times for the 1CPP method as r
increases, the communications times do decrease slightly in each case.
Therefore, column segmentation was beneficial, and the time saved trans-
ferring fewer elements between columns was greater than the overhead of
performing combining operations within columns. The largest decrease
was from 1CPP, r=1 to 1CPP, r=2, i.e., going from no column segmen-
tation to a minimum amount of column segmentation. As r > 2, more
column combining was required, and communication times improved less
and less.

Examining the communication times for the 2CPP method, one
notices a heavy initial penalty from column segmentation. The 2CPP r=1
case has the smallest communication time of all four 2CPP cases, but r=2
case has the highest. For r=2, the overhead involved with performing the
masking and column combining communications with two column seg-
ments during each rotation step was much more costly than the benefit of
exchanging a smaller single column segment between rotation steps. As r
increases from 2 to 4 to 8, the communication times do decrease slightly.
While there is a slight increase in the overhead for column combining
masking and communications, it is balanced by the benefit of the smaller
column segments in all communications. However, the decrease never gets
back down to the r=1 level, where there was no combining overhead at all.

Comparing the communication times between the 1CPP and 2CPP
methods, the 2CPP r=1 case is slightly less than the corresponding 1CPP
r=1 case. This is as expected, given the fewer number of communications
for the 2CPP case with no column segmentation. As r increases, 2CPP has
the higher communication times than the corresponding 1CPP case. This is
because segment combining and recursive doubling for two columns (1)
involves twice as much data than the 1CPP case (two columns versus one
column); and (2) occurs more often (several places within Fig. 2) than the
exchange of columns (after each rotation step).

Examining just the computation times (without communication times),
the 2CPP technique should be faster than the 1CPP method. The 2CPP
method is more conducive to the pair-wise operations of the rotation steps
because it avoids some of the redundant calculations the 1CPP method must
perform. The exception to this observation occurs for 128 PEs because the
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Table I. Summary of the Best Results from Each of the Three Architectures

Computation Communication Total
No. of PEs r time (s) time (s) time (s)

MasPar MP-1 (SIMD) 1CPP 512 8 0.01056 0.00286 0.01342
MasPar MP-1 (SIMD) 2CPP 256 8 0.01285 0.00623 0.01908
IBM SP2 (MIMD) 4CPP 16 1 0.00065 0.00122 0.00187
IBM SP2 (MIMD) 8CPP 8 1 0.00134 0 0.00134
PASM (mixed-mode) 1CPP 16 4 7.701 0.092 7.793
PASM (mixed-mode) 2CPP 8 4 14.071 0.195 14.266

data was padded with zeros so that the number of active PEs was a power
of two (simplifying recursive doubling).

For the 1CPP case, there is a decrease in total execution times as a
result of increasing the number of PEs. However, execution times improved
less per PE as the number of active PEs went from 256 to 512. This implies
that the use of column segmentation was beneficial, but provides diminish-
ing returns (per PE) as the columns were segmented into smaller and
smaller pieces. A similar trend occurs for the 2CPP case.

A comparison of the X-Net and global router results revealed that the
global router implementations achieve the faster execution times. The
computation times between the X-Net and global router implementations
were nearly equivalent, as one would expect. However, given the commu-
nication patterns and matrix sizes of this application, and the ability to
select the enabled PEs, the global router implementations provided better
performance than the X-Net implementations in each case.

In all cases (global router, X-Net, and various values of r), the differ-
ences in computation times between 1CPP and 2CPP were not enough to
overcome the differences in communication times, and the 1CPP technique
had a faster total execution time. The global router, r=8, 1CPP technique
had the fastest total execution time on the MasPar MP-1. In all of the cases
examined on the MasPar MP-1, increasing the number of processors
improved execution times. Table I summarizes the best results achieved by
the MasPar MP-1 (with global router) for comparison with the other
architectures. Detailed results for individual cases can be found in Braun.(26)

6. MIMD ARCHITECTURE EXPERIMENTS

6.1. Algorithm Implementation Details

The parallel implementation of the fault-free and post-fault SVD
algorithm on an MIMD architecture (25) is described in this section. Each
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PE in an MIMD machine stores its own set of instructions and data in its
local memory module. This allows for asynchronous, multiple threads of
control, because PEs may contain unique sets of instructions.

The IBM SP2 is a scalable distributed memory MIMD parallel super-
computer. (7) The interconnection network in the SP2 is a multistage inter-
connection network based on the SP2 High-Performance Switch. (7) Message
passing for this study used a C-based implementation of theMessage Passing
Interface (MPI). (27) Simulation results were obtained using only the thin node
type of processor, (7) with submachine sizes, s

¯
, of s ¥ {1, 2, 4, 8, 16}.

Both the 1CPP and 2CPP methods were implemented on the SP2. The
biggest difference between the MP-1 and the SP2 implementations was the
use of MPI on the SP2. Another difference between the MP-1 and SP2
implementations was the number of PEs available. The number of thin
nodes on the SP2 that was used for the experiments in Eq. (2.16), was fewer
than (n×r×(n+1)), so for most cases, the outer loop of the fault-free and
post-fault SVD algorithm (Fig. 3) cannot be performed concurrently with
all values of f, as it was on the MP-1.

For the computational sections of the algorithms, the MP-1 and SP2
implementations were very similar. The same computations are performed,
they are just performed asynchronously on the SP2. In contrast, the com-
munication sections of the algorithm implementations differ greatly
between the MP-1 and SP2. The SP2 performs asynchronous inter-PE
communications, which require blocking until the required data has been
received.

Because of the limited number of PEs available, and the high MPI
overheads observed, two additional techniques were added to the MIMD
portion of the study, namely an eight column per PE (8CPP) and a four
column per PE (4CPP) method. The 8CPP method executes entirely on one
PE with no inter-PE communications. The 4CPP method executes on two
PEs, each holding four columns of B and four columns of V. The 4CPP
method performs two exchanges, each containing two columns of B and
two columns of V. The 8CPP and 4CPP techniques did not use column
segmentation.

6.2. Timing Results

Because of their asynchronous operation, there is usually a large
variance in timing information from MIMD machines. The timings
recorded, as before, represent the time to calculate the SVDs of all eight fJ
matrices corresponding to one J matrix, taken as the average time over
1000 different matrices.
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Comparing the 8CPP, 4CPP, 2CPP, and 1CPP distributions of the
fault-free and post-fault SVD algorithm in Fig. 9, the communication times
dominated the total execution time of the algorithms on the SP2. This is
because of the large overhead associated with MPI communications.(28)

When using MPI, the time required for setup and initialization of each
communication is relatively large. If only small sets of data are being
transferred, the overhead can easily require more time than the actual
transfer of data.

Consider the communication times for 1CPP, r=1 and r=2. Notice
that the communication time has nearly quadrupled for r=2. This is par-
tially because half as many SVDs are able to be calculated concurrently
during each iteration of the for all loop of Fig. 3. For r=1, two SVD are
computed concurrently (16 PEs/8 columns per matrix=2 concurrent
SVDs). For r=2, only one SVD is computed at a time. This by itself
doubles the number of inter-PE column exchanges needed. Also, when
r=2, segment combining and recursive doubling communications must be
performed for each column operation. This more than doubles the total
number of communications performed. The fact that some of these
increased number of communications involve half as much data as the
r=1 case is masked by the large overhead of each communication. Thus,
the communication time for r=2 is approximately four times that of the
r=1 case.

Fig. 9. Comparison among 1CPP, 2CPP, 4CPP, and 8CPP average exe-
cution times for the IBM SP2 implementations.
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The large overhead also accounts for the change in performance between
the 1CPP and 2CPP methods. The combining operations for the 2CPP r=2
case nullify the advantage of fewer column exchanges as compared to the
1CPP r=1 case, and thus 2CPP does slightly worse. For 1CPP r=2,
combining operations are now introduced into the 1CPP method, and the
combination of penalties from having more communications and some
combining operations outweighs the additional penalties of increasing r from
two to four for the 2CPP case. The best case on the IBM SP2 was the 8CPP
case, which used just one matrix per PE, and only half of the available PEs.

Comparing timing results between the IBM SP2 and the MasPar MP-1
(see Table I), the relative strengths of each machine become apparent. The
MP-1 is a well balanced machine with computation and communication
instructions requiring about the same amount of time to execute. In con-
trast, the SP2 has superior computational speed but relatively slow com-
munications when using MPI. In most cases, communication times on the
MP-1 using the global router were equal to or less than the corresponding
SP2 implementations using MPI. The advantage in computation time goes
to the SP2 which defeated the MP-1 in every instance. This can largely be
attributed to the SP2 being a newer machine and having better processor
technology available at its time of design and construction. In general, the
total execution times for the SP2 were less than the MP-1.

7. MIXED-MODE ARCHITECTURE EXPERIMENTS

7.1. Algorithm Implementation Details

The PASM (partitionable SIMD/MIMD) parallel processing sys-
tem (8, 9) was the third parallel architecture used to implement the single
sweep SVD algorithm and the fault-free and post-fault SVD algorithm.
PASM, designed at Purdue University, supports mixed-mode parallelism,
i.e., it can operate in either SIMD or MIMD mode of parallelism, and can
switch modes at instruction level granularity with generally negligible
overhead. A small-scale 30-processor PASM prototype has been built with
16 PEs in the computational engine. For inter-PE communications, PASM
uses a partitionable circuit-switched multistage cube interconnection
network. The network can be used in both SIMD and MIMD modes.

PASM is capable of employing hardware-based barrier synchroniza-
tion in MIMD mode, called Barrier MIMD BMIMD. Each PE executes its
code independently until it arrives at a synchronization point called a
barrier. Each PE waits at the barrier until all PEs indicate they have
reached it, then they continue execution simultaneously. One use for this is
to synchronize inter-PE transfers performed in MIMD mode.
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The PASM implementations use a combination of C and ELP
programs. ELP is a custom language developed for use on PASM. ELP
implements a subset of the C instruction set, and includes custom instruc-
tions for inter-PE communications and switching operation modes (SIMD
or MIMD).

7.2. Mixed-Mode Analysis

To extend the mixed-mode analysis, matrices of size 4×4, 4×8, and
8×8 were used. This allowed timing data to be recorded while using dif-
ferent numbers of PEs on the 16 PE PASM prototype. Both the 2CPP and
1CPP implementations were executed with matrices of these three sizes.
Only results from the fault-free single sweep SVD algorithm (Fig. 2) will
be discussed. Unless otherwise stated, experimental timing data being
presented represents the average execution times of an algorithm run on
256 different Jacobian matrices of the given size.

The experimental data is normalized to the average execution time of
the SVD algorithm when decomposing a 4×4 matrix with a single PE. This
is to show the gains from the different parallel implementations examined.
The raw execution speeds are not the focus of the mixed-mode analysis.
[For completeness, the actual execution times are given in Table I.]
Instead, the goal is to look at how the reconfigurability of a mixed-mode
architecture like PASM can exploit different properties of the problem to
obtain better performance over any other mode of execution. The absolute
execution times were very high compared to the SP2 due to the type of
processors used in the PASM prototype.

The 2CPP and 1CPP algorithms were performed on the PASM proto-
type using SIMD, MIMD, BMIMD, and mixed-mode modes of parallelism.
To determine the most effective mode mappings, each of the algorithms were
divided into several code fragments. The fastest execution mode for each
code fragment was then determined.

The SIMD and MIMD modes of parallelism each have several advan-
tages and disadvantages. (29) An advantage of SIMD over MIMD is the
ability to overlap execution of instructions on the CU and on the PEs
(CU/PE overlap). For the SVD implementations, this overlap occurs when
the CU performs the overhead associated with loops implementing the
equations noted in Fig. 2, while the PEs execute the loop bodies. Another
advantage of SIMD is that the implicit synchronization after every instruc-
tion broadcast from the CU to the PEs implies that synchronization is not
required during communication, as was required for the IBMSP2 and PASM
MIMD implementations.
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An advantage of MIMD over SIMD is the ability to execute the
clauses of data conditional statements without underutilizing PEs, i.e., in
SIMD the data conditional ‘‘then’’ and ‘‘else’’ clauses must be broadcast to
the PEs serially and some PEs are idle during the execution of a particular
clause. Another advantage of MIMD mode over SIMD mode on PASM
was for intensive floating point calculations, MIMD mode was faster. Due
to the way that the processors in the PASM prototype implemented float-
ing point operations, SIMD mode required extra overhead (as compared to
MIMD mode) to synchronize suboperations. A MIMD disadvantage is
that sender/receiver synchronization is required before inter-PE commu-
nication can take place. On PASM, sending and receiving PEs must be
synchronized for every value sent through the network in MIMD mode.
In the BMIMD implementations, all operations are executed in MIMD
with the exception that a barrier is executed once for every network setting.
After the barrier, all required data transfers can be done in SIMD mode,
with less overhead than MIMD network transfers.

Mixed-mode implementations incorporate advantages of both the
SIMD and MIMD mode implementations while trying to avoid the disad-
vantages of each. Various mode combinations were considered for the dif-
ferent program fragments of both the 2CPP and 1CPP approaches. The
following is an analysis of the implementations that resulted in the smallest
execution times for each of SIMD, MIMD, BMIMD, and mixed-mode.

Figure 10 shows how the 1CPP single sweep SVD algorithm was
divided into code fragments. The figure also states the fastest mode of
parallelism for each 1CPP code fragment, and the reason(s) for choosing
that mode of parallelism. These were the modes used in the mixed-mode
implementation.

Fragments 1 and 2 constitute step 1 of the SVD algorithm. Fragment 1
is a nested loop calculation of the partial sum of one column of the B
matrix, where each of m column elements are determined from n/r matrix
elements of J and V. This fragment is implemented in SIMD mode to
maximize the advantage of CU/PE overlap. Fragment 2 is a set of trans-
fers in a loop that combines the partial sums of segments of bi. Fragment 2
is also implemented in SIMD to utilize both CU/PE overlap and implicit
network transfer synchronization.

Code fragments 3 through 8 constitute step 2 of the SVD algorithm.
Inter-rotation step column segment transfers are handled by code fragment
3. Fragment 3 is performed n−1 times during the execution of 1CPP, once
for each column transfer called for by the algorithm in Fig. 2. SIMD mode
is used to take advantage of both CU/PE overlap and transfer efficiency.

Fragment 4 calculates two partial sum values within a loop executed in
SIMDmode. Fragment 5 combines these partial sums via recursive doubling
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Fig. 10. Fastest mode of parallelism for each code fragment in the 1CPP single sweep SVD
algorithm.

transfer operations in a loop. Again, this loop is executed in SIMD to take
advantage of both CU/PE overlap and implicit transfer synchronization.
After the partial sums are combined, code fragment 6 performs an inter-
PE communication so that partner PEs can exchange their value of bTi bi.
This fragment is done in SIMD mode to exploit the implicit network
synchronization.

Code fragment 7 calculates the values q, c, sin(f), and cos(f). This is
an in-line block of code requiring no loops, so MIMD mode is used to
make use of its faster floating point operations. Fragment 8 performs the
rotation operation on two column segments of B and of V. Rotating
column segments of B requires m/r iterations of a tight loop, and rotating
column segments of V requires n/r loop iterations. These loops are again
performed in SIMD mode to take advantage of CU/PE overlap.

Code fragments 9 through 11 constitute step 3 of the SVD algorithm.
The calculation of the partial sum for the new bTi bi value occurs in fragment 9
as another tight SIMD loop. Fragment 10 performs transfer operations in
a loop to combine the single bTi bi term in each PE in SIMD mode. These
transfers are performed in SIMD mode to take advantage of both CU/PE
overlap and implicit transfer synchronization. Finally, code fragment 11
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finds the square-root of this final value to obtain si. A conditional compu-
tation of ûi is also performed. If s is nonzero, the division operation is
executed. Otherwise, the corresponding column of U is replaced with
zeroes. Fragment 11 is therefore performed in MIMD mode to take
advantage of parallel ‘‘then’’ and ‘‘else’’ clause execution.

7.3. Timing Results

Figure 11 shows the execution times of the 1CPP implementation
when it is run in different modes of parallelism on the PASM prototype
computer. The data shown in the figure are the results of 4×4 matrix SVD.
[Results were similar for the other matrix sizes. (30)] Confidence intervals
were calculated for the data presented. Average execution times were
determined for each data point, each from 256 different random matrix
SVDs. The confidence interval provides a 95% probability that the average

Fig. 11. 1CPP single sweep SVD algorithm execution time
comparison for different modes of parallelism on the PASM pro-
totype with a 4×4 matrix.
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execution times displayed are within ±0.0017 on the scale used in the
figures. The figure shows that the minimum execution time can be obtained
when using mixed-mode parallelism. Results from the 2CPP implementa-
tion were similar.

In Fig. 11, it is obvious that the advantage of strictly SIMD operation
over MIMD operation increases as the number of PEs increases. It is also
obvious that SIMD and BMIMD execution provide similar execution
times, meaning that the greatest advantage that SIMD has over MIMD for
the SVD algorithm is implicit network transfer synchronization.

The execution times displayed in Fig. 11 also show that the advantage
mixed-mode parallelism has over strictly SIMD operation increases as the
number of PEs increases. Examining Fig. 10 shows that the mixed-mode
code fragments performed in MIMD generally do not operate on column
segments, and therefore their performance is generally independent of the
number of PEs, i.e., the value of r. Thus, the MIMD code fragment execu-
tion times become a larger fraction of the overall execution times as more
PEs are used. As the overall execution times decrease, the MIMD advan-
tage of those code fragments becomes more prominent. More detailed
analysis and results from the PASM prototype implementations can be
found in Ulrey. (30)

In summary, based on the PASM prototype implementation, the
following observations can be made for the SVD algorithm. SIMD mode is
better than MIMD, and is comparable to BMIMD, for the reasons given.
A mixed-mode approach based on the analyses shown in Fig. 10 performed
the best, although only 6% better than SIMD/BMIMD and 15% better
than MIMD (for 16 PEs).

8. CONCLUSIONS

The system of equations used for the kinematic control of robotic
manipulators is frequently represented by a Jacobian matrix. One method
for solving this system of equations is based on computing the SVD of the
Jacobian matrix. This study uses a technique developed by Maciejewski
and Klein (5) that exploits the well-behaved nature of the SVD to calculate
the SVD in a single sweep. This technique has been applied to the compu-
tation of the SVD of the full, pre-fault Jacobian matrix and the set of single
locked-joint, post-fault Jacobian matrices. These procedures can provide a
basis for the real-time control of kinematically redundant manipulators and
also provide fault tolerance information useful for real-time singularity
avoidance and error recovery.

Experiments were conducted for the fault-free and post-fault SVD
computations on commercial SIMD and MIMD architectures, the MasPar
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MP-1 and IBM SP2. A mixed-mode analysis was also performed on the
PASM prototype. For these experiments, data layout, different numbers of
PEs, and different modes of parallelism were compared. The fastest overall
execution times on the MP-1 were from the 1CPP, global router method.
The 8CPP method provided the fastest results on the SP2 because of the
high overhead involved with communications. Mixed-mode parallelism
gave the best results on the PASM prototype, demonstrating the advan-
tages of mixed-mode processing. Increased column segmentation was an
effective method for reducing computation times on the MP-1 and PASM
but not on the SP2.

Studies such as this, which compare machines with different network
and processor technologies, are useful not only for analysis of the applica-
tion, but also for profiling each architecture, and pointing out weaknesses
which could be addressed in future implementations. All of the methods
studied here can be extended to larger analyses, including multiple joint
failures, systems of multiple arms, or computation of several fault tolerance
measures, all of which would require high levels of parallelism to accomplish
in real time.
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