DISSERTATION

CHARACTERIZATION OF CYCLIC NUCLEOTIDE PHOSPHODIESTERASES IN THE TRANSCRIPTOME OF THE CRUSTACEAN MOLTING GLAND

Submitted by

Nada Mukhtar Rifai

Department of Biology

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2019

Doctoral Committee:

Advisor: Donald L. Mykles

Deborah Garrity Shane Kanatous Santiago Di-Pietro Copyright by Nada Mukhtar Rifai 2019

All Rights Reserved

ABSTRACT

CHARACTERIZATION OF CYCLIC NUCLEOTIDE PHOSPHODIESTERASES IN THE TRANSCRIPTOME OF THE CRUSTACEAN MOLTING GLAND

Molting in crustaceans is a complex physiological process that has to occur in order for the animal to grow. The old exoskeleton must be discarded and a new one to be formed from the inside out. Molting is coordinated and regulated mainly by two hormones; steroid hormones named ecdysteroids, which are synthesized and secreted from a pair of Y- organs (YOs) that are located in the cephalothorax and a neuropeptide hormone, the molt inhibiting hormone (MIH), which is secreted from the X-organ/sinus gland complex located in the eyestalks. Molting is induced when MIH is decreased in the blood (hemolymph) which in turn stimulates the YOs to produce and secrete ecdysteroids (molting hormones). There are four distinctive physiological states that the YO can be in throughout the molt cycle; the transition of the YO from the "basal" to the "activated" state happens when the animal enters premolt. During mid-premolt, the YO transitions to the "committed" state, in which the YO becomes insensitive to MIH. In this state, the circulating hemolymph contains high levels of ecdysteroids, which increase to a peak before the actual molt (ecdysis) happens. The YO transitions from the committed to the repressed state in late premolt. Finally, the YO returns back to the basal state in the postmolt stage. MIH binds to membrane receptors, activating a signal transduction pathway divided into "triggering" and "summation" phases. A transient increase in cAMP during the triggering phase leads to prolonged cGMPdependent suppression of ecdysteroidogenesis during the summation phase. This allows for sustained inhibition of the YO between MIH pulses in the intermolt animal. Cyclic nucleotide phosphodiesterases (PDEs) play an important role by controlling cAMP and cGMP levels. PDEs

hydrolyze the phosphodiester bond in cAMP and cGMP to AMP and GMP, respectively. Mammals have 21 PDE genes that are categorized into 11 families, designated PDE1 to PDE11. Each PDE family has specific catalytic and biochemical properties and tissue distributions. Eight contigs encoding full-length PDE sequences were identified in the G. lateralis Y-organ transcriptome. Seven contigs encoding four full-length PDE sequences and three contigs encoding partial-length PDE were identified in the Carcinus maenas transcriptome. Multiple sequence alignments showed high sequence identities with orthologs from other species in catalytic (PDEase) and other conserved functional domains. Sequence analysis assigned the Gl-PDE sequences and Cm-PDE sequences to PDE1, PDE2, PDE3, PDE4, PDE5, PDE7, PDE8, PDE9, and PDE11 classes, indicating a high diversity of PDE genes in decapod crustaceans. The reduced sensitivity to MIH by the committed YO is associated with a large increase in PDE activity, which suggests that PDEs modulate the response to neuropeptide during the molt cycle. Nonhydrolyzable analogs of cAMP and cGMP inhibit YO ecdysteroid secretion in-vitro. Moreover, C. maenas YO ecdysteroidogenesis is inhibited by IBMX, a general PDE inhibitor, and Zaprinast, a specific PDE5 inhibitor. Rolipram, a specific PDE4 inhibitor, has no effect. These data suggest that PDE5 activity modulates the effect of MIH on YO ecdysteroidogenesis. RNA-seq data from MLA showed different mRNA levels for the different PDEs; PDE1 and PDE2 showed a similar pattern as they both increased in intermolt (IM) then decreased dramatically in early premolt (EP), mid premolt (MP), late premolt (LP), and post molt (PM). PDE4 increased in IM followed by a slight decrease and increase in EP and MP then a sharp decline in both LP and PM. Both PDE5 and PDE9 were similar in terms they increased in IM followed by a sharp decrease in EP, MP, LP and they differed as PDE5 increased slightly in PM whereas PDE9 remained decreased. PDE7 began with an increase in IM then a decline with a constant expression level in both EP and MP

followed by dramatic decline in LP and PM. PDE11 showed a typical pattern consistent with the ecdysteroid expression level as it began with a slight increase in IM followed by an increased in EP and reached a peak in MP then declined in a dramatic way in LP and continued decreasing in PM. Taken together, the data suggest that PDE5 and PDE11 play a role in regulating cyclic nucleotide levels in the YO.

ACKNOWLEDGEMENTS

First and foremost, Alhamdullah (means Thanks GOD in Arabic) for giving me everything I've dreamt of, and the strength and power required to finish an important milestone in my life. I could have never done this without the faith I have in Allah, the Almighty.

Then, my great thanks, sincere gratitude, and appreciation to my advisor Dr. Donald Mykles for his gentleness, motivation, endless support, infinite encouragement, and supervision throughout my years of study. I could not have imagined a better advisor and mentor as a PhD student. I also extend my thanks and appreciation for my committee members: Dr. Garrity, Dr. Shane, and Dr. Santiago for their time, help, and insightful comments.

My thanks are comprehensive to the Ministry of Higher Education in Libya for supplying me this study scholarship. I am grateful to have my husband, Khalid, and my lovely children, Saja and Serajaldeen, beside me and for their understanding, patience, and support all these years. My sincere respect and gratitude to my dear father for his support, encouragement and enthusiasm to continue my higher studies, to my lovely mother for her continuous prayers to succeed; and to my sisters (Nahla and Nuha), and brothers (Adam, Anwar, and Ayoub) simply for being awesome siblings; and to my family-in-law for their support; and family and friends in Libya. Last but not least, I would like to thank all former and current students in the crab lab for being such a great family.

DEDICATION

In loving memory of my brother "Ahmad" (1983-2013), may Allah gather us together in

heaven.

TABLE OF CONTENTS

ABSTRACTii
ACKNOWLEDEGEMENTSv
DEDICATIONvi
CHAPTER ONE: INTRODUCTION1
CHAPTER TWO: IDENTIFICATION AND CHARACTERIZATION OF THE
PHOSPHODIESTERASES (PDES) IN THE DECAPOD CRUSTACEAN'S Y-ORGAN USING
TRANSCRIPTOMICS AND qPCR9
Summary9
Introduction10
Materials/Methods
Results18
Discussion23
Conclusions
CHAPTER THREE: EFFECTS OF MOLT INDUCTION METHODS ON CYCLIC
NUCLEOTIDE PHOSPHODIESTERASE EXPRESSION IN THE DECAPOD CRUSTACEAN
MOLTING GLAND
Summary109
Introduction

Materials/Methods	
Results	117
Discussion	
Conclusions	
CHAPTER FOUR: SUMMARY AND FUTURE DIRECTIONS	131
REFERENCES	

CHAPTER ONE

Introduction

Background and Rationale:

Although a crustacean grows, its exoskeleton (made from chitin and calcium) does not, so the animal must molt its old exoskeleton to accommodate its expanding body, which is essential for growth, metamorphosis, and reproduction (Skinner, 1962). Depending on the rigidness of the exoskeleton, the crustacean molt cycle is divided into five distinctive stages designated from A to E (Drach, 1939). The molt cycle duration varies depending on the species. The process of molting is hormonally controlled. In preparation for molting, the tissue layer under the exoskeleton detaches and secretes a new exoskeleton. At this stage, the animal has two skeletons – the outer and the inner exoskeleton. After the two outermost layers of the new skeleton are formed, the old skeleton detaches along specific weak points and the animal pulls out, leaving its old skeleton intact except for the split. Mobility is limited immediately after a molt because the exoskeleton is not rigid enough to keep the limbs stiff. Although crustaceans molt throughout their entire life, they molt less frequently with age (Chang et al., 1993).

The crustacean molt cycle is divided into five stages (A-E), based on changes in the exoskeleton. The actual shedding of the exoskeleton occurs at ecdysis (Stage E) and is followed by postmolt stages A and B, which are both marked by thickening and hardening of the new exoskeleton. Anecdysis, or Stage C₄, or intermolt stage, is the interval characterized by a hard exoskeleton that is tightly adhered to the epidermis and is the stage during which the animal feeds and reproduces. Stages D_{1-4} , known as premolt or proecdysis, is when the animal prepares for

molting by synthesizing the outermost layers of a new exoskeleton and regenerates lost appendages (Chang and Mykles, 2011).

Molting in crustaceans might be affected by various environmental factors, such as reproduction, nourishment, and migration. Moreover, the frequency and timing of molting in crustaceans can be impacted by some conditions such as salinity and temperature (Skinner, 1985).

The molting cycle in decapod crustaceans is controlled via two endocrine glands:

Molting can be stimulated or manipulated by eyestalk ablation (ESA), an acute method to induce molting in the lab, or autotomy of 5 or more walking legs (Multiple Leg Autotomy, MLA), which resembles the natural way. Molting is a very complicated process in which two glands contribute to complete this vital mission. The Y-organs (YOs) are a pair of molting glands located in the anterior body. The YOs secretes steroid molting hormones or ecdysteroids, which stimulate molting processes. The YOs are suppressed by molt-inhibiting hormone (MIH) and the crustacean hyperglycemic hormone (CHH), which are neuropeptides secreted by the X-organ -sinus gland complex found in the eyestalks (Lachaise et al., 1993, Covi et al., 2010).

MIH is a member of a novel neuropeptide family, which has been found only in arthropods. This neuropeptide family regulates a variety of functions including growth, molting, reproduction, and metabolism. MIH binds to hormone receptors on the membranes of YO cells and likely mediates its action via cyclic nucleotide second messengers (Covi et al., 2009). As shown in Fig. 1.1., MIH signaling usually involves an increase in cAMP, followed by a larger increase in cGMP. The delayed increase in cGMP suggests that MIH activates a soluble NO-sensitive guanylyl cyclase (GC-I), as activation of a membrane GC would result in an immediate increase in cGMP. Both cAMP and cGMP inhibit YO ecdysteroidogenesis (Covi et al., 2012). Phosphodiesterases (PDEs) such as PDE1 and PDE5 hydrolyze cAMP and cGMP and thus control the responsiveness of YOs to MIH (Covi et al. 2012).

Molting is induced when MIH is decreased in the blood, which, in turn, stimulates the YO to produce and secrete ecdysteroids. The YO transitions from the "basal" to the "activated" state and the animal enters premolt. During mid-premolt, the YO transitions to the "committed" state, in which the YO becomes insensitive to MIH and CHH (Chang and Mykles 2011). The reduced sensitivity to the neuropeptide MIH is associated with a large increase in PDE activity (Fig1.2.) (Chang and Mykles 2011). This suggests that PDE activity controls the response to MIH and CHH during the molt cycle and may also explain the difference in the effect of IBMX, a universal PDE inhibitor, on the YOs of the two species.

Cyclic nucleotide phosphodiesterase's (PDEs) and their contribution in the MIH signaling pathway in the crustacean YO:

Cyclic nucleotide phosphodiesterases (PDEs) are prevalent enzymes that have been significant and valuable targets in medical and pharmacological fields due to their critical function in regulating the second messengers adenosine 3'5' cyclic monophosphate (cAMP) and/or guanosine 3'5' cyclic monophosphate (cGMP) in signal transduction pathways

(Murthy and Mangot 2015). Upon binding of the ligand to its specific receptor on the cell membrane, the second messenger's concentrations will be changed, that alternatively will lead to the signal transmission within the cell. These second messengers are controlled by both the rate of synthesis, with the action of adenylyl/guanylyl cyclase on ATP/GTP and the rate of cAMP/cGMP degradation by the action of PDEs (Fajardo et al., 2014). So, PDEs are enzymes that hydrolyze the 3' cyclic phosphodiester bond in cAMP and cGMP to AMP and GMP, respectively. Mammals have 21 PDE genes that are categorized into 11 families, designated PDE1 to PDE11. Each PDE

family has specific catalytic and biochemical properties, protein sequences, inhibition tendency, and tissue distributions (Table 1.1) (Sandeep et al., 2008; Francis et al., 2011). Mammalian class I PDEs have an HD domain in the C-terminal half and show high affinity for cAMP and/or cGMP. Protein domains involved in regulation of PDE enzymatic activity and sub-cellular localization are mainly present in the N-terminal half. Some PDEs have phosphorylation sites targeted by protein kinases and lipid modification sites. Approximately 270 aa in the C-terminal catalytic domain are conserved, with a sequence identity of 35% to 50% among different PDE families. Some PDE families are composed of 2 to 4 subfamily genes showing sequence identity of more than 70% and having identical protein domain organization. Multiple transcriptional products, which are generated from most PDE genes by alternative splicing or transcription from distinct promoters, have been identified or predicted in human genome databases (Francis et al., 2011).

The number of PDE genes in crustaceans is unknown. YOs have PDE activity, which is inhibited by IBMX, 8MM-IBMX, and zaprinast, but not EHNA or rolipram (Nakatsuji et al., 2006). These data suggest that the YO has PDE1 and PDE5 activity, but not PDE2 or PDE4 activity. Interestingly, IBMX inhibits ecdysteroidogenesis in the green crab *Carcinus maenas* YO, but not the blackback land crab *Gecarcinus lateralis* YO, which suggests that there is a difference in cyclic nucleotide metabolism between the two species (Nakatsuji et al., 2009; Covi et al., 2008, 2009, 2012.

The purpose of this research project is to identify and characterize the different types of PDEs in the YO of the blackback land crab *Gecarcinus lateralis* and the green crab (*Carcinus maenas*) by using the power of transcriptomics, as well as conventional lab techniques, such as qPCR and *in-vitro* experiments. The hypothesis is based on the premise that the reduced sensitivity to MIH by the committed YO is associated with a large increase in PDE activity, which suggests that PDEs modulate the response to the neuropeptide, MIH, during the molt cycle. Thus, increasing ecdysteroidogenesis.

This thesis addresses the identification and characterization of the PDEs in the land crab and green crab YO from the transcriptomics data, reports results from YO assays in both land crab and green crab, compares PDE gene expression in different tissues from both the land crab and green crab using qPCR, and reports the effects of MLA and ESA ± rapamycin on PDE gene expression using RNA-seq and qPCR. The thesis concludes with a chapter summarizing the results and their significance and recommending future directions.

Figure 1.1. Proposed MIH signaling pathway regulating ecdysteroidogenesis in decapod crustacean molting gland. The "triggering" phase is initiated by binding of MIH to a G proteincoupled receptor (MIH-R) and activation of adenylyl cyclase (AC); cAMP increases intracellular Ca²⁺ via cAMP-dependent protein kinase (PKA) phosphorylation of Ca²⁺ channels. Sensitivity to MIH is determined by phosphodiesterase 1 (PDE1) activity, which varies during the molting cycle. The "summation" phase is mediated by NO and cGMP. Calmodulin (CaM) links the two phases by activating NO synthase (NOS) directly and indirectly via calcineurin (CaN). Dephosphorylation of NOS by CaM can potentially prolong the response to MIH. CaM can also activate PDE1 to inhibit the triggering phase (PDE1 can also hydrolyze cGMP, thus inhibiting the summation phase). cGMP-dependent protein kinase (PKG) inhibits ecdysteroidogenesis. Chronic activation of PKA may directly inhibit ecdysteroidogenesis. Our assumption is that YOs from all decapods are regulated by the same pathway but may differ in the sensitivity of the triggering and summation phases. Other abbreviations: G, G protein; GC-I, NO-sensitive guanylyl cyclase; PDE5, cGMP PDE. From Covi et al., (2012).

Figure 1. 2. Hormonal regulation of molting in the blackback land crab, *Gecarcinus lateralis*. Diagram shows the relationship between molt stage, YO state, YO sensitivity to MIH, limb regeneration (R index), YO ecdysteroid synthetic capacity, and hemolymph ecdysteroid titer. During postmolt (A, B, C_{1-3}), intermolt (C₄), early premolt (D₀), and mid premolt (D_{1,2}), hemolymph ecdysteroid titers are correlated with YO synthetic capacity; during late premolt (D_{3,4}), high ecdysteroid represses YO ecdysteroidogenesis and ecdysteroid titer falls. The YO transitions through four physiological states during the molt cycle: basal (B), activated (A), committed (C), and repressed (R). The B to A transition is triggered by a reduction in MIH; the YOs hypertrophy, but remain sensitive to MIH, as premolt is suspended by MIH injection or by limb bud autotomy (LBA). At the A to C transition, the animal becomes committed to molt, as the YO is less sensitive to MIH and premolt is not suspended by LBA; this transition may be triggered by an increase in MIH or an unidentified tropic factor. At the C to R transition, YO ecdysteroid synthetic capacity remains high, but high hemolymph ecdysteroid titer inhibits ecdysteroid secretion. Molting, or ecdysis (E), marks the R to B transition, during which the YO atrophies and becomes sensitive to MIH. From Chang and Mykles (2011).

Table1.1. Human PDE isozymes are divided into 11 families and differ according to substrate specificity, mechanisms of regulation, and sensitivity to inhibitors. \uparrow represents an increase in catalytic activity, whereas \downarrow represents a decrease in catalytic activity. * Number of isozymes refers to the number of distinct protein products derived from all genes within a given family that have been identified to date. From Fajardo et al., (2014).

lsozyme Family	Number of Genes	Putative Number of Isozymes *	Substrate Specificity	Regulators	Inhibitors
1	3	21	dual	Ca ²⁺ -CaM: ↑ PKA: ↓	IC224, SH51866, 8-methoxymethyl-IBMX
2	1	3	dual	cGMP: †	EHNA, BAY 60-7550, PDP, IC933
3	2	4	dual	cGMP:↓ PKA: ↑	Milrinone, Tolafentrine, Cilostazol, Cilostamide, OPC-33540
4	4	31	cAMP	РКА:↓	Rolipram, Cilomilast, Roflumilast, Ro20-1724, Denbufylline, AWD12281
5	1	3	cGMP	cGMP: ↑ PKG: ↑	Sildenafil, Zaprinast, Dipyridamole, Tadalafil, Vardenafil DMPPO, E402, DA8159, 8-methoxymethyl-IBMX
6	3	3	cGMP	Transducin: 1	Sildenafil, Dipyridamole, Zaprinast
7	2	7	cAMP	unknown	BRL 50481, IC242, Dipyridamole, Thiadiazoles
8	2	9	cAMP	unknown	Dipyridamole
9	1	2	cGMP	unknown	BAY73-669, SCH 51886, Zaprinast
10	1	10	dual	PKA: ↑	Papaverine, PF-2545920, PQ-10, Dipyridamole
11	1	4	dual	unknown	BC 11-38, Dipyridamole

CHAPTER TWO

IDENTIFICATION AND CHARACTERIZATION OF THE <u>P</u>HOSPHO<u>DIE</u>STERASES (PDES) IN THE DECAPOD CRUSTACEAN'S Y-ORGAN USING TRANSCRIPTOMICS AND qPCR

Summary

Cyclic nucleotide signaling mediates the suppression of the crustacean molting gland (Yorgan or YO) by molt-inhibiting hormone (MIH). When MIH level drops the YO transitions from the basal to the activated state and the animal enters premolt. During mid-premolt, the YO transitions to the committed state, in which the YO becomes insensitive to MIH. Phosphodiesterases (PDEs) hydrolyze the phosphodiester bond in cAMP and cGMP to AMP and GMP, respectively, and thus can modulate the response of the YO to MIH. In some species, PDE inhibitors decrease molting hormone (ecdysteroid) biosynthesis by the YO *in-vitro*, indicating that PDE activity can keep cyclic nucleotide levels low. Increased PDE activity in the YO is correlated with a reduced sensitivity to MIH when the animal becomes committed to molt. In mammals, 21 PDE genes are organized into 11 families, designated PDE1 to PDE11. Each PDE family has specific catalytic and biochemical properties and tissue distributions. The number and types of PDE genes in crustaceans is unknown. A reference YO transcriptome from the blackback land crab (Gecarcinus lateralis), consisting of 3 biological replicates of intermolt animals, was analyzed for PDE sequences. Nine different contigs encoding seven full-length PDE sequences two partials were identified in G. lateralis. Seven contigs encoding four full-length PDE sequences

and three contigs encoding partial-length PDE were identified in the green shore crab (*Carcinus maenas*) transcriptome. Protein alignments and ClustalX analysis of the Gl-PDE sequences with orthogs from other species in the GenBank database showed that the sequences corresponded to PDE1, 2, 3 4, 5, 7, 8, 9, and 11. General and selective inhibitors were used to characterize the PDEs regulating ecdysteroid secretion in the green crab, *Carcinus maenas*, YO. IBMX, vinpocetine, EHNA and zaprinast ± rMIH significantly inhibited ecdysteroid secretion, while rolipram, dipyridamole, and BC11-38 did not. This suggests that PDE1, PDE2 and PDE5/11 are primarily responsible for regulating cAMP and cGMP levels. No effect on ecdysteroidogenesis was seen on the blackback land crab, *Gecarcinus lateralis*, YOs when exposed to the same PDE inhibitors *in-vitro*, indicating different regulatory metabolic machineries between the two species.

Introduction

Cyclic nucleotide phosphodiesterases (PDEs) are enzymes involved in the regulation of the intracellular concentrations of the second messengers cAMP and/or cGMP (Thompson and Appleman, 1971; Conti, 2000; Soderling and Beavo 2000). PDEs belong to a highly conserved family among all the phyla, and due to their importance in the clinical field, they have received high attention and interest (Levy et al., 2011; Ahmad et al., 2015). Because of the biochemical properties, as well as distinguishing features and complexness of the PDE system, many sophisticated and advanced approaches have been established to understand their role in regulating the cyclic nucleotides cAMP/cGMP in several signaling pathways. This has been linked to the basic pharmacological fact that regulating the degradation of any ligand or second messenger provides greater efficiency, in terms of a prompt and a greater alteration in their percentage concentration, than the regulation and modulation of their synthesis rate (Bender and Beavo, 2006; Halpin, 2008).

In mammalian systems, the PDE I superfamily consists of 11 distinct PDE families where each family is unique in having different isoforms and splice variants. PDEs are the only known enzymes that are capable of hydrolyzing or breaking down the phosphodiester bond in the second messengers cAMP/cGMP to their 5' inactive monophosphates, so their concentrations remain regulated throughout the cell at all times. PDEs are also effective in controlling the amplitude, spatial, and temporal duration of these cyclic nucleotides as well, so they are not located in unnecessary parts of a cell (Puzzo et al., 2008; Demirbas et al., 2013; Mittal et al., 2017).

Beside the crucial role of PDEs in mammals, PDEs have also been found to be pivotal in other species. For instance, the dunce gene, a cAMP PDE, in *Drosophila melanogaster*, fruit fly, is important in learning, memory and female fertility (Bellen et al., 1987; Yh et al., 1991; Day et al., 2005). Moreover, these PDEs, as the main players in the cAMP signaling pathway and the cGMP/NO signaling pathway, contribute indirectly in a variety of physiological processes; such as muscle relaxation, visual transduction, endocrine, neuronal, immune, and cardiovascular functions (Yan et al., 2016). Moreover, some PDEs will degrade only cAMP (PDE4, PDE7, PDE8), while others will only hydrolyze cGMP (PDE5, PDE6, PDE9). The rest of the PDE families, PDE1, PDE2, PDE3, PDE10, PDE11, are capable of catalyzing both second messengers as they have a dual specificity (Beavo and Brunton 2000; Mehats et al., 2002). It is thought that an invariant glutamine residue located at the catalytic core is responsible for the PDE cyclic nucleotide selectivity (Xu et al., 2000; Xu et al., 2004; Ke et al., 2011).

All eleven PDE families share a conserved catalytic domain on the carboxyl terminus and a variable regulatory domain on the amino terminus (Francis et al., 2011). About 270 conserved amino acids span the catalytic domain, and the sequence identity can reach high percentages of 35-50% between different PDE families (Houslay and Adams, 2003). This identity can be up to 70% within the same family. The PDE catalytic domain is an alpha helical region that is composed of 16 α-helices which in turn can be divided into three subdomains. These three subdomains form a deep hydrophobic pocket where a Zn⁺⁺ binding site is located. Within the PDE catalytic domain, a glutamine switch (Q-switch) is made up of an invariant glutamine residue, which is important to control the selectivity of PDEs toward cAMP or cGMP or both cyclic nucleotides (Xu et al., 2000). On the other hand, regulatory domains differ among the PDE families and that is what makes each PDE family unique and special in terms of their mode of regulation and sensitivity to specific inhibitors. For instance, PDE1 was among the first discovered PDE families; it is particularly regulated by a Ca⁺⁺/Calmodulin (CaM) binding site. PDE3 contains a transmembrane domain and PDE4 is modified by upstream conserved regions (UCRs). PDE8 has two distinct regulatory domains: a response regulatory receiver (REC) and PAS. PDE7 and PDE9 lack specific domains on their amino termini (Omori and Kotera, 2007). On the other hand, about half of the PDE families (PDE2, PDE5, PDE 6, PDE10, PDE11) have tandem GAF domains that function in the dimerization of these PDEs, in addition to the cGMP binding region (Ho et al., 2000; Yausa et al., 2000). Moreover, human PDEs databases show that 21 genes produce transcriptional variants that arose from alternative splicing or transcription from various promoters (Omori and Kotera, 2007; Francis et al., 2011).

The number and types of PDE genes in crustaceans is unknown. Studies by Nakatsuji et al(2008) addressed the hypothesis that the responsiveness of crayfish (*Procambarus clarkii*) YOs to MIH may be caused by the alteration of the PDE activity throughout the molt cycle. Furthermore, YOs have PDE activity, which is inhibited by IBMX, 8MM-IBMX, and zaprinast, but not EHNA or Ro-20-1724 (Nakatsuji, 2006). These data suggest that the YO has PDE1 and PDE5 activity, but not PDE2 or PDE4 activity. Interestingly, IBMX inhibits ecdysteroidogenesis

in the green shore crab *Carcinus maenas* YO, but not the *G. lateralis* YO, which suggests that there is a difference in cyclic nucleotide metabolism between the two species (Nakatsuji, 2009; Covi et al., 2008. 2009, 2012)

This study was conducted to identify and characterize the different PDEs in the crustacean YO. For this purpose, a reference YO transcriptome from the blackback land crab (*Gecarcinus lateralis*), consisting of 3 biological replicates of intermolt animals, was analyzed for PDE sequences that are essential elements in the cAMP/cGMP signaling pathways. Two different transcriptome databases of the green shore crab (*Carcinus maenas*) were used to extract different PDE families. Multiple alignments, phylogeny of PDEs from a variety of orthologs and a comparison between PDEs in both *G. lateralis* and *H. sapiens* are exhibited in this chapter. *Invitro* YO assays from both *G. lateralis* and *C. maenas* were performed to determine the effects of the different PDE inhibitors on ecdysteriodogenesis. Real-time PCR was conducted to compare the PDE gene expression from different tissues from the both studied decapod species.

Materials and Methods

Animals:

Adult male *Gecarcinus lateralis* (blackback land crabs) were collected from the Dominican Republic and shipped to Colorado, USA by commercial air cargo. The animals were adapted and acclimated to the new conditions by maintaining them at 27 °C and a relative humidity of ~80%. Intermolt crabs were kept in plastic cages with aspen bedding moistened with 5 p.p.t. Instant Ocean (Aquarium Systems, Mentor, OH). Crabs were maintained in an environmental chamber in a 12 hrs light:12 hrs dark cycle and were fed iceberg lettuce, carrots, and raisins twice a week (Covi et al., 2010). Blackback land crabs molt about once a year. Our other model species, *Carcinus maenas* (green shore crab) was collected from Bodega Bay Harbor in California. Animals were

kept in their optimal conditions either in Bodega Marine Laboratory or when they were shipped to Colorado. At CSU, green crabs were fed chicken liver once a week and were maintained in aerated tanks less than half filled with 30 p.p.t Instant Ocean at 20 °C. The water was changed twice a week unless it became cloudy or a death happened in a tank (Lee et al., 2007).

Transcriptomics:

Gecarcinus lateralis and *Carcinus maenas* lack a fully sequenced genome. Therefore, a reference YO transcriptome from the blackback land crab (*G. lateralis*), consisting of 3 biological replicates of intermolt animals, was assembled from RNA-seq data. For this purpose, the fiddler crab (*Uca pugnas*) limb bud transcriptome was used as a query to extract the different PDEs in the land crab's YO transcriptome (Das et al., 2016). *G lateralis* PDEs served as queries to extract different PDEs from two *C. maenas* transcriptome databases (Tepolt &Palumbi 2015; Verbruggen et al., 2015). By using the software perfectBlast, the PDE nucleotide sequences were extracted. Upon extraction, each nucleotide sequence was translated by using the translate tool, EXPASY (https://web.expasy.org/translate/) and the appropriate Open Reading Frame (OPR) was chosen. Then, a standard protein BLAST, blastp,

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch), as well as SMARTBLAST (https://blast.ncbi.nlm.nih.gov/smartblast/smartBlast.cgi) was used to find out the corresponded PDE and the possible similar orthologs. Also, a conserved domain search from the Conserved Domain Database (CDD) was used to locate the different PDE domains. (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). InterPro was used for protein sequence analysis and classification (https://www.ebi.ac.uk/interpro/)

In-vitro YO assays:

Hemolymph was withdrawn from each animal prior to dissecting. 100 μ l of hemolymph was combined with 300 μ l methanol (MeOH 100%). Green crabs were dissected directly on the assigned date, but the case was a bit different for the land crabs as they were dissected on day 3 post ESA to allow the YOs to be stimulated and activated to secrete ecdysteroids. For both species, one YO of each pair was incubated in 500 μ l of crab saline with the appropriate vehicle (as the control), whereas the other pair was incubated in 500 μ l of crab saline with the experimental chemical agent, a PDE inhibitor (as the experimental). The incubation time for both control and experimental samples was 4.5 hours, then 200 μ l of media was added to 600 μ l Methanol (MeOH 100%). Hemolymph and media samples were sent to Bodega Marine Laboratory for ELISA to evaluate the ecdysteroid levels.

RNA isolation, cDNA synthesis and PCR:

Different tissues (B, CM, ESG, G, H, HG, HP, MG, T, TG, YO) were harvested from intermolt land crabs and green crabs. All tissues were placed immediately in RNA-later after cleaning the tissues in crab saline. Tissues were kept overnight in 4°C, then transferred to -20 °C until the time of RNA purification. Total RNA was isolated from crab tissues using TRIzol reagent (Life Technologies, Carlsbad, CA) as described by (Covi et al., 2010). YO tissues (50-200 mg) were homogenized by using a micro-tube homogenizer system, while all the other tissues were homogenized by a Qiagen TissueLyser II for two minutes at a frequency of 30 revolutions per second. One ml TRIzol was added to the samples, then centrifuged at 12,000 g for 15 min at 4 °C. Supernatants were phenol-chloroform extracted and RNA in the aqueous phase was precipitated using isopropanol (0.75 ml per 1 ml TRIzol reagent). RNA was treated with DNase I (Life Technologies), extracted twice with phenol: chloroform:isoamyl alcohol (25:24:1), precipitated

with isopropanol, washed twice with 70% ethanol in DEPC water, and resuspended in nucleasefree water. A nanodrop spectrophotometer was used to verify the purity of RNA. cDNA was synthesized using 2 μ l total RNA in a 20 μ l total reaction with SuperScript III reverse transcriptase (Life Technologies) and oligo-dT (20) VN primer (50 μ mol/l; IDT, Coralville, IA) as described (Covi et al., 2010). RNA was treated with RNase H (Fisher Scientific, Pittsburgh, PA) and stored at -80 °C.

End-point PCR was used to amplify the desired product and to increase the yield of each PDE gene as well as making external standards of the different genes to be used later in qPCR. Sequence-specific primers (Table 2.2.) were utilized to detect the different PDE products in both land crab and green crab. Each PCR reaction contained 3 µl DI H₂O, 5 µl Master Mix, 1 µl cDNA template, and 0.5 µl of each forward and reverse primers. The concentration of the primers was 20 µM. cDNA was amplified in a thermocycler where denaturation occurred at 94 °C for 3 minutes to initiate the process, then followed by 30-35 cycles of 30 seconds at 94 °C, 30 seconds at the lowest annealing temperature (see Table 2.1.), 30 seconds at 72 °C. Final elongation was set for 7 minutes at 72 °C. PCR products were then separated on 1% agarose gel that contained TAE buffer (composed of 40 mM Tris acetate and 2 mM EDTA with an 8.5 pH). Ethidium bromide was applied to stain the gel and a UV light was used to visualize the gel.

Tissue expression of G. lateralis and C. maenas PDEs:

Real-time PCR (RT-PCR) was used to quantify the expression of the different PDEs in the following tissue; Brain, Claw Muscle, Eyestalk Ganglia, Gill, Heart, Hind Gut, Hepatopancreas, Mid Gut, Testis, Thoracic Ganglion, and Y-organ to display a panel comparison between two crustacean models; the blackback land crab *G. lateralis* and the green shore crab *C. maenas*. Animals from both species were adult intermolt male crabs.

cDNA was synthesized as indicated previously, and a LightCycler 480 thermocycler (Roche Applied Science, Indianapolis, IN) was used to quantify the mRNA transcripts of PDE1, PDE 2, PDE4, PDE7, PDE9, and PDE11 for *G. lateralis* and PDE4, PDE5, PDE9, and PDE11 for *C. maenas*. Each reaction consisted of 1 µl cDNA or standard, 5 µl SYBR Green I Master mix (Roche Applied Science), 3 µl nuclease-free water, and 0.5 µl each of 10 mM forward and reverse primers (Table 2.3). PCR conditions were as follows: an initial denaturation at 95 °C for 5 min, followed by 45 cycles of denaturation at 95 °C for 10 s, annealing at 62 °C for 20 s, and extensions at 72 °C for 20 s, followed by melting curve analysis of the PCR product. Concentrations of mRNA transcripts were determined by the LightCycler 480 software (Roche, version 1.5) using a serial dilution of standards of the PCR product for each gene of interest. The amounts of mRNA transcript in copy numbers per µg of total RNA in the cDNA synthesis reaction were calculated based on the standard curve and the calculated molecular weight of dsDNA products.

Statistical Analysis and software:

Multiple sequence alignments were generated by utilizing ClustalX version 2.0.12 (Thompson et al., 1997) using the amino acid sequences. A phylogenetic tree was constructed by using PhyML 3.0 (Dereeper et al., 2008; Guindon et al., 2010; Anisimova and Gascuel 2010) and iTOL (Letunic and Bork 2016). A schematic diagram compared the domain organization between the *G. lateralis* and *Homo sapiens* PDEs. For *in-vitro* YO assays, a paired t-test was used to compare the means of ecdyseroid levels secreted from both control and experimental YOs. Primers were designed by IDT. Means for mRNA transcript abundance were compared using an analysis of variance (ANOVA) for tissue distribution versus log copy number. Sigma plot 12.5 software (Systat Software, Inc., Chicago, IL, USA) was used to produce and build up the graphs and figures. The Tukey test was used to determine significance among the means.

Results

Characterization and identification of PDEs from the G. lateralis YO transcriptome and C. maenas cardiac transcriptome:

A *de novo* transcriptome was used to characterize and identify the different PDE families located in the YO. The extraction resulted in a total of nine PDE contigs, including seven full length sequences and two partial sequences (Table 2.1). A *de novo* cardiac/assembly of *C. maenas* transcriptome was utilized to characterize and identify the different PDE families. The extraction resulted in a total of seven PDE contigs, four with full length sequences and three with partial sequences (Table 2.2.). ClustalX analysis assigned the *G. lateralis* PDEs to PDE1, PDE2, PDE3, PDE4, PDE5, PDE7, PDE8, PDE9, and PDE11. Multiple sequence alignments showed high sequence identities with orthologs from other species in the catalytic and other conserved functional domains. The conserved catalytic domain of all PDEs contained the initiating YHN (or FHN in PDE9) motif, as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N).

Characterization of Ca ⁺/CaM PDE Gl-PDE1:

A full sequence length, ~ 3037 bp, of PDE1 contig was found in the YO transcriptome through RNA sequencing (RNA-seq). *Gl-PDE1* corresponds to the Ca⁺²/ calmodulin PDE in other orthologs, as it contains the following domains: a conserved catalytic domain at the carboxyl terminus and a regulatory domain specifically coding to a Ca⁺²/ calmodulin domain proximal to the amino terminus. Both the DNA and the deduced amino acid sequences are shown in Fig 2.1. Multiple sequence alignments of the *G. lateralis* PDE1 and other orthologs from different species showed high levels of sequence identity/similarity (Fig 2.2). Identity to the fruit fly PDE1C was 55%, whereas identity to the human PDE1C was 44%.

Characterization of the GAF-PDEs: Gl-PDE2, Gl-PDE5, Cm-PDE5, Gl-PDE11, Cm-PDE11 and the specific cGMP Gl-PDE9 and Cm-PDE9:

Three GAF-PDEs with full length sequences were established in the G. lateralis YO transcriptome, as they corresponded to PDE2, PDE5, and PDE11 orthologs. All these genes were composed of the conserved catalytic domain and either one or two GAF regulatory domains. Whereas Gl-PDE2, a PDE dual substrate (4729 bp) contained only one GAF domain, namely GAF B (Fig. 2.3), Gl-PDE5, a cGMP binding PDE (6761 bp), and *Gl-PDE11*, a dual specificity PDE (5752 bp) had two tandem GAF domains (GAF A and GAF B) (Fig. 2.8 & Fig. 2. 18). Cm-PDE5 (2996 bp) and Cm-PDE11 (5839 bp) were demonstrated in Figs. 2.9 & 2.19. Multiple sequence alignments showed high sequence identity/similarity. For instance, GI-PDE2 shared 56% identity with human PDE2A3 and 38% identity with C. elegans PDE2 (Fig. 2.4). Gl-PDE5 shared 89% identity with Cm-PDE5 and 42% identity with H. sapiens PDE5A (Fig. 2.10). The dual PDE, Gl-PDE11, shared 97% identity with Cm-PDE11 and about 72% with D. melanogaster PDE11C, whereas it shared 50% identity with the human PDE11A (Fig. 2.20). Moreover, Gl-PDE2, 5, & 11 and Cm-PDE5 & 11 contained the conserved motif sequence, NKFDE, in their GAF domains. Although *Gl-PDE9* (4111 bp) and *Cm-PDE9* (4356 bp) are cGMP-specific PDEs, they both lack the GAF domains. The DNA and amino acid sequences are presented in Fig. 2.15 and Fig. 2.16. Multiple alignments showed that GI-PDE9 has an identity of 93% with Cm-PDE9, 52% with Dm PDE9B and 55% with Hs-PDE9A (Fig. 2.17).

Characterization of cAMP-specific PDEs: Gl-PDE4, Cm-PDE4, Gl-PDE7 and Cm-PDE8:

cAMP-specific PDE, Gl-PDE4, and high affinity cAMP-specific PDE, Gl-PDE7, were found in the YO transcriptome as full length contigs (6130 bp and 7531 bp, respectively). Both PDEs had the conserved catalytic domain near the carboxyl terminus. Two upstream conserved regions (UCRs) have been detected in the regulatory domain in the Gl-PDE4 gene (Fig. 2.5). Cm-PDE4 was found in the cardiac transcriptome as a full length contig (6122 bp) with a conserved catalytic domain proximal to the COOH terminus. One UCR was observed in the regulatory domain region of Cm-PDE4 (Fig. 2. 6). Gl-PDE4 has an identity of 91% with Cm-PDE4, 64% with the D. melanogaster dunce gene PDE4D and 60% with H. sapiens PDE4D3 (Fig. 2.7). The DNA and deduced amino acid sequences of *Gl-PDE7* are shown in Fig. 2.11. Moreover, Gl-PDE7 has an identity of 46% to both PDE7A in H. sapiens and D. rerio (Fig. 2.12). High affinity cAMP specific and IBMX insensitive PDE, Cm-PDE8, has been revealed in the cardiac transcriptome of the green shore crab as a full length contig (3007 bp). Cm-PDE8 contains a conserved catalytic domain near the carboxy termini and the PAS regulatory domain in the amino terminus (Fig. 2.13). Multiple alignment of Cm-PDE8 with ortholog species showed identity of 44% with Dm-PDE80 and 36% with Hs-PDE8B (Fig. 2.14).

Phylogeny of G. lateralis and C. maenas PDEs with different orthologs:

A phylogenetic tree was constructed using the software iTOL (Interactive Tree Of Life), (https://itol.embl.de/itol.cgi). 102 PDE orthologs from different invertebrate and vertebrate species were compared to the nine *G. lateralis* PDE contigs from the YO transcriptome and seven *C. maenas* PDE contigs from the green shore crab cardiac transcriptome. All PDEs from *G. lateralis* and *C. maenas* were closely related. Moreover, all sixteen PDEs clustered with their corresponding orthologs (Letunic and Bork 2016) (Fig. 2.21).

Comparison between G. lateralis and H. sapiens PDEs:

As illustrated in Fig. 2.22, all nine PDEs from the blackback land crab were compared with the corresponding human PDE. The domain organization with their interval lengths are shown as well. Catalytic domains are located near the carboxyl terminus in both species. This was the case for all PDEs except for Gl-PDE7 and Gl-PDE9, as their catalytic domains seemed distal to the carboxyl terminus and were not organized with Hs-PDE7 and Hs-PDE9. Moreover, Gl-PDE2 contained only one GAF domain, which contrasted with Hs-PDE2, which has two GAF domains. Moreover, Gl-PDE3 and Gl-PDE8 were found as partial contigs, so no regulatory domains were present to match them to the corresponding human PDEs. PDE1, PDE4, PDE5, and PDE11 were similar in both species regarding their lengths and domain localization.

In-vitro Y-Organ assays in G. lateralis and C. maenas:

Y-organs in both studied species had undergone *in-vitro* assays to observe the effects of different PDE inhibitors on ecdysteroid synthesis and synthesis. In the green shore crab, *C maenas*, PDE inhibitors IBMX, vinpocetine, EHNA, and zaprinast inhibited YO ecdysteroid secretion (Table 2.4), which suggests that PDE1, PDE2, and PDE5/11 play major roles in controlling cyclic nucleotide levels in the YO of *C. maenas*. Ecdysteroidogenesis was not affected by either rolipram or dipyridamole, which selectively inhibit PDE4 and PDE7 (Table 2.4). In contrast, YOs from the blackback land crab, *G. lateralis*, showed no effect when exposed to the same PDE inhibitors (Table 2.5).

PDE gene expression in different tissues in both G. lateralis and C. maenas:

Quantitative-PCR (qPCR) was used to quantify the mRNA of the nine *PDEs* in eleven tissues: Brain (B), Claw Muscle (CM), Eyestalk Ganglia (ESG), Gill (G), Heart (H), Hindgut (HG), Hepatopancreas (HP), Midgut (MG), Testis (T), Thoracic Ganglion (TG), and Y-Organ (YO) in the blackback land crab and the green shore crab.

G. lateralis PDE1 was expressed in low levels in all tissues, but still there was a significant difference between the heart and YO, as well as the claw muscle, to the YO and midgut. *G. lateralis PDE2* and *PDE5* showed relatively high expression in all the tissues with the highest mRNA level in the heart, which contrasted with *PDE11*, which was expressed at lower levels in the same tissues. *Gl-PDE2* showed a significant increase of ~ 100-fold in the heart compared to hepatopancreas and hindgut. Also, the YO demonstrated considerable increase difference (~15-fold change) when compared to the hepatopancreas. *Gl-PDE5* displayed slight significant increases between the YO and midgut (6.4-fold change), and among the heart versus hepatopancreas and midgut (~ 10-fold change). The testes showed the highest *Gl-PDE11* expression and this tissue was different from the claw muscle and hindgut (~8-fold change). An inconsiderable difference was exhibited when the YO was compared to the hindgut (Figs. 2.23 a, b, c, d). Gl-PDE 4,7, and 9 were expressed in such extremely low levels that they could be barely detected. There was no statistical significance among the tested tissues.

In contrast, *C maenas PDE11* was expressed at high levels in all the tissues except in the HG. A significant difference of mRNA expression of *Cm-PDE11* was seen in the thoracic ganglion versus each of midgut, ~ $15*10^4$ -fold increase, and claw muscle, ~ $5*10^3$ fold increase. Also, the eyestalk ganglia were significantly different from the midgut by ~ $15*10^3$ -fold increase. *Cm-PDE4, Cm-PDE8*, and *Cm-PDE9* were expressed in very low levels in all tissues. *Cm-PDE4*

displayed a minor difference when comparing the claw muscle to both thoracic ganglion and the YO. Moreover, a small statistical significance was noted between the testis and the YO. *Cm-PDE8* demonstrated a slight statistical significance observed in the brain versus both the midgut and the thoracic ganglion, also there was a small change between the eyestalk ganglion and thoracic ganglion. Finally, *Cm-PDE9* was expressed with minor differences in the thoracic ganglion versus both midgut and hindgut, and between the YO and hindgut (Figs. 2.24 a, b, c, d).

Discussion

PDEs are important and crucial players in both cAMP and cGMP signaling pathways. They act as negative regulators that breakdown/hydrolyze these second messengers (Thompson and Appleman, 1971; Conti, 2000; Soderling and Beavo 2000). Since the numbers and types of PDEs are still unknown in crustaceans, a *de novo* transcriptome (Das et al., 2016) was used to identify and characterize these enzymes. In this novel study, nine PDE contigs were extracted from the YO transcriptome. Sequence analysis assigned the *Gl-PDE* sequences to seven full length *PDEs*: PDE1, PDE2, PDE4, PDE5, PDE7, PDE9, and PDE11 and two partial PDEs: PDE3 and PDE8, thus indicating a high diversity of PDE genes found in decapod crustaceans. By similarity and specificity, this group comprises three cAMP-PDEs, two cGMP-PDEs, and four dual-specific PDEs. Moreover, seven PDE contigs were extracted from a *de novo* assembly of the *C. maenas* cardiac transcriptome (Tepolt & Palumbi 2015; Verbruggen et al., 2015). Sequence analysis assigned Cm-PDEs to four full-length PDEs: PDE4, PDE8, PDE9, and PDE11 and three partial PDEs: PDE1, PDE5 and PDE3. This prevalent expression of the assorted PDE genes in the YO of the blackback land crab and green shore crab might suggest a vital function in controlling the physiological differences that occur in the molting gland throughout the molt stages.

As a comparison to other arthropod models, the fruit fly, *Drosophila melanogaster*, genome encodes six different PDEs (Day et al., 2005), including the famous *dunce* gene that has been connected to several psychological issues because of its potential role in memory and learning (Walter & Kiger 1984; Bolger et al., 1993).

By examining the deduced DNA and amino acid sequences for Gl-PDEs, as well as the pairwise comparison between Gl-PDEs and Hs-PDEs, the following features were noted: the conserved catalytic domain in all PDE families (which is located in the carboxyl region of the protein and accounts for about 270 amino acids) shares high identity and is composed of a dense alpha-helical structure composed of 16 α -helices which in turn is divided into three subdomains. These α -helices form the active site, which is highly conserved among all PDE families (Charbonnea et al., 1986; Francis et al., 2011). Different affinities toward different cyclic nucleotide substrates are assumed to occur because of the slight variation in the catalytic domain for each PDE family (Manallack et al., 2005). Moreover, the active site is organized in two regions: the hydrolysis center and the hydrophobic recognition pocket (Wang et al., 2003; Liu et al., 2007). All PDEs have a similar structure regarding the hydrolysis center as they follow the general hydrolysis mechanism in breaking down and hydrolyzing cAMP/cGMP (Liu et al., 2007). The deep hydrophobic pocket, which can bind to either the substrate or the inhibitor, contains the glutamine switch (Q-switch). The Q-switch has a very important role in PDE nucleotide selectivity, as well as two metal binding sites important in catalytic activity, mainly divalent cations such as Zn²⁺ and possibly Mg²⁺. Histidine residues are essential in chelating such metal ions (Xu et al., 2000; Houslay 2001; Richter et al., 2001; Liu et al., 2007; Ke et al., 2011). The basis of the glutamine switch is to either orient to hydrolyze cAMP or cGMP and, in that case, it will be constrained tightly with hydrogen bonds with the selective cyclic nucleotide. But in the

case of a dual PDE, the Q-switch rotates freely in either direction, depending on which substrate (cAMP/cGMP) needs to be hydrolyzed (Ke et al., 2011).

Interestingly, *G. lateralis* PDEs contained the conserved catalytic domain proximate to their C-terminus resembling other species. The length of the conserved catalytic domain in all studied Gl-PDEs ranged between 200-270 amino acids, which was comparable with previously characterized PDEs. Furthermore, the catalytic domain was initiated by the conserved signature sequence motif (YHN) in all PDEs, except in PDE9 which started with (FHN) and this was consistent with other orthologs from different invertebrate and vertebrate species (Broderick et al., 2003 and Wang et al., 2003). The metal binding motif with the specific sequence signature (HDX₂HX₄N), which has about 11 invariant amino acids (Manallack et al., 2005), aligned nicely and was identical among *G. lateralis* PDEs and PDEs from other species.

In contrast, the N-terminal regulatory domain, which borders the catalytic domain, is unique and distinct for each PDE family. N-terminal regulatory domains regulate the enzymatic activity of PDEs. Also, regions that autoinhibit the catalytic domains or regulate PDE subcellular localization are found in the N-terminal region (Omori & Kotera 2007; Azevedo et al., 2014).

The PDE1 family, a dual PDE, is the only family that depends exclusively on the influx of calcium ions to stimulate enzyme activity. This is an example of cross-talk between the cAMP and Ca²⁺ signal transduction pathways. Mammalian PDE1 has two Ca²⁺/calmodulin (Ca²⁺/CaM) regulatory domains that contain binding sites for the Ca²⁺/CaM complex (Gross & Clark 1977; Meeker & Harden 1983; Gooraya et al., 2004; Gooraya & Cooper 2005). In contrast to the human PDE1C, Gl-PDE1 contained only one Ca²⁺/CaM domain, which is similar to the *Drosophila* PDE1, suggesting that arthropods might not require both binding sites (Sonnenburg et al., 1995; Day et al., 2005).

The GAF domain represents a highly conserved sequence that has been conserved throughout more than 2 billion years of evolution. GAF got its name from the first three proteins in which the sequence was reported: cGMP-specific cyclic nucleotide PDEs, cyanobacterial *Anabaena* <u>A</u>denylyl cyclase, and *E. coli* transcription factor <u>F</u>hlA. Although PDE GAF domains bind cGMP, other proteins that contain these sequences do not bind cGMP (Martinez et al., 2002). Mammalian GAF-PDEs contain two tandem GAF domains, GAF-A and GAF-B, in the N-terminal region. Catalytic activation requires at least one of the GAF domains to bind a cGMP. For instance, PDE2 in mammalian systems contain two GAF domains, and GAF-B binds cGMP, whereas in PDE5, GAF-A binds this cyclic nucleotide (Lin et al., 2002; Francis 2005). Such binding causes a conformational change, allowing PKG to phosphorylate a nearby serine, which increases the catalytic activity. PDE11, the most recent PDE discovered and the one most related to PDE5, is still poorly understood, but it contains homologous regulatory domains as in PDE2 and PDE5. All GAF PDEs produce multiple variants via alternative splicing and different initiation sites.

Three GAF-PDEs, PDE2, 5, and 11 have been characterized in this study and they shared features and characteristics with other analogs, such as the conserved signature motif (N(K/R)X_nFX₃DE) specific to the GAF domains. GI-PDE2 aligned nicely with *C. elegans* and *H.sapiens* with identical regions in the catalytic and regulatory domain. In contrast to Hs-PDE2, which contained two complete GAF domains, GI-PDE2 contained only the GAF-B domain similar to the protozoan parasite *Trypanosoma brucei* Tb PDE2A and Tb PDE2B (Zoraghi & Seebeck, 2002). Only one GAF domain binds to cGMP or cAMP (Martins et al., 1982; Heikaus et al., 2009). The presence of a single GAF domain in GI-PDE2 might be enough to bind small molecules such as cAMP/cGMP in an allosteric manner to stimulate the catalytic core domain or might bind a different small molecule, since it is originated from a different ancestor than PDE5 and PDE11. Due to the fact that GI-PDE2 is a dual enzyme, it might serve and mediate a cross-talk between cAMP and cGMP signaling pathways (Houslay 2001; Yuasa et al., 2001). GI-PDE5, Cm-PDE5, GI-PDE11, and Cm-PDE11 contained two complete tandem GAF domains homologous to the *Homo sapiens* PDEs; Hs-PDE5A and Hs-PDE11A4, respectively. The two GAF domains are linked by a variable region of amino acids which was consistent with another GAF PDEs (Yuasa et al., 2001; Makhlouf et al., 2006).

Gl-PDE9 and Cm-PDE9, cGMP-specific PDEs, contained the conserved catalytic domain which aligned with other ortholog PDEs; however, no other regulatory domains were detected. Mammalian PDE9 has a high affinity for cGMP, and it is 20-100 fold higher than PDE5 and PDE6, respectively. This might indicate that PDE9 will be distributed in cells with low titers of cGMP. Moreover, PDE9 contains the most variant catalytic domain when compared to the other PDE family members. It is likely that cGMP binds to the catalytic domain since it lacks the GAF domain (Fisher et al., 1998; Omori & Cotori 2007; Liu et al., 2008).

Gl-PDE4, Cm-PDE4 and Gl-PDE7 both hydrolyze cAMP and are highly similar to orthologs from other species (Figs. 2.6 & 2.10). In addition to the catalytic domain, Gl-PDE4 contains two Upstream Conserved Regions (UCRs) in its N-terminal region (Fig. 2.5) in a similar location to where GAF domains are found in PDE2, PDE5, and PDE11. This arrangement of domains is equivalent to *dunce* PDE, Dm-PDE4 and the human PDE, Hs-PDE4D. The regulatory domains, UCR1 and UCR2, are separated by sequences with less homology. Although the specific function of PDE4 is still open to assessment, studies on *Drosophila* revealed that a mutated *dunce* locus leads to impaired learning and memory in the fly (Bolger et al., 1993). In contrast, Cm-PDE4 contained only one UCR regulatory domain (UCR2) in its N-terminal region (Fig. 2.6). Human PDE4 isoforms exhibit both long forms (two UCR domains) and short forms (lack UCR1). This
complexity in PDE4 variants defines subcellular localization differences between the short and long forms (Xie et al., 2014). Gl-PDE7 is a PDE that hydrolyzes the second messenger, cAMP; it contained the conserved catalytic core domain and shared high similarities with its orthologs. Interestingly, the ORF of GI-PDE7 displayed an extremely long sequence and ran to ~1039 AA when compared to either other G. lateralis PDEs or orthologs from different species. The 3' untranslated region showed a similar pattern and had an extended sequence ~ 7531 bp (Fig. 2.11). Such an observation might be the first of a kind to be seen in any PDE. Thus, it might have an importance in post-transcriptional regulation that is essential in mammalian cells (Matoulkova et al., 2012). Moreover, comparable to other studied PDEs to date, no specific regulatory domains were identified. Cm-PDE8 has a high affinity and specificity to hydrolyze cAMP. But is the only cAMP PDE that is insensitive to IBMX (Omori and Kotera, 2007). Cm-PDE8 displayed similar features compared to orthologs from other species in terms of the conserved catalytic domain and PAS regulatory domain. PAS is an acronym from the first three proteins in which in which the sequence was reported: <u>P</u>eriodic circadian protein, <u>A</u>ryl hydrocarbon receptor nuclear translocator protein, and Single-minded protein. The PAS domain is a molecular Velcro that binds small proteins and molecules (Tsai & Beavo, 2012). Unlike other PAS proteins, the regulation of PDE8 through PAS is still unknown (Demirbas et al., 2013). Previous studies on PDE8 family stated that it is a regulator in steroidogenesis in Leydig cells, as well as in adrenal steroidogenesis (Tsai & Beavo, 2012). Such findings might indicate the role of Cm-PDE8 on regulating the molting gland's ecdysteroidogenesis.

As shown in Figure 2. 21, phylogenetic analysis showed that GI-PDEs and Cm-PDEs clustered with orthologs from invertebrate and vertebrate species indicating high homology and identity. The only exception observed was with PDE5. Invertebrate and vertebrate PDE5s

clustered in two divergent groups, which might indicate these PDE genes have two different ancestral origins. PDE1, 3, 4, 5, 8, 9, and 11 in both *G. lateralis* and *C. maenas* were closely related suggesting similar physiological systems.

YO in-vitro assays for both of our model species, green crab and backblack land crab, investigated the sensitivity to PDE inhibitors. Green crab YOs were sensitive to IBMX (3-isobutyl-1-methylxanthine), a potent non-selective PDE inhibitor (Table 2.4). Similar results have been reported in previous studies; IBMX significantly inhibits PDE in the crayfish P. clarkii (Nakatsuji et al., 2006). Moreover, in experiments done on Manduca larvae, Smith (1993) reported that the incubation of prothoracic glands (which are counterpart to crustacean YOs) with the molting hormone (PTTH) and IBMX in-vitro, blocked the degradation of cAMP but not cGMP. Also, PDE activity was seen in the absence of IBMX in the previous study (Smith 1993). Inhibition of PDEs, except PDE8 and PDE9, by IBMX caused an elevation in cAMP activity in the human adrenal gland (Beavo et al., 1970; Tomes et al., 1993). Vinpocetine, a selective PDE1 inhibitor extensively used on rats in studies on neurodegenerative diseases as in the case of Alzheimer's showed inhibition of PDE1 (Ahn et al., 1989; Deshmuch et al., 2010). Likewise, memory is enhanced in rodents and humans by vinpocetine, which increases cAMP levels (Deshmukh et al., 2011; Medina et al., 2011). Our results showed that green crab YOs were inhibited by vinpocetine, which might indicate a potential role of PDE1 in controlling ecdysteroid synthesis. EHNA, a specific PDE2 inhibitor, inhibited ecdysteroid secretion by the green crab YOs. Similar effects were also observed in mammalian nervous tissues but was not effective in pharmacological tests (Bessodes et al., 1982; Gomez & Breitenbucher 2013). Zaprinast, a selective PDE5/PDE11 inhibitor, inhibited the green crab YOs. Zaprinast, the precursor of sildenafil (Viagra), inhibits PDE5 and PDE11 with different affinities. Zaprinast inhibited ecdysteroidogenesis in YOs of green crabs especially at higher concentrations. Similar observations were seen in previous studies: *In-vitro* YO assays in crayfish, *P. clarkia*, demonstrated that Zaprinast partially inhibited PDE activity (Nakatsuji et al., 2006). Experiments on *Drosophila* showed that Zaprinast suppressed PDE6, the closest morphologically to PDE5, in Malpighian (renal) tubules (Broderick et al., 2004; Day et al., 2005).

Interestingly, rolipram (selective-PDE4 inhibitor), dipyridamole (selective-PDE7 inhibitor), and BC11-38 (potent PDE11 inhibitor) had no effect on the ecdysteroid secretion in all in-vitro YO assays of the green crab. These results differ from previously published studies on other species: in-vivo administration of rolipram showed that there were effective neurodegenerative and neuroprotective impacts on the spinal cord of rat embryos (Richer et al., 2001). Moreover, rolipram inhibited PDE4 in Drosophila and mice in therapeutic experiments which were done to find a cure for Fragile-X syndrome (Nikulina et al., 2004; Choi et al., 2015). Dipyridamole was used as an anti-inflammatory agent to inhibit PDE7. This chemical was used in specific locations where PDE7 is normally distributed, such as T-cells, B-cells, skeletal and cardiac muscles (Gresele et al., 2011). This might be the reason for the lack of inhibition of GI-PDE7 in the YO. The novel PDE11 inhibitor, BC 11-38, was used in mice to inhibit PDE11A4 isoform (homologous to Gl-PDE11) in the brain, particularly the hippocampus, and showed tremendous effects as a therapeutic target for mood and depressive disorders (Kelly 2017). Even though this drug is known to have a high membrane permeability, it is still under investigation because of lack of information concerning whether it can cross the blood-brain barrier. Thus, might be the reason that YO ecdyseroidogenesis was not affected when exposed to the potent PDE11 inhibitor, BC11-38. (Ceyhan et al., 2012; Kelly 2017). Another reason might be, the shortage of adequate information of the nature of PDE11 and how it selects specific inhibitors (Weeks et al., 2009). G.

lateralis YOs were insensitive to all tested PDE inhibitors in this work and that might point to the difference of the YOs regulatory systems between the two species (Table 2.5).

As illustrated in figure 2.23, a tissue distribution panel was constructed to compare the expression of the different PDEs in the YO with other tissues. GI-PDE2 and GI-PDE5 were expressed at their highest levels in heart tissue. Mammalian cardiomyocytes express PDE2, but not PDE5 (Weber et al., 2017). PDE2 was expressed at reasonably high levels compared to its expression in other tissues. Remarkably, GI-PDE11 was highly expressed in the testis compared to other examined tissues. That pattern is parallel to the mammalian system in which PDE11 is expressed in the prostate and testis, as it is thought to function in spermatogenesis (Franscis 2005). Moreover, low expression of GI-PDEs in the YO was not surprising as these molting glands were harvested from intermolt animals in which results were anticipated. Fig 2.24 shows the tissue expression of Cm-PDEs; Cm-PDE4, 8, and 9 were expressed in very low levels. Cm-PDE11 was expressed in high levels which might indicate a powerful function of this dual PDE in a variety of tissues, especially in the thoracic ganglion, eyestalk ganglia, and YO. Once again, the different gene expression patterns observed in the two studied species might be due of different metabolic systems and variable modes of regulation.

Conclusions

Nine contigs encoding seven full-length PDE sequences and two contigs encoding partiallength PDE were identified in the *Gecarcinus lateralis* Y-organ transcriptome. Seven contigs encoding four full-length PDE sequences and three contigs encoding partial-length PDE were identified in the *Carcinus maenas* transcriptome. Multiple sequence alignments showed high sequence identities with orthologs from other species mainly in the catalytic (PDEase) domain and in the regulatory domains. Sequence analysis assigned the Gl-PDE and Cm-PDEs sequences to PDE1, PDE2, PDE3, PDE4, PDE5, PDE7, PDE8, PDE9, and PDE11 classes, indicating a high diversity of PDE genes are found in decapod crustaceans. PDE inhibitors IBMX, vinpocetine, EHNA, and Zaprinast inhibited YO ecdysteroid secretion, which suggests that PDE1, PDE2, and PDE5/11 play major roles in controlling cyclic nucleotide levels in the YO of green crab, *C. maenas*. The backblack land crab, *G. lateralis*, YOs showed no response when incubated in the same PDE inhibitors. Cm-PDE11, a dual PDE, was expressed at high levels in different tissues. This might indicate a crucial role of PDE11 in cAMP/cGMP signaling pathways; especially the MIH signaling pathway in the molting gland.

Table 2.1: Shows the nine PDE contigs extracted from the *G. lateralis* YO transcriptome. PDE1, PDE2, PDE4, PDE5, PDE7, PDE9, and PDE11 are full lengths, PDE3 and PDE8 are partial lengths. Abbreviations; AA: Amino Acid; bp: base pair; Ca^{+2}/CaM : calcium/calmodulin; cAMP: cyclic adenosine 3',5'-monophosphate; cGMP: cyclic guanosine 3',5'-monophosphate; PKA: protein kinase A; PKG: protein kinase G.

PDE		Contig	ORF				
Family	Contig #	length	length	Descriptive Name	Substrate S	pecificity	Regulator
					cAMP	cGMP	
PDE1	c251477_g2_i1	3037 bp	690 AA	CaM-dependent PDE	+	+	Ca ⁺² /CaM
PDE2	c263693_g1_i1	4729 bp	940 AA	cGMP-stimulated PDE	+	+	cGMP
PDE3	c243404_g2_i1	1235 bp	275 AA	cGMP-inhibited PDE	+	+	cGMP
PDE4	c226920_g1_i2	6130 bp	804 AA	cAMP-specific PDE	+	-	РКА
PDE5	c269402_g1_i2	6761 bp	861 AA	cGMP-binding PDE	-	+	PKG
PDE7	c266596_g1_i3	7531 bp	1039 AA	High affinity cAMP- specific PDE	+	-	N/A
PDE8	c263162_g1_i1	1675 bp	350 AA	High affinity cAMP- specific and IBMX- insensitive PDE	+	-	N/A
PDE9	c244059_g1_i2	4111 bp	699 AA	High affinity cGMP- specific PDE	+	-	N/A
PDE11	c263764_g1_i1	5752 bp	864 AA	Dual specificity PDE	+	+	N/A

Table 2.2: Shows the seven PDE contigs extracted from the *C. maenas* **transcriptomes**. PDE4, PDE8, PDE9, and PDE11 are full lengths, PDE1, PDE3 and PDE5 are partial lengths. Abbreviations; AA: Amino Acid; bp: base pair; Ca⁺²/CaM: calcium/calmodulin; cAMP: cyclic adenosine 3',5'-monophosphate; cGMP: cyclic guanosine 3',5'-monophosphate; PKA: protein kinase A; PKG: protein kinase G.

PDE Family	Contig #	Contig	ORF	Descriptive	Substrate	Specificity	Pogulato
Fainity	Conug #	icingtin	icingtii	Name	cAMP	cGMP	r
PDE1	comp81969_c0_seq2	2014bp	355 AA	CaM dependent PDE	+	+	Ca+2/CaM
PDE3	comp74103_c0_seq1	1168 bp	256 AA	cGMP-inhibited PDE	+	+	cGMP
PDE4	lcl Cmaenas_contig_7516	6122 bp	787 AA	cAMP-specific PDE	+	-	РКА
PDE5	comp86676_c0_seq7	2996 bp	861 AA	cGMP-binding PDE	-	+	PKG
PDE8	lcl Cmaenas_contig_4936	3007 bp	975 AA	High affinity cAMP-specific and IBMX- insensitive PDE	+	-	N/A
PDE9	lcl Cmaenas_contig_6558	4356 bp	620 AA	High affinity cGMP-specific PDE	+	-	N/A
PDE11	lcl Cmaenas_contig_16769	5839 bp	859 AA	Dual specificity PDE	+	+	N/A

Table 2.3. Oligonucleotide primers used in qPCR to identify gene expression of Gl-PDEs and Cm-PDEs in different tissues. Abbreviations: Gl, *Gecarcinus lateralis*; Cm, *Carcinus maenas*; F, Forward; R, Reverse, PDE, cyclic nucleotide phosphodiesterase; Numbers (1,2,4,5,7,8,9,11), PDE family.

Primer name	Primer sequence (5'-3')	Amplicon Product (bp)	Annealing Temp.
Gl-PDE1 -F2	GGTGGCAAAGTGGAAAGATAAAG		62 C°
Gl-PDE1 -R2	CCTCCTCGTCTCTCTTCTTAGT	226	62 C°
Gl-PDE2 -F2	GGTGGTAGTGGCACGTTTAT		62 C°
Gl-PDE2 -R2	TCCCTCTTTCCTTCCTCTTCT	301	62 C°
Gl-PDE5 -F2	CAGACCACCGGATGCTTATT	316	62 C°
Gl-PDE5 -R1	TCCTCGACCCGATTCTATGT		62 C°
GI-PDE11-F2	GACTCCAGACTTGGTTCTTTCC	322	62 C°
Gl-PDE11-R2	CGACTGATGTCACTTGCATATC		62 C°
Cm-PDE4-F1	TTACCTATGGCGGCGAATG	103	62 C°
Cm-PDE4-R1	TGGGTCTGAATGGTTTCCAG		62 C°
Cm-PDE8-F1	GATATGTTTGATGCGTGGGATG		62 C°
Cm-PDE8-R1	TCTGTTCCTGTTCTTCCTGTTC	103	62 C°
Cm-PDE9-F1	GAAGTGTTTCGCCGCTTTC	101	62 C°
Cm-PDE9-R1	CCATACATCATCTGGGTCACG] [62 C°
Cm-PDE11- F1	TTTCTGGATCTGGATCTGATTGG		62 C°
Cm-PDE11- R1	ATGATAGGTCACGTTGCGATAG	102	62 C°

GIPDE1 3037 nucleotides, structure: C sequence

GGTGGGTGAGGGTGCGCGCGCGTCCTCCAGGCGTCCTCGTGTTAAGATTTCGGAAACA 61 CAGGAAAACTTATTAACAGGTGCCACGGCGGGAAAGGTGCAAAGGGAAGAAAAGAAAATA 121 GAGAAAAAGGAGGGAAAAATACTTATCGTCTCTCTTTGTACCCATGTTTTGTCCGGTGAG 181 TGACAAAAATGACTGAAAGAAAGGGTTAGGGAGGAGTAAACTGACTAAGAAGAGAGACGA 241 GGAGGAAAAGAACGAAAGGGAAGAAAGAACTGAAAGATAAGGAGGTACAAGAACGTGCTG 301 CTGTACTTAAGTGATATAACAAGAAAACGGGGAGGAATAGAAAACGACTTACGGTGGCAAA 361 GTGGAAAGATAAAGAAAGCCAGAAAATGGAGGAAAATTCATAACAAATCCACTGAAAATA 421 TACATAAACTAACCACAAAATCTGAATAGCTCTGTCTTGTCTTGCTTATTCTTCTGACCA 481 ATTTAATTACACACATAACTAACCCAAAGTGAGGCAGTCTACCCTCACATGCTTGCCGCC 601 CTGTCCTCTGATCCTTTACCCACGAACCCAAACCAGCGGTGACACACGAGCCCTGAAAAT 661 CCTGTCTTACCTGGCCACGCGACGCCCACACACCTTCGGACATGCTCAGGTGAAGGGGGT 781 MASPGRKLAPGKETLHKS 18 AACAGTGACCCGGTCCGTCGCATCCACCGCCAGTATGTGAAGAGTCGAGGGTCGGGAAGC 901 N S D P V R R I H R O Y V K S R G S G S 38 ACACCTGTATCCCGCTGCTTCCTTAACCTTGATGGCTACTCGTATGTCATAGTCGCCAGT 961 T P V S R C F L N L D G Y S Y V I V A S 58 1021 P P E K K K D S V E D S S V P P P P T S 78 AAGAATGGACAGCTCTCCAAGCAAGGGTCCCTCACCATCCTCCGGCGCTCCAGCAGCAGG 1081 98 K N G O L S K O G S L T I L R R S S S R 1141 T L S G R G A R H S S Q T D G D P A D N 118 GTTGACCTCCTGCAGGATGCCCTTCCCGCCGTGGACACACCTGAATCATGCGAAAAGGCC 1201 D L L Q D A L P A V D T P E S C E K A 138 GCCATCAGGTTACGCGCCCTCCTCCGACATCTACAGGAGGGCGAGGTGGCTGTGGGAGTG 1261 A I R L R A L L R H L Q E G E V A V G V 158 CTGCAGAAGAACTTACAATTCGCCGCTGATGTTCTCGACTCGATCTACGTTGAGGAAACT 1321 L Q K N L Q F A A D V L D S I Y V E E T 178 K S E V T K D R A I T I S L G P P S K K 198 GGGCGTCGTCCCCCCACTCTCCGCCGTCGCACTTGCCTCCAGGCGCCATGTCGGGGACGAG 1441 DE Α Α R R Η G 218 Α L GAGGACGAGCTGTCGGAGGTGGAGCCCGACGCGGTGCCGCAGGAGGTGAGGGAGTGGCTG 1501 E D E L S E V E P D A **V P Q E V R E W L** 238 GCCTCGACCTTCACGCGGCAACTCAACACCTCGCGCAGGAAGACCGACGAGAAGCCAAGG 1561 A S T F T R Q L N T S R R K T D Е к Р 258 TTCAGGTCGGTGGCAAATGCTATACGCGCCGGCATCTTCGTTGAGCGCATCTACAGACGC 1621 R F E RIYRR 278 CTCTCCTCCGCCACCTTCCTCCAGCTTCCCCCCGGAGGTCACACGTATCCTGAAGAGCGTG 1681 L S S A T F L Q L P P E V T R I L K S V 298 GACGAGTGGAACTTCGACGTGTGGAAGTTGCAGGAGGCGAGCGCCAACACCCCCTCAGA 1741 DEWNFDVWKLQEASANTPLR 318 TGCCTCGCCTACGAGCTCCTCAACCGCTACGGGCTCCTGCACAAGTTTAAGATGCCGCCC 1801 C L A Y E L L N R Y G L L H K F K M P P 338 GCCACGCTGGAGACGTTTTTGACGCAGGTGGAGAATGGCTACTGCAAGTACAAGAACCCA 1861 ETFLTQVENGYC Κ Y K N P TACCACAACAACGTGCATGCTGCCGACGTGCTGCAGACGATGCACTACATGCTCTCCCAG 1921 N N V H A A D V L Q T M H Y M L S Q 378 H ACAGGGCTTATGAACTGGCTCAATGACGTGGAGATCCTGGCGACCCTGATGGCGGCGCTG 1981 TGLMNWLNDVEILATLMAAL 398 ATCCATGACTACGAGCACACGGGCACCACCAACAACTTCCACGTCATGTCAGGCTCCGAG 2041 I H D Y E H T G T T N N F H V M S G S E 418

Figure.2.1.Nucleotide and amino acid sequence of cDNA encoding GI-PDE1. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. Calcium/calmodulin regulatory domain is indicated by a red box and contains the PDEase_I_N found only in the N-terminus. Ca⁺²/calmodulin binding site is indicated in bold red. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	:GRKIAPGKE : MQPSSPNATNYLADNIQISSANLSQTEMVVGRD :MNRARKTSSCGCFRSAFCLLKPSTS :MRARKTSSCGCFRSAFCLLKPSTS	LHKSNS : ADYTAM : ASEEHG : IEEFES :	20 40 32 13
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	: DPVRR-IHRQYVKSRGSGSTPVSRCF : HSINVGVGNSFLRGDTDIPQESGHSFETPSNMSF : DSDKKLISVQLITPRDEEEQTSSRSI : NSLKYLQPEQIEKIWLRI	LNLD : TAGQWD : KIPPLD : RG :	49 80 64 33
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	: GYSYVIVASPPEKKKDS : TESLPPVDTPDALNKAAGRIRSLLRRMDHETVAY : LNGLDCKKNAVAARRAG	: : :EDMQRN : :	66 120 81 –
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	:VEDSSVPPPPTSKNGQLS : LHYAARVLEAVFIDESRSPTTGKTKLGQIASSSV :RRRTSEGGGVRGKGHFAEVV- :	KQG : 'ESEEEG : :	87 160 101 -
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	: SITILRRSSSRTLSGRGARHSSQT : CNGNCKNINCSRHSHGRDDQQQDNNNSNRSCSLQ :IDGLQRPVSLLRNQKEKSNSDDNCQEF :IRKYKKTSQR	DGDP : DEASPGG : EPTS :	115 200 132 43
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	:ADNVDLLQDADNVDLLQD : AGAGVTPGADNQDSIESRTKGVSQAPQTHSGPTG :PSSSRKKSYDN	LPAVDT : PPSNTS : APALES :	131 240 149 -
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	: PESCEKAAIRLEALLEHLQEGEVAVG : SETIAQPAPKLQPALETVRESVMEESPSKDPGDF : LEKLRYTLHQLNSGQLPLED :LRSLVKQLERGEASVVD	V : GPPPPA : :	158 280 169 60
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	: LQKNLQFAADVLDSIYVEETKSEVTKDRAITISI : STSTLTSQTTTSSSATAEPSAKAAESQAGSAGSS : LKRNIEYAALVIETAYMDETR	GPPS : GSCSNP : :	196 320 190 81

GlPDE1	:	LQKNLQFAADVLDSIYVEETKSEVTKDRAITISLGPPS	:	196
Dm.PDE1C	:	STSTLTSQTTTSSSATAEPSAKAAESQAGSAGSSGSCSNP	:	320
Ce.PDE1	:	LKRNIEYAALVLETAYMDETR	:	190
Hs.PDE1C	:	LKKNLEYAATVLESVYIDETR	:	81

GlPDE1	:	KKGRRPPLSAVALAS-RRH <mark>V</mark> G	DE <mark>ED</mark> ELSEVEPDAV	:	230
Dm.PDE1C	:	AAVHRQRRLRTPTWARSMSTNKTRLA	DEDDELSEVQPDAV	:	360
Ce.PDE1	:	R <mark>I</mark> C	DEDDDLAEVTPETV	:	207
Hs.PDE1C	:	RLL	DTEDELSDIQSDA <mark>V</mark>	:	98

GlPDE1	:	PQEVREWLASTFTROLNTSRRKTDEKPRFRSVANATRAGT	:	270
Dm.PDE1C	:	PPEVREWLASTFTRQMATSRRKSDE <mark>KPKFRSVAH</mark> AI <mark>RA</mark> GI	:	400
Ce.PDE1	:	PDEVREWLA <mark>ATFTRQ</mark> NAGKKR <mark>DKPKFKSVAN</mark> AIRTGI	:	244
Hs.PDE1C	:	PS <mark>EVRDWLA</mark> STFTROMGMMLRRSDE <mark>KPRFKSIVHAVQAG</mark> I	:	138

GlPDE1	:	FVER	IYRRL	SSATE	LQLP	PDV	ΓRΙ	LKSV	DEW	NFD	VŴK	LQE	:	310
Dm.PDE1C	:	FVDR	MYRRV	SSSAI	TAFP	PDV	VRL	LKNL	DDŴ	TFD	VFA	LΤΒ	:	440
Ce.PDE1	:	FEK	LFRKQ	Q-VVÇ)CPIP	PEI	AELN	4KEV	СТŴ	SFS	PFQ	LNE	:	283
Hs.PDE1C	:	FVER	MYRRT	SNMV	GLSYP	PAV	IEA	lkdv	DKW	SFD	VFS	LNE	:	178

GlPDE1	:	ASANTPLRCLAYELLNRYGLLHKFKMPPATLETFLTQVEN	:	350
Dm.PDE1C	:	AASGQVVKYVAYELFNRYCSIHKFKIAPGILEA <mark>FL</mark> HRVEE	:	480
Ce.PDE1	:	VSEGHALKYVGFELFNRYCFMDRFKVPLTALENYLSALEV	:	323
Hs.PDE1C	:	ASGDHALKFIFYELLTRYDLISRFKIPISALVSFVEALEV	:	218

GlPDE1	:	GYC <mark>K</mark> YKNP	YHN	JVHA	ADVI	QTN	1HYN	1LSQ	TGLM	NWL	NDVEI	:	390
Dm.PDE1C	:	GYCRYRNP	YHN	JLHA	VDVN	4QT I	HY	CLCN	TGLM	NWL	TDLEI	:	520
Ce.PDE1	:	GYSKHNNP	YHN	/VHA	ADVI	rqs	HE	1LSQ	TGLA	NSL	GDLEL	:	363
Hs.PDE1C	:	GY <mark>S</mark> KHKNP	YHNI	MHA	ADVI	IQT\	/HYI	LYK	TGV <mark>A</mark>	NWL	TELEI	:	258

GlPDE1	:	LATLMAAI IHDYEHTGTTNNFHVM <mark>SG</mark> SETAILYNDR <mark>AVLE</mark>	:	430				
Dm.PDE1C	:	FASLLAALLHDYEHTGTTNNFHVMSGSETALLYNDRAVLE	:	560				
Ce.PDE1	:	LAVLFGALIHDYEHTG <mark>H</mark> TNNFHI <mark>Q</mark> SQS _Q FAMLYNDRSVLF	:	403				
Hs.PDE1C	:	F <mark>AIIFSAAIHDYEHTGTTNNFHI</mark> QT <mark>RS</mark> DPAILYNDRSVLE	:	298				

GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	: : :	NHHICAAFRLLRAEE-HNVLVNLSREEYREFRTLVIEMVL NHHASASFRLLREDE-YNILSHLSREEFRELRGLVIEMVL NHHVSSCFRLMKEDD-KNILTHLTRDEYKELRNMVIEIVL NHHLSAAYRLLQDDEEMNILINLSKDDWREFRTLVIEMVM	: : :	469 599 442 338
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	::	ATDMSSHFQQIKAMKIMLALQDISLDKAKSLSLVLHCCDI GTDMINHFQQMKAMRQILILQEATIDKQKVLSLVLHCCDI ATDMSTHFMQIKIMKSMLSLPEG-IDKNKALCLIVHACDI ATDMSCHFQQIKAMKIALQQPEA-IEKPKALSLMLHIADI	: : :	509 639 481 377
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	::	SHPSKNWALHERWTTQLLEEFFRQGDKERELGLPYSPLCD SHPAKQWGVHHRWTMLLLEEFFRQGDLEKELGLPFSPLCD SHPAKPWNLHERWTEGVLEEFFRQGDLEASMGLPYSPLCD SHPAKAWDLHHRWTMSLLEEFFRQGDREAELGLPFSPLCD	: :	549 679 521 417
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	::	Q-switch RNNILVAESQIGFIDFIVDPSLGVCGDLLDKVAALSVPPS RNNILVAESQICFIDFIVEPSMGVMSDMIELILAPIAPMN RHTVHVADSQIGFIDFIVEPTMVVCGELLVKMVEPLVSLP RKSTMVAOSQVGFIDFIVEPTFTVLTDMTEKIVSPLIDET	::	589 719 561 457
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	:::::::::::::::::::::::::::::::::::::::	TPTIAEEPHNEPGGPIKRPVRPGG KSKPATLVEHETTANSTTNSAIVIPNSGITPSMDKPRDHR PTDSLFPPSVDGGDDKSPSNALSPLPDLRNSSTSPS SQTGGTGQRRSSLNSISSSDAKRSGVKTSGSEGSAP	:::::::::::::::::::::::::::::::::::::::	613 759 597 493
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	:::::::::::::::::::::::::::::::::::::::	VEVRRPWQDCLAANKAR TEAKTTAAECLARKSVTGTTASKFNIPKPWLTCLVENKRI SIRRIPLNYAGKLDIPTPWMKFLHENKAH INNSVISVDYKSFKATWTEVVHINRER	:::::::::::::::::::::::::::::::::::::::	633 799 626 520
GlPDE1 Dm.PDE1C Ce.PDE1 Hs.PDE1C	::	WKERAMKDAEIRAEMALRNEKVNGESGEGE WKEQAVKDAEARALATAAEEAAAAAAAEAE WKERAAKEEEERKIKEAAEAEAAAKQVEEN WRAKVPKEEKAKKEAEEKARLAAEEQQKEMEAKSQAEEGA	::	663 829 656 560

GlPDE1	:	EDAPEDTIEEEEGEGGKGEASNEENGE	:	690
Dm.PDE1C	:	ESKPETETADGEQSEPAAEPADGAAA	:	855
Ce.PDE1	:	KENGVTTN	:	664
Hs.PDE1C	:	SGKAEKKTSGETKNQVNGTRANKSDNPRGKNSKAEKSSGE	:	600

Figure 2.2. Multiple alignment of deduced amino acid sequences of PDE1 proteins in one crustacean species, one insect species, one nematode species and one mammalian species. Abbreviations: Gl: *G lateralis*; Dm:, *D melanogaster*; Ce: *C elegans*; Hs: *H sapiens*. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 1.

GLPDE2 4729 nucleotides, structure: sequence T

 ${\tt CACGTTTATAGTGTTGCCAGTTACCTGTGGTGGTGTGGGGGCTGAGCAGTCGTGTAAAACT}$ 61 AACCTCCGCTACTTGTTTTAAAAGAGGACGTGAACTTGTACTTCCTGTCTGGTTTTAGTG 121 CGTGATGTGTGTCTCGGCGGCGAGGCCATGCTGTGGAGGAAGGTCGACTAGATGGCCTTT 301 TGACGTGGCTTGACCCGAGGCATGGGGTCCAAGTTGACCTGCGCCGGCAGTGGCACGGAG 421 MGSKLTCAGS G ΤE 13 GACTCCACTATGGGGCAAGAGGAGCCAGCAAAGGCGGAGGAAGATGCCACTGATGGAGGA 481 33 D TMGOEEPAKAEEDAT D G G S GGACAAGGAGGTGAAAAAGGAGGAGGGGGGGAAGAAGAGGAAGGAAGGGAAGGGAGTAGAG 541 G Q G G E K G G G G K R R G R K E G V E 53 GAGGTGACGGAAGACGACGCAAAAAGACTCCTGGAACTTGTCTCTTCGTTGAGCGATCAG 601 E V T E D D A K R L L E L V S S L S D Q 73 GACGCCGCGGGGATGCAAGTAAAAGTGAACCATTATCTGGCGGCGCGCTGTGGGGGCGGGT 661 A A G M Q V K V N H Y L A A R C G A G 93 D CTCGTCTTCCTCATCCTCGTGAGTGACGATGAGGAGCTCTCCGTACACGTCCTGGGCCCT 721 T, V F T, T T, V S D D E E T, S V H V T, G P 113 CACCGCCTCTCCTGCCCCGTCAAAATACCTGTCAGCAACAACAGCTTCAGCACGGCCCTC 781 H R L S C P V K I P V S N N S F 133 STAL GCCTCGCGTCGGCCCATCACGCTGGCGGACATCGAGCCGTCGCACCGCGAGGACCTGTGG 841 A S R R P I T L A D I E P S H R E D L W 153 R L L G L I H D S E R F G A V R R V C V 173 D P G G G G E G E G V G O E R R C L R E 193 ACACGCAATGGCTCGGCGAAGAGTGTGGACAGCTCCACCCCTGCCTCCCGCAAGCTGTTC 1021 T R N G S A K S V D S S T P A S R K L F 213 AGGGACATGTCTGTGGACCAGGGCATGGGCGGCGGCCCCAGCGATGCGTCGCAGCCCAGG 1081 R D M S V D Q G M G G G P S D A S Q P R 233 CGCTCCTCGGCGGCGCCCCGCATGGCCTTCATCGCGCACAAGCCCCAGCGGGCACCCACA 1141 S S A A P R M A F ІАНКР 253 R ORAPT GTCTCTGGCCCTGACGACAACCCCCCGCCAGGCTGCCCCCATCATGCCCTCTGCCAAC 1201 V S G P D D N P P A R L P P I M P S A N 273 ATGCCCCCAGTCGAGGCCAACCACGCCCCCAAGAGCCCCCCACAAGGTGCCTAAGCTGGGG 1261 M P P V E A N H A P K S P H K V P K L G 293 H H D H A G L E S A G R O C G S L G L V 313 TGTCCCGCCTCGCTGCTGCGTGCCGTGGCGGCGCCAGGCCGCGACGCCACCGCCATC 1381 C P A S L L C V P V A A P G R D АТА Т 333 CTGGCCGTGCTGGTGGACAAACAGGGCGGCGGGGGACTTTACTACGCAGGACGTAGAGGTC 1441 L A V L V D K Q G G G D F T T Q D V E V 353 GTAACGCGCTGCTTCAGGTGTGTGGCGGGCATCCTGATGAACACGGCGGAGGCGGAGCGG 1501 V T R C F R C V A G I L M N T A E A E R 373 GAGCGGCGGCTCAGGACCCAGTGCCAGGCCCTCCTGACGGTGGCACAGAACCTCTTCACT 1561 R R L R T Q C Q A L L T V A Q Ν L F Τ 393 CACCTCGAT GACGTGTCGGTGCTGCTGCGTGAGATCATGGCTGAGGCGCGCGGCAGCTGACG 1621 D D V S V L L R E I M A E A R O L T 413 H T. GACGCCGAACGGTGTTCTCTGTTCCTGCTGGACCGAGAACACGGGCAGCTGGTGGCCAAG 1681 433 D A E R C S L F L L D R E H G O L V A K GTGTTTGACGGGGAGCGGAAGGAGGAGGACCATCGAAGAAGTTCTCCTGCCAGTCTTGCAG 1741 V F D G E R K E E S I E E V L L P V L O 453 P G V Y V T S S G E V R L P A T O G 473 Ν L

	1001
	1001
	493
	1921 E10
	1001
	1981
	2041
GUCICCACTICACGCITCGATGAGAGAGATIGCCACAGCUTTAGTATCTACTGCGGC	2041 552
	2101
T C T C N C I I V K K V C F C O V D C K	573
	2161
I. S. N. F. I. M. M. F. H. M. K. V. T. K. F. F. V. F. F. I.	593
	2221
V O A E V P P L T O F H R D F C S F R Y	613
	2281
F P R O L A D P C T S P A T L S M V E S	633
CTGGGCATGATCACCAAGTTCAGGCTGAGTCGCGAGTCCCCTGGCCAGGTTCACTCTTATG	2341
I, G M T T K F R I, S R E S I, A R F T I, M	65.3
GTGCGAAAAGGTTACCGGGATCCACCGTACCACAACTGGTTGCACGCCTTCTCTGTCACC	2401
V R K G Y R D P P Y H N W L H A F S V T	673
CACTTCGCCTTCCTGCTGCTCCAGAACCTGAAGCTGGTGGAGCGCGCGC	2461
H F A F L L L O N L K L V E F G V L F S	693
	2521
	713
	2581
N C F O N D C M C V L A C L V C C F C	2001
	733
	2641
	703
AAUTTUUTGGAGAAUUTGAGUUGUGAGGAGTAUAUUAAGTTUUTUGAUUTTATGAGAGAU	2701
	113
ATCATTCTGGCCACTGACTTGGCCCACCACCTCCGGATCGTGTCTGAGCTGCGCCAGGTA	2761
	/93
GCAAATACAGGCTATGACCCCGCCAACCAACGCCACCACGAGCTGCTCATCTGCCTCCTC	2821
ANTGYDPANQRHHELLICLL	813
ATGACAGCAGCAGATCTGTCAGACCAAACGAAGGACTGGCACTCATCTAAGCATGTGGCT	2881
MTAADLSDQTKDWHSSKHVA	833
GAGCTGATCTACAAAGAGTTCTTCACTCAAGGAGACTTAGAGAAGGCGATGGGGAACATG	2941
ELIYKEFF T QGDLEKAMGNM	853
CCTCTGGAGATGATGGACCGAGAGAAAGCCTTCATCCCAGAGCTTCAGCTTCAGTTTCTG	3001
PLEMMOREKAFIPELQLQFL	873
GATGATGTGGCAATTCCTGTTTATGAGATCGTTGCCAAGTTGTTCCCTGAGGCTGAGGAA	3061
D D V A I P V Y E I V A K L F P E A E E	893
CCCTACAGCAGCATCAAAGCAAACCGCCGCAACTGGTCTCGGCTCAGGGACGTCTACAAA	3121
PYSSIKAN RRNWSRLRDVYK	913
CGGCGGAAACCTGAGTCCACCAGTTCACTTGAGGTGTTTGAGGATGACTCACTTGAAGAG	3181
R R K P E S T S S L E V F E D D S L E E	933
GAATTGGAAAGAGATGAATCC <mark>IGA</mark> AACTACTGTAAATTTTCTTGTAGCATAAAGTGCAGT	3241
ELERDES -	940
ACGCAATTAGAGATACACAAAGTATCTTACTTGTTTACTCAGTGAGAGTAAAGCTTCATA	3301
ATATGATGAATCCCACAAGTACACCCATTGTATGATTTTTGAAGATTTATATCTTGCCAT	3361
AATCTTAAGGGAAACTTTGATGTATTGGAAAGACTTTATAGGTCTTTGCTTGTTCATAAG	3421
AAAGTCTACCTCTTACATGTTTGGCCAATGTAATCCATGTACACAGTATATGAACATTCA	3481
GTGATGACACTTACCTTCACAGAATAACTTTTCATTTCA	3541
CATTACATGTAGCCACGCCCAGACACAGGCGTGGGGGGGG	3601
TGGCGACTGTCTGCCTTGTCACTCGTGCATGACTCAGTTTCCTGAGCACTGCTGTGGCTG	3661

ACTCAGACTCTCCCCCACCGCAACTCTCCACATGCTGCACGCAC	3721
GGACCCCGATGATGCTTACTCATCCATTAACTAAGAGTGTATATTTCCCTTTAGGAATAT	3781
CAGCCACTGTTTGCAGAACTTTAACATTTGTTGGTGGATCATCTGATGTGATTTCAATAT	3841
TCCTCTCATACATCAGTGTTATCTCTCTCTGCATTGATAGTCAGTC	3901
TTAAAGTACTTAGCCTCTGGTTCTTATATGCAAGCTGATTTGTACATTAAAGGCACCTTG	3961
TCTTACACATTATTCATATATGTATTTCTCTTTTCATACATCATCTTATATACCTACACA	4021
AACTATTACATAGTGTACACACTTTATACCTCGGGTAATTTTTCTGAAGTTATCAGTCAG	4081
GATATGTTAAGTCAAGCATCATACAAAGACAACTGCAACATTTTGTTTAGATAACTTATA	4141
TTTTGAAAATAACTCTGAGGATATTGTAACTTACCTCCTTAAGCCAAAGTTAACCCTCTA	4201
GAAGGCCAACACTGTAAACTATGGTAGTGGTTGTCAAATGTATGT	4261
TCAGACACTTTTATAAAACAGTGGTGCCTCTATTGTAGGTGTGGCTAGCCTGAGTTTTAT	4321
ACCATGAATGCTTTTAGTTTATATCATACCAATGAAGTGTGAAACCTGTATCACCTTACA	4381
CATGTAAATGAGAGTTTAGGTGAGTGATGTTGTGGCCTACATAGAGATCCTCTAAATTGC	4441
ACACCATAAGAAGAAATGTGTATGACTGAGGTCTTCAGGAATGAGACCAGTAATAACCTC	4501
GGACATTGTAGTGGTCAGAAGTAGTTGTATACATAAGGAAAGAGGAAAAGTTTAGAATAT	4561
ATAGTATAAAAGTGTTCCTTGAAGGGTGGTGTGAATGATGTCTGCTGTCACCTGTACAAC	4621
TGTATGATTAGACAGGCTGTATTGAGTCTGCTTGTTATTGGTCTTATACAACTATTTTTC	4681
TTTGTCTCATAATATTTTGTATTTCCATATGTGTGTGTGT	4729

Figure 2.3. Nucleotide and amino acid sequence of cDNA encoding GI-PDE2. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The GAF-B regulatory domain is indicated by a green box and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains; the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

GlPDE2	:	MGSKLTCAGSGTEDSTMGQEEPAKAEEDATDG	:	32
Ce.PDE2	:		:	-
Hs.PDE2A3	:	MGOACCHSTLCRSOOYPAARPAEPRGOOVFLKPDEPPPPP	:	40

GlPDE2	:	GGQGGEKGGGGKRRGRKEGVEEVTEDDAKRLLELVSS	:	69
Ce.PDE2	:		:	-
Hs.PDE2A3	:	QPCADSLQDALLSLGSVIDISGLQRAVKEALSAVLPRVET	:	80

GlPDE2	:	LSDQDAAG-MQVKVNHYLAARCGAGLVFLILVSDDEELSV	:	108
Ce.PDE2	:		:	-
Hs.PDE2A3	:	VYTYLLDGESQLVCEDPPHELPQEGKVREAIISQ-KRLGC	:	119

GlPDE2	:	HVLGPHRLSCPVKIPVSNNSFSTALASRRPIT-LADIEP-	:	146
Ce.PDE2	:		:	-
Hs.PDE2A3	:	NGLGFSDLPGKPLARLVAPLAPDTQVLVMPLADKEAG	:	156

GlPDE2	:	SHREDLWRLLGLIHDSERFGAVRRVCVDPGGGGEGEGV	:	184
Ce.PDE2	:		:	-
Hs.PDE2A3	:	AVAAVILVHCCQLSDNEEWSLQAVEKHTLVALRRVQVLQQ	:	196

GlPDE2	:	GQER <mark>RCLRETRNGSAK</mark> SVDSSTPASRKLFRDMSVDQGMGG	:	224
Ce.PDE2	:	MLELRRNS <mark>S</mark> PSSAHPSPQTNCQ <mark>N</mark> SQRGDG L HH	:	32
Hs.PDE2A3	:	RGPREAPRAVQNPPEGTAEDQKGGAAYTDRDRKILQ-LCG	:	235

GlPDE2	:	GPSDASQPRRSSAAPRMAFIAHKPQRAPTVSGPDDNPPAR	:	264
Ce.PDE2	:	HHHEAASGSTCCGGMTVFTGANAAKSSNEPAGSA	:	66
Hs.PDE2A3	:	ELYDLDASSLQLKVLQYLQQETRASRCCLLLVSEDNLQLS	:	275

GlPDE2	:	LPPIMPSANMPPVEANHAPKSPHKVPKLGHHDHAGLESAG	:	304
Ce.PDE2	:	SPTVWRKTSHPPLHFNNNETRNRNLQMQLKNRGTKD	:	102
Hs.PDE2A3	:	CKVIGDKVLGEEVSFPLTGCLGQVVEDKKSIQLKDLTSED	:	315

GlPDE2	:	RQCGSLGLVCP-ASLLCVPVAAPGRDATAILAVLVDKQGG	:	343
Ce.PDE2	:	DWGASLRYDIEEPTSSGLLELLPDVPIVRKLSRPLVKMD-	:	141
Hs.PDE2A3	:	VQQLQSMLGCELQAMLCVPVISRATDQVVALACAFNKLEG	:	355

GlPDE2	:	GDFTTQDVEVVTRCFRCVAGILMNTAEAERERRLRTQCQA	:	383
Ce.PDE2	:	D <mark>QD</mark> DACSVASNESDRT VL SPLVPMS	:	166
Hs.PDE2A3	:	DLFTD <mark>ED</mark> EHVIQHCFHYTSTVLTSTLAFQKEQKLKCECQA	:	395

GAF-B

GlPDE2	:	LLT <mark>VAQ</mark> NLFTHI <mark>DDVSVLLREIMAEARQ</mark> LTD <mark>AE</mark> RCSLFLL	:	423
Ce.PDE2	:	IFDQFLCLI <mark>NNLS</mark> ALISCIIAEAKKNTEAEDYAVFLH	:	203
Hs.PDE2A3	:	LLQ <mark>VAKNLFTHIDDVSVLLQEIITEAR</mark> NLSNAEICSVFLL	:	435

GlPDE2	:	DREHGQLVAK <mark>VFD</mark> GERKEESIEEVLLPVLQNLPGVYVTSS	:	463
Ce.PDE2	:	DEDNKQMV <mark>LFN</mark> NETMLM	:	220
Hs.PDE2A3	:	DQNELVAK <mark>VFD</mark> GGVVDDES	:	454

GlPDE2	:	GEVRLPATQGIAGHVASTGHLLNIRDAYAHPLFYRGFDEC	:	503
Ce.PDE2	:	TGK <mark>K</mark> FDMGY <mark>GI</mark> V <mark>G</mark> K <mark>VAST</mark> MRT <mark>MNI</mark> RDVSRC <mark>P</mark> FFNEEIDEQ	:	260
Hs.PDE2A3	:	YEIRIPADQGIAGHVATTGQILNIPDAYAHPLFYRGVDDS	:	494

GlPDE2	:	TGFKTRNILCFPIKQDG-EVIGVAELCNKTTGLHFTRFDE	:	542
Ce.PDE2	:	FSIKARNLIAFPLIDSSCSLIGVIVL NKENGFSRHDE	:	298
Hs.PDE2A3	:	TGFRTRNILCFPIKNENQEVIGVAELVNKINGPWFSKFDE	:	534

GlPDE2	:	EIATAFSIYCGI <mark>SI</mark> SNSLLYKK <mark>V</mark> SESQVRSKLSNELMMF-	:	581
Ce.PDE2	:	KYIKR <mark>FS</mark> YFVANSIAHA <mark>IL</mark> AKQIEEVRTRIHMVEEFKIQG	:	338
Hs.PDE2A3	:	DLATAFSIYCGISIAHSLLYKK/NEAQYRSHLANEMMMY-	:	573

GlPDE2	:	-HMKVTKEEVERLVQAEVPPLTQFHRDFCSFRYFPRQLAD	:	620
Ce.PDE2	:	EDAVIEEVDIM <mark>RLV</mark> NDPLRDWRYFSQ <mark>NF</mark> ADFSFPPRSVGE	:	378
Hs.PDE2A3	:	-HMKVSDDEYTKLLHDGIQPVAAIDSNFASFTYTPRSLPE	:	612

GlPDE2 Ce.PDE2 Hs.PDE2A3	: : :	PCTSPAILSMVESLGMITKFRLSRESLARFTLMVRKGYRD NHFHRASMMFFEDLGFSMLYKLNKRKLSYLVLRVSAGYRP DDTSMAILSMLQDM <mark>NFINNYKIDCPTLARFCLMVKKGYRD</mark>	: : :	660 418 652
GlPDE2 Ce.PDE2 Hs.PDE2A3	::	*** PPYHNWLHAFSVTHFAFLLLQNLKLVERGVLTSLEALALI VPYHNWSHAFAVTHFCWLTLRTDAIRRALSDMERLSLL PPYHNWHAFSVSHFCYLLYKNLELTNYLEDIEIFALF	: : :	700 456 690
GlPDE2 Ce.PDE2 Hs.PDE2A3	:	****** VSSMCHDLDHRGTTNSFQVASNSVLASLYSSEGSVMER IACLCHDIDHRGTTNSFQMQSLQKTPLSVLYSTEGSVLER ISCMCHDLDHRGTNNSFQVASKSVLAALYSSEGSVMER	: :	738 496 728
GlPDE2 Ce.PDE2 Hs.PDE2A3	::	HH <mark>LAQAMCILNTDDCNF</mark> LENLSREEYTKFLDIMRDIILAT HHFAQTIKLLQQEECSILENLPAADFRTIVNTIREVILAT HHFAQAI <mark>AILNTHG</mark> CNIFDHFSRKDY <mark>QRMLDIMRDIILAT</mark>	: : :	778 536 768
GlPDE2 Ce.PDE2 Hs.PDE2A3	::	DLAHHLRIVSELRQVANTGYDPANQRHHELLICLLMTAAD DISAHLRKQERIKTMISEGYNPMSFDHRYLLMCLVMTASD DLAHHLRIFKDLQKMAEV <mark>GYD</mark> RNNKQHHR <mark>LLLCLLMT</mark> SCD	: :	818 576 808
GlPDE2 Ce.PDE2 Hs.PDE2A3	::	LSDQTKDWHSSKHVAELIYKEFFTQGDLEKAMGNMPLEMM LSDQAKNFHNAKRIAENIYLEFFAQGDLELQLGVKPLEMM LSDQTK <mark>GW</mark> KTTRKIAELIYKEFFSQGDLEKAMGNRPMEMM	: : :	858 616 848
GlPDE2 Ce.PDE2 Hs.PDE2A3	::	DREKAFIPELQLQFLDDVAIPVYEIVAKLFPEAEEPYSSI DRTNAYVPTVQIDFLFKIGVPVFQLLASVVPEGRITSEAI DREKAYIPELQISFMEHIAMPIYKLLQDLFPKAAELYERV	::	898 656 888
GlPDE2 Ce.PDE2 Hs.PDE2A3	::	KANRRNWSRLRDVYKRRKPESTSSLEVFEDDSLEEELERD DANHLCWVALDEEVR-NNPSATNTLEYLRDENLERRIYDR ASNREHWTKVSHKFTIRGLPSNNSLDFLDEEYEVPDLDGT	::	938 695 928
GlPDE2 Ce.PDE2 Hs.PDE2A3	::	ES VRKQDPRAAEIASKRFEPVYANGSVPQTQDILDHRFDGYD RAPINGCCSLDAE	::	940 735 941

Figure 2.4. Multiple alignment of deduced amino acid sequences of PDE2 proteins in one crustacean species, one nematode species and one mammal species. Abbreviations: Gl: *G lateralis*; Ce: *C elegans*; Hs: *H sapiens*. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. Green plus signs indicate the motif sequence in the GAF domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 3.

GIPDE4: 6130 nucleotides, structure: C sequence

GTGGCGTGCGGGTGTGGCGTGGAGTCCGCGCTGGCTGTGGCTGTGAGTGCTCCGGTGCAC 61 AAGTGTGGTGGCGGCCCCGTCGACCACACGCTTCTCCCCGCGCGGCGTTCACGGCTGTGA 121 GGTAGGAGAGTCCTACGTGTCCGCACCCCGCGCTGTGTCCCCCGGGTGTCCTGGCGTGAC 181 GGTGTCGCTCCTGTGCCGCTCCTGCTGTCCGGATGAATGGCAGCGGACAGGTGGAGGCT 241 CCCGGGAAGTGAGGTGACCCGCTGTCCTGCCGCCGTTCAGCATCACGGTGTAGTTGGCGT 301 CCTGCTGCCGCCACGCCAGGCTCGCCGCCGCCTCTCTCCCGCCGGCGGACCGGACGGTGC 361 421 CCTGTGCTCACCTGTGCTCGCCTGGCCTCCTCTTGCTGACTGCATCACGCTCATGACGGG 481 CTCGTGTGCTCCTCAGCCCGCCCGCCAGTCCTCGTGTGACGCTCCCCGGTGTTCAGACC 541 ATCGTAGTCACAGTAGTGCGTCGTAGCCTCACCGTAGCCCCGAGAGACAGTTCATCGTTT 601 AGAGCTAGTGTGAGCTTTGTTCGTGAGTGTAGTGTGTGCAGTACCTACTTGAGGCTCATT 661 721 781 TCTGTAGAAAAACTAGCAGCCAAGCGCGTGGGTAGCGAGTCGCACGGAGCCTGAGTAGCG 841 GCTTGAGGCTGTGCCGAGGCCAACACCGCTTCTAGTAATCGTCGGTACAGTCGTTGCCAA 901 GCGTAGGTCATCGTTATAGTTGAGCCTCGCGTATACCTGAGTCCTTGTAGTGCCTCTCAG 961 CGTAGGTGTAGCCCAGGGAGTCTAGAATCCTTGGTGTAGCCGTGAGTTAGTGTGGAGGTC 1021 GCCGCTGTAGACCTGCCACGACCTGCTTCGCTGTGTAGGGCGTTCAGCGTCGCTGTAGTG 1081 AGGCAGTAGGCCTCGTGAGCCTCTCGTCGTCGTCGTCGTCGTGTCGTTTAGCAAG 1141 TCTTGGTCAGCTTCCCGCCGCCTCACCGCCTCGTAGCCACGCCAGGGCAGCGGCCAGCAG 1201 TGCGTCGCCCCGCCGCTTGTGTCTGTGTGTGTGGCGGTGCAGCGCTGGTGATGCTGGGCT 1261 CTCACCGCCGCCATGCTACATCCTGAGATCAGAGCCCCCGACGAGGACGAGGACGAT 1381 M L Q V P E I R A P D E D E D D 16 D T P T P S G L R L Q V P E F S L L A P 36 CCTGACGACCCTCCTGATGGGGGGGGGGGGGGGGGGCTGCGTCCACCTGCAGGTGCCTGAGATGGGA 1501 P D D P P D G G G G C V H L Q V P E M G 56 AGCTTCGTGCCCCCGGGAAGCAACATAGGCAGCTCAGCGACGCCCCCGAGCCCCCCAAA 1561 76 S F V P P G S N I G S S A T R L E P P K ACCCTACACCTGTCCCTGCCGCCCTTCCCCCAGCCAGGCGTGTCCAGCTTCCTGCAGGTG 1621 T L H L S L P P F P Q P G V S S F L Q V 96 CCTGGAGGCTACACGGGGCCCAGGAGGAGACACTCTTGGATCTGCAGTTTCGACGTTGAA 1681 PGG TGPRRR Н S W TCSF V E 116 Y D AATGGCACCTCGCCCGGCCGAAGCCCCCTGGACGGGACCTCCCCCTCGGCGGGTCTCGTC 1741 136 NGTSPGRSPLD GTSPSAG L V ${\tt CTGCAGAACTTTCCCCAGCGGAGGGAAAGTTTCCTCTACAGGAGTGATTCAGACTTCGAG}$ 1801 Y L Q N F Ρ Q R R Ε S F L R S D S D 156 F E ATGTCGCCCCAAAAGCATGTCTCGAAACTCCTCCATCGCCTCGGAAGGGTCACGAGTTATG 1861 M S P K S M S R N S S I A S E G S R V M 176 TTGGCCACCTTGAGCGAGTCT<u>CGTGGGGCTAATGACGACAAGCCGATACATGGAGAGGAC</u> 1921 LATLSES RGANDDKPIHGED 196 CTCATCGTGACCCCCTTCGCACAGATCCTGGCGTCGCTCCGCTCTGTGAGGAACAACTAC 1981 216 L I V T P F A Q I L A S L R S V R N N Y ATCAACCTCACCAATGTTTCCACCTCCAAGTCTCGCCGGTCCAGCGCTGCGGCGGGCTGC 2041 I N L T N V S T S K S R R S S A A A G C 236 TCCACGCCTCAGCCCAAAAACTTTACCTATGGTGATGAGACGTACACCAAGGTGGCGCTG 2101 STPOPKNFTY G D E T Y T K V A L 256 GAGACCCTGGAGGAGCTGGACTGGTGCCTCGACCAGCTGGAGACCATCCAGACCCATCGC 2161 E T L E E L D W C L D Q L E T I Q T H R 276
 FCCGTCTCGACATGGCCTCCTCCAAGTTCAAGAGGATGCTCAACAAGGAACTCAGCCAC
 2221 S V S D M A S S K F K R M L N K E L S H 296 TTCTCGGAATCCAGCAAGTCGGGCAACCAGATTTCCGAATACATTTGCACAACCTTCCTC 2281 F S E S S K S G N Q I S E Y I C T T F L 316

GACCAACAAGAACCTCGATATCCCGAGCCTGCGAGTGGACGATGGCGAGCGA	2341
D Q Q D L D I P S L R V D D G E R P K	336
AAGAAGGAAAGAACAGTGTCCAGCAGCCTCGCAGGGGTGTCGGCAGCAGCAGTGCCAGGA	2401
K K E R T V S S S L A G V S A A A V P G	356
GGAAGCGAGAGGAGCAGCCAGGTGCTGCAGTCCGTCGCTGCAGTGTCATCAGGATCCCAA	2461
G S E R S S Q V L Q S V A A V S S G S Q	376
ACTACGACGGCTATCGGCGCGTCTAGCAGAGTGTCCATGTCCCACATCCAAGGCGTCAAG	2521
T T T A I G A S S R V S M S H I Q G V K	396
AAGCCGCTGCTCCACGCCAACTCCTTCACGGGCGAGAGGCTGCCCAAGTACGGCGTTGAG	2581
K P L L H A N S F T G E R L P K Y G V E	416
ACGTGTCATGAGGAGGAGCTGGGCAAGATTCTAGAGGACATTGACAAGTGGGGCATTGAT	2641
TCHEEELGKILEDIDKWGID	436
GTATACAGGATTGCTGAACTGTCCAACAGAAAGCCCCTCACCACTGTTACCTACGCAATC	2701
V Y R I A E L S N R K P L T T V T Y A I	456
TTTATGGAACGAGACTTGCTGAAGACGTTCAATATTCCGCCCAAGACCTTCATCACCTTC	2761
FMERDLLKTFNI <u>PPKTFITF</u>	476
ATGATGACACTGGAGGACCACTACCTGAAGGACGTGCCATACCACAACTCGCTGCACGCT	2821
<u>MMTLEDHYLKDV</u> P YHN SLHA	496
GCTGATGTCACTCAGTCCACTCATGTCCTCCTCAACTCCCCAGCCCTTGAGAATGTGTTC	2881
A D V T Q S T H V L L N S P A L E N V F	516
ACGCCACTGGAGATCCTGGCAGCCATCTTTGCAGCAGCCATCCAT	2941
T P L E I L A A I F A A A I H D V D H P	536
GGCCTCACCAACCAGTACCTGATCAACTCCTCCTCAGAACTCGCCCTCATGTATAATGAT	3001
GLTNOVLTNSSSELAEMYNB	556
CACTCACTCCTCCACAACACCTCCTCCCCTCTACACACACACC	3061
	576
	2121
	51ZI
	2101
GATATGGTGCTGGCAACAGACATGAGCAAACACATGAGCCTCCTGGCTGACCTCAAGACT	3181
DMVEATUMSKHMSLEADEKT	010
ATGGTGGAGACCAAGAAGGTGGCTGGCTCTGGGGTTCTGCTCCTGGACAACTACACAGAC	3241
M V E T K K V A G S G V L L D N Y T D	636
CGGATACAGGTGCTACAAAACATGGTCCACTGTGCTGACCTTAGCAACCCTACCAAACCT	3301
RIQVLQNMVHCAPLSNPTKP	656
CTTGAATTGTACAAAAATTGGGTCTCTTCTATCATGGAGGAGTTCTTCCAGCAAGGGGAC	3361
LELYKNWVSSIMEEFFQQGD	676
CGAGAGAGGGATCAAGGCATGGACATCTCCCCCATGTGTGACAGGCACACAGCCACCATT	3421
RERDQGMDISPMCDRHTATI	696
GAAAAGTCACAGGTTGGCTTCATTGACTACATTGTCCATCCA	3481
EKSQVGFIDYIVHPLWET <u>WA</u>	716
GACCTTGTCCACCCTGATGCCCAGGATATCTTGGACACCTTGGAAGAAAACAGGGACTGG	3541
DLVHPBAODILDTLEENRDW	736
TATAATCGTATGATCCCCATCTCCCCATCGTCTTCCTTCC	3601
YNRMTPTSPSSSSNDLKEEE	756
TATCCTGGAGAGAATTCTCAGGATGTGCCCGAGGAGGAGTTGTGTGCAGGCTGCTGACAGA	3661
Y P G E N S O D V P E E E L C A A A D R	776
ATCCAGATTCAATTCACGCTTGAGGATGAAGGCAGTGGGAACAGAGGGCCCGCCAGGGGAC	3721
T O T O F T L E D E G S G N R G P P G D	796
	3781
ARGEDPTM -	804
CGGAAGGTGATGCGGTGGCTGCACCTCAAGTGACAGCCCCTGCAGCAGGAGGCAAGGGGA	3841
GCCACTGCATCCCCAGCACCCCTGCACACCGCTGCCACTGGCTCTCACCTCA	3901
TGTTGCGAGATTTCTTTGTGTCTGCCGCGGGCCCTGCTGGTTCAGGGCCAACCGCGTGGG	3961
CTTGTGTGAGCTCCTAAGGACTGAGCTGTATGCCTGGCCTCAGCTGACCTACCCTTGCCT	4021
AATGTGATTTAATATATTCTTATAGTATTGATGGAGAGTCGGTCACAACAGTGAACAGTG	4081

CCAAATTGTTCCTTTTTAAAAGAAATATGGATCCTGTGGTGGTAGTTTGTTATATGAGAA 4141 AAGAACTCTTGTGGGGAGTTGTCTGTTATGTGAGGATTCTGTTCCTGAGTGGTCAGTCTT 4201 TTAAAAATACCAGTCCTATGAAGGCACGATGTGCAATGCCTCAAGAGAGCAGTTGAGGGA 4261 GTTAATTTTTCATTTTTGTATGGTTTGAGGACAAAGGCTTCTGTGTGGTACATATCAGA 4321 TAGCATCAGTAACCGGCACATGAGTGGTGGTGCTTTCATTGTGTGAGTCTGGGGCATTATAAT 4381 GTGAGCTCTTTCGTAATACAGGTGCCTGACAGGGTTCGCTGCCGACACTAAAAGTAG 4441 ACTTGCTGTCGGAGAAGCCAAAGATAATTTATTGCTTCAGCCCACAGTGGACTTGGAGCC 4501 ACCACTGCTACCACACTTTCAGTTGCTGTGCAGATTGAGGGATGCAAGTTTGTGCAGCA 4561 GCTGAGGACATAGATGGTGGGTCTTGTCAGGCAGAAGAAAAAACATGTCCCTCACTTAAA 4621 TTCATAAGTAGTTCGTTTTAAAAATTTTTTTTGCAATGTCACTTTGAGGTTTTCATCTTT 4801 TAGACAGCTTTTTTGGCGCTACCTTAGATGTTCGATGAACTTCACTGATGGGTTTTCACC 4861 TACTTTTGAACTAGGTAGCCATGAAAGAGGTTCAGATTTTAGCACTTCAACTTCTATCCA 4921 ATCAGCAAAAGTGTGCACCAACCATTTTCATATAAATCTTTCATCTCACAATCCCACAGC 5041 CTTGAGAGAATGTGCCACTCATCTCATCATGAATTGTGATATTGTTAAAGTCAGAGTTTG 5101 GTGAACTTTGGTCCATCAATGTAGAATATGAAGAAAGAGCTTGCAGACTTTGTATTTGCT 5161 TCAGTGTGTAGGCAGCATACTTGTTTGTGTTCATCAGAATATGTCTGCTATTTTCAGAAC 5221 AATATAACATACACTATCAAGTAACAAAACTGGCCTGAGACACTCATACTGTTGGAATTG 5341 CCAACTTGTGAAGTGAAGCAAATCTGAGCCTCTAGTGTAGAATACTCCCTTGTGATGAAG 5401 AGAGCATAGTGTGCGTCATGTTCCATCCCACACCGCCCAGTGTCGCTCACCAGCCACACT 5461 CCCGACTCCTTCGGCTCGGCACTGGCAACACCAGCAGCCCTTGATTCCCTTCTACAGTCC 5521 ATGGTGAAGGGGGAACTCTGATAAATATGCACCACAGATAACCACTTCAATAGCCATG 5641 ATGTTTGTGTCCACTCGTTGCAGCCATTTCAGAGATCAGTGTTGCTCCTATCTTTATAAT 5701 GTAGTGTACTGTGCACTCAAGCCCTGGCATTGGCACTGTGCCTGGCACATGTGTCCCCTC 5761 ACAGTGGTGCTCCCACGGGCACTGTGTGTGGAGCTTCACTTGCCATCAGGATAAAGTCAG 5821 CTCAAGAGGAGAAAAAAGTGGGACAATATATCTGCAGATGCTTTCCCACAGACCTGAGGA 5881 ATTAATCCCACCTTTATGACAGGGTGACTGTAGTTGTCTAATACCATGTAAATGTTAATT 6001 TTTCTCATAATTTATTGAATGGGTCTCCTATACATGTGTATTATTTTTTAAAAATATTTACA 6061 TGTATATAGAGGTGCAAGTAAACATTATCAGGTGTATAATAAGATGTATGAGTATTTAAG 6121 6130 CAGTATTGC

Figure 2.5. Nucleotide and amino acid sequence of cDNA encoding Gl-PDE4. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue. Two Upstream Conserved Regions; UCR1 and UCR2, are found in purple boxes.

CmPDE4 6122 nucleuotides

1 TCAACAACAACAAAAGCAGCAGTGGCAGCGGCAGTCTCTGCTATGCGTTTATTTTAGTC 181 CCTTCCTCTCCCCCCCCCCCCCCCCCCGCACGGACGCGAGTGGCAGCATCACGTGAGC 241 TGTGTTTCGCGTCGTGATCGATTACCGGGTGGAGTAACAAGGTCGAGGAACCTAACCCGC 361 GACTGATGACTGTCTTGGCGAGGAGAGAGACTGTTCTGACAATTCTGAAACCGAATAACGTC 421 GAGCGTGAGAATAAGAGTTCTAGGTTAGGAGGAATGGCGGAAGTGTGGCGTTTTTGTTGT 481 GTTGGAGGAATACATTAGGTGAGCCGTGAGGGCTGAGATGGGTTGCCTGGCGTTACGCTG 541 TGGCCACCATCCCTCCACCGCCGCCCCCGCGCATCTCTGTCGCGACATCGCCTCCTCAGT 601 CGGGTGTGAGAACCCAAAGAGTCCGGGTCTGCGTTTTACGCGTATCAAGGTCGTGGTGGT 661 GGTGGTGGTGGCTGTAGCGTCGTGCGAGGAGGACACGTGGCACAGGAAGTCCGGCTGAAG 721 GCTGTGTGCGCCGAGGTAGCAGCGACCATCCTGCCCCACGCGGCCAGTGCGGCGCCGAGA 781 ATAGTGTTTGCGTGATAGTGAGAGGCTGTGACGTGCACGGGTACTGGTGGTGCCAGGAGA 841 GAGCCAGCAGCGCCGGCCCTCACAACAACCACCACCGGCCGAGCCCAACACGCC 901 GTCAGTGGCCTTCCCGCACGCCCTCACAGAGCAGTCCCTTATTGATCCGAGACTACCATT 1021 GTTGTATCTAAGTGAAAGAGAGGAACACCGACTCGTGCCGTTGAAGGCACGTTCGTCCTG 1081 CCCTGCGAGGTGCGCAACCCGTCACACGTGGCTGCGCCGAGTGTTGTGGTGTCATCTACG 1141 TGCACCTCCCAACTCCACCTCTCCTGCTACTATTCCTCCTCCTCCTCCTCCTCCTCC 1201 TCCTTGTCGCCCGGCCGTGGGTGTGGCCGGCTGCCAAGCGTGTGGGGTGGCCCTGTTGGC 1261 CGGGTAGCAGCCCTCCAACCGTGGCGCAGCGACTGGTCATCCTGGAGGAGCCCCCGGGGT 4 MSRT 1321 CCCCAGGGTCCCCAGGGGTGTCCAGGACGGTTACCTCGTCCTCCTGGAAG<mark>ATG</mark>TCCCGCA T S C E M Q Q R V V T G G V D T L P P H 24 1381 CCACCTCCTGTGAAATGCAGCAGCGGGTGGTAACGGGCGGAGTGGACACGCTTCCGCCCC L G N R T P P G D V A N M N R L P G L P 44 1441 ACCTGGGGAACAGGACGCCACCTGGGGACGTCGCTAACATGAATCGCCTCCCAGGTCTTC T L P A L P A L P G D A G R T P R R V M 64 1501 CTACCCTCCCAGCACTTCCAGCCCTCCCGGGGGACGCAGGGCGGACGCCACGCCGCGTCA K R P D G S F V P Q R S F S F R E R S D 84 1561 TGAAACGCCCAGACGGAAGTTTCGTTCCGCAGCGGAGCTTCTCTTTCAGGGAACGTTCAG 104 S L G G A S A L R A H E P T S P T H H L 1621 ATTCTTTGGGCGGAGCGAGTGCCTTGAGGGCCCACGAGCCCACCTCGCCCACCACCACC S M D L E V P E A A R Q Q S L A V N H S 124 1681 TCTCCATGGACTTGGAGGTGCCCGAGGCGCGCGCCCAACAGTCCCTGGCAGTGAATCACT F S D L Y D M S S S Q G K L P R T L S T 144 1741 CCTTCTCCGACCTTTACGACATGTCGTCCAGCCAGGGCAAGCTGCCGCGTACACTCTCCA SALRIKSRSN<u>FWEKFWOGP</u> 164 L 1801 CTTCGGCGCTCCGTATCAAGAGTCGCTCCAACTTCTGGGAAAAGTTTTGGCAGGGTCCGT E P R V G S K L H G E D L I V T P F A 184 Ο 1861 TGGAGCCGCGAGTGGGGGAGCAAGCTACACGGAGAGGACCTGATCGTGACCCCCTTCGCGC I L A S L R S V R N N Y I S L T N V S T 204 1921 AGATCTTGGCGTCGCTCAGATCGGTTCGCAACAACTACATCAGCCTCACCAATGTGTCCA S K S R R S S A Q A G C S T P Q P K N 224 F 1981 CCTCGAAGTCTCGGAGGTCCAGTGCACAAGCTGGCTGCTCCACACCTCAACCCAAAAACT T Y G G E C D E T Y T K M A L E T L E 244 E 2041 TTACCTATGGAGGTGAGTGCGATGAGACCTACACAAAGATGGCGCTGGAGACCTTGGAGG L D W C L D Q L E T I Q T H R S V S D 264 Μ 2101 AGCTGGACTGGTGCTTGGATCAGCTGGAGACCATTCAGACCCACCGCTCCGTGTCCGATA A S S K F K R M L N K E L S H F S E S 284 S

2281 ACCTTGACATCCCGAGTCTGCGAGTGGACGATGGCGAACGGCCTAAGAAGAAGGACAGAA 344 H S G T F A G V S S A A I S G G G E R S A Q T L Q S I A S A S A A V Q G T P A I 364 2401 GTGCCCAAACGCTGCAGTCCATTGCCTCAGCCTCGGCAGCAGTACAAGGCACGCCAGCAA 384 S A A N R V S M S Q I Q G V K K P L L H 2461 TCAGCGCGGCCAACAGGGTGTCCCATGTCCCAGATCCAGGGCGTCAAGAAACCACTACTCC A N S F T G E R L P K Y G V E T C Q E D 404 2521 ACGCGAACTCCTTCACGGGCGAGAGACTGCCGAAGTATGGTGTGGAGACCTGTCAAGAAG 424 E L G K I L E D I D K W G I D V Y R I S 2581 ACGAGCTGGGCAAGATATTGGAGGACATTGATAAGTGGGGCATTGATGTGTACAGGATCT 444 E L S N R K P L T T V T Y A I F M E R D 2641 CTGAACTGTCCAACAGGAAGCCACTTACCACCGTTACCTACGCAATCTTCATGGAAAGAG 464 LLKTFNIPPKTFITFMMTLE 2701 ACCTGCTGAAGACGTTCAATATTCCGCCCAAGACCTTCATCACCTTCATGATGACACTGG 484 E H Y L K D V P Y H N S L H A A D V T Q 2761 AGGAGCACTACCTGAAGGATGTGCCCTACCACAACTCATTGCACGCTGCTGACGTCACAC 504 S T H V L L N S P A L E N V F T P L E I 2821 AGTCCACCCATGTCCTCCTTAACTCCCCAGCCCTTGAGAATGTGTTCACGCCTCTGGAAA 524 LAAIFAAAI**HDVDHPGLTNQ** 2881 TCCTGGCAGCCATCTTTGCAGCGGCCATCCATGACGTGGACCACCCAGGCCTCACCAACC 544 Y L I N S S S E L A L M Y N D E S V L E 2941 AGTACCTGATCAACTCCTCCTCAGAACTTGCCCTCATGTATAATGATGAGTCGGTCCTGG 564 NHHLAVAFKLLOTDDCDIFM 3001 AGAACCACCACCTGGCCGTGGCATTCAAGCTGCTCCAGACTGACGACTGTGACATCTTCA 584 N L G K K P R Q T L R K M V I D M V L A 3061 TGAACCTTGGTAAGAAGCCCCGGCAGACCCTGAGAAAGATGGTGATTGACATGGTGCTGG T D M S K H M S L L A D L K T M V E T K 604 3121 CAACAGACATGAGCAAACACATGAGCCTTCTAGCTGACCTCAAGACCATGGTGGAGACTA 624 K V A G S G V L L L D N Y T D R I O V L 644 Q N M V H C A D L S N P T K P L E M Y K 3241 TACAAAACATGGTCCACTGTGCTGATCTGAGCAACCCCACCAAGCCTCTTGAGATGTACA N W V S S I M E E F F Q Q G D R E R D Q 664 3301 AAAACTGGGTCTCTTCTATCATGGAGGAGTTCTTCCAGCAAGGTGACCGAGAGAGGGATC 684 G M D I S P M C D R H T A T I E K S O V 3361 AGGGAATGGACATCTCTCCAATGTGTGACAGACATACAGCCACCATCGAAAAGTCACAGG 704 G F I D Y I V H P L W E T W A D L V H P 3421 TTGGCTTCATTGACTACATTGTCCATCCACTGTGGGAGACATGGGCAGATCTGGTCCATC 724 DAODILDTLEENRDWYNRMI 3481 CTGATGCCCAGGACATCTTGGACACCTTGGAGGAGAACAGAGATTGGTACAACCGCATGA 744 PISPSSSSNDLKEEDYPGEN 3541 TTCCCATCTCCCCATCTTCCTCATCTAATGACCTGAAGGAGGAGGATTATCCTGGAGAGA 764 S Q D A P E E E L C A A A D R I Q I Q F 3601 ATTCTCAGGATGCACCCGAGGAGGAGCTTTGTGCAGCTGCTGACAGGATCCAGATTCAGT 784 TLEDEGSGNRGPPGDARGED 3661 TTACACTTGAGGACGAAGGCAGTGGGAATAGAGGGCCGCCAGGTGACGCTCGGGGGGAGG 787 P T M 3721 ATCCCACAATGTGACCGCTGGTGGCGTCCTACTGTGCCAGACTAAAGCGGAAGGTGATGC 3781 GGTGGCTGCACCTCAAGTGACGGCCCCTGCAGCAGGAGGCAAGGGAGGCTGCTGCATCCC 3841 CAGTCCTCCTGCACACCCCTGCTTCTGGCCCTCACCTCCTTACCTCATGTTGCGAGATTT 3901 ATTTGTGTCTGCCGCGGGCCCTGCTGGTTCGGGGCCGACCGCGTGGGCTTGTGTGAGCTC 3961 CCATTGACTGAGCTATATGCCTGGCCTCAGCCAACCTACCCTTGCCTAATGTGATTTAAT

4021 ATATTCTTATAGTATTGATGGAGAGCCGGTCACAACAGTGAACAGTGCCAAATCGTTCCT 4081 TTTAAAAAGAAATGTGGATCCTGTGGTGGTGGTTTGTTACATGAGAAAAAAGAACATTCG 4141 TAGGGAGTTGTCCATCATGCGAGGACTCTGTTCCTGGGTGGTTATTCCTTTAAAATACCA 4201 ATCCCATGAAGGCAACAATGTGTCATGCCTCAAGAGCACAATTGTGGGGGAGTTGATTATT 4261 CTTTCTTTCTTTCTTTTTTTTTTTTTTCTAACGTTTTGAGGACTAAGGCTTCTGTGTGGTA 4321 CATATCAGATAGCAGCATCAGTAAGCGGCTCGAGAGTAGTGCTTTCACTGTGCAAGTCTG 4381 GGGCATTATTGCGTGAGCTCTTTCGTAACACAGGTGCCTGACGGGATTAGCCGCTGCCAA 4441 CACTCAAAGTAAACTAGCTGTCGGAGAAGCCAAAGATAATTTATTGCTTCAACCCCAGTG 4501 GATTAAGAGCCACTACTGTGACTGCACATTGCAGCTGCTGCACAGCTCGAGGGATTTAAT 4621 AAAAATAAAAAAAAAAAAAAAAAAGTCCCTCACTTGAAACTGATGTAAGAGTTTAGATGAT 4681 ATTATTGATTCCCTTTTTCATTACTTATTTTAAGTAGTGTGGAAAAATAATTTGCCACCA 4741 TTAGATTTTTTTTCATTGCTCCTTACAGTGCAAAGTTCATGAGTAGTTCGTTTTTAATA 4801 TTTTTGCAATGTCACTTTGAGATTTTATTCTTTTGACAGCTTTTTTGGCGCTACCTTAGA 4861 TGTTCAATGAACTTGACTGATGGGTTTTCACCTCCTTTTGAACTAGGTAGCCATGAAGAA 4921 GAGGTTCAGATTTTAGCACTTCATTCACTATCCGCAGTAATCAACGCAGGCACTTTGTAA 4981 ACCTTCTCCATTCTCTAGAAAGCCTTTATGCTACCATGTATTTTCCTGTCTTAAATTCT 5041 TCAACTTATAAACAATGTAGCATTGACCTCCTCATGAAATGTGTTGTTTTCAAGGTAGAT 5101 GCCTATAAAAGCATCATTCAGTCCAACTGTCCATCAACCTGAAATGTGCAATTTAGAAAG 5161 AACCTATAAACTTTTACAATTGTTTCAGTCTGTAGGACACATTACTTATTCTATGTCATT 5281 CACTGTGTATTGAGTCAGTAATTTACATTATTAAGTCACCAAATTGACCTGTGATACTCA 5341 AACCATTGGACTTGCCTGAAATGAAGCAAATCTGAGCCTCTAATGTAGAATACTCCCTTG 5461 GCCACTCTCCCAATTCCCCCTCGGCTCGGCACTGGTGACACCGGCAGCCCTCGGATCCTT 5521 CCTCCCGCCCCCTCCTTGTTCTTCCCCTCCTTGTAGGCAGATAATGGCAATGGGG 5581 ACACTGATAAATATGCACCACAGATAACCACTTCCATAGCCATGATGTTTGTGTCCAC 5641 TCATTGCAGTCATTTCAGAGATCAGTGTTGCTCCTGTCTTTATAATGTACGTAGTGTACT 5701 GTACACTCCAGCCTTGGTGTTGGCACTGTGCAAGGCACAAGTGTTCCCTCACAGTGGTAC 5761 TCCCACAGGCACTGTGAGTGGAGCCTAACTTGCCATCAGAAAAATAAGACAGCTCAAGAG 5821 GAGAAAAGTGGGACAAATTTTCTCTGCAGATGTTTCCCCCACAGACCTGAGGAAAGACTCG 5881 CCCTTCACTAAATGCTAATTATTCAGATATATTTATTTTTTTATAGTAGAAGCATTAATCC 5941 CACCCTTATGACAGGGTGACTGTATGTAGTTGTCTAATACCATGTAAATGTTAATTTTTC 6001 TCATAATTTATTGAATGGGTCTCCTATACATGTGTATTATTTTTAAAGTATTTACATGTA 6061 TATAGAGGTGCAAGTAAATATTATCAGGTGTATAATAAGATGTATGAGTATTTAAGCAGT 6121 AT

Figure 2.6. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE4. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue. One Upstream Conserved Region; UCR2, is found in a purple box.

GlPDE4	:	MLQVPEIRAPDEDEDDDTPTPSGLRLQVPEFSLLAPPD	:	38
CmPDE4	:	MSRTTSCEMQQRVVTGGVDTLPPHLGNRTPPG	:	32
Hs.PDE4D	:	MMHVNNFPFRRHS-	:	13
Dm.PDE4D	:	YCGSCESVHHSSATSSSAGTVPPGGQQTQEYIAGTSSTPS	:	400
Ce.PDE4	:	MPRRRGSSSSSSAAGGSGGCGGFGFSSLRRELHLH	:	35

GlPDE4	:	DPPDGGGGCVHLQVPEMGSFVPPGSNIGSSATRLEPPKTL	:	78
CmPDE4	:	DVANMNRLPGLPTLPALPALPGDAGRTPRRVM	:	64
Hs.PDE4D	:		:	_
Dm.PDE4D	:	PRIKLKFRKPHKSCWSRIVLAPIGSAGGSSSATTVIGSNS	:	440
Ce.PDE4	:	NFFRTSSPSASSTSRTPPAALP	:	57

:	HLSLPPFPQPGVSSFLQVPGGYTGPRRRHSWICSFDVENG	:	118
:	KRPDGSFVPQRSFSFRERSDSLGGASALRAHEP	:	97
:	WICFDVDNG	:	22
:	NETLASSSTTGGTATTTQNSSSVSVAAHHRLTSSSASALA	:	480
:	PRTSAVTIPGSNHKLTSSASSYHPPRELTVSTF	:	90
	: : : :	: HLSLPPFPQPGVSSFLQVPGGYTGPRRHSWICSFDVENG : KRPDGSFVPQRSFSFRERSDSLGGASALRAHEP :WICFDVDNG : NETLASSSTTGGTATTTQNSSSVSVAAHHRLTSSSASALA : PRTSAVTIPGSNHKLTSSASSYHPPRELTVSTF	<pre>: HLSLPPFPQPGVSSFLQVPGGYTGPRRRHSWICSFDVENG : : KRPDGSFVPQRSFSFRERSDSLGGASALRAHEP : :WICFDVDNG : : NETLASSSTTGGTATTTQNSSSVSVAAHHRLTSSSASALA : : PRTSAVTIPGSNHKLTSSASSYHPPRELTVSTF :</pre>

GlPDE4	:	T SP	:	121
CmPDE4	:	T SP	:	100
Hs.PDE4D	:	TSA	:	25
Dm.PDE4D	:	TSHPSNSQLLPTSKMQAEQGSIGDLQKYHSRYLKNRRHTL	:	520
Ce.PDE4	:	S AG	:	93

UCR1

GlPDE4	:	GRSP-LDGTSPSAGLVLQNFP	QRRES	:	146
CmPDE4	:	THHLSMDLEVPEAARQQSLAV	NHSFS	:	126
Hs.PDE4D	:	GRSPLDPMTSPGSGLILQANFVHS	QRRES	:	54
Dm.PDE4D	:	ANVRFDVENGQGARSPLEGGSPSAGLVLQNLP	QRRE <mark>S</mark>	:	557
Ce.PDE4	:	SATAADGLGGAHLTPSLSSSVH	Arres	:	120

GlPDE4	:	F LY RSDSDFEMSP <mark>K</mark> S <mark>MS</mark> RNSSIAS <mark>EGSRVMLATLSESR </mark>	:	184
CmPDE4	:	D <mark>LY</mark> DMSSSQGKLPRT <mark>LS</mark> TSALRIKSRSNFWEKFWQGPL	:	164
Hs.PDE4D	:	FLYRSDSDYDLSPK <mark>SMS</mark> RNSSIAS	:	78
Dm.PDE4D	:	FLYRSDSDFEMSP <mark>K</mark> S <mark>MS</mark> RNSSIAS <mark>ERFKEQE</mark>	:	588
Ce.PDE4	:	FLYRASDDLREASSLRPVSRASSIASN	:	147

GlPDE4	:	GANDDKPI <mark>HGE</mark> DLIVTPFAQILASLRSVRNNYINLTNVST	:	224
CmPDE4	:	EPRVGSKLHGEDLIVTPFAQILASLRSVRNNYISLTNVST	:	204
Hs.PDE4D	:	DI <mark>HG</mark> DLIVTPFAQVLASLRTVRNNFAALTNIQD	:	112
Dm.PDE4D	:	ASILVDRS <mark>HGE</mark> DLIVTPFAQILASLRSVRNNLLSLTNVPA	:	628
Ce.PDE4	:	EHGHGDDLIVTPFAQLLASLRNVRSNLISITNIQN	:	182

UCR2

-

->

GlPDE4	:	SKSRRSSAAAGCSTPQPKNFTYGDETYTKVALE	:	257
CmPDE4	:	SKSRRSSAQAGCSTPQPKNFTYGGECDETYTKMALE	:	240
Hs.PDE4D	:	RAPSKRSPMCNQPSINKATITEEAYQKLASE	:	143
Dm.PDE4D	:	SNKSRRPNQSSSASRSGNPPGAPLSQGEEAYTRLATD	:	665
Ce.PDE4	:	SDDSRHANRSAKRPPLHNIELPDDVVHCAHD	:	213

			1	
GlPDE4	:	TLEELDWCLDQLETIQTHRSVS <mark>D</mark> MAS <mark>S</mark> KFKRMLNKELSHF	:	297
CmPDE4	:	TLEELDWCLDQLETIQTHRSVS <mark>D</mark> MAS <mark>S</mark> KFKRMLNKELSHF	:	280
Hs.PDE4D	:	TLEELDWCLDQLETLQT <mark>RH</mark> SVS <mark>E</mark> MAS <mark>N</mark> KFKRMLNRELTHL	:	183
Dm.PDE4D	:	TIEELDWCLDQLETIQTHRSVS <mark>D</mark> MAS <mark>L</mark> KFKRMLNKELSHF	:	705
Ce.PDE4	:	TLEELDWCLDQLETIQTHRSVS <mark>E</mark> MAS <mark>S</mark> KFRKMLNKELSHF	:	253

End of UCR2

GlPDE4	:	SESSKSGNQISEYICTTFLDQQQDLDIPS	LRVDDGERPKK	:	337
CmPDE4	:	SES <mark>SKSG</mark> NQISEYI <mark>CTTFLD</mark> QQQDLDIPS	LRVDDGERPKK	:	320
Hs.PDE4D	:	SE <mark>MSRSGNQVSEFI</mark> SNTFLD <mark>KQ</mark> HEVEIPS	PTQKEKEKKKR	:	223
Dm.PDE4D	:	SES <mark>SRSGNQISEYI</mark> CSTFLD <mark>KQ</mark> QEFDLPS	LRVEDNPELVA	:	745
Ce.PDE4	:	AESSKSGTQVSKFLITTYMDKEEDEPS	IEIEVPTEVQG	:	291

:	KERTVSSSLAGVSAAAVPGGSERSSQVLQSVAAVSSGSQT	:	377
:	KDRTHSGTFAGVSSAAISGGGERSAQTLQSIASASAAVQG	:	360
:		:	-
:	ANAAAGQQS <mark>AG</mark> QYARSRSPRGP	:	767
:	PSTSGPMTLSILKKAQT	:	308
	:::::::::::::::::::::::::::::::::::::::	: KERTVSSSLAGVSAAAVPGGSERSSQVLQSVAAVSSGSQT : KDRTHSGTFAGVSSAAISGGGERSAQTLQSIASASAAVQG : : ANAAAGQQSAGQYARSRSPRGP	 KERTVSSSLAGVSAAAVPGGSERSSQVLQSVAAVSSGSQT : KDRTHSGTFAGVSSAAISGGGERSAQTLQSIASASAAVQG :

GlPDE4 CmPDE4 Hs.PDE4D Dm.PDE4D Ce.PDE4	••••••	TTAIGASSRVSMSHIQGVKKPLLHANSFTGERLPKYGVET TPAISAANRVSMSQIQGVKKPLLHANSFTGERLPKYGVET PMSQISGVKK-LMHSSSLTNSSIPRFGVKT PMSQISGVKRPLSHTNSFTGERLPTFGVET AAMNKISGVRKLRAPSHDGHVPEYGVNC	::	417 400 252 797 336
GlPDE4 CmPDE4 Hs.PDE4D Dm.PDE4D Ce.PDE4	•••••••••••••••••••••••••••••••••••••••	CHEEELGKILEDIDKWGIDVYRIAEISNRKPLTTVTYAIF CQEDELGKILEDIDKWGIDVYRISEISNRKPLTTVTYAIF EQEDVLAKELEDVNKWGLHVFRIAEISGNRPLTVIMHTIF PRENELGTLLGELDTWGIQIFSIGEFSVNRPLTCVAYTIF AREIAVHMQRLDDWGPDVFKIDELSKNHSLTVVTFSLL	::	457 440 292 837 374
GlPDE4 CmPDE4 Hs.PDE4D Dm.PDE4D Ce.PDE4	•••••••••••••••••••••••••••••••••••••••	*** MERDLLKTENIPPKTFITFMMTLEDHYLKDVPYHNSLHAA MERDLLKTENIPPKTFITFMMTLEEHYLKDVPYHNSLHAA QERDLLKTEKIPVDTLITYLMTLEDHYHADVAYHNNIHAA QSRELITSLMIPPKTFLNFMSTLEDHYVKDNPFHNSLHAA RORNLFKTEEIHQSTLVTYLLNLEHHYRNN-HYHNFIHAA	::	497 480 332 877 413
GlPDE4 CmPDE4 Hs.PDE4D Dm.PDE4D Ce.PDE4	•••••••••••••••••••••••••••••••••••••••	***** DVTQSTHVLLNSPALENVFTPLEILAAIFAAAIHDVDHPG DVTQSTHVLLNSPALENVFTPLEILAAIFAAAIHDVDHPG DVVQSTHVLLSTPALEAVFTDLEILAAIFASAIHDVDHPG DVTQSTNVLLNTPALEGVFTPLEVGGALFAACIHDVDHPG DVAOSMHVLLMSPVLTEVFTDLEVLAAIFAGAVHDVDHPG	: : : :	537 520 372 917 453
GlPDE4 CmPDE4 Hs.PDE4D Dm.PDE4D Ce.PDE4	:::::::::::::::::::::::::::::::::::::::	**** I TNQYLINSSSELALMYNDESVLENHHLAVAFKLLQNEDC I TNQYLINSSSELALMYNDESVLENHHLAVAFKLLQTDDC VSNQFLINTNSELALMYNDSSVLENHHLAVGFKLLQEENC I TNQFLVNSSSELALMYNDESVLENHHLAVAFKLLQNQGC FTNQYLINSNNELAIMYNDESVLEQHHLAVAFKLLQDSNC	: : : :	577 560 412 957 493
GlPDE4 CmPDE4 Hs.PDE4D Dm.PDE4D Ce.PDE4	: : : :	DIFASLGKKPRQTIRKMVIDMVLATDMSKHMSLLADLKTM DIFMNLGKKPRQTIRKMVIDMVLATDMSKHMSLLADLKTM DIFQNLTKKQRQSIRKMVIDIVLATDMSKHMNLLADLKTM DIFCNMQKKQRQTIRKMVIDIVLSTDMSKHMSLLADLKTM DFLANLSRKQRLQFRKIVIDMVLATDMSKHMSLLADLKTM	: : : :	617 600 452 997 533

GIPDE4	:	VETKKVAGSGVLLLDNYTDRIQVLQNMVHCADLSNPTKPL	:	657
CmPDE4	:	VETKKVAGSGVLLLDNYTDRIQVLQNMVHCADLSNPTKPL	:	640
Hs.PDE4D	:	VETKKV <mark>TS</mark> SGVLLLDN <mark>Y</mark> SDRIQVLQNMVHCADLSNPTKPL	:	492
Dm.PDE4D	:	VETKKVAGSGVLLLDNYTDRIQVLENLVHCADLSNPTKPL	:	1037
Ce.PDE4	:	VE <mark>AKKV</mark> AG <mark>NN</mark> VIVLD <mark>K</mark> Y <mark>N</mark> DKIQVLQS <mark>MIH</mark> LADLSNPTKPI	:	573
			1	
GlPDE4	:	ELYK <mark>NW</mark> VSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE	:	697
GlPDE4 CmPDE4	:	ELYKNWVSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE EMYKNWVSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE	:	697 680
GlPDE4 CmPDE4 Hs.PDE4D	: :	ELYKNWVSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE EMYKNWVSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE QLYRQWTDRIMEEFFRQGDRERERGMEISPMCDKHNASVE	::	697 680 532
GlPDE4 CmPDE4 Hs.PDE4D Dm.PDE4D	••••••	ELYKNWVSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE EMYKNWVSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE QLYRQWTDRIMEEFFRQGDRERERGMEISPMCDKHNASVE PLYKRWVALLMEEFFLQGDKERESGMDISPMCDRHNATIE	::	697 680 532 1077
G1PDE4 CmPDE4 Hs.PDE4D Dm.PDE4D Ce.PDE4	••••••••	ELYKNWVSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE EMYKNWVSSIMEEFFQQGDRERDQGMDISPMCDRHTATIE QLYRQWTDRIMEEFFRQGDRERERGMEISPMCDKHNASVE PLYKRWVALLMEEFFLQGDKERESGMDISPMCDRHNATIE ELYQQWNQRIMEEYWRQGDKEKELGLEISPMCDRGNVTIE	: : :	697 680 532 1077 613

GlPDE4	:	KSQVGFIDYIVHPLWETWADLVHPDAQDILD <mark>TLEE</mark> NR <mark>D</mark> WY	:	737
CmPDE4	:	KSQVGFIDYIVHPLWETWADLV <mark>H</mark> PDAQDILDTLEENR <mark>D</mark> WY	:	720
Hs.PDE4D	:	KSQVGFIDYIVHPLWETWADLV <mark>H</mark> PDAQDILDTLE <mark>D</mark> NREWY	:	572
Dm.PDE4D	:	KSQVGFIDYIVHPLWETWADLV <mark>H</mark> PDAQDILD <mark>TLEE</mark> NR <mark>D</mark> YY	:	1117
Ce.PDE4	:	KSQVGFIDYIVHPLYETWADLV <mark>Y</mark> PDAQNILD <mark>Q</mark> LEENREWY	:	653

GlPDE4	:	NRMIPISPSSSSNDLKEEEYPG	:	759
CmPDE4	:	NRMIPISPSSSSNDLKEEDYPG	:	742
Hs.PDE4D	:	QST <mark>IP</mark> QSPSPAPDDPEEGRQGQTEKFQFELTLEEDGES	:	610
Dm.PDE4D	:	QSMIPPSGVDENPQEDRIRFQVTLEESDQ	:	1150
Ce.PDE4	:	QSRIPEEPDTAR	:	665

GlPDE4	:	ENSQDVPEEELCAAADRIQIQFTLEDEGSGNRGPPG	:	795
CmPDE4	:	ENSQDAPEEELCAAADRIQIQF I LEDEGSGNRGPPG	:	778
Hs.PDE4D	:	DTEKDSGSQVEEDTSCSDSKTLCTQD <mark>S</mark> ESTEIPLDEQVEE	:	650
Dm.PDE4D	:	ENLAELEEGDESGGESTTTGTTGT	:	1188
Ce.PDE4	:	TV T EDDEHK	:	674

:	DARGEDPTM	:	804
:	DARGEDPTM	:	787
:	EAVGEEEESQPEACVIDDRSPDT	:	673
:	GGGGMAPRTGGCQNQPQHGGM	:	1209
:		:	-
	::	: DARCEDPTM : DARCEDPTM : EAVCEEEESQPEACVIDDRSPDT : GGGCMAPRTGGCQNQPQHGGM :	: DARCEDPTM : : DARCEDPTM : : EAVCEEEESQPEACVIDDRSPDT : : GGGCMAPRTGGCQNQPQHGGM : : :

Figure 2.7. Multiple alignment of deduced amino acid sequences of PDE4 proteins in two crustacean species, one insect species, one nematode species and one mammal species. Abbreviations: Gl: *G lateralis*; Cm: *C maenas*; Dm: *D melanogaster*; Ce: *C elegans*; Hs: *H sapiens*. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 5.

GIPDE5 6761 nucleotides, structure: G sequence

61 121 TCCTGAGGGAGACGTGTGGCCAGCGGAGACCTGCCTTTGTGGACCTGTGTGCCCTGGACT 181 GAACGCGTGCCCTCTAGACGTGTGTTCCTAAGTGTGACCTTGTGGGACGTGCCTCTGGGA 241 GACGTGCCCCTTGGAAACTGTACCCCAAGAGAAACGTGACTTCAGTGAAACGAGCCCAAA 301 GAACTGTTCTCTGAGGAGCCCACTTTTGTAGACCTACGGAAAAGGACTCGAAAAGGAATG 361 AGTTAGGAATAGTGGCCCTTTCCAAGACTTGCACAAAGTACTGTCCCCTGATATGCTCAC 421 ACTGACTGTGAAGAAGTACAAAAGAAGACTCGAAAAGGAAAACACTGAAGCCGTTTTCCT 481 TAAGAAGTAGACGAATCCCAAATCAAACGTACCTCAGGGGAAAAGTGTCCAAAGATCTGT 541 TTACCGATAAAACCGCATCTGAAAAAGTACAAACGAGAACTCGAAAAACAAAGGCGTCGGA 601 ACAGTTTACCCAGCGAAAGGTACACGTGCCTGGGGAAACGTTCATCAAGATCTGTTCTTT 661 TACAATCCCACGCTTGAAGACGTATGTAAGAGGACGAAAAATTTAAGACGCTGAGATCGT 721 GTCCCGCAAAGAGAGACGTGCCTCAGGATCTGCTTGAAGACACAAAACGGAAGACGCTGA 781 AGTAGTTCCCCCCCCTGAAAGAATAGAGGGACGGACCCTTGAAGGCAGCACGACCCCCA 841 GCCCTCTTCTCCCCTCCTGCAGCCGCCGCA<mark>ATG</mark>AGCTGTCTGCTGGAGGAAGGGGGGACAG 901 M S C L L E E G G Q 10 GATGGGGTGGTGGGGGGTGGGGGGTGTTGGTGTCAAGCGGGGACCCACGCCCATACGCCGC 961 G V V G G G G V G V K R G P T P I R R D 30 CGAAGATCAGGGGTCGGGGCGCCGGGCCTCGTTGTGAACGGGCGGAACAAGATGAACAGC 1021 R R S G V G A P G L V V N G R **N K** Μ Ν S 50 1081 H D L P L T A E D M T G E A V G Q Y L K 70 GCGCACCCTGAGTTCCTCGAGAGTTGGCTCATGGAACAGGTGGAGCTGGAGACGCTGGAG 1141 A H P E F L E S W L M E Q V E L E T L E 90 CGGTGGATGATACGCCGCACCCAACGCGACAAACAGAAGAGCTTGGAGAACGGCACGAAT 1201 R W M I R R T O R D K O K S L E N G T N 110 GGTAAAATCATCAGAAAAACAAGCCTATCCAGATGGAAGTTCTGCGTGCATGCTGACAAG 1261 G K I I R K T S L S R W K F C V H A D K 130 R K M L Q E L T S S L Y V R P N K P H V 150 CTCTGGGAGCTCACGCGCTGCATCTCCTCGGCCGTGAACGCAGACGGCTGTAACCTGTAC 1381 WELTRCISSAVNADGCNLY 170 CTGGCTGACCTGGACACCACACACACACTCATGCGATACGTGGAGAGCAAAGACGGGGAGGGG 1441 L A D L D T N T L M R Y V E S K D G E G 190 D S S T W S C O V G G G A W L C G Y V A 210 AGCTCGCGTCAGGCCGTCAGGGTGACCTGCCCCATCACTGACCCAAGGTTCCCTAAAGGA 1561 S S R O A V R V T C P I T D P R F P K G 230 TGCCCCTTCGCTGAGGAGGAGGAAGTGCACCACCTTCTCGTGATGGCGGTGGTGCAGAGC 1621 C P F A E E Q E V H H L L V M A V V Q S 250 D G E L A A V L E L Y R R R G G E A F H 270 ACGGAGGACGAGGAGATCGTCAACTCGTACCTGGTGTGGGGAGGCATCGCCCTGCACTAC 1741 TEDEEIV VW Ν S Y L G G Т Α L Н Ү 290 GCCGAGCTCTACCACAGCATGGTGAAGCAACGCACGCTCAATGAGTTCATCCTCTCCGTC 1801 V K Q T L E F R N Т S V 310 L GTGAAGTCGATCTTCCAGGACATGGTTAGTATGGACACTCTCATAATGAAGGTGATGAAC 1861 S M D T L I M K V M N F \cap D 77 330 M TTTGCCCAGAAGCTTGTGAACGCCGATCGAGCTTCCCTCTTCCTCGTCGACTCCAAGAAC 1921 F A Q K L V N A D R A S L F L V D S K **N** 350 AAGCAACTCTACGCCCGCATCTTCGATATGGGCAGTGAATTCAGTGAAGACAATCCCCCA 1981 YARIFDMGSEFSEDNPP 370 ĸ OL CAGTCATTCAAGGAGATCAGGTTCGCCATTGGGAAAGGGATCGCCGGCATCGTGGCCCAG 2041 390 SFKEIRFAIGKGIA G Τ V А 0 0

AACGGGGAGGTCCTCAACATCCCAGACGCCTATGCCGACCCTCGCTTTAACCGGACCGTC	2101
N G E V L N I P D A Y A D P R F N R T V	410
GACCAACTCACCGGATACGTCACCAAGTCCATTCTGTGCATGCCCATCTTCATCCGCGGC	2161
D O L T G Y V T K S T L C M P T F T R G	4.30
AACGTAATCGGCGTGATGCAGATGGTGAACAAGGCCTCGGGGGGTGTTCAACAAGGAGGAC	2221
N V I G V M O M V N K A S G V F N K F D	450
	2281
E E S F O M F A I Y C G L A L H H A K L	470
	2341
Y D K I R R S E O K Y K V A L E V L S Y	490
CACAACTCTTGCTCTGACGACGAGCTTGATGTCCTGCAAGCAGAGAACATTACCAGGCCT	2401
H N S C S D D E L D V L O A E N I T R P	510
ATCCCGGGGGTCGACGACTTCTACTTCTGCGCCATGAACCTGGAGGACATGACGAAGGTG	2461
I P G V D D F Y F C A M N L E D M T K V	530
	2521
R H A I Y M F V D L F G L T R F D K D C	550
CTCATCCGCTTCACGCTCACCGTCAAGAAGAACTACCGTCGCGTCCCCTACCACAACTGG	2581
T. T R F T T. T V K K N Y R R V P Y H N W	570
ACTCACGGGTTCAGCGTCGCCAACTCAATGTACGCCATCATCAAGCATAACCCAAAGAGC	2641
THGFSVANSMYAIIKHNPKS	590
TTCCGACCCCTAGAGTGTCTCGCTTTGTTCATCGGTTCCCTGTGCCACGATCTTGACCAC	2701
F R P L E C L A L F I G S L C H D L D H	610
CGAGGGAAAAACAACAAATTCATGCTGGAGACAGAGAGTCCCCTTGCGGCCATCTACACT	2761
R G K N N K F M L E T E S P L A A I Y T	630
ACCTCGACCCTGGAGCATCATCACTTCAACCAGACCGTCACCATCCTCCAGCAGGAGGGC	2821
T S T L E H H H F N O T V T I L O O E G	650
CACAACATCTTCGGGAAGCTCACCTCGACGGAGTATAAGCAGGTTCTGGGCAACATCAAA	2881
H N I F G K L T S T E Y K Q V L G N I K	670
CACTGCATCCTGGCTACAGACCTCGCCCTCTTCTTCCCTAACAAGGCCAGACTCGCGCAG	2941
H C I L A T D L A L F F P N K A R L A Q	690
CTCGTCGAGGATAACCTATTCGACTGGGACAACTCAGACCACCGGATGCTTATTGAGGCC	3001
L V E D N L F D W D N S D H R M L I E A	710
ATCGCCATGACAGCATGTGATTTGTGCGCCTCGGCCAAGCCCTGGGAGATGCAAGCCGAG	3061
IAMTACDLCASAKPWEMQAE	730
ACGGTCAAGGTCATCTTTGAGGAGTTTTACGAGCAGGGGGATGCTGAGAAGGCAGCCGGC	3121
T V K V I F E E F Y E Q G D A E K A A G	750
AAGAACCCAATCCCCATGATGGACAGGACAAAGGTGAACGAAC	3181
K N P I P M M D R T K V N E Q A E S Q V	770
GGGTTCCTCTCAGGGATCTGCATTCCTTGCTACGAACTGCTGCACAAACTCATCCCCAAC	3241
G F L S G I C I P C Y <u>E L L H K L I P N</u>	790
ACCGAACCTCTACTGGACGGCTGCAAGAACAACCTGGAGACGTGGAAACAGATTGCGGAG	3301
<u>TEPLLDGCKNN</u> LETWKQIAE	810
GAAAAGCGTAAAGAGATGAAAAAGAACAGCGAAGTGGAAGGCGAGGAGGAAACGGACACG	3361
E K R K E M K K N S E V E G E E E T D T	830
GGCATCGAGGAGGTGAATGAGGAGGAGGAGGAAGAAGAGGGAGTCGAGACCTTGCAAGACATC	3421
G I E E V N E E E E E G V E T L Q D I	850
GACGACGAGTGTGTTGACGGGAAAAGCGAAACA <mark>TAG</mark> AATCGGGTCGAGGAAGGGTGCGAT	3481
DDECVDGKSET –	861
CCAACGTGAAAACGAGTGAATGAGCGTCTTGTCTTTCGAACCTTAAATCACGAATTAAGA	3541
GAACGAAACCAGCACTCGTATCGTCAACTCAGTTTATTTGTTTTTCCAGACGTGTGACGT	3601
TGATGACAAGACTGCAGTGTGGATAGCGCAAATCAGCGTCAAAAATCTAGTGAGACAATA	3661
TATAATACTGTGAGAGATAGAAGAAAAGGCCACTCTAAAATATCGTATCTCGTAATGACA	3721
CAAAAATGGTACTTCTTCGCAGCCCCCCAGACTTTCGAGTGCTATTTTCTTCCGTGTGAG	3781
AAAAGTTTCAGGCACAAAGGGGACGGAACCTAAACAGTATCTTCACTCTCCACCCAC	3841
AGAATGAGGCTTGGAAGGAAAGGGAATGAAGGAGAGAGGGACAGAGAACAAGAGACAAGA	3901
TACACGAAGTAATCCAGGGTCATCCCGGGACACATACGCACTTATCTTGCCATTTCCTTA	3961
GCCTAAGCGCCACTCACACCCTGAGGCGGCACAGTGCCATGAATTATTGCTTAAGGTAGT	4021

GTGCTGTGTAAGCCTGTCTGTTACCTGAAAAACTGAGAAAAATGCTAAGGTATGGGTGTAT 4081 ATCTTAAGCTTAATTTTTCTTTATGCCTGAAATGGCTTATCAGCGATTGTGAATAAATTA 4201 AACGAGGGACTAGAGCAAGGAAACTAAATATCAGAGGTGAAATTTTGGGGTTTAGTGTCC 4261 TGGAAAGCATCTATATCTTCTTTTGTTATGCTGTAAATGTTTTAATCTTACGAGTGAAAG 4321 AACAGAATAGTATTGTTTATTATTGTTATGCCGTTGTTCCACTGGCTTTATTAATTTG 4381 TCAGGTTGTAGTAAGACCAGATTAATCATATTTATCGATGATGTAAAAAACTTGTACCTTG 4441 GAAAAAAATCGATGACGAGAATGAGAAACAAACACGACATATTTGTGATTTATAATATTT 4501 ATCAAACAGGCTTTTCTTTGAAGTGAAGGACAACAGTATTTAATGAGTTTCGCAGTTTCT 4561 AGAGCCTTCAAAAGTCTTGTGTATAAATGCAAGAGTGTGGGGACTTTCAAAACACAAGTAC 4681 GTGCGATGTTTCCACTTCCACGACCCACCGTAACAAAACAAGCATGCGTGTGAAAGAACG 4861 AAAACTTCAAAGAGCCTACATGTGTGGGATGAAAGAGTGTGGGGATCTTCAGAATATTCCAC 4921 AACACACAGGAACACATTCGCTCCAGTTCGCCGTTGCAACAAAAACAAGACTTGGTAACA 5041 ACAGGAATCTACTGAGCGCTGCCTTTCTTGGTATAATTTACAAACTTCCTATACAGTTCG 5101 TACCTCATTCTCGCGACCACAACTTCCACAGCCCCTCTCGATGTGTGTTTTTTACTCCCG 5161 TTGTGTACGCGATGTTGGAAACTGTGAAGAGGAAAATAATTATATCACTTCTGAAGGCCA 5221 CATAGCAGGGTTCAGTGATATAAAGTGTGGCTTCTGGGGACGGAAATCAGATTAATCTAA 5281 CACAGAGACTGTCAGGTTGTTTGTTCTGCCGACGTGAAAAGGAAAAACATTAGATTTTCT 5341 CGTAAGGTCACATAGCAGGGTTCAGTAATCAAACTGTGGCTTCGGGGGATGGAATACTGA 5401 CTTAACTAACCTGTAGACTGTCATGTTGTGTACTCAAAAGTGTTAGATTCCCTCTTGAGG 5461 CCACGTATCAGAATTCATTAATCTAAAATGTGACTTTGGGTGATGGAATAAAGACTAAGC 5521 CAACGCAGAGAGTGTCAGGCTGTATGTTCTGCCGAGAGGGAGAAAATCGAGGGCTGCCTG 5581 CAGACCCCTCTTTGATGATTGTCTGTACAGGATAAACCAATAATACGTACTACAATGCCT 5761 TTTCAGAGTGGTTATATGAAGAAACAAATTAAGAGTTAGAGCTACTTCCACGCATAAAAC 5821 ACGCCTCTTTCAGGTCTTATCTGGGGTCGTACGGTAGTGAGAGATATGTAGTGTATAATA 5881 TTCTTATAGCCTGTAGTTACTTCTGCCTTTTCCTGAGAGCTAAACTTCGGTGCGTCCACG 5941 CTAATATGGTGAATAAGCCCCGCCCACCCCAGTTCAGCAGCCATTAGTAAAATCCAGTCT 6001 TTCTATCAATCCGCCAGTCACATGCAGCCTGAGTCAGGAGGGGACATGGCCAACTAGTGG 6061 ATTGGCCAAAGGTATGCGTCTGAGGAGGGGAAGGGGAAGGGGTTTATCCGCCAAGCTAAA 6121 GCGGACGGAGTGTAGTGATCTGGCTGCCTCTTCTTGGCGCGCATCTTGATAGCCTAGCAT 6181 CCAAGTATCGTGTATCTGCCTTTCACGTGCACGATAGGAAAGAGTAACTGAGGCGAGACA 6241 CTATTTTCACACTAGAATGTTTGGAACCGTTAGGATTATTATGAATTAAGGATAATGCAC 6301 TGAAAGATAAGATAAGCTGATCTCTTTCCCATCAGTTTTCATACCCGGTGTCTCTTGGGT 6481 TTTGCTTAGAGTGAGACGTTTCGAGACTGAACAGAGGAAAAGACGAATACTTGCCAACAA 6541 GACAAAAATACAAAGAGTTACAGTTAAGGTGAGAGATAGAGACGCTTGTTCTTGTTCATT 6601 ATTCTTGCCAGTCACAGACCTCACCGCACCGAGCGATCTGTGTCTCTTCTTAGTCCCG 6661 CTTACCAAAGAATTCAGAGAGGTGTATTATGTATATAGAG 6761

Figure 2.8. Nucleotide and amino acid sequence of cDNA encoding GI-PDE5. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. Two GAF regulatory domains; GAF-A &GAF-B are indicated by green boxes and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains, the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

1 TGCACTCGTGCGCTATGAATGTCAACAAAGCCAGGGTAAGACAAGAGGAGCCCAGAAGGG 61 AGACGTGACCAGCGGAGACGTACCCCTGTGAACGTGCCCTGGAAAACGTGCCCTTGAGAC 121 GTGTTCTTGGACGTGTACCATTGAGGAACGTGCCTTAGGGAGACGTACCCTTTGGAAGAC 181 GTGTATGCTATAGTAAACAAACGTGTGCTGAAAGAAAACTGTCCTTGAAATCCAGAGCAA 241 TAAAAAACGTGATCTGGGAAACTTTCTACGAGGACCTCGAGACGGATACGCTCTTGTATA 1 M M S C L L E E G G Q E G V V G G G G V 21 G V K R A S V P L R R R R T G I G A P G 421 GGGTGTTAAGAGAGCGTCTGTACCCTTACGTCGACGCAGAACAGGGATCGGGGGCGCCGGG 41 L T V N G R S N M N S H D L S L T A E D 481 CCTCACTGTGAACGGGAGAAGTAATATGAACAGCCACGATCTCTCCCTAACAGCCGAGGA 81 M T G E E V G Q Y L R A H P E F L E S W 541 CATGACGGGGGGGGGGGGGGGGGCCAATACCTTCGAGCACCCCAGAGTTCCTCGAGTCGTG L M E Q V E L E T L E R W M I R R T Q R 101 601 GCTCATGGAACAGGTGGAACTGGAGACGCTGGAGAGGTGGATGATACGACGCACTCAACG 121 D K Q K S L E N D T N G K I I R K T S L 661 AGATAAACAGAAAAGCCTGGAGAACGATACGAATGGTAAAATCATCAGAAAAACGAGCTT 141 S R W K F C V H A D K R K M L Q E L T S 721 ATCCAGATGGAAGTTTTGCGTGCACGCCGACAAACGCAAGATGCTGCAGGAGCTCACGTC 161 S L Y V R P N K P H V L W E L T R C I S 781 GTCCCTCTACGTGAGACCCAACAAGCCACACGTTCTCTGGGAGCTCACCCGCTGCATCTC S A V N A D G C N L Y L A D L D T N M L 181 841 CTCAGCAGTGAACGCGGACGGATGCAACCTTTACCTCGCTGATCTCGACACTAACATGCT 201 R R Y V E S K D G E G D S T G W S C P М 901 CAGACGTTACGTGGAGAGTAAAGACGGGGAAGGAGACAGCACAGGATGGAGCTGCCCCAT 221 G D WLCGWVA S S R 0 Α S G L R Α Т 961 GAGCGGCGGGGACTGGCTGTGGGATGGGTAGCCAGCTCTCGTCAGGCCCTTAGAGCCAC 241 Y P I T D P R F P K G S P F A E E Q D V 1021 CTATCCCATCACTGACCCGAGATTCCCCCAAAGGATCCCCCTTCGCTGAGGAGCAGGACGT 261 H H A L V M A V M Q S D G E L A A V L E 1081 ACATCACGCTCTGGTCATGGCGGTGATGCAGAGCGACGGGGGGGTTAGCAGCTGTGTTGGA 281 L Y R R R G C E S F H T E D E E I V N S 1141 GCTGTACAGGAGGCGAGGTTGCGAGTCGTTCCACACAGAGGATGAGGAGATCGTCAATTC 301 Y L V W G G I A L H Y A E L Y H S M V K 1201 CTACCTGGTGTGGGGTGGCATTGCGCTGCACTACGCCGAGCTCTACCACAGCATGGTGAA 321 Q R T L N E F I L S V V K S I F Q D M V 1261 GCAACGCACACTTAATGAGTTCATCCTCTCCGTTGTAAAATCGATCTTCCAGGACATGGT 341 S M D T L I M K V M N F A O R L V N A D 1321 GAGCATGGACACACTCATTATGAAAGTGATGAATTTCGCCCAAAGACTTGTGAACGCCGA 361 R A S L F L V D S K N K Q L Y A R I F D 1381 CCGTGCTTCTCTCTTCCTCGTCGACTCCAAGAACAACAACTTTATGCTCGTATATTCGA 381 **M G S E** F S E D N P Q Q S F K E I R F А 1441 CATGGGCAGCGAATTCAGTGAAGACAATCCCCAGCAGTCATTCAAGGAGATCAGGTTCGC 401 I G T G I A G I V A Q N G E V L N I P D 1501 CATAGGGACAGGTATCGCCGGCATCGTGGCTCAGAACGGAGAGGTGCTAAACATTCCAGA 421 A Y A D P R F N R T V D Q L T G Y V T K 1561 CGCTTACGCCGACCCTCGCTTTAACCGCACCGTGGACCAACTCACGGGCTACGTCACCAA 441 T T. С М Р IFI R G N V I G V M QМ S V

63
1621	GTCCATCCTCTGTATGCCCATCTTCATCCGTGGCAACGTGATCGGCGTAATGCAGATGGT
461	N K A S G V F N K E D E E S F Q M F A I
1681	GAACAAGGCATCAGGGGTGTTTAATAAGGAGGACGAGGAGTCGTTTCAAATGTTTGCCAT
481	Y C G L A L H H A K L Y D K I R R S E Q
1741	CTACTGTGGCCTCGCTCTCCACCACGCGAAGCTCTACGACAAGATCCGACGCTCCGAACA
501	KYKVALEMMSYHSSCAPLEL
1801	AAAGTACAAGGTAGCTCTGGAAATGATGAGCTACCACAGCAGTTGTGCGCCCCTCGAGCT
521	D M L S K E E V P N V L A G V D D Y Y F
1861	TGATATGTTGTCAAAAGAAGAGGTGCCCAATGTCTTGGCAGGCGTAGATGACTACTACTT
541	C A M N L E D M V K V R H A I Y M F V D
1921	CTGCGCGATGAACCTCGAGGACATGGTGAAGGTTCGCCACGCCATCTATATGTTCGTCGA
561	L F G L S R F E K D C L I R F T L T V K
1981	TCTGTTCGGACTGAGCCGCT ¹ CGAAAAGGACTGTCTCATTCGCTTCACGTTGACCGTCAA
581	KNYRRVP YHN WTHGFSVANA
2041	GAAGAACTACCGACGTGTTCCTTACCATAACTGGACTCATGGGTTCAGTGTGGCCAACGC
601	M Y A I I K H N P K S F R P L E C L A L
2101	TATGTACGCTATTATCAAACATAACCCAAAGAGCTTTCGACCGCTGGAGTGCCTGGCGTT
621	FIGSLC HDLDHRGKNN KFML
2161	GTTCATTGGTTCCCTGTGCCACGACTTGGACCATCGGGGGAAGAACAATAAATTCATGTT
641	
2221	GGAGACGGAGAGCCCCCTAGCGGCGATCTACACAACTTCCACCCTCGAGCATCACCACTT
661	N Q T V T I L Q Q E G H N I F G K L T S
2281	CAACCAGACAGTCACTATCCTACAGCAGGAGGGCCACAACATCTTCGGCAAGCTAACCTC
681	ΤΕΥΚQVLGNIΚΗСΙLΑΤDLΑ
2341	CACGGAGTACAAACAAGTTCTGGGTAATATCAAACACTGTATCCTAGCAACAGACCTCGC
701	L F F P N K E K L S Q L V K E S K F D W
2401	TCTCTTCTTCCCTAACAAGGAGAAACTGTCCCAACTGGTGAAGGAGTCCAAATTTGATTG
721	D N A D H R M L I E A I A M T A C D L C
2461	GGACAACGCCGACCATAGGATGCTAATAGAAGCCATCGCAATGACGGCCTGCGATCTCTG
741	A S A K P W E M Q A E T V K V I F E E F
2521	TGCCTCCGCCAAGCCTTGGGAGATGCAAGCAGAGACGGTCAAGGTTATCTTTGAGGAGTT
761	Y E Q G D A E K A A G K N P I P M M D R
2581	TTACGAGCAGGGAGACGCCGAGAAAGCTGCGGGCAAGAATCCAATTCCCATGATGGACAG
781	T K E N D Q A E S Q V G F L S G I C I P
2641	GACAAAGGAGAACGACCAGGCAGAGTCACAGGTTGGGTTCTTGTCGGGTATCTGCATCCC
801	C Y E L L H K L I P N T K P L L E G C N
2701	TTGCTACGAGCTGCTACACAAACTTATTCCCAACACGAAGCCACTACTGGAAGGCTGCAA
821	S N L Q T W K K I A E D K R K E T K S S
2761	CTCCAACCTACAGACGTGGAAGAAGATTGCTGAGGATAAGCGTAAGGAGACGAAGAGCAG
841	D D G E G G D E T D T G I E E V N E E E
2821	TGACGATGGGGAAGGCGGGGGACGAGACGGACACGGGCATCGAGGAGGTGAACGAAGAGGA
861	E E G V E V L Q E I K D E C V D A K T E
2881	GGAGGAAGGAGTCGAAGTTCTGCAAGAGATTAAAGACGAGTGTGTTGACGCCAAAACTGA
881	Т
2941	AACA <mark>TAG</mark> AGTGAGGCTTAGCGAGTGCATTTGAACTTGAGAGAGAGAG

Figure 2.9. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE5. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. Two GAF regulatory domains; GAF-A &GAF-B are indicated by green boxes and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains, the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

GlPDE5	:		:	-
CmPDE5	:		:	-
Dm.PDE5/6	:	MTDVSSPAGGAASPVEMSTTSSSSAATTSASSSKPLTNGA	:	40
Ce.PDE5	:		:	-
Hs.PDE5A	:		:	-

GlPDE5	:	GGVGVKRG	:	24
CmPDE5	:	GGVGVKRA	:	25
Dm.PDE5/6	:	NKTAISTAAGGVTPGAVPGPGSGAIPASSSSCNQVKLEHH	:	80
Ce.PDE5	:		:	_
Hs.PDE5A	:	MERAGPSFCQQRQQQQP	:	17

GlPDE5	:	PTPIRRRSGVGAPGLVVNGRNKMNSHDLPLTAEDMTGEA	:	64
CmPDE5	:	SVPLRRRTGIGAPGLTVNGRSNMNSHDLSLTAEDMTGEE	:	65
Dm.PDE5/6	:	HRQSNNNRPAVTNRSSETKLMTPTGSSSSPSQSPSQTQAS	:	120
Ce.PDE5	:	MDDAS	:	5
Hs.PDE5A	:	QQQKQQQRDQDSVEAWLDDHWDFTFSYFVRKATREM	:	53

GlPDE5	:	VGQYLKAHPEFLESWLME-QVELETLERWMIRRTQRDKQK	:	103
CmPDE5	:	VGQYLRAHPEFLESWLME-QVELETLERWMIRRTQRDKQK	:	104
Dm.PDE5/6	:	I QTQTSQQDRLAKASTTASQQDVDEVARLFEEKPEAFEKW	:	160
Ce.PDE5	:	VLKYLQENPKLVEDFVVSNEISPETFKRWAVRRTMKYKN-	:	44
Hs.PDE5A	:	VNAWFAERVHTIPVCKEGIRGHTESCSCPLQQSP	:	87

GlPDE5	:	SLENGTNGKIIRKTSLSRWKFCVHADKRK	:	132
CmPDE5	:	SLENDTNGKIIRKTSLSRWKFCVHADKRK	:	133
Dm.PDE5/6	:	LTERAPPEALSRLQEFIENRKPHKRPSVTSDLFQQWMAAS	:	200
Ce.PDE5	:	-VKNGTSGGTGAWTEPDLSMKRR	:	66
Hs.PDE5A	:	RADNSAPGTPTRKISASEFDRPLRPIVVKDSEGTVSFLSD	:	127

GlPDE5	:	MLQELTS	:	139
CmPDE5	:	MLQELTS	:	140
Dm.PDE5/6	:	PTVQQKSPRSLSNSSASSLPECRRHLMDLDEGE FMEI IR	:	240
Ce.PDE5	:	VILDTSD	:	73
Hs.PDE5A	:	SEKKEQMPLTPPRFDHDEGDQCSRLLELVK	:	157

		GAF-A
GlPDE5	:	SLYVRPNKPHVLWELTRCISSAVNADGCNLYLADLDTNTI : 179
CmPDE5	:	SLYVRPNKPHVLWELTRCISSAVNADGCNLYLADLDTNML : 180
Dm.PDE5/6	:	DVANELDIDVLCHKILVNVGLLTHADRGSLFLAKGTPTN- : 279
Ce.PDE5	:	NRTRILYEITQCCGQLIGTNSIELIVQNDEGAFS : 107
Hs.PDE5A	:	DISSHLDVTALCHKIFLHIHGLISADRYSLFLVCEDSSND : 197

GlPDE5	:	MRYVESKDGEGDSSTWSCQVGGGAWLCGYV	:	209
CmPDE5	:	RRYVESKDGEGDSTGWSCPMSGGDWLCCWV	:	210
Dm.PDE5/6	:	KYLVAKLFDVTQKTALKDAVTRASAEEIIIPFGIG <mark>I</mark> ACM V	:	319
Ce.PDE5	:	CRKTENGELKLKKVKTSKSADY I QTI V	:	134
Hs.PDE5A	:	KFLISRLFDVAEGSTLEEVSNNCIRLEWNKG <mark>I</mark> VCHV	:	233

GlPDE5	:	ASSRQAVRVTCPITDPRFPKGCPFAEEQEVHHLLVMAVVQ	:	249
CmPDE5	:	ASSRQALRATYPITDPRFPKGSPFAEEQDVHHALVMAVMQ	:	250
Dm.PDE5/6	:	AQTK <mark>Q</mark> MINIKEAYKDARFNCEIDLKTGYKTNAIICMPICN	:	359
Ce.PDE5	:	NAGNQTIAEIHFYTQLDSTEKSIVNAVCT	:	163
Hs.PDE5A	:	AALGEPLNIKDAYEDPRFNAEVDQITGYKTQSILCMPIKN	:	273

GlPDE5	:	SDGELAAVLELYRRRGGEAFHTEDEEIVNSYLVWGGIA	287
CmPDE5	:	SDGELAAVLELYRRRGCESFHTEDEEIVNSYLVWGGIA	288
Dm.PDE5/6	:	YEGDIIGVAQIINKTNG-CMEFDEHDVEIFRRYLTFCGIG	398
Ce.PDE5	:	WAAATNYYS <mark>E</mark> LYTHKQEGSDGQ <mark>D</mark>	186
Hs.PDE5A	:	HREEVVGVAQAINKKSGNGGTFTEKDEKDFAAYLAFCGIV	313

End of GAF-A

GAF-B

.

28
38
21
53

GlPDE5 CmPDE5 Dm.PDE5/6	::	VMNFAQKI VNADRASLFLVDSKNKQLYARIFDMGSEFS VMNFAQRI VNADRASLFLVDSKNKQLYARIFDMGSEFS IMTEAREI LKCERCSVFLVDLDCCEASHLEKIIEKPNOPA	365 366 478 259
Ce.PDE5	:	VMNFAQKIVDAD <mark>R</mark> ASLFLVDSKNAQIYAR I FDVGTGDE	259

GlPDE5	: EDNPPQSFKEIRFAIGKGIAGIVAQNGE	393
CmPDE5	: EDNPQQSFKEIRFAIGTGIAGIVAQNGE	394
Dm.PDE5/6	: TRAIKSADSFEEKKMRNRFTVLFELGGEYQAANVSRPSVS	518
Ce.PDE5	: EHVRVNSEGQKEIRFDMSKGIAGYVASTGE	289
Hs.PDE5A	: EKSSDTLTREHDANKINYMYAQYVKNTME	420
G1PDE5	: VINIPDAYADPRENRTVDQLTGYV	417
CmPDE5	: VINIPDAYADPRENRTVDQLTGYV	418
Dm.PDE5/6	: ELSSSTLAQIAQEVATTGQTVNICDVIEWVRDHNQIRAED	558
Ce.PDE5	: GINIENAYEDERENADVDSKTGYT	313
Hs.PDE5A	: PINIPDVSKDKREPWTTENTGNVN	444
G1PDE5	:TKSILCMPIFIRGNVIGVMQMVNKASGV	445
CmPDE5	:TKSILCMPIFIRGNVIGVMQMVNKASGV	446
Dm.PDE5/6	: EIDSTQAILCMPIMNAQK-KVIGVAQLINKANGVP	592
Ce.PDE5	:TKTILCMPILIRGIVIGVVQMVNKHDGV	341
Hs.PDE5A	: -QQCIRSLLCTPIKNGKKNKVIGVCQLVNKMEENTGKVKP	483
	End of GAF-B	
G1PDE5	: FNKEDEESFQMFAIYCGLALHHAKLYDKIRR SEQKYKVAL :	485
CmPDE5	FNKEDEESFQMFAIYCGLALHHAKLYDKIRR SEQKYKVAL :	486
Dm.PDE5/6	FTDSDASIFEAFAIFCGLGIHNTQMYENACK LMAKQKVAL :	632
Ce.PDE5	FTRQDEDAFEIFAVYCGLALHHAKLYDKIRR SEQKYRVAL :	381
Hs.PDE5A	FNRNDEQFLEAFVIFCGLGIQNTQMYEAVER AMAKQMVTL :	523
GlPDE5	: EVLSYHNSCSDDELDVLQAENITRPIPGVDDFYCA :	521
CmPDE5	EVLSYHNSCSDDELDTLQAENVTREIPGVD :	516
Dm.PDE5/6	ECLSYHATASQDQTEKLTQDVIAEAESYNLYSFTTD :	669
Ce.PDE5	EVLAYHSVCNADEVNKLKKIEINNRIVELETID NG :	417
Hs.PDE5A	EVLSYHASAAEEETRELQSLAAAVVPSAQTLKITDFSFSD :	563
GlPDE5 CmPDE5 Dm.PDE5/6 Ce.PDE5 Hs.PDE5A	: MNLEDMTKVRHATYMEVD-LFG-LTRFDKDCLIRFTLTVK : :	559 - 709 456 603

			***	_	
GlPDE5	:	KNYR <mark>R-</mark> VP	YHNW <mark>THGFSVA</mark> NSMYA <mark>IIKHNPKSFRP</mark> LE <mark>C</mark>	:	596
CmPDE5	:			:	_
Dm.PDE5/6	:	KNYR <mark>P-</mark> V <mark>K</mark>	YHNWRHALNVAQTMFAMLKTGKMERFMTDLEI	:	748
Ce.PDE5	:	KNYR <mark>R-</mark> VA	YHNW <mark>AHGWSVAHA</mark> MFA <mark>TLMNSPDAFTKLE</mark> A	:	493
Hs.PDE5A	:	knyr knv<mark>a</mark>	YHNW <mark>RHAFNT</mark> AQCMFA <mark>ALKAGKIQNKLTD</mark> LEI	:	643

GlPDE5	:	LALFIGSLCHDLDHRGKNNKFMLETESPLAAIYTTSTLEH	:	636
CmPDE5	:		:	-
Dm.PDE5/6	:	LGLLVACLCHDLDHRGTNNAFQTKTESPLAILYTTSTMEH	:	788
Ce.PDE5	:	LALYVSCLCHDLDHRG <mark>K</mark> NNAYMKTMSTPLASIYSTSVMER	:	533
Hs.PDE5A	:	LALLIAALSHDLDHRG <mark>V</mark> NNSYIQRSEHPLAQLY <mark>CH</mark> SIMEH	:	683

GlPDE5	:	HHFNQ T V T ILQQEGHNIFGKLT <mark>STE</mark> YKQVLGNIKHCILAT	:	676
CmPDE5	:		:	-
Dm.PDE5/6	:	HHFDQ <mark>CVMILNSE</mark> GNNIFQALSPEDYR <mark>SV</mark> MKTVESAILST	:	828
Ce.PDE5	:	HHFNQ T V T IL QQD G HNILKS LS SED YK KT L SLIKHCILA T	:	573
Hs.PDE5A	:	HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILAT	:	723

GlPDE5	:	DLALFFPNK <mark>ARLAQ</mark> LV <mark>EDNL</mark> FD <mark>WDNSDH</mark> R <mark>MLIEAIA</mark> MTAC	:	716
CmPDE5	:		:	-
Dm.PDE5/6	:	DLAMYFKKR <mark>NAFLE</mark> LV <mark>ENGE</mark> FDWQGEEKK <mark>DLLCG</mark> MMMTAC	:	868
Ce.PDE5	:	DLALF FSNKAKLNV IL <mark>DNNT</mark> FD INRQEH R L L TQA VMMT G C	:	613
Hs.PDE5A	:	DLALY IKRRGEFFELI<mark>RKNQ</mark>FN<mark>LEDPHQ</mark>K<mark>ELFLAML</mark>MTAC	:	763

G1PDE5	:	DI <mark>C</mark> ASAKPWEMQAETVKVIFEEFYEQGDAEK-AAGKNPIP	:	755
CmPDE5	:		:	-
Dm.PDE5/6	:	DV <mark>S</mark> A IA KPW <mark>E</mark> VQ <mark>HKVAK</mark> LV <mark>AD</mark> EFF D QGD <mark>L</mark> EK <mark>LQLNTQ</mark> P V A	:	908
Ce.PDE5	:	DL <mark>V</mark> A SA KPW <mark>NIQTETVK</mark> VI FE EFY D QGD <mark>A</mark> ER <mark>-LSGKE</mark> PIP	:	652
Hs.PDE5A	:	DL <mark>S</mark> AITKPW <mark>P</mark> IQQRIAELVATEFFDQGD <mark>RERKELNIE</mark> PTD	:	803

GlPDE5	:	MMDR <mark>TKVNEQAES</mark> QVGFL <mark>SG</mark> ICIPCY <mark>ELLHKLIPNTEPLL</mark>	:	795
CmPDE5	:		:	-
Dm.PDE5/6	:	MMDRERKDELPKMQVGFIDVICLPLYRVLCDTFPWITPLY	:	948
Ce.PDE5	:	MMDR QQAHMLPQM QVGFM <mark>RG</mark> ICMPCYDLIARIFPKNDKMR	:	692
Hs.PDE5A	:	LMNR EKKNKIPSM QVGFI DA ICL QL Y <mark>EALTHVSEDCFP</mark> LL	:	843

0-sw	it	ch
2 0 11	- C	- 011

GlPDE5	:	DGCKNN	LETWKQIAEEKRKEM	:	816
CmPDE5	:			:	-
Dm.PDE5/6	:	EGTLEN	RRNWQDLAEKVEMGLTWIDHDTIDKPVEEFAACA	:	988
Ce.PDE5	:	ERCEYN	AKKWEELAEEQRKKQ	:	713
Hs.PDE5A	:	DGCRKN	RQKWQALAEQQEK	:	862

Figure 2.10. Multiple alignment of deduced amino acid sequences of PDE5 proteins in two crustacean species, one insect species, one nematode species and one mammal species. Abbreviations: Gl: *G lateralis*; Cm: *C maenas*; Dm: *D melanogaster*; Ce: *C elegans*; Hs: *H sapiens*. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 7.

GIPDE7 7531 nucleotides, structure: TC

AGTCCATGTAAAGGGGTAGGATGCTGTTCACGCCGATCCCTGAGAGGCTTGTGTTGACGT 61 GCTGTGCTTCTGAGTGTTGAGCCTGTGTTTTGGTCTGGACAGTGTGCAGTGCTGGGCAGG 121 CACAGCGGGGCGGCAGTAGGCAACCGCTGCGCGTGGAGGGGACGCACACGCTGAGGTGAC 181 GAGTAGGAGGGTTTTTTCTGTGCTCCACGCGTCCAGCTTCCTTTCCCTCGTTTTGTTGTT 241 ACGATGGCGGTGGTGGTGACGCTGGTGCTGAGCGGCCTCTCCGGTAAAATTCAGTCCTTC 301 CCGTCGCTCTTTGAGGATTAAACCCACCTGTACATCTCCTGGCCCTCACCTGTCTAGTG 361 AACGCTTCAAGCATCCTCCTCCACGTCTTACTGTCACGGTGGTGGCGGCGGTGGCGGG 421 481 TACAACTCCTGGCCGCCGCACCTGTCCCAGCATCCACCTCCCCACCGACTTGTAACACTC 541 601 TAGACAGATAGAGGCAGTGACTTAGTGTGTGTGTATATGAAATGAACGAGAATTAGTGG 661 TGACATAAGTTAATCAAACGGAGCCCTTGTCATCAGCCGCTACAGCGAACAGCAAGGAGT 721 GACCAGAGGAGGGGGGGGGGGCCAGGCTGGACCAGACCTCCCAAAATGGCCTCATGGTGCGA 781 MVR 3 ATGTTAGGTGACGTGAAGGGCAATACAACCGTGGAAACGTCCCTCGCAGCCACCGTCGGG 841 M L G D V K G N T T V E T S L A A T V G 23 CCTTCTCGCTCCACCGATGCCCGCCTGGACGCCGCCAACACGGAGTCGCGAGCCAGGGCC 901 P S R S T D A R L D A A N T E S R A R A 43 ACTCTCACCATGAACTACAGCCTCGGGGGACATGAACGTGGGCGAGGCGGAGCAGCGGCTG 961 T L T M N Y S L G D M N V G E A E Q R L 63 CTGGGCGGGGCGGGACGCGGGCCTTACTCCAGGTTCCTGACGCTCCACCGCCGCCGCCGC 1021 L G G A G R G P Y S R F L T L H R R R R 83 CGGAAGCTGCCCACACGCCGCCTTGACAAGCAACACCAGGCGCTGCTAGACGACCTGTAC 1081 R K L P T R R L D K Q H Q A L L D D L Y 103 AACGGCCTCACGCAGTACTTGTTGTCCCGCGTGGGGCGTGTGGGGGGTTCAATGCCTTCACC 1141 N G L T Q Y L L S R V G V W G F N A F T 123 L D S V C G G R P V S V L C V F L L H E 143 TATGGCCTCATCGAGCACTTCAAGTTCGACACCGTGACTGTGGGAAGTGTTTCAGTCTG 1261 Y G L I E H F K F D <u>T V T V W K C</u> 163 ATTGAGGATGGGTACCATGCCTCCAACCCC 1321 E D G Y H A S N P Y H N A I H A A D V 183 ACCCAGGCAATGCACTGCTACCTGCAGGAGGAAAAGATCCACCAACACCTGACACCATTG 1381 TQAMHCYLQEEKIHQHLTPL 203 GAGATGTTGGCTGCTCTCATTGCTGCTGTCTGCCATGACCTGGACCACCCTGGGGTCAAC 1441 E M L A A L I A A V C <u>H D L D H P</u> 223 G v N CAGCCATTCCTCATTGCGACCGACCAACCATCTGGCCGCACTATACAAAAACTTTAGTGTC 1501 Q P F L I A T D N H L A A L Y K N F S V 243 CTTGAGAACCATCACTGGCGGTGTGCAATGGGGTGCCTGTGGGAGTCTGGGCTTCTGGAC 1561 LENHHWRCAMGCLWESGLLD 263 TCATGGGACCCAGATGACGTGGCCACCCTCCAGGACATGCTGCGCTCCCTTATCTTGGCC 1621 SWDPDDVATLQDMLRSLILA 283 ACAGACATCACGCCAGCAGGAGTTCCTCACAAGATTTAAGCAATACCTGGACAGTGGC 1681 T D I T R Q Q E F L T R F K Q Y L D S G 303 ACCTTTGACATGGGGGGGGCCTGAGCACCGCCACTTCTCTCCCAAATTGCCTTGAAGTGT 1741 T F D M G E P E H R H F S L Q I A L K C 323 GCTGACATTTGCAACCCCTGTCGGCCCTGGGAGGTCTCACAGAAGTGGTCGTACAAGATC 1801 A D I C N P C R P W E V S Q K W S Y K I 343 TGTGATGAGTTTTATCGTCAAGGAGACTATGAACGCCAGCTGAACCTTCCTGTAACTCTG 1861 C D E F Y R Q G D Y E R Q L N L P V T L 363 CTGTGTGACAGCAGCAGGATGTCTGTGGCCAAAATACAAACAGATTTCATCAAGTATGTG 1921 L C D S S R M S V A K I Q T D F I K Y V 383 GTGTCACCTCTGTTTGATGTTTGGGACCGCTGGTTGGAAACAAGTTTATCAAACTCAATG 1981

D R W L E T S L S N S M 403

GTGACCAACATGAATATAAACCTGCAGAAATGGGAAGAAGCTGCTGAAGAAGCTGGCT 2041 V T N M N I N L O K W E E K L L K K L A 423 GAGGATGCTGCTGCACAGCCAGTGGTTGTACCCGAAGACTCTTCCGAGAACCCAGTGGTG 2101 E D A A A Q P V V V P E D S S E N P V V 443 GAGAGTGCTGAGGAGGAACCCGAGGAGGTGGATGGCGGGACATCCCCCAGCAGCAGTGGA 2161 E S A E E P E E V D G G T S P S S G 463 GACAGTCACCAGTCAGTGCTTGGCTCTCTAGAGAATGTGTCACGATCACTTCAGCTTGGC 2221 D S H O S V L G S L E N V S R S L O L G 483 AGGAGACACTCTGTTCCTCTGAACTTGCCACGCTTACTTCCTCGCACAATTATAAGGAGG 2281 R R H S V P L N L P R L L P R T I I R R 503 GAGAGTCTGCCGGAAAATGGAAACCAGCCCTTAGTTGTAGAGACCGTGACCATGGGAGGG 2341 E S L P E N G N Q P L V V E T V T M G G 523 ATGTCTCTCACATCCCTTTCCTCCGTCCAACTGACCTGAACTCCACACTGACACCTGAT 2401 M S L T S L S S R P T D L N S T L T P D 543 GCCCTTCTGCCCGAGCCTTCCATCACAACCATGGGTGGCGTGGGCATCAGGTTACCTCGT 2461 A L L P E P S I T T M G G V G I R L P R 563 CCAGCCACCAGACTCACTCGACGCAAGTCCCTCCCCCCCTGTGGCTTCAGCAGACAAGG 2521 PATRLTRRKSLPPLWLQQTR 583 GCAAGAACCTCACACATGCTGCAGCCCCTGTCACCCACTCCAAGTGAAGACGCTTCTTCT 2581 A R T S H M L Q P L S P T P S E D A S S 603 CACCAAACAACTCAGGAAAATTCCCCCACAGGATACTGAGAATGCACCAAGGTTAGGTGCA 2641 H Q T T Q E N S P Q D T E N A P R L G A 623 GTGCATGGTGTTGGCTCAGGTCACTCAAGTGGGAATAACAGTAGTGGTTGTGGTGGAAGT 2701 V H G V G S G H S S G N N S S G C G G S 643 GGAGGTTGTGATAGAGTGAAAAGTGGTGGTGGTGGAATGTTCAGACCCAGTGGAACCAATA 2761 G G C D R V K S G G G E C S D P V E P I 663 CATCATCCCATTAGGAGTGACACAGACCCATTGACTGCAGCTCAAGACGTGGGTGTTCAT 2821 H H P I R S D T D P L T A A Q D V G V H 683 GGTAGGAAGTGTGTTTCCAATCATCAAGGTGCTACAACATTCCTCCACGCTGACTGCCTC 2881 G R K C V S N H Q G A T T F L H A D C L 703 GACAACCACCCTACAGACCATTCATTGGGAGGGGCTTGGTGCGCCGTGCTTCACTAGAC 2941 D N H P Y R P F I G R G L V R R A S L D 723 AGTACAAGTATTAGTAGTAAACGGGAGTTCTTGGATCGCCTGCTACACGAGAGCAGTAAA 3001 S T S I S S K R E F L D R L L H E S S K 743 TTCCCTCGTGTAGACCGAACTAATAGTGAGTTAGATAAAGAAAACTTAGTGCCAAGAGAA 3061 F P R V D R T N S E L D K E N L V P R E 763 A L T Y R E Q Q Q Q Q S S W K T R A W 783 CGGAGTCTCAACTGTGATGACGAAAATGTGTGTGATCCACGTGAAAAGCTGATGAAGCCA 3181 R S L N C D D E N V C D P R E K L M K P 803 GGCATGTACAAGCTCAATCAGTCTCAGGGAAGTCTGTATGCTCATGGCCGCCGGGGGTCG 3241 G M Y K L N Q S Q G S L Y A H G R R G S 82.3 A P L L R P E E L L G G L R G G A E R P 843 D Y N Y L S L R R G S A P S O A N O K G 863 TGTGATGTTGAAACTGGGTCTGAGGTGGGTGGCCGCCACACTCCCCTCACCGCAA 3421 C D V E T G S E V G G R H T P L T S T E 883 AATCTGCCCTTTAGCGAGTACGTCAGCTCACATTCCAGACTCAGGGGGCGGCGGCGAGGC 3481 N L P F S E Y V S S H S R L R G R R R G 903 TCCATACCCTTTGATCATCCTGGACTATGCCGGCAAGGGTCTGGTGGGGGTGGAGGTGCTG 3541 S I P F D H P G L C R O G S G G V E V L 923 CCTTCAAGGACGGGTGTGGGGGGGGAACCTGGCGGTGTCTGGTGGAGGCAGCGGGGCAGCT 3601 P S R T G V G G N L A V S G G S G A A 943 GGCTTCCCCTCGGTGTTGCCCCACTACTACCATGAGTATCACAGGGGGTCTGGAGGCCTA 3661

G	F	I	2	S	V	L	Ρ	Η	Y	Y	H	[]	Ξ	Y	H	I	R	G	S	G	(4	L	963
~ 1								~ ~ ~ ~					~								~ .	~		0 2 0 1
GA	AC1	ĽG.		GCO	GGG	ACTO	GIGO	jAG <i>I</i>	4.L.C	CAC	AC1	TG(JAF	4CC	.I.C	GAG	AGC	CTCA	AAG	T.T.(CAC	510	FILC	3721
E	1		F	A	G	Ц ПП QI	W	R	2		H	L	E	ł	, 	E	S	S	S		5	V	Ľ	983
GI	GGA	7.T.(GI	GAG		L I G	rree a	CAC	JIC	, T.T.(CTG a	GI	GGC	TOC T	AA	100		AG	CAC	TCO		GI	GCT	3/81 1002
V			G	D	L ADA		S	Q	2 7		S	G	G	L		T	P	S	T		r Ta	G	A	1003
GI	GCI	- -				JUG(D		T					TC			AGG D	rUGU D	-GG(AC	t G(t		AACI	3841 1022
			Р гтс	ר ידאנ	п стот	R N C C (P CON	لل مىتىتەر	r N C	ן ידרי	H TCT		⊥ ∼⊼⊓			K NC	R	G	S A T A			Р ~тт		1023 2001
GA	LUU.	L C . -	LIC E	VAL,			JGAU		JAG C	JUG	IGI	GGG	L AC	LIG	, ,	DAG E	C	JACI	ATH		CAU		CAG	1020
U TT		רב מעי		I TC7		ש ידיסר		ם רססר			v ccz	VV ATT	ע רעע	с гтс	, ,	ь гос	G	L NTOT	-	<u> </u>		~ ~ <i>C</i>		2061
						JUL	TCCC				CUA					JUC TTC	AGC			GI TC'	30(тт7	JAG NTC		3901 4021
CC	ACC			י ד ד י ז ה הי			~~~~	SAG(TCC		AGC ATC			T G	TAC		TOT.				ACI	4021
	GII							JIAU		GA	тgс ллт	AGI	~ 7 7	JAA V C T	ICA TTT	IAA ICT		AI.			JLI TAT	год глт	ALL	4001 /1/1
GA	TC	LG. FA(IAG N N N N	CAL.			IGA/	AA I T A T	GAU	JAF TT(- 1 0 F	. ⊥ ⊥ г <i>с</i> гт	. GI TTT	GCI			тG	CT	LAI 7TT	AGI TTNN	4141
	T G I	LA(- NC		JGAI		JIAA TAT				C A A	GI. TT		јас Глт		- ⊥ ⊥ י Ͳ እ	CNA				GI(CT(T T T	IAA 'N T N	4201
AG CA			JAC POT	UTD 7			JIA. TTN7				CAA		 ^ _ 7		. I C		GAF TTC	1002 7770	~ 7 7 7 1		JIC	JC I PTT	CTT	4201
TC	GAU	5A. F7(ACA1	ת תי		CAI	AG				11A TTT							UTCT	4321
TT	CCI		JII FTG	CA.				AIC	JAA VTC		CTC					. т.т 20 т	GIC					777 777	CCT	4301
				IGC.			JGCI						~7/C		190 777		ACT		JAG'					4501
	GCF TT7	190	JUC NTN	AT(~T77			.GGA	AGC CAC	AG	CAC N TT	JIC PTT		.CA	AGI		JGA		511 TT	LLL TNT		4501
тс	TCI				NTCI	ATA					CAG			L I I \ T 7	. GC		AGA	NG.		 			ACT	4621
TT			LAI CTC					TGTI	L I 7. 1 T T						1771 1777	. CA TTT		'AG.	гтт ГСТ		CGI			4681
C D	7 7 7										CTC				СТ		TCT			тли		<u>чог</u> . лтс		4001 1711
СТ									ГСТ		CAT		310 270	2TA	тс		TAZ				TG	гст	CTC	4801
TT	TTC	3000		GAZ			GTA2	ATG			GTG	CA	GT Z		ТТ	л10 гст		TG	3A A		TGO		AAT	4861
АТ	AAZ		ΓΑΑ	ATT	rtt.	ГСТ	GCT	GTT(GA A	GT	AAC	TT		ATC-	GT	'GT	CTT			CC	CAT	ГТТ	CAC	4921
CA	CGI		AGT	'GT(TGT		TCG			ΔΤΟ	'AT(G A Z	ТДГ	ттт					TG	тас	360	TCC	4981
TC	AAT		ГGА	AA	rtg:	TTC	CAT	rgt(сос стс	'A T'	ттс	CA	GAZ	AGT	· т т т т т	'AC	CTT	AG	ATG'	TC	тт(CGC	GAC	5041
AT	TTC	CAC	GT (-	TTT	rgg	GAT(GGT	GAA(CAA	TC'	TGT	'TT7	ΑΤΊ	гgт	'GC	GT	GAC	CAC	TAA	CA'	TAC	3TA	TTG	5101
TG	ATI	ΓΤΖ	ACC	AC	CT/	AGT	CAG	TTTC	GGA	AG	GTG	AT	GGC	GAG	;AA	AGG	TAC	CT	TTA	СТ	GC	CCT	CAT	5161
CC	CCI	ГGO	GAG	GGG	GCT	GAG	CAG	CTG	ГGА	GG	GAT	'CA'	TCA	ATG	GT G	GTT	TCC	CAT	ACT	TC	CTT	ГСТ	GGG	5221
ΤG	ACA	AA	GCC	TTC	CTTO	GTC	ACTO	GCTO	CTT	AG	GTG	TT	GGC	ЗТА	AC	CA	CAT	TAT	TTA'	ΤG	AT:	ГGТ	TTT	5281
AT	TTI	rc:	ΓTΤ	TG	GAC	AAG	AAA	ACTI	ГТС	TT	CGI	'AA(CAI	ſGI	'AA	TA	TCI	CA	rtg.	AA	СТ	CAP	ATG	5341
AA	AAI	ГТC	CTG	CC	[CAG	CAA	ATT	CTAT	ГТА	TG	ССА	AA	AAZ	ATG	GCA	ATT	GTO	TA	GTA'	TA	СТС	GTC	CAT	5401
GT	ATO	CTT	ΓTΤ	'AT	TG	CAT	AAC	CAGI	ſAG	GCT	ATG	CA	ACI	ΓΑC	CTG	бТА	TGA	ATC	AAG	AT	GA	GCA	AAA	5461
CA	CTI	ΓTZ	AAG	CTC	GTT	ΓAΑ'	TAAT	TAT	GAT	TA	TAT	TT	TAI	CTT	CI	TA	ATI	AC	TAT'	TC	AT:	ΓAΊ	CTG	5521
ΤA	ATI	ΓT2	AAT	TT	rgt(CTT	CCC	CGGA	ACI	'AT'	TTG	CT	GTO	GAT	AI	TT	TAI	'AA	AGA	TT	TG:	ГСС	CAT	5581
AC	ACA	ACA	ATA	GT	ATG	CCA	GAG	AGTI	ГТС	CA	AAA	TAT	TAI	ГСА	TA	ACA	GAC	CAT	AAA	AT	AA:	ГСА	AAA	5641
TC	CAA	AG	CAT	GT	GCCZ	AAA	IGT	GTTA	AAG	GTT(СТС	AG	GAC	GCI	CC	CTG	TCI	GC	IGT.	AG	GG:	ГGG	GCAG	5701
CC	AAA	AT:	ГТG	GCZ	AGCZ	AGT	GAC	CTCA	AGA	AT	GTI	CA	TTC	CAG	GAC	CAG	ACA	AGA	CAA	TA	CA:	ГСА	AAA	5761
GT	GAI	ΓA	AAG	TA	AAT	ATA	CCC	CACI	ſGI	GT	GCC	AA	GAC	CTI	GA	AGG	CCI	TAG	CAC	TC	TT	CAG	GAC	5821
ΤT	AGI	ΓTZ	ACI	'GA	rgg	CAC	CAG	AAGI	ATG	GT	GCC	AT	GTA	AAG	GΤG	GCT	GCI	GC	TTC	CC	TCA	ACC	CATA	5881
AA	GTA	ATC	GTT	CAC	GTA:	TAA'	TTAT	TAG	ſGA	AA	ATG	TCZ	AGO	GAA	AT	AC	AGI	TAT	ICA.	AT	TAA	AAT	TCA	5941
ТΤ	ACI	ra:	ГСА	GA?	[AA]	AGT	AGT	GTGI	ГТА	AA	GCI	'GA <i>i</i>	AAC	CAA	GA	ATT	TCI	'AA	GAA	CG	CTA	ACT	GCA	6001
AT	CTI	ΓTZ	AAC	AA	GGG	GGA	AGGI	AATO	GCA	TG	GGI	CA	GCI	ГСА	GI	AC	TAC	GTG	TTT	GT	GAA	AGT	GAC	6061
AA	TG	GCI	ГGТ	'GA	[GA	AAA	TTT	ICC1	ГАС	TA	TGI	AT	GCI	CTT	TT	'AA	GAA	AAA	AAC	TT	TA:	ГТТ	TGT	6121
GA	AAT	ГG	GCA	TG	TG	TAA'	TAG	CTTA	AAA	GC'	TTT	ΤG	CTA	ATG	GAG	GAA	AAA	ACT	TAA	CA	GT	GCA	GAT	6181
AT	CAI	ΓTZ	AGA	AGA	AAT	GTT	ICT <i>i</i>	AATI	ΓTΙ	GA	AAA	AT	GTA	ATG	GCA	ACT	TAC	CTG	CAC	СТ	CAC	CAT	TGT	6241
ТΤ	GGI	ΓTZ	AAC	AG	CT.	[AG	TAC	rgt <i>i</i>	AAC	CTC	ACA	TT(GTI	ГТG	GI	AG	TCA	AGT	CTT	TC	AAA	AGG	GAAA	6301
ΤA	ACI	ГСC	CAA	ACT	[AG	ATG	GGG	GAAI	ſĠĬ	TC	ACA	TC	CCZ	AAG	GTT	CC	TTC	GCA	GTG	GA	AA?	ГСС	CCT	6361
GA	AAA	ACO	CTA	GT	ACA	TAC'	ITG	CAGA	AGC	CAC	ACA	GT	CAR	ATG	GTI	AC	ATC	GCCZ	AAT	AG	AT?	ГТТ	GAA	6421
GΤ	GCI	IC.	ГТС	TT	rgc/	ACA	TCAT	TTCI	ГТС	CAA	ACC	AG	CTI	ſGI	AC	CTT	TCA	ATC	raa'	TG	GC	CTG	GTGG	6481
AG	GAI	r G A	ATG	CAG	CAA	CAT	TTT <i>i</i>	ATTI	ГТG	TA	AAT	TG	AAZ	AGG	GAT	CC	ATC	GGA	AGG	CA	TT?	ГGG	GCTA	6541
AG	ACA	AT:	ГСТ	CC	CT.	[GC	CAC	AGTO	GGC	GGG	ССС	TT	GTI	ГТТ	AG	GAG	CAC	GTG	CTC	AC	AC	CCC	CACT	6601
ТΤ	TGA	AGA	AAC	AGI	ATA	ATA	AAA	TTT	GCA	ACC	ATT	AC	TAC	CAC	CAA	AA	TGC	CGT	ATT	CA	GT?	ГСА	AAT	6661
СТ	CTI	ſĠł	AAC	AT	CCAT	I G C (CAA	ATTI	[AA]	LCT'	TGI	TG	AAC	CCI	AA	ACA	AAI	CTC	CTC	AT	TCC	CCC	CAAA	6721

Figure 2.11. Nucleotide and amino acid sequence of cDNA encoding GI-PDE7.

A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

GlPDE7	:MVRMLGDVKGNTTVETSLAATVGPS :	25
Dr.PDE7A	: MELCYQLPVLPLDRPVPKHVLSRRGAISFSSSSSLFGAPD :	40
Hs.PDE7A	: MEVCYQLPVLPLDRPVPQHVLSRRGAISFSSSSALFGCPN :	40
GlPDE7	: -RSTDARLDAANTESRARATLTMNYSLGDMNVGEAEQRLL :	64
Dr.PDE7A	: PRQLSQRRGAISYDSSDQTALYIR-MLGDVRVRSQVGFEP :	79
Hs.PDE7A	: PRQLSQRRGAISYDSSDQTALYIR-MLGDVRVRSRAGFES :	79
GlPDE7	: GGAGRGPYSRFLTIHRRRRRK :	85
Dr.PDE7A	: ERRGSHPYLGIDFRTIHSRAESAGSIPARRIRRIFSFQRH :	119
Hs.PDE7A	: ERRGSHPYIDFRIFHSQSEIEVSVSARNIRRLLSFQRY :	117
GlPDE7	: LPTRRLDKQHQALLDDLYNGLTQYLLSRVGVWGFN :	120
Dr.PDE7A	: LLSSRLLRCAPHLNPLHILDEDYCGQAKCMLEKVGSWNFD :	159
Hs.PDE7A	: LRSSRFFRGTAVSNSLNILDDDYNGQAKCMLEKVGNWNFD :	157
GlPDE7	: AFTLDSVCGGRPVSVLCVFLLHEYGLIEHFKFDTVTVWKC :	160
Dr.PDE7A	: IFLFDRLTNGNSLVFLTFHLLSQYGLIELFQLDMVKVRRF :	199
Hs.PDE7A	: IFLFDRLTNGNSLVSLTFHLFSLHGLIEYFHLDMMKLRRF :	197
GlPDE7 Dr.PDE7A Hs.PDE7A	*** : FSLIEDGYHASNFYHNAIHAADVTQAMHCYLQEEKIHQHL : : LVLVQEDYHNQNFYHNAVHAADVTQAMHCYLREPKLAQSL : : LVMIQEDYHSQNFYHNAVHAADVTQAMHCYLKEPKLANSV :	200 239 237
GlPDE7 Dr.PDE7A Hs.PDE7A	****** TPLEMLAALIAAVCHDLDHPGVNQPFLIATDNHLAALYKN : TSFDILLGLLAAATHDLDHPGVNQPFLIKTNHYLAALYRN : TPWDILLSLIAAATHDLDHPGVNQPFLIKTNHYLATLYKN :	240 279 277
GlPDE7	: FSVLENHHWRCAMGCLWESGLLDSWDPDDVATLQDMLRSL :	280
Dr.PDE7A	: TSVLENHHWRSAVGLLRETELFSHLPAEDSLSIERQLGSL :	319
Hs.PDE7A	: TSVLENHHWRSAVGLLRESGLFSHLPLESRQQMETQIGAL :	317

GlPDE7 Dr.PDE7A Hs.PDE7A	::	ILATDITRQQEFLTRFKQYLDSGTFDMGEPEHRHFSLQIA ILATDISRQNEYLSRFRTHLDENDLNLGNASHRHFVLQMA ILATDISRQNEYLS <mark>LFRSHLDRGDLC</mark> LEDTRHRHLVLQMA	•	320 359 357
GlPDE7 Dr.PDE7A Hs.PDE7A	::	LKCADICNPCRPWEVSQKWSYKICDEFYRQGDYERQINLP LKCADICNPCRPWELSKQWSEKVTEEFFHQGDIEKKIKLE LKCADICNPCRTWELSKQWSEKVTEEFFHQGDIEKKYHLG	:	360 399 397
GlPDE7 Dr.PDE7A Hs.PDE7A	::	VTLLCDSSRMSVAKIQTDFIKYVVSPLFDVWDRWLETSLS ISPLCDSEANTIASVQIGFMTYVVEPLFAEWARFSDTRLS VSPLCDRHTESIANIQIGFMTYLVEPLFTEWARFSNTRLS	:	400 439 437
GlPDE7 Dr.PDE7A Hs.PDE7A	::	N <mark>SMVTNMNIN</mark> LQKWEEKLLKKLAEDAAAQPVVVPEDSSEN QTMLGHLGLNKASWST QTMLGHVGLNKASWKG	:	440 455 453
GlPDE7 Dr.PDE7A Hs.PDE7A	::	PVVESAEEEPEE <mark>V</mark> DGGTSPSSSGDSHQSVLGSLENVSRSL MEPEASGSSEDGESDPARSSEEPSSRAL TDAAFELNSQLL	:	480 483 475
GlPDE7 Dr.PDE7A Hs.PDE7A	::	QLGRRH <mark>S</mark> VPLNLPRLLPRTIIRRESLPENGNQPLVVETVT TQGSPESPQENRLS	:	520 490 482
GlPDE7 Dr.PDE7A Hs.PDE7A	::	MGGMSLTSLSSRPTDLNSTLTPDALLPEPSITTMGGVGIR	:	560 - -
GlPDE7 Dr.PDE7A Hs.PDE7A	::	LPRPATRLTRRKSLPPLWLQQTRARTSHMLQPLSPTPSED	:	600 - -
GlPDE7 Dr.PDE7A Hs.PDE7A	::	ASSHQTTQENSPQDTENAPRLGAVHGVGSGHSSGNNSSGC	::	640 _ _

GlPDE7	:	GGSGGCDRVKSGGGECSDPVEPIHHPIRSDTDPLTAAQDV	:	680
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	GVHGRKCVSNHQGATTFLHADCLDNHPYRPFIGRGLVRRA	:	720
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	SLDSTSISSKREFLDRLLHESSKFPRVDRTNSELDKENLV	:	760
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	PREALTYREQQQQQQSSWKTRAWRSLNCDDENVCDPREKL	:	800
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	MKPGMYKLNQSQGSLYAHGRRGSAPLLRPEELLGGLRGGA	:	840
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	ERPDYNYLSLRRGSAPSQANQKGCDVETGSEVGGRHTPLT	:	880
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	STENLPFSEYVSSHSRLRGRRRGSIPFDHPGLCRQGSGGV	:	920
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	EVLPSRTGVGGNLAVSGGGSGAAGFPSVLPHYYHEYHRGS	:	960
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	GGLELFAGLWRSHLEPESSSSVFVDGDLCSQSSGGLTPST	:	1000
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

GlPDE7	:	PGAVLPPHRPLPHTLHRRGSLPTDLFYSGDFSVWDCEGT	:	1039
Dr.PDE7A	:		:	-
Hs.PDE7A	:		:	-

Figure 2.12. Multiple alignment of deduced amino acid sequences of PDE7 proteins in one crustacean species, one fish species, and one mammal species. Abbreviations: Gl: *G lateralis*; Dr: *D rerio*; Hs: *H sapiens*. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 9.

1 MGCT 1 ACAACTACTACAACTACTACAACTACTACTACTACAGTGTGAGGGATGGGGGTGCACT 5 P S L H A H T O S V V C T D D E E E T V 61 CCCAGCCTACACGCGCACACCCAGTCTGTGGTGTGCACGGACGATGAAGAAGAACAGTC 25 T N A H T H A H T P N N Q Q Q Q P L L 121 ACAAATGCGCACACACGCCACACGCCCCAATAATCAACAACAACAACAGCCGCTGCTT 45 N A H H G P G G V Q E V T R A W D D A T 181 AACGCACATCATGGTCCCGGAGGAGTACAGGAGGTCACCCGCGCCTGGGATGACGCCACA 65 H P H R L V T G S I K G S P K K L K I L 241 CACCCACACCGGTTGGTGACAGGATCTATAAAAGGCTCCCCTAAGAAACTCAAAATCTTA 85 L V F S K E D S L C Q V W R R A A T H L 301 TTAGTATTCAGTAAGGAGGACTCACTGTGTCAGGTGTGGAGGAGGGCCGCTACCCACCTG 105 G H T P T H T R T L E O A L R V C A D P 361 GGCCACACCCCCACACACCCCGCACCTTGGAACAGGCTCTGCGGGTGTGTGCTGACCCC 125 H T P D V V V D G R C G R G G C G K A 421 CACACACCCGACGTGGTGGTGGTGGATGGCAGGTGTGGCCGTGGCGGGTGTGGCAAGGCT 145 V G V C G A L L Q R L T D T A H H N N T 481 GTGGGGGTGTGTGGGGGGCGCTGTTACAAAGACTGACACTGCCACCACCAACAACACC 165 L M V A V V K K S F V E R D N A T I G P 185 L L N A G F N R V V C E S S V L G V V L 601 TTACTGAATGCTGGCTTTAATAGGGTTGTGTGTGAGAGCAGTGTGCTGGGAGTAGTGCTG 205 N E L L Q L D Q H H H H H H H Q E Q C G 661 AATGAGCTGCTACAACTAGACCAGCACCACCATCATCATCATCAGGAGCAGTGTGGT 225 G G D G G G M V R V S Q A M V T A L H 721 GGTGGTGGTGGTGGTGGTGGTGGTGGTGGGGGTGTCCCAGGCTATGGTGACGGCTCTTCAT 245 A C R E I V H I T D T N H R I Q F ΤΝΚ 781 GCTTGCCGGGAGATTGTGCATATTACTGATACCAACCATAGGATACAGTTCACCAACAAG 265 A C E S L L G Y T L E Q V L N K N L W D 841 GCGTGTGAGTCGTTGTTGGGCTACACTCTAGAACAAGTGTTGAACAAGAACCTTTGGGAC 285 L H N A T D V N K Q D G R P L D Y H R P 901 CTTCACAACGCCACCGATGTAAACAAACAAGATGGCCGACCCCTAGACTACCACAGACCA 305 S L E F R Q P I K E T A I T T T T A A 961 TCCCTAGAGTTCAGACAACCTATAAAAGAAACTGCTATTACTACTACTACTGCTGCT 325 A T T A T T T N T T T V T T T A A A T T 1021 GCTACTACTGCTACTACAACGAATACTACTACTGTGACTACTGCTGCTGCCACGACT 345 T T T G D A K V S L E V S E L V G H O 365 V K R G K E W E G V V T Y R R K S G G H 1141 GTGAAGCGAGGCAAGGAGTGGGAGGGAGTGGTGACCTATCGCAGGAAGTCTGGAGGTCAT 385 L H L P S K V I P V M A P L S R R I D H 1201 CTTCACCTACCATCTAAGGTCATTCCTGTCATGGCTCCTCTCTCAAGACGCATTGACCAC 405 Y I Y L S E L H H S G G G G L G G G G 1261 TACATCTACCTGAGTGAGCTGCATCATAGTGGTGGTGGTGGCCTGGGTGGTGGTGGTGGT 425 G E L T T T P L E H F H P R G S I K S L 1321 GGCGAGTTGACCACTACACCACTGGAACACTTTCACCCGAGAGGTTCCATCAAGTCTCTG 445 R K G S H D I R S L S S D G P V G I I R 1381 AGGAAAGGCTCACATGATATAAGATCCCTTAGTAGTGATGGTCCAGTTGGTATAATTCGT 465 R Q S L V K L H S L T I E A P I T R V F

1441	CGGCAGAGTCTGGTGAAGCTTCATTCGCTCACTATTGAAGCTCCGATCACCCGAGTGTTC
485	SIIAAAQENSPAYVAQALEK
1501	TCCATCATCGCGGCCGCCCAGGAGAACAGCCCGGCTTATGTGGCACAGGCTTTGGAGAAA
505	A I E I L R S T E L Y A P Q L V S G V A
1561	GCTATAGAGATTCTCCGCTCCACAGAACTCTATGCACCACAGCTCGTGTCTGGTGTGGCT
525	N V A E N V A A G R A M S S A D P V A T
1621	AATGTGGCTGAGAATGTGGCTGCCGGGAGGGCTATGTCGTCTGCTGATCCTGTGGCCACT
545	D L L G G L L A O G P K P L L S A R R S
1681	GATCTGTTGGGGGGGTCTGCTTGCGCAAGGGCCCCAAGCCACTGCTGTCAGCGCGCGC
565	SNDTAVKAPOOI.PRASTTAI.
1741	
505	
1001	
1001	
605	
1801	GATATTTTTTAAACTCGAGAAAATATCCGATAAAAGACCGCTGGTGTGGGCTGGGCATGTCC
625	L M C R F D V P A T L N C D A T T L Q N
1921	CTGATGTGCCGCTTCGACGTGCCTGCCACACTCAACTGTGACGCCACCACACTGCAGAAC
645	W L T L I E A N Y H S D N S <mark>Y H N</mark> S T H
1981	TGGCTCACCCTTATAGAGGCAAACTACCACAGTGATAACTCCTACCACAACTCCACGCAC
665	A A D V L Q S T A Y F L G K D R I R Q L
2041	GCTGCCGACGTCCTCCAGTCCACCGCTTACTTCTTGGGCAAGGACAGGATAAGGCAGCTG
685	L D P L D T A A C L V A A V V <u>H D L D H</u>
2101	CTGGACCCGTTAGATACAGCTGCGTGTCTGGTGGCAGCTGTGGTACACGACCTAGACCAT
705	PGKNSAFLCNTDNELAILYN
2161	CCTGGGAAGAACAGCGCCTTCCTTTGCAACACTGATAATGAGTTGGCAATACTGTACAAT
725	D V S V L E C H H V A V S F K H T R S D
2221	GATGTGAGTGTGTGGAGTGTCACCACGTGGCTGTGTCCTTCAAGCACACTCGCTCCGAT
745	D R V N I Y K G L D R D T Y K H L R K S
2281	GATAGGGTCAATATCTATAAAGGCCTGGACCGTGACACTTACAAACACTTGAGGAAAAGT
765	IIDMVLATDMTRHFEHLSKF
2341	ATTATAGACATGGTGTTGGCAACAGACATGACCAGACACTTTGAACACTTAAGTAAATTT
785	V N M A A T T T T T T T T A D G G D D S
2401	GTCAACATGGCTGCCACTACTACTACTACTACTACTGCTGATGGTGGCGATGATAGT
805	
2461	
025	
02J 2521	
845	
2581	AGGCCTACACCTCTCTATTGACTGGGCCTATAGGATTGCTAACGAGTACTTCAACCAG
865	T E E K V R E L P I V M P Q F D R T T
2641	ACGGAGGAGGAGAAGGTGCGTGAGCTGCCCATAGTGATGCCACAGTTTGACAGAACCACT
885	C S I P K S Q I G F I D F F I N D M F D
2701	TGCTCCATTCCCAAGTCTCAAATTGGCTTCATTGACTTCTTCATCAACGACATGTTTGAT
905	A W D A L A D I S E L L E H L R T N Y L
2761	GCTTGGGACGCTTTGGCCGACATCTCAGAACTTCTGGAACACTTAAGAACAAATTATCTC
925	YWKEQEEQE QTTITTTATA
2821	TATTGGAAAGAACAAGAAGAACAAGAACAACAACAACAACAACA
945	A A T E P P P P P P P P P E E L H I
2881	GCTGCTACTGAACCACCACCACCACCACCACCACCACCTCCTGAAGAACTACATATT
965	K E E E E E E K S * K R R R R K R
2941	AAAGAAGAGGAGGAGGAGGAGGAGGAGGAAAAGAGT <mark>TAA</mark> AAGAGGAGAAGGAGGAGAAAGAGGG
985	R R
3001	AGGAGAA
	110 01101111

Figure 2.13. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE8.

A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue. The regulatory region, the PAS domain, is shown in an orange box.

CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	-MGCTPSLHAHTQSVVCTDDEEETVTNAHTHAHTP MRNCLPKFSKVFRRKSSAKSSSSSAGRENPSSEPDSDTEPYAIAIAAISDRSGDNRNERP -MGCTPSMLLDHKNRRRDSTGSQEAALAKVAPTTLCNKAVQA -MGCAPSIHVSQSGVIYCRDSDESSSPRQTTSVSQGP	:	34 60 41 36
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	NNQQQQPVQEVIRAW RPLPDDDSIRSRLISAAHLDLDVGLELASDSTAVPANGGIRPKSEGACPEMKVETISAAT ARAPRASLESDGFSIQLSSKKDSYVSQMGNNFATQLHIKRISGSS AAPLPGLFVQTDAADAIPPSRASGPPSVARVRRAR	::	60 120 86 71
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	DDATSPPPRPLHCTSGPVAISLPFVGRNSSKTPEEMELEYEANVEAESRDIMTPLRRNTRPLS SGSPCARAGRRSS	::	64 180 99 98
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	VSFGGGGGRSALQPEIVEAIRSLDVPALRLNNLSFDGSTDPKGERNHAEEEPLTPGHDHE	:	_ 240 111 _
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	HPHRIVTG DSVVLRRKVNCLERKAHSLYERRLPRVPKLHLLVAGKKNPPTEEEEFRTFQRNLMDIKYP VTNRSPPPANIPTA SSAEAETQTCYTSVKQVSSAEVRIG	:	72 300 125 123
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	SIKGSPKKLKILLVFSKEDS-LCQVWRRAATHLCHTPTHTRILEQALRVCADPHTP TVLPPNPPLKALLVFHKSDS-ICEAITAACQRHQLDVTLVKSKEEALDTLQKSYATAQCY LIYSPPEPLEILCVFPERTSRVCPAACSAVERACGEARSLRCARETLDALRRDNDT-RVP PMRLTQDPIQVLIIEAKEDS-QSDGFWWACDRACYRCNIARTPESALECFLDKHH	::	127 359 184 177
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	DVVVVDGRCGRGGCGKAVGVCGALLQRLTDTAHHNNTLMVAVVKKSFVERDNATIGPILN HLIIIDARSSKNLDAEHIARTIRHTHGHHLTTIIAVCKKSFFEKDDV-LIAILD HVIVVDARQPQQLDALLLARAIRGTKNTQHVYLIAIVKKSAYLKDEFGVLAYLE EIIVIDHRQTQNFDAEAVCRSIRATNPSEHTVILAVVSRVSDDHEEASVLPILH	: : :	187 412 238 231
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	: : :	AGFNRVVCESSVLGVVLNELLQLDQHHHHHHHQEQCGGGGGGGGGGMVRVSQAMVTALHACR AGVNRCVAETTNLAMCSVELKQILHSIIRPHNVMSTQQALYTALHRLK AGFNRVMVETVNTTAWCAEVLQARSSAACSRAQIAATAALAAAADRCR AGFNRRFMENSSIIACYNELIQIEHGEVRSQFKLRACNSVFTALDHCH	: : :	247 460 286 279

CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	EIVHITDTNHRIQFTNKACESLLGYTLEQVINKNIWDIHNATDVNKQDGRPLDYHRPSLE EVVLITDDLLRIQYANRATERLINMRIDEIISKQLEDIFVSDLS DLVAITDDQQRILLTNKSWCRMLGWRLEEGPRPIHEAAGGEALR EAIEITSDDHVIQYVNPAFERMMGYHKGELIGKELADIP-KSDKNRAD	:	307 504 330 326
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	FRQPIKETAITTTTTAAATTATTTNTTTVTTTAAATTTTTTGDAKVSLEVSELVGHQVKR TISEQCKN LATTGAR- LLDTINTCIKK	::	367 512 337 337
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	GKEWEGVVTYRRKSGGHIHIPSKVIPVMAPLSRRIDHYIYISEIHHSGGGGLGGGG IKEFDGILTVRRKSQEGIPMHVRVVPVAC-IGSAPTHLIPNFDVPGGQMDFIATLPQPKE DWEAPVTLRRRAAPDPIMLPCRGATIG-ITKTTSHIVFVCEPSAGEGD GKEWQGVYYARRKSGDSIQQHVKITPVIG-QGGKIRHFVSLKKICCTTDNNKQIHKIHRD	: : :	423 571 384 396
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	GSELTTTPLEHFHPRGSIKSIRKGSHDIRSLSSDGPVGIIRROSLVKLHSLTIEAP APRGSRTSLAKLTSLPLEAP RGRGSRTSLAKLTSLPLEAP RGRGSRTSLAKLQGLPLEAP SCDNSQTEPHSFRYKNRRKESIDVKSISSRGSDAPSLQNRRYPSMARIHSMTIEAP	::	479 611 424 452
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	:::::::::::::::::::::::::::::::::::::::	ITRVFSIIAAAQENSPAYVAQALEKAIEILRSTELYAPQLVSGVANVAENVAAGRAMSSA ITKIINLLSQVQENCSADEARLIDKVLSFLKREGLYSPQMKEIRTD ITKVISLLSAATEGAPPSTVACIERAVDMLRTSELYSPQMRDETKLRVE ITKVINIINAAQENSPVTVAEALDRVLEILRTTELYSPQLGTKDE	::	539 657 473 497
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	:::::::::::::::::::::::::::::::::::::::	DPVATDLLGGLLAQGPKPLISARRSSNDTAVKAPQQLPRASITALPQQASAAISKLLSQD DPIATDLIG-ALLTG-PSVYSSRRSSNDSIIRTGSSTRTAAIVPAKMKSNPIIMBLLDES DPIATDLIG-ALLSGNANVISSRRSSNDSTVVRSQTNRTNIKHKTTGQLRBLLDTA DPHTSDLVGGLMTDGLR-RISGNEYVFTKNVHQSHSHLAMPITINDVPPCISQLLDNE	::	599 715 528 554
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	:::::::::::::::::::::::::::::::::::::::	MAWEFDIFKLEKISDKRPLVWLGMSLMC-RFDVPATLNCDATTIONWLTLIEANYHSDNS LSWDFDIFKLEEITDYHPLLYLGMEMFR-RFDVFATLNIDENVCKAWLAVIEAHYRKSNT LSWDFEIFRLEDLTRGPLAHLGLALMGGRFDVCAALECDERTILHWLTVIETNYHAVNT ESWDFNIFELEAITHKRPLVYLGLKVFS-RFGVCEFLNCSETTIRAWFQVIEANYHSSNA	: : :	658 774 588 613
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	YHNSTHAADVLOSTAYFLGKDRIRQLLDPLDTAACLVAAVVHDLDHPGKNSAFLCNTD YHNSTHAADVMOATGAFITQLTNKDMLVMDRMEEATALIAAAAHDVDHPGRSSAFLCNSN YHNSTHAADVLOAVAYFLEKDRIKNILEPVEAAAALISAAAHDIDHPGTSSAFLCNAR YHNSTHAADVLHATAFFLGKERVKGSLDQLDEVAALIAATVHDVDHPGRTNSFLCNAG	: : :	716 834 646 671

CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	:::::::::::::::::::::::::::::::::::::::	HFEHLSKFVNMAATTTTTTTTADGGDDSDVFDEETAAAASDLLSFNTPENIVIIKRMLIK HFEHLAKFVSVFGGEEPRDHNPQTDEETSILMRRMLIK HFEHLAKFVNVFYAKSSGSKEDGMHTDEPLSLDTTALSQPENVLLVKRMMIK HFEHVNKFVNSINKPMAAEIEGSDCECNPAGKNFPENQILIKRMMIK	: : :	836 932 758 778
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	:::::::::::::::::::::::::::::::::::::::	CADVSNPLRPTHLSIDWAYRIANEYFNQTEEEKVRELPIVMPQFDRTTCSIPKSQIGFID VADVSNPARPMQFCIEWARRIAEYFMQTDEEKQRHLPIVMPMFDRATCSIPKSQIGFIE CADVSNASRPQKFAMEWARRIAEYFLQTDEEKAKDLPVVMPMFDRATCSIPRSQIGFID CADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQGLPVVMPMFDRNTCSIPKSQISFID	::	896 992 818 838
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	:::::::::::::::::::::::::::::::::::::::	EFINDMFDAWDALADISELLEHIRTNYLYWKEQE QEQTTITTTATAAATEPPPPPPPP YIIQDMMHAWESEIDMPQLITYYQINYSQWKKYDIQGVNTLAEIMAKQPPVGK YIIIDMMEAWAAFIDMPELVNHARSNNQHWRELDIAGVTTLADVKRVQRQNAIQAPPTTT YFITDMFDAWDAFAHLPALMQHLADNYKHWKTLDDIKCKSDRLPSDS	:::::::::::::::::::::::::::::::::::::::	956 1045 878 885
CmPDE8 Dm.PDE80 BmPDE8 Hs.PDE8B	::	PPPEELHIKEEEEEEEKS : 975 MANSK : 1050 AEPTTEE : 885 : -		

Figure 2.14. Multiple alignment of deduced amino acid sequences of PDE7 proteins in one crustacean species, two insect species, and one mammal species. Abbreviations: Cm: *C maenas*; Dm: *D melanogaster*; Bm: *B mori*; Hs: *H sapiens*. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 13.

GIPDE9 4111 nucleotides, structure G sequence

GACCGTCGACGTGGAGGGAGCGCGTTCGTTGTCTTAGTTTCTCGGACTGCGTGGGACATT GGCCAAACTTTTTACCCGTAAAATCTCCCCTAGTGACCAGGCATTTCGTGACAGACGTTA GTGACCCAGGTGCTGTGCAATGGGTCAGCATCAGCAATGATCGGCTTCCCCAGTGTGGTA TTCGTGTTATAAGGAACAAAAATATATCGAAGTTAAATCTGGATACATATAGTATTGGTA AACTAAGTGTTATCTTTGATTTGTACGTGTGTGTGTGAGGTGAGGCCTGGCAGCTGCAC CTCGCCTGGCCACAACGAGCGGCAGCTCCACTCACAGCAACAGCGGCACTAAACGAGC CTAGCAGCAAGGCGGCGGCAGAGCGACCAACCACAGCCTGACGTCACGTCACTGTCAAGG TGTGGGGGGTGAGGATGCCCGCATGGAGAGGTGCGCCAGGACCGTCTACTTCACAGTGGGA TTCAGGAGCGCGTGTGGGGGCGGGGCCTAGTGACGTCATCAAGCTGTACACCAGTGAAGGG AGTCTGCTGAACGCCGGAGCCCACCTGCCTGCCAACACCCCTGCCACCCCCTACCGCCTG GACGTAGCTGCCACCCCCTGCAATGGAGAGAAGCTGAACCATCTGGGGATTGACCTTATG GACCTGGAGCAGAGGCTGTGCGAGGTCGAGCGAAGCGTGGCTGCCCTGCGAGCAGACCTG CCGCCCGTGGTCGAGGAGCTGAGGCGCGCGCGTGGACACATTCAAGATGAGGTTGGAGACC ACTGAGCACCTGTCCTGGCTGGGCCACCAAGAAAGCATGCAGTAGTTCCTCCCGTCACAG CATGCACCGTCTCCTGCAGGGTTCTACAAGGAGGGGATTGGAGAGCCTCTTGGGACTCTG GGCAACTCTCATCCGTGCTGGAAAAACGTTCAGTACCGGAGGAAGGCGGAGGAGGAGGAGGTG 1 GCAACTGTGTGCAACAAGTTTAGAGAAATATGTGACGGCGTGGTGAGCGTGGACACCCAA GAGCTCCTGCGGCTGCCTTCGTTTAACAACTGGGCGTGGGAAGACTGGGAAATTCTCCTT CTCCTCCAGCACATGTACAAGGATCTCGGGCTCCTGTCGAAGTTCGGCATCGAGTTGGAG 1 M Y K D L G L L S K F G I E T. E GTGTTCCGCAGCTTCTTGTGTCGTGTGTACCACTGCTACAACCAAGTTCCCTTCCACAAC <u>L C R V Y</u> F H C Ν 0 V P F H N TTCATGCACGCCTTCTGTGTCACTCAGATGATGTACGGGATGATCTGCAAATGTGACCTG 1 F M H A F C V T Q M M Y G M I C K C D L CAGCGGCGACTGGGTGACCTCGATTGCCTCATCCTGCTCACGTCCTGCATCTGCCACGAC 1 Q R R L G D L D C L I L L T S C I C H CTAGACCATCCGGGCTTCAACAACATTTACCAAATCAATGCCAGGACCGAACTCGCCCTC 1 DHPGFNNIYQENARTELAL L CGCTACAATGATATCTCGCCGCTTGAGAACCACCACTGCTCCGTTGCCTTCAGCGTCCTC 1 RYNDISPLE Ν H H C S \mathbf{V} A F S V L GAACGCAACGAGTGCAATATATTCAGAAACATGCCCCCGGAGGACTACAAGAAGGTGCGG 1 RNMP E RNE C Ν I F \mathbb{P} E D Y K \mathbb{K} V R GAGGGTATGATCCGCTGCATCCTCGCCACGGACATGGCGCGTCACAATGAAATCCTCTCA 1 E GMIRCILATDMA R Н Ν EILS GACTTTCGAGAGATCATGCCAGAATTCTCTTACGAGAACCGAGCACACGTCAATGTGCTG 1 DFREIMPEFS YENRAHVNVL ICCATGGTGCTGATCAAGGTGGCTGACATTAGCAACGAGGCACGCCCGCTGGACATTGCT 1 S MVLIKVADISNE ARPLDTA С LMOE FFN 0 D ΡW LE S LΕ K L GAGGGGCTGCCGGTGTCCCCCTTCATGGACCGGGAGAAGGTTACCAAACCCTCCTCCCAG 1 G L P V S P F M D R E K V E Т KPSS 0 IGCTCCTTCATCGGCTTTGTCTTACTACCTCTGTTTGAAGCTCTCGGGAAGGTCCTCCCA 1 C SFIGFVLLPLFEAL GKVLP SAGCTAGATGACCTGATCATTCAGCCAGTGAGGTTTGCATTGGAACACTACAGAAAATTG 2 LDDLIIQPV Y R K L R F Α \mathbf{L} Е Η Ε AATGAAGCTGCAAAAAAAGCTTCAGAAGAGCAAGAAGCTACCTTAGAGCCCACGGTTGAA 2 N E A A K K A S E E Q E A T L E P T V E GAGGAGGAGCTGCAAGTAGAAAGACCTAACAGTCGCCTTTCTCGGGAAAACTCTAAAAAG 2 E E L Q V E R P N S R L S RENSKK GTTGTGCAAAAGACTGAAAGCTCTTTCAGCATTGGAAGTAGAGCTTCATCACGCATCTCC 2 V V Q K T E S S F S I G S R A S S R I S

ATGTACCGATCCAGCACATGCGATTACGGTGATGGTGCAGAGTTGGACACAGAAACAGAA 2281 M Y R S S T C D Y G D G A E L D T E T E 356 GTTGATGTGAGTGAAAGGACATCAAGATTTAAGATCGCCACAGACATTCACATATCTCCA 2341 376 V D V S E B T S B F K T A T D T H T S P TCACGGAGAAACAGCTCGGAGCGACGCAGTAGTGTTGGTGGGCGATCTAGTTGTGAGCGA 2401 R N S S E R R S S V G G R S S С E R 396 ACTGTGTCGCCTAGAACCCTCGAGGAGCGGCTCCTGCCTCACGCTGAAGCCAAGAATGAA 2461 S P R T L E E R L L P H A E A K N E 416 T V CCTGAGGATGGTGAGGTACATCCAAAGAAAAGTGAAAAGGAATCACTGTTTGCTCGGTTT 2521 P E D G E V H P K K S E K E S L F A R F 436 AGAATTTTCTCTGAACGTCTCTCTCCAGTGACAAGGAGAGGACCTCCAATGGGTCAACC 2581 R I F S E R L S S S D K E R T S N G S T 456 ATGATGGGTAGTAGGAGCACTAGATGTAAACAGAGTGGTCTGCAAAGTGTTCTGAAACGT 2641 476 M M G S R S T R C K O S G L O S V L K R AGTAGGAGTAAATCTGAACCTACGAAGAGCAGACACCATCGAACATTTCATATATCACGG 2701 S R S K S E P T K S R H H R T F H I S R 496 CCAAGAATTAGCTTTGGTACAAATCCCCAGAAAATGCAGTGTGGTGAAAATATGTTTAAT 2761 P R I S F G T N P Q K M Q C G E N M F N 516 AATCATGATAAAGAGAAAAACAAAAGACAAATGTAAGGAATCATCATCTGAGGGTCTCATC 2821 K Т K D K С K E E 536 D K E S S S G L TCTTCATTAGAAATTAAGACTTCTACCTCCTTTGAACTTGTAGAACCAAAAAGAAAACCT 2881 S S L E T K T S T S F E L V E P K B K P 556 2941 C V S S S A Q P S P T L S E K C V L V T 576 N S Т LKHKGFSLSLDVLPRKN 596 GGTCGATTGAGGAGGTCGGCAGCAACCGAAACCCATACAGCAGAAAACACTCCAGGTAGC 3061 G R L R R S A A T E T H T A E N T P G S 616 3121 S E D N L L E E S K R O O V D G A A R F 636 AGTCGACATCAAACATTCTTCAGCCAGACTAAGGGGGTTCACTCTCCTGAAGGACTCAAG 3181 S R H O T F F S O T K G V H S P E G L K 656 GGATTTAAAAAGAAACCAGAGTCAACTAGAGCTTTACTCTTCAAGTCATTGTCATTCAGA 3241 K K K P E S T R A L L F K S L S F R 676 AAGAAATCTCCAACCAAAGATGATGAAATGAGGCATAGTGATTCATGTGGTCCCAGTGAG 3301 K K S P T K D D E M R H S D S C G P S E 696 GAGAGGTTATCMCAGGCAGGAACATGTTTTTGTTTTTAAAACTTATTTAAGTTAGGTAAA 3361 699 ERL ACCACTGAGGAGTAAAGGGATGATTAGGGTCAAGGTATATGAGGGTTGAGAGTCTTCCAC 3421 AGTGGACCATTCCTCACTTCAATTGCAAATATTTTTGAGATACTTAGAGAGTTAAGGTAA 3481 ACTAAAGGGAATCTCTTCAAATGCATTATGAACTGATTACACTTCAACTTGATTTTGAAA 3541 GAATTTATAACAAAGAAAGTTCACTAAGCTTCAGGAAACATAAGTGTTTTGGGTAACATT 3601 GGGGAGGAAGTCCCAGGATGGGTGGGCTCTATGTAGCTTAGGATAATTTTAGCTGCAGTT 3661 GGCCATGTGGGTGCAGTTAAAAAGTACCTTAATTACTGAGGGTTGTAGTATTTAAATGTT 3781 TAGATTATATAAAATAAATGTATTTTCATAGTGTTGTACAAACATTTGAAAGATTTTAT 3841 TGCAAGGGATGAATGACCATGTTATAAAACAAACTAATGTGTGGCAAAAGACCAGTTATA 3901 AAATAGTGAAATATAGATTAGAGCCTAATATTTATTTGTGTAGAAAATGTACAGATATAA 3961 ACTTAGCTTCTTCATGCTCAAAACAAATTTATAATGCCAATGATATAGGAAAGCCCTTCA 4021 AGATTTTATCTGCAAAGTATTTAATAATTTTATATCTAACAGGAAGGTATTCTTTGACTA 4081 AAAGTCAGTGTGTGTGTGTGTATATATA 4111

Figure 2.15. Nucleotide and amino acid sequence of cDNA encoding Gl-PDE9. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (FHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

CmPDE9 4356 nucleotides

1 GCTGAGCGGGGCATTGGCCTAACTTTTAACCCGCCTAAACCGTCCCTTTCGACTCAGTATT 121 TCCGGCAGTGTTGTAATCGTGTAATAAGGAACAGGATAAAAATACCTAAGTTTGATCTAG 181 ATGGATAAAGTCTGGGTCAACTGGGAGTACTGTCTTGGGTGACCCATGTACTGTGTGGGC 241 TGAGGCCGGGGAGCTGCTGCCTCGACTGGCCTCACGAGCACCACGGGGCGGCTCCACACA 301 GTAACACCAGTGGCACTGATCCAGCCTAGCAGCAAGGCAGCGGCACACCACAACGGCA 1 MEKCV 361 GCCTCACGTCACGTCACTGCCAAGGTGTCGGAGTGAGGATGCCCGTATGGAGAAGTGCGT 6 R T I Y F T V G G K Q D S A S L H P D A 26 R P E D V K E V F R N A C G A G P A D I 481 TCGCCCAGAAGATGTCAAAGAGGTGTTCCGTAACGCGTGTGGGGGCGGGGCCTGCAGACAT 46 I K L Y T S E G H V L N A G P H L P A N 541 CATCAAGCTGTATACTAGTGAAGGACATGTACTAAACGCAGGGCCTCACCTCCCTGCCAA 66 T P A N P Y R L H V A A T P C N G E K L 601 CACCCCTGCCAACCCCTACCGCCTACACGTCGCCGCCACCCCTGCAACGGAGAGAGCT 86 N R L G I D L M D L E Q R L C E V E R S 661 GAACCGTTTGGGGATTGATCTTATGGACCTGGAGCAAAGGCTGTGTGAGGTAGAGCGAAG 106 V A S L R A D L P P A V E E L R C A V E 721 TGTTGCCTCTCTCGAGCAGACTTGCCTCCAGCGGTCGAGGAACTGAGGTGTGCTGTGGA 126 T F R M R L E T T E H L S W L G F Y K K 146 G I G E P L G N L G N P H P Y W K N V E 841 GGGCATTGGCGAGCCTCTCGGTAACCTGGGCAATCCTCACCCTTACTGGAAGAACGTGGA 166 Y R R K A E D E V A T V C N K F R E I C 901 GTATCGCAGGAAGGCGGAGGACGAGGTGGCTACGGTGTGCAACAAGTTTAGAGAAATATG 186 D G V V G E N T Q E L L R L P S F N N W 961 TGACGGTGTGGTCGGGGGGAGAACACACAGGAGCTTCTAAGACTGCCCTCCTTCAACAACTG 206 A W E D W E I L F L L Q H M Y N D L G L 1021 GGCTTGGGAGGACTGGGAGATTCTGTTCCTCCTCCAGCACATGTACAATGATCTTGGTCT 226 L S K F G I E T E V F R R F L C Q V Y H 1081 CCTGTCTAAGTTTGGGATCGAAACGGAGGTGTTCCGAAGGTTCCTGTGTCAAGTGTACCA 246 CYNQVP**FHN**FMHAFCVTQMM 1141 CTGCTATAACCAAGTGCCCTTCCATAACTTCATGCACGCCTTCTGTGTGACCCAGATGAT 266 Y G M I C K C D L Q R R L G D L D A L I 1201 GTACGGGATGATCTGCAAGTGTGATCTTCAGAGACGCCTGGGTGACTTAGACGCACTTAT 286 L L T S C V C H D L D H P G F N N I Y Q 1261 CCTGTTGACCTCCTGCGTATGCCATGACCTTGACCACCCAGGCTTCAACAATATCTACCA 306 I N A R T E L A L R Y N D I S P L E N H 1321 GATCAACGCCAGGACTGAACTCGCCCTGCGCTACAATGACATCTCGCCCCTGGAGAATCA 326 H C S V A F S V L E R N E C N I F K D L 1381 TCACTGCTCCGTCGCCTTCAGTGTTCTCGAGCGGAATGAGTGCAATATATTTAAGGATCT 346 P A E D Y K K V R E G I I R C I L A T D 1441 GCCGGCCGAGGACTACAAGAAGGTGCGGGAAGGCATCATCCGGTGCATTCTGGCCACGGA 366 M A R H N E I L S D F R E I T P E F A F 1501 CATGGCACGTCACAATGAAATCCTCTCAGACTTTAGAGAAATCACACCGGAATTTGCTTT 386 D N A A H V N V L S M V L I K V A D I S 1561 TGACAACGCAGCGCATGTCAATGTGCTGTCCATGGTGCTGATCAAGGTGGCTGACATCAG 406 N E A R P L D I A E P W L E C L M O E F 1621 CAACGAGGCACGCCCGCTGGACATCGCTGAGCCGTGGCTGGAGTGTCTCATGCAGGAATT

1681 CTTCAATCAAAGTGATCTGGAGAAGCTTGAAGGGCTGCCAGTGTCTCCCTTCATGGACAG 446 E K V T K P S S Q C S F I G Y V L L P L 1741 AGAGAAAGTGACTAAGCCTTCCTCCCAGTGCTCCTTCATTGGCTATGTGTTGCTGCCTCT 466 F E A L G K V L P E L D E L I I Q P V R 1801 CTTTGAAGCTCTCGGCAAGGTCCTCCCTGAGCTAGATGAACTAATCATTCAGCCGGTGAG 486 F A L D H Y R N L K D A A Q K A A E E 0 1861 ATTTGCACTGGACCACTACAGGAACTTGAAGGATGCGGCACAAAAGGCAGCAGAGGAGCA 506 E A A L E P A I E E E L E E E E I P N 1921 GGAAGCCGCACTGGAGCCGGCCATTGAAGAGGAGGAGCTGGAGGAGGAGGAGGAGAATACCCAA 546 T N T H L T H L S R E N S K R I V Q K Т 2041 CACTAACACTCACCTCACCTGTCTCGGGAAAACTCCAAACGGATCGTGCAGAAAAC 566 E S S F S I G S R A S S R M S M Y R S S 2101 AGAAAGTTCCTTCAGCATCGGGAGCCGAGCATCATCCCGGATGTCCATGTATCGTTCCAG T C D C G D G G E L D T E T E V D V S E 586 606 R T S R F K I A T D I H I S P 2221 AAGAACGTCGAGATTTAAAATTGCGACAGACATTCACATATCCCCA<mark>TAG</mark>CGGAGGAACAG 2281 CTCTGAGCGACGGAGTAGTGTGGGCGGGCGGGCCGGTCCAGCTGTGAGCGAACTGTGTCTCCGAG 2341 AACCCTGGAGGAGCGGCTTCTCCCACACGCTGAAGCCAAGAATGAACCTGAAGATGGTGA 2401 AGTGCATCCAAAGAAAAGTGAAAAGGAGTCTTTGTTTGCTCGGCTTAGAGAACGTCTCTC 2461 TTCCAGTGACAAGGAGAGAACTTCCAACGGATCGACCTTTGTGGGCAGTCGAAGCACGAG 2521 GTGTAAACAAGGTGGTCTGCAGAGTGTTCTCAAACGTAGTAGGAGTAAATCAGAGCCCAC 2581 TAAGAGTAGACATCACCGAACATTTCATATATCGCGGCCAAGAATTAGCTTTGGTGCAAA 2641 TCCCCAGAAATCGCAGTGTGGTGAAAATATGTTTAATAACCATGAAAAAGAGAAGGCACG 2701 AGACAAGTGCAAGGAATCTTCTTCTGAGGGTCTTATCTCTGCATTAGAAATAAAAACTTC 2761 TACCTCCTTCGAACTTATTGAACAAAAAAGCCTTGTGTGTCATCTAGTGCTCAACCTTC 2821 ACCAACACTCTCAGAAAAGTGTGTATTAGTTACAAACAATATCCTAAAGCACAAAGGTTT 2881 TAGTTTATCTCTCGACGTATTGCCGAGAAAGAACGGACGACTGAAGAGATCTGAAGCCAC 2941 CGAAACCAACAACAGAAAATACTCCTGGTGGCTCCGAGGACAACCTTATAGAGGGGAC 3241 TTTCTGTTTTTAAGGATTATTTAACGGTTAGGTAGAACCACTGGGAAGATGAAGGATGAT 3301 GCCGGTCACATTGTATGAAGGGTGAGAGAGTCTTCCACAGTGGATCATTCTTCGTTCCAA 3361 TTGCAAATATTTTTCTGAGATACATAAAATGTTTAGTAAAACTCTTAGCAATCATCCCTA 3421 CATCAAAAGACAAACTAGTCAACACTTGTACTGTAGCGAGTGCAGGTATAAACTTCCCAC 3481 AAATTATCTTGGCACTTAATATTCATGAAGGATCTGACGACTAAGGTGCAATACTTTACA 3541 CCTCCATGGCAAGGGATGAATGCCCACCCTAAGCACCCTTATGGCTCGTCATTTATCATG 3601 CCGCTGCTATTAGTGTCATGGGTCCTCTGCAGCATCATATAAATACTGAGGTATTGATCT 3661 AAAGGCTTGATACACTCTGAGTTGTGAGAGGCACTCTAGATGGAAGAATAGAACCCCTGA 3721 CAGGGAAGTATAAAGCACAGCACCTTAAACAGCAGGACCATAATGATCATGAGGTGCCAA 3781 GATCATATTTGGAATCTTTATACCTGTAGTTACTACAGCACTATGACTTGACATGTACTG 3961 ATTGTGTTGCCTCTGCCAGAACACCTTCACTAATCCTCACCTCACCTTGTCTTGCCACAA 4081 CTGAGGGTTGTAATCTTCAAATGCCTAGATTATATATAAACATATAAAAATATGTATTTT 4201 AACATATTACACTATGTTTGCCATGTGACCCCATCTTTAAAATAGTACATCTATAGATTA 4261 GAGGAAAACTATTTATTTGCATAGAAAGATGTACAGCTATAAATTTAGCTTCTTCATGCT

4321 CAAACCAAATTTTTAGTGCCAATTATACTATAGGGA

Figure 2.16. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE9. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (FHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

GlPDE9 CmPDE9 Dm.PDE9E Tc.PDE9A Hs.PDE9A	::	MYKDLGLLSKFGTEL VATVCNKFREICDGVVGENTQELLRLPSFNNWAWEDWEILFLLCHMYNDLGLLSKFGTET HQEVKRRFLEICDTTFSEEVRAALRLPAFDSYEWSDADVIHLMCTMEVELGFIEKFSIPV KKRVKQNFANICEAQVSDAIRQWLRTPTFDARPWEDEELLLLCQMYLDYDLCSKFAIDI KLTPRRDVPTYPKYLLSPETIEALRKPTFDVWLWEPNEMLSCLEHMYHDLGLVRDFSINP	::	15 233 720 227 85
G1PDE9 CmPDE9 Dm.PDE9E Tc.PDE9A Hs.PDE9A	:::::::::::::::::::::::::::::::::::::::	*** * EVFRSFLCRVYHCYNQVPFHNFMHAFCVTQMMYGMICKCDLQRRLGDLDCLILLTSCICH EVFRRFLCQVYHCYNQVPFHNFMHAFCVTQMMYGMICKCDLQRRLGDLDALILLTSCVCH DTLREWLYEVYKHYNEVPFHNFRHCFCVAQMMYAITRQANLLSRLGDLECLILLVSCICH NTLRNFLYEAYKNYNDVPFHNFRHCFCVAQMMYAISWSVDLPSKVGDLEVLILLTSCICH VTLRRWLFCVHDNYRNNPFHNFRHCFCVAQMMYSMVWLCSLQEKFSQTDILILMTAAICH	:::::::::::::::::::::::::::::::::::::::	75 293 780 287 145
G1PDE9 CmPDE9 Dm.PDE9E Tc.PDE9A Hs.PDE9A	::	********* DLDHPGFNNIYQINARTELALRYNDISPLENHHCSVAFSVLERNECNIFRNMPPEDYKKV DLDHPGFNNIYQINARTELALRYNDISPLENHHCSVAFSVLERNECNIFKDLPAEDYKKV DLDHPGYNNIYQINARTELALRYNDISPLENHHCSIAFRLLEHPECNIFKNFSRDTFNNI DLDHPGYNNIYQINARTELAIRYNDISPLENHHCSVAFRILENEDCNIFKSFKSEDFKTV DLDHPGYNNTYQINARTELAVRYNDISPLENHHCAVAFQILAEPECNIFSNIPPDGFKQI	:::::::::::::::::::::::::::::::::::::::	135 353 840 347 205
GlPDE9 CmPDE9 Dm.PDE9E Tc.PDE9A Hs.PDE9A	:::::::::::::::::::::::::::::::::::::::	REGMIRCILATDMARHNEILSDFREIMPEFSYENRAHVNVLSMVLIKVADISNEARPLDI REGIIRCILATDMARHNEILSDFREITPEFAFDNAAHVNVLSMVLIKVADISNEARPLDI REGIIRCILATDMARHNEILTQFMEITPIFDYSNRAHINLLCMILIKVADISNEARPMDV REGIIRCILATDMARHNEILTNFREITPNFDYNDKAHVNLLCMVLIKVSDISNEARPMDV RQGMITLILATDMARHAEIMDSFKEKMENFDYSNEEHMTLLKMILIKCCDISNEVRPMEV	:::::::::::::::::::::::::::::::::::::::	195 413 900 407 265
GlPDE9 CmPDE9 Dm.PDE9E Tc.PDE9A Hs.PDE9A	:::::::::::::::::::::::::::::::::::::::	AEPWLECLMQEFFNQSDLEKLEGLPVSPFMDREKVTKPSSQCSFIGFVLLPLFEALGKVL AEPWLECLMQEFFNQSDLEKLEGLPVSPFMDREKVTKPSSQCSFIGYVLLPLFEALGKVL AEPWLDRLLQEFFAQSAAEKSEGLPVTPFMDPDKVSKPGSQVRFIGLVLLPLFEALGELV AEPWLDRLLQEFFKQSDAEKLEGLPVTPFMDREKITKPSSQCSFIGFVLLPLFEALGDLL AEPWVDCLLEEYFMQSDREKSEGLPVAPFMDRDKVTKATAQIGFIKFVLIPMFETVTKLF	:::::::::::::::::::::::::::::::::::::::	255 473 960 467 325
GlPDE9 CmPDE9 Dm.PDE9E Tc.PDE9A Hs.PDE9A	:::::::::::::::::::::::::::::::::::::::	PELDDLIIQPVF FALEHYRKLNEAAKKASEEQEATLEPTVEEEELQVE-RPNS PELDELIIQPVF FALDHYRNLKDAAQKAAEEQEAALEPAIEEEELEEEEIPNTNTNTNTN PELTELIIIPVF IALEYYRRLNDAQTKTRKSVADSNTSATSDSNSGTIDSNAAMVSTPGG IELQDLIVQPVF EALEYYRRLNEATREERLHRKSIVSEMTDQHTPSTQSPDSAVTVPKSL PMVEEIMLQPLWESRDRYEELKRID	: : : : :	307 533 1020 527 350

GlPDE9	:	RLSRENSKKVVQKTESSFSI <mark>C</mark> SRASS	:	333
CmPDE9	:	TNTNTNTNTNTNTNTHLTHLSRENSKRIVQKTESSFSIGSRASS	:	577
Dm.PDE9E	:	ASDKLSLDKGQGNSQGSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	:	1080
Tc.PDE9A	:	SNASVKLKKSLSFQQNRSRSRSTDEDTEQSFGSCNMIGE	:	566
Hs.PDE9A	:	DAMKELQKKTDSLTS <mark>C</mark> ATEKS	:	371

GlPDE9	:	RISMYRSRTCDYGDGAELDTETEVDVSERTSRFKIATDIHI	:	374
CmPDE9	:	RMSMYRSBTCDCGDGGELDTETEVDVSERTSRFKIATDIHI	:	618
Dm.PDE9E	:	RRSIPSQKSASRTSVDEPGGMASELHDLPEGSESGDSETATE V DVA <mark>E</mark> KTSKFKVDTEGSS	:	1140
Tc.PDE9A	:	EQSLEDVVEDPESGESETATEVEVSEKALKFKISTESSV	:	605
Hs.PDE9A	:	RERSRD V KNSEGDCA	:	386

GlPDE9	:	SPSRRNSSERRSSVGGRSSCERTVSPRTLEERLLPHAEAKNEPEDGEVHPKKSEKESLFA	:	434
CmPDE9	:	SP	:	620
Dm.PDE9E	:	NRSKSSHSTSRKSSREKRPSMIGELCSSGGGQRIRNSYGNIHGYHSNRCHFGNNRAVSLD	:	1200
Tc.PDE9A	:	GTGRKSYPGSRKGSRERVQHFNSSELARMIQKGKLRSAGFSFDQHCMIGNKKLSFD	:	661
Hs.PDE9A	:		:	-

GlPDE9	:	RFRIFSERLSSSDKERTSNGSTMMGSRSTRCKQSGLQSVLKRS	:	477
CmPDE9	:		:	-
Dm.PDE9E	:	QYSSAGNNRRLSDGLPQVISDSNVFYGRHNRSSTETTVAVGNPQDTNANTNHPVGCQLKE	:	1260
Tc.PDE9A	:	TPEFLDEYALTLKKRLDDQSDSEEEKQCVVSKETLNLNKRNSE	:	704
Hs.PDE9A	:		:	-

GlPDE9	:	RSKSEPTKSRHHRTFHISRPRISFGTNPQKMQCGENMFNNHDKEKTKDKCKESSSEGLIS	:	537
CmPDE9	:		:	-
Dm.PDE9E	:	LLARTEADSDGEGDGNGREDKKIPLVIPSMPQLATSSNGNISPTLVVTEQILPSNGSTRS	:	1320
Tc.PDE9A	:	HLVKIPSNLEEKRSILKCSDNKSF-TNADKLRMNNVKSSLEDDEKLIVNNRKNSQSRVNN	:	763
Hs.PDE9A	:		:	-

GlPDE9	:	SLEIKTSTSFELVEPKRKPCVSSSAQPSPTLSEKCVLVTNSILKHKGFSLSLDVLP	:	593
CmPDE9	:		:	-
Dm.PDE9E	:	SASSGRGGSGVPGGSGGSGMPGPSAGSGSSWKSRLRQFSDYFSFSFDKSNKRFGSTRSSP	:	1380
Tc.PDE9A	:	TSDSVNSIDKDEVRKVQAAAGSPRNSRSIFSRFRQFTDRFSLSVDKDSKVKHPKNNNS	:	821
Hs.PDE9A	:		:	-

GlPDE9	:	RKNGRLRRSAATETHTAENTPGSSEDNLLEESKRQQVDG-	:	632
CmPDE9	:		:	-
Dm.PDE9E	:	CPGSNSSSGRTNNNANGLGENQDGLGAGGGIKPGMCCTTITNSSGSTVKGETRGGTAGAG	:	1440
Tc.PDE9A	:	TRNPFPHKKKKLETPCCRSLEEVGRASTLPKTKSKKAWK-	:	860
Hs.PDE9A	:		:	-

:	AARFSRHQTFFSQTKGVHSPEGLKGFKKKPESTRALLFKSLSFRKKSPTKDDE	:	685
:		:	-
:	GGALTTMTTGNDAHQRHRAYSLDVPGMMRYSSNDSSRHPSNNTLQSAGGGAGLTTGLEVT	:	1500
:	FLVLGKEKDKWASDAAVDKLAVVETDNQSLPSTSQLQSNCASPKTHLEKLEIV	:	913
:		:	-
	::	:AARFSRHQTFFSQTKGVHSPEGLKGFKKKPESTRALLFKSLSFRKKSPTKDDE :	:AARFSRHQTFFSQTKGVHSPEGLKGFKKKPESTRALLFKSLSFRKKSPTKDDE : : GGALTTMTTGNDAHQRHRAYSLDVPGMMRYSSNDSSRHPSNNTLQSAGGGAGLTTGLEVT : :FLVLGKEKDKWASDAAVDKLAVVETDNQSLPSTSQLQSNCASPKTHLEKLEIV : :

GlPDE9	:	MRHSDSCGPSEERL	:	699
CmPDE9	:		:	-
Dm.PDE9E	:	AQRVPPSLSVEMGLASGSSSEAGPKI	:	1526
Tc.PDE9A	:	SLKEFKVEETVEKTGVEKGEEGGVI-	:	938
Hs.PDE9A	:		:	-

Figure 2.17. Multiple alignment of deduced amino acid sequences of PDE9 proteins in two crustacean species, two insect species, and one mammal species. Abbreviations: GI: *G lateralis*; Cm: *C maenas*; Dm: *D melanogaster*; Tc: *T castaneum*; Hs: *H sapiens*. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. The colors of the boxes correspond to the colors of the domains in Fig. 2. 15 & 2.16.

GlPDE11 5752 nucleotides, structure: sequence <u>C</u>	
GGGAGGGCAGAGGCTGTGCTGGGCTTGGCTGAGGCGCAGTGTGTGT	61
GGCGGCTGTACGTACGCGTGGCAGACAAACTTGACTTCACGCAGCATCGAGGCAGAGAAA	121
GAATAGAAGAAAATGTCTCAACAGGTTCGTCTTCCCTTCAAAGGAATGATGGCGCCCACC	181
TTTACGCCATTCAAGGCTGATGGGTCCCTCAATCTGGAACTGGTGAAGCCGTACGCAGCA	241
CACCTGAAGGCTTCTGGTGTGAAGGGGGGTGTGGGTGAACGGCACGGCCGGC	301
TCGCAGACGGTGCTGGAGCGCAAGGCGGTGGCGGAAGCGTGGCTGGC	361
GTGCCGACAGTGATCGTGCATTGCGGCGCGGGGATGCCTCAAGGATACACAGGACCTGGCT	421
CGTCACGCGGAGGAGAAAGGGGCTGATGGAGTGGCCGTGTTGCCCCTCCTCTCGACCCC	481
CCCAAAACCCCCGACGATCTGGTGGACTACATGGTGGAGGTGGCTAAGGCGTGCCCCTCC	541
AGCCCCCTCTTCTACTACCACATCCCCATGAAGACCGGCGTGAAGTTGTCGATGAGCGAG	601
TTCCTGGAGAAGGGCGTGAAGCGTATACCCACGTTGGCGGGGGTCAAGTTTACCGACGGG	661
GACGTGAGCGGCGAGGGCAGGAAGTGTCTGAAGGTGAACGGCGGCAACCTGACCGTATTT	721
AATGGCTTTGACCAGAGCCTTCAGGAGGCTCTCAGCTTGGGCTTCAACTGTGGCGTCAAC	781
TCGAGCTTCACCTTCCTGCCTCACCTGGCTGGCCGCATCTTCACTCTGATGGAGGCCGGT	841
GACAAGGACGAGGCGGTGAAGGTGCAGCAGAGACTCAGCAGCTGCTTCGACGTCATCTAC	901
AGGCAGAGCGGCGGCATTTTCAGCTCGGCCTGCATGAAGGCAGCGTGCAGCCTCCTGACA	961
GGGCTGCAGTTTGGGCCCACACGCCTCCCCGTGAAGCCCCTGACGGAGGAGATGACGGCC	1021
ACGCTGAAGAGAGACCTTGAGAAACACGGCCTCAAGGTGTACTGAAGGGCGAACGGGAAC	1081
AGCAGAAGGAGGAGAAAGGGAAGGGGAGGAGGAGGAGGAG	1141
GATGGAAGATAAGGGGGGGGGGGAGGAAGGGAGGGGGGGG	1201
GGAGCTGATGTAAGTGGAGGAGGAAGGAAGAAGAGAGGGGGAAACAAAC	1261
GGAAAAAGAGAGTAAGCTGAAAATTATGCTTAGAAGAGGGAACAGCGTAGAGGGGGGGAAG	1321
ACATGAGGGAGTTGGTGACGATGGTGCTCGGTAGGAGGAGGAGGAGGAGGGGGGGG	1381
GGAGGAGGAGGAGGGGGGGGGGGGGGGGGGGGGGGGGGG	1441
GGGGGCCCTCTCCCCCTACACACGCCCCCCCAATACAACTACGACCCGGAGTGTGCCAGA	1501
ATGGAGGCGTGGCTGGACGACCATCAAGATTTCGTGTACGACTACTTCATCAGGAAGGCG	1561
M E A W L D D H O D F V Y D Y F I R K A	20
	1621
S R H M V D S W L L S H A L P O S L G M	40
GGCGCCGCGGGGTACTGCGGGGCGGGGCCTGAGGCGGGGGCCGGGGCGGGGCGGGGCCGGGGCCACC	1681
G A A G Y C G A G P E A G A G A G L A T	60
ACCCCGGGACAGCATCAAAACTCCAAGGCGTCGTCTGGAGCTGCCACGCCAGTTCGCAAG	1741
T P G O H O N S K A S S G A A T P V R K	80
ATTTCACCCCACCACTTCCACCACCCCCCCCCCCCCCC	1801
	1001
	1861
G T P T F I S P A G A A E N V A T I. A K	120
GTTCGTCGCAAGTCCCGCACCGCACCCCAAAGGCCTCGACGACGGCCAATTAATCTTCGAA	1921
V R R K S R T F L K G L D F R O L T F F	140
	1981
L V K D I C N F L D V R P L C H K I L O	160
	1 1 1 1
AACOIOICCAICCIIACAOCOCIOACAOAIOCICOCIIIICCIAOIACAAOOOOACAAO	2041
	2041
N V S I L T S A D R C S L F L V Q G D K	2041 180
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGAACCGCTGCTCGACGCTCTTCGACGTGAACCCAGACTCGACGGGG F T F N P C L V S T L F D V N P D S T V	2041 180 2101
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGAACCGCTGCTCGTCTCCACGCTCTTCGACGTGAACCCAGACTCGACGGGG E T E N R C L V S T L F D V N P D S T V CACGACACGCGCGACGCAACGACTCACCCATACCCCCATACTCCCCCATACTCCCCCATACTCCCCATACTCCCCCATACTCCCCATACTCCCCATACTCCCCATACTCCCCCC	2041 180 2101 200 2161
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGAACCGCTGCCTCGTCTCCACGCTCTCGACGCGAGACCCGACGCGGGG E T E N R C L V S T L F D V N P D S T V GAGGAGATGGAGGAGAAGGAAGGAGACCAGGATAGCGTGGGGTAGTGGCATTGTGGGCTAC	2041 180 2101 200 2161 220
N V S I I T S A D R C S L F L V Q G D K GAGACGGAGAACCGCTGCCTCGTCTCCACGCTCTCGACGCGTGACCCAGACCCAGACCGAGCGGGGGGGG	2041 180 2101 200 2161 220
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGAACCGCTGCCTCGTCTCCACGCTCTCGACGCGTGAACCCAGACCCAGACCGAGCGGGGGGGG	2041 180 2101 200 2161 220 2221
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGACCGCTGCCTCGCCTCCACGCTCTCCACGCTCTCGACGCTGACCCCAGACCCAGACGACGCGAGGAGGAGAGGACGACGGCGCGCGCGCGGGGGG	2041 180 2101 200 2161 220 2221 240
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGAACCGCTGCCTCGTCTCCACGCTCTCGACGCGTGACCCAGACCCAGACCGAGCGACGGAGCGAGGAGGAGGAG	2041 180 2101 200 2161 220 2221 240 2281
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGAACCGCTGCCTCGTCTCCACGCTCTCCACGCTCTCGACGCGAGACCCGCACGGAGCCGAGCGAG	2041 180 2101 200 2161 220 2221 240 2281 260
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGACCGCGCGCCCCCCCCCCCCCCCCCCCCC	2041 180 2101 200 2161 220 2221 240 2281 260 2341
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGACCGCCGCCCCCCCCCCCCCCCCCCCCCC	2041 180 2101 200 2161 220 2221 240 2281 260 2341 280
N V S I L T S A D R C S L F L V Q G D K GAGACGGAGACCGCCGCCCCCCCCCCCCCCCCCCCCCC	2041 180 2101 200 2161 220 2221 240 2281 260 2341 280 2401

CGC	CAAC	GCC	CAG	CTC	TAC	GAA	CGG	TCA	CAG	СТС	GAA	GTC	AAG	AGG	AAC	CAG	GTT	CTG	CTG	2461
R	N	A	Q	L	Y	E	R	S	Q	L	Е	V	K	R	Ν	Q	V	L	L	320
GAC	CTTG	GCG	GCGG	ATC	ATC	TTC	GAG	GAG	CAG	AGC	ACC	ATA	GAG	CAA	ATT	GTG	TAC	CGC	ATC	2521
D	L	A	R	I	I	F	Ε	Е	Q	S	Т	I	Ε	Q	I	V	Y	R	I	340
ATG	GACA	CAC	CACC	CAG	AGC	CTT	СТС	CAG	TGT	GAG	CGT	GTG	CAG	ATT	CTC	TTG	GTA	CAC	GAG	2581
М	Т	Η	Т	Q	S	L	L	Q	С	Ε	R	V	Q	I	L	L	V	Η	E	360
GCI	TCC	CGA	AGGA	ACA	TTC	TCC	CGI	GTC	TTT	GAC	CTC	GAG	GTG	AAG	GAC	СТА	CAG	GGT	GAT	2641
А	S	R	G	Т	F	S	R	V	F	D	L	Ε	V	K	D	L	0	G	D	380
GAC	CGCA	GAG	GAGC	CGC	ACG	AGT	ССС	TTT	'GAA	TCC	CGC	TTC	ССТ	ATC	AAC	ATT	GGC	ATT	ACA	2701
D	A	Е	S	R	Т	S	Ρ	F	E	S	R	F	Ρ	I	Ν	I	G	I	Т	400
GGA	ACAT	GTC	CGCC	ACA	ACA	GGA	GAG	ACT	GTG	TGC.	ATT	GTC	GAC	GCT	TAC	CAA	GAC	ТСТ	CGG	2761
G	Η	V	A	Т	Т	G	Ε	Т	V	С	I	V	D	А	Y	Q	D	S	R	420
TTT	GAC	CCG	STCG	GTG	GAT	GAG.	AAC	ACA	GGG	TTC	TGC	CAC	AAG	TCC	ATC	CTG	TGC	ATG	CCC	2821
F	D	Ρ	S	V	D	E	N	Т	G	F	С	Η	K	S	I	L	С	М	Ρ	440
ATC	CAAG	AAC	CACG	GCT	GGC	AAG.	ATT	GTG	GGC	GTT	GTG	CAG	CTG	GTG	AAC	AAG	TTT	GAC	AAC	2881
I	K	Ν	Т	A	G	K	I	V	G	V	V	0	L	V	N	ĸ	F	D	N	460
CTI	CCC	TTC	CACC	AGC	AAC	GAC	GAG	AAC	TTC	CTG	GAG	GĈA	TTT	GCC	ATC	TTC	TGT	GGC	ATG	2941
L	Р	F	т	S	N	D	Е	Ν	F	L	Е	A	F	A	Ι	F	С	G	М	480
GGC	CATC	CAC	CAAC	ACA	AAC	ATG	TAC	GAG	AAG	GCG	GTG	ACG	GCC	ATG	GCC	AAG	CAG	AAA	GTG	3001
G	Ι	Н	Ν	Т	Ν	М	Y	Е	K	А	V	Т	A	М	A	K	0	K	V	500
ACC	CCTT	GAG	GTG	CTG	AGC	TAC	CAC	GCC	ACT	GCC	CCG	AGA	TCC	GAG	TCA	CAG	AAG	CTT	ATG	3061
Т	L	Ε	V	L	S	Y	Н	A	Т	A	Ρ	R	S	Ε	S	0	K	L	М	520
ACA	ATG	AAA	ATC	CCG	TCA	GCC	CAG	GCG	TTT	AAA	CTC	TAC	GAC	TTC	AAG	TTT	GAT	GAC	TTC	3121
Т	М	K	I	Р	S	A	0	A	F	K	L	Y	D	F	K	F	D	D	F	540
AGI	CTG	GAI	GAT	GAA	GGA	AGC	TTG	AAG	GCA	TGT	CTG	AGG	ATG	TTC	CTG	GAC	CTG	GAC	TTG	3181
S	L	D	D	Е	G	S	L	K	A	С	L	R	М	F	L	D	L	D	L	560
ATT	GGG	AGG	TTC	CAC	ATA	GAG	TAC	GAG	GTG	CTG	TGT	CGC	TGG	- CTG	CTC	AGC	GTC	AAG	AAG	3241
I	G	R	F	Н	I	Е	Y	E	V	L	C	R	W	L	L	S	V	K	K	580
AAC	TAC	CGC	:AAT	GTC	ACC	TAC	CAC	AAC	TGG	CGG	CAC	GCA	TTC	AAT	GTG	GCC	CAG	ATG	ATG	3301
N	Y	R	N	V	Т	Y	H	N	W	R	Н	A	F	N	V	A	0	М	М	600
TTT	GCC	ATT	ATC	ACG	ACA	ACC	CAG	TGG	TGG	AAG	GTT	CTT	GGG	GAG	CTG	GAG	TGT	CTG	GCG	3361
F	А	I	Ι	Т	Т	Т	0	W	W	K	V	L	G	Е	L	Е	С	L	А	620
CTG	GCTG	GTO	GCC	TGC	CTC	TGT	CAI	'GAC	CTG	GAC	CAC	CGA	GGC	ACC	AAC	AAC	TCC	TTC	CAG	3421
L	L	V	А	С	L	С	н	D	L	D	н	R	G	т	N	Ν	S	F	0	640
ATI	'AAA	GCA	TCC	TCA	CCC	CTG	GCC	CAG	CTG	TAC.	ACC	ACC	TCC	ACC	ATG	GAG	CAC	CAC	CAC	3481
I	Κ	А	S	S	Р	L	А	0	L	Y	Т	Т	S	Т	М	Е	Н	Н	Н	660
TTT	GAC	CAA	TGT	GTC	ATG	ATT	СТС	AAC	TCC	TCA	GGC	AAC	CAG	Δтс	CTG	AGT		TOO		3541
F	D	0	С	V	М	т	т	NT	~					AIU			AAC	IGC	ACC	
CCI	GAT	_				_		IN	S	S	G	N	0	I	L	S	N	C	ACC T	680
Р		GAG	TAC	TCC	AGA	GTC.	ц АТС	N AAT	S GTC	S CTC	<mark>G</mark> GAG	N GAT	Q GCT	I ATT	L CTT	S GCC	N ACG	GAT	ACC T CTG	680 3601
	D	'GAG E	GTAC Y	TCC S	AGA R	GTC. V	L ATC I	N AAT N	S GTC V	S CTC L	G GAG E	N GAT D	Q GCT A	I ATT I	L CTT L	S GCC A	N ACG T	GAT D	ACC T CTG L	680 3601 700
GCI	D	GAG E TAC	GTAC Y CTTC	TCC S AGG	AGA R AAG	GTC. V CGT	ATC I GGC	AAT N GGGG	GTC V TTC	S CTC L TTC	G GAG E AAC	N GAT D ATG	Q GCT A GTA	I ATT I AAA	L CTT L TCT	S GCC A A	N ACG T CAG	GAT D TAT	ACC T CTG L GAG	680 3601 700 3661
GCI A	D GTG V	GAG E TAC Y	GTAC Y CTTC F	TCC S AGG R	AGA R AAG K	GTC V CGT R	ATC I GGC G	AAT N GGG G	GTC V TTC F	S CTC L TTC F	G GAG E AAC N	N GAT D ATG M	Q GCT A GTA V	I ATT I AAA K	L CTT L TCT S	S GCC A AAT N	N ACG T CAG	GAT D TAT	T CTG L GAG	680 3601 700 3661 720
GCI A CTG	D IGTG V GAGC	GAG E TAC Y	TAC Y TTC F CGAG	TCC S AGG R GAG	AGA R AAG K GTG	GTC. V CGT R CGG	ATC I GGC G GAG	AAT N GGG G CAG	GTC V TTC F	S CTC L TTC F	G GAG E AAC N GGC	N GAT D ATG M ATG	Q GCT A GTA V ATG	I ATT I AAA K ATG	L CTT L TCT S ACT	S GCC A AAT N	N ACG T CAG Q	GAT D TAT Y GAC	T CTG L GAG E ATT	680 3601 700 3661 720 3721
GCI A CTG L	D TGTG V GAGC S	GAG E TAC Y CGC R	GTAC Y CTTC F CGAG E	TCC S AGG R GAG E	AGA R AAG K GTG V	GTC. V CGT R CGG R	ATC I GGC G GAC E	AAT N GGG G CAG	GTC V TTC F GTG V	S L TTC F CGT	G GAG E AAC N GGC G	N GAT D ATG M ATG	Q GCT A GTA V ATG M	I ATT I AAA K ATG M	L CTT L TCT S ACT T	S GCC A AAT N GTA V	N ACG T CAG Q .TGT C	GAT D TAT Y GAC	ACC T CTG L GAG E ATT I	680 3601 700 3661 720 3721 740
GCI A CTC L GCA	D GTG V GAGC S AGCC	GAG E TAC Y CGC R	GTAC Y CTTC F CGAC E	TCC S AGG R GAG E	AGA R AAG K GTG V	GTC. V CGT R CGG R TGG	ATC I GGC GAG E CCC	N CAAI N CGGG G CAG Q CATC	S GTC TTC F GTG V CAG	S CTC L CTTC F CGT R CGT	G GAG E AAC N GGC G CAG	N GAT D ATG M ATG M	Q GCT A GTA V ATG M GCA	I ATT I AAA K ATG M GAG	L CTT L TCT S ACT T	S GCC A AAT N GTA V GTG	N ACG T CAG Q .TGT C	GAT D TAT Y GAC D GGG	ACC T CTG GAG E ATT I GAG	680 3601 700 3661 720 3721 740 3781
GCI A CTG L GCA	D TGTG V GAGC S AGCC A	GAG E TAC Y CGC R ATC T	GTAC Y CTTC F CGAC E CACC	TCC S AGG R GAG E ZAAG	AGA R AAG K GTG V CCA P	GTC. V CGT R CGG R TGG W	ATC I GGC GAG E CCC	AAI N GGGG G GCAG Q CATC T	GTC V GTTC F GTG V CAG	S CTC L CTTC F CGT R SAAG	GAG E AAC N GGC G CAG	N GAT D ATG M ATG M GTG	Q GCT A GTA V ATG M GCA A	I ATT I AAA K ATG M GAG	L CTT L TCT S ACT T CTG	S GCC A AAT N GTA V GTG V	N ACG T CAG Q .TGT C GCT	GAT D TAT Y GAC D GGG	ACC T CTG L GAG E ATT I GAG E	680 3601 700 3661 720 3721 740 3781 760
GCI A CTG L GCA A TTC	D CGTG V GAGCC S AGCC A	GAG E TAC Y CGC R ATC I CAC	GTAC Y CTTC F CGAC E CACC T	TCC S AGG R GAG E CAAG K CGT	AGA R AAG GTG CCA P	GTC. V CGT R CGG R TGG W ATT	ATC I GGC GAG E CCC P GAG	AAI N GGGG GCAG Q CATC I CATC	S GTC F GTG V CAG	S CTC L TTC F CGT R GAAG K GAG	G GAG E AAC N GGC G CAG Q TTG	N GAT D ATG M ATG GTG V AAG	Q GCT A GTA V ATG M GCA A CA	I ATT I AAA K ATG GAG E ACC	L CTT L TCT S ACT T CTG L	S GCC A CAAT N GTA V GTG GTG V ATA	N ACG T CAG Q .TGT C GCT A GAC	GAT D TAT Y GAC D GGG G ATG	ACC T CTG L GAG E ATT I GAG E ATG	680 3601 700 3661 720 3721 740 3781 760 3841
GCI A CTG L GCA A TTC F	D TGTG SAGC S AGCC A CTTT F	GAG E TAC Y CGC R ATC I GAG F.	GTAC Y CTTC F CGAC E CACC T GCAC	TCC S AGG GAG E CAAG K GGT G	AGA R AAG GTG CCA P GAC D	GTC. V CGT R CGG R TGG TGG W ATT	ATC I GGC GAC E CCC P GAC E	N CAAT GGGG GCAG QCATC I GAAG	GTC V TTC F GTG CAG CAG	S CTC L TTC F CGT R GAAG K GAAG	G GAG E AAC N GGC G CAG Q TTG I.	N GAT D ATG M GTG V AAG K	Q GCT A GTA V ATG M GCA A ATC J	I ATT I AAA K ATG GAG E ACC T	L CTT TCT S ACT T CTG L CCA	S GCC A TAAT N GTA V GTG V GTG V ATA	N ACG T CAG Q .TGT C GCT A .GAC	GAT D TAT Y GAC D GGG G ATG M	ACC T CTG GAG E ATT I GAG E ATG M	680 3601 700 3661 720 3721 740 3781 760 3841 780
GCI A CTG GCA A TTC F AAT	D CGIG SAGC S AGCC A CTTT F	GAG E TAC Y CGC R ATC I GAG E GAG	GTAC Y F CGAC E CACC T GCAC Q GAAC	TCC S AGG GAG E C AAG K GGT G C AAA	AGA R AAG GTG V CCA P GAC D	GTC. V CGT R CGG R TGG W ATT I AAA	ATC GGC GAG GAG CCC P GAG E CTA	N CAAI GGGC G CAG Q CATC I GAAG K	GTC V GTTC F GTG CAG Q CAG	S CTC L TTC. F CGT R GAG K GAG E CATG	G GAG E AAC N GGC G CAG CAG TTG L CAA	N GAT D ATG M ATG GTG V AAG K GTG	Q GCT A GTA V ATG M GCA A ATC I GGT	I ATT I AAA K ATG GAG E ACC T TTC	L CTT L TCT S ACT CTG L CCA P ATA	S GCC A TAAT N GTA V GTG V ATA I GAC	N ACG T CAG CAG TGT C GCT A .GAC D	GAT D TAT Y GAC D GGG G ATG M ATC	ACC T CTG GAG E ATT I GAG E ATG M TGC	680 3601 700 3661 720 3721 740 3781 760 3841 780 3901
GCI A CTG GCA A TTC F AAI	D GTGTG V GAGCC S AGCCC A CTTTT F CCGA	GAG E TAC Y CGC R CATC I GAG E GAG	GTAC Y CTTC F CGAG E CACC T GCAG Q GAAG	TCC S AGG GAG E CAAG K GGT G AAA K	AGA R AAG K GTG CCA P CCA D CGAC D	GTC. V CGT R CGG R TGG TGG W ATT I AAA K	ATC GGC GAC GAC E CCC P GAC E CTA T.	AAI N GGG GCAG Q CATC I GAAG K CCCC	GTC V GTTC GTG CAG CAG Q CAG CAG	S CTC TTC TTC F GCGT R GAAG K GAAG E CATG M	GAG E AAC N GGC G CAG Q TTG L CAA	N GAT D ATG M GTG V AAG K .GTG	Q GCT A GTA V ATG M GCA A ATC I GGT	I ATT I AAA ATG GAG E ACC T TTC F	L CTT TCT S ACT T CTG L CCA P ATA	S GCC A AAT V GTA V GTG V ATA I .GAC	N ACG T CAG Q TGT C GCT A GAC D TCC S	GAT D TAT Y GAC D GGG G ATG M ATC	ACC T CTG GAG E ATT I GAG E ATG M TGC C	680 3601 700 3661 720 3721 740 3781 760 3841 780 3901 800
GCI A CTG GCA A TTC F AAT N TTA	D CGTG V GAGCC S AGCCC A CTTT F CCGA R	GAG E TAC Y CGC R CATC I GAG E .GAG	GTAC Y CTTC F CGAG E CACC T GCAG Q GCAG Q GAAG K	TCC S AGG GAG E GAAG K GGT GAAA K	AGA R AAG GTG GTG CCA P GAC D GAC D	GTC. V CGT R CGG R TGG W ATT I AAA K TTT	ATC I GGC GAG E CCCC P GAG E CTA L GCC	AAI N GGG G GCAG Q CATC I GAAG K CCCC P	S GTC F GTG CAG CAG Q CAG Q CATC I	S CTC L CTTC F CGT R GAG K GAG E CATG M	GAG E AAC N GGC G CAG CAG L CAA Q CAA	N GAT D ATG M GTG V AAG K GTG V GAT	Q GCT A GTA V ATG M GCA A ATC I GGT G CTG	I ATT I AAAA ATG GAG E ACC T TTC F CAG	L CTT L TCT S ACT T CCG L CCA P ATA I CCA	S GCC A AAT N GTA V GTG V ATA I GAC D CTC	N ACG T CAG CAG CAG CAG CAG C C C C C C C C C C	GAT C GAT TAT Y GAC C GGG ATG ATC I GAA	ACC T CTG GAG E ATT I GAG E ATG M TGC C GGT	680 3601 700 3661 720 3721 740 3781 760 3841 780 3901 800 3961
GCI A CTG GCA A TTC F AAI N TTA I.	D GTGTG V GAGCC A GCCA F CCGA R ACCA	GAG E TAC Y CGC R CATC I GAG E GAG E .GAG	GTAC Y CTTC F CGAG CACC T GCAG Q GAAG K TAI	TCC S AGG GAG C AAG K GGT G AAA K GAG E	AGA R AAG GTG CCA P GAC D GAC D GAC D GAC	GTC. V CGT R CGG R TGG M ATT I AAA K TTT F	ATC I GGC GAG CCC P GAG E CTA L GCG A	N CAAI N CGGC G CAC CATC I GAAG K CCCC P GGAG	S GTC F GTG CAG CAG CAG CAG CAG CATC I GATG	S CTTC: TTTC: F CGTT CGTG CGTG CGAG CGAG CGAG CATG M CATG CATG	G GAG E AACC N GGCC G CAG CAG L CAA Q CCCC P	N GAT D ATG M ATG M GTG K GTG V AAG K GTG V GAT	Q GCT A GTA V ATG GCA A ATC I GGT G CTG I.	I ATT I AAAA K ATG GAG E ACC T TTC F CAG	L CTT L TCT S ACT T CTG L CCA P ATA I CCA	S GCC A AAT N GTA V GTG V ATA I GAC D CTC I.	N ACG T CAG Q TGT C GGCT A GAC D TCC S CTG T.	GGC GAT D TAT Y GAC D GGG G ATG ATC I GAA E	ACC T CTG GAG E ATT I GAG E ATG M TGC C GGT	680 3601 700 3661 720 3721 740 3781 760 3841 780 3901 800 3961 820
GCT A CTG L GCA A TTC F AAT N TTA L GTC	D CGTG V GAGCC S AGCCC A CTTT F CCGA R ACCA P CAGC	GAG E TAC Y CCGC R ATC I GAG E GAG C T V CGAC	TAC Y TTC F CGAG E CACC T GCAG Q GAAG K TAI	TCC S AGGG CGAG E AAAG CGGT G AAAA K CGAG E CGGG	AGA R AAG GTG CCA P GAC D GAC D GAC A	GTC. V CGT R CGG R TGG W ATT I AAAA K TTT F CAG	ATC I GGCC GAG E CCCC P GAG E CTA L GCG A	AAT N GGGG G CAG Q CATC I GAAG K CCCC P GGAG E	S GTC V GTGC GTG V CCAG Q CCAG Q CCAG Q CATC I GATG M GAAG	S CTC TTC TTC CGT R GAG GAG E CATG ACC T	G GAG E AACC N GGCC G CAG Q CCAA CCAA Q CCCC P GCT	N GAT D ATG M GTG V AAG GTG V GAT D GAC	Q GCT A GTA V ATG GCA GCT GGT CTG L GAC	I ATT I AAAA K ATG GAG T TTC F CAG Q GCA	L CTT L TCT S ACT CTG CCA P ATA I CCA CCA	S GCC A AAT N GTA V GTG V ATA I GAC D CTC L AAC	N ACG T CAG Q TGT C GCT A GAC D TCC S CTG L AAG	GAT D TAT GAC D GGG G GAA TC I GAA E AAC	ACC T CTG GAG E ATT I GAG E ATG TGC C GGT GTC	680 3601 700 3661 720 3721 740 3781 760 3841 780 3901 800 3961 820 4001
GCT A CTG GCA TTC F AAT N TTA L GTC	D CGTG SAGCC S AGCCC A CTTT F CCGA R ACCA P CAGG R	GAG E TAC Y CGCC R CATC I GAG E GAG E GAG D	GTAC Y CTTC F CGAG E CACC T GCAG Q GAAG K CTAI Y ZAAC	TCC S AGG GAG E AAAG K GGT GAAA K GAG E CGGG R	AGA R AAG GGTG V CCCA P GGCC D GGCC D GGCC A CCAG	GTC. V CGT R CGGG R TGG W ATT I AAAA K TTT F CAG	ATC I GGC GAG E CCCC P GAG CTA L GCG A TGG	AAT CGGG GGGG CAG Q CATC I CAAG CCCC P GGAG CAG	S GTC V GTTC F GCAG Q GCAG Q GCAG Q GCAG Q CATC I GATG K	S CCTC L CTTC. F CGTT R CGTG CAAG K CAAG C CAAG C CTG L	G GAG E AAC N GGC CAG CAG CAG CAA Q CCC P GCT A	N GAT D ATG M ATG GTG V AAG GTG V GAT D GAC D	Q GCT A GTA V ATG GCA GGT GGT GGTG L GAG E	I ATT I AAA K ATG GAG E ACC T T T CAG Q GCA A	L CTT L TCT S ACT T CCTG L CCA P ATA I CCA P GCCC A	S GCCC A AAT N GTA V GTG GGCG V ATA I GACC D CTCC L AAC	NACG NACG T CAG Q IGT C GGCT A GAC D TCC S CTG L AAG K	GAT D TAT GAC D GGGG G ATG ATC I GAA E AAC	ACC T CTG GAG E ATT I GAG C GGT GGT V	680 3601 700 3661 720 3721 740 3781 760 3841 780 3901 800 3961 820 4001 840
GCI A CTG GCA TTC F AAI N TTA L GTC V CCI	D CGTG V GAGCC S AGCCC A CTTT F CCGA R CCGA R CCGGA	GAG E TAC Y CGCC R ATC I GAG E GAG E GAG C D C AAC	GTAC Y CTTC F CGAG E CACC T GCAG Q GAAG K CTAT Y CAAC N N CAAC	TCC S AGG GAG CAAG CAAG CGAG CGAG R CGAG R	AGA R AAGGGGG GGCCA P GGCC D GGCC A CCAG Q	GTC. V CGT R CGGG R TGG W ATT I AAAA K TTT F CAG Q AAC	ATC I GGC G GAG CCCC P GAG CTA L GCG A TGG W AAT	N CAAT N CGGG G CAG Q CATC I GAAG K CCCC P GGAG E CAG Q CAG	S GTC V GTC GGGG V CCAG Q GCAG Q GCAG Q GCAG Q GCAG C ATC C ATC C ATC C ATC	S CCTC L CTTC. F CCGT R AAAG K GAAG K CATG M AACC L CCTG L	G GAG E AAC N GGCC G CAG Q CAG CAG CCC P GCT A	N GAT D ATG M ATG GTG K GTG V GAT D GAC D AAC	Q GCT A GTA V ATG GCA A ATC I GGT GGT GAG E AAT	I ATT I AAAA K AATG GAG E AACC T TTCC F CAG GCA A GAC	L CTT L TCT S ACT T CTG CCA P CCA CCA	S GCCC A CAAT N GTA CGTG V CGTG U CTCC L CCTCC L AACC N GAG	N ACG T CCAG Q TGT C GCT A GCC C C C C C C C C C C C C C C C C C	GAT GAT TAT GAC D GGG G ATG GAA E AAC N GGT	ACC T CTG GAG E ATT I GAG C GGT GGT V GGC V GGC	680 3601 700 3661 720 3721 740 3781 760 3841 780 3901 800 3961 820 4001 840 4061
GCT CTG GCA A TTC F AAT N TTA L GTC V CCT P	D CGTG V GAGCC S AGCCC A CTTT F CCGA R CCGA R CCGGA G GGGA G	GAG E TAC Y CCGC R ATC I GAG E GAG E GAG D C AAC	TAC Y TTC F CGAG E CACC T GCAG Q GAAG K TTAT Y CAAC N N	TCC S AGGG C GAGG E AAG GAGA C GAGA C CGGG R AAT N	AGA R AAAG K GGTG V CCCA P GGCC D GGCC D GGCC A CCAG Q X AAC	GTC. V CGT R CGG R TGG M ATT I AAAA K TTT F CAG Q AAAC. N	ATC I GGC G GAG CCC P GAG CTA L GCG A TGG W AAT	N CAAT N CGGG G CAC Q CATC I GAAG K CCCC C CAG Q CAAC Q CAAC N	S GTC V GTTC F GTG V CCAG Q CCAG Q CCAG Q CATC I SATG M GAAG K TAC Y	S CCTC L CTTC. F CCGT R CAAG CAAG CAAG CAAG CACC L CACC. T	G GAG E AACC N GGC G CAG Q CCA CAA Q CCCC P GCT A AGC S	N GAT D ATG M GTG GTG V AAGG K GTG GAC D GAC D AAC N	Q GCT A GTA V ATG GCA A ATC I GGT GGT GAG E AAT N	I ATT I AAAA K ATG GAG GCA GCA A GCA D	L CTT L TCT S ACT CTG CCA P CCA P GCC A CCA R	S GCCC A CAAT N GTA CGTG V GGTG V ATA I GAC D CTCC L AACC N GAG E	NACG NACG CAG Q TGT C GGCT C GGCT A GGCC D C C C G GAC C C C G GAC K AAAA K	GAT D TAT Y GAC G G G G ATG ATG ATG AATG AATG AAC N GGT G	ACC T CTG GAG E ATT I GAG C GGT G GTC V GGC G G C C G G C C G G C C C G G C C G G C C C G A G A	680 3601 700 3661 720 3721 740 3781 760 3841 780 3901 800 3961 820 4001 840 4061 860

GGGACAAACAAT <mark>IGA</mark> GTGTGTGTGTGCTGATATGCCAAGTGCCCTTGCCAACCACTGCACAA	4121
GTNN-	864
AGTGATGCCGTGGACACAAGTAGAGGAAGTGGTGGATTGTAAGCAAGGTTTTGTGCCGTG	4181
GCTGTGTGTTTCAGTTGGACCCAAGGAGTTCGGGCACAAGTGATGGACTGAAGTGAAGTA	4241
GAATGTGTGAGTGTTCAGTGTCTTGATAATGTACATTGTGGCCTTGACCACCACTCTAAG	4301
TTCTGCTTCTCCTGTGTTGACCTTCTGTACTCGTGTGTGAACAGTTCAAAGGCTATTAAT	4361
AGTATATGTTTTGTACTTCTGACTCTATAAGGTTCATAGATATGTTTAATCCGTGAAATG	4421
AACTTCTGTGCTACATATAAGTGTGAGAAAATATGTATTATCACTTGGTTGTATGACAGA	4481
TATATCTTTCATTTTGGCATAATAATAATAATATTTAATGCTAGGGTGCTCCCCTGCTGGAGT	4541
AGTGAATGTTTTTATTCAGGAATTTCATCAGGAATGTGCAATATTCAGATAGCATGTATG	4601
GGTCATTATTTATTTGATAGGGACATCTGTTCATCTTCCTTTTGTGTTCATTCA	4661
AGCAAGTGGGCCCAAGGGACGCTAAAGGCCTCAATGGGGGGTAAAGGGAGGG	4721
GTACTGATGGACCTCCACAGTTCATTCATCTAATAAATAA	4781
TTGAGTTGCCTCTTTCCACCCTGCCTCTGCCTCTCCTAACAAGTGAATCATGTCTAGCCA	4841
GGAACACCGAACTTGACACACATTAACATGTTCCCAGTCAAGGCTTGATGCCATATTATA	4901
TAAGCAATCCCCAGGTTATCAATGAGTTTCGCTCCTAAACACAGATGTAAGTTAGATTTG	4961
TCTAAGTCAGAAAGGCAGAAGTGTACTGTTTTACTGTGCCTCAGTAAGCAGTGCAGTGGT	5021
CTGTTACCACAAACCATTGTCTCCAATTAAGATTTTTCAAAATGAAGTCTGTGTATGGGC	5081
TGATCTAGGTTGAAACATTCTTGACCCAGGCACTTACTGTGTTGCAGCAAAGGAGTCTTA	5141
GTGATATGTTCTTTACATCTTTGCATTTTCTTTATACAATAAATTGGATCACACTTTAAA	5201
AATGCATGAAATTATGGTCAAGAGCATACACATAACCAAGTGAATAGTACCATCTCAGTT	5261
GGAATTTAAAAAGTAAGGACAGTGCCACCAGTAATGAAAGTTGAAGTAAAATGGCAAATA	5321
GGCTATTTAGTCACTTAGAAGATACAACTTTACAATTACTTAATTCTACACTGCTTAAAA	5381
TCTCTACTAGGTGTAGTTTTTGTCCTGCCTATCTTATGATCCGGTACTTTATCACTCAC	5441
ACCCTCCATTCTCTTGTGAAAGCTGCAGCAAGCAAGACACCCAGCCAG	5501
AGAGCAGCAAAGCCCCTCACACCATCACCACCTTGGGCCCTGTAACAAAAGACACCACAG	5561
TTAATACTGACAAACATACAACTCCCATAGAACCACAAGGCCACAAGTGTCAATTTAAAA	5621
AAAGAAAACTACTGTTAAAGTTTGGCTCATCTAAACGTCCTGTTATGTAATGCAGTTCTG	5681
GACTGTTAGATAATCATAATGCTTCAAGTCACACCTCCACAAGACAGAGGAC	5752

Figure 2.18. Nucleotide and amino acid sequence of cDNA encoding Gl-PDE11. A fulllength open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow, the stop codon highlighted in green. Two GAF regulatory domains; GAF-A &GAF-B are indicated by green boxes and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains, the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

CmPDE11 5839 nucleotides

1 GCTGGGGGAGCCACGGCGATGAGACCAAGAACAGCCCGGGGTCAGGTGAGATCAGTGGAG 121 CGCCTCAGTACAACTACGACCCGGAGTGTGCCCGTGTGGAGGCGTGGCTCGACGACCACC 1 MVDSWL 181 AGGACTTTGTGTACGACTACTTCATCAGGAAGGCGTCTCGACATATGGTGGACTCGTGGC 7 L S H A L P Q S L G V G A G A Y C G A G 27 PGEAGAGPGGIGTAGHQNSK 301 GGCCGGGCGAGGCGGGGGCCGGGCCAGGAGGCATTGGCACCGCGGGGCATCAGAACTCCA 47 A S S G A A T P V R K I S A H E F E K G 361 AAGCTTCTTCAGGAGCGGCCACCCCAGTTCGTAAGATTTCGGCGCACGAGTTCGAGAAGG 67 GLLKPIITTIDGTPTFISPA 421 GAGGTCTTCTGAAGCCCATCATCACTACCATAGACGGCACGCCCACCTTCATCTCCCCCG 87 GAAENVAILAKVRRKSRTEL 107 K G L D E R Q L I F E L V K D I C N D L 541 TCAAGGGATTAGACGAGCGGCAACTTATCTTCGAGCTGGTGAAGGACATCTGCAATGACC D V R S L C H K I L Q N V S I L T N A D 127 601 TGGATGTGCGTTCCCTGTGCCACAAGATCCTGCAGAACGTGTCCATCCTTACCAATGCCG 147 R C S L F L V Q G D K E S D N R C L V S 661 ACCGTTGCTCACTCTTCCTCGTGCAGGGTGACAAGGAGTCAGACAACCGGTGCCTCGTGT 167 T L F D V N P D S T V E E M E E K E E I 721 CCACGCTGTTTGACGTGAACCCAGACTCGACGGTGGAGGAGATGGAGGAGAAGGAGGAGA 187 RIAWGSGIVGYTAQSGAMLN 781 TCAGGATAGCGTGGGGCAGTGGCATTGTGGGTTATACTGCCCAGAGCGGCGCTATGTTGA 207 I P D A Y E D D R F N S E I D C M T G Y 841 ATATTCCTGATGCTTATGAGGATGATCGCTTCAACTCCGAGATTGACTGCATGACAGGCT 227 K T R S M L C M P I K D S C G E V I G V 901 ACAAGACGCGCTCTATGCTGTGTATGCCCATAAAGGACAGTTGTGGAGAGGTGATTGGTGC 247 A Q V I N K H Q G Q S F T N A D E K V F 961 TGGCACAGGTTATCAACAAGCATCAGGGTCAGTCTTTTACCAATGCCGATGAGAAGGTGT 2.67 E S Y L Q F C G I G L R N A Q L Y E R S 1021 TTGAATCCTACCTCCAGTTTTGTGGCATTGGCCTCCGCAATGCTCAGCTGTATGAACGCT 287 Q L E V K R N Q V L L D L A R I I F E E CCC2ACTTGAAGTGAAAAGAAATCAGGTTCTTCTGGACTTGGCGAGGATCATCTTTGAAG 1081 307 Q S T I E Q I V Y R I M T H T Q S L L Q 327 CERVQILLVHEASRGTFSRV 1201 AATGTGAACGGGTACAGATTCTCTTAGTACATGAAGCGTCTCGGGGAACATTCTCACGTG 347 F D L E V K D L O G D D A E S R T S P F 1261 TGTTTGACTTGGAAGTGAAGGATCTGCAAGGAGATGATGCAGAGAGCCGCACAAGTCCCT 367 E S R F P I N V G I T G H A A T T G E T 1321 TTGAGTCCCGGTTCCCCATCAACGTAGGCATAACAGGACATGCGGCCACAACGGGAGAGA 387 V C I A D A Y Q D S R F D Q S V D E N T 1381 CTGTGTGCATTGCTGATGCATATCAAGATTCAAGGTTTGACCAATCAGTCGATGAAAACA 407 G F R H K S I L C M P I K N T A R K I V 1441 CAGGCTTCCGCCACAAGTCTATCCTATGCATGCCAATCAAGAACACAGCACGCAAAATAG 427 G V V Q L V <mark>N K F D N L P F T S N</mark> DE N 1501 TGGGAGTCGTGCAACTTGTCAACAAATTTGATAACCTTCCCTTTACAAGCAATGATGAAA 447 F L E A F A I F C G M G I H N T N M Y E

1561 ACTTCCTGGAGGCCTTTGCAATATTCTGTGGGATGGGGATCCACAACACCAACATGTACG 467 KAVTAMAKOKVTLEVLSYHA 1621 AGAAAGCAGTGACAGCAATGGCCAAGCAGGAGGTGACCCTGGAGGTACTGAGCTACCACG 487 TAPRTDSQKLVKLKIPSAQA 1681 CCACAGCCCCGAGGACAGACTCACAGAAGCTGGTGAAGTTGAAAATACCATCAGCTCAGG 507 FOLYDFKFDDFSLDDDGSLK 1741 CATTCCAGCTTTACGACTTCAAGTTTGATGACTTCAGTCTTGATGATGATGGAAGTTTGA A C L R M F L D L D L I G R F H I E Y D 527 1801 AGGCCTGTCTGAGAATGTTCCTCGACCTGGACCTGATTGGAAGGTTCCACATTGGAGTATG 547 V L C R W L L S V K K N Y R N V T Y H N 1861 ATGTGCTGTGCCGTTGGCTGCTCAGCGTCAAGAAGAACTACCGCAATGTCACGTACCATA 567 W R H A F N V A Q M M F A I I T T T Q W 1921 ACTGGCGACACGCTTTCAATGTGGCTCAGATGATGTTTGCCATTATCACGACAACACAGT 587 W K V L G E L E C L A L L V A C L C **H D** 1981 GGTGGAAGGTGTTAGGAGAGCTGGAGTGTTTAGCCCTGCTGGTGGCGTGTCTCTGCCATG L D H R G T N N S F Q I K A S S P L A Q 607 2041 ACTTGGATCACCGAGGCACAAACAACTCTTTCCAAATCAAAGCTTCATCTCCATTGGCCC 627 LYTTSTMEHHHFDQSVMILN 2101 AGCTGTACACCACCTCTACCATGGAGCACCACCACTTTGACCAGAGTGTCATGATTCTCA 647 S C G N Q I L S N C T P D E Y S R V I S 2161 ACTCGTGTGGCAATCAAATCCTAAGTAACTGCACCCCTGATGAGTACTCCCGTGTCATTA 667 V L E D A I L A T D L A V Y F R K R G G 2221 GTGTCCTTGAAGACGCTATCCTGGCCACTGACTTGGCCGTGTATTTCAGGAAGCGCGGTG F F N M V K S K Q C D L N R E D V R E Q 687 2281 GATTCTTTAACATGGTGAAGTCAAAACAGTGTGATTTAAACCGGGAGGATGTGCGTGAAC 707 V R G M M M T V C D I A A I T K P W P I 2341 AGGTGCGAGGGATGATGATGACAGTGTGTGACATCGCTGCCATTACTAAGCCCTGGCCCA 727 Q K Q V A E L V A G E F F E Q G D I E K 2401 TCCAGAAACAGGTTGCAGAATTGGTGGCCGGGGAATTCTTTGAGCAAGGTGACATTGAGA Q E L K I T P I D M M N R E K K D K L P 747 L M Q V G F I D S I C L P V Y E A F A D 767 2521 CATTGATGCAAGTGGGTTTCATAGACTCCATCTGCTTGCCTGTGTATGAGGCCTTTGCAG M T P D L Q <u>P L L D G V K E N R Q N W</u> 787 0 2581 ACATGACCCCAGACCTGCAGCCTCTACTGGACGGTGTGAAGGAAAACCGGCAAAATTGGC 807 KLADESASRAMPRNNNNINN 2641 AGAAGCTGGCGGATGAGTCTGCCAGCAGAGCTATGCCTAGAAACAATAACAATATCAACA 827 N N N N Y S S N S E R E R G G T N D 2701 ACAATAACAATAACAACTACTCTAGTAACAGTGAACGAGAAAGAGGTGGGACAAATGAT 2761 AAGTGTGTGCAGATATGTCAAGTGTCCTTGCCACCCATTGCATCAAGTAATGCTGTGGAC 2821 AACTGAAAGTAGAGTTAAGTGATGAATCACTAGCAAGGTTTGTGCAGTGACAATAATGTA 2881 GCAGAAGTACAGATGTTAATGAAATGAGGACTTGAGACAAAAAGGTGCGAGTGTTCAGTG 3001 CTCAAGTGTGAACATTGCAAACACTAATAGTATATGTTTTATACTTTTTGACTCTGTA 3061 GGTTCAAAAATCTATGTAGTCAGTGAAATGGACATCTGTGCTACCTGTACGTGTGAGAAA 3121 CATACCATCATTGGGTTGTATGATGAGGTTTATTGTGGCATAATAATGTTTAATTTAATTA 3181 TAGGATGCTCCAACAACGGAGTATTTAATGTTTTATTCAGGAATTTCATCAGGAATGTGC 3241 AATATTCAAATAGCATGTATGGGTCATTATTTATTTACTAGGCATGTCTGTTCATCTTAA 3301 TGTGTTCACTTAAGGAGTTCAAAAAGTGGGCCCAAGGGATACTTAGGTCCCAAAGTATGT 3421 TAACTGTGAAATTATCTCTGCCTTGCATTTCTCACTCCTTGAATAATTTCCCACCATGGC 3481 TACCCAATCTTTCTCGTCACATCAAGAAACATTTGATGTGTGGAAATGCTTTGTTAAAAT 3541 TGAGTCCAAAGAAACAAACTTCTGAAGCTGAATTTCATGAGTCACAACGCTATCAAGA

3841 ACCATTTGGATCAAGGAATGTGTATCTAAAATCAGCTGCATATTTCCACCTGTAAATATA 3961 CTCTTGTGTTTCGTGTTTTTGTTGAGTGAGGCGAGATGAAAGTGTTATGTTAGTAGTGC 4021 ATCATTGCATCATCCACCACTGTGTACCTGCTGCCACTGATGATAGCAAAGCAAGAGTTAT 4261 TCCCAGTGAATCCCTACAGAGGAGTAAACAAGAAGTTATCCTTTGTCTACGTATTACAAA 4321 AATTATCACATTAACCAATTGCAGTGTGAGGCAGGAGTTATGTTTTCAGATCAGATTTAC 4501 CTGTAAGATTTCATATTAATTCTCACTTTTCTAAATGGGAGCCCAATAAGCTGAAGTTTAC 4561 CTACTAATTAGCGAGACACAGATCCATCTCGGAAAAACATTGATAGATGCAGTATGTACA 4621 CACTCAACTAAAAGTTATCAAACCTCTTGCAACAGTTGATGCCAAAATTATTTGTGAGTT 4681 ATGACCACACAATACTTAGTATGCCTGGTTATGATGATGCACATTAAAGTCATGCCACTG 4741 GCATAGCTACCATCCACACCTTCACACAGAAGGAGTTAAAATTCTTCATATTTAGGCCTA 4801 TATCTCAGAATGCATGGTGCTTACAGGGTTTGAGAACTTATTGGTGAGAATGTACATATG 4861 ATTAATGCACTGGTCTCTGGTGCAAGACCCATTAACTACAGCCATTACCAAAGTGAATGC 4921 CAAACAAATCTCACCACAACCTTTCCATGCTCCCTCATTCCAGTCTACATTTGTAATATT 4981 GCACAGCTTTGCACAATGCAGCACAATGCTACAGTAAATTGAGAACCAGCCACTGCTGAT 5041 GATTATATTTTTGTCTGATATATTCTTCACTATTGAAGATAATTATTAACACTACTGAAC 5101 TGTAGTGGCGTTCAATGTGGTTCCTACTTCTAGTTGGTAAAAACTGACTTCTCAAACAGC 5161 AGTCTGGTAGTTAGTAGTCATCCCACCTGGGCAAGACTTGTGCTTCTGAATCACCTTGTA 5221 TGAGGAGCAGAAAACTTGTGTTGGTACTACATGGTCTTAAAAGATACCTCTTACTTGTGT 5281 CTTTCATTATAACCATTCGTGATTCATAAAGTTTCTGTTCACTTCAGGATATAACCATCT 5341 TAGATAGAAGTGCTTTTCTTACAATACAAAAGATATTGAGATAAACAGAATGTGTAGCTA 5401 TATGAGTATAAAATTTTTAAAACTTCAGTTGATTAAATAACGTGTAACTTATCAACAATAT 5461 ATGTAGTGTCAGTAAGCCATTATACTCAAACAAAACACTTTACATTTGGCAGCTGCTTAA 5521 CAAAAGAAATATTTGATTGAAAGGACATAATTTTTTGTCAGAATAGATTAGACAGTGTGA 5581 GGTGTGGTTTTATGTAATATGTACGTACTAATAATGTGATGTAAACCACAATCTACAAGG 5701 AATTGCTAAACACTCGCAAGCTCTTCTCTATTTCACACTATTTGTTTTCATAATCGATTT 5761 GTCGGAACACAACCCATTCAAAACTGTAACCATAATATGTTTGCCAATAATTAAAATGAA 5821 ACAGTAAGTAAGAAAAAA

Figure 2.19. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE11. A fulllength open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow, the stop codon highlighted in green, and the promoter element (CAT box) is highlighted in turquoise. Two GAF regulatory domains; GAF-A &GAF-B are indicated by green boxes and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains, the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature (HDX₂HX₄N) underlined and in blue.

GlPDE11 CmPDE11 Dm.PDE11C Tc.PDE11X1 Hs.PDE11A	GAF-A : KSRTELKGLDERQLIFELVKDICNELDVRPLCHKILQNVS :
GlPDE11 CmPDE11 Dm.PDE11C Tc.PDE11X1 Hs.PDE11A	: ILTSADRCSLFLVQGDKETENRCLVSTLF : 192 :
GlPDE11 CmPDE11 Dm.PDE11C Tc.PDE11X1 Hs.PDE11A	: DVNPDSTVEEMEEKEEIRIAWGSGIVGYTAQSGAMVNIPD : 232 : DVCPRSTVEEMEQQDEVRVAWGTGIAGHVAESGEPVNIPD : 460 : DVCSRSTLTEMEKKEEIRIPWGTGIVGYVAESGEPVNIPD : 325 : QISGASLAEKQEKHQDFLIQRQT
GlPDE11 CmPDE11 Dm.PDE11C Tc.PDE11X1 Hs.PDE11A	: AYADDRFNSEIDCMTGYKTRSMLCMPIKDSNGEVIGVAQV :MPVKNSYDEIIAVAQV : AYQDERFNCEIDSLTGYRTKALLCMPIKDSSGDVIGVAQV : AYQDDRFNHDIDALTGYRTKTLLCMPIKDTNGDVIGVAQV : 365 : KTKDRRFNDEIDKLTGYKTKSLLCMPIRSSDGEIIGVAQA : 91
GlPDE11 CmPDE11 Dm.PDE11C Tc.PDE11X1 Hs.PDE11A	<pre>: INKHQGQSFTTADEKVFESYLQFCGIGLRNAQLYERS : 309 : VNKSADFDHTSFTLKDEKMFETYLQFVGIAITNAQLMEAS : 56 : INKMNGECFSEIDEKVFSSYLQFCGIGLRNAQLYEKS : 537 : INKVGDQPFTKQDEEVFASYLQFCGIGLRNAHLYEKS : 402 : INKIPEGAPFTEDDEKVMQMYLPFCGIAISNAQLFAAS : 129</pre>
GlPDE11 CmPDE11 Dm.PDE11C Tc.PDE11X1 Hs.PDE11A	GAF-B : QIEVKRNQVLLDLARIIFEEQS IEQIVYRIMTHTOSLLQ : 349 : QAEYERNRSLLEVVHDLFEEQT LENVILKTLORAORLLK : 96 : QIEIKRNQVLLDLARMIFEEQS IEHMVFRILTHMOSLIQ : 577 : QIEVKRNQVLLDLARMIFEEQS IEHVVFRILTHTOSLIQ : 442 : RKEYERSRALLEVVNDLFEEQTDLEKIVKKIMHRAOILLK : 169

CERVQILLVHEASRGTFSRVFDLEVKDLQGDDAE	: 38	3		
CERAAVMLLEDGSEKQNVKFSRIFELNCPVSGQSTNNA	: 13	4		
CQRVQILLVHEADKGSFSRVFDFEANDLSEEAT	: 61	1		
CQRVQVLLVHQGSKISFSRVFDFEANDLSAEEGE	: 47	6		
CERCSVLLLED-IESPVVKFTKSFELMSPKCSADAENSFK	: 20	8		
-SRTSPFESRFPINIGITGHVATTGETVCIVDAYQDSRFD	: 42.	2		
KQMGSSEMAKHLLHLAEQVASTGENLNIAEC	: 16	5		
-SRTSPYESRFPINIGITGHVATTGETVNVPNAYEDDRFD	: 65	0		
-SRTSPFESRFPINVGITGYVATTGETVNIPVADEDDRFD	: 51	5		
ESMEKSSYSDWLINNSIAELVASTGLPVNISDAYQDPRFD	: 24	8		

PSVDENTGFCHKSILCMPIKNTAGKIVGVVQLVNKFDNLP	: 46	2		
VEVEKGSAGNVRSMLAMPIRNRNFQIIGVAKIINKLNGQP	: 20	5		
ASVDENSCFKHRSILCMAIKNSLGQIIGVIQLINKFNELD	: 69	0		
PSVDDGTCFKHKTILCMPIKNSLGQIIGVIQLINKFNDLP	: 55	5		
AEADQISGFHIRSVLCVPIWNSNHQIIGVAQVLNRLDGKP	: 28	8		

FTSNDENFLEAFAIFCGMGIHNTNMYEKAVTAMAKOKVTL	: 50	2		
FDENDEQLFEAFTIFCGLGINNTLIYNELEKAMAROKVAI	: 24	5		
FTKNDENFVEAFAIFCGMGIHNTHMYEKAIVAMAKOSVTL	: 73	0		
FTKNDENFVEAFAIFCGMGIHNTHMYEKAVVAIAKHSVTL	: 59	5		
FDDADQRLF <mark>EAFVIFCGLGINNTIMY</mark> DQVKKSW <mark>AKOSV</mark> AL	: 32	8		
EVISYHATAPRSESOKIMTMKI PSAQAEKI YDFKEDDFSI.	: 54	2		
EVLSYHATASADEVLSLQREVIPEASKWNLGSLTFDDFSL	: 28	5		
EVLSYHASATMDEAHRLRRLRVPSAVHFRLHDFKFDDIHF	: 77	0		
EVLSYHATASMEDAQRLRSLRVASAAHFRLHDFAFDDINM	: 63	5		
DVLSYHATCSKAEVDKFKAANIPLVSELAIDDIHFDDFSL	: 36	8		
DDEGSLKACLRMFLDLDLIGRFHIEYEVLCRWLLSVKKNY	: 583	2		
TQDQMVVAAVRMFSDLRITSRFKIEYKTLLRWLITVKRNY	: 32	5		
EDDDTLKACLRMFLDLDFVERFHIDYEVLCRWLLSVKKNY	: 81	0		
NDDETLTACIRMFLDLDLVERFHIDYEILCRWLLSVKKNY	: 67	5		
DVDAMITAALRMFMELGMVQKFKIDYETLCRWLLTVRKNY	: 40	8		
	CERVQILLVHEASRGTFSRVFDLEVKDLQGDDAE CERAAVMLLEDGSEKQNVKFSRIEELNCPVSGQSTNNA CQRVQILLVHEADKGSFSRVFDFEANDLSAEEGE CCRVQVLLVHOCSKISFSRVFDFEANDLSAEEGE CERCSVLLIED-IESPVVKFTKSFELMSPKCSADAENSFK 	CERVOLLLYHEASRGTFSEY EDLEVKDLQGDDAE		

-----------	---	---	---	---
1PDE11	:	RNVTYHNWRHAFNVAQMMFAIITTTQWWKVLGELECLALL	:	6
mPDE11	:	RNVTYHNWRHAFNVAHNMFALMKTCNVMSSFEDVECLAMF	:	3
m.PDE11C	:	RNVTYHNWRHAFNVAOMMFAILTTTQWWKIFGEIECLALI	:	8
c.PDE11X1	:	RNVTYHNWRHAFNVAOMMF <mark>SILTATOWWN</mark> IFGEIECLALM	:	7
s.PDE11A	:	RMVLYHNWRHAFNVCOLMFAMLTTAGFODILTEVFILAVI	:	4

:	VACLCHDLDHRGTNNSFQIKASSPLAQLYTTS-TMEHHHF	:	661
:	VGCLCHDLDHRGTNNSFQEKTGSALALLYGTQNTMEQHHF	:	405
:	IGCLCHDLDHRGTNNSFQIKASSPLAQLYSTS-TMEHHHF	:	889
:	I <mark>ACLCHDLDHRGTNNSFQ</mark> IK <mark>AS</mark> SPLAQLYSTS-TMEHHHF	:	754
:	VGCLCHDLDHRGTNN <mark>AFQ</mark> AK <mark>SGS</mark> ALAQLYGTSATLEHHHF	:	488
	: : : :	******* : VACLCHDLDHRGTNNSFQIKASSPLAQLYTTS-TMBHHF : VGCLCHDLDHRGTNNSFQEKTGSALALLYGTQNTMBQHHF : IGCLCHDLDHRGTNNSFQIKASSPLAQLYSTS-TMEHHF : IACLCHDLDHRGTNNSFQIKASSPLAQLYSTS-TMEHHF : VGCLCHDLDHRGTNNAFQAKSGSALAQLYGTSATLEHHF	**************************************

1PDE11	:	DQC <mark>VMILNS</mark> SGNQILSNCTPDEYSRVINVLEDAILATDLA	:	701
mPDE11	:	NHAVMILNSEGHNIFSNISSTQYSRVMNVLKASILATDLT	:	445
m.PDE11C	:	DQCLMILNSPGNQILANLSSDDYCRVIRVLEDAILSTDLA	:	929
c.PDE11X1	:	DQCIMILNSPGNQLLSNISSEEYSRVIRVLEEAILSTDLA	:	794
s.PDE11A	:	NHAVMILQSEGHNIFANISSKEYSDLMQLLKQSILATDLT	:	528

1PDE11	:	VYFRKRGGFFNMVKSNQYELSREEVREQVRGMMMTVCDIA	:	741
mPDE11	:	VYFQVRTQFFPLVNEGQFDVSNRSHRDLLRSLLMTACDIA	:	485
m.PDE11C	:	VYFKK <mark>R</mark> GPFLESVSQPTSYWVAEEPRALLRAM <mark>SMTVCDL</mark> S	:	969
c.PDE11X1	:	VYFRKRGAFFN-VIRDRPCWSLDEHRELLRAMIMTVCDLA	:	833
s.PDE11A	:	LYFERRTEFFELVSKGEYDWNIKNHRDIFRSMIMTACDLG	:	568

IPDEII : AITKPWPIQKQVAELVAGEFFEQGDIEKQELKITPIDMMN :	781
mPDE11 : ASTKPWDIQFKVAQLVTSEFFDQGDLERTTLKITPPALMD :	525
m.PDE11C : AITKPWEIEKRVADLVSSEFFEQGDMEKQELNITPIDIMN : 1	009
c.PDE11X1 : AITKPWEVEKRVAELVSSEFFEQGDIEREELNITPIDIMN :	873
s.PDE11A : AVTKPWEISRQVAELVTSEFFEQGDRERLELKLTPSAIFD :	608

1PDE11	:	REKKDKLPIMQVGFIDSICLPVYEAFAEMTPDLQPLIEGV	:	821
mPDE11	:	RDRKHELPILQMRWIKDICLPLFEGLAKVIPKLAPMFDCA	:	565
m.PDE11C	:	REKEDELPMMQVNFIDSICLPIYEAFATLSDKLEPLVEGV	:	1049
c.PDE11X1	:	REKEDQLPLMQV <mark>G</mark> FIDS <mark>ICLPIYE</mark> AFSRLSPQLEPLVEGV	:	913
s.PDE11A	:	RNRKDELERLQLEWIDSICMPLYQALVKVNVKLKPMIDSV	:	648

GlPDE11	:	RDNRQQWQKLADEAANKNVP	:	841
CmPDE11	:	LK <mark>NMAKW</mark> SKIA	:	576
Dm.PDE11C	:	RDNRGHWIDLADVVKTKTSQDQEPEEEQQQQNVISNGDCK	:	1089
Tc.PDE11X1	:	RKNRVKWLEIAAAQSLIPPEEQR	:	936
Hs.PDE11A	:	ATNRSKWEELH	:	659
GlPDE11	:	GNNNNNN	:	849
CmPDE11	:	AAQENGA	:	583
Dm.PDE11C	:	AMSDDDVAASEAEVAVDSPSEKASVNGSNVANNSSNTNKK	:	1129
Tc.PDE11X1	:	DSNDNLSKP	:	945
Hs.PDE11A	:	QKRLLAS	:	666

GlPDE11	:	YTSNNDREKGGGTN <mark>N</mark>	:	864
CmPDE11	:	CDLLEPPDPPPRVPDG	:	599
Dm.PDE11C	:	IAVASHPTSTQPSDDDNDVDADADDVDEQAAEENGHDAEV	:	1169
Tc.PDE11X1	:	NTPESNPNASSQISD	:	960
Hs.PDE11A	:	TASSSPASVMVAKEDRN	:	683

Figure 2.20. Multiple alignment of deduced amino acid sequences of PDE11 proteins in two crustacean species, two insect species, and one mammal species. Abbreviations: GI: *G lateralis*; Cm: *C maenas*; Dm: *D melanogaster*; Tc: *T castaneum*; Hs: *H sapiens*. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue and green asterisks indicate the signature sequences in the catalytic domain and GAF domain, respectively.r The colors of the boxes correspond to the colors of the domains in Fig. 2. 13.

Figure 2.21. Phylogenetic relationships among the different PDEs of *G.lateralis, C. maenas* and orthologs of other species. The 102 deduced amino acid sequences used to generate this tree included the entire open reading frame, catalytic domains, and regulatory domains. *G.lateralis and C. maenas* are shown in red font. Letunic and Bork (2016) *Nucleic Acids Res* doi: 10.1093/nar/gkw290

	H	sPDE1C	PDEase_1_N 82	2-142			PDEase 1	227- 455	709
	G			PDEase_1_	N 217-274		PDEase_1	359-595	690
HsPDE2A			GAF A	241-387	GAF B	409-558	PDEase_1	655-892	941
GIPDE2					GAF B	397-565	PDEase_	1 663-902	940
	HsPDE3B						PDEase_1	736-999	1112
					GIF	DE3	PDEase _1	34-235	341
			_				PDFace 1	275 560	
							FDLase_1	323-303	6/3
	GIPDE4						PDEase_1	490-734	804
	HsPDE5A	GAF A	164-	321	GAF B	347-51	3 PDEas	ie_l 612-8	50 875
		GAEA	158-297		GAEB	321-475		ase 1 567-80	961
	GIPDES		130 137			521475		<u></u>	
				1-00574	_				
				15PUE/A			PD	case_1 211-43	482
GIPDE7		PDEase 1 174	-391						1039

Figure 2.22. A schematic figure showing a comparison of the *G. lateralis* PDEs with the *Homo sapiens* PDEs. Regarding the conserved domains; catalytic domains (PDEase_1) are highly conserved throughout all the PDE families are in yellow boxes. The regulatory domains specific for each family, PDEase_1_N, are shown in bright green boxes, GAF A, or GAF B domains are shown in light green and the PAS domain is shown in purple. The length of each protein in amino acids is shown on the left side of each PDE.

Table 2.4. Effects of PDE inhibitors on the ecdysteroid secretion in the YO of the green shore crab, *Carcinus maenas*. IBMX, a potent and general inhibitor for PDEs, and zaprinast (1 mM) show a very significant effect on ecdysteroidogenesis. Vinpocetine (1mM), EHNA (0.5 mM & 1mM), zaprinast (0.5 mM & 1mM) and zaprinast/rMIH were significant as well. Other inhibitors had no effect on ecdysteroid secretion.

	DDE	Ecdystero	id Secretion	N		
PDE Inhibitor (conc.)	PDE	Control	n ± SE Inhibitor	N	% Control	P- value
IBMX (0.5 mM)	General Potent Inhibitor	125+37	7 1+3 0	12	57.2	P<0.001
		12.5 ±5.7	1.0.0.4	12	37.2	1 0.001
Vinpocetine (0.1mM)	PDEI	4.6 ± 1.1	1.8 ± 0.4	13	39.1	P=0.3
Vinpocetine (0.5 mM)	PDEI	3.5±0.7	1.1±0.5	7	31.4	P= 0.06
Vinpocetine (1.0 mM)	PDE1	2.5±0.5	0.4±0.1	8	16.0	P=0.005
EHNA (0.1mM)	PDE2	3.2 ± 2.3	1.3 ± 0.9	12	40.6	P=0.5
EHNA (0.5 mM)	PDE2	6.1±2.0	0.5±0.2	8	83	P=0.05
EHNA (1.0 mM)	PDE2	2.1±0.6	0.8±0.2	8	8.2	P=0.02
Rolipram (1 mM)	PDE4	16.1± 5.5	13.5± 3.3	8	84.4	P=0.2
Zaprinast (0.1 mM)	PDE5/PDE11	5.8±2.0	2.5 ± 1.1	5	43.1	P=0.2
Zaprinast (0.5mM)	PDE5/PDE11	3.9±1.2	0.9±0.1	6	23.1	P=0.05
Zaprinast (1 mM)	PDE5/PDE11	14.5 ± 4.6	4.4 ± 2.8	12	30.2	P<0.001
Zaprinast (0.5	PDE5	1.5±0.5	0.5±0.5	8	33.3	P= 0.03
mM/rMIH)						
Dipyridamole (0.1mM)	PDE7	8.3±2.2	5.2±1.8	12	62.7	P=0.3
Dipyridamole (0.5mM)	PDE7	4.6±2.2	3.4±2.0	8	74	P=0.6
Dipyridamole (1.0mM)	PDE7	7.9±1.8	6.7±1.9	8	84.8	P=0.7
BC 11-38 (0.1 mM)	PDE11	2.1±0.5	3.1±0.6	8	70.0	P=0.2
BC 11-38 (0.5 mM)	PDE11	3.7±0.5	4.3±0.5	8	86.0	P=0.3
BC 11-38 (1.0 mM)	PDE11	2.9±0.4	2.8±0.3	8	96.0	P=0.9

Table 2.5. Effects of PDE inhibitors on the ecdysteroid secretion in the YO of the blackback land crab, *Gecarcinus lateralis.* All inhibitors had no effect on ecdysteroid secretion as the p-value was higher than 0.05.

PDE Inhibitor (conc.)	PDE	Ecdyste M (In	Ecdysteroid Secretion Mean ± SE Control Inhibitor		% Control	P- value
IBMX (0.5 mM)	General Potent Inhibitor	3.4 ±1.0	3.1±1.3	8	-6.2	P=0.9
Vinpocetine (0.5 mM)	PDE1	4.5±1.5	3.3±1.1	8	-26.1	P= 0.6
EHNA (0.5 mM)	PDE2	5.1±2.3	4.3±1.6	8	-14.4	P=0.7
Zaprinast (0.5mM)	PDE5/PDE11	1.5±0.8	2.2±0.6	8	46.8	P=0.5
BC 11-38 (0.5mM)	PDE11	7.4± 2.1	4.1±1.5	8	-44.4	P=0.3

Figure 2.23. Tissue distribution panels show the expression of PDE1 (a), PDE2 (b), PDE5 (c), PDE11(d) in eleven tissues in *Gecarcinus lateralis*. qPCR was used to detect the expression of the different PDEs in eleven tissues; Y-Organ (YO), Thoracic Ganglion (TG), Mid Gut (MG), Hind Gut (HG), Eye Stalk Ganglion (ESG), Testis (T), Gill (G), Heart (H), Hepatopancrease (HP), Claw Muscle (CM), Brain (B). Means that were significantly different are represented with a bracket. Data proposed as mean ±1 SE. (n=6)

(b)

Figure 2.24. Tissue distribution panels show the expression of PDE4 (a), PDE8 (b), PDE9 (c), PDE11(d) in eleven tissues in *Carcinus maenas*. qPCR was used to detect the expression of the different PDEs in eleven tissues; Y-Organ (YO), Thoracic Ganglion (TG), Mid Gut (MG), Hind Gut (HG), Eye Stalk Ganglion (ESG), Testis (T), Gill (G), Heart (H), Hepatopancrease (HP), Claw Muscle (CM), Brain (B). Means that were significantly different are represented with a bracket. Data proposed as mean ±1 SE. (n=6)

CHAPTER THREE

EFFECTS OF MOLT INDUCTION METHODS ON CYCLIC NUCLEOTIDE PHOSPHODIESTERASE EXPRESSION IN THE DECAPOD CRUSTACEAN MOLTING GLAND

Summary

cAMP and cGMP, as second messengers, mediate the suppression of the crustacean molting gland (Y-organ or YO) by molt-inhibiting hormone (MIH). When MIH levels decrease, the YO transitions from the basal to the activated state and the animal enters premolt; such a transition requires mTOR. During mid-premolt, the YO transitions to the committed state, in which the YO becomes insensitive to MIH. Cyclic nucleotide phosphodiesterases (PDEs) convert cAMP and cGMP to AMP and GMP, respectively, and therefore can modify the response of the YO to MIH. Seven *PDE* contigs were extracted from the YO transcriptome. qPCR was used to quantify the effects of molt induction by multiple limb autotomy (MLA) or eyestalk ablation (ESA) \pm mTOR inhibitor rapamycin on the mRNA levels of PDE 1, 2, 4, 5,7,9, and 11 in Gecarcinus *lateralis* YO. In response to MLA, all PDEs, except for *Gl-PDE5* and *Gl-PDE11*, were expressed at their highest levels in the intermolt YO. mRNA levels declined during premolt and reached their lowest levels in postmolt. qPCR results from the MLA experiment showed that both *Gl-PDE5* and *Gl-PDE11* reached high expression levels in mid premolt and late premolt, respectively. MLA transcriptomics revealed that only *PDE11* expression maximized at mid premolt. In response to ESA, the mRNA levels of PDE4, 5, 7, 9, and 11 showed no significant change by 7- and 14-days post-ESA. Rapamycin had no significant effect, as PDE mRNA levels were comparable to those of controls at all time points, indicating that PDE expression is not regulated by mTOR. The qPCR results were consistent with RNA-Seq data, showing similar trends of PDE expression in both MLA and ESA \pm rapamycin. The data suggest that transcriptional regulation does not contribute the reduced sensitivity of the committed YO to MIH; the increased PDE activity during mid and late premolt is likely regulated post-transcriptionally in most PDEs. Our data suggest that *Gl-PDE11* is the controlling PDE in the YO and shows mRNA level changes depending on the molt stage. This is consistent with the responsiveness of YO cells to MIH during mid/late premolt.

Introduction

Decapod crustaceans must shed their exoskeleton periodically for order to them to grow and increase in size and this mainly happens in terms of molting, ecdysis. Molting in crustaceans represents a significant event in life, and this complex physiological process requires precise coordination and regulation between the action of two hormones. Ecdysteroids are steroid hormones which are synthesized and secreted from a pair of Y-organs (molting glands) located in the anterior cephalothorax of the animal. The molt inhibiting hormone, (MIH) is a neuropeptide hormone, which is produced and secreted from the X-organ/complex gland found in the eyestalks. Molting is induced when the titers of MIH in the blood (hemolymph) decline, leading to the stimulation of the YOs to produce and secrete molting hormones, ecdysteroids. The molt cycle can be divided into the following stages: intermolt, the longest stage in the molt cycle during which the animal practices routine activities such as foraging and mating. Premolt (proecdysis) the stage preceding molting, is subdivided into 3 substages (early premolt, mid premolt, late premolt). During premolt the hemolymph ecdysteroid titers increase until they reach a peak then drop dramatically just before the actual shedding of the exoskeleton (ecdysis). The last stage is postmolt (postecdysis); the animal is vulnerable in this stage as it is recovering from this energy consuming process. It also hardens the soft new shell, an essential hallmark observed during this stage.

The molting gland (Y-organ) is a dynamic organ that proceeds through four distinctive physiological phases throughout the molt cycle: basal phase (during intermolt) when hemolymph ecdysteroid levels are inhibited by pulses of MIH. Activated phase (early premolt), the YO shows signs of hypertrophy to elevate ecdysteroidogenesis in response to the declined circulating MIH. The activated YO is still sensitive to MIH since the animal can postpone molting if eyestalk extracts are injected at this period. During mid/late premolt, the YO transitions to the committed phase and it becomes insensitive to MIH and CHH, as ecdysteroid titers reach their maximum. MIH and CHH levels drop dramatically to initiate the actual molting before ecdysis. A repressed YO is observed in postmolt animals, during which calcification and hardening the exoskeleton, as well as claw muscle growth, occur (Nakatsuji et al., 2009; Chung et al., 2010; Chang & Mykles 2011; Covi et al., 2012; Webster et al., 2012; Shyamal et al., 2014).

Exogenous and endogenous cues contribute to the precise timing for the animal to undergo ecdysis; external factors, such as photoperiod, temperature, stress, and crowding (Skinner & Graham 1972; Weis 1976) Internal factors, such as the urge to provide extra space for the growing organs and tissues, as well as the action of the two opposing predominant hormones, MIH and ecdysteroids (Skinner 1985). In crustaceans, several physiological events take place upon reaching molting (ecdysis), including new exoskeleton synthesis, old exoskeleton degradation, claw muscle atrophy, and lost limb regeneration (Skinner 1985; Mykles 1997; Chang & Mykles 2011).

Upon binding of MIH to its receptor on the YO plasma membrane, a transient increase in cAMP, followed by a larger increase in cGMP, is involved. The delayed increase in cGMP suggests that MIH activates a soluble NO-sensitive guanylyl cyclase (GC-I), since activation of a

membrane GC would result in an immediate increase in cGMP. Both cAMP and cGMP inhibit YO ecdysteroidogenesis. Phosphodiesterases (PDEs), such as PDE1 and PDE5, hydrolyze cAMP and cGMP and thus control the responsiveness of YO organs to MIH (Covi *et al.* 2012).

G. lateralis can be easily manipulated to trigger the process of molting and as in other decapod crustaceans It can be induced by two methods: multiple leg autotomy (MLA) or eyestalk ablation (ESA) (Skinner 1985; Mykles 2001; Chang & Mykles 2011). The autotomy or voluntary loss of 5 or more of the walking legs mimics the natural way of releasing (autotomizing) an appendage when encountering a predator; this will stimulate molting, so the animal will grow a full set of limbs at the next molt. Extirpation of the eyestalks will remove the main source of MIH, which in turn will induce shedding of the old exoskeleton. ESA is a more intense and precise method to induce molting as one can monitor the different molt stages by the increase in hemolymph titers which occurs upon the activation of the YO organs (Lee and Mykles, 2006; Lee et al., 2007b; Covi et al., 2010; Knope & Larson 2014).

mTOR (The mechanistic Target of Rapamycin) is a protein kinase that mediates a variety of cellular functions from cell growth, metabolism, protein and lipid synthesis, to autophagy and cell survival. The mTOR signaling pathway is highly conserved across metazoans (Laplante & Sabatini 2009; Zonko et al., 2010). mTOR is important to increase ecdysteroid synthesis in the insect prothoracic gland (Layalle et al., 2008; Hietakangas and Cohen, 2009). mTOR is crucial for tissue growth in *G. lateralis* and *C. maenas* (Abuhagr et al., 2014). mTOR is believed to be upregulated in the activated YO, so injecting the mTOR inhibitor, rapamycin, *in-vivo* or incubating YOs with this inhibitor *in-vitro* inhibits YO ecdysteroidogenesis, thus molting (Abuhagr et al., 2016).

The committed YO becomes insensitive to MIH in mid/late premolt, a phenomenon that putatively is due to the large increase in the glandular activity of PDEs. Our hypothesis is that increased PDE activity contributes to reduced sensitivity in mid/ and late premolt YO organs. Moreover, PDE expression requires mTOR activity. The effects of MLA and ESA± rapamycin was determined on the expression of PDEs using both transcriptomics and qPCR.

Materials and Methods

Animals and experimental treatments:

Gecarcinus lateralis Adult male (blackback land crabs) were collected from their natural habitat in the Dominican Republic and then shipped to Colorado, USA by commercial air cargo. The animals were acclimated to the new conditions by maintaining them at 27 °C and a humidity of 75-90%. Intermolt crabs were kept in aerated plastic cages lined with moistened aspen bedding by using 5 p.p.t. Instant Ocean (Aquarium Systems, Mentor, OH). Crabs were maintained in an environmental chamber in a 12 hrs light:12 hrs dark cycle and were fed iceberg lettuce, carrots, and raisins twice a week (Covi et al., 2010). Blackback land crabs molt about once a year and larger crabs molt less frequently.

Two molting induction methods were used in these experiments: multiple leg autotomy (MLA) and eyestalk ablation (ESA). MLA mimics the timing of a natural progression toward molting: limb bud regenerate formation takes about 3-6 weeks before the crab enters premolt and eventually molts (Skinner 1985). ESA, however, is an intense and precise method to induce molting. ESA is effective because the X-Organ/Sinus Gland (XO/SG) (located in the eyestalks) are the primary source of MIH. As a result, ESA has an advantage over MLA in providing a precise time point of YO activation; activation can be verified since ecdysteroid hemolymph titers increase

by day-1 post-ESA (Lee et al., 2007). Limb bud regenerates were used to estimate what molt stage MLA animals are in using a measurement called the Regeneration-index (R-index). Such a measurement is calculated as the length of limb regenerate/100 *carapace width. This value ranges from 0 to ~ 24 upon reaching molting (Skinner and Graham 1972; Yu et al., 2002). Limb bud regeneration can be divided into 2 stages: (1) basal growth involves the formation of a small differentiated limb bud (R-value 8-10). This happens throughout intermolt and low ecdysteroid titers are necessisary; (2) proecdysial growth takes place during premolt and high ecdysteroid titers are required (Yu et al., 2002). Three factors can determine the molt stage: ecdysteroid titers, R-value, and the presence/absence of the membranous layer (Moriyasu and Mallet, 1986). A digital caliper was utilized to measure both the limb buds and carapace widths of the MLA animals.

G. lateralis crabs were induced to molt by MLA via autotomizing the eight walking legs (Fig. 3.1). Hemolymph was withdrawn prior to harvesting the YOs from the experimental animals at 5 different molt stages; intermolt (IM), early premolt (EP), mid premolt (MP), late premolt (LP), postmolt (PM). 100 µl of hemolymph was added to 300 µl of methanol (MeOH 100%) then stored at -20C°. Competitive ELISA (Abuhagr et al., 2014b) was used to quantify the hemolymph ecdysteroid titers to determine the accurate molt stage for each animal in addition to the R-value. Harvested YOs were reserved in RNA-later (Ambion®, California) and stored at 20C° until the time of RNA isolation. MLA animals were kept in separate moistened sand cages to provide privacy and mimic their natural habitat (Skinner 1985).

Intermolt animals were ES-ablated using a pair of sharp scissors and then cauterized immediately to minimize the amount of bleeding (Fig. 3.2) To determine the effects of rapamycin (mTOR inhibitor) on YO ecdysteroidogenesis, *in-vivo* injections were performed. The control group (ESA-rapamycin) crabs were injected by the vehicle (~1% DMSO final concentration) on

Day 0. The experimental group (ESA+ rapamycin) crabs were injected by rapamycin (~10 μ M final concentration) on Day 0 (mass of the animal ×0.3 μ l= amount to inject). Hemolymph samples were collected and YOs were dissected at Day 0 for intermolt (intact) crabs and Days 1, 3, 5, 7, 14 post-injection for ESA ± rapamycin. Competitive ELISA (Abuhagr et al., 2014b) was used to quantify the hemolymph ecdysteroid titers. Harvested YOs were reserved in RNA-later (Ambion®, California) and stored at -20C° until the time of RNA isolation.

RNA isolation, cDNA synthesis and quantitative real-time PCR:

Y-organs from both MLA and ESA \pm rapamycin animals were harvested from land crabs. YOs were placed immediately in RNA-later after cleaning the tissues with crab saline. YOs were kept overnight in 4C°, then transferred to -20 C° until the time of RNA purification. Total RNA was isolated from crab YOs using TRIzol reagent (Life Technologies, Carlsbad, CA) as described by (Covi et al., 2010). YO tissues (50-200 mg) were homogenized by using a micro-tube homogenizer system. 1 ml of TRIzol was added to samples, then centrifuged at 12,000 g for 15 min at 4 °C. Supernatants were phenol-chloroform extracted and RNA in the aqueous phase was precipitated using isopropanol (0.75 ml per 1 ml TRIzol reagent). RNA was treated with DNase I (Life Technologies), extracted twice with phenol: chloroform: isoamyl alcohol (25:24:1), precipitated with isopropanol, washed twice with 70% ethanol in DEPC water, and resuspended in nuclease-free water. cDNA was synthesized using 2 μ l total RNA in a 20 μ l total reaction with SuperScript III reverse transcriptase (Life Technologies) and oligo-dT (20) VN primer (50 μ mol/l; IDT, Coralville, IA) as described (Covi et al., 2010). RNA was treated with RNase H (Fisher Scientific, Pittsburgh, PA) and stored at -80 °C.

End-point PCR was used to amplify the desired product and to increase the yield of each PDE gene, as well as for making external standards of the different genes to be used later in qPCR.

Primers (Table 3.1) were utilized to detect the different PDE products in land crab. Each PCR reaction contained; 3 μ l of DI H₂O, 5 μ l Master Mix, 1 μ l cDNA template, and 0.5 μ l of each forward and reverse primers. The concentration of the primers was 20 μ M. cDNA was amplified in a thermocycler where denaturation occurred at 94C° for 3 minutes to initiate the process, followed by 30-35 cycles of 30 seconds at 94C°, and 30 seconds at the lowest annealing temperature (see table 3.1.) 30 seconds at 72 °C. PCR products were then separated on 1% agarose gel that contained TAE buffer (composed of 40 mM Tris acetate and 2 mM EDTA with an 8.5 pH). Ethidium bromide was applied to stain the gel and a UV light was used to visualize the gel.

Real-time PCR (RT-PCR) was used to quantify the expression of Gl-PDEs 1,2,4,5,7,9,11 in each point molt stage of the MLA animals, and Gl-PDE4,5,7,11in ESA \pm rapamycin animals. cDNA was synthesized as indicated previously, and a LightCycler 480 thermocycler (Roche Applied Science, Indianapolis, IN) was used to quantify the mRNA transcripts of *Gl-PDE1*, *PDE2*, PDE4, PDE5, PDE7, PDE9, and PDE11 for MLA G. lateralis animals and PDE4, PDE5, PDE7, and PDE11 for ESA \pm rapamycin G. lateralis animals. Each reaction consisted of 1 µl cDNA or standard, 5 µl SYBR Green I Master mix (Roche Applied Science), 3 µl nuclease-free water, and 0.5 µl each of 10 mM forward and reverse primers (Table 3.1). PCR conditions were as follows: an initial denaturation at 95 °C for 5 min, followed by 45 cycles of denaturation at 95 °C for 10 s, annealing at 62 °C for 20 s, and extensions at 72 °C for 20 s, followed by melting curve analysis of the PCR product. Concentrations of mRNA transcripts were determined by the LightCycler 480 software (Roche, version 1.5) using a serial dilution of standards of the PCR product for each gene of interest. The amounts of mRNA transcript in copy numbers per µg of total RNA in the cDNA synthesis reaction were calculated based on the standard curve and the calculated molecular weight of dsDNA products.

Bioinformatics:

The expression of different *Gl-PDEs* in the *G. lateralis* YO was assessed using two databases: the MLA transcriptome and the ESA \pm rapamycin transcriptome (Das et al., 2016; Shyamal et al., 2018). Differential expression (DE) of *Gl-PDEs* 1,2,4,5,7,9, and 11 were determined at each molt stage (IM, EP, MP, LP, and PM) in MLA animals. Moreover, DE of *Gl-PDEs*; 4,5,7, and 11 were assessed at Day 0 for intermolt (intact) crabs; and Days 1, 3, and 7 postmolt for the ESA \pm rapamycin animals.

Statistical analysis and software:

(https://www.idtdna.com/Primerquest/Home/Index). Primers were designed by IDT software. Means for mRNA transcript abundance were compared using an analysis of variance (ANOVA) for molt stages versus log copy number in the MLA experiment or days post molt versus log copy number in the ESA ± rapamycin experiment. Sigma plot 12.5 software (Systat Software, Inc., Chicago, IL, USA) was used to produce and build up the graphs and figures. Tukey test was used to determine significance among the means.

Results

Effects of Multiple Leg Autotomy (MLA) on Gl-PDEs expression in the molting gland:

G. lateralis animals were induced to molt by automatizing all 8 walking legs. Several weeks later, these crabs entered early premolt. R-values were measured weekly to estimate the molt stage of each crab. To further ensure the accuracy of the crab's molt stage, hemolymph samples were collected just before dissection, so a competitive ELISA could be performed. Ecdysteroid levels showed that the molting hormone was low in early premolt (EP), elevated during mid premolt (MP), then increased to reach its maximum at late premolt (LP) (Fig. 3.3a).

qPCR results showed that *Gl-PDE4*, *Gl-PDE7*, and *Gl-PDE9* were expressed in very low levels at all molt stages, especially *Gl-PDE9* (Fig. 3.3 b). Unexpectedly, *Gl-PDE1* was also expressed in low levels, scoring its minimum at early premolt (Fig3.3 c) *Gl-PDE2* mRNA level was high in intermolt and decreased gradually through to postmolt. Significant differences were observed between IM/LP and IM/PM, and between EP and PM (Fig3.3c). *Gl-PDE5* displayed a different pattern, as a slight increase was seen from IM to EP and was at its highest expression level in MP, then declined to its lowest level in PM. Statistical differences were noticed between IM/ LP and EP/PM in *Gl-PDE5* (Fig3.3c). *Gl-PDE11* demonstrated a similar pattern to ecdysteroid titers in different molt stages. *Gl-PDE11* showed the most robust expression among the rest of *Gl-PDEs*; as it increased progressively to reach its maximum expression in LP, then decreased in PM. Expression levels of *Gl-PDE11* were not identical to the hypothesized trend but was the closest to our expectations. Significance differences were detected between IM/PM and IM/MP (Fig.3.3 c).

MLA transcriptomics exhibited different expression patterns of *Gl-PDEs*. *Gl-PDE2*, *Gl-PDE7*, *Gl-PDE8* and *Gl-PDE9* were expressed at their highest levels at IM and lowest levels at PM (Fig.3.4 a, b). *Gl-PDE4* showed levels of similar expression levels in IM, EP, MP; then dropped upon reaching PM (Fig.3.4 b). *Gl-PDE5* expression was high in IM, gradually decreased until reaching LP, then slightly increased in PM (Fig.3.4 b). Statistical significance was seen between IM/PM in *Gl-PDE2*, 4, 7, 8, and 9; whereas there was a significant difference between IM/LP in *Gl-PDE5*. Once again, *Gl-PDE11* displayed a unique pattern; it was the highest gene to be expressed to reach a peak in MP, then drop dramatically when approaching PM and a significant decrease was seen between these two molt stages (Fig.3.4 c).

Effects of Eyestalk Ablation (ESA)± rapamycin on Gl-PDEs expression in the molting gland:

G. lateralis crabs were induced to molt ESA. For the qPCR results, YOs were harvested from 3 different groups and intact animals were dissected on Day 0, control (DMSO) group (ESA-rapamycin) animals were dissected on Days 1,3,5,7, and 14, and experimental (rapamycin) group (ESA+ rapamycin) animals were also dissected on Days 1,3,5,7, and 14. ESA ±rapamycin animals were either injected with DMSO (control group) or rapamycin (experimental group) on Day 0.

A significant increase from Day 0 to Day 1 was seen in the expression of *Gl-PDE*4, *Gl-PDE*7, *Gl-PDE*11 in both control and experimental YOs. Expression then levels off with no difference between the two groups (Fig. 3.5 a, c, d). *Gl-PDE*5 showed no noticeable elevation in its expression from Day 0 to Day1 and displayed a similar trend with the other PDEs. But there was a slight increase in *Gl-PDE*5 expression from Day 5 to Day 7 in the control group. Also, there was a significant decrease from Day 3 to day 5 in the experimental group (Fig. 3.5 b). Expression of *Gl-PDE*4 mRNA increased significantly at day 1 post ESA + rapamycin and Day 3 post ESA – rapamycin when compared to intact animals on Day 0 (Fig. 3.5 a). There was a slight, but a significant, increase in *Gl-PDE*5 expression between day 5 and day 7 in the control group (Fig. 3.5 b). *Gl-PDE*7 mRNA levels increased drastically from Day 0 to Day 1 and a statistical significance was observed in Day 1 in the control group when compared to Day 0 (Fig. 3.5 c). *Gl-PDE*11 expression levels illustrated a significant increase in Day 1 post-ESA in experimental animals and 3 days post-ESA in control animals when compared to Day 0 (Fig. 3.5 d).

Comparable to the ESA \pm rapamycin qPCR experiment, ESA \pm rapamycin transcriptomics showed similar trends and patterns of GI-PDEs expression in both control and experimental animals; an increase was seen from Day 0 to Day 1 as the YO is activated upon the ablation of the eyestalks. *Gl-PDE*4 expression levels increased significantly at 1- day post-ESA in control and experimental animals compared to Day 0 (Fig. 3.6 a). *Gl-PDE*5 mRNA levels showed a statistical difference between Day 0 and Day 1 post-ESA in control and experimental crabs (Fig. 3.6 b). Expression levels of *Gl-PDE*7 exhibited a significant increase between Day 0 and Day 3 post-ESA in control animals. *Gl-PDE*11 expression levels increased extremely from Day 0 to Day 1 which resulted in a significant increase at 1-day post-ESA in both control and experimental animals (Fig. 3.6 d).

Discussion

cAMP and cGMP signaling pathways control a plethora of intracellular proteins that vary depending on the cell type and function. Such signaling pathways are widespread from prokaryotes to eukaryotes and are involved in activating protein kinases, including PKA and PKG. The only known negative regulators of cAMP and cGMP are cyclic nucleotide phosphodiesterases (cN-PDEs), which fall under the Class I PDE superfamily. The PDE superfamily includes eleven genes designated PDE1 to PDE11. Each family shares common biochemical features, substrate specificity, cellular/sub-cellular localization, pharmacological characteristics, and regulatory mode. Although all eleven genes include a well-conserved catalytic domain located in the carboxyl terminus, each gene has its unique regulatory domains. Our hypothesis is that an increase in PDE expression will occur in G. lateralis Y-organs at mid/late premolt stages, thus decreasing the responsiveness of YOs to (MIH). Such a finding parallel results from studies done on crayfish, in which glandular PDE activity was detected in YOs at specific molt stages (Nakatsuji et al., 2006a; Nakatsuji et al., 2009), as well as in green crab YOs (Mattson & Spaziani, 1985b). Prior to the current study, it was unknown which of the PDE genes might be expressed in the YOs and contribute to the most critical time of the crustacean's life.

Hemolymph ecdysteroid titers increased when animals were induced to molt by MLA (Fig. 3.3 a). qPCR showed that Gl-PDE4, Gl-PDE7, and Gl-PDE9 mRNA transcripts were expressed in low levels. Moreover, Gl-PDE1 and Gl-PDE2 showed different patterns (Fig. 3.3 c). None of the above Gl-PDE expression profiles met our hypothesis since we did not see increased PDE expression in mid/late premolt YOs. We conclude that these enzymes might be regulated posttranscriptionally to stabilize the mRNA and to further enhance and modify the structure of the final protein product. Such observations were symmetrical to the beta-subunit in *HsPDE5* (Lerner et al., 2006). Moreover, studies on *HsPDE3B* adipocytes revealed both transcriptional and posttranscriptional modifications (Yan et al., 2007). Another interpretation might be that MLA has no effect on the expression of *Gl-PDE*1,2,4,7, and 9. It is also possible that target cells interpret nuanced changes in PDE activity and even slight changes present a potent impact on the target cell response (Sette & Conti 1996). Conversely, *Gl-PDE5* showed its highest expression in MP, then dropped upon reaching PM. Gl-PDE11 reached its maximum expression in LM and decreased in PM (Fig. 3.3 c). These findings do support our first hypothesis, that PDE activity in mid/late premolt is responsible for the YO insensitivity to MIH, which in turn triggers the animal to be committed to molt (Nakatsuji et al., 2009). Consequently, *Gl-PDE5* (a c-GMP specific PDE) and *Gl-PDE*11 (a dual PDE) might play a remarkable role in the YO's MIH signaling pathway.

Results of the MLA transcriptomics studies demonstrated the relative expression of *Gl-PDEs* (Fig. 3.4 a, b). *Gl-PDE* 2,4,7, and 9 were relatively higher in IM and then decreased gradually while reaching their lowest expression in PM. *Gl-PDE*5 was high in intermolt then dropped to its minimum expression in LM and slightly increased in PM (Fig.3.4 b). *Gl-PDE*11 expression reached a peak in MP then declined in PM accompanied with a significant difference between these two stages (Fig.3.4 c). We conclude that MLA had no impact on *Gl-PDE* 2,4,7, and

9 expression since these results were consistent with the qPCR results seen in the MLA experiment. Notably, *Gl-PDE5* and *Gl-PDE11* depicted different trends as was observed in the qPCR results from the MLA experiment. Our data strongly suggest that both *Gl-PDE5* and *Gl-PDE11* act on the intracellular levels of cAMP/cGMP and both converge to stimulate ecdysteroid synthesis in the molting gland. This finding is consistent with recent studies in humans, in which *Hs-PDE11A* exerted a regulatory effect on cortisol excretion and synthesis (Ceyhan et al., 2012; Vezzosi et al., 2012). In contrast to *Gl-PDE5*, inhibition of *PDE5*A in rat and mouse Leydig cells by sildenafil (Viagra) *in-vivo*, illustrated an activation of the NO/cGMP pathway, thus increasing testosterone synthesis (Saraiva et al., 2009; Andric et al., 2010).

mTOR is a conserved serine/threonine kinase and found from yeast to humans. It represents a central node for a variety of cellular processes, such as gene transcription, protein synthesis, cell growth, and cell metabolism (Cornu et al., 2013). mTOR is important during molting in the activated YO in crustaceans (Abuhagr et al., 2014), as such an activation in early premolt YOs upregulates ecdysteroid synthesis (Mykles 2010). In the fruit fly, *Drosophila melanogaster*, metamorphosis depends on mTOR signaling pathway in the molting gland (prothoracic gland or PG) (Layalle et al., 2008).

Our second goal was to determine whether *Gl-PDE* expression requires mTOR activity or not. For this purpose, ESA was performed to induce molting. ESA \pm rapamycin qPCR/transcriptomics results revealed an activation from Day 0 to Day 1 in the expression of *Gl-PDE*4,5,7, and 11, which then leveled off on all other days post-ESA (Fig. 3.5 a, b, c, d) and (Fig. 3.6 a, b, c, d). Furthermore, no differences were observed between control and experimental groups. In contrast, previous studies showed that PDE4D5 binds Rheb (upstream regulator of mTOR) in a noncatalytic novel fashion to inhibit mTOR, and that this binding will only be dissociated if intracellular cAMP levels are elevated (Kim et al., 2010). Furthermore, previous studies provide evidence of cross talk between mTOR and cAMP signaling pathways; an increase in cAMP concentration inhibits mTOR complexes, thus suppressing the catalytic activity of mTOR (Xie et al., 2011). So, cAMP can either activate or inhibit mTOR depending on the tissue type and cAMP distribution (Kwon et al., 2004; Rocha et al., 2008). PDEs might have an indirect regulation mechanism, but this is not fully understood. Taken together, mTOR does not contribute to PDE expression in the crustacean's *G. lateralis* molting gland, indicating a different mechanism of regulation might be controlling Gl-PDEs, which is distinct from mammalian PDEs.

Conclusions

Molting in the blackback land crab, *Gecarcinus lateralis*, can be induced by two methods: Multiple Leg Autotomy (MLA) and Eyestalk Ablation (ESA). In mid/late premolt, molting glands (YOs) become insensitive to MIH and the animal is committed to molt. Second messengers cAMP and cGMP play a crucial role in the MIH signaling pathway and their intracellular concentrations are regulated with cyclic nucleotide phosphodiesterases (PDEs). MLA and ESA \pm rapamycin transcriptomes were screened for PDE expression. qPCR for the two molt induction experiments was used to validate the transcriptomics results. MLA showed no effect on *Gl-PDE1*, *2*, *4*, *5*, *7*, and *9*, suggesting these genes might be regulated in a post-transcriptional manner. Conversely, *Gl-PDE11* (a dual PDE) is the dominant PDE in the YO and shows molt-dependent changes in the mRNA levels that is consistent with a role in reducing sensitivity in mid/late premolt. ESA increased mRNA levels of *Gl-PDE4*, *5*, *7* and 11, and was associated with YO activation. Such increases do not require mTOR activity. These data were not consistent with our hypothesis that mTOR regulates PDE expression as there was no significant difference between the control and experimental groups based on both transcriptomics and qPCR results. **Table 3.1. Oligonucleotide primers used in qPCR to identify gene expression in Gl-PDEs in MLA and ESA ± rapamycin experiments**. Abbreviations: Gl, Gecarcinus lateralis; F, Forward; R, Reverse, PDE, cyclic nucleotide phosphodiesterase; Numbers (1,2,4,5,7,9,11), PDE family.

Primer name	Primer sequence (5'-3')	Amplicon Product (bp)	Annealing Temp.
Gl-PDE1 -F2	GGTGGCAAAGTGGAAAGATAAAG	226	62 C°
GI-PDE1 -R2	CCTCCTCGTCTCTCTTCTTAGT	220	62 C°
Gl-PDE2 -F2	GGTGGTAGTGGCACGTTTAT	201	62 C°
Gl-PDE2 -R2	TCCCTCTTTCCTTCCTCTTCT		62 C°
Gl-PDE4 -F1	AGGCTTCTGTGTGGGTACATATC	260	62 C°
Gl-PDE4 -R2	CACAAACTTGCATCCCTCAATC		62 C°
Gl-PDE5 -F2	CAGACCACCGGATGCTTATT	316	62 C°
Gl-PDE5 -R1	TCCTCGACCCGATTCTATGT		62 C°
GI-PDE7 -F1	CATGGAAGGCATTTGGCTAAG	283	62 C°
Gl-PDE7 -R1	CTTCAGTTGGAGGTGAGTCTAC		62 C°
Gl-PDE9-F1	CAGTGGACCATTCCTCACTTC	269	62 C°
Gl-PDE9-R2	TGGTCATTCATCCCTTGCAATA		62 C°
Gl-PDE11-F2	GACTCCAGACTTGGTTCTTTCC	322	62 C°
Gl-PDE11-R2	CGACTGATGTCACTTGCATATC		62 C°

Figure 3.1. Molting can be induced by Multiple Limb Autotomy (MLA). In this picture, the crab reached ecdysis and is pulling itself out of the old exoskeleton upon losing all the walking legs. Molting in this case is important, so the animal can grow with a full set of limbs.

Figure 3.2. Molting can be induced by Eyestalk Ablation (ESA). This picture depicts the removal of both eye stalks, thus eliminating the main source of MIH (molt-inhibiting hormone).

(a)

(b)

Figure 3.3. Effects of MLA on the YO expression of *Gl-PDE4*, *Gl-PDE* 7, *Gl-PDE* 9 (a) and YO expression of *Gl-PDE* 1, *Gl-PDE* 2 *Gl-PDE*,5, *Gl-PDE* 11(b). *Gl-PDE* mRNA expression for the different families was quantified by qPCR at each molt stage point; intermolt (IM), early premolt (EP), mid premolt (MP), late premolt (LP), post molt (PM). n=10-12 for each molt stage. Data presented as mean ± 1 S.E. No significant differences were observed in the means of *Gl-PDE4*,7 and 9. mRNA expression of *Gl-PDE* 1,2,5,11 appeared with different trends. Means within the same gene that were significantly different are represented with a bracket.

IM
EP
MP
LP
PM
- 1

Figure 3.4. Relative expression of *Gl-PDE2*,**9** (a), *Gl-PDE4*,**5**,**7**,**8** (b) and *Gl-PDE*11 (c). Transcriptomics was used to assess the effects of molt stage on PDE expression. There was a significant difference between intermolt (IM) and postmolt (PM) in all Gl-PDEs, except *Gl-PDE*11 which elucidated a statistical significance between mid premolt (MP) and PM. *Gl-PDE*11 showed the highest expression among all PDEs (scales are different for each set of PDEs). Means within the same gene that were significantly different are represented with a bracket.

Figure 3.5. Effect of ESA \pm rapamycin on the expression of *Gl-PDE4* (a), *Gl-PDE5* (b), *Gl-PDE7* (c), and *Gl-PDE11* (d) in *G. lateralis* YO. qPCR was used to evaluate the expression of *Gl-PDE4*,5,7,11 at point times 1,3,5,7,14 days post ESA in control (DMSO) and experimental (rapamycin) injected animals. mRNA PDEs increased from Day 0 to Day 1, then leveled off throughout the rest time points. Means within the same gene that were significantly different are represented with a bracket. Data presented as mean \pm S.E (n=8-10).

Figure 3.6. Effect of ESA \pm rapamycin on the expression of *Gl-PDE4* (a), *Gl-PDE5* (b), *Gl-PDE7* (c), and *Gl-PDE11* (d) in *G. lateralis* YO. Transcriptomics was used to evaluate the expression of *Gl-PDE4*,5,7,11 at point times 1,3,7 days post ESA in control (DMSO) and experimental (rapamycin) injected animals. mRNA PDEs increased from Day 0 to Day 1, then leveled off throughout the rest time points. Means within the same gene that were significantly different are represented with a bracket. Data presented as mean \pm S.E.

CHAPTER FOUR

SUMMARY AND FUTURE DIRECTIONS

Cyclic nucleotide signaling mediates the suppression of the crustacean molting gland (Yorgan or YO) by molt-inhibiting hormone (MIH). When MIH level drops the YO transitions from the basal to the activated state and the animal enters premolt. During mid-premolt, the YO transitions to the committed state, in which the YO becomes insensitive to MIH. Phosphodiesterases (PDEs) hydrolyze the phosphodiester bond in cAMP and cGMP to AMP and GMP, respectively, and thus can modulate the response of the YO to MIH. In some species, PDE inhibitors decrease molting hormone (ecdysteroid) biosynthesis by the YO in-vitro, indicating that PDE activity can keep cyclic nucleotide levels low. Increased PDE activity in the YO is correlated with a reduced sensitivity to MIH when the animal becomes committed to molt. In mammals, 21 PDE genes are organized into 11 genes, designated PDE1 to PDE11. Each PDE family has specific catalytic and biochemical properties and tissue distributions. A reference YO transcriptome from the blackback land crab (Gecarcinus lateralis), consisting of 3 biological replicates of intermolt animals, was analyzed for PDE sequences. Nine different contigs encoding seven full-length PDE sequences two partials were identified. Moreover, seven different contigs encoding five full-length PDE sequences two partials were identified in the C. maenas transcriptome. Protein alignments and ClustalX analysis of the GI-PDE and Cm-PDE sequences with orthologs from other species in the GenBank database showed that the sequences corresponded to PDE1, 2, 3, 4, 5, 7, 8, 9, and 11. General and selective inhibitors were used to characterize the PDEs regulating ecdysteroid secretion in the green crab, Carcinus maenas YO. IBMX, vinpocetine, EHNA and zaprinast ± rMIH significantly inhibited ecdysteroid secretion, while rolipram, dipyridamole, and BC11-38

did not. This suggests that PDE1, PDE2 and PDE5/11 are primarily responsible for regulating cAMP and cGMP levels. No effect on ecdysteroidogenesis was seen on the blackback land crab, *Gecarcinus lateralis*, YOs when exposed to the same PDE inhibitors *in-vitro*, indicating different regulatory metabolic machineries between the two species.

PDE gene expression was examined in different tissues of *G. lateralis* and *C. maenas* by qPCR. GI-PDE2 and GI-PDE5 showed mild levels of mRNA expression. Cm-PDE11 had the highest expression among all examined PDEs which might indicate a pivotal role in cAMP/cGMP signaling pathways.

qPCR was used to quantify the effects of molt induction by multiple limb autotomy (MLA) or eyestalk ablation (ESA) \pm mTOR inhibitor rapamycin on expression of PDE 1, 2, 4, 5,7,9,11 in Gecarcinus lateralis YO. In response to MLA, all PDEs, except for PDE5 and PDE11, were expressed at their highest levels in the intermolt YO. mRNA levels declined during premolt and reached their lowest levels in postmolt. qPCR results from the MLA experiment showed that both GI-PDE5 and GI-PDE11 reached high expression levels in mid premolt and late premolt, respectively. MLA transcriptomics revealed that only PDE11 expression maximized at mid premolt. In response to ESA, the mRNA levels of PDE4, 5, 7, 9, and 11 showed no significant change by 7- and 14-days post-ESA. Rapamycin had no significant effect, as PDE mRNA levels were comparable to those of controls at all time points, indicating that PDE expression is not regulated by mTOR. The qPCR results were consistent with RNA-Seq data, showing similar trends of PDE expression in both MLA and ESA \pm rapamycin. The data suggest that transcriptional regulation does not contribute to the reduced sensitivity of the committed YO to MIH; the increased PDE activity during mid and late premolt is likely regulated post-transcriptionally in most PDEs. Our data suggest that PDE11 is the controlling PDE in the YO and shows mRNA level

changes depending on the molt stage. This finding is consistent with the responsiveness of YO cells to MIH during mid/late premolt.

The number of PDE families were unknown before this project, and it was proposed that two PDE families might contribute in the MIH signaling pathway. The outcome of this project was surprising, as nine different PDEs, each with their unique properties and characteristics were found in the YO transcriptome of *G. lateralis* and the transcriptome of *C. maenas*. Moreover, our data suggest that PDE11 might be the prominent enzyme in the YO.

Future studies should investigate the protein levels of these PDEs in the YO and other tissues. Rapamycin has no effect on PDE mRNA levels, indicating mTOR activity does not control PDE gene expression in the activated YO. However, Activin/TGF β signaling, which is required for YO commitment, may control PDE gene expression in mid and late premolt. Transcriptomics and qPCR can be used to determine whether SB431542, an inhibitor on Activin/TGF β signaling, affects PDE mRNA levels.

REFERENCES

- Abuhagr, A. M., MacLea, K. S., Chang, E. S., & Mykles, D. L. (2014). Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis. *Comparative Biochemistry and Physiology A-molecular & Integrative Physiology*, *168*, 25-39. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1095643313002730
- Ahmad, F., Murata, T., Shimizu, K., Degerman, E., Maurice, D., & Manganiello, V. C. (2015). Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets. *Oral Diseases*, 21(1), 25-50. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc4275405
- Ahn, H. S., Crim, W., Romano, M., Sybertz, E. J., & Pitts, B. (1989). Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta. *Biochemical Pharmacology*, 38(19), 3331-3339. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/000629528990631x#!
- Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schäffer, A. A., & Yu, Y.-K. (2005). Protein Database Searches Using Compositionally Adjusted Substitution Matrices. *FEBS Journal*, 272(20), 5101-5109. Retrieved 2 17, 2019, from https://febs.onlinelibrary.wiley.com/doi/full/10.1111/j.1742-4658.2005.04945.x
- Altschul, S., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Research*, 25(17), 3389–3402. Retrieved 2 17, 2019
- Andric, S. A., Janjic, M. M., Stojkov, N. J., & Kostic, T. S. (2010). Sildenafil treatment in-vivo stimulates Leydig cell steroidogenesis via the cAMP/cGMP signaling pathway. *American Journal of Physiology-endocrinology and Metabolism*, 299(4). Retrieved 2 17, 2019, from https://physiology.org/doi/abs/10.1152/ajpendo.00337.2010
- Azevedo, M., Azevedo, M., Faucz, F. R., Faucz, F. R., Bimpaki, E. I., Horvath, A., . . . Stratakis, C. A. (2014). Clinical and Molecular Genetics of the Phosphodiesterases (PDEs). *Endocrine Reviews*, 35(2), 195-233. Retrieved 2 17, 2019, from https://academic.oup.com/edrv/article/35/2/195/2354677
- Beavo, J. A., & Brunton, L. L. (2002). Cyclic nucleotide research still expanding after half a century. *Nature Reviews Molecular Cell Biology*, 3(9), 710-717. Retrieved 2 17, 2019, from https://nature.com/articles/nrm911
- Beavo, J. A., Rogers, N. L., Crofford, O. B., Hardman, J. G., Sutherland, E. W., & Newman, E. V. (1970). Effects of Xanthine Derivatives on Lipolysis and on Adenosine 3',5'Monophosphate Phosphodiesterase Activity. *Molecular Pharmacology*, 6(6), 597-603. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/4322367

- Bellen, H. J., Gregory, B. K., Olsson, C. L., & Kiger, J. A. (1987). Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP on embryogenesis. *Developmental Biology*, 121(2), 432-444. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/3034702
- Bender AT, B. J. (2006). Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. *Pharmacological Reviews*, 58 (3), 488-520.
- Bessodes, M., Bastian, G., Abushanab, E., Panzica, R. P., Berman, S. F., Marcaccio, E. J., ...
 Parks, R. E. (1982). Effect of chirality in erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) on adenosine deaminase inhibition. *Biochemical Pharmacology*, *31*(5), 879-882.
 Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/0006295282904798
- Bolger G, M. T. (n.d.). A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. *Molecular and Cellular Biology*, 13(10), 6558–71. Retrieved 2 17, 2019, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC364715/pdf/molcellb00022-0642.pdf
- Bolger G, M. T. (n.d.). A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. *Molecular and Cellular Biology*, 13(10), 6558–71. Retrieved 2 18, 2019
- Broderick, K. E., MacPherson, M. R., Regulski, M., Tully, T., Dow, J. A., & Davies, S. A. (2003). Interactions between epithelial nitric oxide signaling and phosphodiesterase activity in Drosophila. *American Journal of Physiology-cell Physiology*, 285(5).
 Retrieved 2 17, 2019, from https://physiology.org/doi/10.1152/ajpcell.00123.2003
- Ceyhan, O., Birsoy, K., & Hoffman, C. S. (2012). Identification of Biologically Active PDE11-Selective Inhibitors Using a Yeast-Based High-Throughput Screen. *Chemistry & Biology*, 19(1), 155-163. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1074552111004625
- Chang, E. S., & Mykles, D. L. (2011). Regulation of crustacean molting: a review and our perspectives. *General and Comparative Endocrinology*, 172(3), 323-330. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0016648011001444
- Chang, E. S., Bruce, M. J., & Tamone, S. L. (1993). Regulation of Crustacean Molting: A Multi-Hormonal System. *Integrative and Comparative Biology*, 33(3), 324-329. Retrieved 2 18, 2019, from https://academic.oup.com/icb/article/33/3/324/165907
- Charbonneau, H., Beier, N., Walsh, K. A., & Beavo, J. A. (1986). Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. *Proceedings of the National Academy of Sciences of the United States of America*, 83(24), 9308-9312.
 Retrieved 2 16, 2019, from https://ncbi.nlm.nih.gov/pubmed/3025833
- Choi, C. H., Choi, C. H., Choi, C. H., Schoenfeld, B. P., Schoenfeld, B. P., Weisz, E. D., . . . McBride, S. M. (2015). PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome. *The Journal of Neuroscience*, 35(1), 396-408. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/25568131
- Chung, J. S., Zmora, N., Katayama, H., & Tsutsui, N. (2010). Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues. *General and Comparative Endocrinology*, 166(3), 447-454. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0016648009004389
- Conti, M. (2000). Phosphodiesterases and Cyclic Nucleotide Signaling in Endocrine Cells. *Molecular Endocrinology*, 14(9), 1317-1327. Retrieved 2 17, 2019, from http://press.endocrine.org/doi/10.1210/mend.14.9.0534
- Cornu, M., Albert, V., & Hall, M. N. (2013). mTOR in aging, metabolism, and cancer. *Current Opinion in Genetics & Development*, 23(1), 53-62. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0959437x12001499
- Covi, J. A., Bader, B. D., Chang, E. S., & Mykles, D. L. (2010). Molt cycle regulation of protein synthesis in skeletal muscle of the blackback land crab, Gecarcinus lateralis, and the differential expression of a myostatin-like factor during atrophy induced by molting or unweighting. *The Journal of Experimental Biology*, 213(1), 172-183. Retrieved 2 17, 2019, from http://jeb.biologists.org/content/213/1/172
- Covi, J. A., Chang, E. S., & Mykles, D. L. (2009). Conserved role of cyclic nucleotides in the regulation of ecdysteroidogenesis by the crustacean molting gland. *Comparative Biochemistry and Physiology A-molecular & Integrative Physiology*, 152(4), 470-477. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1095643308012361#!
- Covi, J. A., Chang, E. S., & Mykles, D. L. (2012). Neuropeptide signaling mechanisms in crustacean and insect molting glands. *Invertebrate Reproduction & Development*, 56(1), 33-49. Retrieved 2 17, 2019, from http://tandfonline.com/doi/abs/10.1080/07924259.2011.588009
- Das, S., Pitts, N. L., Mudron, M. R., Durica, D. S., & Mykles, D. L. (2016). Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab, Gecarcinus lateralis. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics*, 17, 26-40. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1744117x15000672
- Dauphin-Villemant, C., Böcking, D., & Sedlmeier, D. (1995). Regulation of steroidogenesis in crayfish molting glands: involvement of protein synthesis. *Molecular and Cellular Endocrinology*, 109(1), 97-103. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/030372079503489t#!

- Day, J. P., Dow, J. A., Houslay, M. D., & Davies, S. A. (2005). Cyclic nucleotide phosphodiesterases in Drosophila melanogaster. *Biochemical Journal*, 388(1), 333-342. Retrieved 2 17, 2019, from http://biochemj.org/content/388/1/333
- Demirbas, D., Wyman, A. R., Shimizu-Albergine, M., Cakici, O., Beavo, J. A., & Hoffman, C. S. (2013). A yeast-based chemical screen identifies a PDE inhibitor that elevates steroidogenesis in mouse Leydig cells via PDE8 and PDE4 inhibition. *PLOS ONE*, 8(8). Retrieved 2 24, 2019, from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0071279
- Deshmukh, R., Sharma, V., Mehan, S., Sharma, N., & Bedi, K. (2009). Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine -- a PDE1 inhibitor. *European Journal of Pharmacology*, 620(1), 49-56. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0014299909007146

Drach, P. (1939). Mue et cycle d'intermue chez les Crustaces Decapodes. Annls. Inst. Oceanogr. 19: 103-391.

- Fajardo, A. M., Piazza, G. A., & Tinsley, H. N. (2014). The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment. *Cancers*, 6(1), 436-458. Retrieved 2 17, 2019, from http://mdpi.com/2072-6694/6/1/436
- Fisher DA, S. J. (n.d.). Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. *J Biol Chem*, 273(25), 15559–64. Retrieved 2 17, 2019
- Francis, S. H. (2005). Phosphodiesterase 11 (PDE11): is it a player in human testicular function? International Journal of Impotence Research, 17(5), 467-468. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/16079899
- Francis, S. H., Blount, M. A., & Corbin, J. D. (2011). Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. *Physiological Reviews*, 91(2), 651-690. Retrieved 2 18, 2019, from https://ncbi.nlm.nih.gov/pubmed/21527734
- G.J., S., B.W., A., S.K., F., R.W., A., M.D., U., & yes. (1999). Basic neurochemistry: molecular, cellular, and medical aspects. American Society for Neurochemistry. Retrieved 2 17, 2019, from https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=bnchm.section.1181
- Gomez, L., & Breitenbucher, J. G. (2013). PDE2 inhibition: potential for the treatment of cognitive disorders. *Bioorganic & Medicinal Chemistry Letters*, 23(24), 6522-6527. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0960894x13012110
- Goraya, T. A., & Cooper, D. M. (2005). Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives. *Cellular Signalling*, *17*(7), 789-797. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0898656804002931

- Gresele, P., Momi, S., & Falcinelli, E. (2011). Anti-platelet therapy: phosphodiesterase inhibitors. *British Journal of Clinical Pharmacology*, 72(4), 634-646. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc3195739
- Halpin, D. M. (2008). ABCD of the phosphodiesterase family: interaction and differential activity in COPD. *International Journal of Chronic Obstructive Pulmonary Disease*, 3(4), 543-561. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc2650605
- Heikaus, C. C., Pandit, J., & Klevit, R. E. (2009). Cyclic Nucleotide Binding GAF Domains from Phosphodiesterases: Structural and Mechanistic Insights. *Structure*, 17(12), 1551-1557. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/20004158
- Hietakangas, V., & Cohen, S. M. (2009). Regulation of tissue growth through nutrient sensing. Annual Review of Genetics, 43(1), 389-410. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/19694515
- Ho, Y.-S. J., Burden, L. M., & Hurley, J. H. (2000). Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. *The EMBO Journal*, 19(20), 5288-5299. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc314001
- Houslay, M. D., & Adams, D. R. (2003). PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. *Biochemical Journal*, *370*(1), 1-18. Retrieved 2 17, 2019, from http://biochemj.org/content/370/1/1
- Ke, H., Wang, H., & Ye, M. (2011). Structural Insight into the Substrate Specificity of Phosphodiesterases. *Handbook of experimental pharmacology*(204), 121-134. Retrieved 2 18, 2019, from https://ncbi.nlm.nih.gov/pubmed/21695637
- Kelly, M. P. (2017). A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood. Retrieved 2 17, 2019, from https://link.springer.com/chapter/10.1007/978-3-319-58811-7_8
- Kim, H. W., Ha, S. H., Lee, M. N., Huston, E., Kim, D.-H., Jang, S. K., . . . Ryu, S. H. (2010). cAMP controls mTOR through regulation of the dynamic interaction between Rheb and Phosphodiesterase 4D. *Molecular and Cellular Biochemistry*, *30*, 5406-5420. Retrieved 2 17, 2019, from https://kclpure.kcl.ac.uk/portal/en/publications/camp-controls-mtorthrough-regulation-of-the-dynamic-interaction-between-rheb-and-phosphodiesterase-4d(cf31d25d-ef9f-4a0c-9c27-d39117b3f954).html
- Knope, M. L., & Larson, R. J. (2014). Autotomy in porcelain crabs is an effective escape mechanism from rockfish predation. *Marine Ecology*, 35(4), 471-477. Retrieved 2 17, 2019, from http://onlinelibrary.wiley.com/doi/10.1111/maec.12103/abstract
- Kwon, G., Marshall, C. A., Pappan, K. L., Remedi, M. S., & McDaniel, M. L. (2004). Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and

growth factors in islets. *Diabetes*, *53*. Retrieved 2 17, 2019, from http://diabetes.diabetesjournals.org/content/53/suppl_3/s225

- Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. *Journal of Cell Science*, *122*(20), 3589-3594. Retrieved 2 17, 2019, from http://jcs.biologists.org/content/joces/122/20/3589.full.pdf
- Layalle, S., Arquier, N., & Léopold, P. (2008). The TOR Pathway Couples Nutrition and Developmental Timing in Drosophila. *Developmental Cell*, 15(4), 568-577. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1534580708003274
- Lee, S. G., & Mykles, D. L. (2006). Proteomics and signal transduction in the crustacean molting gland. *Integrative and Comparative Biology*, 46(6), 965-977. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/21672800
- Lee, S. G., Bader, B. D., Chang, E. S., & Mykles, D. L. (2007). Effects of elevated ecdysteroid on tissue expression of three guanylyl cyclases in the tropical land crab Gecarcinus lateralis: possible roles of neuropeptide signaling in the molting gland. *The Journal of Experimental Biology*, 210(18), 3245-3254. Retrieved 2 17, 2019, from http://jeb.biologists.org/content/210/18/3245
- Levy, I., Horvath, A., Azevedo, M., Alexandre, R. B., Alexandre, R. B., & Stratakis, C. A. (2011). Phosphodiesterase function and endocrine cells: links to human disease and roles in tumor development and treatment. *Current Opinion in Pharmacology*, *11*(6), 689-697. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1471489211001858
- Libé, R., Fratticci, A., Coste, J., Tissier, F., Horvath, A., Ragazzon, B., . . . Bertherat, J. (2008). Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. *Clinical Cancer Research*, 14(12), 4016-4024. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/18559625
- Lin C S, L. R. (2002). Human PDE5 gene encodes three PDE5 isoforms from two alternate promoters. *International Journal of Impotence Research volume 14*, 15-24.
- Liu, S., Mansour, M. N., Dillman, K. S., Perez, J. R., Danley, D. E., Aeed, P. A., . . . Menniti, F. S. (2008). Structural basis for the catalytic mechanism of human phosphodiesterase 9. *Proceedings of the National Academy of Sciences of the United States of America*, 105(36), 13309-13314. Retrieved 2 17, 2019, from http://pnas.org/content/105/36/13309.full.pdf
- Makhlouf, A., Kshirsagar, A., & Niederberger, C. (2006). Phosphodiesterase 11: a brief review of structure, expression and function. *International Journal of Impotence Research*, 18(6), 501-509. Retrieved 2 17, 2019, from http://nature.com/ijir/journal/v18/n6/full/3901441a.html
- Manallack, D. T., Hughes, R. A., & Thompson, P. E. (2005). The next generation of phosphodiesterase inhibitors: structural clues to ligand and substrate selectivity of

phosphodiesterases. *Journal of Medicinal Chemistry*, 48(10), 3449-3462. Retrieved 2 17, 2019, from http://onlinelibrary.wiley.com/doi/10.1002/chin.200534323/full

- Martins, T. J., Mumby, M. C., & Beavo, J. A. (1982). Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. *Journal* of Biological Chemistry, 257(4), 1973-1979. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/6276403
- Matoulkova, E., Michalová, E., Vojtesek, B., & Hrstka, R. (2012). The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. *RNA Biology*, 9(5), 563-576. Retrieved 2 17, 2019, from https://tandfonline.com/doi/full/10.4161/rna.20231
- Mattson, M. P., & Spaziani, E. (1985). Cyclic AMP mediates the negative regulation of Y-organ ecdysteroid production ☆. *Molecular and Cellular Endocrinology*, 42(2), 185-189. Retrieved 2 18, 2019, from https://sciencedirect.com/science/article/pii/0303720785901066#!
- Medina, A. E. (2011). Therapeutic utility of phosphodiesterase type I inhibitors in neurological conditions. *Frontiers in Neuroscience*, 5, 21-21. Retrieved 2 18, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc3044262
- Méhats, C., Andersen, C. B., Filopanti, M., Jin, S.-L. C., & Conti, M. (2002). Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. *Trends in Endocrinology* and Metabolism, 13(1), 29-35. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/11750860
- Miller, C. L., Oikawa, M., Cai, Y.-J., Wojtovich, A. P., Nagel, D. J., Xu, X., . . . Yan, C. (2009).
 Role of Ca2+/Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterase 1 in Mediating Cardiomyocyte Hypertrophy. *Circulation Research*, *105*(10), 956-964.
 Retrieved 2 17, 2019, from https://ahajournals.org/doi/10.1161/circresaha.109.198515
- Mittal, R., Bencie, N., Shaikh, N., Mittal, J., Liu, X. Z., & Eshraghi, A. A. (2017). Role of Cyclic Nucleotide Phosphodiesterases in Inner Ear and Hearing. *Frontiers in Physiology*, 8, 908. Retrieved 2 17, 2019, from https://frontiersin.org/articles/10.3389/fphys.2017.00908/full
- Murthy, V. S., & Mangot, A. G. (2015). Psychiatric aspects of phosphodiesterases: An overview. *Indian Journal of Pharmacology*, 47(6), 594. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/26729948
- Nakatsuji, T., Lee, C.-Y., & Watson, R. D. (2009). Crustacean molt-inhibiting hormone: Structure, function, and cellular mode of action. *Comparative Biochemistry and Physiology A-molecular & Integrative Physiology*, 152(2), 139-148. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1095643308011823
- Nakatsuji, T., Sonobe, H., & Watson, R. D. (2006). Molt-inhibiting hormone-mediated regulation of ecdysteroid synthesis in Y-organs of the crayfish (Procambarus clarkii): involvement of cyclic GMP and cyclic nucleotide phosphodiesterase. *Molecular and*

Cellular Endocrinology, 253(1), 76-82. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0303720706002383

- NiKulina E, T. J. (2004). The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. *Proc. Natl. Aca. Sci.USA 101*, 8786-8790. doi: 10.1073/pnas.0402595101
- P, W., P, W., RW, E., & MM, B. (2003). Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5). Differential tissue distribution and subcellular localization of PDE9A variants. *Gene 314*, 15-27.
- Puzzo, D., Sapienza, S., Arancio, O., & Palmeri, A. (2008). Role of phosphodiesterase 5 in synaptic plasticity and memory. *Neuropsychiatric Disease and Treatment*, 4(2), 371-387. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc2518390
- Qiu, Y., Chen, C.-N., Malone, T., Richter, L., Beckendorf, S. K., & Davis, R. L. (1991). Characterization of the memory gene dunce of Drosophila melanogaster. *Journal of Molecular Biology*, 222(3), 553-565. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/002228369190496s
- Richter, W., Unciuleac, L., Hermsdorf, T., Kronbach, T., & Dettmer, D. (2001). Identification of inhibitor binding sites of the cAMP-specific phosphodiesterase 4. *Cellular Signalling*, *13*(4), 287-297. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0898656801001504
- Rocha, A. S., Rocha, A. S., Paternot, S., Coulonval, K., Dumont, J. E., Soares, P., & Roger, P. P. (2008). Cyclic AMP Inhibits the Proliferation of Thyroid Carcinoma Cell Lines through Regulation of CDK4 Phosphorylation. *Molecular Biology of the Cell*, 19(11), 4814-4825. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/18799615
- Sandeep, G., Bhasker, S., & Ranganath, Y. S. (2008). Phosphodiesterase as a novel target in Cancer Chemotherapy. *The Internet Journal of Pharmacology*, 7(1). Retrieved 2 17, 2019, from http://ispub.com/ijpharm/7/1/3739
- Saraiva, K. L., Silva, A. K., Wanderley, M. I., Araújo, A. A., Souza, J. R., & Peixoto, C. A. (2009). Chronic treatment with sildenafil stimulates Leydig cell and testosterone secretion. *International Journal of Experimental Pathology*, 90(4), 454-462. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc2741156
- Sette, C., & Conti, M. (1996). Phosphorylation and Activation of a cAMP-specific Phosphodiesterase by the cAMP-dependent Protein Kinase INVOLVEMENT OF SERINE 54 IN THE ENZYME ACTIVATION. *Journal of Biological Chemistry*, 271(28), 16526-16534. Retrieved 2 17, 2019, from http://jbc.org/content/271/28/16526.long
- Shyamal, S., Sudha, K., Gayathri, N., & Anilkumar, G. (2014). The Y-organ secretory activity fluctuates in relation to seasons of molt and reproduction in the brachyuran crab, Metopograpsus messor (Grapsidae): Ultrastructural and immunohistochemical study.

General and Comparative Endocrinology, *196*, 81-90. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0016648013004577

- Siegel GJ, A. B. (1999). *Basic Neurochemistiry: Molecular, Cellular and Medical Aspects. 6th edition.* Philadephia: lippincott-raven.
- Skinner, D. M. (1962). THE STRUCTURE AND METABOLISM OF A CRUSTACEAN INTEGUMENTARY TISSUE DURING A MOLT CYCLE. *The Biological Bulletin*, 123(3), 635-647. Retrieved 2 18, 2019, from https://journals.uchicago.edu/doi/abs/10.2307/1539584
- Skinner, D. M. (1985). Interacting Factors in the Control of the Crustacean Molt Cycle. *Integrative and Comparative Biology*, 25(1), 275-284. Retrieved 2 17, 2019, from https://academic.oup.com/icb/article-pdf/25/1/275/5940264/25-1-275.pdf
- Skinner, D. M., & Graham, D. E. (1972). LOSS OF LIMBS AS A STIMULUS TO ECDYSIS IN BRACHYURA (TRUE CRABS). *The Biological Bulletin*, 143(1), 222-233. Retrieved 2 17, 2019, from https://journals.uchicago.edu/doi/abs/10.2307/1540342
- Smith, W. A. (1993). Second Messengers and the Action of Prothoracicotropic Hormone in Manduca sexta. *Integrative and Comparative Biology*, 33(3), 330-339. Retrieved 2 18, 2019, from https://academic.oup.com/icb/article/33/3/330/165920
- Soderling, S. H., & Beavo, J. A. (2000). Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. *Current Opinion in Cell Biology*, 12(2), 174-179. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0955067499000733
- Sonnenburg, W. K., Seger, D., Kwak, K. S., Huang, J., Charbonneau, H., & Beavo, J. A. (1995). Identification of Inhibitory and Calmodulin-binding Domains of the PDE1A1 and PDE1A2 Calmodulin-stimulated Cyclic Nucleotide Phosphodiesterases. *Journal of Biological Chemistry*, 270(52), 30989-31000. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/8537356
- Tepolt, C. K., & Palumbi, S. R. (2015). Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. *Molecular Ecology*, 24(16), 4145-4158. Retrieved 2 24, 2019, from http://palumbi.stanford.edu/manuscripts/tepolt_et_al-2015molecular_ecology.pdf
- Thompson, W. J., & Appleman, M. M. (1971). Characterization of Cyclic Nucleotide Phosphodiesterases of Rat Tissues. *Journal of Biological Chemistry*, 246(10), 3145-3150. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/4324892
- Tomes, C., Rossi, S., & Silvia, M. (1993). Isobutylmethylxanthine and other classical cyclic nucleotide phosphodiesterase inhibitors affect cAMP-dependent protein kinase activity. *Cellular Signalling*, 5(5), 615-621. Retrieved 2 18, 2019, from https://sciencedirect.com/science/article/pii/089865689390056r

- Tsai, L. C., & Beavo, J. A. (2011). The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. *Current Opinion in Pharmacology*, 11(6), 670-675. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc4034742
- Tsai, L.-C. L., & Beavo, J. A. (2012). Regulation of adrenal steroidogenesis by the high-affinity phosphodiesterase 8 family. *Hormone and Metabolic Research*, 44(10), 790-794. Retrieved 2 24, 2019, from https://ncbi.nlm.nih.gov/pubmed/22903278
- Verbruggen, B., Bickley, L. K., Santos, E. M., Tyler, C. R., Stentiford, G. D., Bateman, K. S., & Aerle, R. v. (2015). De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. *BMC Genomics*, *16*(1), 458-458. Retrieved 2 24, 2019, from https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1667-1
- Vezzosi, D., Vezzosi, D., Libé, R., Libé, R., Baudry, C., Baudry, C., ... Bertherat, J. (2012).
 Phosphodiesterase 11A (PDE11A) Gene Defects in Patients with ACTH-Independent Macronodular Adrenal Hyperplasia (AIMAH): Functional Variants May Contribute to Genetic Susceptibility of Bilateral Adrenal Tumors. *The Journal of Clinical Endocrinology and Metabolism*, 97(11). Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc3485605
- Walter, M., & Kiger, J. (1984). The Dunce gene of Drosophila: roles of Ca2+ and calmodulin in adenosine 3':5'-cyclic monophosphate-specific phosphodiesterase activity. *The Journal of Neuroscience*, 4(2), 495-501. Retrieved 2 17, 2019, from http://jneurosci.org/content/jneuro/4/2/495.full.pdf
- Wang, P., Wu, P., Egan, R. W., & Billah, M. M. (2003). Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5):
 Differential tissue distribution and subcellular localization of PDE9A variants. *Gene*, 314, 15-27. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0378111903007339
- Weber, S., Zeller, M., Guan, K., Wunder, F., Wagner, M., & El-Armouche, A. (2017). PDE2 at the crossway between cAMP and cGMP signalling in the heart. *Cellular Signalling, 38*, 76-84. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s089865681730178x
- Webster, S. G., Keller, R., & Dircksen, H. (2012). The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. *General and Comparative Endocrinology*, 175(2), 217-233. Retrieved 2 17, 2019, from http://crustacean-biology.co.uk/wp-content/uploads/2014/02/simon-ref-4_2014-update_webster-et-al-2013_chh-review.pdf
- Weeks, J. L., Corbin, J. D., & Francis, S. H. (2009). Interactions between Cyclic Nucleotide Phosphodiesterase 11 Catalytic Site and Substrates or Tadalafil and Role of a Critical Gln-869 Hydrogen Bond. *Journal of Pharmacology and Experimental Therapeutics*,

331(1), 133-141. Retrieved 2 17, 2019, from http://jpet.aspetjournals.org/content/331/1/133

- Weis, J. S. (1976). EFFECTS OF ENVIRONMENTAL FACTORS ON REGENERATION AND MOLTING IN FIDDLER CRABS. *The Biological Bulletin*, 150(1), 152-162. Retrieved 2 17, 2019, from https://journals.uchicago.edu/doi/abs/10.2307/1540596
- Xie, J., Ponuwei, G. A., Moore, C. E., Willars, G. B., Tee, A. R., & Herbert, T. P. (2011). cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. *Cellular Signalling*, 23(12), 1927-1935. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0898656811001975
- Xu, R. X., Hassell, A. M., Vanderwall, D., Lambert, M. H., Holmes, W. D., Luther, M. A., ... Nolte, R. T. (2000). Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. *Science*, 288(5472), 1822-1825. Retrieved 2 17, 2019, from https://rcsb.org/structure/1f0j
- Xu, R. X., Rocque, W. J., Lambert, M. H., Vanderwall, D. E., Luther, M. A., & Nolte, R. T. (2004). Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. *Journal of Molecular Biology*, 337(2), 355-365. Retrieved 2 17, 2019, from https://rcsb.org/structure/1ro6
- Yan, K., Gao, L.-N., Cui, Y. L., Zhang, Y., & Zhou, X. (2016). The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). *Molecular Medicine Reports*, 13(5), 3715-3723. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc4838136
- Yu, X., Chang, E. S., & Mykles, D. L. (2002). Characterization of Limb Autotomy Factor-Proecdysis (LAFpro), Isolated From Limb Regenerates, That Suspends Molting in the Land Crab Gecarcinus lateralis. *The Biological Bulletin*, 202(3), 204-212. Retrieved 2 18, 2019, from https://journals.uchicago.edu/doi/full/10.2307/1543470
- Yuasa, K., Kanoh, Y., Okumura, K., & Omori, K. (2001). Genomic organization of the human phosphodiesterase PDE11A gene. *FEBS Journal*, *268*(1), 168-178. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/11121118
- Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. *Nature Reviews Molecular Cell Biology*, 12(1), 21-35. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc3390257
- Zoncu, R., Sabatini, D. M., & Efeyan, A. (2010). mTOR: from growth signal integration to cancer, diabetes and ageing. Retrieved 2 18, 2019, from http://dspace.mit.edu/handle/1721.1/74551?show=full
- Zoraghi, R., & Seebeck, T. (2002). The cAMP-specific phosphodiesterase TbPDE2C is an essential enzyme in bloodstream form Trypanosoma brucei. *Proceedings of the National*

Academy of Sciences of the United States of America, 99(7), 4343-4348. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/11930001