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ABSTRACT

ADVANCED SPECTRAL PROCESSING FOR DUAL POLARIZATION WEATHER RADARS

This thesis focuses on the importance of spectral-domain processing and analysis in weather

radar applications such as sea-clutter mitigation and the study of rain-hail mixtures in severe

storms. An advanced spectral filtering technique has been proposed that helps in obtaining pre-

cipitation spectrum thus helping us to filter sea clutter and also carefully study the spectrum of

different rain and hail cases in severe storms.

Traditionally, time-domain auto-correlation techniques are used for the estimation of dual-polarization

radar moments from the time series data. With the advent of low cost high-speed modern signal

processors, frequency-domain processing techniques are feasible to be implemented in real-time.

Hence spectral processing can be used for radar moments estimation. Previously, researchers

have concluded that spectral filtering has improved the calculation of dual-polarization radar mo-

ments. Many algorithms have been implemented in real-time for clutter mitigation and data qual-

ity control. In this thesis, various existing frequency and time domain algorithms, such as stan-

dard notch filters, Gaussian Model Adaptive Processing (GMAP), and Parametric Time-Domain

Method (PTDM) have been used for sea clutter mitigation, and their performances are studied.

Spectral Signal Quality Index (SSQI), which is dependent on the auto-correlation spectral density

of the signals, has been used to threshold noisy spectrum to obtain a clean precipitation spectrum.

Next, using the results from PTDM along with the SSQI thresholding technique, the Polarimetric

Spectral Filter for Adaptive Clutter and Noise Suppression [1] has been implemented. The com-

bination of these spectral filtering techniques is regarded as Advanced Spectral Filter (ASF). The

algorithms are applied to the observations recorded by the CSU-SEAPOL (Colorado State Uni-

versity - Sea-Going Polarimetric) radar data to identify and filter sea clutter. The ASF has been

observed to perform better in terms of sea clutter suppression and identification.

ii



In general, spectral analysis of radar time-series data reveals various characteristics of different

hydrometeors. Incorporating Doppler information along with polarimetric measurements in dual-

polarization weather radar can unveil various microphysical properties in relation to the dynamics

of storms in a radar resolution volume. This study is regarded as Spectral Polarimetry. Spec-

tral analysis has been done on observations that were collected during the RELAMPAGO (Re-

mote Sensing Of Electrification, Lightning, And Mesoscale/Microscale Processes With Adaptive

Ground Observations) campaign in Argentina by the CSU-CHIVO (Colorado State University-

C-band Hydro-meteorological Instrument for Volumetric Observation) radar. Spectral polarimetry

revealed various spectral features such as bi-modal power spectrum, slopes in the spectral differen-

tial reflectivity, lowering of co-pol correlation spectrum, etc. from the observations. These features

essentially helped to characterize and determine the microphysical properties of different storms.

Thus the main goal of this thesis is to show the importance of spectral domain processing and

analysis in relation to clutter mitigation and micro-physical study of storms.
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Chapter 1

Introduction

1.1 Background and Motivation

Doppler weather radar has been a part of the atmospheric science and remote sensing commu-

nity for a long time. The operational radars produce primary products such as reflectivity, velocity,

and spectral width that are used by the National Weather Services for forecasting purposes. With

the advent of dual-polarization, more products like differential reflectivity, differential phase, and

co-pol correlation have been added. Special derived products like rainfall rate, specific differential

phase, and hydrometer classification have been essential and are used by hydrologists for model-

ing purposes and by meteorologists for forecasting. In weather radar research, the particle shape,

orientation, velocity, and distribution of hydrometeors which are derived from the received radar

signals are used to understand the microphysical processes.

Spectral analysis unveils Doppler information of the radar time-series signals, thus giving knowl-

edge about the properties of received echoes from clutter, interference, and precipitation. It also

gives us information about the motion and dynamics of a storm event in a radar resolution volume.

The characterization of different storm microphysics and the study of their dynamics from the

dual-pol Doppler spectra is regarded as spectral polarimetry. Hence there is a necessity to analyze

the Doppler spectra of the radar signals. The study of Doppler power spectra has helped researches

in various applications. One of the important aspects is clutter mitigation. Siggia et al. [4] have

proposed a spectral filtering technique to suppress stationary ground clutter by using a model-based

approach. Moisseev et al. [1] proposed an adaptive polarimetric spectral filter that identifies the

precipitation and clutter. It creates a mask that helps in retaining only the precipitation spectra, thus

filtering out clutter and noise. The other important aspect is the study of microphysical properties

of the hydrometeors and dynamics of an event in a particular radar resolution volume, as done by

Wang et al. [5] and Pfitzenmaier et al. [6]. Hence the Doppler spectral analysis and polarimetry
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help us to carry out the above-mentioned goals. Once all the analysis and filtering are done, the

radar moments are to be estimated. Since we are in the Fourier domain, the estimation of radar

moments can be done either by going back to the time domain and perform the traditional pulse-

pair processing or directly estimate the moments from the dual-pol spectra. The later procedure is

known as spectral processing.

1.2 Thesis outline

This thesis addresses the importance of spectral-domain processing and analysis in fast scan-

ning dual-polarization Doppler weather radars. The thesis focuses on two major problems. The

first problem is on mitigation of sea clutter by estimating radar moments from the filtered spectra

using spectral processing. The second problem involves characterizing intensive convective storms

with rain and hail mixtures using spectral polarimetry.

This research consists of the following:

• Algorithm development - A sea clutter filtering technique has been developed here. Firstly,

existing time and spectral domain clutter filters like standard notch filter, GMAP (Gaussian

Model Adaptive Processing), and PTDM (Parametric Time-Domain Method) for sea clutter

mitigation are applied. Next, applying the results from PTDM [7] and Polarimetric Spectral

Filter for Adaptive Clutter and Noise Suppression [8] along with the SSQI (Spectral Signal

Quality Index) thresholding method, the Advanced Spectral Filter (ASF) has been devel-

oped. Radar moments and dual-pol variables using spectral processing are computed, and

the performances of the sea clutter mitigation algorithms are evaluated.

• Spectral analysis - General spectral properties of rain from a stratiform storm case have been

studied. This is followed by the study of spectral properties of rain and hail mixtures from

intense a convective storm case using spectral polarimetry.
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Chapter 1 presents the main research idea of the thesis. It discusses the background and moti-

vation of spectral processing and advanced spectral analysis, the problem statement of the thesis,

objectives, and the flow of work.

Chapter 2 discusses the basics of polarimetric weather radar, derivation of radar moments from

raw radar IQ data using pulse-pair processing and spectral processing.

In Chapter 3, the properties of the CSU-SEAPOL radar are discussed. The chapter focuses

on the implementation of existing spectral and time-domain filters, including the standard notch

filters, the Gaussian Adaptive Processing algorithm, and the Parametric Time Domain method for

sea-clutter mitigation.

In Chapter 4, Spectral Signal Quality Index, which is a new spectral thresholding parameter,

has been introduced. Its performance is tested with the co-pol correlation spectrum, which is tradi-

tionally used for spectral thresholding. After that, results from PTDM along with the SSQI thresh-

olding method are used in fuzzy classification for the identification of precipitation and clutter

spectra. A precipitation mask is generated from the classification, which is used for the estimation

of radar moments and dual-pol variables using spectral processing. Finally, the performances of

all the spectral filtering algorithms are discussed.

Chapter 5 focuses on the study of various precipitation spectra from both stratiform and con-

vective storms. The main goal is to study and characterize different dual-pol spectra of rain and hail

associated with the various micro-physical phenomena that occur in a particular radar resolution

volume.

Chapter 6 finally summarizes the entire research work, provides concluding remarks and future

scope of the work.
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Chapter 2

Dual-polarization Radar time series and signal

processing

2.1 Basics of Doppler Weather radar operations and dual po-

larization radar products

Dual Polarization Doppler weather radars are used to study the orientation, size, shape, dis-

tribution, and velocity of the scatterers at a particular radar resolution volume from the echo of

transmitted dual-polarized electromagnetic wave. The basic components of a weather radar in-

clude the following:

• Transmitter & Receiver - The transmitter generates an output waveform centered or with

an offset at the radar’s intermediate frequency. It has analog filters that can up-convert the

generated signal to RF and then transmit it after amplification. Since these are pulse-Doppler

radars, the transmitter aims to produce short-duration high-power pulses of energy. The

radar data sets used in this thesis are from the CSU-SEAPOL and the CSU-CHIVO radar,

both of which use the RVP900 system. Transmitters are generally solid-state or vacuum

tubes. Both the CSU-SEAPOL and CSU-CHIVO uses coaxial magnetron coupled to a solid-

state modulator. The receiver detects, amplifies, and demodulates the received RF signals.

The RVP900 has a simultaneous transmitter and receiver functionality. The Intermediate

Frequency Digital Receiver (IFDR) unit digitizes the received signal into I (In-phase) and

Q (Quadrature-phase) samples. The RVP901 IF Digital Receiver (IFDR) which is in the

RVP900 architecture has the transmitter, receiver, and the IF detector. Also, for transmission,

a pulse compressed waveform is used since a solid-state transmitter has been used in the

radars mentioned above.
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Figure 2.1: Magnetron system for dual-polarization in RVP900 [9].

• Antenna - Generally, a parabolic reflector is used. It acts as a coupling device between free

space propagation and waveguides from the transmitter. The antenna system mainly consists

of pedestal and reflector, rotatory joints, slip rings, waveguide, feedhorn, dual-polarization

system with dual-polarization switch, and finally the antenna control unit, servo motors,

and angle detector. The signals generated by the transmitter is fed into the antenna by the

feedhorn. The antenna then generates small beams by focusing the transmitted power. It also

collects the reflected waves from targets. The feedhorn helps in directing the received wave

into the receiver. Data collected by the CSU-SEAPOL radar has been used for the sea clutter

mitigation problem. The radar antenna has a gain of 44.5 dBi operating at a range of 5.4 to

5.75 GHz with a symmetric pencil beam of 1◦ beam-width and -27 dB antenna side-lobe.

For the study of different storms using spectral polarimetry, observations from CSU-CHIVO

radar have been used. The radar uses a center-fed parabolic type reflector with a gain of 45

dBi, beam-width less than 1◦, and side-lobes less than -29 dB.
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• Radome - Both the radars mentioned above use quasi-random bee-hive structures made of

fiberglass. It is also known as Radar Dome and serves as protection to the antenna from

severe weather.

• Signal Processor - A RVP902 Signal Processor is used in the RVP900 architecture. The I and

Q data generated by the IFDR is transmitted to the signal processor over a Gigabit Ethernet to

produce the final radar products. The signal processor is equipped with clutter filtering abil-

ity, auto-correlation computation, clutter micro-suppression, and range averaging, moments

computation, speckle filtering, and threshold calculating capabilities.

Figure 2.2: Radar moments generation process from the raw IQ data in RVP900 signal processor taken

from [9].

After the IQ data is generated, it is fed into the signal processor in which the radar moments

are calculated. Typically, a auto-correlation based method for computing radar moments known as

pulse-pair processing is used. In pulse-pair processing generally, the IQ data is recorded and saved

in digital memory as time-series data from both the horizontal (H) and vertical (V) polarization

channels at specific elevation and azimuth angles. The pulse-pair estimation has become standard

radar processing algorithms that operate on the time series samples directly in the time domain. It

has been shown that the pulse-pair processing provides the least amount of bias and low variance
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in the generated radar moments [10] and it approaches the Cramer-Rao lower bound of minimum

bias-variance performance as shown by Doviak et al. [11].

The standard pulse-pair processing algorithms from Bringi and Chandrasekar [10] are dis-

cussed here. The auto-correlation function at 0th lag from the H-pol raw time-series samples is

given as

R̂0hh =
1

N

N
∑

n=1

H(n)H∗(n) (2.1)

where n is the sample index and N is the length of the sequence. At a range gate r km away

from the radar and along kth elevation or azimuth depending if the scan mode is RHI or PPI, the

R̂0h quantity gives the raw power of the signal.

It is also essential to calculate the auto-correlation functions at 1st and 2nd lags from the H-pol

raw time-series samples and are given as

R̂1hh =
1

N + 1

N
∑

n=1

H(n)H∗(n+ 1) (2.2)

R̂2hh =
1

N + 2

N
∑

n=1

H(n)H∗(n+ 2) (2.3)

Also the cross-correlation function at 0th lag is given as

R̂hh,vv =
1

N

N
∑

n=1

H(n)V ∗(n) (2.4)

Once all the auto-correlation functions are calculated, now the processor is ready to compute

the final moments. The three basic single-polarization moments are Reflectivity, Velocity, and

Spectral width. These are known as moments because they are the 0th, 1st, and 2nd order moments

of the Doppler power spectrum, respectively.

H-pol Reflectivity of a radar with a radar constant C is given as
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Zh = 10× log10[R̂0hh] + 20× log10(r) + C (2.5)

For a radar operating with a wavelength λ and sampling time period Ts which is the Pulse

Repetition Time (PRT), the Doppler velocity is derived from the argument or the phase of the 1st

lag auto-correlation function and is given by

Vh =
λ

4πTs

arg[R̂1hh] (2.6)

The spectral width, which is a measure of sheer and turbulence within a particular radar reso-

lution volume, can be computed in two different ways. The R0, R1 algorithm which is applicable

for SNR >> 10 dB is computed as following

W01 =

√

2ln[ R̂0hh

|R̂1hh|
]

π
(2.7)

R0, R1, R2 is the other spectral width algorithm which involves auto-correlation functions at

all the 3 lags and is an extension for weak signals with SNR >> 0...5 dB and is given by

W12 =

√

2
3
ln[ R̂1hh

|R̂2hh|
]

π
(2.8)

The dual-polarization variables are obtained as follows:

Differential Reflectivity which is defined as the difference between the horizontal and vertical

reflectivity in dB

Zdr = 10× log10[
Zh

Zv

] (2.9)

The correlation coefficient gives the similarity or the consistency of the return power from both

the H and V channels. In general, it compares the phase and power of both channels. If a radar

resolution has the same type of particle, then the phase and power changes in both the horizontal
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and vertical polarization channels are similar; hence, the co-polar correlation coefficient is higher,

i.e. close to 1. It is computed as following

ρhv =
|R̂hh,vv|

√

R̂0hhR̂0vv

(2.10)

The differential phase is obtained from the argument of co-polar correlation.

φdp = arg[ρhv] (2.11)

Another important variable is the Signal Quality Index (SQI), which gives us high values (close

to 1) for echoes containing good quantity of signal. This can be both from precipitation or clutter

echoes.

SQI =
|R̂1hh|
R̂0hh

(2.12)

2.2 Spectral processing for weather radars

2.2.1 Doppler power spectrum estimation

As mentioned earlier, pulse -pair processing produces moments with lower bias and variance,

but spectral processing has inherent advantages where the unwanted echoes such as ground clutter,

human-made RFI and anomalous echoes can easily be identified, and robust filtering techniques

can be implemented to eliminate those. To obtain spectral processing estimates, auto-correlations

at different lags and cross-correlation functions must be estimated. The standard spectral process-

ing algorithms that are discussed here are taken from Bringi and Chandrasekar [10] and Moisseev

et al. [8]. The auto-correlation function R̂hh at mth lag computed from the length N H-pol time-

series samples with n sample index can be expressed as

R̂hh(m) =
1

N

N−1
∑

n=0

H(n+m)H∗(n) (2.13)
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Next at a particular range gate r, the Doppler power spectrum is obtained by Discrete Fourier

Transform (DFT) of the auto-correlation function and is expressed as

Ŝhh(r, k) =
L
∑

n=−L

R̂hh(n)e
−j2πnk

N (2.14)

where hh represents horizontal transmission and reception. Here k = 0, 1, 2, ...., N − 1 are the

DFT sample indices and total number of DFT samples is L ≤ N . Since Ŝhh is generated from DFT

of auto-correlation hence it is known as auto-spectra. Similarly, the cross-spectra is obtained from

the DFT of cross-correlation between the H and V data samples. The cross-correlation spectra is

computed as

R̂hv(m) =
1

N

N−1
∑

n=0

H(n+m)V ∗(n) (2.15)

The cross spectra is given by,

Ŝhv(r, k) =
L
∑

n=−L

R̂hv(n)e
−j2πnk

N (2.16)

2.2.2 Range Doppler spectral decomposition of dual-polarization radar pa-

rameters

The range-Doppler spectral decomposition of a ray along a particular azimuth (for PPI scans)

and elevation (for RHI scans), essentially adds the Doppler information to the ray. A ray is gen-

erated by pulse-par processing done over all the pulses. Adding the Doppler information helps us

study the precipitation signal and clutter properties and draw conclusions about the micro-physical

process taking place in the resolution volumes. The study of dual-polarization spectral properties

and characterizing the micro-physics of various events is also regarded as Spectral Polarimetry.

The spectral decomposition of reflectivity spectrum S(Zh) is obtained from the power spectrum as

the following
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S(Zh(r, k)) = 10× log10[Ŝhh(r, k)] + 20× log10(r) + C (2.17)

Spectral decomposition of Differential Reflectivity is given by

S(Zdr(r, k)) =
Ŝhh(r, k)

Ŝvv(r, k)
(2.18)

Spectral decomposition of Co-pol Correlation is given by

S(ρhv(r, k)) =
|Ŝhv(r, k)|

√

Ŝhh(r, k)Ŝvv(r, k)
(2.19)

and the spectral decomposition of Differential Phase is obtained as

S(φdp(r, k)) = arg[ρhv(r, k)] (2.20)

2.2.3 Retrieval of Dual-polarization moments from Doppler power spec-

trum

After the generation of the dual-polarization spectral parameters, various filtering algorithms

are implemented to remove different clutters, various interferences, unwanted artifacts, and sup-

press noise in the spectral domain. Next, the radars moments and dual-polarization variables are

obtained back from the power spectral densities. The basic three radar moments which are reflec-

tivity (Ẑh) , Doppler velocity (v̂) and spectral width (σ̂2) are obtained as follows

Ẑh(r) = 10× log10[
N−1
∑

k=0

Ŝhh(r, k)] + 20× log10(r) + C (2.21)

v̂(r) =

∑N−1
k=0 vkŜhh(r, k)

∑N−1
k=0 Ŝhh(r, k)

(2.22)
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σ̂2(r) =

∑N−1
k=0 [vk − v̂(r)]2Ŝhh(r, k)

∑N−1
k=0 Ŝhh(r.k)

(2.23)

The other polarimetric variables like differential reflectivity (Ẑdr), copolar correlation coeffi-

cient (ρ̂hv) and the differential phase (φ̂dp), are obtained as:

Ẑdr(r) = 10× log10[

∑N−1
k=0 Ŝhh(r, k)

∑N−1
k=0 Ŝvv(r, k)

] (2.24)

ρ̂hv(r) =

∑N−1
k=0 |Ŝhv(r, k)|

√

∑N−1
k=0 Ŝhh(r, k)

∑N−1
k=0 Ŝvv(r, k)

(2.25)

φ̂dp(r) = arg[
N−1
∑

k=0

Ŝhv(r, k)] (2.26)

The spectral decomposition of the dual-polarization parameters play an important role in clutter

and precipitation identification. It helps in designing different spectral filters for clutter mitigation

and noise suppression. It also helps in identifying different precipitation features and how it varies

along the range. Overall, spectral decomposition gives us a magnified view of a ray in a PPI or

RHI scan.
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Chapter 3

Sea clutter mitigation using time and spectral

domain processing

This chapter presents an overview of time and spectral processing techniques for sea clutter

mitigation. Spectral processing is essentially an estimation problem that firstly involves spectral

estimation followed by moments estimation, which is governed by some underlying equations.

Spectral processing is an already established work, and the equations are taken from [10], [8].

This chapter investigates the performance of different existing algorithms in the context of sea

clutter mitigation.

3.1 Introduction

Clutter mitigation is a challenging task in the area of weather radar signal processing. When

clutter echoes are present in radar observations, it produces highly biased estimates in radar mo-

ments such as reflectivity, Doppler velocity, and spectral width. For weather radars, nonmeteoro-

logical targets are the source of clutter echoes, whereas the meteorological targets are the signals

of interest. Echoes from stationary targets often found close to the radar are known as ground

clutter. They comprise high rise buildings, tall structures, and trees. Similarly unwanted echoes

from the sea or ocean surface appear as sea clutter on weather radar observations. In this chap-

ter, we investigate various techniques for mitigation of sea clutter in operational weather radars.

In the next section, the origin and characteristics of sea clutter, along with its existing mitigation

methods, have been discussed.

3.2 Sea clutter

A brief explanation of sea clutter characteristics and its origin has been discussed here. Sea

clutter can be seen in marine radars that are usually installed on ships or near the coast. When a
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Figure 3.1: The figure shows source of sea clutter in a shipborne radar adapted from [12].

radar scans at low elevations, the echoes from the sea surface appear as sea clutter in the obser-

vations. Turbulent conditions in the ocean can cause high waves, which can also appear in radar

scans as sea clutter. Fig. 3.1 shows how a shipborne radar scans at low elevations and observes

the echoes returned from the sea surface. It has been established by Skolnik [13] that sea clutter

properties are impacted by polarization state, radar frequency, and look angle of radar relative to

the direction of the wind, grazing angle, sea state, wave velocities, and types of surface waves

present.

Various researchers have modeled sea clutter using different distributions like K, log-normal, and

Weibull distributions. Sea clutter has both Gaussian and non-Gaussian processes involved. Ac-

cording to Watts et al. [14], the small-scale waves having a large number of scattering centers that

decorrelate very fast, also known as speckles, follow Gaussian distribution. The large scale waves

that modulate the speckles, also known as texture, can be explained by Gamma distribution. The

sea clutter can be represented as a product of a gamma process and a Gaussian/Rayleigh process.

The K distributed sea clutter model has been successful in describing its non-Gaussian charac-

teristics [15]. Sometimes the radar resolution may not be high enough to resolve the small-scale

structure of the sea surface. In that case, a Compound Gaussian (CG) model proposed by Haykin

et al. [16] is used to describe the sea clutter characteristics, assuming that the speckle only stays for
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few milliseconds while the textures remain for a longer time. Thus sea clutter mainly originates due

to two processes- speckle and texture [17]. Ward et al. [15], [18] and Walker et al. [19], [20] have

explained origin and characteristics of sea clutter through electromagnetic scattering and mathe-

matical modeling [14].

Sea clutter present in weather observations may lead to wrong decisions by forecasters and me-

teorologists. There could be substantial data loss if the clutter affected range bins are ignored;

hence different time and spectral domain filtering techniques have been developed for sea clutter

mitigation. Chanthavong et al. [21] used a fuzzy logic approach for sea clutter identification and

used spatial interpolation techniques for sea clutter suppression. Hannesen et al. [22] proposed

a probability-based fuzzy logic approach to identify sea clutter using textures of reflectivity, dif-

ferential reflectivity, differential phase, and co-pol correlation and used standard Doppler filter to

mitigate sea clutter from the identified range bins. In this chapter, we focus on applying exist-

ing real-time clutters filters like the standard notch and the Gaussian Model Adaptive Processing

(GMAP) filter [4] which were originally developed for ground clutter mitigation have been im-

plemented here to check their performances in the context of sea clutter mitigation. Parametric

Time-Domain Method (PTDM) [7], a renowned time-domain filter that simultaneously identifies

signal and clutter spectral parameters, has also been adapted for the sea clutter mitigation prob-

lem. Time-series data collected by the CSU-SEAPOL radar has been used for filter performance

evaluation.

3.3 The CSU SEAPOL radar

The sea going polarimetric radar or the Seapol has been a part of NASA’s SPURS-2 (Salinity

Processes in the Upper-ocean Regional Study) campaign in the year 2016. The campaign took

place in the Eastern Tropical Pacific region. The Seapol is a C-band radar which has been designed

to operate at 5.65 GHz. The radar uses a pulse width of 0.4 − 2µs and works with both uniform

and dual Pulse Repeating Frequency (PRF) in the range 300-1800 Hz.
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Figure 3.2: The CSU Sea-Pol mounted on the R/V Revelle. The radar is placed on the forward 02 deck of

the ship [23].

The Seapol radar is equipped with both Horizontal and Vertical Polarization channels. The

mode of operation used during the campaign was simultaneous-transmit, simultaneous-receive

(STSR) mode. George et al. [23] have mentioned a comprehensive description of the radar hard-

ware and signal processing used in the Seapol radar. Before the deployment in the sea, the Seapol

radar was calibrated using the CSU-CHILL radar. Fig. 3.2 shows the radar onboard the Global-

class research vessel in the US research fleet, R/V Revelle. The radar can scan in both azimuth and

elevation with a maximum range of 120 km and a range resolution of 100 m. The radar only does

a sector sweep of 240-degree when operating in PPI mode. Rutledge et al. [24] have documented

the goals and motivation of the SPURS2 campaign, as well as the deployment of SEAPOL radar.
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3.3.1 Data collection, observations and data interpretation

The data were recorded in the eastern Pacific Ocean, where different precipitation events were

captured over the sea surface. Radar reflectivity (Z) and velocity (V ) along with various dual-

polarization moments such as differential reflectivity (Zdr), differential phase (φDP ) and co-pol

correlation (ρHV ) were processed from the time series data. Fig. 3.3 and Fig. 3.4 shows the dual-

polarization radar products for a particular event containing weather and sea-clutter. The main aim

is to identify sea clutter in the presence of precipitation, study its characteristics in both time and

spectral domain, and provide clutter mitigation solutions. Ryzhkov et al. [25] proposed a fuzzy

logic approach for discriminating sea clutter and precipitation using textures of differential phase

and signal power. Moisseev et al. [1] showed that it is possible to identify ground clutter mixed

with precipitation using textures of spectral differential reflectivity and spectral differential phase.

In this paper, co-pol correlation, textures of differential phase, and differential reflectivity are used

for classification. Spectral decomposition of Z, ZDR, φDP , and ρHV along a particular azimuth

are computed. The range-azimuth spectrographs helped in observing the characteristics of both

precipitation and sea clutter echoes.

Fig.3.3a and 3.3b show the reflectivity and differential reflectivity respectively from the data

collected from a precipitation event on 9th November 2017 over the East Pacific ocean. The ob-

servations show stratiform echoes with mixtures of heavy and light rain. Various dual-polarization

moments are also shown here. The Z field shows that the region is having a mixture of moderate to

heavy rain. The ZDR field shows the occurrence of a mixture of large and small drops. The larger

drops contribute to the high positive value reaching a maximum value of around 2 dB. However,

the smaller drops are almost circular and hence contribute to lower values close to almost zero.

There is a possible beam blockage from 205◦ to 215◦ azimuth. As seen in the PPI scan plot, some

appreciable amount of precipitation is seen from 40 Km to 90 Km range. Fluctuations of the pa-

rameters seen in the first 15 km range show the possibility of sea clutter. After 15 km appreciable

amount of precipitation is observed. The co-pol correlation (ρHV ) field in Fig. 3.4b shows the out-

line of the precipitation event. The regions with values of ρHV very close to 1 shows the uniform
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(a) Reflectivity

(b) Differential reflectivity

Figure 3.3: PPI plots of reflectivity (Z) and differential reflectivity (ZDR) from 9th November 2017 data

recorded at 19:30:00 UTC at 0.5◦ elevation.

size and shape distribution of hydrometeors, whereas the regions with a value slightly less than 1

show more hydrometeor diversity.

The Fig.3.4a and 3.4b shows the differential phase and co-pol correlation fields receptively. It

can be seen that the ρHV is constant and almost equal to 1 throughout the range bins corresponding

to precipitation. In the first 15 km, there is a high variation of the parameters, which is due to

the presence of sea clutter. The differential phase (φDP ) is seen to propagate along the range

bins containing precipitation from 15km to 70km. Also, there are minimal fluctuations in the
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(a) Differential Phase

(b) Co-pol Correlation

Figure 3.4: PPI plots of Differential Phase (φDP ) and Co-pol Correlation (ρHV ) from 9th November 2017

data recorded at 19:30:00 UTC at 0.5◦ elevation.

φDP values; i.e., it is stable throughout the regions where there is very high ρHV . This follows

the properties of the dual-polarization parameters. All the fields shown are without applying any

thresholds. Generally, these thresholds are done based on inputs from the Co-pol correlation and

signal quality index field. The threshold level for co-pol correlation is taken to be around 0.8-0.9

and 0.1 -0.3 for the SQI field. Since the range gates containing both precipitation and clutter may

have low co-pol correlation, such thresholding has not been applied to ensure that none of the

precipitation data is removed due to thresholding. Sea clutter is generally observed within 30 km

range from radar. If such a threshold is applied, then data in the first 30 km range will be lost.
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To correctly identify sea clutter, it is essential to have the entire data set of precipitation in the

presence of noise and clutter.

3.4 Performance evaluation for sea clutter mitigation algorithms

For the evaluation of the sea clutter filter, the following methodology has been adopted.

• Reflectivity of the original scan, Zunfiltered, which has sea clutter contaminated data and

reflectivity field after clutter filtering, Zfiltered is considered. In general, the residue field

contains sea clutter, but due to error in clutter filtering, which occurs when some precipitation

data is also filtered, this error in precipitation is also present in the residue field along with

other contamination. The residue field can be expressed as

Zresidue = Zunfiltered − Zfiltered (3.1)

Now the residue mostly contains how much sea clutter has been suppressed. Ideally, this

residue is an estimate of sea clutter. Hence Zresidue is considered as the estimated sea clutter.

Since we do not have a sea clutter map, this is considered as an approximation to the sea

clutter. Theoretically, the filtered precipitation field will contain values from precipitation

only. Since a ground truth is not available; thus, Zfiltered is considered as the estimated

signal. All the quantities - Zresidue, Zunfiltered and Zfiltered are in dB scale. Taking anti-log

on both the sides in Eq. 3.1, the residue field is a ratio between unfiltered and filtered in the

linear scale. Hence we can now define a Clutter Suppression Ratio (CSR) metric in the dB

scale as the following

CSR = Zresidue (3.2)

• The residue field also provides information about the range bins that the filter has identified

as sea clutter and has performed mitigation. Clutter identification performance is measured
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by estimating the empirical Receiver Operating Characteristic (ROC) curves which are de-

pendent on the probability of false alarm (PFA) and the probability of detection (PD), defined

as follows

Figure 3.5: Fuzzy logic classification output is shown based on the PPI scan at 0.5◦ elevation recorded

during 9th Nov. 2017 at 19:30:00 UTC. This is set as the sea clutter map for comparing the performances of

sea clutter filters.

PFA =
NFF

NF

(3.3)

PD =
NDD

ND

(3.4)

In Eq. 3.3, NFF is the number of range bins that are falsely detected as sea clutter, and NF

is the total number of non-clutter bins. Similarly, in eq. 3.4, NDD is the number of range

bins that are correctly identified as sea clutter. The bins in the Zresidue field that are not zero,
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which fall in the clutter flagged bins in the clutter map, are the bins correctly identified as

sea clutter. ND is the total number of sea clutter bins.

For this generally, a clutter map is fixed based on which the variables in Eq. 3.3 and 3.4

are computed. However, since a fixed sea clutter map cannot be obtained due to its random

nature hence a clutter map has been constructed from the scan under consideration using

fuzzy logic inferences based on [25] and [26]. Fig. 3.5 shows the sea clutter map generated

after using fuzzy logic. This classification is done on the PPI scan data. This clutter map,

along with the clutter residues, has been used for computing the variables in Eq. 3.3 and 3.4.

3.5 Sea clutter mitigation using existing time and spectral pro-

cessing algorithms

In this chapter, different spectral-domain filtering techniques are implemented, and their per-

formances are analyzed. The various filtering methods discussed in this chapter are listed below:

1. Notch Filter

2. Gaussian model adaptive processing (GMAP)

3. Parametric Time Domain Method (PTDM) Filter

In many operational radars, a notch filter is used for ground clutter mitigation, a classical

filtering technique. This filter has been used in real-time radar systems for a few decades. The

advantage of this technique is that the clutter suppression in entirely in the designer’s hand; thus,

the clutter suppression level and clutter notch width can be programmed. GMAP uses a Gaussian

clutter model to remove clutter around the zero Doppler velocity. It is a spectral domain approach

initially used for ground clutter suppression. GMAP works only in the range bins where clutter

to signal ratio is appreciably high. The other advantage of this technique is that in the case where

the clutter and precipitation spectrum overlap, it uses a Gaussian weather model to interpolate over

the clutter removed Doppler bins. In this way, the original weather spectrum is approximately
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retained. Next, the Parametric Time Domain Method (PTDM) method is used to estimate the

spectral parameters of the clutter and precipitation signals. A log-likelihood function that consists

of the covariance matrix parameterized by the spectral parameters is minimized to derive the final

precipitation and clutter spectral parameters’ values. PTDM helps in simultaneously finding the

mean power, spectral width, and Doppler velocity of the spectrum. Once this is found, it is possible

to separate precipitation and sea clutter spectra. Next, going back to the time domain, the moments

are calculated by pulse-pair processing.

3.5.1 Filtering with Notch Filter used in WSR-88D

In this section, a zero Doppler notch filter is implemented to check its performance in the sea

clutter mitigation problem. This filtering methodology has been used in the WSR-88D weather

radar systems for ground clutter mitigation. It uses 5th order elliptic filters with three different

suppression levels: low, medium, and high. The general transfer function for the filter is expressed

as following.

H(z) =
b0 + b1z

−1 + b2z
−1 + b3z

−1 + b4z
−1 + b5z

−1

a0 + a1z−1 + a2z−1 + a3z−1 + a4z−1 + a5z−1
(3.5)

the co-efficient ai’s and bi’s are obtained from [27]. Although the users can control the filter

suppression at the same time, the filter length may increase. More the filter length more will be the

filter coefficients; hence it will require more memory blocks.

Fig.3.6 shows the frequency responses of the notch filters designed for mitigating sea clutter.

The sampling frequency of the SEAPOL radar is 1.2 kHz. Therefore the Nyquist frequency or the

fmax in the figure is 600 Hz. The stopband of the filter is 0-25 Hz. The passband is 50-600 Hz, and

it provides a 40-60 dB suppression. Now, this filter is implemented on the 9th November data. The

azimuth profile at 268.4◦ is chosen for observing the filter performance. Since sea clutter depends

on the sea surface condition, hence the clutter spectrum may or may not appear around the zero

Doppler, unlike ground clutter. This is also a reason why a fixed clutter map cannot be used for sea

clutter mitigation.
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Figure 3.6: Frequency responses of low, medium, and high suppression level notch filter shown in red, blue

and black respectively.

Table 3.1: Selection of suppression levels of notch filter

σ̂ts range suppression

level

Notch

width

provided

(0− 1.8] Low 2.36

(1.8− 2.54] Medium 3.12

(2.54− 6] High 5.06

Since the notch filter is centered at zero frequency or zero Doppler, hence a wider notch width

filter can filter the clutter spectrum occurring close to zero Doppler. The disadvantage here is that

this can filter out relevant signals as well. A fixed clutter map is used for ground clutter filtering

case. The ground clutter is stationary and does not change significantly from scan to scan; hence

the fixed clutter map is convenient. The notch filter only filters the range bins included within the

map. But since the nature of sea clutter changes from scan to scan hence a fixed clutter map cannot

be constructed for all the scans. Therefore we construct a clutter map for every individual scan
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(a) (b)

Figure 3.7: Original range-Doppler spectrograph containing sea clutter and precipitation is shown in (A).

Notch filtered spectrograph is shown in (B). The spectrographs are computed along 268◦ azimuth based on

the 9th Nov. 2017 recorded at 19:30:00 UTC data.

as described in 3.4. The notch filter is applied based on the range bins identified as sea clutter, as

shown in Fig.3.5.

From Fig. 3.7a it can be seen that the sea clutter spectrum has a wide spectral width in the

range between 15-20 km and tapers to a much narrower spectrum after 20 km. Therefore the

’High’ suppression notch filter has been used in the first 20 km, whereas a ’Medium’ suppression

level has been used after 20km. Fig. 3.8a and Fig. 3.8b show original and filtered spectra located
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(a) (b)

(c) (d)

Figure 3.8: Notch filter output applied on the time-series data along 268◦ azimuth from the 9th Nov. 2017

recorded at 19:30:00 UTC data set. Original (blue) and notch filtered (red) spectrums are shown. (A) and (B)

correspond to the spectrums at 6.5 km and 19 km respectively while (C) and (D) correspond to spectrums at

40.5 km and 50 km respectively..

at 6.5 km and 19 km respectively along 286◦ azimuth using ’High’ suppression level. Fig. 3.8c

and Fig. 3.8d show original and filtered spectra located at 40.5 km and 50 km, respectively, using

’Medium’ clutter suppression level. Fig. 3.9b shows the filtered PPI field obtained after using the

notch filter at the range bins, which are identified as sea clutter in the clutter map. Fig. 3.9c shows

the residue of the Reflectivity field Zh after implementing the notch filter.

Fig. 3.9c shows the residue after clutter suppression. Ideally, this field shows the estimated

sea clutter, but the error in estimating precipitation and other contamination is also present here.

Comparing the residue fields with the clutter map, we see that the notch filter has removed appre-

ciable amount of sea clutter from the clutter flagged range bins. As seen from Fig.3.10 the filter

notches out quite a good amount of sea clutter. The ’High’ suppression level uses higher stopband

edge frequency. Consequently, it provides suppression over a larger velocity range; thus, the notch

26



(a) (b)

(c)

Figure 3.9: Sea clutter filtered PPI Reflectivity field computed by spectral processing is shown in (B) using

the notch filter. The original unfiltered reflectivity field is shown (A). The residue field is shown in (C). The

data is recorded during 9th November 2017 at 19:30:00 UTC at 0.5◦ elevation.

width that it provides is larger, helping in removing the clutter that occurs close to the zero Doppler.

The suppression level provided is around 20-30 dB. Fig. 3.10a shows the histogram of CSR. The

occurrence of CSR = 0 is the highest because it represents the regions where Zoriginal = Zfiltered

and since it covers most of the PPI scan, hence its probability of occurrence is more. The other

values in the histogram correspond to the clutter suppression provided by the notch filter. The

maximum suppression provided is 24.7 dB.
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(a) (b)

Figure 3.10: Clutter suppression ratio distribution is shown in (A). The comparison between Zoriginal and

Zfiltered is shown in the scatter plot in (B) for standard notch filter.

Fig. 3.10b shows the scatter plot between the filtered and original reflectivity field. The red line

corresponds to the one to one correspondence where both the field have equal values, i.e., these

points represent the regions where the filter was not applied.

Figure 3.11: Original reflectivity profile (black) and notch filtered profile (red) are shown along the range

at 268◦.

Hence these are regions free from sea clutter and contain either precipitation, noise, or other

contaminations. The points below the one to one line correspond to the regions where the notch

filter has been applied. Since after filtering, the overall calculated reflectivity is lower than the

original reflectivity; hence they occur below the line. There are range gates where the calculated
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reflectivity is higher than the original field after the filter is applied. These points occur above

the one to one correspondence line, as shown in the figure. Fig. 3.11 shows the original (black)

and filtered (red) reflectivity range profile along the 268◦ azimuth. The filtered profile shows some

amount of suppression provided by the notch filter. The main drawback is that if there is an overlap

between weather and sea clutter spectra, then the notch filter suppresses the weather spectra around

zero Doppler. Hence it creates an additional bias in these cases.

3.5.2 Filtering using GMAP

The GMAP filtering was initially developed for ground clutter using adaptive techniques. The

main advantage is that it is only applied to the range gates with high clutter to signal ratio, i.e., at the

locations where clutter is present. Also, when there is overlap between weather and clutter, it uses

the Gaussian model of weather to retrieve weather spectra in the Doppler bins from which data was

removed due to the presence of clutter. Hence, GMAP can be successfully used to overcome a few

of the drawbacks posed by the notch filter. The algorithm is actively running in many operational

radar systems. The RVP-900 processors in the Vaisala radars use GMAP as the principle algorithm

for ground clutter filtering. According to Raynal et al. [28], sea clutter has a Gaussian spectrum

and occurs at zero or near-zero Doppler velocity, hence GMAP can be used to mitigate the sea

clutter. In cases where sea clutter occurs at non-zero Doppler velocity, the notch cannot be applied

at the zero velocity Doppler bin, as it will give unexpected results for clutter suppression. In such

cases, a wider notch is applied to eliminate the Doppler bins containing sea clutter.

The existing GMAP algorithm may still work with the use of increased clutter spectral width.

Increasing the clutter spectral width will help in removing more non zero Doppler spectral points.

Hence when sea clutter is present at non-zero Doppler velocity bins, the increased clutter spectral

width may remove the clutter points and interpolate through them. However, this might not be

applicable if the sea clutter spectrum is at a significantly higher non-zero Doppler velocity. Fig.

3.12a and 3.12b shows original and the filtered range-Doppler spectrograph after using GMAP

respectively. Due to interpolation, as seen in Fig.3.12b, the sea clutter has been suppressed, but
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(a) (b)

Figure 3.12: Original unfiltered spectrograph is shown in (A) and the GMAP filtered spectrograph used on

268.4◦ showed in (B) from the 9th November 2017 data at 0.5◦ elevation.

the effect of interpolation is seen in the filtered spectrograph. Fig.3.13a shows the result of GMAP

filter applied at the 5 km range bin containing sea clutter along 268.4◦ azimuth. Fig. 3.13b shows

the GMAP filter applied on the spectrum at the 35 km range bin containing both sea clutter and

precipitation. Although this solution has achieved the original aim, it cannot be regarded as an

optimum solution. The main advantage of using GMAP is that the filter is applied only to the

clutter spectrum or in cases where overlapping of weather and clutter spectrum is present.

30



(a) (b)

Figure 3.13: Spectra at 5 km (A) and 35 km (B) along 268.4◦ azimuth is shown here. The original spectrum

is shown in blue. The filtered spectrum after using GMAP is shown in red. The spectra are computed from

from the 9th November 2017 data at 0.5◦ elevation.

Fig. 3.14b shows the filtered PPI field obtained after using the GMAP filter. Fig. 3.14c shows

the residue of the Reflectivity field Zh after implementing GMAP filter.

Fig. 3.14c shows the residue or the clutter suppression field. Theoretically, this represents the

estimated sea clutter field, but in this case, it also contains errors in estimated precipitation and

other contamination.

Comparing the residue fields with the clutter map, we see that the GMAP filter has taken out an

appreciable quantity of sea clutter. As seen from Fig.3.13, the filter provides a good amount of clut-

ter suppression. GMAP also takes out the sea clutter that occurs close to the zero Doppler velocity.

The suppression level provided is around 20-30 dB. Fig. 3.15a shows the histogram of CSR. The

occurrence of CSR = 0 is the highest because it represents the regions where Zoriginal = Zfiltered

and as it covers most of the PPI scan; hence its probability of occurrence is higher. The other

values in the histogram correspond to the clutter suppression provided by the GMAP filter. The

maximum suppression provided is 28 dB. Fig. 3.15b shows the scatter plot between the filtered

and original reflectivity field. The red line corresponds to the one to one correspondence where

both the fields have equal values, i.e., these points represent the regions where no filter has been

used. These regions are free of sea clutter containing either precipitation or noise. The points

below the one to one line correspond to the regions where the GMAP filter has been applied. Since

after filtering, the overall calculated reflectivity is lower than the original reflectivity; hence they
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(a) (b)

(c)

Figure 3.14: Clutter filtered PPI field using GMAP is shown in (B). The residue or the amount of clutter

suppressed with other contamination in the field is shown (C) from the 9th November 2017 data at 0.5◦

elevation. The original reflectivity field with both sea clutter and precipitation is shown in (A)

occur below the line. There are range gates where the estimated reflectivity is biased after the

filter is applied due to errors in filtering. These points have a higher reflectivity than the original

field and thus occur above the one to one correspondence line, as shown in the figure. Fig. 3.16

shows the original (black) and filtered (red) reflectivity range profiles along the 268◦ azimuth. The

suppression provided by the GMAP filter is observed here.The main disadvantage of using GMAP
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(a) (b)

Figure 3.15: Clutter suppression ratio distribution is shown in (A). The comparison between Zoriginal and

Zfiltered is shown in the scatter plot in (B) for GMAP.

Figure 3.16: Original reflectivity profile (black) and GMAP filtered profile (red) are shown along the range

at 268◦

is that, due to incorrect computation of CSR or errors in interpolation the resulting reflectivity can

be biased.

3.5.3 Parametric Time Domain Method (PTDM) filtering

Nguyen et al. [7] have proposed a Parametric Time Domain Method (PTDM) for clutter mitiga-

tion and precipitation signal estimation for dual-polarization weather radars. The PTDM algorithm

simultaneously estimates stationary clutter and precipitation signal properties. The advantage of

this algorithm is that it helps in accurately estimating the spectral moments of precipitation signals
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in the presence of clutter. It is a minimum likelihood estimation problem that estimates the total

power, mean Doppler velocity, and spectral width of the echoes. Here it is used for determining

the properties of precipitation and sea clutter signals. PTDM sets an initial guess of the properties

of the signal, clutter, and noise floor, which is followed by a more refined estimation using the

minimum likelihood estimation problem. Here the properties of the signals are estimated using

pulse pair estimates as initial feed to a log-likelihood optimization function. Next, the presence of

two echoes are tested using two different parameters, and accordingly, the algorithm progresses. If

there are two echoes, a new likelihood optimization function is solved to separate the two echoes’

properties. Here it is assumed that the signals have an initial power level difference of 10dB.

Figure 3.17: Flow chart showing the Parametric Time Domain Model algorithm for estimating spectral

parameters by [7]

The motivation for using this filtering method in case of sea clutter mitigation is that PTDM

can simultaneously separate two different echoes present in a signal. Since the sea clutter may not

be present at the zero Doppler; hence, it can be treated as a second signal echo in the presence

of a general precipitation signal echo. Here a general precipitation signal is one with a Gaussian

spectrum and unimodal i.e., having only a single peak. Hence, the original PTDM algorithm can
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be used as a 2 echo estimation problem where we skip the stationary clutter property estimation

and directly estimate the signal properties followed by the 2 echo test. In this way, if the sea clutter

is present, then PTDM performs 2 echo test and separates both precipitation and sea clutter echoes.

Thus, even if the sea clutter spectra is present at zero or non-zero Doppler velocity, in both cases,

the algorithm will treat it as one of the two echoes. The algorithm has been described in the flow

chart, as shown in Fig.3.18. The procedure for estimating the signal spectral parameter estimation

is described in detail below.

• Step 1 : Estimation of signal sample co variance matrices.

R̂sx =
1

rs

rs
∑

n=1

hn
tsh

n
ts
T (3.6)

where hts is the H-pol time series signal. In this case the SEAPOL data has m = 64 sample

data length. hn
ts has length m1 and rs = ⌊m−m1

d1
+ 1⌋ where ⌊.⌋ is the floor function. R̂sx ∈

C
m1 is the averaged signal co variance matrix. d1 is the lag applied for covariance matrix

computation from the time series signal.

• Step 2: Estimate system noise and guess initial signal power and noise floor.

P̂s =
1

m

m
∑

k=1

|hts(k)|2 (3.7)

where P̂s is the total signal power

Next, we estimate the Doppler power spectral density of the time-series signal.

Ppsd(k) =
1

m

2L−1
∑

n=0

W (n)
[

m−n−1
∑

z=0

hts(z + n)h∗
ts(z)

]

e(
−j2πnk

m
) (3.8)

where Ppsd is the signal power spectral density. W is the windowing function that is used

to smooth the spectrum and reduce spectral leakage. The signal autocorrelation function is

presented within
[

.
]

. The minimum power of Ppsd is considered to be the estimated noise-
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floor denoted by ˆPsys. The system noise is determined by power spectral density arranged

in ascending order and taking the mean of first 25% of the arranged spectrum and is denoted

by Pn.

Figure 3.18: Flow chart showing the Parametric Time Domain Model algorithm for estimating spectral

parameters of sea clutter and precipitation by [7]

• Step 3: Use MLE to find an accurate signal estimate.
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According to [10] the complex radar voltage at the receiver follows a multivariate probability

density function given by

f(X) =
1

πN |Rx|
exp(−XHR−1

x X) =
1

πN |Rx|
exp(−tr(R−1

x R̂x)) (3.9)

where X is the vector of the received signal samples: Rx = E(XXH) is the covariance

matrix and R̂x is the sample covariance matrix. The |.| is the determinant operator. The

covariance matrix depends on several parameters that follow the assumption that the Doppler

spectrum of clutter and precipitation has Gaussian shape.

The covariance matrix is parameterized by the signal parameters and is denoted as Rx(µ).

Using Eq.3.9 the negative log-likelihood function can be expressed as

L(µ) = log(|Rx(µ)|) + tr
[

R−1
x (µ)R̂x

]

(3.10)

where µ is the unknown parameter vector and tr(.) is the trace operator. µ̂ is obtained by

solving the minimization problem

µ̂ = argmin
x

(L(µ)) (3.11)

For signal estimation R̂x = R̂sx. The final parameter vector after solving the MLE is set as

the following

µ̂ = [v̂, σ̂, P̂ , P̂n] (3.12)

• Step 4 : Test for 2 echoes

Next we compute the R-squared and the normalized trace parameters. These two parameters

measure the wellness of the fit by the PTDM algorithm and are a test for the presence of 2
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Table 3.2: Signal echo classification using goodness of fit parameters

trnorm <
0.7

0.7 < trnorm <
1.4

trnorm >
1.4

R2 > 0.9 2 echoes-

fit both

bad fit bad fit

R2 > 0.9 1 echo-

good fit

2 echoes- fit

stronger echo

2 echoes-

fit stronger

echo

echoes. Nguyen et al. [7] have termed this as goodness of fit parameters. The normalized

trace is computed as the trace of the product matrix between the sample covariance matrix

and the model covariance matrix and can be expressed as

trnorm = tr[R−1(µ̂)R̂x] (3.13)

The R2 is the measure of the fraction of the variance that the model can explain as is ex-

pressed as the following

R2 = 1−
∑m

k=1 |Im[Rµ̂(k, 1)]− Im[ ˆR(k, 1)]|2
1
m

∑m
k=1 |Im[R̂(k, 1)]− 〈Im[ ˆR(k, 1)]〉|2

(3.14)

where m is the number of lags.

The goodness of fit parameters is used to determine the presence of 2 echoes in signals.

Table 3.2 shows the values of the goodness of fit parameters to infer the number of echoes

from the signal.

• Step 5 : If 2 echoes are inferred, then signal parameters are initialized, and the MLE is solved

to determine the individual parameters of the 2 echoes present in the signal. Hence in the

final parameter vector

µ̂ = [v̂1, σ̂1, P̂1, v̂2, σ̂2, P̂2, P̂n] (3.15)
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where v̂1, σ̂1, P̂1 are echo 1 precipitation parameters and v̂2, σ̂2, P̂2 are echo 2 clutter param-

eters.

(a) (b)

Figure 3.19: Original spectrograph is shown in (A) and the spectrograph of precipitation saperated from

sea clutter using PTDM shown in (B) computed along 268.4◦ azimuth from the 9th November 2017 data

Fig.3.19b shows the Range-Doppler spectrograph of the estimated power spectral density of

precipitation after using PTDM. As seen from Fig.3.19a, which shows the Range-Doppler spec-

trograph of original power spectral density, the noise floor in the first 40 km is significantly higher
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(a) (b)

(c) (d)

Figure 3.20: Sea clutter estimated as a single echo estimated at 5 km (A) and 10 km (B) respectively. Both

precipitation and sea clutter echo detected by PTDM algorithm at 20 km (C) and 43 km (D) respectively

from the 9th November 2017 data at 0.5◦ elevation.

than the other regions. Hence the estimated noise floor by the PTDM is also higher. Fig. 3.20a

and Fig. 3.20b shows that the PTDM has successfully been able to estimate the sea clutter spectra

at 5 km and 10 km range bins, respectively. Fig. 3.20c and Fig. 3.20d shows that the PTDM has

successfully been able to estimate both the sea clutter and precipitation spectra at 20 km and 43

km range bins, respectively. Fig. 3.21b shows the filtered PPI field obtained after using PTDM.

Fig. 3.21c shows the residue of the reflectivity field Zh after implementing PTDM.

Ideally, the residue field represents the estimated sea clutter values. However, in this case,

errors in precipitation and clutter estimation with other contaminations are present here. After

comparing the residue fields with the clutter map, we observe that after using PTDM, an appre-

ciable sea clutter has been filtered. Fig.3.21b shows that the filter takes out quite a good amount

of sea clutter. The suppression level provided is around 30 dB. Fig. 3.22a shows the histogram

of CSR. The occurrence of CSR = 0 is the highest because it represents the regions where

40



(a) (b)

(c)

Figure 3.21: Clutter filtered PPI field using PTDM is shown in (B) using PTDM. The residue or the amount

of clutter suppressed in the field is shown (C). The original unfiltered field containing both sea clutter clutter

and precipitation is shown in (A).

Zoriginal = Zfiltered and as it covers most of the PPI scan, hence its probability of occurrence is

higher. The other values in the histogram correspond to the clutter suppression provided by PTDM.
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(a) (b)

Figure 3.22: Clutter suppression ratio distribution is shown in (A). The comparison between Zoriginal and

Zfiltered is shown in the scatter plot in (B).

Figure 3.23: Original reflectivity profile (black) and weather profile (red) estimated from PTDM are shown

along the range at 268◦ azimuth
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Chapter 4

Sea clutter mitigation using advanced spectral

processing

Spectral analysis often requires spectral noise reduction or a clear demarcation between the

weather spectrum, noise, and other unwanted artifacts or clutter. Spectral thresholding can be used

in this case. Spectral co-pol correlation is considered a classical thresholding parameter as it only

retains the portion of the spectrum with higher coherence. Since weather signals are consistent or

coherent; hence the signals received at the H and V channels are coherent. Therefore the co-pol

correlation spectrum takes higher values, mostly in the range of 0.9 to 1. However, sometimes

due to many phenomena like hail formation, strong vertical or horizontal motions, or presence

of multiple hydrometeors, the coherency of the signals is lost, and the resulting spectrum is very

broad and noisy. In such cases, the co-pol correlation spectrum cannot be used as a thresholding

parameter. Thus a different thresholding parameter is required to overcome these problems.

4.1 Introduction

In Chapter 3, we explored and implemented three filtering methodologies, namely the Notch

filter, GMAP, and the PTDM algorithm, to mitigate sea clutter in the SEAPOL radar data. In this

chapter, we explore the method adopted by Moisseev et al. [1], incorporate results from PTDM, and

include a thresholding strategy that will help in cleaning up the range-Doppler spectrograph and

also help in separating the sea-clutter and precipitation spectra. This combined filtering technique

is named as Advanced Spectral Filter (ASF). The thresholding parameter is named as Spectral

Signal Quality Index (SSQI), which helps in suppressing noise and other unwanted interference

in the spectra. As mentioned earlier, since sea clutter does not occur at zero Doppler, the existing

ground clutter mitigation algorithms will not work. Chapter 3 showed the implementation of these

filters. We used PTDM to separate the precipitation and the sea clutter spectra whose performance
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is better than the notch and GMAP filters. In this chapter, we use the PTDM to estimate the exact

location of occurrence of the sea clutter spectra and use the estimated parameters to generate the

inference weights, which are used in the fuzzy logic classification to discriminate between sea

clutter, precipitation, and noise. A spectral mask is generated from the classified field, which is

used in spectral moment estimation. At the end of the chapter, we compare the performances of

the algorithms and show that Advanced Spectral Filter (ASF) has better performance among all

the filtering algorithms considered.

4.1.1 Sea clutter mitigation using Advanced Spectral Filter (ASF)

Spectral-domain analysis of dual-polarization weather radar signals is a relatively new area of

research. Previous researches by Unal [29] and Yin et al. [30] show that it is possible to extract the

weather signatures from the power spectrum of the back-scattered signals. In the spectral domain,

the features of meteorological signals can be identified against possible clutter and background

noise contamination. The standard radar processing algorithms like pulse-pair estimation operate

on the time series samples in the time domain. It has been shown that the pulse-pair processing

provides the least amount of bias and low variance in the generation of radar moments by Bringi

and Chandrasekar [10] and it approaches the Cramer-Rao lower bound of minimum bias-variance

performance.

Nevertheless, spectral processing has inherent advantages where ground clutter, unwanted

echoes such as human-made RFI, and anomalous propagation can be easily identified, and ro-

bust filtering techniques can be developed to eliminate them. Spectral filters are already popular

in the weather radar community. Siggia et al. [4], Moisseev et al. [1] and Yin et al. [30] have

designed spectral filters that serve the purpose of mitigating unwanted echoes. Fig. 4.1 shows a

complete procedure of detection and filtering of clutter in the form of a flowchart. It is to be noted

that this method was used by Moisseev et al. [1] for ground clutter filtering. This chapter aims to

investigate how this same methodology can be used in the case of sea clutter filtering. The working
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Figure 4.1: Flow chart showing the algorithm for adaptive polarimetric spectral filter by [1]

principle behind the spectral domain filtering algorithm is to utilize the distinct spectral properties

for identifying and filtering the sea clutter components.

Range-Doppler spectrograph - Spectral decomposition of dual-polarization radar radar sig-

nals

The spectral processing approach starts from the recording of the received radar time-series

samples from the horizontal and vertical polarization channels, H , and V , respectively, at specific

elevation and azimuth angles.
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Figure 4.2: Flow chart showing the algorithm for Advanced Spectral Filter (ASF)

The spectrum estimation procedure, spectral decomposition of dual-polarization variables, and

estimation of radar moments using spectral processing have been discussed in Chapter 2.

Texture generation

Spectral decompositions of dual-polarization radar data along a particular azimuth or elevation

are done using Eqs. 2.17, 2.18 and 2.18 from Chapter 2. In general, researchers and engineers use

the spatial variability of dual-polarization parameters to check for clutter contamination in weather

observations.
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Figure 4.3: Range–Doppler spectrographs of S(Zh), S(Zdr),S(φdp), S(ρhv). The spectrographs are cal-

culated from the SEAPOL observations collected on 9th Nov 2017 along the azimuth of 268.4 deg.at an

elevation angle of 0.5

A two-dimensional standard deviation is used as a measure of spatial variability where a 3× 3

sliding window is used for the standard deviation computation. Textures of differential reflectivity

and differential phase are computed and denoted as SD[Zdr] and SD[φdp], respectively. Moisseev

et al. [1] have simulated the textures of noise for S-band and are observed to overlap with the distri-

butions of ground clutter and precipitation. Similar behavior can be seen for C-band observations

for sea clutter and precipitation, as shown by Alku et al. [31].

Fuzzy logic for clutter identification

Ryzhkov et al. [25] showed that it is possible to classify the radar data based on fuzzy logic

to identify sea clutter, precipitation, and cloud. Moisseev et al. [1] showed that spectral-domain

information could be used as inputs to a fuzzy logic module that can carry out the weather data

classification where the outputs from the membership functions were weighed so as to identify

ground clutter, precipitation, and noise correctly.

Since the ground clutter spectrum is centered at zero velocity and has a normal distribution, it

is possible to simulate a set of weights and use those on the output of membership functions to get

more accurate results. In the case of sea clutter, the clutter spectrum location may not be centered
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Figure 4.4: Range–velocity spectrographs of textures of (left) differential reflectivity Zdr(v) and (right)

differential phase φdp(v). The spectrographs are computed from the same data as in Fig.4.3

at the zero Doppler and can vary since it depends on the random nature of the sea surface. Hence

the simulated weights used for ground clutter identification cannot be used in case of sea clutter

identification. A possible solution is to estimate the location of the sea clutter spectra and then

design the set of weights accordingly.

Membership and Inference weight functions with clutter parameters from PTDM

The fuzzy logic classification scheme for sea clutter identification, implemented here, is similar

to the one described by Moisseev et al. [1]. A beta membership function is used for defining
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Figure 4.5: The fuzzy logic structure for classification of precipitation, clutter and noise as done by [1]

the respective classes of signals viz. sea clutter, precipitation, and noise. The parameters of the

membership functions are deduced from the distributions shown in Fig. 4.6 and also following the

values given by Alku et al. [31] and by Moisseev et al. [1] for sea clutter, precipitation and noise.

The parameters of the membership function used here are shown in Table 4.1. The inference rule

in the fuzzification process uses a summation and weighting of the respective classes to provide

strength to a given class of input and follows Eq. 18 mentioned in [1]. The histogram of the

textures of sea clutter and precipitation are shown in Fig. 4.6. It is seen that for precipitation, the

majority of occurrence of values of the texture of S(Ẑdr) are less than 2 dB, whereas it is noisy

and higher than 2 dB in case of sea clutter. The values of the texture of S(φ̂dp) for precipitation are

lesser than 15 dB, but for sea clutter, the values are much higher and have a broader distribution of
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values. The values of S(ρ̂HV ) for precipitation are greater than 0.9, while sea clutter shows a wide

distribution of values of S(ρ̂HV ) and has values lesser than 0.8.

Table 4.1: Parameters of the membership functions for the three different classes

Sea Clutter Precipitation Noise

SD(S(Zdr))[1,25,3.1] [1.3,10.8,0] [0.86,21.5,1.4]

SD(S(φdp)) [45,450,85.25] [36.5,61,15] [47,78,99]

S(ρhv) [0.115,2.881,

0.0153]

[0.17,17.5,0.9] [0.46,17.9,0]

The proposed classification procedure uses three inputs: SD(S(Zdr)), SD(S(φdp)), and S(ρhv),

and produces three classes: precipitation, noise, and clutter. Similar to Liu et al. [32] and Lim et

al. [33], the transformation of the spectral decompositions of radar measurements into fuzzy sets

is carried out by using membership functions of the beta functional form given as,

f(x, a, b, c) =
1

1 + |x−c
a
|2b

(4.1)

where (a, b, c) for different inputs and classes are given in the Table 4.1.

The parameters of the membership functions are defined using observed distributions given in

Fig.4.6. The observed distributions of SD(S(Zdr)), SD(S(φdp)) are calculated from 9th Novem-

ber 2017 observations. High reflectivity weather echoes dominate these measurements. To include

lower SNR cases, the precipitation membership functions are extended over a greater range of

values. In Fig.4.7 proposed membership functions are shown.

The inference process architecture is shown in Fig. 4.5. The weighting factor is related to

the Doppler velocity. Introducing the weighting factor when the Doppler velocity is close to zero

can slightly push the reasoning process to the clutter class. The weighting function is chosen so

that inference can be imposed on the confusing categories when the rules of different categories

are similar in strength and do not overwhelm the process. The weight functions used in [1] has

been shown in Fig.4.8, The clutter spectrum has been assumed to be Gaussian centered at the zero

Doppler with a narrow spectral width. The weight function used is defined as the following
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Figure 4.6: Histograms of the parameters for the fuzzy logic shown for precipitation and sea clutter

w = 0.4 +
1

σ
√
2π

exp(− v2

2σ2
) (4.2)

where σ = 0.4 ms−1

The weight function for noise and precipitation classes is independent of Doppler velocity

and fixed at the weight value of 0.5. Since sea clutter has different mean Doppler velocity and

spectral width hence the above model for ground clutter identification cannot be used. We use the

PTDM algorithm to estimate the central clutter velocity and spectral width to mimic the sea clutter

spectrum shape.
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Figure 4.7: Membership functions used in fuzzy logic classification showing the beta functions for

SD(Zdr), SD(φdp) and ρhv related to sea clutter, precipitation and noise

Figure 4.8: Inference weights associated with ground clutter shown in red and for noise and precipitation

shown in dotted black line as used by [1]

w = 0.4 +
1

σ̂P

√
2π

exp(−(v − v̂P )
2

2σ̂2
P

) (4.3)
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v̂P & σ̂P are the parameters obtained from PTDM algorithm. Fig. 4.8 shows the inference

weight for clutter, precipitation and noise as used by [1] for identifying ground clutter. As men-

tioned earlier as sea clutter may occur at non-zero Doppler velocities hence Eq. 4.3 is used.

Figure 4.9: Inference weights associated with sea clutter shown in red and for noise and precipitation shown

in dotted black line used in this research.

Spectral Signal Quality Index (SSQI) thresholding

Spectral-domain filtering techniques can be used to filter out different unwanted features in a

signal. Spectral analysis often requires spectral noise reduction or a clear demarcation between

the weather spectrum, noise, and other unwanted artifacts or clutter. As a solution to this problem
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generally, the co-pol correlation spectrum is considered for thresholding the spectrum, where it

only retains the portion of the spectrum with higher coherency. Since weather signals are consistent

or coherent, hence the signals received at the H and V channels are also coherent, so the co-pol

correlation spectrum takes higher values, mostly in the range of 0.9 to 1.

Figure 4.10: The fuzzy classification results shown after using the algorithm proposed by Moisseev et al. [1]

(left) and the classification spectrograph shown in right is done using the ASF framework
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However, sometimes due to various phenomena like hail formation, strong vertical or horizon-

tal motions, or presence of multiple hydrometeors, the coherency of the signals is lost, and the

resulting spectrum is very broad and noisy with very high variance. In such cases, co-pol corre-

lation spectrum can not be used as a thresholding parameter. In many cases, such as clutter, other

interferences, particle mixtures, or melting hail, the signal coherency is not observed, i.e., the co-

herency values are low sometimes as low as 0.8. Hence, if a threshold of 0.9 is used, these regions

will be excluded, although they are valid signals with a high Signal to Noise Ratio. In pulse pair

processing Co-pol Correlation (ρHV ) and Signal Quality Index (SQI) are used for thresholding to

get clean products. In this chapter, Spectral Signal Quality Index (SSQI) has been proposed as

a thresholding parameter. Spectral-domain thresholding using SSQI can be used to clean up the

data, get better dual-polarization products, and overcome the low coherency problem. The mo-

ments retrieved from the filtered spectra are the clutter suppressed products. Hence thresholding

with SSQI can be considered as a sea clutter filtering technique. This section shows that threshold-

ing based on SSQI can distinguish the weather spectrum from noise and sea clutter. This technique

is demonstrated using data from SEAPOL, a C-band shipborne dual-polarization weather radar, to

remove sea clutter effectively. The existing spectral parameters are the spectral reflectivity (S(Zh)),

spectral differential reflectivity (S(ZDR)), Spectral differential phase (S(φDP )) and the co-pol cor-

relation spectrum (S(ρHV )).

In the case of spectral moment calculation, it is recommended to compute the moments from a

thresholded spectrum. For fast scanning radars, since the number of pulses is very small, for ex-

ample, 64 samples, in this case, it cannot be used to obtain a smooth spectrum. In the case of

the co-pol correlation spectrum, which largely depends on the expected values of H , V , and the

cross-spectrum, the final spectrum has very high variance, and the entire co-pol correlation takes

values close to unity. There are various methods to overcome this problem as mentioned below

• spectral-averaging over different data segments.

• spectral-averaging over range or azimuth.
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• scan to scan spectral averaging.

Due to extremely less number of samples, spectral averaging over different data segments fails

to give good results hence cannot be used for thresholding. In case of averaging over range or

azimuth, the range or azimuth resolution will be lost after averaging, hence it not recommended.

This chapter shows that Spectral Signal Quality Index (SSQI) is an effective solution for spectral

thresholding. The motivation comes from the co-pol correlation spectrum. The co-pol correlation

spectrum (S(ρHV )) can be considered as a spectral domain equivalent of co-pol correlation (ρHV )

which is a time domain parameter. The equivalency is observed if looked into the underlying

equations of both the parameters as shown below,

ρhv =

∑N−1
m=0 V (m)H∗(m)

√

∑N−1
m=0 |H(m)|2 ∑N−1

m=0 |V (m)|2
(4.4)

where H(m) and V (m) is the mth sample of a N long time series signals ontained from the

Horizontal and Vertical polarization channels, respectively.

S(ρhv) =

∑N−1
k=0 Shv(k)

√

∑N−1
k=0 Shh(k)

∑N−1
k=0 Svv(k)

(4.5)

where Shv is the cross-spectrum between horizontal and vertical polarization time series signal

calculated with FFT length of N .

Eq.4.4 is the correlation coefficient from the time domain while Eq.4.5 is the correlation coef-

ficient derived from the spectral domain. Intuitively, it can be observed that the cross-correlation in

the numerator of Eq.4.4 is replaced by cross spectra in Eq.4.5. While H and V auto-correlation in

the denominator of Eq.4.4 is replaced by auto-spectra in Eq.4.5. With this similarity, the equation

of the time domain SQI is observed as described by Eq.4.6

SQI(m) =
|R1(m)|
R0(m)

(4.6)
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where R1 is auto-correlation at lag 1 and R0 is auto-correlation at lag 0. Similarly in the spectral

domain, if we define S0 and S1 which are auto-correlation spectrum at lag 0 and 1 respectively,

then the Spectral Signal Quality Index (SSQI) can be defined as

SSQI(f) =
|S1(f)|
S0(f)

(4.7)

As mentioned earlier, pulse-pair processing, which is a time-domain auto covariance process-

ing, is generally used for computation of radar moment. However, when signals are contaminated

with unwanted echoes from different clutter and interference, the periodogram estimator of the

power spectral density (PSD) is seen to be a significant tool of spectral analysis. The drawback of

PSD is that it does not convey any phase information. The autocorrelation spectral density (ASD),

a generalization of the classical PSD provides explicit phase information and can be used to iden-

tify and remove unwanted signals. Warde et al. [34] have used the ASD for spectral analysis of

weather radar data in various applications.

The lag-l ASD estimator is defined as a generalization of the PSD estimator based on the modified

periodogram. This is given by

Sl(f) =
Ts

N − l
F ∗
0 (f)Fl(f) (4.8)

where,

Fl(f) =
N−l−1
∑

m=0

d(m)V (m+ l)e−j2πfTsm (4.9)

where V (m) is the complex time series, and d is the data window. The data window is real-

valued function, symmetric about (N − l − 1)/2, normalized for average unit power, and takes

zero values outside the interval [0, N − l − 1].

Thus following Eq. 4.6, Spectral Signal Quality Index can be calculated as

SSQI(r, k) =
|SHH/l(r, k)|
SHH(r, k)

(4.10)
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where SHH/l is the lag-l ASD calculated for the horizontal channel; similarly, SSQI can be

calculated for the vertical channel. In this work, l = 1 has been considered such that the SSQI is

equivalent to the time domain SQI. To calculate the spectral SQI as the moment we simply just

perform spectral averaging, hence

SQI(r) =
N−1
∑

k=0

SSQI(r, k) (4.11)

Filter mask generation & spectral moments estimation

To filter out clutter, various interferences and to reduce the effect of background noise, a spec-

tral mask is generated from the classification field in Fig. 4.10. The firing strength for a rule in the

fuzzy logic classification can be expressed as

Rj(v) = w1kµk{SD[Zdr(v)]}+ w2kµk{SD[φdp(v)]}+ w3kµk{SD[ρhv](v)]} (4.12)

Here the subscript j is the feature tag for either precipitation, sea clutter or noise class. The

membership functions µj ∈ [0, 1], j = 1, 2, 3.

Let j → k denote the rule j votes to class k, then

dk(v) = max
j→k

Rj(v) (4.13)

The precipitation mask mp is constructed such that it is equal to 1 if the fuzzy logic votes

a particular spectral line in favor of precipitation and zero otherwise. The clutter mask mc is

constructed such that it is equal to 1 if the fuzzy logic votes a particular spectral line in favor of

clutter and zero otherwise. Next for the moments’ calculation, only these spectral lines are used in

the computation by the spectral processing algorithm. The spectral processing algorithms, as used

by Moisseevet al. [1] for moments calculations, are used here. For a given range gate the H-pol

Reflectivity (Zh) is calculated as a sum of precipitation power spectral lines
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Zh =
N−1
∑

k=0

mp(k)
[

Ŝhh(k)
]

(4.14)

The mean Doppler velocity (v̂) and spectrum width (σ̂v
2) which are few of the basic radar

moments are computed as follows

v̂ =

∑N−1
k=0 vkmp(k)

[

Ŝhh(k)
]

∑N−1
k=0 mp(k)

[

Ŝvv(k)
] (4.15)

σ̂v
2 =

∑N−1
k=0 (vk − v̂)2mp(k)

[

Ŝhh(k)
]

∑N−1
k=0 mp(k)

[

Ŝvv(k)
] (4.16)

Among the polarimetric variables Differential Reflectivity (Zdr) and Co-polar Correlation (ρhv)

can be can be calculated as follows:

Zdr =

∑N−1
k=0 mp(k)

[

Ŝhh(k)
]

∑N−1
k=0 mp(k)

[

Ŝvv(k)
] (4.17)

ρhv =

∑N−1
k=0 mp(k)

[

Ŝhv(k)
]

√

∑N−1
k=0 mp(k)

[

Ŝhh(k)
]
∑N−1

k=0 mp(k)
[

Ŝvv(k)
]

(4.18)

Fig. 4.11b shows the filtered PPI field obtained after using ASF. Fig. 4.11c shows the residue

of the Reflectivity field Zh.

Fig. 4.11c shows the residue, which ideally should be the estimated sea clutter field. Comparing

the residue fields with the clutter map, we see that the ASF has taken out an appreciable sea

clutter from the clutter flagged range bins. As seen from Fig.4.12 the filter provides an appreciable

amount of suppression. The suppression level provided is around 20-35 dB. Fig. 4.12a shows the

histogram of CSR. The occurrence of CSR = 0 is the highest because it represents the regions

where Zoriginal = Zfiltered and as it covers most of the PPI scan hence its probability of occurrence

is higher. The other values in the histogram correspond to the clutter suppression provided by the

ASF. The maximum suppression provided is 35 dB.
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(a) (b)

(c)

Figure 4.11: Clutter filtered PPI field using the ASF is shown in (B). The residue or the amount of clutter

suppressed in the field is shown (C). The original unfiltered field containing both sea clutter and precipitation

is shown in (A)

Fig. 4.12b shows the scatter plot between filtered and original reflectivity field. The red line

corresponds to the one to one correspondence where both the fields have equal values, i.e., these

points represent the regions where no filter has been used. These regions either have precipitation

or noise. The points below the one to one line correspond to the regions where the ASF filter

has been applied. Since after filtering, the overall calculated reflectivity is lower than the original

reflectivity; hence they occur below the line. If the error in the estimation of precipitation leads
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(a) (b)

Figure 4.12: Clutter suppression ratio distribution is shown in (A). The comparison between Zoriginal and

Zfiltered is shown in the scatter plot in (B).

Figure 4.13: Original reflectivity profile and filtered profile using ASF are shown along the range at 268◦

to positive bias, then the points occur above the one to one correspondence line. Unlike GMAP,

Notch filter, or PTDM, these erroneous points are almost negligible in this case. Fig. 4.13 shows

the original (black) and filtered (red) reflectivity range profiles along the 268◦ azimuth.

4.2 Comparison of Sea clutter mitigation algorithms

While investigating different methods to suppress sea clutter, it is necessary to compare the

performances of the algorithms under study and point out that one that has the best performance.

Fig 4.14 shows the comparison between the algorithms discussed so far. The ray along 268◦

61



azimuth is chosen for this. The original reflectivity profile is shown in black. The Notch, GMAP,

PTDM, and ASF filtered profiles are shown in blue, magenta, green, and red.

Figure 4.14: Original reflectivity profile (black) and filtered reflectivity profiles are shown along the range

at 268◦

Figure 4.15: Original reflectivity profile (black) and clutter filtered profiles are shown along the range at

268◦ in first 10 km to observe sea clutter suppression

As seen from Fig. 4.14 the filter performances in the following order

CSRASF > CSRPTDM > CSRGMAP > CSRNotch (4.19)

Fig.4.15 shows the filtered profiles in the first 10 km of range. It essentially shows how much

the filtering techniques have been able to suppress the sea clutter. Fig.4.16 shows the filtered profile

from 30 to 60 km showing the ability of the filters to retain the precipitation signal. The clutter
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suppression ratio (CSR) is calculated, which helps determine the performances of the sea clutter

filters. The CSR histogram is shown in Fig. 4.17a.

Figure 4.16: Original reflectivity profile (black) and the clutter filtered profile are shown along the range at

268◦ from 30 to 60 km showing how the precipitation signals are retained

The histogram in Fig. 4.17a shows a very high probability at 0 dB CSR, which means that

the occurrence of the unfiltered bins are the highest. This is evident because the number of pre-

cipitation bins are higher in the particular PPI scans, as seen in the classification figure shown in

Fig.3.5.

(a) (b)

Figure 4.17: Histogram of clutter suppression ratio (CSR) is shown in (A). The ROC curves for the filtering

methods shown in (B).
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We also observe that the probability of occurrence of the CSR is highest for the ASF followed

by GMAP, then PTDM and finally notch filter. This can be interpreted as that the Advanced Spec-

tral Filter can retain most of the precipitation signals. The notch filter has the lowest probability

because it places a notch around zero Doppler by default, and since a higher spectral width has

been used, it partly takes out the precipitation spectrum as well. Hence it retains the least amount

of precipitation. Note that for the notch filter, PTDM or GMAP, there is no precipitation mask

used. Also, we have observed that the ASF gives the highest maximum clutter suppression among

the four filters.
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Chapter 5

Study of rain and hail mixture using spectral

polarimetry

Polarimetric measurements from dual-polarization weather radar have given the researchers

the tools to determine the size and shape of hydrometeors in a radar resolution volume. Com-

bining Doppler information with the polarimetric measurements allows researchers to do spectral

analysis, study, and characterize the microphysics and dynamics of a storm at specific radar resolu-

tion volumes. The study of both spectral and polarimetric properties of weather echoes is known as

Spectral Polarimetry. Therefore spectral polarimetry has proven to be an essential tool for studying

different varieties of storms.

5.1 Introduction

This chapter investigates how storms are characterized using spectral polarimetry. Spectral

analysis has been done on real data collected from a field campaign that recorded unique intensive

mesoscale convective storms in Argentina. Firstly spectra of rain in a stratiform case have been an-

alyzed. Next, the spectral properties of an intense convective case have been studied and reported.

In this case, the dual-polarization spectrum of precipitation with rain and hail mixtures are char-

acterized. The main goal is to incorporate Doppler information with polarimetric measurements

in dual-polarization weather radar that will help in unveiling various microphysical properties in

relation to the dynamics of the storm in a radar resolution volume. Similar work has been done by

Wang et al. [35] for studying hail at low elevation using spectral polarimetry. Phenomena such as

size sorting, Zdr column evolution, etc. are observed. Since the interest is in the convective storms

hence radar scans along a fixed azimuth covering different elevations, also known as Range Height

Indicator (RHI), have been analyzed. Different properties, including multi-modal spectrum, slopes

in Zdr spectrum, and lowering of co-pol correlation spectrum, were observed. Study of the general
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rain spectrum has been done on the observations recorded during the Intensive Observing Period

(IOP) from 1 November – 15 December 2018. The more extreme convective storm properties were

studied from the data collected during the Extended Hydrometeorology Observing Period (EHOP)

that took place from 1 June 2018 – 30 April 2019.

Figure 5.1: The RELAMPAGO campaign location has been shown in the figure. Picture courtesy of Dr.

Steve Nesbitt, University of Illinois at Urbana-Champaign [2].

5.2 The Relampago field campaign

The RELAMPAGO campaign was done in the Cordoba region of Argentina. RELAMPAGO or

most commonly known as Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale
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Processes with Adaptive Ground Observations, had two phases, namely the Extended Hydrome-

teorology Observing Period (EHOP) and the Intensive Observing Period (IOP). Data sets from

both periods have been analyzed in this chapter. In this campaign, a few of the tallest storms in

the world were observed extending up to 20 km from the ground. The storms were characterized

by very strong updrafts, downdrafts, and vertical wind shear. This campaign’s goal was to study

the Mesoscale Convective Systems, which are known to be very frequent and most intense in this

region than anywhere else. One of the main goals of this campaign was to study the life cycle of

these unique storms from the beginning to the end. Numerous organizations came into a collabo-

ration and deployed a large number of sensors to collect data. Since the storms were observed to

generally generate along the Andes and the Sierras de Cordoba hills, hence most of the research

teams deployed their instruments in this region.

Figure 5.2: The deployment location of CSU-CHIVO radar (Rams logo) during RELAMPAGO as described

by Ivan et al. [3].
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The campaign was funded by several organizations, including NSF, NOAA and NASA. Re-

search institutes such as the University of Illinois at Urbana-Champaign, National Center for At-

mospheric Research (NCAR), University of Buenos Aires, University of Washington, Colorado

State University, University of Colorado-Boulder, Penn State University, University of Utah, Uni-

versity of Alabama-Huntsville, Pacific Northwest National Laboratory (PNNL) and Center for Se-

vere Weather Research prepared a large group of researchers which included scientists, students,

data managers, forecasters, technicians and pilots who came together and set up a dense network of

sensors in the Cordoba region. The sensors collected a large amount of data over a long time span,

which helped researchers to study and understand convective initiation, upscale growth, and the

severe weather from the mesoscale events. The sensors comprised of lightning networks, station-

ary radars, hail-pads, disdrometers, and several other mobile instruments. Among the stationary

radars, the CSU-CHIVO (Colorado State University-C-band Hydro-meteorological Instrument for

Volumetric Observation) or simply CHIVO was deployed in the region during the campaign. The

next section includes the description of the CHIVO radar and its contribution in the campaign.

Figure 5.3: The CSU-CHIVO radar during the RELAMPAGO campaign [3].
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5.3 The CSU-CHIVO radar

The CSU-CHIVO radar was one of the fixed instruments that were installed to collect data

continuously. This mainly helped researchers to study the life-cycle of the storms that developed

during the period. Fig.5.2 shows the location of the CSU-CHIVO radar deployed near the Alta

Gracia region in Argentina during the Relampago campaign. The CHIVO is a C band weather

radar with dual-polarization capability and was originally installed at the CSU’s Agricultural Re-

search, Development and Education Center (ARDEC) site. It was packed and shipped to the cam-

paign site for deployment. The radar uses a Sigmet Digital Receiver and Vaisala’s Sigmet RVP900

Signal Processor that computes products such as reflectivity, velocity, spectral width, differential

reflectivity, differential phase, and co-pol correlation coefficient. Various other fields, including

specific differential phase, hydrometeor classification index, and rainfall rate, were obtained using

the DROPS2 algorithm [36] after data collection. CHIVO’s site was located south of Cordoba

city, which is about 30 minutes drive from Alta Gracia and 45 minutes drive from Villa Carlos

Paz, where the observation center was located. The picture in Fig.5.2 shows the location of dif-

ferent radars that were deployed in the region during the campaign. The ram logo indicates the

location of the CSU-CHIVO. The radar symbol in Cordoba city indicates the location of the First

Radar Meteorologico Argentino (RMA1). The Atmospheric Research Measurement C-band Scan

Precipitation Radar 2 (ARM-CSPR2) was located near Villa Yacanto shown by the ARM symbol.

The observation center was located at Villa Carlos Paz, which has been indicated by the Relampago

symbol on the map.

The CHIVO radar uses a coaxial magnetron transmitter tube with a solid-state modulator. It

operates within the frequency range of 5.5 to 5.7 GHz with a peak power of 250 kilo Watts. Pulse

Repetition Frequencies (PRF) range from 50 to 2400 Hz. It operates both in STAR and LDR

modes. In the Relampago campaign, the radar mostly operated in the STAR mode. As mentioned

before, it uses Vaisala’s RVP900 signal processor, which supports azimuth averaging from 2 to

1024 pulses. IIR, fixed and adaptive width clutter filters, including the Gaussian Model Adaptive
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(a) (b)

(c) (d)

Figure 5.4: Stratiform storms observed by the CSU CHIVO on 30th November 2018 during the IOP in the

Relampago campaign.

Processing (GMAP) filter, are also supported by the processor and provide more than 50 dB clutter

rejection.

Fig.5.4 shows few of the stratiform storm cases as recorded by the CSU-CHIVO on 30th

November 2018. Stratiform conditions are generally steady and are not characterized by turbulent

conditions like very strong updrafts and downdrafts. These conditions are close to ideal and nearly

follow the theoretical properties of precipitation and can be used to study their general spectral
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(a) (b)

(c) (d)

Figure 5.5: Convective storms seen by the CSU CHIVO on 30th November 2018 (A,B) and 25th January

2019 (C,D) during the Relampago campaign.

properties. These properties are studied and reported to provide some basis for comparison when

studying the turbulent conditions in convective storms. Fig.5.5 shows a few of the convective storm

cases as recorded by the CSU-CHIVO during December 2018 and January 2019. These are con-

vective cells with a very high reflectivity core layer and low co-pol correlation, which indicates hail

formation in many cases. They are accompanied by updrafts and downdrafts. Hence, unlike the

stratiform cases, they do not have steady conditions, and hence they do not exhibit general spectral
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properties. The main goal here is to investigate how the dual-polarization spectral properties in the

convective storm cores differ from the steady and ideal conditions.

5.4 Application of Spectral Signal Quality Index

Spectral co-pol correlation spectrum S(ρhv) is generally used for spectral thresholding to sup-

press background noise and preserve only the precipitation spectrum.

Figure 5.6: Range–Doppler spectrographs of (A) reflectivity S(Z), (B) differential reflectivity S(Zdr), (C)

Co-pol correlation S(ρhv) and (D) spectral signal quality index SSQI is shown. The spectrographs are

calculated from the CSU–CHIVO observations collected on 30th November 2018 during 03:38:33 UTC at

an elevation angle of 8.5◦ and at azimuth of 270◦.
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Fig.5.6 shows the range-Doppler spectral decomposition of reflectivity, differential reflectiv-

ity, and co-pol correlation computed from CSU–CHIVO observations collected on 30th November

2018 at an elevation angle of 8.5◦ and at azimuth of 270◦. As seen from Fig.5.6c it can be observed

that the precipitation spectra cannot be distinguished from the background noise. It shows that

the spectrum is spread in almost all the Doppler bins. Hence, if this is used for spectral thresh-

olding, the precipitation spectrum cannot be extracted from the background. Fig. 5.7 shows the

range-Doppler spectrographs of the dual-polarization variables thresholded using S(ρhv) = 0.9.

Therefore this thresholding technique cannot be used in the spectral analysis of precipitation.

Figure 5.7: Range–Doppler spectrographs of (A) reflectivity S(Z), (B) differential reflectivity S(Zdr) and

(C) Co-pol correlation S(ρhv) threshold with S(ρhv) = 0.9 done on the same data as shown in Fig. 5.6
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The Fig. 5.6c shows the phenomena of spectral leakage and spectral broadening. Generally,

S(ρhv) is improved by spectral averaging, which can reduce these effects. Traditionally spectral

averaging is done in the following ways:

Figure 5.8: Range–Doppler spectrographs of (A) reflectivity S(Z), (B) differential reflectivity S(Zdr) and

(C) Co-pol correlation S(ρhv) threshold with SSQI = 0.1 done on the same data as shown in Fig. 5.6

• Averaging along Doppler bins: If the number of IQ samples is large, then a sliding window

of length 64 or 128 can be used to generate multiple spectra and then average them. The

resulting spectra are smooth with reduced variance. This is an effective solution for noisy

spectra. Generally, for spectral processing and analysis purposes, a 960 or 1024 length IQ

74



dataset is recorded so that proper spectral averaging can be done. The use of sliding windows

is effective on these large datasets so that there is no significant loss in Doppler resolution.

However, since the CSU-CHIVO is a fast scanning radar for monitoring rapidly evolving

storms, only 64 length data samples were used during observations. Hence this averaging

technique cannot be applied on such a small data set.

• Averaging along range: The other option is range averaging along a particular azimuth (in

case of PPI scans) or along a particular elevation (in case of RHI scans), but that is avoided

as it will reduce the resolution along the range in the spectrographs.

The above two methods will not have a significant improvement on the S(ρhv) field. For

these reasons S(ρhv) is not recommended for thresholding. As seen in Fig. 5.6d the Spectral

Signal Quality Index presents a clear distinction between the precipitation and the background

noise spectrum. Hence this can be used for thresholding. The advantages of using the SSQI field

are as follows:

Figure 5.9: Histograms of spectral reflectivity to compare the performances of S(ρhv) and SSQI thresh-

olding based on the spectral decomposition as shown in Fig.5.10
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• Data from both H and V polarization channels are not used in the computation of SSQI field.

It uses only the ASD computed on the data coming from one of the polarization channels.

Hence unlike in the case of S(ρhv) where spectral broadening and leakages are seen, SSQI

gives a much clear spectrum.

• In case of melting ice, hail, or mixture of different hydrometeors, the S(ρhv) decreases sig-

nificantly. Since SSQI depends on signal strength hence its value is consistent.

Figure 5.10: The original range-Doppler spectrograph is shown in (A) based on CSU–CHIVO observations

collected on 30th November 2018 at an elevation angle of 8.5◦ and at azimuth of 270◦. Comparison of

spectral thresholding using S(ρhv) (B) and SSQI (C).
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The above two reasons indicate that SSQI can overcome the problem that has been seen in

thresholding with S(ρhv). After computation of the SSQI field it has been used for spectral thresh-

olding. Fig. 5.8 shows the range-Doppler spectrographs thresholded with SSQI = 0.1. To

compare the performances of the thresholding using S(ρhv) and SSQI , the histograms of S(Zh)

before and after thresholding are computed and plotted. The background noise or the noise floor

mostly contributes towards the values less than 20 dBZ. For a good thresholding parameter the

following points are considered:

• The histogram of the thresholded spectrograph with values less than 20 dBZ will have a

lower occurrence than the original spectrograph’s histogram.

• The higher values which generally are from precipitation spectrum are retained.

5.5 Study of the dual-polarization Doppler spectra from a con-

ventional stratiform rain case

Generally, convective storms are accompanied by significant updraft or downdraft, which

causes the mixing of different particles and many other microphysical processes to take place.

Hence it is necessary to characterize the dual-polarization spectral properties of these intensive

storms. To do this study, we first analyze a stratiform case that exhibits steady rain conditions.

This will form a basis for comparing the spectral properties of more complicated phenomena in

intensive convective storms. Fig.5.11 shows one of the stratiform cases which was seen during the

IOP on 30th November 2018 at 03:37:22 UTC along 223.9◦ azimuth

Fig. 5.11a shows the H-pol reflectivity of the storm. The maximum reflectivity seen here

is around 50 dBZ. The region below 4 km height indicates the occurrence of steady rainfall in

this stratiform storm case. These storms move slowly and have an overall steady motion. Fig.

5.11c shows the Co-pol Correlation field for the same scan. The ρHV values drop below 1 around

2.5 km to 3 km height, which represents the melting layer. The lowering of its value is due to

melting ice. This region consists of ice, melting ice, and water. Thus the region is populated with
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(a) (b)

(c) (d)

Figure 5.11: Stratiform storm seen by the CSU CHIVO on 30th November 2018 during the IOP in the Re-

lampago campaign recorded at 03:37:22 UTC seen along 223.9◦ azimuth. The Reflectivity(A), Differential

Reflectivity (B), Co-pol Correlation (C) and Hydrometeor Identification Index (D) are shown here.

a mixture of these particles; hence the co-pol correlation coefficient value decreases. Fig. 5.11d

shows the hydrometeor classification field, which shows regions with drizzle, rain, heavy rain, and

some regions with large drops. Next, the Doppler spectra in these regions are studied, and their

properties are observed. The figures are shown in Fig. 5.11 were recorded by the CHIVO on

30th November 2018 at 03:37:22 UTC along 223.9◦ azimuth. This case will be used to study the
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dual-polarization spectra of various rain cases. The case studies done here are all based on this

dataset.

• Rain case: For the rain case study, we must make sure that we are in the region with steady

rain conditions. The HID field in Fig. 5.12b shows the region of interest, which is along

223.9◦ azimuth. The range bin under study is 30 km away from the radar along the ray,

which is at 1.3◦ elevation.

(a) (b)

Figure 5.12: RHI scan of a stratiform storm at 03:37:22 UTC seen along 223.9◦ azimuth.(A) and (B) shows

Reflectivity and the HID fields respectively. The ray at 1.3◦ elevation is shown in white dotted lines. Spectral

analysis is done on the data from the range bin, 30 km away from the radar.

As shown in Fig.5.12 the 1.3◦ elevation ray has been shown in the white dotted line in both

the reflectivity and the HID field. The white cross along the ray marks the 30 km range bin

from the radar. Spectral decompositions of dual-polarization radar parameters are done on

this ray.

This is a uniform region of rain. A narrow S(Z) spectra and an almost uniform S(ρhv)

with values close to 1 is expected to be observed in this case. Fig. 5.13 shows the spectral

decomposition of reflectivity, differential reflectivity and co-pol correlation. Some ground
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Figure 5.13: Range-Doppler spectral decomposition showing (left to right) S(Z),S(Zdr) and S(ρhv) along

1.3◦ elevation from the data shown in Fig .5.12 for rain case study.

clutter spectrum is observed in the first 10 km from the radar since we are observing the

spectra very close to the ground. Some spectra at zero Doppler are also observed in 40 to

50 km away from the radar. This can be due to clutter or stationary particles in the radar

resolution volume. The S(Z) ranges from 30 to 50 dBZ . The S(Zdr) is close to 0 dB and

the S(ρhv) is close to 1 and uniform throughout the ranges except for the first 10 km, which

is mostly dominated by clutter. Fig 5.14 shows a cut taken from the spectral decomposition

along 30 km from the radar. As seen, the S(Z) spectrum is almost Gaussian, which follows

from the fact that in general, the PSD of the weather signal, especially rain, is Gaussian in

shape.
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Figure 5.14: Dual polarization spectra as seen at 30 km away from the radar. S(Z), S(Zdr), S(ρHV ) are

shown from left to right. The location of the spectrums are shown in Fig. 5.13

The S(Zdr) is close to 0 with some fluctuations. On average, the Zdr value computed from

a resolution volume containing rain is almost 0. This is because rain comprises of almost

spherical drops. Since a sphere gives the same power return from both the horizontal and

vertical polarization hence the overall Zdr is 0. Also, since the resolution volume contains

only rain hence has an overall uniformity of particles therefore the correlation coefficient

between the signals from the horizontal and vertical polarization is close to 1. Due to this

reason, the S(ρHV ) is also high and close to 1 in the region of the rain spectra. All the dual-

polarization spectra are computed from 64 sample IQ data collected by the CHIVO radar

with 1 ms sampling time period. A Blackman window has been used to reduce spectral

leakage and also to obtain a relatively smooth spectrum. A spectral signal quality index

(SSQI) threshold of 0.1 has been applied on all the dual-polarization spectra to eliminate

the noise and preserve the spectra with high precipitation signal content.

• Heavy rain case: The region of interest is shown in Fig. 5.15. The HID field in Fig. 5.15b

shows that the range bins in the region have been classified as ’HR’ or heavy rain by the

DROPS2 algorithm [36].

Fig. 5.15 shows the ray along 2.9◦ elevation with white dotted line. The range gate on which

spectral analysis has been done is 45 km away from the radar and marked with the white

’x’ mark, as shown in Fig. 5.15b. This range gate is located around 2 km above the ground

with a maximum reflectivity close to 50 dBZ. It is located almost near the melting layer.

The occurrence of precipitation is directly from the melted ice; thus, the concentration of
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(a) (b)

Figure 5.15: RHI scan of a stratiform storm at 03:37:22 UTC seen along 223.9◦ azimuth.(A) and (B) shows

Reflectivity and the HID fields respectively. The ray at 2.9◦ elevation is shown in white dotted lines. Spectral

analysis is done on the data from the range bin, 45 km away from the radar.

raindrops is very high, and hence the region is classified as heavy rain. Fig. 5.16 shows

spectral decomposition at 2.9◦ elevation. The range gate at 45 km has been shown in the

dotted white line in the S(Z) spectrograph. As we go from the rain region (along 12 -40 km)

to the heavy rain region (from 40-50 km), we observe an increase of S(Z) values.

The S(Z) has the usual narrow Gaussian characteristics. A trend of negative slope in the

S(Zdr) is observed. Theoretically, smaller particles have lower differential reflectivity values

than larger particles. The heavy rain comprises both very big and small drops, and hence this

gives rise to a distribution of S(Zdr) values from low to high. Thus in the resolution volume

at 45 km range bin consists of both small and big raindrops. This also explains the increase

of S(Z) values in the heavy rain region. This non-uniformity of particle size distribution

also causes a lowering of the co-pol correlation coefficient, and hence the S(ρHV ) spectrum

is non-uniform with lower values.

• Drizzle and rain case:

Fig. 5.18 shows the region where spectral analysis has been done in this case.

82



Figure 5.16: Range-Doppler spectral decomposition showing (left to right)S(Z),S(Zdr) and S(ρhv) along

2.9◦ azimuth. The white dotted line shows the 45th km range bin as shown in Fig. 5.15

Figure 5.17: (left to right) S(Z),S(Zdr) and S(ρhv) at 45 km away from the radar along 2.9◦ elevation.

The location of spectra is as shown in Fig. 5.16

Spectral decomposition is done on the ray along 16.5◦ elevation shown by the dotted line.

The white mark shows the range gate, which is 15 km away from the radar. Fig. 5.19 shows
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(a) Reflectivity

(b) Hydrometeor Classification

Figure 5.18: RHI scan reflectivity showing the area of spectral analysis. The dotted white line shows the

16.5◦ elevation ray and the white mark in the 15 km range bin away from the radar.

spectral decomposition along this ray. Here the region of interest in 15 km away from the

radar, which is shown as a white dotted line in the S(Z) spectrograph.

The HID index shows that it is a region of transition from drizzle to rain. The S(Z) spectro-

graph shows that the spectrum’s central Doppler velocity increases from negative to positive

as we go along the range from 0 to 15 km. From 15 km it again starts to decrease and takes
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Figure 5.19: Range-Doppler spectral decomposition showing (left to right)S(Z),S(Zdr) and S(ρhv) along

16.5◦ azimuth as shown in Fig.5.18 A

negative value after 17 km. Thus this indicates that the velocity field also changes in this

region from negative to positive and then again back to negative. Hence there is a possible

movement of the storm towards and away from the radar. At the range gate at 15 km there

is a possibility of mixing of drizzle and rain. Thus the resolution volume will be populated

with different sizes of raindrops; hence we observe a distribution of values of S(Zdr).

The S(Z) has Gaussian characteristics. There is a trend of positive slope in the S(Zdr) and

is prominent. The slope is because there is a presence of a mixture of rain and drizzle at

the boundary. Due to the presence of turbulence, the S(Zdr) is spread. The S(ρhv) spectra

relatively high. This is due to the presence of the same nature of hydrometeors.
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Figure 5.20: left to right) S(Z),S(Zdr) and S(ρhv) at 15 km along 23.5◦ azimuth as shown in Fig.5.19

5.6 Study of the dual-polarization Doppler spectra from a tur-

bulent convective storm

In this section, we will analyze different rain and hail cases of convective storms. The data was

recorded on 25th January 2019 at 21:09:14 UTC along 282.5◦ azimuth.

• Rain and Hail case:

(a) (b)

Figure 5.21: RHI scan showing the area of spectral analysis. The dotted white line shows the 6.03◦ elevation

ray and the white marks are in the 15 km and 43 km range bins receptively away from the radar.The data

was recorded on 25th January 2019 at 21:09:14 UTC along 282.5◦ azimuth.

The analysis is done along 6.03◦ elevation and shown in the white dotted line. The regions

for spectral analysis is shown in Fig. 5.21. Here the regions of interest are 15 km and 43
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km away from the radar receptively shown in white ’x’ marks. The HID index shows that

it is a region of heavy rain and hail. The dual-polarization spectra is shown in Fig.5.22.

Spectral broadening in S(Z) is observed in both the heavy rain and hail regions. The S(Zdr)

spectra in hail case shows a negative slope indicating the presence of different hail sizes in

the resolution volume.

Figure 5.22: Dual-polarization spectra (top left to right) S(Z),S(Zdr) and S(ρhv) at 15 km is shown.Bottom

left to right) shows S(Z),S(Zdr) and S(ρhv) spectra at 43 km along 6.03◦ elevation

It has a very broad S(Z), unlike the spectra observed in stratiform rain cases. S(ρhv) has

low values, which may be due to melting hail or due to the non-uniformity of particle size

distribution.

Next, the storm core is studied. It is observed to have a very high reflectivity. The HID field

shows that this is a hail core. The white box shows the region of study shown in Fig. 5.23

(A). The core is zoomed in and is shown in Fig. 5.23 (B). Spectral analysis is done on the

range gates above the core, at the core, and below the core. The range bins are marked as

1,2, and 3, respectively.
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Figure 5.23: RHI scan of convective storm at 21:09:14 UTC seen along 282.5◦ azimuth recorded on 25th

January 2019.(A) and (B) shows Reflectivity and the zoomed in Reflectivity of the storm core respectively.

• Study above storm core: Here the region of interest in 18 km away from the radar, as shown

by the white dotted lines. The HID index shows that it is a region of snow just above the hail

region.

Figure 5.24: (left to right) S(Z),S(Zdr) and S(ρhv) at 18 km away from the radar km along 32◦ azimuth.

The location of the spectra are shown in Fig.5.23 (B) marked as region ’1’.

As seen, the S(Z) spectrum has a broad spectral width. The S(Zdr) is almost all positive, and

the S(ρHV ) is high, close to 1 in the region indicating the presence of a uniform distribution

of particles.
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• Study at storm core:

Next, the hail core region is shown. The region for spectral analysis in shown in Fig. 5.23

(B) marked as region ’2’. Here the region of interest in 17.5 km away from the radar. The

HID index shows that it is a region of hail.

Figure 5.25: Dual-polarization spectra seen at 17.5 km away from the radar.(left to right) S(Z),S(Zdr) and

S(ρhv) along 30.2◦ azimuth. The location of the spectra are shown in Fig.5.23 (B) marked as region ’2’.

The dual-polarization spectra in Fig.5.25 shows the presence of dual spectra in S(Z). The

S(Zdr) spectrum shows a positive slope. This is because the updraft pushes liquid or rain

from lower elevation upwards, mixing with the hail in this region. Also, due to the strong

wind, size sorting occurs; hence we see bi-modality in S(Z) and the slope in the S(Zdr)

spectrum. The S(ρHV ) is low in the region, indicating a non-uniform distribution of parti-

cles. This is evident due to the presence of a mixture of rain and hail.

• Study below storm core:

Next, the region just below the hail core is shown. The region for spectral analysis is shown

in Fig. 5.23 (B) marked as region ’3’. The HID index shows that it is a region of hail. The

dual-polarization spectra is shown in Fig.5.26. Spectral broadening is observed in S(Z).

The S(Zdr) spectrum shows a positive slope. This is because hail from higher elevation falls

and mixes with the liquid or rain. Also, due to the strong wind, size sorting occurs; hence

we see the slope in the S(Zdr) spectrum.

The S(ρHV ) is low in the region, indicating a non-uniform distribution of particles. This is

evident due to the presence of a mixture of rain and hail.
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Figure 5.26: Dual-polarization Doppler spectra (left to right) S(Z),S(Zdr) and S(ρhv) at 16.5 km along

29◦ azimuth. The location of the spectra are shown in Fig.5.23 (B) marked as region ’3’.

5.7 Conclusion

Hydrometeor classification algorithm performed on the radar data showed the presence of dif-

ferent types of hydrometeors, including rain, hail, large drops, mixture of rain and hail, snow,

graupel, and dendrites. Spectral analysis was done at different range bins, and the properties are

reported. Spectral broadening and bi-modal spectra are observed in S(Z). Slopes in S(ZDR)

indicates size sorting, which occurs due to strong vertical wind motion. Hence, spectral polarime-

try can be used to characterize the dynamics of a storm at a particular radar resolution volume.

Spectral properties reveal essential information about the microphysics of a storm observed by

dual-polarization weather radar.
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Chapter 6

Summary

6.1 Discussion

This research’s primary focus is to mitigate sea clutter using spectral filtering and study rain and

hail from intense storms using spectral polarimetry. The CSU-SEAPOL radar is a dual-polarized

parametric Doppler radar that was developed to be deployed on ships in different campaigns on

different water bodies in various parts of the world. The main goal of the radar is to provide precip-

itation observations to the researcher onboard the vessel. Once they find their region of interest, the

vessel is guided in those locations where they carry out their experiments. Radar observations have

errors and biases, which may lead to wrong decisions by meteorologists and forecasters; hence it is

imperative to reduce them. When the radar scans at low elevation to observe rain at the sea surface,

the reflections from the sea surface, also known as sea clutter, produce bias in the radar moments

and dual-pol variables. Hence sea clutter mitigation is a significant problem.

Traditionally, in filtering methods like standard notch filters, GMAP and PTDM, the filtered time

series is estimated from the filtered spectra, which is used in estimating radar moments using the

pulse-pair processing. The moments can also be directly computed from the filtered spectra; this

is regarded as spectral processing. Precipitation spectrum can be obtained by applying spectral

filters, which can suppress clutter and noise components. Next, the radar moments and variables

are estimated directly from the filtered and thresholded spectra using spectral processing. Hence

spectral processing has become an essential algorithm in the weather radar community.

In Chapter 2 the pulse-pair processing and the spectral processing algorithms are discussed. In

Chapter 3, the existing spectral filtering algorithms are implemented for sea clutter mitigation.

Firstly the standard notch filter has been implemented. Traditionally this filter has been used by

the WSR-88D operational radars for ground clutter mitigation with a fixed clutter map. Three

different clutter widths are used depending on the strength of the clutter. Since, in the case of sea
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clutter, it is impossible to construct a fixed clutter map due to its uncertain nature, hence for every

scan, the sea clutter contaminated ranges bins are identified using fuzzy logic approach. Now since

sea clutter spectra may not occur precisely at zero Doppler unlike ground clutter, hence once the

filters are applied, they do not successfully suppress sea clutter from all the contaminated range

bins. Next, the Gaussian Model Adaptive Processing (GMAP) is implemented. It this case, we do

not require any clutter map since the decision of filtering is made from the Clutter to Signal Ratio

value computed from the spectrum at each range bin. This filter also was initially used for ground

clutter mitigation where the central five Doppler bins are removed, and a Gaussian spectrum is

fitted to retrieve the missing values in the spectra. Since there is no limit to the notch width, a

wider width can be used where the clutter occurs very close to the zero Doppler. Hence GMAP

performs better than the notch filter due to its adaptive nature of identifying clutter bins. Next, a

Parametric Time Domain Model is implemented to estimate the mean power, velocity, and spectral

width of precipitation and clutter. In the original PDTM algorithm, the mean Doppler velocity for

the initialization of the parameter estimation process was assumed to be zero since it was designed

for ground clutter. In this case, we do not make such assumptions and directly perform a two echo

test and separately estimate the precipitation and sea clutter parameters. This is observed to have

the best performance among all the three filtering algorithms.

In Chapter 4 using the Auto-Correlation Spectral Density, a thresholding quantity known as Spec-

tral Signal Quality Index, which is the Fourier domain equivalent of the Spectral Quality Index

in the time domain has been discussed. Using the clutter spectral parameters estimated from the

PTDM algorithm along with the SSQI threshold, precipitation, sea clutter, and noise Doppler bins

are identified. This combined filtering methodology is regarded as Advanced Spectral Filter (ASF).

Next, a precipitation mask is constructed, which is used to estimate radar moments and variables

from the dual-polarization spectra. Following this, the performances of all the filtering algorithms

are compared. ASF is observed to have the best performance among all the clutter filters imple-

mented.

In Chapter 5, the CSU-CHIVO radar and its contribution to the Relampago campaign has been
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discussed. This chapter’s primary focus is to study the dual-polarization spectra of rain and hail

in intense convective storms. Firstly, the general properties of rain spectra in steady conditions

i.e., stratiform cases, are studied. Next, a convective case with a hail core is studied. Different

dual-polarization spectral properties like bi-modal power spectra, slope in differential reflectivity

spectra, lowering of co-pol correlation spectra, etc. helped in the conclusion of different storm

dynamics and micro-physics in a particular radar resolution volume. It is finally concluded that

intense micro-physical properties of storms can be characterized using spectral polarimetry.

6.2 Suggestions for future work

In the case of the SEAPOL radar, it is essential to find a method for automatic detection of

sea clutter, which can be implemented in real-time. The main challenge here is that since it is a

fast scanning radar, it collects very few samples at a particular time instance, which is not enough

for the automatic detection process. This problem needs to be addressed in future work. It has

been concluded in the thesis that the adaptive spectral filter has the best performance in the sea-

clutter mitigation, but in this case, the filtered time-series signal cannot be obtained because, after

thresholding, we lose parts of irrelevant data hence the reconstruction from the spectral domain

was not done. This is another problem that needs to be addressed in future research.

In the case of the Relampago data set, it has been established that spectral polarimetry can be

used to characterize intense convective storms and characterize different micro-physical properties

of the events associated with them. The next step is to study the complete life cycle of different

storms and investigate if some new physical properties can be derived from the study. This will

help researchers understand the factors and properties of a storm to develop, grow, and finally

decay.
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Appendix A

List of Abbreviations

Z - Reflectivity; Unit - dBZ (decibel relative to Z)

ZDR - Differntial Reflectivity; Unit- dB (decibel)

ρHV - Copol Correlation

φDP - Differential Phase; Unit- degree

IFDR - Intermediate Frequency Digital Receiver

SEAPOL - SEA-going POL-arimetric

SPURS - Salinity Processes in the Upper Ocean Regional Study

STSR - Simultaneous Transmit Simultaneous Receive

CSU-CHILL - Colorado State University-Chicago Illinois

PPI - Plan Position Indicator

RHI - Range Height Indicator

PTDMParametric Time-Domain Method

SQI - Signal Quality Index

SSQI - Spectral Signal Quality Index

GMAP - Gaussian Model Adaptive Processing

ASF - Advanced Spectral Filter

RFI - Radio Frequency Interference

I,Q - In-phase, Quadrature-phase

DFT - Discrete Fourier Transform

H-pol - Horizontal polarization

V-pol - Vertical polarization

PSD - Power Spectral Density

ASD - Auto Spectral Density
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C - Radar Constant

WSR-88D - Weather Surveillance Radar, 1988, Doppler

CSR - Clutter to Signal Ratio

SNR - Signal to Noise Ratio

MLE - Minimum Likelihood Estimate

IOP - Intensive Observing Period

EHOP - Extended Hydro-meteorology Observing Period

DROPS - Dual-Polarization Radar Operational Processing System

RELAMPAGO - Remote Sensing Of Electrification, Lightning, And Mesoscale/Microscale Pro-

cesses With Adaptive Ground Observations

HID - Hydrometeor Identification Index
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