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ABSTRACT 
 
Numerous studies have analyzed river bank dynamic porewater responses to regulated 
flows.  This research has been found to be critical to understanding not only river inflows 
and outflows from groundwater sources, but also bank failures as a result of flow 
scheduling.  Although the success of these models comes largely from further developing 
advancements in other related fields, likewise transfer of the research to other related 
fields has been slow.  In response, this paper extends a recently developed analytical 
porewater pressure response model, utilized to advise flow scheduling in the Grand 
Canyon, to analyze irrigation canal leakage and resulting large scale groundwater 
reactions.  The new model directly accounts for canal bank geometry, driving upstream 
and / or downstream water tables, and time varied irrigation flow schedules given by any 
piecewise continuous function.  This model can be used to analyze both near and far 
hydraulic effects, executes quickly, and is easy to implement on any spreadsheet 
program.  The model showed good agreement between predicted and measured canal 
leakage and resulting downstream water table changes for the Interstate Canal in 
Nebraska.  Recommendations are made for further uses of the model. 
 

INTRODUCTION 
 
Regulating rivers through controlled dam flows can cause tremendous geomorphological 
effects, often expressed through numerous streambank failures.  These failures can cause 
unchecked lateral bank migration, thalweg reorienting and even avulsions, resulting in an 
unintended, unnatural, and uncontrolled restructuring of the entire riparian area.  The 
adverse geomorphologic consequences of river regulation have been well documented at 
the Glen Canyon Dam, located on the Colorado River within the Grand Canyon.  In 
particular, the riverbank stability has been found to be particularly sensitive to loading 
conditions such as the river stage fluctuations and the resulting porewater pressure 
changes. 
 
In response, an analytical model of saturated flow in a deep streambank was derived by 
Travis (2010).  This solution is capable of analyzing any one of numerous periodic river 
stage conditions, such as those expected downstream from a hydroelectric dam or due to 
natural hydrologic events. 
 
Like riverbanks, unlined canals are both significantly affected by and significantly 
contribute to groundwater conditions.  Leakage results in lost revenue, unregulated 
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groundwater contributions, and is driven by both canal flow schedules and existing water 
table elements.  Seepage into the canal can adversely affect water quality and complicate 
canal design (Swamee, Mishra, and Chahar, 2004).  Both leakage and seepage can cause 
loss of bank stability (Lorenzo et al., 2003; Thomas, Iverson, and Burkart, 2009).  Recent 
modeling efforts include Lal et al. (2010) who successfully applied an analytical solution 
to sinusoidal canal flows to improve aquifer property measurements; and Li, Boufadel, 
and Weaver (2008) who utilized a numerical solution to account for unsaturated flow in 
canal banks.   
 
In this paper, the Grand Canyon porewater pressure model is extended to account for 
groundwater effects of canal leakage.  This new model collapses to the well known one 
dimensional solution utilized by Lal et al. (2010) model for sinusoidal canal flows, 
horizontal water table conditions, and vertical banks.  Verification is obtained using the 
detailed field measurements of the Interstate Canal in Nebraska reported by Harvey and 
Sibray (2001). 
 

POREWATER RESPONSE MODEL 
 

Porewater response modeling is an established application of the basic laws of saturated 
groundwater flow.  Indeed, from the well accepted observation of Henry Darcy in 1856 
that groundwater flow is proportional to hydraulic head (Darcy, 1856), the complete 
governing equations of dynamic seepage flow can be immediately derived (see Mays and 
Todd, 2005).  And while groundwater flow remains a highly active area of research, 
current efforts on the subject tend to focus on application specific finite difference / 
element algorithms, rather than pursuing analytical solutions to the governing equations 
(e.g. Boutt, 2010; Haitjema et al., 2010; others). 
 
Unfortunately, numerical flow solutions become difficult to achieve for periodic, tidal 
type, loading conditions, since porewater pressure distributions are dependent on their 
history, and it is not clear what constitutes reasonable initial conditions of periodic 
fluctuations.  One approach to resolving the initial condition problem is to run the finite 
element model through sufficient cycles that risk response also becomes periodic.  The 
alternative approach is to iteratively adjust the initial conditions until they are in 
agreement with those at the end of the period.  Either method would be expected to 
significantly increase computing time. 
 
A resolution to this challenge is to derive an analytical model general of the porewater 
response to periodic adjacent water stages.  Figure 1 shows the simplified bank geometry, 
defining x (m) the horizontal coordinate, y (m) the vertical coordinate, w the bank width, 
b (m) the bank height, and z(t) the adjacent stage (in meters) as a function of time t (sec).  
The definition and units of the soil variables are shown in Table 1, which also includes 
the specific values for the example application shown subsequently. 
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Figure 1.  Canal Bank Model 

 
Saturated Flow 

The saturated region in the riverbank is described by the two-dimensional Richards 
equation for saturated flow (Fredlund and Rahardjo, 1993): 
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where hs(x,y,t) (m) is the hydraulic head in the saturated region, ss (m-1) is the specific 
storativity, and ks (m/sec) is the saturated hydraulic conductivity.  The bank is assumed to 
be homogeneous and all of the soil properties are assumed to be constant.  The origin is 
located at the interface of the sandbar with the river base.   
 
Equation (1) is simplified by introducing the composite variable u, where 
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Limiting the solution to periodic functions, the time constraint is the periodic condition: 
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The boundary conditions for hs are  
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The first boundary condition requires that the hydraulic head equation converge to a 
known water table gradient /h∞  (m/m) as u increases, whereas the second accounts for 
periodic river stage changes over time.   
 
The solution to Equation (3) is 
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where h0 (m) is the average of the z(t) function over the time period; Sn (m) and Cn (m) 
are constants; n is an integer; and ηn (sec-1) and εn (m-1) are 
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Through standard methods for Fourier application, Equation (7) can be applied to any 
periodic stage function at u = 1.  In particular, for sinusoidal z(t) and θ = 90º, Equation 
(7) becomes one dimensional and collapses to the well known solution for tidal driven 
groundwater fluctuations (e.g. Furbish, 1997); and successfully applied by Lal et al. 
(2010) to describe canal effects.  Expansions of the tidal solution by Fourier series were 
also developed by Nielsen (1990) for sloping beaches, wherein he utilized perturbation to 
derive similar equations but expressed in terms of x only and did not account for the long 
range water table gradient. 
 
See Travis (2010) for examples and Fourier series application. 
 
Unsaturated Flow 
 
The saturated solution hs is valid only when s bh y ψ≥ + , where ψb (m) is the pressure 
head at the air entry value (a negative value). When this condition is violated (e.g. 

s bh y ψ< + ), flow is governed by the unsaturated head. 
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Travis (2010) analyzed the unsaturated head for short time periodic loading by 
simplifying the governing equation through a scale comparison of the unsaturated 
hydraulic conductivities and specific storativities as presented in several key studies.  In 
general, however, this approach is not valid for applications to canals, where the 
timeframes of interest are much longer – on the order of months rather than hours.  It is 
suspected that the long timeframes can be utilized in a similar matter to simplify the 
unsaturated analysis. 
 
The present work follows simply ignores unsaturated flow, and thereby introduces some 
degree of error.  This approach is weakly defensible by noting that it is consistent with 
numerous other studies.  Future work will account for unsaturated flow by utilizing 
potential simplifications to the governing equations and insights provided by Li, 
Boufadel, and Weaver (2008). 

 
Leakage 
 
Leakage at the canal is governed by Darcy’s law, sq k ia= , where q (m3/sec) is the 
leakage (negative for seepage), i is the hydraulic head gradient (m/m) and a (m2) the flux 
area.  Specific to the defined canal geometry, the leakage is given by  
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where ℓ is the length of the canal.  Note that Equation (10) accounts bank flows on both 
sides. 
 
The fluctuating component of the leakage may be obtained by utilizing Equation (10) 
with the derivative (with respect to u) of Equation (7), and applying the derived formula 
at the bank.  The result is 
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The gradient term in Equation (11) must be carefully considered.  Because the leakage 
effect is local, assuming a large scale gradient would be incorrect.  Instead, since it is 
expected that leakage will descend freely through the aquifer until encountering the water 
table, the long range hydraulic gradient is simply / 1h∞ = −  (m/m).  Thus, the correct 
leakage formula is 
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On average, the trigonometric terms will average to zero, resulting in the simple formula 
 
 22 tansq k b θ= − l  (13) 
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CASE STUDY:  INTERSTATE CANAL 
 
Parameters 
 
Harvey and Sibray (2001) describe a detailed, long term field study of leakage from 
Nebraska’s Interstate Canal.  The data from the Interstate Canal is particularly applicable 
given the potential that the leakage from the base of the canal may be limited, because of 
sand intrusion into the highly fractured aquifer (Harvey and Sibray, 2001).  Thus, bank 
leakage may account for a large portion of the measured effects.   
 
Downstream groundwater conditions appear to be governed by University Lake, located 
approximately 900 m downstream at an elevation approximately 14 m below the nearest 
point on the canal (see Figure 2). 
 

 
Figure 2.  Interstate Canal Schematic 

 
As shown in Table 1, Harvey and Sibray (2001) report hydraulic conductivities from a 
number of sources.  Both horizontal (kh) and vertical (kv) values are shown, along with 
the median and mean values.  Anisotropy is high, a complication resolved by determining 
an effective hydraulic conductivity.  
 
Following Todd and Mays (2005) the effective hydraulic conductivity in the direction of 
University Lake is given in terms of the vertical and horizontal values by 
 
 

11 2 1 2cos sins h vk k kβ β
−− −⎡ ⎤= +⎣ ⎦  (14) 

 
where β is the angle from the horizontal between the canal and the lake (0.6°).  From 
Equation (14), the ks based on both the mean and median values is approximately 10-2 
m/sec, wherein rounding to the order of magnitude was applied to reflect the significant 
uncertainty of this approximation. 
 
Likewise for the leakage calculation, where the gradient is governed by local conditions, 
applying Equation (14) results in estimates for ks of 1 m / day for the median conditions 
and 10 m / day based on average values.  
 

14 m 

900 m
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Table 1.  Reported Hydraulic Conductivities in the Study Region 
 kh (m/day) kv (m/day) Source Comment 
 6912 0.86 Sibray and Zhang (1994) Reported average 
 864 0.86 Barash and Ralston, (1991) Reported lower bound 
 3456 17.30 Barash and Ralston, (1991) Reported upper bound 

Mean: 3744 6.34  
Median: 3456 0.86  

 
Canal water surface elevations (WSE) were not reported by Harvey and Sibray (2001), 
but flows were.  Assuming normal flow conditions, the WSE for the periods of record 
were converted from the reported flows, and are shown in Figure 3. 
   

 
Figure 3.  Converted Flow Data and Corresponding Fourier Approximation 

 
For an unconfined aquifer, the specific storativity may be approximated as the porosity 
divided by the aquifer depth.  Thus, assuming a porosity and depth of the shallow aquifer 
of 40% and 4 m respectively, ss was estimated to be 10-1 m-1. 
 
The coefficients of the Fourier series were evaluated based on the converted flow data.  
The series was evaluated out to 500 terms which resulted in excellent convergence 
(Figure 3). 
 
Model execution took about 10 seconds on an Excel spreadsheet. 
 
Fluctuation Predictions  
 
Figure 4 compares the predicted and recorded water table elevations at monitoring well 
12, located just upstream of the University Lake (approximately 900 meters from the 
nearest point on the canal).  The predicted elevations were based on hydraulic head 
estimates projected from the average water surface elevation at the canal (elevation 
1277.7).   
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Figure 4.  Predicted Versus Measured WSE at Monitoring Well 12 

 
The predicted water table approximates the recorded data with notable similarities and 
differences.  The similarities are: 
 

1.  The peak elevations for the second and third seasons are in good agreement; 
2. A smaller peak at each season is predicted, consistent with the data; 
3. The recorded concavity of the water table recession is predicted; 
4. The predicted low water table elevation at the last recorded season is in good 

agreement with the recorded data. 
 

The differences between the predicted and measured water table elevations are: 
1.  Although the initial, smaller water table peak at the beginning of each season is 

predicted, the predicted magnitude is much higher than recorded; 
2. The predicted peak elevation at the first season is much higher than recorded, as is 

the low elevation; 
3. The predicted recession limb of the second season is much lower than measured. 

 
Some of the observed differences between the predicted and measured water table 
elevations result from the assumption of periodic conditions.  The result of the periodic 
assumption is that the best fit is expected near the middle of the time range considered.  It 
is also likely that the predictions would be improved through a more rigorous accounting 
of the hydraulic conductivity anisotropy and a field measurement of the specific 
storativity.   
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Leakage 
 
From Equation (13), the estimated leakage per unit length of the canal when flowing full 
is about 7 m3/day/m and 70 m3/day/m for the median and mean hydraulic conductivities 
respectively.  This compares reasonably with field measurements indicating that 
6 35q≤ ≤  m3/day/m (Harvey and Sibray, 2001; attributed to Ann Bleed). 
 

CONCLUSIONS 
 
By applying the methodology developed for describing riverbank porewater effects of 
regulated flows, several analytical solutions have been presented to describe leakage and 
seepage effects in canals.  These solutions account for canal bank geometry, driving 
upstream and / or downstream water table gradients, and time varied irrigation flow 
schedules given by any piecewise continuous function.   
 
While several measurements of the Interstate Canal verify the derived porewater response 
model, there are other, potentially more important applications that should be considered.  
Several examples include: 
 

1. Canal bank stability.  Bank stability is often critically dependent on the internal 
seepage processes, particularly for applications such as canals where the adjacent 
flows are mild.  By coupling the derived model with a slope stability program, a 
powerful analytical tool would be developed. 

2. Canal design.  With a simple analytical method of estimating leakage and 
seepage, canals could be located and designed to minimize these effects and 
potentially avoid the necessity of lining part or all of the canal. 

3. Aquifer property measurements.  A useful application of the model presented 
here is to utilize the Lal et al. (2010) field measurement techniques without the 
need to change the scheduled flows.  Since the model can incorporate any existing 
flow schedule, the measured data can be compared with predicted results and the 
aquifer properties thereby calibrated. 

 
While useful, the derived model needs to be expanded in order to adequately account for 
matric suction effects, which is likely to affect the porewater responses as well as the 
water retained in the banks, both of which need to be considered for bank stability. 
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