CHARACTERIZATION OF CYCLIC NUCLEOTIDE PHOSPHODIESTERASES IN THE TRANSCRIPTOME OF THE CRUSTACEAN MOLTING GLAND

Submitted by
Nada Mukhtar Rifai
Department of Biology

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2019

Doctoral Committee:
Advisor: Donald L. Mykles

Deborah Garrity
Shane Kanatous
Santiago Di-Pietro

Copyright by Nada Mukhtar Rifai 2019

All Rights Reserved

Abstract

\section*{CHARACTERIZATION OF CYCLIC NUCLEOTIDE PHOSPHODIESTERASES IN THE TRANSCRIPTOME OF THE CRUSTACEAN MOLTING GLAND}

Molting in crustaceans is a complex physiological process that has to occur in order for the animal to grow. The old exoskeleton must be discarded and a new one to be formed from the inside out. Molting is coordinated and regulated mainly by two hormones; steroid hormones named ecdysteroids, which are synthesized and secreted from a pair of Y- organs (YOs) that are located in the cephalothorax and a neuropeptide hormone, the molt inhibiting hormone (MIH), which is secreted from the X-organ/sinus gland complex located in the eyestalks. Molting is induced when MIH is decreased in the blood (hemolymph) which in turn stimulates the YOs to produce and secrete ecdysteroids (molting hormones). There are four distinctive physiological states that the YO can be in throughout the molt cycle; the transition of the YO from the "basal" to the "activated" state happens when the animal enters premolt. During mid-premolt, the YO transitions to the "committed" state, in which the YO becomes insensitive to MIH. In this state, the circulating hemolymph contains high levels of ecdysteroids, which increase to a peak before the actual molt (ecdysis) happens. The YO transitions from the committed to the repressed state in late premolt. Finally, the YO returns back to the basal state in the postmolt stage. MIH binds to membrane receptors, activating a signal transduction pathway divided into "triggering" and "summation" phases. A transient increase in cAMP during the triggering phase leads to prolonged cGMPdependent suppression of ecdysteroidogenesis during the summation phase. This allows for sustained inhibition of the YO between MIH pulses in the intermolt animal. Cyclic nucleotide phosphodiesterases (PDEs) play an important role by controlling cAMP and cGMP levels. PDEs
hydrolyze the phosphodiester bond in cAMP and cGMP to AMP and GMP, respectively. Mammals have 21 PDE genes that are categorized into 11 families, designated PDE1 to PDE11. Each PDE family has specific catalytic and biochemical properties and tissue distributions. Eight contigs encoding full-length PDE sequences were identified in the G. lateralis Y-organ transcriptome. Seven contigs encoding four full-length PDE sequences and three contigs encoding partial-length PDE were identified in the Carcinus maenas transcriptome. Multiple sequence alignments showed high sequence identities with orthologs from other species in catalytic (PDEase) and other conserved functional domains. Sequence analysis assigned the Gl-PDE sequences and Cm-PDE sequences to PDE1, PDE2, PDE3, PDE4, PDE5, PDE7, PDE8, PDE9, and PDE11 classes, indicating a high diversity of PDE genes in decapod crustaceans. The reduced sensitivity to MIH by the committed YO is associated with a large increase in PDE activity, which suggests that PDEs modulate the response to neuropeptide during the molt cycle. Nonhydrolyzable analogs of cAMP and cGMP inhibit YO ecdysteroid secretion in-vitro. Moreover, C. maenas YO ecdysteroidogenesis is inhibited by IBMX, a general PDE inhibitor, and Zaprinast, a specific PDE5 inhibitor. Rolipram, a specific PDE4 inhibitor, has no effect. These data suggest that PDE5 activity modulates the effect of MIH on YO ecdysteroidogenesis. RNA-seq data from MLA showed different mRNA levels for the different PDEs; PDE1 and PDE2 showed a similar pattern as they both increased in intermolt (IM) then decreased dramatically in early premolt (EP), mid premolt (MP), late premolt (LP), and post molt (PM). PDE4 increased in IM followed by a slight decrease and increase in EP and MP then a sharp decline in both LP and PM. Both PDE5 and PDE9 were similar in terms they increased in IM followed by a sharp decrease in EP, MP, LP and they differed as PDE5 increased slightly in PM whereas PDE9 remained decreased. PDE7 began with an increase in IM then a decline with a constant expression level in both EP and MP
followed by dramatic decline in LP and PM. PDE11 showed a typical pattern consistent with the ecdysteroid expression level as it began with a slight increase in IM followed by an increased in EP and reached a peak in MP then declined in a dramatic way in LP and continued decreasing in PM. Taken together, the data suggest that PDE5 and PDE11 play a role in regulating cyclic nucleotide levels in the YO.

ACKNOWLEDGEMENTS

First and foremost, Alhamdullah (means Thanks GOD in Arabic) for giving me everything I've dreamt of, and the strength and power required to finish an important milestone in my life. I could have never done this without the faith I have in Allah, the Almighty.

Then, my great thanks, sincere gratitude, and appreciation to my advisor Dr. Donald Mykles for his gentleness, motivation, endless support, infinite encouragement, and supervision throughout my years of study. I could not have imagined a better advisor and mentor as a PhD student. I also extend my thanks and appreciation for my committee members: Dr. Garrity, Dr. Shane, and Dr. Santiago for their time, help, and insightful comments.

My thanks are comprehensive to the Ministry of Higher Education in Libya for supplying me this study scholarship. I am grateful to have my husband, Khalid, and my lovely children, Saja and Serajaldeen, beside me and for their understanding, patience, and support all these years. My sincere respect and gratitude to my dear father for his support, encouragement and enthusiasm to continue my higher studies, to my lovely mother for her continuous prayers to succeed; and to my sisters (Nahla and Nuha), and brothers (Adam, Anwar, and Ayoub) simply for being awesome siblings; and to my family-in-law for their support; and family and friends in Libya. Last but not least, I would like to thank all former and current students in the crab lab for being such a great family.

DEDICATION

In loving memory of my brother "Ahmad" (1983-2013), may Allah gather us together in heaven.

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDEGEMENTS v
DEDICATION vi
CHAPTER ONE: INTRODUCTION 1
CHAPTER TWO: IDENTIFICATION AND CHARACTERIZATION OF THE PHOSPHODIESTERASES (PDES) IN THE DECAPOD CRUSTACEAN'S Y-ORGAN USING
TRANSCRIPTOMICS AND qPCR 9
Summary 9
Introduction 10
Materials/Methods 13
Results 18
Discussion 23
Conclusions 31
CHAPTER THREE: EFFECTS OF MOLT INDUCTION METHODS ON CYCLIC
NUCLEOTIDE PHOSPHODIESTERASE EXPRESSION IN THE DECAPOD CRUSTACEAN
MOLTING GLAND 109
Summary 109
Introduction 110
Materials/Methods 113
Results 117
Discussion 120
Conclusions 123
CHAPTER FOUR: SUMMARY AND FUTURE DIRECTIONS 131
REFERENCES 134

CHAPTER ONE

Introduction

Background and Rationale:

Although a crustacean grows, its exoskeleton (made from chitin and calcium) does not, so the animal must molt its old exoskeleton to accommodate its expanding body, which is essential for growth, metamorphosis, and reproduction (Skinner, 1962). Depending on the rigidness of the exoskeleton, the crustacean molt cycle is divided into five distinctive stages designated from A to E (Drach, 1939). The molt cycle duration varies depending on the species. The process of molting is hormonally controlled. In preparation for molting, the tissue layer under the exoskeleton detaches and secretes a new exoskeleton. At this stage, the animal has two skeletons - the outer and the inner exoskeleton. After the two outermost layers of the new skeleton are formed, the old skeleton detaches along specific weak points and the animal pulls out, leaving its old skeleton intact except for the split. Mobility is limited immediately after a molt because the exoskeleton is not rigid enough to keep the limbs stiff. Although crustaceans molt throughout their entire life, they molt less frequently with age (Chang et al., 1993).

The crustacean molt cycle is divided into five stages (A-E), based on changes in the exoskeleton. The actual shedding of the exoskeleton occurs at ecdysis (Stage E) and is followed by postmolt stages A and B , which are both marked by thickening and hardening of the new exoskeleton. Anecdysis, or Stage C_{4}, or intermolt stage, is the interval characterized by a hard exoskeleton that is tightly adhered to the epidermis and is the stage during which the animal feeds and reproduces. Stages D_{1-4}, known as premolt or proecdysis, is when the animal prepares for
molting by synthesizing the outermost layers of a new exoskeleton and regenerates lost appendages (Chang and Mykles, 2011).

Molting in crustaceans might be affected by various environmental factors, such as reproduction, nourishment, and migration. Moreover, the frequency and timing of molting in crustaceans can be impacted by some conditions such as salinity and temperature (Skinner, 1985). The molting cycle in decapod crustaceans is controlled via two endocrine glands:

Molting can be stimulated or manipulated by eyestalk ablation (ESA), an acute method to induce molting in the lab, or autotomy of 5 or more walking legs (Multiple Leg Autotomy, MLA), which resembles the natural way. Molting is a very complicated process in which two glands contribute to complete this vital mission. The Y-organs (YOs) are a pair of molting glands located in the anterior body. The YOs secretes steroid molting hormones or ecdysteroids, which stimulate molting processes. The YOs are suppressed by molt-inhibiting hormone (MIH) and the crustacean hyperglycemic hormone (CHH), which are neuropeptides secreted by the X-organ -sinus gland complex found in the eyestalks (Lachaise et al., 1993, Covi et al., 2010).

MIH is a member of a novel neuropeptide family, which has been found only in arthropods. This neuropeptide family regulates a variety of functions including growth, molting, reproduction, and metabolism. MIH binds to hormone receptors on the membranes of YO cells and likely mediates its action via cyclic nucleotide second messengers (Covi et al., 2009). As shown in Fig. 1.1., MIH signaling usually involves an increase in cAMP, followed by a larger increase in cGMP. The delayed increase in cGMP suggests that MIH activates a soluble NO-sensitive guanylyl cyclase (GC-I), as activation of a membrane GC would result in an immediate increase in cGMP. Both cAMP and cGMP inhibit YO ecdysteroidogenesis (Covi et al., 2012). Phosphodiesterases
(PDEs) such as PDE1 and PDE5 hydrolyze cAMP and cGMP and thus control the responsiveness of YOs to MIH (Covi et al. 2012).

Molting is induced when MIH is decreased in the blood, which, in turn, stimulates the YO to produce and secrete ecdysteroids. The YO transitions from the "basal" to the "activated" state and the animal enters premolt. During mid-premolt, the YO transitions to the "committed" state, in which the YO becomes insensitive to MIH and CHH (Chang and Mykles 2011). The reduced sensitivity to the neuropeptide MIH is associated with a large increase in PDE activity (Fig1.2.) (Chang and Mykles 2011). This suggests that PDE activity controls the response to MIH and CHH during the molt cycle and may also explain the difference in the effect of IBMX, a universal PDE inhibitor, on the YOs of the two species.

Cyclic nucleotide phosphodiesterase's (PDEs) and their contribution in the MIH signaling

 pathway in the crustacean YO:Cyclic nucleotide phosphodiesterases (PDEs) are prevalent enzymes that have been significant and valuable targets in medical and pharmacological fields due to their critical function in regulating the second messengers adenosine $3^{\prime} 5^{\prime}$ cyclic monophosphate (cAMP) and/or guanosine 3'5' cyclic monophosphate (cGMP) in signal transduction pathways (Murthy and Mangot 2015). Upon binding of the ligand to its specific receptor on the cell membrane, the second messenger's concentrations will be changed, that alternatively will lead to the signal transmission within the cell. These second messengers are controlled by both the rate of synthesis, with the action of adenylyl/guanylyl cyclase on ATP/GTP and the rate of cAMP/cGMP degradation by the action of PDEs (Fajardo et al., 2014). So, PDEs are enzymes that hydrolyze the 3' cyclic phosphodiester bond in cAMP and cGMP to AMP and GMP, respectively. Mammals have 21 PDE genes that are categorized into 11 families, designated PDE1 to PDE11. Each PDE
family has specific catalytic and biochemical properties, protein sequences, inhibition tendency, and tissue distributions (Table 1.1) (Sandeep et al., 2008; Francis et al., 2011). Mammalian class I PDEs have an HD domain in the C-terminal half and show high affinity for cAMP and/or cGMP. Protein domains involved in regulation of PDE enzymatic activity and sub-cellular localization are mainly present in the N -terminal half. Some PDEs have phosphorylation sites targeted by protein kinases and lipid modification sites. Approximately 270 aa in the C-terminal catalytic domain are conserved, with a sequence identity of 35% to 50% among different PDE families. Some PDE families are composed of 2 to 4 subfamily genes showing sequence identity of more than 70% and having identical protein domain organization. Multiple transcriptional products, which are generated from most PDE genes by alternative splicing or transcription from distinct promoters, have been identified or predicted in human genome databases (Francis et al., 2011).

The number of PDE genes in crustaceans is unknown. YOs have PDE activity, which is inhibited by IBMX, 8MM-IBMX, and zaprinast, but not EHNA or rolipram (Nakatsuji et al., 2006). These data suggest that the YO has PDE1 and PDE5 activity, but not PDE2 or PDE4 activity. Interestingly, IBMX inhibits ecdysteroidogenesis in the green crab Carcinus maenas YO, but not the blackback land crab Gecarcinus lateralis YO, which suggests that there is a difference in cyclic nucleotide metabolism between the two species (Nakatsuji et al., 2009; Covi et al., 2008, 2009, 2012.

The purpose of this research project is to identify and characterize the different types of PDEs in the YO of the blackback land crab Gecarcinus lateralis and the green crab (Carcinus maenas) by using the power of transcriptomics, as well as conventional lab techniques, such as qPCR and in-vitro experiments. The hypothesis is based on the premise that the reduced sensitivity to MIH by the committed YO is associated with a large increase in PDE activity, which suggests that PDEs
modulate the response to the neuropeptide, MIH, during the molt cycle. Thus, increasing ecdysteroidogenesis.

This thesis addresses the identification and characterization of the PDEs in the land crab and green crab YO from the transcriptomics data, reports results from YO assays in both land crab and green crab, compares PDE gene expression in different tissues from both the land crab and green crab using qPCR, and reports the effects of MLA and ESA \pm rapamycin on PDE gene expression using RNA-seq and qPCR. The thesis concludes with a chapter summarizing the results and their significance and recommending future directions.

Figure 1.1. Proposed MIH signaling pathway regulating ecdysteroidogenesis in decapod crustacean molting gland. The "triggering" phase is initiated by binding of MIH to a G proteincoupled receptor (MIH-R) and activation of adenylyl cyclase (AC); cAMP increases intracellular Ca^{2+} via cAMP-dependent protein kinase (PKA) phosphorylation of Ca^{2+} channels. Sensitivity to MIH is determined by phosphodiesterase 1 (PDE1) activity, which varies during the molting cycle. The "summation" phase is mediated by NO and cGMP. Calmodulin (CaM) links the two phases by activating NO synthase (NOS) directly and indirectly via calcineurin (CaN). Dephosphorylation of NOS by CaM can potentially prolong the response to MIH. CaM can also activate PDE1 to inhibit the triggering phase (PDE1 can also hydrolyze cGMP, thus inhibiting the summation phase). cGMP-dependent protein kinase (PKG) inhibits ecdysteroidogenesis. Chronic activation of PKA may directly inhibit ecdysteroidogenesis. Our assumption is that YOs from all decapods are regulated by the same pathway but may differ in the sensitivity of the triggering and summation phases. Other abbreviations: G, G protein; GC-I, NO-sensitive guanylyl cyclase; PDE5, cGMP PDE. From Covi et al., (2012).

Figure 1. 2. Hormonal regulation of molting in the blackback land crab, Gecarcinus lateralis. Diagram shows the relationship between molt stage, YO state, YO sensitivity to MIH, limb regeneration (R index), YO ecdysteroid synthetic capacity, and hemolymph ecdysteroid titer. During postmolt (A, B, C $1-3$), intermolt (C_{4}), early premolt (D_{0}), and mid premolt ($\mathrm{D}_{1,2}$), hemolymph ecdysteroid titers are correlated with YO synthetic capacity; during late premolt ($\mathrm{D}_{3,4}$), high ecdysteroid represses YO ecdysteroidogenesis and ecdysteroid titer falls. The YO transitions through four physiological states during the molt cycle: basal (B), activated (A), committed (C), and repressed (R). The B to A transition is triggered by a reduction in MIH; the YOs hypertrophy, but remain sensitive to MIH, as premolt is suspended by MIH injection or by limb bud autotomy (LBA). At the A to C transition, the animal becomes committed to molt, as the YO is less sensitive to MIH and premolt is not suspended by LBA; this transition may be triggered by an increase in MIH or an unidentified tropic factor. At the C to R transition, YO ecdysteroid synthetic capacity remains high, but high hemolymph ecdysteroid titer inhibits ecdysteroid secretion. Molting, or ecdysis (E), marks the R to B transition, during which the YO atrophies and becomes sensitive to MIH. From Chang and Mykles (2011).

Table1.1. Human PDE isozymes are divided into 11 families and differ according to substrate specificity, mechanisms of regulation, and sensitivity to inhibitors. \uparrow represents an increase in catalytic activity, whereas \downarrow represents a decrease in catalytic activity. * Number of isozymes refers to the number of distinct protein products derived from all genes within a given family that have been identified to date. From Fajardo et al., (2014).

Isozyme Family	Number of Genes	Putative Number of Isozymes *	Substrate Specificity	Regulators	Inhibitors
1	3	21	dual	$\begin{gathered} \mathrm{Ca}^{2+}-\mathrm{CaM}: \uparrow \\ \text { PKA: } \downarrow \end{gathered}$	IC224, SH51866, 8-methoxymethyl-IBMX
2	1	3	dual	cGMP: \uparrow	EHNA, BAY 60-7550, PDP, IC933
3	2	4	dual	cGMP: \downarrow PKA: \uparrow	Milrinone, Tolafentrine, Cilostazol, Cilostamide, OPC-33540
4	4	31	cAMP	PKA: \downarrow	Rolipram, Cilomilast, Roflumilast, Ro20-1724, Denbufylline, AWD12281
5	1	3	cGMP	$\begin{gathered} \text { cGMP: } \uparrow \\ \text { PKG: } \uparrow \end{gathered}$	Sildenafil, Zaprinast, Dipyridamole, Tadalafil, Vardenafil DMPPO, E402, DA8159, 8-methoxymethyl-IBMX
6	3	3	cGMP	Transducin: \uparrow	Sildenafil, Dipyridamole, Zaprinast
7	2	7	cAMP	unknown	BRL 50481, IC242, Dipyridamole, Thiadiazoles
8	2	9	cAMP	unknown	Dipyridamole
9	1	2	cGMP	unknown	BAY73-669, SCH 51886, Zaprinast
10	1	10	dual	PKA: \uparrow	Papaverine, PF-2545920, PQ-10, Dipyridamole
11	1	4	dual	unknown	BC 11-38, Dipyridamole

CHAPTER TWO

IDENTIFICATION AND CHARACTERIZATION OF THE PHOSPHODIESTERASES (PDES) IN THE DECAPOD CRUSTACEAN'S Y-ORGAN USING TRANSCRIPTOMICS AND qPCR

Summary

Cyclic nucleotide signaling mediates the suppression of the crustacean molting gland (Yorgan or YO) by molt-inhibiting hormone (MIH). When MIH level drops the YO transitions from the basal to the activated state and the animal enters premolt. During mid-premolt, the YO transitions to the committed state, in which the YO becomes insensitive to MIH. Phosphodiesterases (PDEs) hydrolyze the phosphodiester bond in cAMP and cGMP to AMP and GMP, respectively, and thus can modulate the response of the YO to MIH. In some species, PDE inhibitors decrease molting hormone (ecdysteroid) biosynthesis by the YO in-vitro, indicating that PDE activity can keep cyclic nucleotide levels low. Increased PDE activity in the YO is correlated with a reduced sensitivity to MIH when the animal becomes committed to molt. In mammals, 21 PDE genes are organized into 11 families, designated PDE1 to PDE11. Each PDE family has specific catalytic and biochemical properties and tissue distributions. The number and types of PDE genes in crustaceans is unknown. A reference YO transcriptome from the blackback land crab (Gecarcinus lateralis), consisting of 3 biological replicates of intermolt animals, was analyzed for PDE sequences. Nine different contigs encoding seven full-length PDE sequences two partials were identified in G. lateralis. Seven contigs encoding four full-length PDE sequences
and three contigs encoding partial-length PDE were identified in the green shore crab (Carcinus maenas) transcriptome. Protein alignments and ClustalX analysis of the Gl-PDE sequences with orthogs from other species in the GenBank database showed that the sequences corresponded to PDE1, 2, $34,5,7,8,9$, and 11 . General and selective inhibitors were used to characterize the PDEs regulating ecdysteroid secretion in the green crab, Carcinus maenas, YO. IBMX, vinpocetine, EHNA and zaprinast \pm rMIH significantly inhibited ecdysteroid secretion, while rolipram, dipyridamole, and BC11-38 did not. This suggests that PDE1, PDE2 and PDE5/11 are primarily responsible for regulating cAMP and cGMP levels. No effect on ecdysteroidogenesis was seen on the blackback land crab, Gecarcinus lateralis, YOs when exposed to the same PDE inhibitors in-vitro, indicating different regulatory metabolic machineries between the two species.

Introduction

Cyclic nucleotide phosphodiesterases (PDEs) are enzymes involved in the regulation of the intracellular concentrations of the second messengers cAMP and/or cGMP (Thompson and Appleman, 1971; Conti, 2000; Soderling and Beavo 2000). PDEs belong to a highly conserved family among all the phyla, and due to their importance in the clinical field, they have received high attention and interest (Levy et al., 2011; Ahmad et al., 2015). Because of the biochemical properties, as well as distinguishing features and complexness of the PDE system, many sophisticated and advanced approaches have been established to understand their role in regulating the cyclic nucleotides cAMP/cGMP in several signaling pathways. This has been linked to the basic pharmacological fact that regulating the degradation of any ligand or second messenger provides greater efficiency, in terms of a prompt and a greater alteration in their percentage concentration, than the regulation and modulation of their synthesis rate (Bender and Beavo, 2006; Halpin, 2008).

In mammalian systems, the PDE I superfamily consists of 11 distinct PDE families where each family is unique in having different isoforms and splice variants. PDEs are the only known enzymes that are capable of hydrolyzing or breaking down the phosphodiester bond in the second messengers cAMP/cGMP to their 5^{\prime} inactive monophosphates, so their concentrations remain regulated throughout the cell at all times. PDEs are also effective in controlling the amplitude, spatial, and temporal duration of these cyclic nucleotides as well, so they are not located in unnecessary parts of a cell (Puzzo et al., 2008; Demirbas et al., 2013; Mittal et al., 2017).

Beside the crucial role of PDEs in mammals, PDEs have also been found to be pivotal in other species. For instance, the dunce gene, a cAMP PDE, in Drosophila melanogaster, fruit fly, is important in learning, memory and female fertility (Bellen et al., 1987; Yh et al., 1991; Day et al., 2005). Moreover, these PDEs, as the main players in the cAMP signaling pathway and the cGMP/NO signaling pathway, contribute indirectly in a variety of physiological processes; such as muscle relaxation, visual transduction, endocrine, neuronal, immune, and cardiovascular functions (Yan et al., 2016). Moreover, some PDEs will degrade only cAMP (PDE4, PDE7, PDE8), while others will only hydrolyze cGMP (PDE5, PDE6, PDE9). The rest of the PDE families, PDE1, PDE2, PDE3, PDE10, PDE11, are capable of catalyzing both second messengers as they have a dual specificity (Beavo and Brunton 2000; Mehats et al., 2002). It is thought that an invariant glutamine residue located at the catalytic core is responsible for the PDE cyclic nucleotide selectivity (Xu et al., 2000; Xu et al., 2004; Ke et al., 2011).

All eleven PDE families share a conserved catalytic domain on the carboxyl terminus and a variable regulatory domain on the amino terminus (Francis et al., 2011). About 270 conserved amino acids span the catalytic domain, and the sequence identity can reach high percentages of 35-50\% between different PDE families (Houslay and Adams, 2003). This identity can be up to
70% within the same family. The PDE catalytic domain is an alpha helical region that is composed of 16α-helices which in turn can be divided into three subdomains. These three subdomains form a deep hydrophobic pocket where a Zn^{++}binding site is located. Within the PDE catalytic domain, a glutamine switch (Q-switch) is made up of an invariant glutamine residue, which is important to control the selectivity of PDEs toward cAMP or cGMP or both cyclic nucleotides (Xu et al., 2000). On the other hand, regulatory domains differ among the PDE families and that is what makes each PDE family unique and special in terms of their mode of regulation and sensitivity to specific inhibitors. For instance, PDE1 was among the first discovered PDE families; it is particularly regulated by a $\mathrm{Ca}^{++} / \mathrm{Calmodulin}(\mathrm{CaM})$ binding site. PDE3 contains a transmembrane domain and PDE4 is modified by upstream conserved regions (UCRs). PDE8 has two distinct regulatory domains: a response regulatory receiver (REC) and PAS. PDE7 and PDE9 lack specific domains on their amino termini (Omori and Kotera, 2007). On the other hand, about half of the PDE families (PDE2, PDE5, PDE 6, PDE10, PDE11) have tandem GAF domains that function in the dimerization of these PDEs, in addition to the cGMP binding region (Ho et al., 2000; Yausa et al., 2000). Moreover, human PDEs databases show that 21 genes produce transcriptional variants that arose from alternative splicing or transcription from various promoters (Omori and Kotera, 2007; Francis et al., 2011).

The number and types of PDE genes in crustaceans is unknown. Studies by Nakatsuji et al(2008) addressed the hypothesis that the responsiveness of crayfish (Procambarus clarkii) YOs to MIH may be caused by the alteration of the PDE activity throughout the molt cycle. Furthermore, YOs have PDE activity, which is inhibited by IBMX, 8MM-IBMX, and zaprinast, but not EHNA or Ro-20-1724 (Nakatsuji, 2006). These data suggest that the YO has PDE1 and PDE5 activity, but not PDE2 or PDE4 activity. Interestingly, IBMX inhibits ecdysteroidogenesis
in the green shore crab Carcinus maenas YO, but not the G. lateralis YO, which suggests that there is a difference in cyclic nucleotide metabolism between the two species (Nakatsuji, 2009; Covi et al., 2008. 2009, 2012)

This study was conducted to identify and characterize the different PDEs in the crustacean YO. For this purpose, a reference YO transcriptome from the blackback land crab (Gecarcinus lateralis), consisting of 3 biological replicates of intermolt animals, was analyzed for PDE sequences that are essential elements in the cAMP/cGMP signaling pathways. Two different transcriptome databases of the green shore crab (Carcinus maenas) were used to extract different PDE families. Multiple alignments, phylogeny of PDEs from a variety of orthologs and a comparison between PDEs in both G. lateralis and H. sapiens are exhibited in this chapter. Invitro YO assays from both G. lateralis and C. maenas were performed to determine the effects of the different PDE inhibitors on ecdysteriodogenesis. Real-time PCR was conducted to compare the PDE gene expression from different tissues from the both studied decapod species.

Materials and Methods

Animals:

Adult male Gecarcinus lateralis (blackback land crabs) were collected from the Dominican Republic and shipped to Colorado, USA by commercial air cargo. The animals were adapted and acclimated to the new conditions by maintaining them at $27^{\circ} \mathrm{C}$ and a relative humidity of $\sim 80 \%$. Intermolt crabs were kept in plastic cages with aspen bedding moistened with 5 p.p.t. Instant Ocean (Aquarium Systems, Mentor, OH). Crabs were maintained in an environmental chamber in a 12 hrs light:12 hrs dark cycle and were fed iceberg lettuce, carrots, and raisins twice a week (Covi et al., 2010). Blackback land crabs molt about once a year. Our other model species, Carcinus maenas (green shore crab) was collected from Bodega Bay Harbor in California. Animals were
kept in their optimal conditions either in Bodega Marine Laboratory or when they were shipped to Colorado. At CSU, green crabs were fed chicken liver once a week and were maintained in aerated tanks less than half filled with 30 p.p.t Instant Ocean at $20^{\circ} \mathrm{C}$. The water was changed twice a week unless it became cloudy or a death happened in a tank (Lee et al., 2007).

Transcriptomics:

Gecarcinus lateralis and Carcinus maenas lack a fully sequenced genome. Therefore, a reference YO transcriptome from the blackback land crab (G. lateralis), consisting of 3 biological replicates of intermolt animals, was assembled from RNA-seq data. For this purpose, the fiddler crab (Uca pugnas) limb bud transcriptome was used as a query to extract the different PDEs in the land crab's YO transcriptome (Das et al., 2016). G lateralis PDEs served as queries to extract different PDEs from two C. maenas transcriptome databases (Tepolt \&Palumbi 2015; Verbruggen et al., 2015). By using the software perfectBlast, the PDE nucleotide sequences were extracted. Upon extraction, each nucleotide sequence was translated by using the translate tool, EXPASY (https://web.expasy.org/translate/) and the appropriate Open Reading Frame (OPR) was chosen. Then, a standard protein BLAST, blastp, (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch), as well as SMARTBLAST (https://blast.ncbi.nlm.nih.gov/smartblast/smartBlast.cgi) was used to find out the corresponded PDE and the possible similar orthologs. Also, a conserved domain search from the Conserved Domain Database (CDD) was used to locate the different PDE domains, (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). InterPro was used for protein sequence analysis and classification (https://www.ebi.ac.uk/interpro/)

In-vitro YO assays:

Hemolymph was withdrawn from each animal prior to dissecting. $100 \mu \mathrm{l}$ of hemolymph was combined with $300 \mu \mathrm{l}$ methanol ($\mathrm{MeOH} 100 \%$). Green crabs were dissected directly on the assigned date, but the case was a bit different for the land crabs as they were dissected on day 3 post ESA to allow the YOs to be stimulated and activated to secrete ecdysteroids. For both species, one YO of each pair was incubated in $500 \mu \mathrm{l}$ of crab saline with the appropriate vehicle (as the control), whereas the other pair was incubated in $500 \mu \mathrm{l}$ of crab saline with the experimental chemical agent, a PDE inhibitor (as the experimental). The incubation time for both control and experimental samples was 4.5 hours, then $200 \mu \mathrm{l}$ of media was added to $600 \mu \mathrm{l}$ Methanol $(\mathrm{MeOH}$ 100%). Hemolymph and media samples were sent to Bodega Marine Laboratory for ELISA to evaluate the ecdysteroid levels.

RNA isolation, cDNA synthesis and PCR:

Different tissues (B, CM, ESG, G, H, HG, HP, MG, T, TG, YO) were harvested from intermolt land crabs and green crabs. All tissues were placed immediately in RNA-later after cleaning the tissues in crab saline. Tissues were kept overnight in $4^{\circ} \mathrm{C}$, then transferred to $-20^{\circ} \mathrm{C}$ until the time of RNA purification. Total RNA was isolated from crab tissues using TRIzol reagent (Life Technologies, Carlsbad, CA) as described by (Covi et al., 2010). YO tissues ($50-200 \mathrm{mg}$) were homogenized by using a micro-tube homogenizer system, while all the other tissues were homogenized by a Qiagen TissueLyser 11 for two minutes at a frequency of 30 revolutions per second. One ml TRIzol was added to the samples, then centrifuged at $12,000 \mathrm{~g}$ for 15 min at $4^{\circ} \mathrm{C}$. Supernatants were phenol-chloroform extracted and RNA in the aqueous phase was precipitated using isopropanol (0.75 ml per 1 ml TRIzol reagent). RNA was treated with DNase I (Life Technologies), extracted twice with phenol: chloroform:isoamyl alcohol (25:24:1), precipitated
with isopropanol, washed twice with 70% ethanol in DEPC water, and resuspended in nucleasefree water. A nanodrop spectrophotometer was used to verify the purity of RNA. cDNA was synthesized using 2μ l total RNA in a 20μ l total reaction with SuperScript III reverse transcriptase (Life Technologies) and oligo-dT (20) VN primer ($50 \mu \mathrm{~mol} / \mathrm{l}$; IDT, Coralville, IA) as described (Covi et al., 2010). RNA was treated with RNase H (Fisher Scientific, Pittsburgh, PA) and stored at $-80^{\circ} \mathrm{C}$.

End-point PCR was used to amplify the desired product and to increase the yield of each PDE gene as well as making external standards of the different genes to be used later in qPCR. Sequence-specific primers (Table 2.2.) were utilized to detect the different PDE products in both land crab and green crab. Each PCR reaction contained $3 \mu \mathrm{l} \mathrm{DI} \mathrm{H}_{2} \mathrm{O}, 5 \mu \mathrm{l}$ Master Mix, $1 \mu \mathrm{l}$ cDNA template, and $0.5 \mu \mathrm{l}$ of each forward and reverse primers. The concentration of the primers was 20 $\mu \mathrm{M}$. cDNA was amplified in a thermocycler where denaturation occurred at $94{ }^{\circ} \mathrm{C}$ for 3 minutes to initiate the process, then followed by $30-35$ cycles of 30 seconds at $94^{\circ} \mathrm{C}, 30$ seconds at the lowest annealing temperature (see Table 2.1.), 30 seconds at $72{ }^{\circ} \mathrm{C}$. Final elongation was set for 7 minutes at $72^{\circ} \mathrm{C}$. PCR products were then separated on 1% agarose gel that contained TAE buffer (composed of 40 mM Tris acetate and 2 mM EDTA with an 8.5 pH). Ethidium bromide was applied to stain the gel and a UV light was used to visualize the gel.

Tissue expression of G. lateralis and C. maenas PDEs:

Real-time PCR (RT-PCR) was used to quantify the expression of the different PDEs in the following tissue; Brain, Claw Muscle, Eyestalk Ganglia, Gill, Heart, Hind Gut, Hepatopancreas, Mid Gut, Testis, Thoracic Ganglion, and Y-organ to display a panel comparison between two crustacean models; the blackback land crab G. lateralis and the green shore crab C. maenas. Animals from both species were adult intermolt male crabs.
cDNA was synthesized as indicated previously, and a LightCycler 480 thermocycler (Roche Applied Science, Indianapolis, IN) was used to quantify the mRNA transcripts of PDE1, PDE 2, PDE4, PDE7, PDE9, and PDE11 for G. lateralis and PDE4, PDE5, PDE9, and PDE11 for C. maenas. Each reaction consisted of $1 \mu \mathrm{l}$ cDNA or standard, $5 \mu \mathrm{l}$ SYBR Green I Master mix (Roche Applied Science), $3 \mu 1$ nuclease-free water, and $0.5 \mu 1$ each of 10 mM forward and reverse primers (Table 2.3). PCR conditions were as follows: an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min , followed by 45 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 10 s , annealing at $62^{\circ} \mathrm{C}$ for 20 s , and extensions at $72^{\circ} \mathrm{C}$ for 20 s , followed by melting curve analysis of the PCR product. Concentrations of mRNA transcripts were determined by the LightCycler 480 software (Roche, version 1.5) using a serial dilution of standards of the PCR product for each gene of interest. The amounts of mRNA transcript in copy numbers per $\mu \mathrm{g}$ of total RNA in the cDNA synthesis reaction were calculated based on the standard curve and the calculated molecular weight of dsDNA products.

Statistical Analysis and software:

Multiple sequence alignments were generated by utilizing ClustalX version 2.0.12 (Thompson et al., 1997) using the amino acid sequences. A phylogenetic tree was constructed by using PhyML 3.0 (Dereeper et al., 2008; Guindon et al., 2010; Anisimova and Gascuel 2010) and iTOL (Letunic and Bork 2016). A schematic diagram compared the domain organization between the G. lateralis and Homo sapiens PDEs. For in-vitro YO assays, a paired t-test was used to compare the means of ecdyseroid levels secreted from both control and experimental YOs. Primers were designed by IDT. Means for mRNA transcript abundance were compared using an analysis of variance (ANOVA) for tissue distribution versus log copy number. Sigma plot 12.5 software (Systat Software, Inc., Chicago, IL, USA) was used to produce and build up the graphs and figures. The Tukey test was used to determine significance among the means.

Results

Characterization and identification of PDEs from the G. lateralis YO transcriptome and C. maenas cardiac transcriptome:

A de novo transcriptome was used to characterize and identify the different PDE families located in the YO. The extraction resulted in a total of nine PDE contigs, including seven full length sequences and two partial sequences (Table 2.1). A de novo cardiac/assembly of C. maenas transcriptome was utilized to characterize and identify the different PDE families. The extraction resulted in a total of seven PDE contigs, four with full length sequences and three with partial sequences (Table 2.2.). ClustalX analysis assigned the G. lateralis PDEs to PDE1, PDE2, PDE3, PDE4, PDE5, PDE7, PDE8, PDE9, and PDE11. Multiple sequence alignments showed high sequence identities with orthologs from other species in the catalytic and other conserved functional domains. The conserved catalytic domain of all PDEs contained the initiating YHN (or FHN in PDE9) motif, as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$.

Characterization of $\mathrm{Ca}^{\text {²/CaM PDE Gl-PDE1: }}$

A full sequence length, $\sim 3037 \mathrm{bp}$, of PDE1 contig was found in the YO transcriptome through RNA sequencing (RNA-seq). Gl-PDE1 corresponds to the $\mathrm{Ca}^{+2} /$ calmodulin PDE in other orthologs, as it contains the following domains: a conserved catalytic domain at the carboxyl terminus and a regulatory domain specifically coding to $\mathrm{a}_{\mathrm{Ca}^{+2} / \text { calmodulin domain proximal to }}$ the amino terminus. Both the DNA and the deduced amino acid sequences are shown in Fig 2.1. Multiple sequence alignments of the G. lateralis PDE1 and other orthologs from different species
showed high levels of sequence identity/similarity (Fig 2.2). Identity to the fruit fly PDE1C was 55%, whereas identity to the human PDE1C was 44%.

Characterization of the GAF-PDEs: Gl-PDE2, Gl-PDE5, Cm-PDE5, Gl-PDE11, Cm-PDE11 and the specific cGMP Gl-PDE9 and Cm-PDE9:

Three GAF-PDEs with full length sequences were established in the G. lateralis YO transcriptome, as they corresponded to PDE2, PDE5, and PDE11 orthologs. All these genes were composed of the conserved catalytic domain and either one or two GAF regulatory domains. Whereas Gl-PDE2, a PDE dual substrate (4729 bp) contained only one GAF domain, namely GAF B (Fig. 2.3), Gl-PDE5, a cGMP binding PDE (6761 bp), and Gl-PDE11, a dual specificity PDE (5752 bp) had two tandem GAF domains (GAF A and GAF B) (Fig. $2.8 \&$ Fig. 2. 18). Cm-PDE5 (2996 bp) and Cm-PDE11 (5839 bp) were demonstrated in Figs. 2.9 \&. 2.19. Multiple sequence alignments showed high sequence identity/similarity. For instance, Gl-PDE2 shared 56\% identity with human PDE2A3 and 38% identity with C. elegans PDE2 (Fig. 2.4). Gl-PDE5 shared 89\% identity with Cm-PDE5 and 42\% identity with H. sapiens PDE5A (Fig. 2.10). The dual PDE, GlPDE11, shared 97% identity with Cm-PDE11 and about 72% with D. melanogaster PDE11C, whereas it shared 50% identity with the human PDE11A (Fig. 2.20). Moreover, Gl-PDE2, 5, \& 11 and Cm-PDE5 \& 11 contained the conserved motif sequence, NKFDE, in their GAF domains. Although Gl-PDE9 (4111 bp) and Cm-PDE9 (4356 bp) are cGMP-specific PDEs, they both lack the GAF domains. The DNA and amino acid sequences are presented in Fig. 2.15 and Fig. 2.16. Multiple alignments showed that Gl-PDE9 has an identity of 93% with Cm-PDE9, 52% with Dm PDE9B and 55\% with Hs-PDE9A (Fig. 2.17).

Characterization of cAMP-specific PDEs: Gl-PDE4, Cm-PDE4, Gl-PDE7 and Cm-PDE8:

cAMP-specific PDE, Gl-PDE4, and high affinity cAMP-specific PDE, Gl-PDE7, were found in the YO transcriptome as full length contigs (6130 bp and 7531 bp , respectively). Both PDEs had the conserved catalytic domain near the carboxyl terminus. Two upstream conserved regions (UCRs) have been detected in the regulatory domain in the Gl-PDE4 gene (Fig. 2.5). CmPDE4 was found in the cardiac transcriptome as a full length contig (6122 bp) with a conserved catalytic domain proximal to the COOH terminus. One UCR was observed in the regulatory domain region of Cm-PDE4 (Fig. 2. 6). Gl-PDE4 has an identity of 91% with Cm-PDE4, 64\% with the D. melanogaster dunce gene PDE4D and 60% with H. sapiens PDE4D3 (Fig. 2.7). The DNA and deduced amino acid sequences of Gl-PDE7 are shown in Fig. 2.11. Moreover, Gl-PDE7 has an identity of 46% to both PDE7A in H. sapiens and D. rerio (Fig. 2.12). High affinity cAMP specific and IBMX insensitive PDE, Cm-PDE8, has been revealed in the cardiac transcriptome of the green shore crab as a full length contig (3007 bp). Cm-PDE8 contains a conserved catalytic domain near the carboxy termini and the PAS regulatory domain in the amino terminus (Fig. 2.13). Multiple alignment of Cm-PDE8 with ortholog species showed identity of 44% with Dm-PDE8O and 36% with Hs-PDE8B (Fig. 2.14).

Phylogeny of G. lateralis and C. maenas PDEs with different orthologs:

A phylogenetic tree was constructed using the software iTOL (Interactive Tree Of Life), (https://itol.embl.de/itol.cgi). 102 PDE orthologs from different invertebrate and vertebrate species were compared to the nine G. lateralis PDE contigs from the YO transcriptome and seven C. maenas PDE contigs from the green shore crab cardiac transcriptome. All PDEs from G. lateralis and C. maenas were closely related. Moreover, all sixteen PDEs clustered with their corresponding orthologs (Letunic and Bork 2016) (Fig. 2.21).

Comparison between G. lateralis and H. sapiens PDEs:

As illustrated in Fig. 2.22, all nine PDEs from the blackback land crab were compared with the corresponding human PDE. The domain organization with their interval lengths are shown as well. Catalytic domains are located near the carboxyl terminus in both species. This was the case for all PDEs except for Gl-PDE7 and Gl-PDE9, as their catalytic domains seemed distal to the carboxyl terminus and were not organized with Hs-PDE7 and Hs-PDE9. Moreover, Gl-PDE2 contained only one GAF domain, which contrasted with Hs-PDE2, which has two GAF domains. Moreover, Gl-PDE3 and Gl-PDE8 were found as partial contigs, so no regulatory domains were present to match them to the corresponding human PDEs. PDE1, PDE4, PDE5, and PDE11 were similar in both species regarding their lengths and domain localization.

In-vitro Y-Organ assays in G. lateralis and C. maenas:

Y-organs in both studied species had undergone in-vitro assays to observe the effects of different PDE inhibitors on ecdysteroid synthesis and synthesis. In the green shore crab, C maenas, PDE inhibitors IBMX, vinpocetine, EHNA, and zaprinast inhibited YO ecdysteroid secretion (Table 2.4), which suggests that PDE1, PDE2, and PDE5/11 play major roles in controlling cyclic nucleotide levels in the YO of C. maenas. Ecdysteroidogenesis was not affected by either rolipram or dipyridamole, which selectively inhibit PDE4 and PDE7 (Table 2.4). In contrast, YOs from the blackback land crab, G. lateralis, showed no effect when exposed to the same PDE inhibitors (Table 2.5).

PDE gene expression in different tissues in both G. lateralis and C. maenas:

Quantitative-PCR (qPCR) was used to quantify the mRNA of the nine PDEs in eleven tissues: Brain (B), Claw Muscle (CM), Eyestalk Ganglia (ESG), Gill (G), Heart (H), Hindgut (HG), Hepatopancreas (HP), Midgut (MG), Testis (T), Thoracic Ganglion (TG), and Y-Organ (YO) in the blackback land crab and the green shore crab.
G. lateralis PDE1 was expressed in low levels in all tissues, but still there was a significant difference between the heart and YO, as well as the claw muscle, to the YO and midgut. G. lateralis $P D E 2$ and PDE5 showed relatively high expression in all the tissues with the highest mRNA level in the heart, which contrasted with PDE11, which was expressed at lower levels in the same tissues. Gl-PDE2 showed a significant increase of ~ 100-fold in the heart compared to hepatopancreas and hindgut. Also, the YO demonstrated considerable increase difference ($\sim 15-$ fold change) when compared to the hepatopancreas. Gl-PDE5 displayed slight significant increases between the YO and midgut (6.4 -fold change), and among the heart versus hepatopancreas and midgut (~ 10-fold change). The testes showed the highest Gl-PDE11 expression and this tissue was different from the claw muscle and hindgut (~ 8-fold change). An inconsiderable difference was exhibited when the YO was compared to the hindgut (Figs. 2.23 a , b, c, d). Gl-PDE 4,7, and 9 were expressed in such extremely low levels that they could be barely detected. There was no statistical significance among the tested tissues.

In contrast, C maenas $P D E 11$ was expressed at high levels in all the tissues except in the HG. A significant difference of mRNA expression of Cm-PDE11 was seen in the thoracic ganglion versus each of midgut, $\sim 15^{*} 10^{4}$-fold increase, and claw muscle, $\sim 5^{*} 10^{3}$ fold increase. Also, the eyestalk ganglia were significantly different from the midgut by $\sim 15 * 10^{3}$-fold increase. Cm PDE4, Cm-PDE8, and Cm-PDE9 were expressed in very low levels in all tissues. Cm-PDE4
displayed a minor difference when comparing the claw muscle to both thoracic ganglion and the YO. Moreover, a small statistical significance was noted between the testis and the YO. Cm-PDE8 demonstrated a slight statistical significance observed in the brain versus both the midgut and the thoracic ganglion, also there was a small change between the eyestalk ganglion and thoracic ganglion. Finally, Cm-PDE9 was expressed with minor differences in the thoracic ganglion versus both midgut and hindgut, and between the YO and hindgut (Figs. $2.24 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$).

Discussion

PDEs are important and crucial players in both cAMP and cGMP signaling pathways. They act as negative regulators that breakdown/hydrolyze these second messengers (Thompson and Appleman, 1971; Conti, 2000; Soderling and Beavo 2000). Since the numbers and types of PDEs are still unknown in crustaceans, a de novo transcriptome (Das et al., 2016) was used to identify and characterize these enzymes. In this novel study, nine PDE contigs were extracted from the YO transcriptome. Sequence analysis assigned the Gl-PDE sequences to seven full length PDEs: PDE1, PDE2, PDE4, PDE5, PDE7, PDE9, and PDE11 and two partial PDEs: PDE3 and PDE8, thus indicating a high diversity of PDE genes found in decapod crustaceans. By similarity and specificity, this group comprises three cAMP-PDEs, two cGMP-PDEs, and four dual-specific PDEs. Moreover, seven PDE contigs were extracted from a de novo assembly of the C. maenas cardiac transcriptome (Tepolt \& Palumbi 2015; Verbruggen et al., 2015). Sequence analysis assigned Cm-PDEs to four full-length PDEs: PDE4, PDE8, PDE9, and PDE11 and three partial PDEs: PDE1, PDE5 and PDE3. This prevalent expression of the assorted PDE genes in the YO of the blackback land crab and green shore crab might suggest a vital function in controlling the physiological differences that occur in the molting gland throughout the molt stages.

As a comparison to other arthropod models, the fruit fly, Drosophila melanogaster, genome encodes six different PDEs (Day et al., 2005), including the famous dunce gene that has been connected to several psychological issues because of its potential role in memory and learning (Walter \& Kiger 1984; Bolger et al., 1993).

By examining the deduced DNA and amino acid sequences for Gl-PDEs, as well as the pairwise comparison between Gl-PDEs and Hs-PDEs, the following features were noted: the conserved catalytic domain in all PDE families (which is located in the carboxyl region of the protein and accounts for about 270 amino acids) shares high identity and is composed of a dense alpha-helical structure composed of 16α-helices which in turn is divided into three subdomains. These α-helices form the active site, which is highly conserved among all PDE families (Charbonnea et al., 1986; Francis et al., 2011). Different affinities toward different cyclic nucleotide substrates are assumed to occur because of the slight variation in the catalytic domain for each PDE family (Manallack et al., 2005). Moreover, the active site is organized in two regions: the hydrolysis center and the hydrophobic recognition pocket (Wang et al.,2003; Liu et al., 2007). All PDEs have a similar structure regarding the hydrolysis center as they follow the general hydrolysis mechanism in breaking down and hydrolyzing cAMP/cGMP (Liu et al., 2007). The deep hydrophobic pocket, which can bind to either the substrate or the inhibitor, contains the glutamine switch (Q-switch). The Q-switch has a very important role in PDE nucleotide selectivity, as well as two metal binding sites important in catalytic activity, mainly divalent cations such as Zn^{2+} and possibly Mg^{2+}. Histidine residues are essential in chelating such metal ions (Xu et al., 2000; Houslay 2001; Richter et al., 2001; Liu et al., 2007; Ke et al., 2011). The basis of the glutamine switch is to either orient to hydrolyze cAMP or cGMP and, in that case, it will be constrained tightly with hydrogen bonds with the selective cyclic nucleotide. But in the
case of a dual PDE, the Q-switch rotates freely in either direction, depending on which substrate (cAMP/cGMP) needs to be hydrolyzed (Ke et al., 2011).

Interestingly, G. lateralis PDEs contained the conserved catalytic domain proximate to their C-terminus resembling other species. The length of the conserved catalytic domain in all studied Gl-PDEs ranged between 200-270 amino acids, which was comparable with previously characterized PDEs. Furthermore, the catalytic domain was initiated by the conserved signature sequence motif (YHN) in all PDEs, except in PDE9 which started with (FHN) and this was consistent with other orthologs from different invertebrate and vertebrate species (Broderick et al., 2003 and Wang et al., 2003). The metal binding motif with the specific sequence signature ($\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}$), which has about 11 invariant amino acids (Manallack et al., 2005), aligned nicely and was identical among G. lateralis PDEs and PDEs from other species.

In contrast, the N -terminal regulatory domain, which borders the catalytic domain, is unique and distinct for each PDE family. N-terminal regulatory domains regulate the enzymatic activity of PDEs. Also, regions that autoinhibit the catalytic domains or regulate PDE subcellular localization are found in the N-terminal region (Omori \& Kotera 2007; Azevedo et al., 2014).

The PDE1 family, a dual PDE, is the only family that depends exclusively on the influx of calcium ions to stimulate enzyme activity. This is an example of cross-talk between the cAMP and Ca^{2+} signal transduction pathways. Mammalian PDE1 has two $\mathrm{Ca}^{2+} /$ calmodulin $\left(\mathrm{Ca}^{2+} / \mathrm{CaM}\right)$ regulatory domains that contain binding sites for the $\mathrm{Ca}^{2+} / \mathrm{CaM}$ complex (Gross \& Clark 1977; Meeker \& Harden 1983; Gooraya et al., 2004; Gooraya \& Cooper 2005). In contrast to the human PDE1C, Gl-PDE1 contained only one $\mathrm{Ca}^{2+} / \mathrm{CaM}$ domain, which is similar to the Drosophila PDE1, suggesting that arthropods might not require both binding sites (Sonnenburg et al., 1995; Day et al., 2005).

The GAF domain represents a highly conserved sequence that has been conserved throughout more than 2 billion years of evolution. GAF got its name from the first three proteins in which the sequence was reported: cGMP-specific cyclic nucleotide PDEs, cyanobacterial
 bind cGMP, other proteins that contain these sequences do not bind cGMP (Martinez et al., 2002). Mammalian GAF-PDEs contain two tandem GAF domains, GAF-A and GAF-B, in the N-terminal region. Catalytic activation requires at least one of the GAF domains to bind a cGMP. For instance, PDE2 in mammalian systems contain two GAF domains, and GAF-B binds cGMP, whereas in PDE5, GAF-A binds this cyclic nucleotide (Lin et al., 2002; Francis 2005). Such binding causes a conformational change, allowing PKG to phosphorylate a nearby serine, which increases the catalytic activity. PDE11, the most recent PDE discovered and the one most related to PDE5, is still poorly understood, but it contains homologous regulatory domains as in PDE2 and PDE5. All GAF PDEs produce multiple variants via alternative splicing and different initiation sites.

Three GAF-PDEs, PDE2, 5, and 11 have been characterized in this study and they shared features and characteristics with other analogs, such as the conserved signature motif $\left(\mathrm{N}(\mathrm{K} / \mathrm{R}) \mathrm{X}_{n} \mathrm{FX}{ }_{3} \mathrm{DE}\right)$ specific to the GAF domains. Gl-PDE2 aligned nicely with C. elegans and H.sapiens with identical regions in the catalytic and regulatory domain. In contrast to Hs-PDE2, which contained two complete GAF domains, Gl-PDE2 contained only the GAF-B domain similar to the protozoan parasite Trypanosoma brucei Tb PDE2A and Tb PDE2B (Zoraghi \& Seebeck, 2002). Only one GAF domain binds to cGMP or cAMP (Martins et al., 1982; Heikaus et al., 2009). The presence of a single GAF domain in Gl-PDE2 might be enough to bind small molecules such as cAMP/cGMP in an allosteric manner to stimulate the catalytic core domain or might bind a different small molecule, since it is originated from a different ancestor than PDE5 and PDE11.

Due to the fact that Gl-PDE2 is a dual enzyme, it might serve and mediate a cross-talk between cAMP and cGMP signaling pathways (Houslay 2001; Yuasa et al., 2001). Gl-PDE5, Cm-PDE5, Gl-PDE11, and Cm-PDE11 contained two complete tandem GAF domains homologous to the Homo sapiens PDEs; Hs-PDE5A and Hs-PDE11A4, respectively. The two GAF domains are linked by a variable region of amino acids which was consistent with another GAF PDEs (Yuasa et al., 2001; Makhlouf et al., 2006).

Gl-PDE9 and Cm-PDE9, cGMP-specific PDEs, contained the conserved catalytic domain which aligned with other ortholog PDEs; however, no other regulatory domains were detected. Mammalian PDE9 has a high affinity for cGMP, and it is 20-100 fold higher than PDE5 and PDE6, respectively. This might indicate that PDE9 will be distributed in cells with low titers of cGMP. Moreover, PDE9 contains the most variant catalytic domain when compared to the other PDE family members. It is likely that cGMP binds to the catalytic domain since it lacks the GAF domain (Fisher et al., 1998; Omori \& Cotori 2007; Liu et al., 2008).

Gl-PDE4, Cm-PDE4 and Gl-PDE7 both hydrolyze cAMP and are highly similar to orthologs from other species (Figs. $2.6 \& 2.10$). In addition to the catalytic domain, Gl-PDE4 contains two Upstream Conserved Regions (UCRs) in its N-terminal region (Fig. 2.5) in a similar location to where GAF domains are found in PDE2, PDE5, and PDE11. This arrangement of domains is equivalent to dunce PDE, Dm-PDE4 and the human PDE, Hs-PDE4D. The regulatory domains, UCR1 and UCR2, are separated by sequences with less homology. Although the specific function of PDE4 is still open to assessment, studies on Drosophila revealed that a mutated dunce locus leads to impaired learning and memory in the fly (Bolger et al., 1993). In contrast, Cm-PDE4 contained only one UCR regulatory domain (UCR2) in its N-terminal region (Fig. 2.6). Human PDE4 isoforms exhibit both long forms (two UCR domains) and short forms (lack UCR1). This
complexity in PDE4 variants defines subcellular localization differences between the short and long forms (Xie et al., 2014). Gl-PDE7 is a PDE that hydrolyzes the second messenger, cAMP; it contained the conserved catalytic core domain and shared high similarities with its orthologs. Interestingly, the ORF of Gl-PDE7 displayed an extremely long sequence and ran to $\sim 1039 \mathrm{AA}$ when compared to either other G. lateralis PDEs or orthologs from different species. The 3' untranslated region showed a similar pattern and had an extended sequence $\sim 7531 \mathrm{bp}$ (Fig. 2.11). Such an observation might be the first of a kind to be seen in any PDE. Thus, it might have an importance in post-transcriptional regulation that is essential in mammalian cells (Matoulkova et al., 2012). Moreover, comparable to other studied PDEs to date, no specific regulatory domains were identified. Cm-PDE8 has a high affinity and specificity to hydrolyze cAMP. But is the only cAMP PDE that is insensitive to IBMX (Omori and Kotera, 2007). Cm-PDE8 displayed similar features compared to orthologs from other species in terms of the conserved catalytic domain and PAS regulatory domain. PAS is an acronym from the first three proteins in which in which the sequence was reported: $\underline{\mathbf{P}}$ eriodic circadian protein, $\underline{\text { Aryl }}$ hydrocarbon receptor nuclear translocator
 proteins and molecules (Tsai \& Beavo, 2012). Unlike other PAS proteins, the regulation of PDE8 through PAS is still unknown (Demirbas et al., 2013). Previous studies on PDE8 family stated that it is a regulator in steroidogenesis in Leydig cells, as well as in adrenal steroidogenesis (Tsai \& Beavo, 2012). Such findings might indicate the role of Cm-PDE8 on regulating the molting gland's ecdysteroidogenesis.

As shown in Figure 2. 21, phylogenetic analysis showed that Gl-PDEs and Cm-PDEs clustered with orthologs from invertebrate and vertebrate species indicating high homology and identity. The only exception observed was with PDE5. Invertebrate and vertebrate PDE5s
clustered in two divergent groups, which might indicate these PDE genes have two different ancestral origins. PDE1, 3, 4, 5, 8, 9, and 11 in both G. lateralis and C. maenas were closely related suggesting similar physiological systems.

YO in-vitro assays for both of our model species, green crab and backblack land crab, investigated the sensitivity to PDE inhibitors. Green crab YOs were sensitive to IBMX (3-isobutyl-1-methylxanthine), a potent non-selective PDE inhibitor (Table 2.4). Similar results have been reported in previous studies; IBMX significantly inhibits PDE in the crayfish P. clarkii (Nakatsuji et al., 2006). Moreover, in experiments done on Manduca larvae, Smith (1993) reported that the incubation of prothoracic glands (which are counterpart to crustacean YOs) with the molting hormone (PTTH) and IBMX in-vitro, blocked the degradation of cAMP but not cGMP. Also, PDE activity was seen in the absence of IBMX in the previous study (Smith 1993). Inhibition of PDEs, except PDE8 and PDE9, by IBMX caused an elevation in cAMP activity in the human adrenal gland (Beavo et al., 1970; Tomes et al., 1993). Vinpocetine, a selective PDE1 inhibitor extensively used on rats in studies on neurodegenerative diseases as in the case of Alzheimer's showed inhibition of PDE1 (Ahn et al., 1989; Deshmuch et al., 2010). Likewise, memory is enhanced in rodents and humans by vinpocetine, which increases cAMP levels (Deshmukh et al., 2011; Medina et al., 2011). Our results showed that green crab YOs were inhibited by vinpocetine, which might indicate a potential role of PDE1 in controlling ecdysteroid synthesis. EHNA, a specific PDE2 inhibitor, inhibited ecdysteroid secretion by the green crab YOs. Similar effects were also observed in mammalian nervous tissues but was not effective in pharmacological tests (Bessodes et al., 1982; Gomez \& Breitenbucher 2013). Zaprinast, a selective PDE5/PDE11 inhibitor, inhibited the green crab YOs. Zaprinast, the precursor of sildenafil (Viagra), inhibits PDE5 and PDE11 with different affinities. Zaprinast inhibited ecdysteroidogenesis in YOs of green crabs especially at
higher concentrations. Similar observations were seen in previous studies: In-vitro YO assays in crayfish, P. clarkia, demonstrated that Zaprinast partially inhibited PDE activity (Nakatsuji et al., 2006). Experiments on Drosophila showed that Zaprinast suppressed PDE6, the closest morphologically to PDE5, in Malpighian (renal) tubules (Broderick et al., 2004; Day et al., 2005).

Interestingly, rolipram (selective-PDE4 inhibitor), dipyridamole (selective-PDE7 inhibitor), and BC11-38 (potent PDE11 inhibitor) had no effect on the ecdysteroid secretion in all in-vitro YO assays of the green crab. These results differ from previously published studies on other species: in-vivo administration of rolipram showed that there were effective neurodegenerative and neuroprotective impacts on the spinal cord of rat embryos (Richer et al., 2001). Moreover, rolipram inhibited PDE4 in Drosophila and mice in therapeutic experiments which were done to find a cure for Fragile-X syndrome (Nikulina et al., 2004; Choi et al., 2015). Dipyridamole was used as an anti-inflammatory agent to inhibit PDE7. This chemical was used in specific locations where PDE7 is normally distributed, such as T-cells, B-cells, skeletal and cardiac muscles (Gresele et al., 2011). This might be the reason for the lack of inhibition of Gl-PDE7 in the YO. The novel PDE11 inhibitor, BC 11-38, was used in mice to inhibit PDE11A4 isoform (homologous to Gl-PDE11) in the brain, particularly the hippocampus, and showed tremendous effects as a therapeutic target for mood and depressive disorders (Kelly 2017). Even though this drug is known to have a high membrane permeability, it is still under investigation because of lack of information concerning whether it can cross the blood-brain barrier. Thus, might be the reason that YO ecdyseroidogenesis was not affected when exposed to the potent PDE11 inhibitor, BC1138. (Ceyhan et al., 2012; Kelly 2017). Another reason might be, the shortage of adequate information of the nature of PDE11 and how it selects specific inhibitors (Weeks et al., 2009). G.
lateralis YOs were insensitive to all tested PDE inhibitors in this work and that might point to the difference of the YOs regulatory systems between the two species (Table 2.5).

As illustrated in figure 2.23, a tissue distribution panel was constructed to compare the expression of the different PDEs in the YO with other tissues. Gl-PDE2 and Gl-PDE5 were expressed at their highest levels in heart tissue. Mammalian cardiomyocytes express PDE2, but not PDE5 (Weber et al., 2017). PDE2 was expressed at reasonably high levels compared to its expression in other tissues. Remarkably, Gl-PDE11 was highly expressed in the testis compared to other examined tissues. That pattern is parallel to the mammalian system in which PDE11 is expressed in the prostate and testis, as it is thought to function in spermatogenesis (Franscis 2005). Moreover, low expression of Gl-PDEs in the YO was not surprising as these molting glands were harvested from intermolt animals in which results were anticipated. Fig 2.24 shows the tissue expression of Cm-PDEs; Cm-PDE4, 8, and 9 were expressed in very low levels. Cm-PDE11 was expressed in high levels which might indicate a powerful function of this dual PDE in a variety of tissues, especially in the thoracic ganglion, eyestalk ganglia, and YO. Once again, the different gene expression patterns observed in the two studied species might be due of different metabolic systems and variable modes of regulation.

Conclusions

Nine contigs encoding seven full-length PDE sequences and two contigs encoding partiallength PDE were identified in the Gecarcinus lateralis Y-organ transcriptome. Seven contigs encoding four full-length PDE sequences and three contigs encoding partial-length PDE were identified in the Carcinus maenas transcriptome. Multiple sequence alignments showed high sequence identities with orthologs from other species mainly in the catalytic (PDEase) domain and in the regulatory domains. Sequence analysis assigned the Gl-PDE and Cm-PDEs sequences to

PDE1, PDE2, PDE3, PDE4, PDE5, PDE7, PDE8, PDE9, and PDE11 classes, indicating a high diversity of PDE genes are found in decapod crustaceans. PDE inhibitors IBMX, vinpocetine, EHNA, and Zaprinast inhibited YO ecdysteroid secretion, which suggests that PDE1, PDE2, and PDE5/11 play major roles in controlling cyclic nucleotide levels in the YO of green crab, C. maenas. The backblack land crab, G. lateralis, YOs showed no response when incubated in the same PDE inhibitors. Cm-PDE11, a dual PDE, was expressed at high levels in different tissues. This might indicate a crucial role of PDE11 in cAMP/cGMP signaling pathways; especially the MIH signaling pathway in the molting gland.

Table 2.1: Shows the nine PDE contigs extracted from the G. lateralis YO transcriptome. PDE1, PDE2, PDE4, PDE5, PDE7, PDE9, and PDE11 are full lengths, PDE3 and PDE8 are partial lengths. Abbreviations; AA: Amino Acid; bp: base pair; $\mathrm{Ca}^{+2} / \mathrm{CaM}$: calcium/calmodulin; cAMP: cyclic adenosine $3^{\prime}, 5^{\prime}$-monophosphate; cGMP: cyclic guanosine $3^{\prime}, 5^{\prime}$-monophosphate; PKA: protein kinase A; PKG: protein kinase G .

PDE						
Family	Contig\#	Contig length	ORF length	Descriptive Name	Substrate Specificity cAMP cAMP	Regulator
PDE1	c251477_g2_i1	3037 bp	690 AA	CaM-dependent PDE	+	+
PDE2	c263693_g1_i1	4729 bp	940 AA	cGMP-stimulated PDE	+	+
PDE3	c243404_g2_i1	1235 bp	275 AA	cGMP-inhibited PDE	+	+
PDE4	c226920_g1_i2	6130 bp	804 AA	cAMP-specific PDE	+	-
PDE5	c269402_g1_i2	6761 bp	861 AA	cGMP-binding PDE	-	+
PDE7	c266596_g1_i3	7531 bp	1039 AA	High affinity cAMP- specific PDE	+	PKG
PDE8	c263162_g1_i1	1675 bp	350 AA	High affinity cAMP- specific and IBMX- insensitive PDE	+	N/A
PDE9	c244059_g1_i2	4111 bp	699 AA	High affinity cGMP- specific PDE	+	-
PDE11	c263764_g1_i1	5752 bp	864 AA	Dual specificity PDE	+	N/A

Table 2.2: Shows the seven PDE contigs extracted from the \boldsymbol{C}. maenas transcriptomes. PDE4, PDE8, PDE9, and PDE11 are full lengths, PDE1, PDE3 and PDE5 are partial lengths. Abbreviations; AA: Amino Acid; bp: base pair; $\mathrm{Ca}^{+2} / \mathrm{CaM}$: calcium/calmodulin; cAMP: cyclic adenosine $3^{\prime}, 5^{\prime}$-monophosphate; cGMP: cyclic guanosine $3^{\prime}, 5^{\prime}$-monophosphate; PKA: protein kinase A; PKG: protein kinase G.

PDE Family	Contig \#	Contig length	ORF length	Descriptive Name	Substrate Specificity cAMP cGMP	Regulato r
PDE1	comp81969_c0_seq2	2014bp	355 AA	CaM dependent PDE	+ +	$\mathrm{Ca}^{+2} / \mathrm{CaM}$
PDE3	comp74103_c0_seq1	1168 bp	256 AA	cGMP-inhibited PDE	+ +	cGMP
PDE4	lcl\|Cmaenas_contig_7516	6122 bp	787 AA	cAMP-specific PDE	+	PKA
PDE5	comp86676_c0_seq7	2996 bp	861 AA	cGMP-binding PDE	+	PKG
PDE8	lcl\|Cmaenas_contig_4936	3007 bp	975 AA	```High affinity cAMP-specific and IBMX- insensitive PDE```	+	N/A
PDE9	lcl\|Cmaenas_contig_6558	4356 bp	620 AA	High affinity cGMP-specific PDE	+	N/A
PDE11	lcl\|Cmaenas_contig_16769	5839 bp	859 AA	Dual specificity PDE	+ +	N/A

Table 2.3. Oligonucleotide primers used in qPCR to identify gene expression of Gl-PDEs and $\mathbf{C m}$ PDEs in different tissues. Abbreviations: Gl, Gecarcinus lateralis; Cm, Carcinus maenas; F, Forward; R, Reverse, PDE, cyclic nucleotide phosphodiesterase; Numbers (1,2,4,5,7,8,9,11), PDE family.

Primer name	Primer sequence ($5^{\prime}-3^{\prime}$)	Amplicon Product (bp)	Annealing Temp.
Gl-PDE1-F2	GGTGGCAAAGTGGAAAGATAAAG	226	$62 \mathrm{C}^{\circ}$
Gl-PDE1-R2	CCTCCTCGTCTCTCTTCTTAGT		$62 \mathrm{C}^{\circ}$
Gl-PDE2 -F2	GGTGGTAGTGGCACGTTTAT	301	$62 \mathrm{C}^{\circ}$
Gl-PDE2 -R2	TСССТСТТТССТТССТСТТСТ		$62 \mathrm{C}^{\circ}$
Gl-PDE5-F2	CAGACCACCGGATGCTTATT	316	$62 \mathrm{C}^{\circ}$
Gl-PDE5 -R1	TCCTCGACCCGATTCTATGT		$62 \mathrm{C}^{\circ}$
Gl-PDE11-F2	GACTCCAGACTTGGTTCTTTCC	322	$62 \mathrm{C}^{\circ}$
Gl-PDE11-R2	CGACTGATGTCACTTGCATATC		$62 \mathrm{C}^{\circ}$
Cm-PDE4-F1	TTACCTATGGCGGCGAATG	103	$62 \mathrm{C}^{\circ}$
Cm-PDE4-R1	TGGGTCTGAATGGTTTCCAG		$62 \mathrm{C}^{\circ}$
Cm-PDE8-F1	GATATGTTTGATGCGTGGGATG	103	$62 \mathrm{C}^{\circ}$
Cm-PDE8-R1	TCTGTTCCTGTTCTTCCTGTTC		$62 \mathrm{C}^{\circ}$
Cm-PDE9-F1	GAAGTGTTTCGCCGCTTTC	101	$62 \mathrm{C}^{\circ}$
Cm-PDE9-R1	CCATACATCATCTGGGTCACG		$62 \mathrm{C}^{\circ}$
$\begin{gathered} \hline \text { Cm-PDE11- } \\ \text { F1 } \end{gathered}$	TTTCTGGATCTGGATCTGATTGG	102	$62 \mathrm{C}^{\circ}$
$\begin{aligned} & \hline \text { Cm-PDE11- } \\ & \text { R1 } \end{aligned}$	ATGATAGGTCACGTTGCGATAG		$62 \mathrm{C}^{\circ}$

GIPDE1 3037 nucleotides, structure: \underline{C} sequence
GGTGGGTGAGGGTGCGCGCGTCCGTCCTCCAGGCGTCCTCGTGTTAAGATTTCGGAAACA 61 CAGGAAAACTTATTAACAGGTGCCACGGCGGGAAAGGTGCAAAGGGAAGAAAAGAAAATA 121 GAGAAAAAGGAGGGAAAAATACTTATCGTCTCTCTTTGTACCCATGTTTTGTCCGGTGAG 181 TGACAAAAATGACTGAAAGAAAGGGTTAGGGAGGAGTAAACTGACTAAGAAGAGAGACGA 241 GGAGGAAAAGAACGAAAGGGAAGAAAGAACTGAAAGATAAGGAGGTACAAGAACGTGCTG 301 CTGTACTTAAGTGATATAACAAGAAAACGGGAGGAATAGAAAACGACTTACGGTGGCAAA 361 GTGGAAAGATAAAGAAAGCCAGAAAATGGAGGAAAATTCATAACAAATCCACTGAAAATA 421 TACATAAACTAACCACAAAATCTGAATAGCTCTGTCTTGTCTTGCTTATTCTTCTGACCA 481 TAGATTCATTACTCGGAAAATAAGGGAAGGAGTGAAGAAAGGAGAAACTAAAACAAACCA 541 ATTTAATTACACACATAACTAACCCAAAGTGAGGCAGTCTACCCTCACATGCTTGCCGCC 601 CTGTCCTCTGATCCTTTACCCACGAACCCAAACCAGCGGTGACACACGAGCCCTGAAAAT 661 GCCCTAAGAAGTGAACACAGGCATTCATCGGTATGCGGGCGGGGTCTGGCTGGCCTCACA 721 CCTGTCTTACCTGGCCACGCGACGCCCACACACCTTCGGACATGCTCAGGTGAAGGGGGT 781 GTCGCTATGGCCTCGCCCGGGCGTAAACTGGCCCCCGGAAAGGAAACGCTACATAAGAGC 841

| M | A | S | P | G | R | K | L | A | P | G | K | E | T | L | H | K | S | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | AACAGTGACCCGGTCCGTCGCATCCACCGCCAGTATGTGAAGAGTCGAGGGTCGGGAAGC 901 $\begin{array}{ccccccccccccccccccrr}N & S & D & P & V & R & R & I & H & R & Q & Y & V & K & S & R & G & S & G & S \\ \text { ACACCTGTATCCCGCTGCTTCCTTAACCTTGATGGCTACTCGTATGTCATAGTCGCCAGT } & 961\end{array}$ $\begin{array}{lllllllllllllllllllll}T & \mathrm{P} & \mathrm{V} & \mathrm{S} & \mathrm{R} & \mathrm{C} & \mathrm{F} & \mathrm{L} & \mathrm{N} & \mathrm{L} & \mathrm{D} & \mathrm{G} & \mathrm{Y} & \mathrm{S} & \mathrm{Y} & \mathrm{V} & \mathrm{I} & \mathrm{V} & \mathrm{A} & \mathrm{S} & 58\end{array}$ CCACCCGAGAAGAAGAAAGATTCGGTGGAGGACTCGAGCGTTCCTCCTCCACCCACCAGC 1021 $\begin{array}{lllllllllllllllllllll}P & \mathrm{P} & \mathrm{E} & \mathrm{K} & \mathrm{K} & \mathrm{K} & \mathrm{D} & \mathrm{S} & \mathrm{V} & \mathrm{E} & \mathrm{D} & \mathrm{S} & \mathrm{S} & \mathrm{V} & \mathrm{P} & \mathrm{P} & \mathrm{P} & \mathrm{P} & \mathrm{T} & \mathrm{S} & 78\end{array}$ AAGAATGGACAGCTCTCCAAGCAAGGGTCCCTCACCATCCTCCGGCGCTCCAGCAGCAGG 1081 $\begin{array}{lllllllllllllllllllll}K & N & G & Q & L & S & K & Q & G & S & L & T & I & L & R & R & S & S & S & R & 98\end{array}$ ACTCTGAGCGGCCGGGGGGCTCGCCACTCCTCCCAGACAGACGGCGATCCAGCAGACAAC 1141 $\begin{array}{lllllllllllllllllllll}T & L & S & G & R & G & A & R & H & S & S & Q & T & D & G & D & P & A & D & N & 118\end{array}$ GTTGACCTCCTGCAGGATGCCCTTCCCGCCGTGGACACACCTGAATCATGCGAAAAGGCC 1201 $\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{D} & \mathrm{L} & \mathrm{L} & \mathrm{Q} & \mathrm{D} & \mathrm{A} & \mathrm{L} & \mathrm{P} & \mathrm{A} & \mathrm{V} & \mathrm{D} & \mathrm{T} & \mathrm{P} & \mathrm{E} & \mathrm{S} & \mathrm{C} & \mathrm{E} & \mathrm{K} & \text { A } & 138\end{array}$ GCCATCAGGTTACGCGCCCTCCTCCGACATCTACAGGAGGGCGAGGTGGCTGTGGGAGTG 1261 $\begin{array}{lllllllllllllllllllll}A & I & R & L & R & A & L & L & R & H & L & Q & E & G & E & V & A & V & G & V & 158\end{array}$ CTGCAGAAGAACTTACAATTCGCCGCTGATGTTCTCGACTCGATCTACGTTGAGGAAACT 1321 $\begin{array}{lllllllllllllllllllll}\mathrm{L} & \mathrm{Q} & \mathrm{K} & \mathrm{N} & \mathrm{L} & \mathrm{Q} & \mathrm{F} & \mathrm{A} & \mathrm{A} & \mathrm{D} & \mathrm{V} & \mathrm{L} & \mathrm{D} & \mathrm{S} & \mathrm{I} & \mathrm{Y} & \mathrm{V} & \mathrm{E} & \mathrm{E} & \mathrm{T} & 178\end{array}$ AAGTCTGAGGTGACGAAGGATCGGGCTATAACCATCAGTCTGGGACCCCCAAGCAAGAAG 1381 $\begin{array}{lllllllllllllllllllll}\mathrm{K} & \mathrm{S} & \mathrm{E} & \mathrm{V} & \mathrm{T} & \mathrm{K} & \mathrm{D} & \mathrm{R} & \mathrm{A} & \mathrm{I} & \mathrm{T} & \mathrm{I} & \mathrm{S} & \mathrm{L} & \mathrm{G} & \mathrm{P} & \mathrm{P} & \mathrm{S} & \mathrm{K} & \mathrm{K} & 198\end{array}$ GGGCGTCGTCCCCCACTCTCCGCCGTCGCACTTGCCTCCAGGCGCCATGTCGGGFACGAG 1441 | G | R | R | P | P | L | S | A | V | A | L | A | S | R | R | H | V | G | D | E | 218 |
| :--- | GAGGACGAGCTGTCGGAGGTGGAGCCCGACGCGGTGCCGCAGGAGGTGAGGGAGTGGCTG 1501

 GCCTCGACCTTCACGCGGCAACTCAACACCTCGCGCAGGAAGACCGACGAGAAGCCAAGG 1561 | \boldsymbol{A} | S | T | F | T | R | Q | L | N | T | S | R | R | K | T | D | E | K | P | R | 258 |
| :--- | TTCAGGTCGGTGGCAAATGCTATACGCGCCGGCATCTTCGTTGAGCGđATCTACAGACGC 1621 $\begin{array}{lllllllllllllllllllll}\text { F } & R & S & V & A & N & A & I & R & A & G & I & F & V & E & R & I & Y & R & R & 278\end{array}$ СТСТССТССGCCACCTTCCTCCAGCTTCCCCCGGAGGTCACACGTATCCTGAAGAGCGTG 1681

$\begin{array}{lllllllllllllllllllll}L & S & S & A & T & F & L & Q & L & P & P & E & V & T & R & I & L & K & S & V & 298\end{array}$ GACGAGTGGAACTTCGACGTGTGGAAGTTGCAGGAGGCGAGCGCCAACACACCCCTCAGA 1741
$\begin{array}{lllllllllllllllllllll}\text { D } & \mathrm{E} & \mathrm{W} & \mathrm{N} & \mathrm{F} & \mathrm{D} & \mathrm{V} & \mathrm{W} & \mathrm{K} & \mathrm{L} & \text { Q } & \mathrm{E} & \mathrm{A} & \mathrm{S} & \mathrm{A} & \mathrm{N} & \mathrm{T} & \mathrm{P} & \mathrm{L} & \mathrm{R} & 318\end{array}$ TGCCTCGCCTACGAGCTCCTCAACCGCTACGGGCTCCTGCACAAGTTTAAGATGCCGCCC 1801
$\begin{array}{lllllllllllllllllllll}\text { C } & \mathrm{L} & \mathrm{A} & \mathrm{Y} & \mathrm{E} & \mathrm{L} & \mathrm{L} & \mathrm{N} & \mathrm{R} & \mathrm{Y} & \mathrm{G} & \mathrm{L} & \mathrm{L} & \mathrm{H} & \mathrm{K} & \mathrm{F} & \mathrm{K} & \mathrm{M} & \mathrm{P} & \mathrm{P} & 338\end{array}$ GCCACGCTGGAGACGTTTTTGACGCAGGTGGAGAATGGCTACTGCAAGTACAAGAACCCA 1861

| A | T | L | E | T | F | L | T | Q | V | E | N | G | Y | C | K | Y | K | N | P | 358 |
| :--- | TACCACAACAACGTGCATGCTGCCGACGTGCTGCAGACGATGCACTACATGCTCTCCCAG 1921

 ACAGGGCTTATGAACTGGCTCAATGACGTGGAGATCCTGGCGACCCTGATGGCGGCGCTG 1981 T G L. M N W E. N D V ATCCATGACTACGAGCACACGGGCACCACCAACAACTTCCACGTCATGTCAGGCTCCGAG 2041
$\begin{array}{lllllllllllllllllllll}\text { I } & \mathbf{H} & \mathbf{D} & \mathbf{Y} & \mathbf{E} & \mathbf{H} & \mathbf{T} & \mathbf{G} & \mathbf{T} & \mathbf{T} & \mathbf{N} & \mathrm{N} & \mathrm{F} & \mathrm{H} & \mathrm{V} & \mathrm{M} & \mathrm{S} & \mathrm{G} & \mathrm{S} & \mathrm{E} & 418\end{array}$

Figure.2.1.Nucleotide and amino acid sequence of cDNA encoding GI-PDE1. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. Calcium/calmodulin regulatory domain is indicated by a red box and contains the PDEase_I_N found only in the N-terminus. $\mathrm{Ca}^{+2} /$ calmodulin binding site is indicated in bold red. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature ($\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}$) underlined and in blue.

| GlPDE1 | $:$ | $-----------------M A S P---G R K L A P G K E T L H K S N S ~$ |
| :--- | :--- | :--- |$: 20$

| GIPDE1 | : DPVRR-IHRQYVK--------SRGSGSTPVSRCFLN--LD |
| :--- | :--- |$: 49$

GlPDE1		66
Dm. PDE1C	TESLPPVDTPDALNKAAGRIRSLLRRMDHETVAYEDMQRN	120
Ce.PDE1	LNGLDCKKNAVAARRAG	81
Hs.PDE1C		-

GlPDE1	$:------------V E D S S V P P P P T S K N G Q L S-------K Q G ~$	87
Dm.PDE1C	$:$	LHYAARVLEAVFIDESRSPTTGKTKLGQIASSSVESEEEG

| GlPDE1 | $:$ | S-------ITILRRSSSR----TLSGRGARHSSQTDGDP-- |
| :--- | :--- | :--- |$: 115$

| GlPDE1 | $:$ | $--------A D N V D L L Q D----------------A L P A V D T: ~$ |
| :--- | :--- | :--- | 131

GIPDE1 : LQKNLQEAADVIDSIYVEETKSEVTKDRAITISLGPPS-- : 196
Dm.PDE1C : STSTITSQTTTSSSATAEPSAKAAESQAGSAGSSGSCSNP : 320
Ce.PDE1 : LKRNIEYAALVIETAYMDETR------------------- : 190
Hs.PDEIC : LKKNLEYAATVLESVYIDETR-------------------- : 81

GlPDE1 : TQKNLPEAADVIDSIYVE TKESEVTKDRAITISLGPpS-- : 196 Dm.PDE1C : STSTLTSQTTTSSSATAEPSAKAAESQAGSAGSSGSCSNP : 320
 Hs.PDE1C : LKKNLEYAATVLESVYIDETR---------------------- : 81

560403298
GlPDE1 : TP---TIAEEPHNEPGGPIKRPVRPGG-------------- : 613
GlPDE1 : TP---TIAEEPHNEPGGPIKRPVRPGG-------------- : 613
Dm.PDE1C : KSKPATLVEHETTANSTTNSAIVIPNSGITPSMDKPRDHR : 759
Dm.PDE1C : KSKPATLVEHETTANSTTNSAIVIPNSGITPSMDKPRDHR : 759
Ce.PDE1 : PTDSLFPPSVDGGDDKSPSNALSPLPDLRNSSTSPS---- : 597
Ce.PDE1 : PTDSLFPPSVDGGDDKSPSNALSPLPDLRNSSTSPS---- : 597
Hs.PDE1C : SQTGGTGQRRSSLNSISSSDAKRSGVKTSGSEGSAP---- : 493
Hs.PDE1C : SQTGGTGQRRSSLNSISSSDAKRSGVKTSGSEGSAP---- : 493
GlPDE1 : ---------------VVG-----VEVRRPWDCIAANKAR : 633
Dm.PDE1C : TEAKTTAAECLARKSVTGTTASKFNIPKPWLTCLVENKRI : 799
Ce.PDE1 : -----------SIRRIPLNYAGKLDIPTPWMKFLHENKAH : 626
Hs.PDE1C : -------------INNSVISVDYKSFKATWTEVVHINRER : 520


```
GlPDE1 : EDAPEDTIEEEEGEGGKGEASNEENGE--------------- : 690
Dm.PDE1C : ESKPETETADGEQSEPAAEPADGAAA---------------- : 855
Ce.PDE1 : KENGVTTN---------------------------------- : 664
Hs.PDE1C : SGKA KKTSGETKNQVNGTRANKSDNPRGKNSKAEKSSGE : 600
```

Figure 2.2. Multiple alignment of deduced amino acid sequences of PDE1 proteins in one crustacean species, one insect species, one nematode species and one mammalian species. Abbreviations: Gl: G lateralis; Dm:, D melanogaster; Ce: C elegans; Hs: H sapiens. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 1.

GLPDE2 4729 nucleotides, structure: sequence T

CACGTTTATAGTGTTGCCAGTTACCTGTGGTGGTGTGGGGCTGAGCAGTCGTGTAAAACT 61 AACCTCCGCTACTTGTTTTAAAAGAGGACGTGAACTTGTACTTCCTGTCTGGTTTTAGTG 121 ACGCGACTTCAAGAACAAGGATTGAACTTCTGTCCTGAACCTGTGCGTGCGAGTGTGCGT 181 GAAGTGAGAGAGGTGGAGGGTGAGAGGGAGGGAGAGGCGTCGACCGAACACTTAGTTACT 241 CGTGATGTGTGTCTCGGCGGCGAGGCCATGCTGTGGAGGAAGGTCGACTAGATGGCCTTT 301 ACCACTGAGCTCATGAAGAGGTGACCTAGGATGGGGTCACTCCCTCCTGCCCGAGACGCC 361 TGACGTGGCTTGACCCGAGGCATGGGGTCCAAGTTGACCTGCGCCGGCAGTGGCACGGAG 421 $\begin{array}{llllllllllllll}M & G & S & K & L & T & C & A & G & S & G & T & E & 13\end{array}$ GACTCCACTATGGGGCAAGAGGAGCCAGCAAAGGCGGAGGAAGATGCCACTGATGGAGGA 481 $\begin{array}{lllllllllllllllllllll}D & S & T & M & G & Q & E & E & P & A & K & A & E & E & D & A & T & D & G & G & 33\end{array}$ GGACAAGGAGGTGAAAAAGGAGGAGGGGGGAAGAGAAGAGGAAGGAAAGAGGGAGTAGAG 541
 GAGGTGACGGAAGACGACGCAAAAAGACTCCTGGAACTTGTCTCTTCGTTGAGCGATCAG 601
 GACGCCGCGGGGATGCAAGTAAAAGTGAACCATTATCTGGCGGCGCGCTGTGGGGCGGGT 661
 CTCGTCTTCCTCATCCTCGTGAGTGACGATGAGGAGCTCTCCGTACACGTCCTGGGCCCT 721
 CACCGCCTCTCCTGCCCCGTCAAAATACCTGTCAGCAACAACAGCTTCAGCACGGCCCTC 781 $\begin{array}{lllllllllllllllllllll}\mathrm{H} & \mathrm{R} & \mathrm{L} & \mathrm{S} & \mathrm{C} & \mathrm{P} & \mathrm{V} & \mathrm{K} & \mathrm{I} & \mathrm{P} & \mathrm{V} & \mathrm{S} & \mathrm{N} & \mathrm{N} & \mathrm{S} & \mathrm{F} & \mathrm{S} & \mathrm{T} & \mathrm{A} & \mathrm{L} & 133\end{array}$ GCCTCGCGTCGGCCCATCACGCTGGCGGACATCGAGCCGTCGCACCGCGAGGACCTGTGG 841 $\begin{array}{lllllllllllllllllllll}A & S & R & R & P & I & T & L & A & D & I & E & P & S & H & R & E & D & L & W & 153\end{array}$ CGCCTGCTGGGCCTCATCCACGACAGCGAGCGGTTCGGGGCGGTGCGGCGCGTGTGTGTG 901 $\begin{array}{lllllllllllllllllllll}R & L & L & G & L & I & H & D & S & E & R & F & G & A & V & R & R & V & C & V & 173\end{array}$ GACCCTGGCGGCGGCGGTGAGGGCGAGGGCGTGGGCCAGGAGCGTCGCTGCCTGCGGGAG 961
 ACACGCAATGGCTCGGCGAAGAGTGTGGACAGCTCCACCCCTGCCTCCCGCAAGCTGTTC 1021 $\begin{array}{llllllllllllllllllll} & T & \mathrm{R} & \mathrm{N} & \mathrm{G} & \mathrm{S} & \mathrm{A} & \mathrm{K} & \mathrm{S} & \mathrm{V} & \mathrm{D} & \mathrm{S} & \mathrm{S} & \mathrm{T} & \mathrm{P} & \mathrm{A} & \mathrm{S} & \mathrm{R} & \mathrm{K} & \mathrm{L} \\ \mathrm{F} & 213\end{array}$ AGGGACATGTCTGTGGACCAGGGCATGGGCGGCGGCCCCAGCGATGCGTCGCAGCCCAGG 1081 $\begin{array}{lllllllllllllllllllll}R & D & M & S & V & D & Q & G & M & G & G & G & P & S & D & A & S & Q & P & R & 233\end{array}$ CGCTCCTCGGCGGCGCCCCGCATGGCCTTCATCGCGCACAAGCCCCAGCGGGCACCCACA 1141 $\begin{array}{lllllllllllllllllllll}R & S & S & A & A & P & R & M & A & F & I & A & H & K & P & Q & R & A & P & T & 253\end{array}$ GTCTCTGGCCCTGACGACAACCCCCCCGCCAGGCTGCCCCCCATCATGCCCTCTGCCAAC 1201 $\begin{array}{lllllllllllllllllllll}V & S & G & P & D & D & N & P & P & A & R & L & P & P & I & M & P & S & A & N & 273\end{array}$ ATGCCCCCAGTCGAGGCCAACCACGCCCCCAAGAGCCCCCACAAGGTGCCTAAGCTGGGG 1261 $\begin{array}{lllllllllllllllllllll}M & P & P & V & E & A & N & H & A & P & K & S & P & H & K & V & P & K & L & G & 293\end{array}$ CACCACGACCACGCGGGACTCGAGTCAGCGGGGCGGCAGTGCGGGTCGCTGGGCCTCGTG 1321 $\begin{array}{lllllllllllllllllllll}H & H & D & H & A & G & L & E & S & A & G & R & Q & C & G & S & L & G & L & V & 313\end{array}$ TGTCCCGCCTCGCTGCTGTGCGTGCCCGTGGCGGCGCCAGGCCGCGACGCCACCGCCATC 1381 $\begin{array}{lllllllllllllllllllll}C & P & A & S & L & L & C & V & P & V & A & A & P & G & R & D & A & T & A & I & 333\end{array}$ CTGGCCGTGCTGGTGGACAAACAGGGCGGCGGGGACTTTACTACGCAGGACGTAGAGGTC 1441 $\begin{array}{lllllllllllllllllllll}\mathrm{L} & \mathrm{A} & \mathrm{V} & \mathrm{L} & \mathrm{V} & \mathrm{D} & \mathrm{K} & \mathrm{Q} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{D} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \text { Q } & \mathrm{D} & \mathrm{V} & \mathrm{E} & \mathrm{V} & 353\end{array}$ GTAACGCGCTGCTTCAGGTGTGTGGCGGGCATCCTGATGAACACGGCGGAGGCGGAGCGG 1501 $\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{T} & \mathrm{R} & \mathrm{C} & \mathrm{F} & \mathrm{R} & \mathrm{C} & \mathrm{V} & \mathrm{A} & \mathrm{G} & \mathrm{I} & \mathrm{L} & \mathrm{M} & \mathrm{N} & \mathrm{T} & \mathrm{A} & \mathrm{E} & \mathrm{A} & \mathrm{E} & \mathrm{R} & 373\end{array}$ GAGCGGCGGCTCAGGACCCAGTGCCAGGCCCTCCTGACGGTGGCACAGAACCTCTTCACT 1561 $\begin{array}{lllllllllllllllllllll}\mathrm{E} & \mathrm{R} & \mathrm{R} & \mathrm{L} & \mathrm{R} & \mathrm{T} & \mathrm{Q} & \mathrm{C} & \mathrm{Q} & \mathrm{A} & \mathrm{L} & \mathrm{L} & \mathrm{T} & \mathrm{V} & \mathrm{A} & \mathrm{Q} & \mathrm{N} & \mathrm{L} & \mathrm{F} & \mathrm{T} & 393\end{array}$ CACCTCGAT FACGTGTCGGTGCTGCTGCGTGAGATCATGGCTGAGGCGCGGCAGCTGACG 1621 $\begin{array}{lllllllllllllllllllll}H & L & D & D & V & S & V & L & L & R & E & I & M & A & E & A & R & \text { Q } & \text { L } & \text { T } & 413\end{array}$ GACGCCGAACGGTGTTCTCTGTTCCTGCTGGACCGAGAACACGGGCAGCTGGTGGCCAAG 1681 D A E R C C C L F L L GTGTTTGACGGGGAGCGGAAGGAGGAGTCCATCGAAGAAGTTCTCCTGCCAGTCTTGCAG 1741 $\begin{array}{lllllllllllllllllllll}V & F & D & G & E & R & K & E & E & S & I & E & E & V & L & L & P & V & L & Q & 453\end{array}$ AATTTACCTGGCGTCTACGTCACGAGCTCAGGTGAGGTGCGTCTGCCTGCCACTCAAGGG 1801 $\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{G} & \mathrm{V} & \mathrm{Y} & \mathrm{V} & \mathrm{T} & \mathrm{S} & \mathrm{S} & \mathrm{G} & \mathrm{E} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{P} & \mathrm{A} & \mathrm{T} & \mathrm{Q} & \mathrm{G} & 473\end{array}$

```
ATAGCCGGCCATGTAGCTTCCACTGGGCACCTGTTGAACATACGGGACGCCTACGCTCAC 1861
```

 I A G H V A S T G H L L
 ССТСТСТTСTATCGCGGCTTTGACGAGTGCACCGGCTTCAAGACCAGAAACATCCTTTGC 1921
$\begin{array}{lllllllllllllllllllll}\text { P } & \mathrm{L} & \mathrm{F} & \mathrm{Y} & \mathrm{R} & \mathrm{G} & \mathrm{F} & \mathrm{D} & \mathrm{E} & \mathrm{C} & \mathrm{T} & \mathrm{G} & \mathrm{F} & \mathrm{K} & \mathrm{T} & \mathrm{R} & \mathrm{N} & \mathrm{I} & \mathrm{L} & \mathrm{C} & 513\end{array}$
TTCCCGATCAAGCAGGACGGGGAGGTGATAGGCGTGGCGGAGCTCTGTAACAAGACTACT 1981
$\begin{array}{lllllllllllllllllllll}\mathrm{F} & \mathrm{P} & \mathrm{I} & \mathrm{K} & \mathrm{Q} & \mathrm{D} & \mathrm{G} & \mathrm{E} & \mathrm{V} & \mathrm{I} & \mathrm{G} & \mathrm{V} & \mathrm{A} & \mathrm{E} & \mathrm{L} & \mathrm{C} & \mathrm{N} & \mathrm{K} & \mathrm{T} & \mathrm{T} & 533\end{array}$
GGCCTCCACTTCACACGCTTCGATGAGGAGATTGCCACAGCCTTTAGTATCTACTGCGGC 2041

ATCTCCATCAGCAACTCGCTCCTCTATAAGAAGGTCTCCGAGTCGCAGGTCCGCTCCAAG 2101
$\begin{array}{lllllllllllllllllllll} & I & S & I & S & N & S & L & L & Y & K & K & V & S & E & S & Q & V & R & S & K\end{array}$
CTGTCCAACGAGCTCATGATGTTCCATATGAAGGTCACCAAGGAGGAGGTGGAGCGACTG 2161
$\begin{array}{lllllllllllllllllllll}\mathrm{L} & \mathrm{S} & \mathrm{N} & \mathrm{E} & \mathrm{L} & \mathrm{M} & \mathrm{M} & \mathrm{F} & \mathrm{H} & \mathrm{M} & \mathrm{K} & \mathrm{V} & \mathrm{T} & \mathrm{K} & \mathrm{E} & \mathrm{E} & \mathrm{V} & \mathrm{E} & \mathrm{R} & \mathrm{L} & 593\end{array}$
GTTCAGGCCGAGGTTCCTCCACTTACACAATTCCACCGTGACTTCTGTTCCTTCAGATAC 2221
$\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{Q} & \mathrm{A} & \mathrm{E} & \mathrm{V} & \mathrm{P} & \mathrm{P} & \mathrm{L} & \mathrm{T} & \mathrm{Q} & \mathrm{F} & \mathrm{H} & \mathrm{R} & \mathrm{D} & \mathrm{F} & \mathrm{C} & \mathrm{S} & \mathrm{F} & \mathrm{R} & \mathrm{Y} & 613\end{array}$
TTCCCGCGCCAGCTGGCTGACCCCTGCACATCCCCGGCGATCCTCTCGATGGTGGAGAGC 2281
$\begin{array}{lllllllllllllllllllll} & F & P & R & Q & L & A & D & P & C & T & S & P & A & I & L & S & M & V & E & S\end{array}$
CTGGGCATGATCACCAAGTTCAGGCTGAGTCGCGAGTCCCTGGCCAGGTTCACTCTTATG 2341

GTGCGAAAAGGTTACCGGGATCCACCGTACCACAACTGGTTGCACGCCTTCTCTGTCACC 2401
$\begin{array}{llllllllllllllllllll}V & R & K & G & Y & R & D & P & P & Y & H & N & W & L & H & A & F & S & V & T\end{array}$
CACTTCGCCTTCCTGCTGCTCCAGAACCTGAAGCTGGTGGAGCGCGGCGTCCTCACCTCC 2461
现
CTGGAAGCACTGGCACTCATAGTGTCTTCCATGTGTCACGACCTGGACCACCGCGGCACC 2521
$\begin{array}{lllllllllllllllllllll}\mathrm{L} & \mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{A} & \mathrm{L} & \mathrm{I} & \mathrm{V} & \mathrm{S} & \mathrm{S} & \mathrm{M} & \mathrm{C} & \mathbf{H} & \mathbf{D} & \mathbf{L} & \mathbf{D} & \mathbf{H} & \mathbf{R} & \mathbf{G} & \mathbf{T} & 713\end{array}$
ACAAACTCCTTCCAAGTGGCGAGCAACTCAGTACTGGCGTCGCTGTACTCCTCCGAGGGT 2581

T	N	S	F	B	V	A	S	E	S	V	L	E	S	E	X	S	S	E	G

 TCCGTCATGGAGCGGCACCACCTTGCTCAGGCCATGTGCATCCTCAACACCGACGACTGC 2641
 S V M W R W W
 AACTTCCTGGAGAACCTGAGCCGCGAGGAGTACACCAAGTTCCTCGACCTTATGAGAGAC 2701
的 F I E N I
ATCATTCTGGCCACTGACTTGGCCCACCACCTCCGGATCGTGTCTGAGCTGCGCCAGGTA 2761

GCAAATACAGGCTATGACCCCGCCAACCAACGCCACCACGAGCTGCTCATCTGCCTCCTC 2821

ATGACAGCAGCAGATCTGTCAGACCAAACGAAGGACTGGCACTCATCTAAGCATGTGGCT 2881

GAGCTGATCTACAAAGAGTTCTTCACTCAAGGAGACTTAGAGAAGGCGATGGGGAACATG 2941

CCTCTGGAGATGATGGACCGAGAGAAAGCCTTCATCCCAGAGCTTCAGCTTCAGTTTCTG 3001

GATGATGTGGCAATTCCTGTTTATGAGATCGTTGCCAAGTTGTTCCCTGAGGCTGAGGAA 3061

CCCTACAGCAGCATCAAAGCAAACCGCCGCAACTGGTCTCGGCTCAGGGACGTCTACAAA 3121
$\begin{array}{lllllllllllllllllllll}\mathrm{P} & \mathrm{Y} & \mathrm{S} & \mathrm{S} & \mathrm{I} & \mathrm{K} & \mathrm{A} & \mathrm{N} & \mathrm{R} & \mathrm{R} & \mathrm{N} & \mathrm{W} & \mathrm{S} & \mathrm{R} & \mathrm{L} & \mathrm{R} & \mathrm{D} & \mathrm{V} & \mathrm{Y} & \mathrm{K} & 913\end{array}$
CGGCGGAAACCTGAGTCCACCAGTTCACTTGAGGTGTTTGAGGATGACTCACTTGAAGAG 3181
$\begin{array}{lllllllllllllllllllll}R & R & K & P & E & S & T & S & S & L & E & V & F & E & D & D & S & L & E & E & 933\end{array}$
GAATTGGAAAGAGATGAATCCTGAAACTACTGTAAATTTTCTTGTAGCATAAAGTGCAGT 3241
E L E R D E S - 940
ACGCAATTAGAGATACACAAAGTATCTTACTTGTTTACTCAGTGAGAGTAAAGCTTCATA 3301
ATATGATGAATCCCACAAGTACACCCATTGTATGATTTTTGAAGATTTATATCTTGCCAT 3361
AATCTTAAGGGAAACTTTGATGTATTGGAAAGACTTTATAGGTCTTTGCTTGTTCATAAG 3421
AAAGTCTACCTCTTACATGTTTGGCCAATGTAATCCATGTACACAGTATATGAACATTCA 3481
GTGATGACACTTACCTTCACAGAATAACTTTTCATTTCATCCATTCAGTAATCAGAGGCC 3541
CATTACATGTAGCCACGCCCAGACACAGGCGTGGGGGAGTCAGGAGTGCTGCTGTGGTGG 3601
TGGCGACTGTCTGCCTTGTCACTCGTGCATGACTCAGTTTCCTGAGCACTGCTGTGGCTG 3661

```
ACTCAGACTCTCCCTCACCGCAACTCTCCACATGCTGCACGCACTTACACAGACATTTTG 3721
GGACCCCGATGATGCTTACTCATCCATTAACTAAGAGTGTATATTTCCCTTTAGGAATAT 3781
CAGCCACTGTTTGCAGAACTTTAACATTTGTTGGTGGATCATCTGATGTGATTTCAATAT 3841
TCCTCTCATACATCAGTGTTATCTCTCTCTGCATTGATAGTCAGTCAACTGCTTGAAATA 3901
TTAAAGTACTTAGCCTCTGGTTCTTATATGCAAGCTGATTTGTACATTAAAGGCACCTTG 3961
TCTTACACATTATTCATATATGTATTTCTCTTTTCATACATCATCTTATATACCTACACA 4021
AACTATTACATAGTGTACACACTTTATACCTCGGGTAATTTTTCTGAAGTTATCAGTCAG 4081
GATATGTTAAGTCAAGCATCATACAAAGACAACTGCAACATTTTGTTTAGATAACTTATA 4141
TTTTGAAAATAACTCTGAGGATATTGTAACTTACCTCCTTAAGCCAAAGTTAACCCTCTA 4201
GAAGGCCAACACACTGTAAACTATGGTAGTGGTTGTCAAATGTATGTGATATGAAGCTAG 4261
TCAGACACTTTTATAAAACAGTGGTGCCTCTATTGTAGGTGTGGCTAGCCTGAGTTTTAT 4321
ACCATGAATGCTTTTAGTTTATATCATACCAATGAAGTGTGAAACCTGTATCACCTTACA 4381
CATGTAAATGAGAGTTTAGGTGAGTGATGTTGTGGCCTACATAGAGATCCTCTAAATTGC 4441
ACACCATAAGAAGAAATGTGTATGACTGAGGTCTTCAGGAATGAGACCAGTAATAACCTC 4501
GGACATTGTAGTGGTCAGAAGTAGTTGTATACATAAGGAAAGAGGAAAAGTTTAGAATAT 4561
ATAGTATAAAAGTGTTCCTTGAAGGGTGGTGTGAATGATGTCTGCTGTCACCTGTACAAC 4621
TGTATGATTAGACAGGCTGTATTGAGTCTGCTTGTTATTGGTCTTATACAACTATTTTTC 4681
TTTGTCTCATAATATTTTGTATTTCCATATGTGTGTGTGTGTGTGTGTT 4729
```

Figure 2.3. Nucleotide and amino acid sequence of cDNA encoding GI-PDE2. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The GAF-B regulatory domain is indicated by a green box and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains; the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$ underlined and in blue.

```
GIPDE2 : ----MGSKTTAG----SGTEDSTMGQEEPAKAEEDATDG : }3
Ce.PDE2 : ------------------------------------------ : -
Hs.PDE2A3 : MGQACGHSILCRSQQYPAARPAEPRGQQVFLKPDEPPPPP : 40
GlPDE2 : GGQGGEKGGGGKRRG---RKEGVEEVTEDDAKRLIELVSS : 69
Ce.PDE2 : ---------------------------------------- : -
Hs.PDE2A3 : QPCADSLQDALLSLGSVIDISGLQRAVKEALSAVIPRVET : 80
```

GIPDE2 : LSDQDAAG-MQVKVNHYLAARCGAGLVFLILVSDDEELSV : 108
Ce.PDE2 : --- :
Hs.PDE2A3 : VYTYLLDGESQLVCEDPPHELPQEGKVREAIISQ-KRLGC : 119
GIPDE2 : HVLGPHRLSCPVKIPVSNNSFSTALASRRPIT-LADIEP- : 146
Ce.PDE2 : --- :
Hs.PDE2A3 : NGLG---FSDLPGKPIARLVAPLAPDTQVLVMPLADKEAG : 156
GIPDE2 : SHRED WRLLGLTHDSE--RFGAVRVCVDPGGGGEGEGV : 184
Ce.PDE2 : --
Hs.PDE2A3 : AVAAVLVHCGQLSDNEWSLQAVERHTIVALRRVQVLQQ : 196
$\begin{array}{lll}\text { GIPDE2 } & \text { : GQERRCLRETRNGSAKSVDSTPASRKLFRDMSVDQGMGG } & : 224 \\ \text { Ce.PDE2 } & \text { : -------MLELRRNSSPSSAHPSPQTNCQNSQRGDGLHH } & : \\ \text { HS.PDE2A3 } & \text { : RGPREAPRAVQNPPEGTAEDQKGGAAYTDRDRKILQ-LCG } & : 235\end{array}$
GIPDE2 : GPSDASQPRRSSAAPRMAFIAHPQRAPTVSGPDDNPPAR : 264
Ce.PDE2 : HHHEAASGSTCCGGMTVFTGANAAK------SSNEPAGSA : 66
Hs.PDE2A3 : ELYDLDASSLQLKVLQYLQQETRASRCCLLLVSEDNLQLS : 275
GIPDE2 : LPPIMPSANMPPVEANHAPKSPHKVPKLGHHDHAGLESAG: 304
Ce.PDE2 : SPTVWRKTSHPPLHENNN---- TRNRNLQMQLKNRGTKD: 102
Hs.PDE2A3 : CKVIGDKVLGEEVSEPLTGCLGQVVEDKKSIQLKDITSED : 315

```
GlPDE2 : RQCGSLGLVCP-ASLICVPVAAPGRDATAILAVLVDKQGG : 343
Ce.PDE2 : DWGASIRYDIFEPTSSGLLEILPDVPIVRKISRPLVKMD- : 141
Hs.PDE2A3 : VQQLQSMLGCELQAMLCVPVISRATDQVVALACAFNKEEG: 355
GlPDE2 : GDETTQDVEVVTRCERCVAGIIMNTAEAERERRIRTQCQA : 383
Ce.PDE2 : ----DQDDACSVASNESDRTVLSPLVPMS----------- : 166
Hs.PDE2A3 : DLETDEDEHVIQHCFHYTSTVITSTLAFQKEQKLKCECQA : 395
```

```
                                    GAF-B
```

```
                                    GAF-B
```



```
\begin{tabular}{ll} 
GlPDE2 & \(:\) DREHGQLVAKVFDGERKEESIEEVLLPVLQNLPGVYVTSS
\end{tabular}\(: 463\)
```


GIPDE2 : EIATAFSIYCGISISNSLIYKKVSESOVRSKLSNEMMF-: 581 Ce.PDE2 : KYIKRFSYFVANSIAHAILAKQIEEVRTRIHMVEEFKIQG : 338 Hs.PDE2A3 : DLATAFSIYCGISIAHSLIYKKVNAQYRSHLANEMMMY- : 573

GIPDE2 : -HMKV KEEVERLVQAEVPPITQFHRDFCSERYFPRQLAD : 620 Ce.PDE2 : EDAVIEEVDTMRLVNDPLRDWRYFSNFADFSFPPRSVGE: 378 Hs.PDE2A3 : -HMKVSDDEYTKLIHDGIQPVAAIDSNEASETYTPRSIPE : 612

Figure 2.4. Multiple alignment of deduced amino acid sequences of PDE2 proteins in one crustacean species, one nematode species and one mammal species. Abbreviations: Gl: G lateralis; Ce: Celegans; Hs: H sapiens. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. Green plus signs indicate the motif sequence in the GAF domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 3.

GIPDE4: 6130 nucleotides, structure: \underline{C} sequence
GTGGCGTGCGGGTGTGGCGTGGAGTCCGCGCTGGCTGTGGCTGTGAGTGCTCCGGTGCAC 61 AAGTGTGGTGGCGGCCCCGTCGACCACACGCTTCTCCCCGCGCGGCGTTCACGGCTGTGA 121 GGTAGGAGAGTCCTACGTGTCCGCACCCCGCGCTGTGTCCCCCGGGTGTCCTGGCGTGAC 181 GGTGTCGCTCCTGTGCCGCTCCTGCTTGTCCGGATGAATGGCAGCGGACAGGTGGAGGCT 241 CCCGGGAAGTGAGGTGACCCGCTGTCCTGCCGCCGTTCAGCATCACGGTGTAGTTGGCGT 301 CCTGCTGCCGCCACGCCAGGCTCGCCGCCGCCTCTCTCCCGCCGGCGGACCGGACGGTGC 361 GCACTGAGAGGCACGTCCATGCGGGGTGACGGTGAGGGGGTGGTTGGGGAGCAGCAGCCA 421 CCTGTGCTCACCTGTGCTCGCCTGGCCTCCTCTTGCTGACTGCATCACGCTCATGACGGG 481 CTCGTGTGCTCCTCAGCCCGCCCCGCCAGTCCTCGTGTGACGCTCCCCGGTGTTCAGACC 541 ATCGTAGTCACAGTAGTGCGTCGTAGCCTCACCGTAGCCCCGAGAGACAGTTCATCGTTT 601 AGAGCTAGTGTGAGCTTTGTTCGTGAGTGTAGTGTGTGCAGTACCTACTTGAGGCTCATT 661 CCTCTGTAGAAAAATGTTAGCCAGCGAATGTGTGCGAGTGTGTCTGTCTGTGTGGCGTGG 721 CCTGGCTAGACTTCCTGTCGTGTAGGGCAGTAGTCGTGATATGTGTTGTAGAAAAGAAAG 781 TCTGTAGAAAAACTAGCAGCCAAGCGCGTGGGTAGCGAGTCGCACGGAGCCTGAGTAGCG 841 GCTTGAGGCTGTGCCGAGGCCAACACCGCTTCTAGTAATCGTCGGTACAGTCGTTGCCAA 901 GCGTAGGTCATCGTTATAGTTGAGCCTCGCGTATACCTGAGTCCTTGTAGTGCCTCTCAG 961 CGTAGGTGTAGCCCAGGGAGTCTAGAATCCTTGGTGTAGCCGTGAGTTAGTGTGGAGGTC 1021 GCCGCTGTAGACCTGCCACGACCTGCTTCGCTGTGTAGGGCGTTCAGCGTCGCTGTAGTG 1081 AGGCAGTAGGCCTCGTGAGCCTCTCGTCGTCGCTGTCCTCGTGTCGTGTCGTTTAGCAAG 1141 TCTTGGTCAGCTTCCCGCCGCCTCACCGCCTCGTAGCCACGCCAGGGCAGCGGCCAGCAG 1201 TGCGTCGCCCCGCCGCTTGTGTCTGTGTGTGTGGCGGTGCAGCGCTGGTGATGCTGGGCT 1261 GGAGGATCGGACACAGGCCCCCCCGCCGCCGCTGCCCGCCGCCCCCCTCCCTTTAGTACC 1321 CTCACCGCCGCCATGCTGCAAGTTCCTGAGATCAGAGCCCCCGACGAGGACGAGGACGAT 1381
$\begin{array}{lllllllllllllllll}M & L & \mathrm{~V} & \mathrm{P} & \mathrm{E} & \mathrm{I} & \mathrm{R} & \mathrm{A} & \mathrm{P} & \mathrm{D} & \mathrm{E} & \mathrm{D} & \mathrm{E} & \mathrm{D} & \mathrm{D} & 16\end{array}$ GATACCCCCACGCCCTCGGGACTGCGCCTCCAAGTCCCTGAATTCTCCCTCCTAGCGCCA 1441 $\begin{array}{lllllllllllllllllllll}\text { D } & \mathrm{T} & \mathrm{P} & \mathrm{T} & \mathrm{P} & \mathrm{S} & \mathrm{G} & \mathrm{L} & \mathrm{R} & \mathrm{L} & \mathrm{Q} & \mathrm{V} & \mathrm{P} & \mathrm{E} & \mathrm{F} & \mathrm{S} & \mathrm{L} & \mathrm{L} & \text { A } & \mathrm{P} & 36\end{array}$ CCTGACGACCCTCCTGATGGGGGCGGAGGCTGCGTCCACCTGCAGGTGCCTGAGATGGGA 1501 $\begin{array}{lllllllllllllllllllll}\text { P } & \text { D } & \text { D } & \text { P } & \text { P } & \text { D } & G & G & G & G & C & V & H & L & Q & V & P & E & M & G & 56\end{array}$ AGCTTCGTGCCCCCGGGAAGCAACATAGGCAGCTCAGCGACGCGCCTCGAGCCCCCCAAA 1561
 ACCCTACACCTGTCCCTGCCGCCCTTCCCCCAGCCAGGCGTGTCCAGCTTCCTGCAGGTG 1621 $\begin{array}{lllllllllllllllllllll}\mathrm{T} & \mathrm{L} & \mathrm{H} & \mathrm{L} & \mathrm{S} & \mathrm{L} & \mathrm{P} & \mathrm{P} & \mathrm{F} & \mathrm{P} & \mathrm{Q} & \mathrm{P} & \mathrm{G} & \mathrm{V} & \mathrm{S} & \mathrm{S} & \mathrm{F} & \mathrm{L} & \mathrm{Q} & \mathrm{V} & 96\end{array}$ CCTGGAGGCTACACGGGGCCCAGGAGGAGACACTCTTGGATCTGCAGTTTCGACGTTGAA 1681 $\begin{array}{lllllllllllllllllllll}\text { P } & G & G & Y & T & G & P & R & R & R & H & S & W & I & C & S & F & D & V & E & 116\end{array}$ AATGGCACCTCGCCCGGCCGAAGCCCCCTGGACGGGACCTCCCCCTCGGCGGGTCTCGTC 1741 $\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{G} & \mathrm{T} & \mathrm{S} & \mathrm{P} & \mathrm{G} & \mathrm{R} & \mathrm{S} & \mathrm{P} & \mathrm{L} & \mathrm{D} & \mathrm{G} & \mathrm{T} & \mathrm{S} & \mathrm{P} & \mathrm{S} & \mathrm{A} & \mathrm{G} & \mathrm{L} & \mathrm{V} & 136\end{array}$ CTGCAGAACTTTCCCCAGCGGAGGGAAAGTTTCCTCTACAGGAGTGATTCAGACTTCGAG 1801

GACCAACAACAAGACCTCGATATCCCGAGCTGCGAGTGGACGATGGCGAGCGACCCAAG 2341
 AAGAAGGAAAGAACAGTGTCCAGCAGCCTCGCAGGGGTGTCGGCAGCAGCAGTGCCAGGA 2401 $\begin{array}{lllllllllllllllllllll}\mathrm{K} & \mathrm{K} & \mathrm{E} & \mathrm{R} & \mathrm{T} & \mathrm{V} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{L} & \text { A } & \mathrm{G} & \mathrm{V} & \mathrm{S} & \text { A } & \text { A } & \text { A } & \mathrm{V} & \mathrm{P} & \mathrm{G} & 356\end{array}$ GGAAGCGAGAGGAGCAGCCAGGTGCTGCAGTCCGTCGCTGCAGTGTCATCAGGATCCCAA 2461 $\begin{array}{lllllllllllllllllllll}G & S & E & R & S & S & Q & V & L & Q & S & V & A & A & V & S & S & G & S & Q & 376\end{array}$ ACTACGACGGCTATCGGCGCGTCTAGCAGAGTGTCCATGTCCCACATCCAAGGCGTCAAG 2521 $\begin{array}{lllllllllllllllllllll}T & T & T & A & I & G & A & S & S & R & V & S & M & S & H & I & Q & G & V & K & 396\end{array}$ AAGCCGCTGCTCCACGCCAACTCCTTCACGGGCGAGAGGCTGCCCAAGTACGGCGTTGAG 2581 $\begin{array}{llllllllllllllllllll}K & \mathrm{P} & \mathrm{L} & \mathrm{L} & \mathrm{H} & \mathrm{A} & \mathrm{N} & \mathrm{S} & \mathrm{F} & \mathrm{T} & \mathrm{G} & \mathrm{E} & \mathrm{R} & \mathrm{L} & \mathrm{P} & \mathrm{K} & \mathrm{Y} & \mathrm{G} & \mathrm{V} & \mathrm{E} \\ 416\end{array}$ ACGTGTCATGAGGAGGAGCTGGGCAAGATTCTAGAGGACATTGACAAGTGGGGCATTGAT 2641 $\begin{array}{llllllllllllllllllll}T & C & H & E & E & \text { L } & \text { G } & \text { K } & \text { L } & \text { E } & \text { D } & \text { I } & \text { D } & \text { K } & \text { W } & \text { G } & \text { I } & D & 436\end{array}$ GTATACAGGATTGCTGAACTGTCCAACAGAAAGCCCCTCACCACTGTTACCTACGCAATC 2701 $\begin{array}{llllllllllllllllllll}\bar{V} & \mathrm{Y} & \mathrm{R} & \mathrm{I} & \mathrm{A} & \mathrm{E} & \mathrm{L} & \mathrm{S} & \mathrm{N} & \mathrm{R} & \mathrm{K} & \mathrm{P} & \mathrm{L} & \mathrm{T} & \mathrm{T} & \mathrm{V} & \mathrm{T} & \mathrm{Y} & \mathrm{A} & \mathrm{I} \\ 456\end{array}$ TTTATGGAACGAGACTTGCTGAAGACGTTCAATATTCCGCCCAAGACCTTCATCACCTTC 2761
 ATGATGACACTGGAGGACCACTACCTGAAGGACGTGCCATACCACAACTCGCTGCACGCT 2821 $\begin{array}{lllllllllllllllllllll}M & M & T & L & E & D & H & Y & \text { L } & \text { K } & \text { D } & \text { V } & \text { P } & \mathbf{Y} & \mathbf{H} & \text { N } & \text { S } & \text { L } & \text { H } & \text { A } & 496\end{array}$ GCTGATGTCACTCAGTCCACTCATGTCCTCCTCAACTCCCCAGCCCTTGAGAATGTGTTC 2881
 ACGCCACTGGAGATCCTGGCAGCCATCTTTGCAGCAGCCATCCATGATGTGGACCACCCT 2941
 GGCCTCACCAACCAGTACCTGATCAACTCCTCCTCAGAACTCGCCCTCATGTATAATGAT 3001
 GAGTCAGTCCTCGAGAACCACCACTTGGCTGTAGCGTTTAAGCTGCTACAGAATGAGGAT 3061
 TGCGACATCTTTGCCAGTCTTGGTAAGAAGCCTCGACAGACCCTGAGGAAGATGGTGATT 3121
 GATATGGTGCTGGCAACAGACATGAGCAAACACATGAGCCTCCTGGCTGACCTCAAGACT 3181
 ATGGTGGAGACCAAGAAGGTGGCTGGCTCTGGGGTTCTGCTCCTGGACAACTACACAGAC 3241
 CGGATACAGGTGCTACAAAACATGGTCCACTGTGCTGACCTTAGCAACCCTACCAAACCT 3301
 CTTGAATTGTACAAAAATTGGGTCTCTTCTATCATGGAGGAGTTCTTCCAGCAAGGGGAC 3361 £ E L M K CGAGAGAGGGATCAAGGCATGGACATCTCCCCCATGTGTGACAGGCACACAGCCACCATT 3421
 GAAAAGTCACAGGTTGGCTTCATTGACTACATTGTCCATCCACTGTGGGAGACATGGGCA 3481
 GACCTTGTCCACCCTGATGCCCAGGATATCTTGGACACCTTGGAAGAAAACAGG SACTGG 3541

TATAATCGTATGATCCCCATCTCCCCATCGTCTTCTTCCAACGACCTAAAGGAAGAAGAG 3601 $\begin{array}{lllllllllllllllllllll} & \mathrm{Y} & \mathrm{N} & \mathrm{R} & \mathrm{M} & \mathrm{I} & \mathrm{P} & \mathrm{I} & \mathrm{S} & \mathrm{P} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{N} & \mathrm{D} & \mathrm{L} & \mathrm{K} & \mathrm{E} & \mathrm{E} & \mathrm{E} \\ 756\end{array}$ TATCCTGGAGAGAATTCTCAGGATGTGCCCGAGGAGGAGTTGTGTGCAGCTGCTGACAGA 3661 $\begin{array}{lllllllllllllllllllll} & \text { Y } & \mathrm{G} & \mathrm{E} & \mathrm{N} & \mathrm{S} & \mathrm{Q} & \mathrm{D} & \mathrm{V} & \mathrm{P} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{C} & \mathrm{A} & \mathrm{A} & \mathrm{A} & \mathrm{D} & \mathrm{R} & 776\end{array}$ ATCCAGATTCAATTCACGCTTGAGGATGAAGGCAGTGGGAACAGAGGGCCGCCAGGGGAC 3721 $\begin{array}{llllllllllllllllllll}I & Q & I & \mathrm{E} & \mathrm{F} & \mathrm{L} & \mathrm{E} & \mathrm{D} & \mathrm{E} & \mathrm{G} & \mathrm{S} & \mathrm{G} & \mathrm{N} & \mathrm{R} & \mathrm{G} & \mathrm{P} & \mathrm{P} & \mathrm{G} & \mathrm{D} & 796\end{array}$ GCTCGGGGGGAGGATCCCACAATGTAACCGCTGGTGGCATCCTACTGTGCCAGACTCAAG 3781 $\begin{array}{lllllllllll}\text { A } & \mathrm{R} & \mathrm{G} & \mathrm{E} & \mathrm{D} & \mathrm{P} & \mathrm{T} & \mathrm{M} & - & 804\end{array}$ CGGAAGGTGATGCGGTGGCTGCACCTCAAGTGACAGCCCCTGCAGCAGGAGGCAAGGGGA 3841 GCCACTGCATCCCCAGCACCCCTGCACACCGCTGCCACTGGCTCTCACCTCCTTACCTCA 3901 TGTTGCGAGATTTCTTTGTGTCTGCCGCGGGCCCTGCTGGTTCAGGGCCAACCGCGTGGG 3961 CTTGTGTGAGCTCCTAAGGACTGAGCTGTATGCCTGGCCTCAGCTGACCTACCCTTGCCT 4021 AATGTGATTTAATATATTCTTATAGTATTGATGGAGAGTCGGTCACAACAGTGAACAGTG 4081
CCAAATTGTTCCTTTTTAAAAGAAATATGGATCCTGTGGTGGTAGTTTGTTATATGAGAA 4141
AAGAACTCTTGTGGGGAGTTGTCTGTTATGTGAGGATTCTGTTCCTGAGTGGTCAGTCTT 4201
TTAAAAATACCAGTCCTATGAAGGCACGATGTGCAATGCCTCAAGAGAGCAGTTGAGGGA 4261
GTTAATTTTTCATTTTTTGTATGGTTTGAGGACAAAGGCTTCTGTGTGGTACATATCAGA 4321
TAGCATCAGTAACCGGCACATGAGTGGTGCTTTCATTGTGTGAGTCTGGGGCATTATAAT 4381
GTGAGCTCTTTCGTAATACAGGTGCCTGACAGGGTTCGCTGCTGCCGACACTAAAAGTAG 4441
ACTTGCTGTCGGAGAAGCCAAAGATAATTTATTGCTTCAGCCCACAGTGGACTTGGAGCC 4501
ACCACTGCTACCACACATTTCAGTTGCTGTGCAGATTGAGGGATGCAAGTTTGTGCAGCA 4561
GCTGAGGACATAGATGGTGGGTCTTGTCAGGCAGAAGAAAAAACATGTCCCTCACTTAAA 4621
ACTGATGTAAGAGTTTAGATAATATTTATTCTCTTTTTTCAATATTTATTTTAAGTAGTG 4681
TGAAAAAATTATTTGTCACCATTAGATCTTTTTTTTATTATTATCCCTTACTGTGCAAGG 4741
TTCATAAGTAGTTCGTTTTAAAAATTTTTTTTGCAATGTCACTTTGAGGTTTTCATCTTT 4801
TAGACAGCTTTTTTGGCGCTACCTTAGATGTTCGATGAACTTCACTGATGGGTTTTCACC 4861
TACTTTTGAACTAGGTAGCCATGAAAGAGGTTCAGATTTTAGCACTTCAACTTCTATCCA 4921
CCTGTTAAACAACACAGGCCTTTTTTTCTGTTTCCTCCTTTTCTTTTCAAGTAACCTAAA 4981
ATCAGCAAAAGTGTGCACCAACCATTTTCATATAAATCTTTCATCTCACAATCCCACAGC 5041
CTTGAGAGAATGTGCCACTCATCTCATCATGAATTGTGATATTGTTAAAGTCAGAGTTTG 5101
GTGAACTTTGGTCCATCAATGTAGAATATGAAGAAAGAGCTTGCAGACTTTGTATTTGCT 5161
TCAGTGTGTAGGCAGCATACTTGTTTGTGTTCATCAGAATATGTCTGCTATTTTCAGAAC 5221
TAATTACATTACTGAATACTTCCAGTATGTATATTTATTTCATATATTTGAGCTATAATT 5281
AATATAACATACACTATCAAGTAACAAAACTGGCCTGAGACACTCATACTGTTGGAATTG 5341
CCAACTTGTGAAGTGAAGCAAATCTGAGCCTCTAGTGTAGAATACTCCCTTGTGATGAAG 5401
AGAGCATAGTGTGCGTCATGTTCCATCCCACACCGCCCAGTGTCGCTCACCAGCCACACT 5461
CCCGACTCCTTCGGCTCGGCACTGGCAACACCAGCAGCCCTTGATTCCCTTCTACAGTCC 5521
CTTTCTTATCCTCCCCTCCCTTTATCCCTCCCTTCCTCCCTCCCTCCTTGTAGGAAGATC 5581
ATGGTGAAGGGGGAACTCTGATAAATATGCACCACACAGATAACCACTTCAATAGCCATG 5641
ATGTTTGTGTCCACTCGTTGCAGCCATTTCAGAGATCAGTGTTGCTCCTATCTTTATAAT 5701
GTAGTGTACTGTGCACTCAAGCCCTGGCATTGGCACTGTGCCTGGCACATGTGTCCCCTC 5761ACAGTGGTGCTCCCACGGGCACTGTGTATGGAGCTTCACTTGCCATCAGGATAAAGTCAG 5821CTCAAGAGGAGAAAAAAGTGGGACAATATATCTGCAGATGCTTTCCCACAGACCTGAGGA 5881CAGACTCACCCTTCACTACATGCTAATTATTCAGATATATTTATTTTTTATAGTAGAAGC 5941ATTAATCCCACCTTTATGACAGGGTGACTGTAGTTGTCTAATACCATGTAAATGTTAATT 6001TTTCTCATAATTTATTGAATGGGTCTCCTATACATGTGTATTATTTTTAAAATATTTACA 6061TGTATATAGAGGTGCAAGTAAACATTATCAGGTGTATAATAAGATGTATGAGTATTTAAG 6121CAGTATTGC6130

Figure 2.5. Nucleotide and amino acid sequence of cDNA encoding Gl-PDE4. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$ underlined and in blue. Two Upstream Conserved Regions; UCR1 and UCR2, are found in purple boxes.

CmPDE4 6122 nucleuotides
1 TCAACAACAACAAAAGCAGCAGTGGCAGCGGCAGTCTCTGCTATGCGTTTATTTTTAGTC
61 ACTCGTCACCGGTACGCGTTATCGCTTCCCTCGTCATCCTTGTTCCCTCCCTCTCCCTCT
121 GTCTCTTCCTTCCTTCCTCCCTTCCTTCCTGGCATTCCTCTCTACCTCATTCCTTCCTTT
181 CСтTССТСтTсСтСССтССССGCCACAGTGACCGGACGCGAGTGGCAGCATCACGTGAGC
241 TGTGTTTCGCGTCGTGATCGATTACCGGGTGGAGTAACAAGGTCGAGGAACCTAACCCGC
301 CACACTGCACCACACTCAGTCTGACCCTAAAGCGAGAGGAACATGACTGACTGACCGACT
361 GACTGATGACTGTCTTGGCGAGGAGAGACTGTTCTGACAATTCTGAAACCGAATAACGTC
421 GAGCGTGAGAATAAGAGTTCTAGGTTAGGAGGAATGGCGGAAGTGTGGCGTTTTTGTTGT
481 GTTGGAGGAATACATTAGGTGAGCCGTGAGGGCTGAGATGGGTTGCCTGGCGTTACGCTG
541 TGGCCACCATCCCTCCACCGCCGCCCCCGCGCATCTCTGTCGCGACATCGCCTCCTCAGT
601 CGGGTGTGAGAACCCAAAGAGTCCGGGTCTGCGTTTTACGCGTATCAAGGTCGTGGTGGT
661 GGTGGTGGTGGCTGTAGCGTCGTGCGAGGAGGACACGTGGCACAGGAAGTCCGGCTGAAG
721 GCTGTGTGCGCCGAGGTAGCAGCGACCATCCTGCCCCACGCGGCCAGTGCGGCGCCGAGA
781 ATAGTGTTTGCGTGATAGTGAGAGGCTGTGACGTGCACGGGTACTGGTGGTGCCAGGAGA
841 GAGCCAGCACAGCCGCCGGCCCTCACAACAACCACAACCACCGGCCGAGCCCAACACGCC
901 GTCAGTGGCCTTCCCGCACGCCCTCACAGAGCAGTCCCTTATTGATCCGAGACTACCATT
961 GTCGGCAGCGTGATGACCGCCACGACCACCGACCAAGGGCCACGACCACCGCCGGGATGG
1021 GTTGTATCTAAGTGAAAGAGAGGAACACCGACTCGTGCCGTTGAAGGCACGTTCGTCCTG
1081 CCCTGCGAGGTGCGCAACCCGTCACACGTGGCTGCGCCGAGTGTTGTGGTGTCATCTACG
1141 TGCACCTCCCAACTCCACCTCTCCTGCTACTATTCCTCCTTCTCCTCCTCCTCCTCCTCC
1201 TCCTTGTCGCCCGGCCGTGGGTGTGGCCGGCTGCCAAGCGTGTGGGGTGGCCCTGTTGGC
1261 CGGGTAGCAGCCCTCCAACCGTGGCGCAGCGACTGGTCATCCTGGAGGAGCCCCCGGGGT 4
$\begin{array}{llll}M & S & R\end{array}$
1321 CCCCAGGGTCCCCAGGGGTGTCCAGGACGGTTACCTCGTCCTCCTGGAAGATGTCCCGCA
 1381 CCACCTCCTGTGAAATGCAGCAGCGGGTGGTAACGGGCGGAGTGGACACGCTTCCGCCCC $44 \mathrm{~L} \quad \mathrm{G} \quad \mathrm{N} \quad \mathrm{R}$ 1441 ACCTGGGGAACAGGACGCCACCTGGGGACGTCGCTAACATGAATCGCCTCCCAGGTCTTC $\begin{array}{lllllllllllllllllllll}64 & \mathrm{~T} & \mathrm{~L} & \mathrm{P} & \mathrm{A} & \mathrm{L} & \mathrm{P} & \mathrm{A} & \mathrm{L} & \mathrm{P} & \mathrm{G} & \mathrm{D} & \mathrm{A} & \mathrm{G} & \mathrm{R} & \mathrm{T} & \mathrm{P} & \mathrm{R} & \mathrm{R} & \mathrm{V} & \mathrm{M}\end{array}$
1501 CTACCCTCCCAGCACTTCCAGCCCTCCCGGGGGACGCAGGGCGGACGCCACGCCGCGTCA
$84 \quad \mathrm{~K} \quad \mathrm{R} \quad \mathrm{P} \quad \mathrm{D} \quad \mathrm{G} \quad \mathrm{S} \quad \mathrm{F} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{Q} \quad \mathrm{R}$
1561 TGAAACGCCCAGACGGAAGTTTCGTTCCGCAGCGGAGCTTCTCTTTCAGGGAACGTTCAG

1621 ATTCTTTGGGCGGAGCGAGTGCCTTGAGGGCCCACGAGCCCACCTCGCCCACCCACCACC

1681 TCTCCATGGACTTGGAGGTGCCCGAGGCGGCGCGCCAACAGTCCCTGGCAGTGAATCACT $144 \quad \mathrm{~F} \quad \mathrm{~S} \quad \mathrm{D} \quad \mathrm{L} \quad \mathrm{Y}$ D $\quad \mathrm{M}$ S 1741 CCTTCTCCGACCTTTACGACATGTCGTCCAGCCAGGGCAAGCTGCCGCGTACACTCTCCA
 1801 CTTCGGCGCTCCGTATCAAGAGTCGCTCCAA TTCTGGGAAAAGTTTTGGCAGGGTCCGT
 1861 TGGAGCCGCGAGTGGGGAGCAAGCTACACGGAGAGGACCTGATCGTGACCCCCTTCGCGC $204 \mathrm{I} \quad \mathrm{L} \quad \mathrm{A} \quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{R}$ 1921 AGATCTTGGCGTCGCTCAGATCGGTTCGCAACAACTACATCAGCCTCACCAATGTGTCCA
 1981 CCTCGAAGTCTCGGAGGTCCAGTGCACAAGCTGGCTGCTCCACACCTCAACCCAAAAACT $244 \quad \mathrm{~T} \quad \mathrm{Y}$ G G E 2041 TTACCTATGGAGGTGAGTGCGATGAGACCTACACAAAGATGGCGCTGGAGACCTTGGAGG
 2101 AGCTGGACTGGTGCTTGGATCAGCTGGAGACCATTCAGACCCACCGCTCCGTGTCCGATA $\begin{array}{llllllllllllllllllllll}284 & A & S & S & K & F & K & R & M & L & N & K & E & L & S & H & F & S & E & S & S\end{array}$

2281 364 364 A \quad Q \quad T \quad L \quad Q \quad S \quad I A 2401 GTGCCCAAACGCTGCAGTCCATTGCCTCAGCCTCGGCAGCAGTACAAGGCACGCCAGCAA $\begin{array}{llllllllllllllllllll}S & A & A & N & R & V & S & M & S & Q & I & Q & G & V & K & K & P & L & L & H\end{array}$
TCAGCGCGGCCAACAGGGTGTCCATGTCCCAGATCCAGGGCGTCAAGAAACCACTACTCC A $\quad \mathrm{N} \quad \mathrm{S}$ ACGCGAACTCCTTCACGGGCGAGAGACTGCCGAAGTATGGTGTGGAGACCTGTCAAGAAG $\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{L} & \mathrm{G} & \mathrm{K} & \mathrm{I} & \mathrm{L} & \mathrm{E} & \mathrm{D} & \mathrm{I} & \mathrm{D} & \mathrm{K} & \mathrm{W} & \mathrm{G} & \mathrm{I} & \mathrm{D} & \mathrm{V} & \mathrm{Y} & \mathrm{R} & \mathrm{I} & \mathrm{S}\end{array}$ ACGAGCTGGGCAAGATATTGGAGGACATTGATAAGTGGGGCATTGATGTGTACAGGATCT $\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{L} & \mathrm{S} & \mathrm{N} & \mathrm{R} & \mathrm{K} & \mathrm{P} & \mathrm{L} & \mathrm{T} & \mathrm{T} & \mathrm{V} & \mathrm{T} & \mathrm{Y} & \mathrm{A} & \mathrm{I} & \mathrm{F} & \mathrm{M} & \mathrm{E} & \mathrm{R} & \mathrm{D}\end{array}$ CTGAACTGTCCAACAGGAAGCCACTTACCACCGTTACCTACGCAATCTTCATGGAAAGAG $\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{T} & \mathrm{F} & \mathrm{N} & \mathrm{I} & \mathrm{P} & \mathrm{P} & \mathrm{K} & \mathrm{T} & \mathrm{F} & \mathrm{I} & \mathrm{T} & \mathrm{F} & \mathrm{M} & \mathrm{M} & \mathrm{T} & \mathrm{L} & \mathrm{E}\end{array}$ ACCTGCTGAAGACGTTCAATATTCCGCCCAAGACCTTCATCACCTTCATGATGACACTGG $\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{H} & \mathrm{Y} & \mathrm{L} & \mathrm{K} & \mathrm{D} & \mathrm{V} & \mathrm{P} & Y & \mathrm{H} & \mathrm{N} & \mathrm{S} & \mathrm{L} & \mathrm{H} & \mathrm{A} & \mathrm{A} & \mathrm{D} & \mathrm{V} & \mathrm{T} & \mathrm{Q}\end{array}$ AGGAGCACTACCTGAAGGATGTGCCCTACCACAACTCATTGCACGCTGCTGACGTCACAC $\begin{array}{llllllllllllllllllll}S & T & H & V & L & L & N & S & P & A & L & E & N & V & F & T & P & L & E & I\end{array}$ AGTCCACCCATGTCCTCCTTAACTCCCCAGCCCTTGAGAATGTGTTCACGCCTCTGGAAA $\begin{array}{llllllllllllllllll}\mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{I} & \mathrm{F} & \mathrm{A} & \mathrm{A} & \mathrm{A} & \mathrm{I} & \mathrm{H} & \mathrm{D} & \mathrm{V} & \mathrm{D} & \mathrm{H} & \mathrm{P} & \mathrm{G} & \mathrm{L} & \mathrm{T} \\ \mathrm{N} & \mathrm{Q}\end{array}$
TCCTGGCAGCCATCTTTGCAGCGGCCATCCATGACGTGGACCACCCAGGCCTCACCAACC
$\begin{array}{llllllllllllllllllll}\mathrm{Y} & \mathrm{L} & \mathrm{I} & \mathbf{N} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{E} & \mathrm{L} & \mathrm{A} & \mathrm{L} & \mathrm{M} & \mathrm{Y} & \mathrm{N} & \mathrm{D} & \mathrm{E} & \mathrm{S} & \mathrm{V} & \mathrm{L} & \mathrm{E}\end{array}$
AGTACCTGATCAACTCCTCCTCAGAACTTGCCCTCATGTATAATGATGAGTCGGTCCTGG
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{H} & \mathrm{H} & \mathrm{L} & \mathrm{A} & \mathrm{V} & \mathrm{A} & \mathrm{F} & \mathrm{K} & \mathrm{L} & \mathrm{L} & \text { Q } & \mathrm{T} & \mathrm{D} & \mathrm{D} & \mathrm{C} & \mathrm{D} & \mathrm{I} & \mathrm{F} & \mathrm{M}\end{array}$
AGAACCACCACCTGGCCGTGGCATTCAAGCTGCTCCAGACTGACGACTGTGACATCTTCA
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{L} & \mathrm{G} & \mathrm{K} & \mathrm{K} & \mathrm{P} & \mathrm{R} & \mathrm{Q} & \mathrm{T} & \mathrm{L} & \mathrm{R} & \mathrm{K} & \mathrm{M} & \mathrm{V} & \mathrm{I} & \mathrm{D} & \mathrm{M} & \mathrm{V} & \mathrm{L} & \mathrm{A}\end{array}$
TGAACCTTGGTAAGAAGCCCCGGCAGACCCTGAGAAAGATGGTGATTGACATGGTGCTGG
$\begin{array}{llllllllllllllllllll}\mathrm{T} & \mathrm{D} & \mathrm{M} & \mathrm{S} & \mathrm{K} & \mathrm{H} & \mathrm{M} & \mathrm{S} & \mathrm{L} & \mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{L} & \mathrm{K} & \mathrm{T} & \mathrm{M} & \mathrm{V} & \mathrm{E} & \mathrm{T} & \mathrm{K}\end{array}$
CAACAGACATGAGCAAACACATGAGCCTTCTAGCTGACCTCAAGACCATGGTGGAGACTA
$\begin{array}{llllllllllllllllllll}\mathrm{K} & \mathrm{V} & \mathrm{A} & \mathrm{G} & \mathrm{S} & \mathrm{G} & \mathrm{V} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{D} & \mathrm{N} & \mathrm{Y} & \mathrm{T} & \mathrm{D} & \mathrm{R} & \mathrm{I} & \mathrm{Q} & \mathrm{V} & \mathrm{L}\end{array}$
AAAAGGTGGCTGGCTCTGGAGTGTTGCTTCTTGACAACTACACAGACAGGATACAGGTGC

TACAAAACATGGTCCACTGTGCTGATCTGAGCAACCCCACCAAGCCTCTTGAGATGTACA
$\begin{array}{llllllllllllllllllll}N & W & V & S & I & M & E & E & F & Q & Q & G & D & R & E & R & D & Q\end{array}$
AAAACTGGGTCTCTTCTATCATGGAGGAGTTCTTCCAGCAAGGTGACCGAGAGAGGGATC
$\begin{array}{llllllllllllllllllll}G & M & D & I & S & P & M & C & D & R & H & T & A & T & I & E & K & S & \text { Q } & V\end{array}$
AGGGAATGGACATCTCTCCAATGTGTGACAGACATACAGCCACCATCGAAAAGTCACAGG

TTGGCTTCATTGACTACATTGTCCATCCACTGTGGGAGACATGGGCAGATCTGGTCCATC
$\begin{array}{llllllllllllllllllll}D & A & Q & D & I & L & D & T & L & E & E & N & R & D & W & Y & N & R & M & I\end{array}$
CTGATGCCCAGGACATCTTGGACACCTTGGAGGAGAACAGAGATTGGTACAACCGCATGA
TTCCCATCTCCCCATCTTCCTCATCTAATGACCTGAAGGAGGAGGATTATCCTGGAGAGA
$\begin{array}{llllllllllllllllllll}S & Q & D & A & E & E & E & L & C & A & A & A & D & R & I & Q & I & Q & F\end{array}$
ATTCTCAGGATGCACCCGAGGAGGAGCTTTGTGCAGCTGCTGACAGGATCCAGATTCAGT
$\begin{array}{llllllllllllllllllll}T & L & E & D & E & G & S & G & N & R & G & P & P & G & D & A & R & G & E & D\end{array}$
TTACACTTGAGGACGAAGGCAGTGGGAATAGAGGGCCGCCAGGTGACGCTCGGGGGGAGG
P T M
ATCCCACAATGTGACCGCTGGTGGCGTCCTACTGTGCCAGACTAAAGCGGAAGGTGATGC
GGTGGCTGCACCTCAAGTGACGGCCCCTGCAGCAGGAGGCAAGGGAGGCTGCTGCATCCC
CAGTCCTCCTGCACACCCCTGCTTCTGGCCCTCACCTCCTTACCTCATGTTGCGAGATTT
ATTTGTGTCTGCCGCGGGCCCTGCTGGTTCGGGGCCGACCGCGTGGGCTTGTGTGAGCTC
CCATTGACTGAGCTATATGCCTGGCCTCAGCCAACCTACCCTTGCCTAATGTGATTTAAT

4021 ATATTCTTATAGTATTGATGGAGAGCCGGTCACAACAGTGAACAGTGCCAAATCGTTCCT
4081 TTTAAAAAGAAATGTGGATCCTGTGGTGGTGGTTTGTTACATGAGAAAAAAGAACATTCG
4141 TAGGGAGTTGTCCATCATGCGAGGACTCTGTTCCTGGGTGGTTATTCCTTTAAAATACCA
4201 ATCCCATGAAGGCAACAATGTGTCATGCCTCAAGAGCACAATTGTGGGGAGTTGATTATT
4261 CTTTCTTTCTTTCTTTCTTTTTTTTTCTAACGTTTTGAGGACTAAGGCTTCTGTGTGGTA
4321 CATATCAGATAGCAGCATCAGTAAGCGGCTCGAGAGTAGTGCTTTCACTGTGCAAGTCTG 4381 GGGCATTATTGCGTGAGCTCTTTCGTAACACAGGTGCCTGACGGGATTAGCCGCTGCCAA 4441 CACTCAAAGTAAACTAGCTGTCGGAGAAGCCAAAGATAATTTATTGCTTCAACCCCAGTG 4501 GATTAAGAGCCACTACTGTGACTGCACATTGCAGCTGCTGCACAGCTCGAGGGATTTAAT 4561 TTTGTACAGCAGCTGAGAACATTGATGGTGGGTCCTGTCAGGTAAATAAAACAAAAAAAT 4621 AAAAATAAAAAAATAAAAAAAAAGTCCCTCACTTGAAACTGATGTAAGAGTTTAGATGAT 4681 ATTATTGATTCCCTTTTTCATTACTTATTTTAAGTAGTGTGGAAAAATAATTTGCCACCA 4741 TTAGATTTTTTTTTCATTGCTCCTTACAGTGCAAAGTTCATGAGTAGTTCGTTTTTAATA 4801 TTTTTGCAATGTCACTTTGAGATTTTATTCTTTTGACAGCTTTTTTGGCGCTACCTTAGA 4861 TGTTCAATGAACTTGACTGATGGGTTTTCACCTCCTTTTGAACTAGGTAGCCATGAAGAA 4921 GAGGTTCAGATTTTAGCACTTCATTCACTATCCGCAGTAATCAACGCAGGCACTTTGTAA 4981 ACCTTCTCTCATTCTCTAGAAAGCCTTTATGCTACCATGTATTTTCCTGTCTTAAATTCT 5041 TCAACTTATAAACAATGTAGCATTGACCTCCTCATGAAATGTGTTGTTTTCAAGGTAGAT 5101 GCCTATAAAAGCATCATTCAGTCCAACTGTCCATCAACCTGAAATGTGCAATTTAGAAAG 5161 AACCTATAAACTTTTACAATTGTTTCAGTCTGTAGGACACATTACTTATTCTATGTCATT 5221 AGACAAAATATTTTTGCTCTTTTGATAAAGTAAATTACTGTCAGTCAGTAATATTTCATT 5281 CACTGTGTATTGAGTCAGTAATTTACATTATTAAGTCACCAAATTGACCTGTGATACTCA 5341 AACCATTGGACTTGCCTGAAATGAAGCAAATCTGAGCCTCTAATGTAGAATACTCCCTTG 5401 TGATGAAGAGAGCCTAATGTGTGTCACGTTCCATCCCACGCCGCCCAGTGTCACTCACCA 5461 GCCACTCTCCCAATTCCCCCTCGGCTCGGCACTGGTGACACCGGCAGCCCTCGGATCCTT 5521 CCTCCCGCCCCCTCCCTTTGTTCTTCCCTCCCTCCTTGTAGGCAGATAATGGCAATGGGG 5581 ACACTGATAAATATGCACCACACAGATAACCACTTCCATAGCCATGATGTTTGTGTCCAC 5641 TCATTGCAGTCATTTCAGAGATCAGTGTTGCTCCTGTCTTTATAATGTACGTAGTGTACT 5701 GTACACTCCAGCCTTGGTGTTGGCACTGTGCAAGGCACAAGTGTTCCCTCACAGTGGTAC 5761 TCCCACAGGCACTGTGAGTGGAGCCTAACTTGCCATCAGAAAAATAAGACAGCTCAAGAG 5821 GAGAAAAGTGGGACAAATTTTCTCTGCAGATGTTTCCCCACAGACCTGAGGAAAGACTCG 5881 CCCTTCACTAAATGCTAATTATTCAGATATATTTATTTTTTATAGTAGAAGCATTAATCC 5941 CACCCTTATGACAGGGTGACTGTATGTAGTTGTCTAATACCATGTAAATGTTAATTTTTC 6001 TCATAATTTATTGAATGGGTCTCCTATACATGTGTATTATTTTTAAAGTATTTACATGTA 6061 TATAGAGGTGCAAGTAAATATTATCAGGTGTATAATAAGATGTATGAGTATTTAAGCAGT 6121 AT

Figure 2.6. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE4. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature ($\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}$) underlined and in blue. One Upstream Conserved Region; UCR2, is found in a purple box.

| GlPDE4 | $:$ | $--M L Q V P E I R A P D E D E D D D T P T P S G L R L Q V P E F S L L A P P D ~$ |
| :--- | :--- | :--- |$: 38$

GIPDE4 : DPPDGGGGCVHLQVPEMGSFVPPGSNIGSSATRLEPPKTL : 78
CmPDE 4 : DVANMN------RLPGLPTLPALPALPGDAGR--TPRRVM : 64
Hs.PDE4D : -- :
Dm.PDE4D : PRIKLKFRKPHKSCWSRIVLAPIGSAGGSSSATTVIGSNS : 440
Ce.PDE4 : NFFRTS------------------SPSASSTSRTPPAALP : 57

GIPDE4 : HLSLPPFPQPGVSSFLQVPGGYTGPRRRHSWICSFDVENG : 118
CmPDE4 : KRPDGSFVPQRSFSFRERSDSLGG-------ASALRAHEP : 97
Hs.PDE4D : ---------------------------------WICFDVDNG : 22
Dm.PDE4D : NETLASSSTTGGTATTTQNSSSVSVAAHHRLTSSSASALA : 480
Ce.PDE4 : PRTSAVTIPGSNHKLTSSASSYHP-------PRELTVSTF : 90

UCR1
GIPDE4 : -----------GRSP-LDGTSPSAGLVLQN---FPQRRES : 146
CmPDE4 : ------------THHLSMDLEVPEAARQQSL---AVNHSFS : 126
Hs.PDE4D : -----------GRSPLDPMTSPGSGLILQANFVHSQRRES : 54
Dm.PDE4D : ANVRFDVENGQGARSPLEGGSPSAGLVLQN---LPQRRES : 557
Ce.PDE4 : -------------SATAADGLGGAHLTPSLSSSVHARRES: 120

GlPDE4 : ETYRSDSDF--EMSPTSMSRNSSIASEGSRVMLATLSESR : 184
CmPDE4 : DLYDMSSSQ--GKLPRILSTSALRIKSRSNFWEKFWQGPL : 164
Hs.PDE4D : FLYRSDSDY--DLSPKSMSRNSSIAS---------------- : 78
Dm.PDE4D : FLYRSDSD--EMSPKSMSRNSSIASER-------FKEQE : 588
Ce.PDE4 : ELYRASDDLREASSLRPVSRASSIASN----------------147 : 147

GlPDE4		GANDDKP IHGE	DLIVTPFAQILASLRS	VRN	Y	NLTNT ${ }^{\text {S }}$		224
CmPDE 4	:	EPRVGSKLHGE	DLIVTPFAQILASLRSV	VR N	VYIS	LTNT ${ }^{\text {ST }}$		204
Hs.PDE4D	:	------DIHGD	DLIVTPFAQVLASLR	VRN		LTNI ${ }^{\text {L }}$		112
Dm. PDE4D	:	AS ILVDRSHGE	DLIVTPFAQILASLRS	VR N		LTNTPA		628
Ce.PDE 4		-----EHGHGD	DLIVTPFAQLIASLRN	VRSN		ITNITQN		182

UCR2

GlPDE4	QPKNFTYG---D TYTKVALE	257
CmPDE 4	-SKSRRSSAQAGCSTPQPKNF YGGECD TYTKMALE	240
Hs.PDE4D	-RAP--SKRSPMCNQPSINKAITT---EFAYQKIASE	143
Dm. PDE4D	SNKSRRPNQSSSASRSGNPPGAPLSQG---EEAYTRIATD	665
Ce.PDE4	----SDDSRHANRSAKRPPLHNIELP----DDVVHCAHD	213

End of UCR2

GlPDE4		SKSG	QIS	YI	IF	LDIPS	RVDDGERPKK		337
CmPDE4		SKSG	QIS	YI	TFLDQ	PS	RVDDGERPKK		320
Hs.PDE4D		SRSG	QVS	FI	TFLDKQ	HEVE PS	PTQKEKEKKKR		223
Dm. PDE4D		SRSG	QIS	Y I	TFLDKQ	EFDIPS	RVEDNPELVA		745
Ce.PDE4		SKSGT			TYMDKE	DEPS	IEIEVPTEVQG		291

```
GlPDE4 : KERTVSSSLAGVSAAAVPGGSERSSQVLQSVAAVSSGSQT : 377
CmPDE4 : KDRTHSGTFAGVSSAAISGGGERSAQTLQSIASASAAVQG : 360
Hs.PDE4D : ------------------------------------------ : -
Dm.PDE4D : ANAAAGQQSAGQYARSRSPRGP-------------------- : 767
Ce.PDE4 : PSTSGPMTLSILKKAQT--------------------------- : 308
```

```
GIPDE4 : TTAIGASSRVSMSHIQGVKKPILHANSFTGERLPKYGVET : 417
CmPDE4 : TPAISAANRVSMSQIQGVKKPILHANSFTGERLPKYGVET : 400
Hs.PDE4D : ----------PMSQISGVKK-LMHSSSLTNSSIPRFGVKT : 252
Dm.PDE4D : ----------PMSQISGVKRPISHTNSFTGERLPTFGVET : }79
Ce.PDE4 : ---------AAMNKISGVRKLRAPS---HDGHVPEYGVNC : }33
GlPDE4 : CHEETGGKIIEDIDKWGIDVYRIAE SNRKPLTTVTYATF : 457
CmPDE4 : CQEDELGKILEDIDKWGIDVYRISE SNRKPLTTVTYAIF : 440
Hs.PDE4D : EQEDVLAKELEDVNKWGTHVFRIAE SGNRPLTVIMHTIF : 292
Dm.PDE4D : PRENELGTLIGELDTWGIQIFSIGEFSVNRPLTCVAYTIF: }83
Ce.PDE4 : AR--EIAVHMORLDDWGPDVFKIDEISKNHSITVVTESIL : 374
```


GlPDE4 : ENSQD----VPEEELCAAADRIQIQFTLEDEGGNRGPPG : 795
CmPDE4 : ENSQD----APEEELCAAADRIQIQFTLEDEGSGNRGPPG : 778
Hs.PDE4D : DTEKDSGSQVEEDTSCSDSKTLCTQDSEST国IPLDEQVEE : 650
Dm.PDE4D : ENLAELE--EGDESGGESTTTGTTGTTAASALSGAGGGGG : 1188
Ce.PDE4 : -------------------------TVTEDDEHK------- : 674

```
GlPDE4 : DARGEDPTM-------------- : 804
CmPDE4 : DARGEDPTM-------------- : 787
Hs.PDE4D : EAVGEEEESQPEACVIDDRSPDT : }67
Dm.PDE4D : GGGGMAPRTGGCQNQPQHGGM-- : 1209
Ce.PDE4 : ----------------------- : -
```

Figure 2.7. Multiple alignment of deduced amino acid sequences of PDE4 proteins in two crustacean species, one insect species, one nematode species and one mammal species. Abbreviations: Gl: G lateralis; Cm: C maenas; Dm: D melanogaster; Ce: C elegans; Hs: H sapiens. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 5.

GlPDE5 6761 nucleotides, structure: G sequence
AGAGAGAGAGAGAGAGAGAGTGGGAGACGCTTTTAACCGGGACAGGAGGGAGAGAGACGC 61 TTTAAACCGGGACAACAATAAGTCGATTATGAACAAAGCCAGGGAGGGGACAGCGAGGAG 121 TCCTGAGGGAGACGTGTGGCCAGCGGAGACCTGCCTTTGTGGACCTGTGTGCCCTGGACT 181 GAACGCGTGCCCTCTAGACGTGTGTTCCTAAGTGTGACCTTGTGGGACGTGCCTCTGGGA 241 GACGTGCCCCTTGGAAACTGTACCCCAAGAGAAACGTGACTTCAGTGAAACGAGCCCAAA 301 GAACTGTTCTCTGAGGAGCCCACTTTTGTAGACCTACGGAAAAGGACTCGAAAAGGAATG 361 AgTTAGGAATAGTGGCCCTTTCCAAGACTTGCACAAAGTACTGTCCCCTGATATGCTCAC 421 ACTGACTGTGAAGAAGTACAAAAGAAGACTCGAAAAGGAAAACACTGAAGCCGTTTTCCT 481 TAAGAAGTAGACGAATCCCAAATCAAACGTACCTCAGGGGAAAAGTGTCCAAAGATCTGT 541 TTACCGATAAAACCGCATCTGAAAAAGTACAAACGAGAACTCGAAAACAAAGGCGTCGGA 601 ACAGTTTACCCAGCGAAAGGTACACGTGCCTGGGGAAACGTTCATCAAGATCTGTTCTTT 661 TACAATCCCACGCTTGAAGACGTATGTAAGAGGACGAAAAATTTAAGACGCTGAGATCGT 721 GTCCCGCAAAGAGAGACGTGCCTCAGGATCTGCTTGAAGACACAAAACGGAAGACGCTGA 781 AGTAGTTCCCCCCCCCTGAAAGAATAGAGGGACGGACCCTTGAAGGCAGCACGACCCCCA 841 GCCCTCTTCTCCCCTCCTGCAGCCGCCGCAATGAGCTGTCTGCTGGAGGAAGGGGGACAG 901
$\begin{array}{lllllllllll}M & S & C & L & L & E & E & G & G & Q & 10\end{array}$ GATGGGGTGGTGGGGGGTGGGGGTGTTGGTGTCAAGCGGGGACCCACGCCCATACGCCGC 961
 CGAAGATCAGGGGTCGGGGCGCCGGGCCTCGTTGTGAACGGGCGGAACAAGATGAACAGC 1021 $\begin{array}{lllllllllllllllllllll}R & R & S & G & V & G & A & P & G & L & V & V & N & G & R & \mathbf{N} & \mathbf{K} & \mathbf{M} & \mathbf{N} & \mathbf{S} & 50\end{array}$ CACGACCTTCCGTTAACAGCCGAGGACATGACGGGGGAGGCGGTGGGGCAGTACCTGAAG 1081 $\begin{array}{llllllllllllllllllll}\mathrm{H} & \mathrm{D} & \mathrm{L} & \mathrm{P} & \mathrm{L} & \mathrm{T} & \mathrm{A} & \mathrm{E} & \mathrm{D} & \mathrm{M} & \mathrm{T} & \mathrm{G} & \mathrm{E} & \mathrm{A} & \mathrm{V} & \mathrm{G} & \mathrm{Q} & \mathrm{Y} & \mathrm{L} & \mathrm{K} \\ 70\end{array}$ GCGCACCCTGAGTTCCTCGAGAGTTGGCTCATGGAACAGGTGGAGCTGGAGACGCTGGAG 1141 $\begin{array}{lllllllllllllllllllll}\text { A } & H & P & E & F & L & E & S & W & L & M & E & Q & V & E & L & E & T & L & E & 90\end{array}$ CGGTGGATGATACGCCGCACCCAACGCGACAAACAGAAGAGCTTGGAGAACGGCACGAAT 1201 $\begin{array}{lllllllllllllllllllll}R & W & M & I & R & R & T & Q & R & D & K & Q & K & S & L & E & N & G & T & N & 110\end{array}$ GgTAAAATCATCAGAAAAACAAGCCTATCCAGATGGAAGTTCTGCGTGCATGCTGACAAG 1261
 CGCAAGATGCTGCAGGAGCTCACATCGTCCCTCTACGTACGGCCCAACAAGCCACACGTC 1321 $\begin{array}{lllllllllllllllllllll}R & K & M & L & Q & E & L & T & S & S & L & Y & V & R & P & N & K & P & H & V & 150\end{array}$ CTCTGGGAGCTCACGCGCTGCATCTCCTCGGCCGTGAACGCAGACGGCTGTAACCTGTAC 1381 $\begin{array}{lllllllllllllllllllll}\text { L } & \text { W } & \mathrm{E} & \mathrm{L} & \mathrm{T} & \mathrm{R} & \mathrm{C} & \mathrm{I} & \mathrm{S} & \mathrm{S} & \mathrm{A} & \mathrm{V} & \mathrm{N} & \text { A } & \text { D } & \text { G } & \text { C } & \mathrm{N} & \mathrm{L} & \mathrm{Y} & 170\end{array}$ CTGGCTGACCTGGACACCAACACACTCATGCGATACGTGGAGAGCAAAGACGGGGAGGGG 1441 $\begin{array}{lllllllllllllllllllll}\text { L } & \text { A } & \mathrm{D} & \mathrm{L} & \mathrm{D} & \mathrm{T} & \mathrm{N} & \mathrm{T} & \mathrm{L} & \mathrm{M} & \mathrm{R} & \mathrm{Y} & \mathrm{V} & \mathrm{E} & \mathrm{S} & \mathrm{K} & \mathrm{D} & \mathrm{G} & \mathrm{E} & \mathrm{G} & 190\end{array}$ GACAGCTCGACCTGGAGCTGTCAAGTGGGCGGCGGGGCGTGGCTGTGTGGGTACGTGGCC 1501 D \quad S \quad S \quad T W W AGCTCGCGTCAGGCCGTCAGGGTGACCTGCCCCATCACTGACCCAAGGTTCCCTAAAGGA 1561 $\begin{array}{lllllllllllllllllllll}S & S & R & Q & \mathrm{~A} & \mathrm{R} & \mathrm{V} & \mathrm{T} & \mathrm{C} & \mathrm{P} & \mathrm{I} & \mathrm{T} & \mathrm{D} & \mathrm{P} & \mathrm{R} & \mathrm{F} & \mathrm{P} & \mathrm{K} & \mathrm{G} & 230\end{array}$ TGCCCCTTCGCTGAGGAGCAGGAAGTGCACCACCTTCTCGTGATGGCGGTGGTGCAGAGC 1621
 GACGGAGAGTTGGCGGCCGTTCTGGAGCTGTACAGGCGACGAGGGGGCGAGGCCTTCCAC 1681 D G E L A A A \quad I ACGGAGGACGAGGAGATCGTCAACTCGTACCTGGTGTGGGGAGGCATCGCCCTGCACTAC 1741
 GCCGAGCTCTACCACAGCATGGTGAAGCAACGCACGCTCAATGAGTTCATCCTCTCCGTC 1801 A F I. Y H S C I GTGAAGTCGATCTTCCAGGACATGGTTAGTATGGACACTCTCATAATGAAGGTGATGAAC 1861 $\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{K} & \mathrm{S} & \mathrm{I} & \mathrm{F} & \text { Q } & \mathrm{D} & \mathrm{M} & \mathrm{V} & \mathrm{S} & \mathrm{M} & \mathrm{D} & \mathrm{T} & \mathrm{L} & \mathrm{I} & \mathrm{M} & \mathrm{K} & \mathrm{V} & \mathrm{M} & \mathrm{N} & 330\end{array}$ TTTGCCCAGAAGCTTGTGAACGCCGATCGAGCTTCCCTCTTCCTCGTCGACTCCAAGAAC 1921 $\begin{array}{llllllllllllllllllllll}\mathrm{F} & \mathrm{A} & \mathrm{Q} & \mathrm{K} & \mathrm{L} & \mathrm{V} & \mathrm{N} & \text { A } & \mathrm{D} & \mathrm{R} & \text { A } & \mathrm{S} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{V} & \mathrm{D} & \mathrm{S} & \mathrm{K} & \mathrm{N} & 350\end{array}$ AAGCAACTCTACGCCCGCATCTTCGATATGGGCAGTGAATTCAGTGAAGACAATCCCCC̄A 1981 $\begin{array}{lllllllllllllllllllll}\mathbf{K} & \mathbf{Q} & \mathbf{L} & \mathbf{Y} & \mathbf{A} & \mathbf{R} & \mathbf{I} & \mathbf{F} & \mathbf{D} & \mathrm{M} & \mathbf{G} & \mathbf{S} & \mathrm{E} & \mathrm{F} & \mathrm{S} & \mathrm{E} & \mathrm{D} & \mathrm{N} & \mathrm{P} & \mathrm{P} & 370\end{array}$ CAGTCATTCAAGGAGATCAGGTTCGCCATTGGGAAAGGGATCGCCGGCATCGTGGCCCAG 2041


```
AACGGGGAGGTCCTCAACATCCCAGACGCCTATGCCGACCCTCGCTTTAACCGGACCGTC 2101
    N G E V L N I P D A Y A D P P R F N N R T V 410
GACCAACTCACCGGATACGTCACCAAGTCCATTCTGTGCATGCCCATCTTCATCCGCGGC 2161
    D Q L T G Y V T K S I L C M M P I I F I I R G 430
AACGTAATCGGCGTGATGCAGATGGTGAACAAGGCCTCGGGGGTGTTCAACAAGGAGGAC 2221
    N V I G V M Q M V N K A S G V F N K E D 450
GAGGAGTCGTTTCAAATGTTCGCCATCTACTGTGGTCTCGCCCTTCACCACGCGAAGCTG 2281
    E E S F Q M F F A I I Y C C G L L A L L H H
TACGATAAGATTCGAEGCTCCGAACAGAAATACAAGGTAGCCCTCGAGGTTCTCAGTTAC 2341
Y D_ K I R R R S E & K Y K V A L E V L S Y 490
CACAACTCTTGCTCTGACGACGAGCTTGATGTCCTGCAAGCAGAGAACATTACCAGGCCT 2401
    H N S C C S D D D E L D V V L Q A A E N I I T T R P P 510
ATCCCGGGGGTCGACGACTTCTACTTCTGCGCCATGAACCTGGAGGACATGACGAAGGTG 2461
    I P G V D D F Y F C A M N L E D M T K V 530
CGACACGCTATCTACATGTTCGTCGACCTCTTCGGCCTCACGCGCTTCGATAAGGACTGC 2521
    R H A I Y M F V V D L F G L T R F F D K K_ D C C 550
CTCATCCGCTTCACGCTCACCGTCAAGAAGAACTACCGTCGCGTCCC\TACCACAACTGG 2581
T
ACTCACGGGTTCAGCGTCGCCAACTCAATGTACGCCATCATCAAGCATAACCCAAAGAGC 2641
    T H G F S V A N S M Y A I I K H N N P K K S 590
TTCCGACCCCTAGAGTGTCTCGCTTTGTTCATCGGTTCCCTGTGCCACGATCTTGACCAC 2701
    F
CGAGGGAAAAACAACAAATTCATGCTGGAGACAGAGAGTCCCCTTGCGGCCATCTACACT }276
R G G K N N N K F F M L E E T E S S P P L A A A N I Y Y T 
ACCTCGACCCTGGAGCATCATCACTTCAACCAGACCGTCACCATCCTCCAGCAGGAGGGC 2821
T S T L E H H H F N N Q T V T T I L Q Q & E G 650
CACAACATCTTCGGGAAGCTCACCTCGACGGAGTATAAGCAGGTTCTGGGCAACATCAAA 2881
    H N I F G K L T S T E Y K Q V V L G N I I K % 670
CACTGCATCCTGGCTACAGACCTCGCCCTCTTCTTCCCTAACAAGGCCAGACTCGCGCAG 2941
    H
CTCGTCGAGGATAACCTATTCGACTGGGACAACTCAGACCACCGGATGCTTATTGAGGCC 3001
    L V E D N L F D W D N S D D H R M L L I I E A 710
ATCGCCATGACAGCATGTGATTTGTGCGCCTCGGCCAAGCCCTGGGAGATGCAAGCCGAG 3061
    I A M T A Clllllllllllllllllllll
ACGGTCAAGGTCATCTITGAGGAGTTTTACGAGCAGGGGGATGCTGAGAAGGCAGCCGGC 3121
    T V K V I F E E F Y E Q G D A E K A A G 750
AAGAACCCAATCCCCATGATGGACAGGACAAAGGTGAACGAACAAGCCGAGTCACAGGTC 3181
    K N P I P M M M D R T K V N N E Q A A E S S Q V 770
GGGTTCCTCTCAGGGATCTGCATTCCTTGCTACGAACTGCTGCACAAACTCATCCCCAAC 3241
    G F L S G I C I P C Y E L L H K L I P N 790
ACCGAACCTCTACTGGACGGCTGCAAGAACAACTGGAGACGTGGAAACAGATTGCGGAG 3301
T E P L L D G C K N N I L E T W K K Q I I A A E 810
GAAAAGCGTAAAGAGATGAAAAAGAACAGCGAAGTGGAAGGCGAGGAGGAAACGGACACG 3361
    E K R K E M K K N N S E V E E G E E E T T D D T 
GGCATCGAGGAGGTGAATGAGGAGGAGGAAGAAGAGGGAGTCGAGACCTTGCAAGACATC 3421
    G I E E V N E E E E E E G V E T T L Q D D I }8
GACGACGAGTGTGTTGACGGGAAAAGCGAAACATAGAATCGGGTCGAGGAAGGGTGCGAT 3481
    D D E Cllllllllll
CCAACGTGAAAACGAGTGAATGAGCGTCTTGTCTTTCGAACCTTAAATCACGAATTAAGA 3541
GAACGAAACCAGCACTCGTATCGTCAACTCAGTTTATTTGTTTTTCCAGACGTGTGACGT 3601
TGATGACAAGACTGCAGTGTGGATAGCGCAAATCAGCGTCAAAAATCTAGTGAGACAATA 3661
TATAATACTGTGAGAGATAGAAGAAAAGGCCACTCTAAAATATCGTATCTCGTAATGACA }372
CAAAAATGGTACTTCTTCGCAGCCCCCCAGACTTTCGAGTGCTATTTTCTTCCGTGTGAG 3781
AAAAGTTTCAGGCACAAAGGGGACGGAACCTAAACAGTATCTTCACTCTCTCCACCCACG 3841
AGAATGAGGCTTGGAAGGAAAGGGAATGAAGGAGAGAGGGACAGAGAACAAGAGACAGCA 3901
TACACGAAGTAATCCAGGGTCATCCCGGGACACATACGCACTTATCTTGCCATTTCCTTA }396
GCCTAAGCGCCACTCACACCCTGAGGCGGCACAGTGCCATGAATTATTGCTTAAGGTAGT 4021
```


Abstract

GTGCTGTGTAAGCCTGTCTGTTACCTGAAAACTGAGAAAAATGCTAAGGTATGGGTGTAT 4081 GTCTGTGTCTCTTTATGTGAATGTATGCATGTGTGTATGCGTGTGGATGTGTGCCAATGT 4141 ATCTTAAGCTTAATTTTTCTTTATGCCTGAAATGGCTTATCAGCGATTGTGAATAAATTA 4201 AACGAGGGACTAGAGCAAGGAAACTAAATATCAGAGGTGAAATTTTGGGGTTTAGTGTCC 4261 TGGAAAGCATCTATATCTTCTTTTGTTATGCTGTAAATGTTTTAATCTTACGAGTGAAAG 4321 AACAGAATAGTATTGTTTATTATTATGTTATGCCGTTGTTCCACTGGCTTTATTAATTTG 4381 TCAGGTTGTAGTAAGACCAGATTAATCATATTTATCGATGATGTAAAAACTTGTACCTTG 4441 GAAAAAAATCGATGACGAGAATGAGAAACAAACACGACATATTTGTGATTTATAATATTT 4501 ATCAAACAGGCTTTTCTTTGAAGTGAAGGACAACAGTATTTAATGAGTTTCGCAGTTTCT 4561 TTTCATCTGGTTATGTGTGAATATGTATATAGATGTGTGTGTATGCATGTAAGTAAGAGC 4621 AGAGCCTTCAAAAGTCTTGTGTATAAATGCAAGAGTGTGGGACTTTCAAAACACAAGTAC 4681 GTATGTGAAAGAGAACCAAAACTCCGAAAAAGCCTACGCGAGTGGATGGAAAAGTGAGAT 4741 TTTCAGAATATTCCGCTTCCGGATCACTCACATATAACTTCCTCCCACACACACACTCCC 4801 GTGCGATGTTTCCACTTCCACGACCCACCGTAACAAAACAAGCATGCGTGTGAAAGAACG 4861 AAAACTTCAAAGAGCCTACATGTGTGGATGAAAGAGTGTGAGATCTTCAGAATATTCCAC 4921 TCTCGTATCACTCACAAAATAACCCCGCTACGTTTCTACTCCCGCCGCCCACCCAAACAA 4981 AACACACAGGAACACATTCGCTCCAGTTCGCCGTTGCAACAAAAACAAGACTTGGTAACA 5041 ACAGGAATCTACTGAGCGCTGCCTTTCTTGGTATAATTTACAAACTTCCTATACAGTTCG 5101 TACCTCATTCTCGCGACCACAACTTCCACAGCCCCTCTCGATGTGTGTTTTTTACTCCCG 5161 TTGTGTACGCGATGTTGGAAACTGTGAAGAGGAAAATAATTATATCACTTCTGAAGGCCA 5221 CATAGCAGGGTTCAGTGATATAAAGTGTGGCTTCTGGGGACGGAAATCAGATTAATCTAA 5281 CACAGAGACTGTCAGGTTGTTTGTTCTGCCGACGTGAAAAGGAAAAACATTAGATTTTCT 5341 CGTAAGGTCACATAGCAGGGTTCAGTAATCAAACTGTGGCTTCGGGGGATGGAATACTGA 5401 CTTAACTAACCTGTAGACTGTCATGTTGTGTACTCAAAAGTGTTAGATTCCCTCTTGAGG 5461 CCACGTATCAGAATTCATTAATCTAAAATGTGACTTTGGGTGATGGAATAAAGACTAAGC 5521 CAACGCAGAGAGTGTCAGGCTGTATGTTCTGCCGAGAGGGAGAAAATCGAGGGCTGCCTG 5581 TCTTTCCGTGTGTCTGAAGAGCCTTACATACCTACCTACCACCGTCTTCACCGATGCCTT 5641 ATTACTCTGACCACTCATTAGCTCCCTCAACACTGGTCGCCCGCCTCACCCAAGGACCAG 5701 CAGACCCCTCTTTGATGATTGTCTGTACAGGATAAACCAATAATACGTACTACAATGCCT 5761 TTTCAGAGTGGTTATATGAAGAAACAAATTAAGAGTTAGAGCTACTTCCACGCATAAAAC 5821 ACGCCTCTTTCAGGTCTTATCTGGGGTCGTACGGTAGTGAGAGATATGTAGTGTATAATA 5881 TTCTTATAGCCTGTAGTTACTTCTGCCTTTTCCTGAGAGCTAAACTTCGGTGCGTCCACG 5941 CTAATATGGTGAATAAGCCCCGCCCACCCCAGTTCAGCAGCCATTAGTAAAATCCAGTCT 6001 TTCTATCAATCCGCCAGTCACATGCAGCCTGAGTCAGGAGGGGACATGGCCAACTAGTGG 6061 ATTGGCCAAAGGTATGCGTCTGAGGAGGGGAAGGGGAAGGGGTTTATCCGCCAAGCTAAA 6121 GCGGACGGAGTGTAGTGATCTGGCTGCCTCTTCTTGGCGCGCATCTTGATAGCCTAGCAT 6181 CCAAGTATCGTGTATCTGCCTTTCACGTGCACGATAGGAAAGAGTAACTGAGGCGAGACA 6241 CTATTTTCACACTAGAATGTTTGGAACCGTTAGGATTATTATGAATTAAGGATAATGCAC 6301 GTAGGAAGCTGGGGAGTATTACTTTTCTCAGGGCGAGAGGGAGGGAGGGAAGGAGCGGAA 6361 AAGGGAAAGGTAGAGATATTTAGAAGGAAGAAAGGGAAGGGAGGATGCCGTAAGGAAGAA 6421 TGAAAGATAAGATAAGCTGATCTCTTTCCCATCAGTTTTCATACCCGGTGTCTCTTGGGT 6481 TTTGCTTAGAGTGAGACGTTTCGAGACTGAACAGAGGAAAAGACGAATACTTGCCAACAA 6541 GACAAAAATACAAAGAGTTACAGTTAAGGTGAGAGATAGAGACGCTTGTTCTTGTTCATT 6601 ATTCTTGCCAGTCACAGACCTCACCGCACCGAGCGATCTGTGTCTCTCTTCTTAGTCCCG 6661 TTGCGGTTAGGTCCTCCAAATGCCTAACAAGCTGGTGAGTGAGTGTGCGTTGGGTTGATA 6721 CTTACCAAAGAATTCAGAGAGGTGTATTATGTATATAGAG6761

Figure 2.8. Nucleotide and amino acid sequence of cDNA encoding GI-PDE5. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. Two GAF regulatory domains; GAF-A \&GAF-B are indicated by green boxes and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains, the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$ underlined and in blue.

CmPDE5 2996 nucleotides

1 TGCACTCGTGCGCTATGAATGTCAACAAAGCCAGGGTAAGACAAGAGGAGCCCAGAAGGG
61 AGACGTGACCAGCGGAGACGTACCCCTGTGAACGTGCCCTGGAAAACGTGCCCTTGAGAC 121 GTGTTCTTGGACGTGTACCATTGAGGAACGTGCCTTAGGGAGACGTACCCTTTGGAAGAC 181 GTGTATGCTATAGTAAACAAACGTGTGCTGAAAGAAAACTGTCCTTGAAATCCAGAGCAA 241 TAAAAAACGTGATCTGGGAAACTTTCTACGAGGACCTCGAGACGGATACGCTCTTGTATA 301 GGTGTTGAGGGATTAAGAAGCAGCGCCCTCTACCCTCCCCCCTTCATCCCCTACCGCAGT $1 \begin{array}{llllllllllllllllllll}1 & M & M & S & C & L & L & E & E & G & G & Q & E & G & V & V & G & G & G & G\end{array}$ 361 CATGATGAGCTGTCTGCTGGAGGAAGGGGGACAGGAGGGAGTGGTGGGTGGTGGAGGCGT $21 \mathrm{G} \quad \mathrm{V} \quad \mathrm{K} \quad \mathrm{R} \quad \mathrm{A} \quad \mathrm{S}$ 421 GGGTGTTAAGAGAGCGTCTGTACCCTTACGTCGACGCAGAACAGGGATCGGGGCGCCGGG $\begin{array}{llllllllllllllllllllll}41 & \mathrm{~L} & \mathrm{~T} & \mathrm{~V} & \mathrm{~N} & \mathrm{G} & \mathrm{R} & \mathrm{S} & \mathrm{N} & \mathrm{M} & \mathrm{N} & \mathrm{S} & \mathrm{H} & \mathrm{D} & \mathrm{L} & \mathrm{S} & \mathrm{L} & \mathrm{T} & \mathrm{A} & \mathrm{E} & \mathrm{D}\end{array}$ 481 CCTCACTGTGAACGGGAGAAGTAATATGAACAGCCACGATCTCTCCCTAACAGCCGAGGA $\begin{array}{llccccccccccccccc}81 & \mathrm{M} & \mathrm{T} & \mathrm{G} & \mathrm{E} & \mathrm{E} & \mathrm{V} & \mathrm{G} & \mathrm{Q} & \mathrm{Y} & \mathrm{L} & \mathrm{R} & \mathrm{A} & \mathrm{H} & \mathrm{P} & \mathrm{E} & \mathrm{F} \\ 541 & \text { CATGACGGGGGAGGAGGTGGGCCAATACCTTCGAGCACACCCAGAGTTCCTCGAGTCGTG }\end{array}$ $101 \mathrm{~L} \quad \mathrm{M} \quad \mathrm{E} \quad \mathrm{Q} \quad \mathrm{V} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{T} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{R}$ 601 GCTCATGGAACAGGTGGAACTGGAGACGCTGGAGAGGTGGATGATACGACGCACTCAACG
 661 AgATAAACAGAAAAGCCTGGAGAACGATACGAATGGTAAAATCATCAGAAAAACGAGCTT $\begin{array}{lllllllllllllllllllll}141 & \mathrm{~S} & \mathrm{R} & \mathrm{W} & \mathrm{K} & \mathrm{F} & \mathrm{C} & \mathrm{V} & \mathrm{H} & \mathrm{A} & \mathrm{D} & \mathrm{K} & \mathrm{R} & \mathrm{K} & \mathrm{M} & \mathrm{L} & \mathrm{Q} & \mathrm{E} & \mathrm{L} & \mathrm{T} & \mathrm{S}\end{array}$ 721 ATCCAGATGGAAGTTTTGCGTGCACGCCGACAAACGCAAGATGCTGCAGGAGCTCACGTC $\begin{array}{llllllllllllllllllllll}161 & \mathrm{~S} & \mathrm{~L} & \mathrm{Y} & \mathrm{V} & \mathrm{R} & \mathrm{P} & \mathrm{N} & \mathrm{K} & \mathrm{P} & \mathrm{H} & \mathrm{V} & \mathrm{L} & \mathrm{W} & \mathrm{E} & \mathrm{L} & \mathrm{T} & \mathrm{R} & \mathrm{C} & \mathrm{I} & \mathrm{S}\end{array}$ 781 GTCCCTCTACGTGAGACCCAACAAGCCACACGTTCTCTGGGAGCTCACCCGCTGCATCTC
 841 CTCAGCAGTGAACGCGGACGGATGCAACCTTTACCTCGCTGATCTCGACACTAACATGCT
 901 CAGACGTTACGTGGAGAGTAAAGACGGGGAAGGAGACAGCACAGGATGGAGCTGCCCCAT
 961 GAGCGGCGGGGACTGGCTGTGTGGATGGGTAGCCAGCTCTCGTCAGGCCCTTAGAGCCAC
 1021 CTATCCCATCACTGACCCGAGATTCCCCAAAGGATCCCCCTTCGCTGAGGAGCAGGACGT
 1081 ACATCACGCTCTGGTCATGGCGGTGATGCAGAGCGACGGGGAGTTAGCAGCTGTGTTGGA
 1141 GCTGTACAGGAGGCGAGGTTGCGAGTCGTTCCACACAGAGGATGAGGAGATCGTCAATTC
 1201 CTACCTGGTGTGGGGTGGCATTGCGCTGCACTACGCCGAGCTCTACCACAGCATGGTGAA
 1261 GCAACGCACACTTAATGAGTTCATCCTCTCCGTTGTAAAATCGATCTTCCAGGACATGGT
 1321 GAGCATGGACACACTCATTATGAAAGTGATGAATTTCGCCCAAAGACTTGTGAACGCCGA $\begin{array}{llllllllllllllllllllll}361 & \mathrm{R} & \mathrm{A} & \mathrm{S} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{V} & \mathrm{D} & \mathrm{S} & \mathrm{K} & \mathrm{N} & \mathrm{K} & \mathrm{Q} & \mathrm{L} & \mathrm{Y} & \mathrm{A} & \mathrm{R} & \mathrm{I} & \mathrm{F} & \mathrm{D}\end{array}$ 1381 CCGTGCTTCTCTCTTCCTCGTCGACTCCAAGAACAAACAACTTTATGCTCGTATATTCGA
 1441 CATGGGCAGCGAATTCAGTGAAGACAATCCCCAGCAGTCATTCAAGGAGATCAGGTTCGC
 1501 CATAGGGACAGGTATCGCCGGCATCGTGGCTCAGAACGGAGAGGTGCTAAACATTCCAGA 421 A Y A $\quad \mathrm{D} \quad \mathrm{P} \quad \mathrm{R}$
1561 CGCTTACGCCGACCCTCGCTTTAACCGCACCGTGGACCAACTCACGGGCTACGTCACCAA
$\begin{array}{llllllllllllllllllllll}441 & \mathrm{~S} & \mathrm{I} & \mathrm{L} & \mathrm{C} & \mathrm{M} & \mathrm{P} & \mathrm{I} & \mathrm{F} & \mathrm{I} & \mathrm{R} & \mathrm{G} & \mathrm{N} & \mathrm{V} & \mathrm{I} & \mathrm{G} & \mathrm{V} & \mathrm{M} & \mathrm{Q} & \mathrm{M} & \mathrm{V}\end{array}$

```
1621 GTCCATCCTCTGTATGCCCATCTTCATCCGTGGCAACGTGATCGGCGTAATGCAGATGGT
```



```
    1 6 8 1 ~ G A A C A A G G C A T C A G G G G T G T T T A A T A A G G A G G A C G A G G A G T C G T T T C A A A T G T T T G C C A T ~
        481 Y C C L A L H H
    1741 CTACTGTGGCCTCGCTCTCCACCACGCGAAGCTCTACGACAAGATCCGACGCTCCGAACA
        501 K Y K V V A L L E M M M S F Y H Slllllllllll
    1 8 0 1 ~ A A A G T A C A A G G T A G C T C T G G A A A T G A T G A G C T A C C A C A G C A G T T G T G C G C C C C T C G A G C T ~
        521 D M L L S K K E E V V P N N V L L A A
    1861 TGATATGTTGTCAAAAGAAGAGGTGCCCAATGTCTTGGCAGGCGTAGATGACTACTACTT
        541 C C A M N N L E E D D M V V K K V R R H
    1921 CTGCGCGATGAACCTCGAGGACATGGTGAAGGTTCGCCACGCCATCTATATGTTCGTCGA
```



```
    1 9 8 1 ~ T C T G T T C G G A C T G A G C C G C T T C G A A A A G G A C T G T C T C A T T C G C T T C A C G T T G A C C G T C A A ~
    581 K K N Y Y R R R V P
    2041 GAAGAACTACCGACGTGTTCCTTACCATAACTGGACTCATGGGTTCAGTGTGGCCAACGC
        601 M Y A I I K K H N N P K K S S F F R P
    2 1 0 1 ~ T A T G T A C G C T A T T A T C A A A C A T A A C C C A A A G A G C T T T C G A C C G C T G G A G T G C C T G G C G T T ~
        621 F I G S L C C H
    2 1 6 1 ~ G T T C A T T G G T T C C C T G T G C C A C G A C T T G G A C C A T C G G G G G A A G A A C A A T A A A T T C A T G T T ~
        641 E T E S P L A A I I Y Y T T T S T T L L E H
    2 2 2 1 ~ G G A G A C G G A G A G C C C C C T A G C G G C G A T C T A C A C A A C T T C C A C C C T C G A G C A T C A C C A C T T ~
        661 N Q T V T I L Q Q E G H N I F F G K L T S
    2281 CAACCAGACAGTCACTATCCTACAGCAGGAGGGCCACAACATCTTCGGCAAGCTAACCTC
        681 T E Y K Q V L G N N I K K H
    2341 CACGGAGTACAAACAAGTTCTGGGTAATATCAAACACTGTATCCTAGCAACAGACCTCGC
```



```
    2 4 0 1 ~ T C T C T T C T T C C C T A A C A A G G A G A A A C T G T C C C A A C T G G T G A A G G A G T C C A A A T T T G A T T G ~
    721 D N A D H R M L I I E A I I A M M T A A C C D L C
    2461 GGACAACGCCGACCATAGGATGCTAATAGAAGCCATCGCAATGACGGCCTGCGATCTCTG
        741 A S A A K P W E M Q A A E T T V K K V I I F F E E F
    2521 TGCCTCCGCCAAGCCTTGGGAGATGCAAGCAGAGACGGTCAAGGTTATCTTTGAGGAGTT
        761 Y E Q G D A E K A A A A G K N N P
    2 5 8 1 \text { TTACGAGCAGGGAGACGCCGAGAAAGCTGCGGGCAAGAATCCAATTCCCATGATGGACAG}
        781 T K E E N D D Q A E E S Q Q V F G F L L S S G I I C C I P
    2 6 4 1 ~ G A C A A A G G A G A A C G A C C A G G C A G A G T C A C A G G T T G G G T T C T T G T C G G G T A T C T G C A T C C C ~
    801 C Y E L L H K K L I I P
    2 7 0 1 ~ T T G C T A C G A G C T G C T A C A C A A A C T T A T T C C C A A C A C G A A G C C A C T A C T G G A A G G C T G C A A ~
```



```
    2761 CTCCAACCTACAGACGTGGAAGAAGATTGCTGAGGATAAGCGTAAGGAGACGAAGAGCAG
    841 D D D G E G G G D E T T D D T F G I I E E E V V N N E E E
    2821 TGACGATGGGGAAGGCGGGGACGAGACGGACACGGGCATCGAGGAGGTGAACGAAGAGGA
```



```
    2 8 8 1 \text { GGAGGAAGGAGICGAAGITCIGCAAGAGATIAAAGACGAGIGIGITGACGCCAAAACIGA}
    881 T
    2 9 4 1 ~ A A C A T A G A G T G A G G C T T A G C G A G T G C A T T T G A A C T T G A G A G A G A G A G A G A G A G A G A
```

Figure 2.9. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE5. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. Two GAF regulatory domains; GAF-A \&GAF-B are indicated by green boxes and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains, the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$ underlined and in blue.

GlPDE5		-
CmPDE5		-
Dm.PDE5/6	MTDVSSPAGGAASPVEMSTTSSSSAATTSASSSKPLTNGA	40
Ce.PDE5	---------------------------------1	-
Hs.PDE5A		-

GlPDE5	MSCLLEEGGQDGVVGGGGVGVKRG	24
CmPDE5	--MMSCLLEEGGQEGVVGGGGVGVKRA	25
Dm.PDE5/6	NKTAISTAAGGVTPGAVPGPGSGAIPASSSSGNQVKLEHH	80
Ce.PDE5		
Hs.PDE5A	---MERAGPSFGQQRQQQQP	17

GIPDE5 : PTPIRRRRSGVGAPGLVVNGRNKMNSHDLPLTAEDMTGEA : 64
CmPDE5 : SVPLRRRRTGIGAPGLTVNGRSNMNSHDLSLTAEDMTGEE : 65
Dm.PDE5/6 : HRQSNNNRPAVTNRSSETKLMTPTGSSSSPSQSPSQTQAS : 120
Ce.PDE5 : -----------------------------------MDDAS : 5
Hs.PDE5A : QQQKQQQR----DQDSVEAWLDDHWDFTFSYFVRKATREM : 53

GlPDE5	LヵRWMRRIQRDKQK	103
CmPDE5	VGQYLRAHPEFLESWLME-QVELEILERWMIRRTQRDKQK	104
Dm.PDE5/6	IQTQTSQQDRLAKASTTASQQDVDEVARLFEEKPEAFEKW	160
Ce.PDE5	VLKYLQENPKLVEDFVVSNEISPEIFKRWAVRRTMKYKN-	44
Hs.PDE5A	VNAWFAERVHTIPVCKEGIRGHTESCSCPL	87

GlPDE5 : SLENGTNGKIIRKTSLSRWKFCVHADKRK----------- : 132
CmPDE5 : SLENDTNGKIIRKTSLSRWKFCVHADKRK----------- : 133
Dm.PDE5/6 : LTERAPPEALSRLQEFIENRKPHKRPSVTSDLFQQWMAAS : 200
Ce.PDE5 : -VKNGTSG------GTGAWTEPDLSMKRR------------ : 66
Hs.PDE5A : RADNSAPGTPTRKISASEFDRPLRPIVVKDSEGTVSFLSD : 127

GlPDE5	MLTETS	139
CmPDE5	MTEETS	140
Dm.PDE5/6	PTVQQKSPRSLSNSSASSLPECRRHLMDLDEGELFMEIR	240
Ce.PDE5	VILETSD	73
Hs.PDE5A	SEKKEQMPLTPPRFDHDEGDQCSR---------LELVK	157

GlPDE5	$:$	MRYVESKDGEGDSSTWSCQVGG----------GAWICGYV	209	
CmPDE5	$:$	RRYVESKDGEGDSTGWSCPMSG---------GDWICGWV	210	
Dm.PDE5/6	$:$	KYLVAKLFDVTQKTALKDAVTRASAEEIIIPFGIGIAGMV	219	
Ce.PDE5	$:$	CRKTE--NGELKLKKVKTSKS-----------ADYIQTIV	$:$	134
Hs.PDE5A	$:$	KFLISRLFDVAEGSTLEEVSN----NCIRLEWNKGIVGHV	233	

GlPDE5	ASSRQAVRVTCPITDPREPKGCPFAEEQEVHHLIVMAVVQ	249
CmPDE5	ASSRQALRATYPITDPREPKGSPFAEEQDVHHALVMAVMQ	250
Dm.PDE5/6	AQTKQMINIKEAYKDARENCEIDLKTGYKTNAITCMPICN	359
Ce.PDE5	NAGNQTIAEIH----------FYTQLDSTEKSIVNAV̄CT	163
Hs.PDE5A	AALGEPLNIKDAYEDPRFNAEVDQITGYKTQSIICMPIKN	273

GlPDE5	SDGELAAVLE YRRRGG--EAEHTEDEEIVNSYIVWGGIA
CmPDE5	SDGEIAAVLELYRRRGC--ESEHTEDEEIVNSYIVWGGIA
Dm.PDE5/6	YEGDIIGVAQIINTNG-CMEEDEHDVEIFRRYITECGIG
Ce.PDE5	WAAATNYYSELYTHKQ---EGSDGQD----------------
Hs.PDE5A	HREEVVGVA易AINKKGNGGTETEKDEKDFAAYIAFCGIV

End of GAF-A GAF-B

GlPDE5
CmPDE5 : LHYAEIYHSMVKORTLNEFISSVVKSIFODMV MDTLIMK : 328

Dm.PDE5/6
Ce.PDE5
Hs.PDE5A : LHNAQIYISLIENKRNQVLIDIASLIFEEQQ LEVILKK

GlPDE5	VMNFAQKIVNADRASLFLVDS--KNKQLYARIEDMGSEFS
CmPDE5	VMNFAQR VNADRASLFLVDS--KNKQLYARIEDMGSEFS
Dm.PDE5/6	IMTEAREILKCERCSVFLVDLDCCEASHLEKIIEKPNQPA
Ce.PDE5	VMNFAQKIVDADRASLFLVDS--KNAQIYARIFDVGTGDE

| GlPDE5 | $:$ | EVISYHNSCSDDELD----VLQAENITRPIPGVDDFYEA |
| :--- | :--- | :--- | : 521

GlPDE5		559
CmPDE5		
Dm.PDE5/6	FEIVDDDTCRAVIRMFMQCNLVSQFQIPYDVLCRWVLSVR	709
Ce.PDE5	MRISELEKPLYAVYMFKT-LFADTLRFDTEDIRFVLIVR	456
Hs.PDE5A	FELSDLETALCTIRMETDLNLVQNFQMKHEVLCRWILSVK	603

908
652

GlPDE5	DGCKN	ETWKQIAEEKRKEM	816
CmPDE5			
Dm.PDE5/6	EGTLEN	RRNWDLAEKVEMGLTWIDHDTIDKPVEEFAACA	988
Ce.PDE5	ERCEY	AKKWEELAEEQRKKQ	713
Hs.PDE5A	DGCRK	RQKWQALAEQQEK-	862

Figure 2.10. Multiple alignment of deduced amino acid sequences of PDE5 proteins in two crustacean species, one insect species, one nematode species and one mammal species. Abbreviations: Gl: G lateralis; Cm: C maenas; Dm: D melanogaster; Ce: C elegans; Hs: H sapiens. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 7.

GIPDE7 7531 nucleotides, structure: TC

GTGACCAACATGAATATAAACCTGCAGAAATGGGAAGAGAAGCTGCTGAAGAAGCTGGCT 2041 $\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{T} & \mathrm{N} & \mathrm{M} & \mathrm{N} & \mathrm{I} & \mathrm{N} & \mathrm{L} & \text { Q } & \mathrm{K} & \mathrm{W} & \mathrm{E} & \mathrm{E} & \mathrm{K} & \mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{K} & \text { L } & \text { A } & 423\end{array}$ GAGGATGCTGCTGCACAGCCAGTGGTTGTACCCGAAGACTCTTCCGAGAACCCAGTGGTG 2101
 GAGAGTGCTGAGGAGGAACCCGAGGAGGTGGATGGCGGGACATCCCCCAGCAGCAGTGGA 2161
 GACAGTCACCAGTCAGTGCTTGGCTCTCTAGAGAATGTGTCACGATCACTTCAGCTTGGC 2221 $\begin{array}{lllllllllllllllllllll}D & S & H & Q & S & V & L & G & S & L & E & N & V & S & R & S & L & \text { Q } & \text { L } & G & 483\end{array}$ AGGAGACACTCTGTTCCTCTGAACTTGCCACGCTTACTTCCTCGCACAATTATAAGGAGG 2281 $\begin{array}{lllllllllllllllllllll}R & R & H & S & V & P & L & N & L & P & R & L & L & P & R & T & I & I & R & R & 503\end{array}$ GAGAGTCTGCCGGAAAATGGAAACCAGCCCTTAGTTGTAGAGACCGTGACCATGGGAGGG 2341
 ATGTCTCTCACATCCCTTTCCTCTCGTCCAACTGACCTGAACTCCACACTGACACCTGAT 2401
$\begin{array}{lllllllllllllllllllll}M & S & L & T & S & L & S & S & R & P & T & D & L & N & S & T & \text { L } & \text { T } & \text { P } & \text { D } & 543\end{array}$
GCCCTTCTGCCCGAGCCTTCCATCACAACCATGGGTGGCGTGGGCATCAGGTTACCTCGT 2461 A Llllllllllllllllllll 5 CCAGCCACCAGACTCACTCGACGCAAGTCCCTCCCCCCCCTGTGGCTTCAGCAGACAAGG 2521
$\begin{array}{lllllllllllllllllllll}\text { P } & \mathrm{A} & \mathrm{T} & \mathrm{R} & \mathrm{L} & \mathrm{T} & \mathrm{R} & \mathrm{R} & \mathrm{K} & \mathrm{S} & \mathrm{L} & \mathrm{P} & \mathrm{P} & \mathrm{L} & \mathrm{W} & \mathrm{L} & \mathrm{Q} & \mathrm{Q} & \mathrm{T} & \mathrm{R} & 583\end{array}$ GCAAGAACCTCACACATGCTGCAGCCCCTGTCACCCACTCCAAGTGAAGACGCTTCTTCT 2581 $\begin{array}{llllllllllllllllllll}A & R & T & S & H & M & L & Q & P & L & S & P & T & P & S & E & D & A & S & S\end{array}$ CACCAAACAACTCAGGAAAATTCCCCACAGGATACTGAGAATGCACCAAGGTTAGGTGCA 2641
$\begin{array}{lllllllllllllllllllll}H & \text { Q } & T & T & \text { Q } & \mathrm{E} & \mathrm{N} & \mathrm{S} & \mathrm{P} & \text { Q } & \mathrm{D} & \mathrm{T} & \mathrm{E} & \mathrm{N} & \mathrm{A} & \mathrm{P} & \mathrm{R} & \mathrm{L} & \mathrm{G} & \mathrm{A} & 623\end{array}$ GTGCATGGTGTTGGCTCAGGTCACTCAAGTGGGAATAACAGTAGTGGTTGTGGTGGAAGT 2701
 GgAgGTTGTGATAGAGTGAAAAGTGGTGGTGGTGAATGTTCAGACCCAGTGGAACCAATA 2761

CATCATCCCATTAGGAGTGACACAGACCCATTGACTGCAGCTCAAGACGTGGGTGTTCAT 2821
$\begin{array}{lllllllllllllllllllll}H & H & \mathrm{P} & \mathrm{I} & \mathrm{R} & \mathrm{S} & \mathrm{D} & \mathrm{T} & \mathrm{D} & \mathrm{P} & \mathrm{L} & \mathrm{T} & \mathrm{A} & \mathrm{A} & \mathrm{Q} & \mathrm{D} & \mathrm{V} & \mathrm{G} & \mathrm{V} & \mathrm{H} & 683\end{array}$ GGTAGGAAGTGTGTTTCCAATCATCAAGGTGCTACAACATTCCTCCACGCTGACTGCCTC 2881
$\begin{array}{lllllllllllllllllllll}G & R & K & C & V & S & N & H & \text { Q } & G & A & T & T & F & L & H & A & D & C & L & 703\end{array}$ GACAACCACCCCTACAGACCATTCATTGGGAGGGGCTTGGTGCGCCGTGCTTCACTAGAC 2941
 AGTACAAGTATTAGTAGTAAACGGGAGTTCTTGGATCGCCTGCTACACGAGAGCAGTAAA 3001
 TTCCCTCGTGTAGACCGAACTAATAGTGAGTTAGATAAAGAAAACTTAGTGCCAAGAGAA 3061 $\begin{array}{lllllllllllllllllllll} & \mathrm{F} & \mathrm{P} & \mathrm{R} & \mathrm{V} & \mathrm{D} & \mathrm{R} & \mathrm{T} & \mathrm{N} & \mathrm{S} & \mathrm{E} & \mathrm{L} & \mathrm{D} & \mathrm{K} & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{V} & \mathrm{P} & \mathrm{R} & \mathrm{E} \\ 763\end{array}$ GCACTAACATACCGAGAGCAGCAGCAGCAGCAGCAGTCCTCATGGAAAACGCGTGCTTGG 3121
$\begin{array}{lllllllllllllllllllll}A & L & T & Y & R & E & Q & Q & Q & Q & Q & S & S & W & K & T & R & A & W & 783\end{array}$ CGGAGTCTCAACTGTGATGACGAAAATGTGTGTGATCCACGTGAAAAGCTGATGAAGCCA 3181 $\begin{array}{lllllllllllllllllllll}R & S & L & N & C & D & D & E & N & V & C & D & P & R & E & K & L & M & K & P & 803\end{array}$ GGCATGTACAAGCTCAATCAGTCTCAGGGAAGTCTGTATGCTCATGGCCGCCGGGGGTCG 3241
$\begin{array}{lllllllllllllllllllll}G & M & Y & K & L & N & Q & S & Q & G & S & L & Y & A & H & G & R & R & G & S & 823\end{array}$ GCACCACTGCTGCGGCCAGAGGAGTTGTTGGGGGGTCTTCGAGGGGGAGCTGAGAGGCCA 3301 $\begin{array}{lllllllllllllllllllll}\text { A } & \mathrm{P} & \mathrm{L} & \mathrm{L} & \mathrm{R} & \mathrm{P} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{L} & \mathrm{G} & \mathrm{G} & \mathrm{L} & \mathrm{R} & \mathrm{G} & \mathrm{G} & \mathrm{A} & \mathrm{E} & \mathrm{R} & \mathrm{P} & 843\end{array}$ GACTATAACTATCTCTCACTGCGGAGAGGCTCAGCACCATCACAAGCCAACCAAAAAGGC 3361
 TGTGATGTTGAAACTGGGTCTGAGGTGGGTGGCCGCCACACTCCCCTCACCTCAACGGAA 3421
 AATCTGCCCTTTAGCGAGTACGTCAGCTCACATTCCAGACTCAGGGGGCGGCGGCGAGGC 3481
$\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{F} & \mathrm{S} & \mathrm{E} & \mathrm{Y} & \mathrm{V} & \mathrm{S} & \mathrm{S} & \mathrm{H} & \mathrm{S} & \mathrm{R} & \mathrm{L} & \mathrm{R} & \mathrm{G} & \mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{G} & 903\end{array}$ TCCATACCCTTTGATCATCCTGGACTATGCCGGCAAGGGTCTGGTGGGGTGGAGGTGCTG 3541
 CCTTCAAGGACGGGTGTGGGGGGTAACCTGGCGGTGTCTGGTGGAGGCAGCGGGGCAGCT 3601
 GGCTTCCCCTCGGTGTTGCCCCACTACTACCATGAGTATCACAGGGGGTCTGGAGGCCTA 3661

GAACTGTTTGCCGGACTGTGGAGATCACACTTGGAACCTGAGAGCTCAAGTTCAGTGTTC 3721
 GTGGATGGTGACCTTTGTTCCCAGTCTTCTGGTGGCCTAACCCCCAGCACTCCTGGTGCT 3781 $\begin{array}{llllllllllllllllllllll}V & D & G & D & L & C & S & Q & S & S & G & G & L & T & P & S & T & P & G & A & 1003\end{array}$ GTGCTTCCACCCCACCGCCCCCTTCCCCACACCCTCCACAGGCGGGGCTCACTGCCAACT 3841 $\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{L} & \mathrm{P} & \mathrm{P} & \mathrm{H} & \mathrm{R} & \mathrm{P} & \mathrm{L} & \mathrm{P} & \mathrm{H} & \mathrm{T} & \mathrm{L} & \mathrm{H} & \mathrm{R} & \mathrm{R} & \mathrm{G} & \mathrm{S} & \mathrm{L} & \mathrm{P} & \mathrm{T} & 1023\end{array}$ GACCTCTTCTACTCAGGGGACTTCAGTGTGTGGGATTGCGAGGGGACATAGCCACTTCAG 3901
 TTCTCAGGCTCAGCGCTTCCGCCTCAGTCCAATAATTCTGCCAGCCTCCAGTGCCAGCCC 3961 CCACCCCCCTTTTACCTTCTCAGCCTGCCTGTGAGCCATGTGTACTCATGTCTTATGACT 4021 CTGTTACCCAAAACCTTCAAGTACAGGATGCAGATGAACAAAATTATTGTAAGTTCAATT 4081 GATATGTCGTTGTCTAGCATTCTCAAGAAATGAGAACTTTGTGCTTCTTATGTATATAGT 4141 TTTGTAGCATTGGAAAAGTAATACTGTATATGTTTGACCTTTGTTCCTTAATGTGTTTAA 4201 AGATTACACGTGGAAAAGTATTTAGATACAATTTTTATTCTAGAACCATGTAGTCCTATA 4261 CAGAGATGTTAATTTAATTAACATTAGTCATAGAAATATATATTGTACAACCTTTTTGTT 4321 TGTATAGTTCATTGCACAGACATGAATAGCTAAATGCAGTTTGTCCTGGTGTTCATGTGT 4381 TTGCTCTTGGCTGCTACGGCAACATCCTCTGATCGTCAGGCTGTGATGAGCCAGCAAGGT 4441 CTGCAGGCCCAGGGGTCACTGGGCCTGGAGCAGCAGTCTTCAAGTTTGGACCATTTTTTG 4501 TATTAAATAATGCTTGAGTAAATGAATTCAGATATTTTGGTCAGAAGTTATTTTTATTAC 4561 TGTGAATATAGATGATAAAAGTCTTAAGCTTATACATAATCAATTAGTTTTTCATGAACT 4621 TTAATGGTGAATATAATATTTGTATTAATAAATTCTAGTTTTTACAATGTCGGGAGACTT 4681 GAAAAGCTCAATCAAGCTCAATTTTATGGTGACGTCCAGTACTGTACATTTACAATGAAG 4741 CTTCACCTAGACAATCCATGTTCTGTTTCATTTGTGTATGAGTAAGGATCAATGTCTCTG 4801 TTTTGTTTAGAACACAAGTAATGCCACAGTGCAGTACATTCTAAATGGAAACTGCAAAAT 4861 ATAAACTAAATTTTTCTGCTGTTGAAGTAACTTAAATGGTGTCTTCCTTTCCCATTTCAC 4921 CACGTCAGTGTCAGTGTCACTCGTCCAAATCATGAAATTTGGACCAATTTTGTAGGCTCC 4981 TCAATATGAAATTGTTCCATTGTGTCATTTGCAGAAGTTTACCTTAGATGTCTTCGGCAC 5041 ATTTCAGTGTTTGGGATGGTGAACAATCTGTTTATTGTGGGTGACACTAACATAGTATTG 5101 TGATTTACCACTCTAGTCAGTTTGGAAGGTGATGGGAGAAGGTACCTTTACTGCCCTCAT 5161 CCCCTGGAGGGGCTGAGCAGCTGTGAGGGATCATCATGTGTTTCCATACTTCCTTCTGGG 5221 TGACAAGCCTTCTTGTCACTGCTCTTAGGTGTTGGGTAACCACATTATTATGATTGTTTT 5281 ATTTTCTTTTGGACAAGAAAACTTTCTTCGTAACATGTAATATCTCATTGAACTCAAATG 5341 AAAATTCTGCCTCACAAATTCTATTATGCCAAAAAATGCATTGTGTAGTATACTGTCCAT 5401 GTATCTTTTATTTGCATAACCAGTAGCTATGCAACTACTGTATGATCAAGATGAGCAAAA 5461 CACTTTAAGCTGTTTAATAATATGATTATATTTTATTTCTTAATTACTATTCATTATCTG 5521 TAATTTAATTTTGTCTTCCCCGGACTATTTGCTGTGATATTTTATAAAGATTTGTCCCAT 5581 ACACACATAGTATGCCAGAGAGTTTCCAAAATATATCATACAGACATAAAATAATCAAAA 5641 TCCAAGCATGTGCCAAATGTGTTAAGTTCTCAGGAGCTCCTGTCTGCTGTAGGGTGGCAG 5701 CCAAATTTGGCAGCAGTGACCTCAGAATGTTCATTCAGACAGACAGACAATACATCAAAA 5761 GTGATAAAGTAAATATACCCCACTGTGTGCCAAGACTTGAGGCCTAGCACTCTTCAGGAC 5821 TTAGTTACTGATGGCACCAGAAGATGGTGCCATGTAAGTGCTGCTGCTTCCCTCACCATA 5881 AAGTATGTTCAGTATAATTATAGTGAAAATGTCAGGAAATACAGTTATCAATTAAATTCA 5941 TTACTATCAGATAAAGTAGTGTGTTAAAGCTGAAACAAGATTTCTAAGAACGCTACTGCA 6001 ATCTTTAACAAGGGGGAAGGAATGCATGGGTCAGCTCAGTACTAGTGTTTGTGAAGTGAC 6061 AATGGCTGTGATGAAAATTTTCCTACTATGTATGCTTTTTAAGAAAAAACTTTATTTTGT 6121 GAAATGGCATGTTGTAATAGCTTAAAGCTTTTGCTATGAGAAAAACTTAACAGTGCAGAT 6181 ATCATTAGAAGAATGTTTCTAATTTTGAAAAATGTATGCACTTACTGCACCTCACATTGT 6241 TTGGTTAACAGTCTTAGTACTGTAACTCACATTGTTTGGTAGTCAGTCTTTCAAAGGAAA 6301 TAACTCCAAACTAGATGGGGGAATGTTCACATCCCAAGTTCCTTGCAGTGGAAATCCCCT 6361 GAAAACCTAGTACATACTTGCAGAGCACACAGTCAATGTTACATGCCAATAGATTTTGAA 6421 GTGCTCTTCTTTGCACATCATTCTTCAAACCAGCTTGTACTTTCATCTAATGGCCTGTGG 6481 AGGATGATGCACAACATTTTATTTTGTAAATTGAAAGGATCCATGGAAGGCATTTGGCTA 6541 AGACATTCTCCTCTTGCCACAGTGGCGGCCCTTGTTTTAGAGCAGTGCTCACACCCCACT 6601 TTTGAGAACAGATAATAAAATTTGCACCATTACTACACAAAATGCGTATTCAGTTCAAAT 6661 CTCTTGAACATCCATGCCAAATTTAACTTGTTGAACCTAACAAATCTCTCATTCCCCAAA 6721

```
CTAAGTATTGTTTAAATCTTGAAGCAGTTTTCTCTTGTATTAATATATTTACACTGATAA 6781
TTGTTATAACATATGACTACAAACTGATCTCCCATGGAAGCAAGGCTACCAGTATAACCA 6841
AACTTAAATCTTTAAGCAATTTTCTTCTTTCTTAGCACATTGACACTAGCAATTGTCAAA 6901
ATGTGTGACTGTAGACTCACCTCCAACTGAAGCATTGTGGGAACAAAGATCATCAGTATA 6961
ATTAAGGCATATCCTTGGATTTTGGTTTAAGTTCCTGCAGAAGGACTGAAACACTTTGGC }702
AGAACTCACTTAAGAGTGGTAAATCACACCCAAGTATTACCTGCTGTGTGGTAGGGTTGT }708
GGCATAGTGGATCAACTTGCTGGAGTCTTGAGAACATTGCAGGCACAAAACAGTAATCGT }714
AGAAACACTGGCAAGACTTACTTAAGAGTGGTAAATCACACCTGAGTATTACCTGCTGTG }720
AGGTGGATCAAAGCAAAATTAATTAACTTGTTAGAATCTTGAGAGCAGTGCAGGCACAAA }726
ATATTCTCAATAATTTTGTACATATGCCATTGGTCTGTAACTGTCTTCATATTTATAGCA }732
AGCTGTTTATGCTGTCATGGTTGACAGGAATTTGCTTCAAAATTATAGCCACATCAAGAT }738
AAGACAGCATGTTAGATTGTTATAATATGCAATTTCTGAACATATGTAGTGATGAGGTGC }744
ATTAATTTGTATCAAACTGAAAAACATCAGTATTTTTTATATGTTGTGAAGGATTAATGT }750
AGTACATATTATTATTATTATTATTATTA 7531
```

Figure 2.11. Nucleotide and amino acid sequence of cDNA encoding GI-PDE7.
A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$ underlined and in blue.

GlPDE7	QLERR	IRRESLPENGNQPLVVETVT
Dr.pDE7A	tocspes	
Hs.PDE7A	PQENRLS	

GlPDE7	MGGMSLTSLSSRPTDLNSTLTPDALLPEPSITTMGGVGIR
Dr.PDE7A	-----------------------------------1
Hs.PDE7A	--1

GlPDE7 : ASSHQTTQENSPQDTENAPRLGAVHGVGSGHSSGNNSSGC : 640
Dr.PDE7A : --- :
Hs.PDE7A : -- :

GlPDE7	GGSGGCDRVKSGGGECSDPVEP IHHP IRSDTDPLTAAQDV
Dr.PDE7A	
Hs.PDE7A	

GlPDE7	GVHGRKCVSNHQGATTFLHADCLDNHPYRPFIGRGLVRRA
Dr.PDE7A	
Hs.PDE7A	--

GlPDE7	SLDSTSISSKREFLDRLLHESSKFPRVDRTNSELDKENLV
Dr.PDE7A :	
Hs.PDE7A	---------------------------------------

GIPDE7	$:$	PREALTYREQQQQQQSSWKTRAWRSLNCDDENVCDPREKL
Dr.PDE7A	$:$	800
Hs.PDE7A	: ---	

GlPDE7	MKP GMYKLNQSQGSLYAHGRRGSAPLLRPEELLGGLRGGA	840
Dr.PDE7A		-
Hs.PDE7A	-	-

GlPDE7	ERPDYNYLSLRRGSAPSQANQKGCDVETGSEVGGRHTPLT
Dr.PDE7A	-------------------------------------1
Hs.PDE7A	

GlPDE7	: STENLPFSEYVSSHSRLRGRRRGSIPFDHPGLCRQGSGGV : 920
Dr.PDE7A	: ---

GlPDE7	EVLPSRTGVGGNLAVSGGGSGAAGFPSVLPHYYHEYHRGS
Dr.PDE7A :	-------------------------------------1
Hs.PDE7A	---------------------------------------1

```
GlPDE7 : GGLELFAGLWRSHLEPESSSSVFVDGDLCSQSSGGLTPST : 1000
Dr.PDE7A : -----------------------------------------------
Hs.PDE7A : ---------------------------------------------
```

GlPDE7 : PGAVLPPHRPLPHTLHRRGSLPTDLFYSGDFSVWDCEGT : 1039
Dr.PDE7A : --
Hs.PDE7A : --- :

Figure 2.12. Multiple alignment of deduced amino acid sequences of PDE7 proteins in one crustacean species, one fish species, and one mammal species. Abbreviations: Gl: G lateralis; Dr: D rerio; Hs: H sapiens. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 9.

CmPDE8 3007 nucleotides

```
            1
            ACAACTACTACAACTACTACTACAACTACTACTACTACAGTGTGAGGGATGGGGTGCACT
            5 P
            6 1 ~ C C C A G C C T A C A C G C G C A C A C C C A G T C T G T G G T G T G C A C G G A C G A T G A A G A A G A A A C A G T C ~
```



```
1 2 1 ~ A C A A A T G C G C A C A C A C A C G C A C A C A C G C C C A A T A A T C A A C A A C A A C A A C A G C C G C T G C T T ~
    45 N A H H H G P F G G V Q E E V V T P
    181 AACGCACATCATGGTCCCGGAGGAGTACAGGAGGTCACCCGCGCCTGGGATGACGCCACA
        65 H
    241 CACCCACACCGGTTGGTGACAGGATCTATAAAAGGCTCCCCTAAGAAACTCAAAATCTTA
```



```
    3 0 1 ~ T T A G T A T T C A G T A A G G A G G A C T C A C T G T G T C A G G T G T G G A G G A G G G C C G C T A C C C A C C T G ~
```



```
    361 GGCCACACCCCCACACACACCCGCACCTTGGAACAGGCTCTGCGGGTGTGTGCTGACCCC
    125 H T P D D V V V V V D D G R C C G R R G G G C C G K A
    4 2 1 \text { CACACACCCGACGTGGTGGTGGTGGATGGCAGGTGTGGCCGTGGCGGGTGTGGCAAGGCT}
    145 V G V C G A L L L Q R R L L T D D T T A A H
    481 GTGGGGGTGTGTGGTGCGCTGTTACAAAGACTGACTGACACTGCTCATCACAACAACACT
```



```
    5 4 1 ~ C T C A T G G T G G C G G T G G T G A A G A A A A G T T T T G T G G A G A G A G A C A A T G C A A C G A T T G G C C C A ~
    185 L L L N A F G F N N R R V V V C C E N
    6 0 1 ~ T T A C T G A A T G C T G G C T T T A A T A G G G T T G T G T G T G A G A G C A G T G T G C T G G G A G T A G T G C T G ~
    205 N E L L L Q L L D Q H H
    6 6 1 ~ A A T G A G C T G C T A C A A C T A G A C C A G C A C C A C C A C C A T C A T C A T C A T C A G G A G C A G T G T G G T ~
    225 G G G D G G G M V R R V V S C Q A M M V V T A A L H
    721 GGTGGTGGTGATGGTGGTGGTATGGTGAGGGTGTCCCAGGCTATGGTGACGGCTCTTCAT
    245 A Cllllllllllllllllllllll
    7 8 1 ~ G C T T G C C G G G A G A T T G T G C A T A T T A C T G A T A C C A A C C A T A G G A T A C A G T T C A C C A A C A A G ~
    265 A C C E S L L L G Y T T L L E C Q V V L N N N
    81 GCGTGTGAGTCGTTGTTGGGCTACACTCTAGAACAAGTGTTGAACAAGAACCTTTGGGAC
    285 L H N N A T D D V N N K Q D D N G
    901 CTTCACAACGCCACCGATGTAAACAAACAAGATGGCCGACCCCTAGACTACCACAGACCA
    305 S L E F R Q P I I K E T A A I I T T T T T T T A A
    9 6 1 ~ T C C C T A G A G T T C A G A C A A C C T A T A A A A G A A A C T G C T A T T A C T A C T A C T A C T A C T G C T G C T ~
    325 A T T A A T T T T N N T T T T T V T T T T T A A A A A 
1 0 2 1 \text { GCTACTACTGCTACTACAACGAATACTACTACTGTGACTACTACTGCTGCTGCCACGACT}
```



```
1 0 8 1 ~ A C T A C T A C T A C T G G T G A T G C T A A G G T G T C A T T G G A G G T G A G T G A G T T G G T G G G T C A T C A A ~
```



```
1 1 4 1 \text { GTGAAGCGAGGCAAGGAGTGGGAGGGAGTGGTGACCTATCGCAGGAAGTCTGGAGGTCAT}
    385 L H L L P S S K V V I P P V M M A P
1201 CTTCACCTACCATCTAAGGTCATTCCTGTCATGGCTCCTCTCTCAAGACGCATTGACCAC
    405 Y I I Y L L S E E L H
1261 TACATCTACCTGAGTGAGCTGCATCATAGTGGTGGTGGTGGCCTGGGTGGTGGTGGTGGT
    425 G E L L T T T T P L L E H
1321 GGCGAGTTGACCACTACACCACTGGAACACTTTCACCCGAGAGGTTCCATCAAGTCTCTG
    445 R K K G S H D D I R R S L L S S S D D G P
1381 AGGAAAGGCTCACATGATATAAGATCCCTTAGTAGTGATGGTCCAGTTGGTATAATTCGT
    465 R Q S L L V K L L H S S L T T I Clllllllllllll
```

1441 CGGCAGAGTCTGGTGAAGCTTCATTCGCTCACTATTGAAGCTCCGATCACCCGAGTGTTC
 1501 TCCATCATCGCGGCCGCCCAGGAGAACAGCCCGGCTTATGTGGCACAGGCTTTGGAGAAA
 1561 GCTATAGAGATTCTCCGCTCCACAGAACTCTATGCACCACAGCTCGTGTCTGGTGTGGCT
 1621 AATGTGGCTGAGAATGTGGCTGCCGGGAGGGCTATGTCGTCTGCTGATCCTGTGGCCACT $\begin{array}{lllllllllllllllllllll}545 & D & L & L & G & G & L & L & A & Q & G & P & K & P & L & L & S & A & R & R & S\end{array}$ 1681 GATCTGTTGGGGGGTCTGCTTGCGCAAGGGCCCAAGCCACTGCTGTCAGCGCGCCGCAGC
 1741 AGCAACGACACAGCTGTCAAGGCCCCACAGCAGCTGCCAAGAGCCTCGATAACAGCTTTA $\begin{array}{llllllllllllllllllllll}585 & \mathrm{P} & \mathrm{Q} & \mathrm{Q} & \mathrm{A} & \mathrm{S} & \mathrm{A} & \mathrm{A} & \mathrm{I} & \mathrm{S} & \mathrm{K} & \mathrm{L} & \mathrm{L} & \mathrm{S} & \mathrm{Q} & \mathrm{D} & \mathrm{M} & \mathrm{A} & \mathrm{W} & \mathrm{E} & \mathrm{F}\end{array}$ 1801 CCACAGCAAGCCTCGGCAGCCATTAGCAAGCTCCTCTCTCAGGACATGGCCTGGGAATTC
 1861 GATATTTTTAAACTCGAGAAAATATCCGATAAAAGACCGCTGGTGTGGCTGGGCATGTCC

 1921 CTGATGTGCCGCTTCGACGTGCCTGCCACACTCAACTGTGACGCCACCACACTGCAGAAC | 645 | W | L | T | L | I | E | A | N | Y | H | S | D | N | S | Y | H |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9}$ | N | S | T | H | | | | | | | | | | | | |

 2041 GCTGCCGACGTCCTCCAGTCCACCGCTTACTTCTTGGGCAAGGACAGGATAAGGCAGCTG $685 \mathrm{~L} \quad \mathrm{D} \quad \mathrm{P} \quad \mathrm{L} \quad \mathrm{D} \quad \mathrm{T}$ A A C L V A 2101 CTGGACCCGTTAGATACAGCTGCGTGTCTGGTGGCAGCTGTGGTACACGACCTAGACCAT $705 \mathrm{P} \quad \mathrm{G} \quad \mathrm{K} \quad \mathrm{N} \quad \mathbf{S}$ 2161 CCTGGGAAGAACAGCGCCTTCCTTTGCAACACTGATAATGAGTTGGCAATACTGTACAAT
 2221 GATGTGAGTGTGTTGGAGTGTCACCACGTGGCTGTGTCCTTCAAGCACACTCGCTCCGAT
 2281 GATAGGGTCAATATCTATAAAGGCCTGGACCGTGACACTTACAAACACTTGAGGAAAAGT
 2341 ATTATAGACATGGTGTTGGCAACAGACATGACCAGACACTTTGAACACTTAAGTAAATTT
 2401 GTCAACATGGCTGCCACTACTACTACTACTACTACTACTGCTGATGGTGGCGATGATAGT 805 D V F D E E T A A A A 2461 GATGTTTTTGATGAGGAGACAGCAGCAGCAGCATCAGACCTACTGTCCTTCAACACACCC
 2521 GAGAACATCGTCATCATCAAGAGAATGTTAATTAAGTGTGCTGACGTAAGCAATCCTCTT
 2581 AGGCCTACACACCTCTCTATTGACTGGGCCTATAGGATTGCTAACGAGTACTTCAACCAG $865 \mathrm{~T} \quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{K} \quad \mathrm{V} \quad \mathrm{R} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{P} \quad \mathrm{I} \quad \mathrm{V} \quad \mathrm{M} \quad \mathrm{P} \quad \mathrm{Q} \quad \mathrm{F} \quad \mathrm{D} \quad \mathrm{R} \quad \mathrm{T} \quad \mathrm{T}$ 2641 ACGGAGGAGGAGAAGGTGCGTGAGCTGCCCATAGTGATGCCACAGTTTGACAGAACCACT $885 \mathrm{C} \quad \mathrm{S} \quad \mathrm{I} \quad \mathrm{P} \quad \mathrm{K} \quad \mathrm{S} \quad \mathrm{Q} \quad \mathrm{I} \quad \mathrm{G} \quad \mathrm{F} \quad \mathrm{I} \quad \mathrm{D} \quad \mathrm{F} \quad \mathrm{F} \quad \mathrm{I} \quad \mathrm{N} \quad \mathrm{D} \quad \mathrm{M} \quad \mathrm{F} \quad \mathrm{D}$ 2701 TGCTCCATTCCCAAGTCTCAAATTGGCTTCATTGACTTCTTCATCAACGACATGTTTGAT
 2761 GCTTGGGACGCTTTGGCCGACATCTCAGAACTTCTGGAACACTTAAGAACAAATTATCTC $925 \mathrm{Y} \quad \mathrm{W} \quad \mathrm{K} \quad \mathrm{E} \quad \mathrm{Q} \quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{Q} \quad \mathrm{E} \quad \mathrm{Q} \quad \mathrm{T}$ 2821 TATTGGAAAGAACAAGAAGAACAAGA2CAAACAACAATAACAACAACAACTGCTACTGCT $\begin{array}{llllllllllllllllllll}945 & \mathrm{~A} & \mathrm{~A} & \mathrm{~T} & \mathrm{E} & \mathrm{P} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{H} \\ \mathrm{I}\end{array}$ 2881 GCTGCTACTGAACCACCACCACCACCACCACCACCACCACCTCCTGAAGAACTACATATT
 2941 AAAGAAGAGGAGGAGGAGGAGGAGGAAAAGAGTTAAAAGAGGAGAAGGAGGAGAAAGAGG 985 R R 3001 AGGAGAA

Figure 2.13. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE8.
A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$ underlined and in blue. The regulatory region, the PAS domain, is shown in an orange box.

CmPDE8	DDAT	64
Dm.PDE80	SPPPPRPLHGTSGPVAISLPFVGRNSSKTPEEMELEYEANVEAESRDIMTPLRRNTRPLS	180
BmPDE8	SGSP-----GAR---------AGRRSS	99
Hs.PDE8B	HELGSGSSAGSAAPAATTSRGRRRHCC-	98

CmPDE8	
Dm.PDE80	VSFGGGGGRSALQPEIVEAIRSLDVPALRLNNLSFDGSTDPKGERNHAEEEPLTPGHDHE
BmPDE8	LALT---------------PEDEPLVD
Hs.PDE8B	

CmPDE8 : SIKGSPKKLKILVFSKEDS-LCQVWRRATHLGHTPTHTRILQALRVCADPHTP---- : 127
Dm.PDE8O :
BmPDE8

CEAITAACQRHQLDVTLVKSKEEALDTLQKSYATAQCY Hs.PDE8B : PMRLTQDPIQVIFAKEDS-QSDGFWACDRAGYRCNIARTPSALECFLDKHH----- : 177

CmPDE8 : DVVVVDGRCGRGGCGKAGVCGALLQRITDTAHHNNIMVAVVKKFVERDNATIGPIN : 187
Dm.PDE80 : HLIIIDARSSKN--LDAEHIA----RTIRHTHGHHLITIIAVCKKSFFEKDDV-LIAILD: 412
BmPDE8 : HVIVVDARQPQQ--LDALLLA----RAIRGTKNTQHVYLIAIVKKSAYLKDEFGV AYLE : 238
Hs.PDE8B : EIIVIDHRQTQN--FDAEAVC----RSIRATNPSEHTVILAVVSRVSDDHEEASVLPLH : 231

CmPDE8 : AGFNRVVESSVLGVVLNEL Q DQHHHHHHHQEQCGGGGDGGMVRVSQAVMAHAR : 247
Dm.PDE80 : AGVNRCVAETINLAMCSVELKQIHSIIRPHNV-----------MSTQQAYMA HRLK : 460
BmPDE 8
Hs.PDE8B :
QARSSAACSRAQ
AATA LAAAADRCR
,

EHGEVRSQFK
RACNSVF A DHCH :

CmPDE8 : YHNSTHAADVLOSTAYFLGKDRIRQ LDP--IDTAACLV AVVHDLDHPGKNSAFLCNTD Dm.PDE80 : YHNSTHAADVMOATGAFITQLTNKDMLVMDRMEEATALIAAAAHDVDHPGRSSAFLCNSN BmPDE8 : YHNSTHAADVLOAVAYFLEKDRIKNLEP--VEAAAALISAAAHDIDHPGTSSAFLCNAR Hs.PDE8B : YHNSTHAADVLHATAFFLGKERVKGLDQ--LDEVAALIATVHDVDHPGRTNSFLCNAG

CmPDE8 : PPPEELHIKEEEEEEEEKS : 975
Dm.PDE8O : MANSK-------------- : 1050
BmPDE8 : AEPTTEE------------ : 885
Hs.PDE8B : ------------------- :
Figure 2.14. Multiple alignment of deduced amino acid sequences of PDE7 proteins in one crustacean species, two insect species, and one mammal species. Abbreviations: Cm: C maenas; Dm: D melanogaster; Bm: B mori; Hs: H sapiens. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue asterisks indicate the signature sequences in the catalytic domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 13.

GlPDE9 4111 nucleotides, structure G sequence
GACCGTCGACGTGGAGGGAGCGCGTTCGTTGTCTTAGTTTCTCGGACTGCGTGGGACATT GGCCAAACTTTTTACCCGTAAAATCTCCCCTAGTGACCAGGCATTTCGTGACAGACGTTA GTGACCCAGGTGCTGTGCAATGGGTCAGCATCAGCAATGATCGGCTTCCCCAGTGTGGTA TTCGTGTTATAAGGAACAAAAATATATCGAAGTTAAATCTGGATACATATAGTATTGGTA AACTAAGTGTTATCTTTGATTTGTACGTGTGCTGTGTGAGGTGAGGCCTGGCAGCTGCAC CTCGCCTGGCCACACAACGAGCGGCAGCTCCACTCACAGCAACAGCGGCACTAAACGAGC CTAGCAGCAAGGCGGCGGCAGAGCGACCAACCACAGCCTGACGTCACGTCACTGTCAAGG TGTGGGGGTGAGGATGCCCGCATGGAGAGGTGCGCCAGGACCGTCTACTTCACAGTGGGA GACAGACAGGACTCCGCCAGCCTCCACCCTGATGCCCGCCCCGAGGATGTCAGAGAGCTG TTCAGGAGCGCGTGTGGGGCGGGGCCTAGTGACGTCATCAAGCTGTACACCAGTGAAGGG AGTCTGCTGAACGCCGGAGCCCACCTGCCTGCCAACACCCCTGCCACCCCCTACCGCCTG GACGTAGCTGCCACCCCCTGCAATGGAGAGAAGCTGAACCATCTGGGGATTGACCTTATG GACCTGGAGCAGAGGCTGTGCGAGGTCGAGCGAAGCGTGGCTGCCCTGCGAGCAGACCTG CCGCCCGTGGTCGAGGAGCTGAGGCGCGCCGTGGACACATTCAAGATGAGGTTGGAGACC ACTGAGCACCTGTCCTGGCTGGGCCACCAAGAAAGCATGCAGTAGTTCCTCCCGTCACAG ATTCTTCCCGCGGTTGTCCCTTCATGCTTCCTTGTCCTTACAAGTAGACAGACCCACAGC CATGCACCGTCTCCTGCAGGGTTCTACAAGGAGGGGATTGGAGAGCCTCTTGGGACTCTG 1 GGCAACTCTCATCCGTGCTGGAAAAACGTTCAGTACCGGAGGAAGGCGGAGGAGGAGGTG 1 GCAACTGTGTGCAACAAGTTTAGAGAAATATGTGACGGCGTGGTGAGCGTGGACACCCAA 1 GAGCTCCTGCGGCTGCCTTCGTTTAACAACTGGGCGTGGGAAGACTGGGAAATTCTCCTT 1 CTCCTCCAGCACATGTACAAGGATCTCGGGCTCCTGTCGAAGTTCGGCATCGAGTTGGAG 1
 GTGTTCCGCAGCTTCTTGTGTCGTGTGTACCACTGCTACAACCAAGTTCCवTTCCACAAC 1 $\begin{array}{llllllllllllllllllll}\mathrm{V} & \mathrm{F} & \mathrm{R} & \mathrm{S} & \mathrm{F} & \mathrm{L} & \mathrm{C} & \mathrm{R} & \mathrm{V} & \mathrm{Y} & \mathrm{H} & \mathrm{C} & \mathrm{Y} & \mathrm{N} & \mathrm{Q} & \mathrm{V} & \mathrm{P} & \mathrm{F} & \mathrm{H} & \mathbf{N}\end{array}$ TTCATGCACGCCTTCTGTGTCACTCAGATGATGTACGGGATGATCTGCAAATGTGACCTG 1
 CAGCGGCGACTGGGTGACCTCGATTGCCTCATCCTGCTCACGTCCTGCATCTGCCACGAC 1
 CTAGACCATCCGGGCTTCAACAACATTTACCAAATCAATGCCAGGACCGAACTCGCCCTC 1
 CGCTACAATGATATCTCGCCGCTTGAGAACCACCACTGCTCCGTTGCCTTCAGCGTCCTC 1
 GAACGCAACGAGTGCAATATATTCAGAAACATGCCCCCGGAGGACTACAAGAAGGTGCGG 1
 GAGGGTATGATCCGCTGCATCCTCGCCACGGACATGGCGCGTCACAATGAAATCCTCTCA 1
 GACTTTCGAGAGATCATGCCAGAATTCTCTTACGAGAACCGAGCACACGTCAATGTGCTG 1
 TCCATGGTGCTGATCAAGGTGGCTGACATTAGCAACGAGGCACGCCCGCTGGACATTGCT 1
 GAGCCCTGGCTGGAGTGTCTCATGCAGGAATTCTTCAATCAAAGCGATCTTGAGAAGCTT 1 $\begin{array}{lllllllllllllllllllll}\mathrm{E} & \mathrm{P} & \mathrm{W} & \mathrm{L} & \mathrm{E} & \mathrm{C} & \mathrm{L} & \mathrm{M} & \mathrm{Q} & \mathrm{E} & \mathrm{F} & \mathrm{F} & \mathrm{N} & \mathrm{Q} & \mathrm{S} & \mathrm{D} & \mathrm{L} & \mathrm{E} & \mathrm{K} & \mathrm{L}\end{array}$ GAGGGGCTGCCGGTGTCCCCCTTCATGGACCGGGAGAAGGTTACCAAACCCTCCTCCCAG 1
 זGCTCCTTCATCGGCTTTGTCTTACTACCTCTGTTTGAAGCTCTCGGGAAGGTCCTCCCA 1
 GAGCTAGATGACCTGATCATTCAGCCAGTGAGGTTTGCATTGGAACACTACAGAAAATTG 2
 AATGAAGCTGCAAAAAAAGCTTCAGAAGAGCAAGAAGCTACCTTAGAGCCCACGGTTGAA 2
 GAGGAGGAGCTGCAAGTAGAAAGACCTAACAGTCGCCTTTCTCGGGAAAACTCTAAAAAG 2
 GTTGTGCAAAAGACTGAAAGCTCTTTCAGCATTGGAAGTAGAGCTTCATCACGCATCTCC 2

Figure 2.15. Nucleotide and amino acid sequence of cDNA encoding GI-PDE9. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (FHN) motif as well as the metal binding motif with a specific sequence signature ($\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}$) underlined and in blue.

CmPDE9 4356 nucleotides

1 GCTGAGCGGGGCATTGGCCTAACTTTTAACCCGCTAAACCGTCCCTTTCGACTCAGTATT 61 CAGTGACAGTCATTGGTGACCAGAGTGCAATACGATCGCTCGCCACCGGCAATGAGCGGC 121 TCCGGCAGTGTTGTAATCGTGTAATAAGGAACAGGATAAAAATACCTAAGTTTGATCTAG 181 ATGGATAAAGTCTGGGTCAACTGGGAGTACTGTCTTGGGTGACCCATGTACTGTGTGGGC 241 TGAGGCCGGGGAGCTGCTGCCTCGACTGGCCTCACGAGCACCACGGGGCGGCTCCACACA 301 GTAACACCAGTGGCACTGATCCAGCCTAGCAGCAAGGCAGCGGCACACCACACAACGGCA 361 GCCTCACGTCACGTCACTGCCAAGGTGTCGGAGTGAGGATGCCCGTATGGAGAAGTGCGT
 421 CAGGACCATTTACTTCACTGTGGGAGGCAAACAGGACTCAGCCAGCCTTCACCCTGACGC
 481 TCGCCCAGAAGATGTCAAAGAGGTGTTCCGTAACGCGTGTGGGGCGGGGCCTGCAGACAT
 541 CATCAAGCTGTATACTAGTGAAGGACATGTACTAAACGCAGGGCCTCACCTCCCTGCCAA
 601 CACCCCTGCCAACCCCTACCGCCTACACGTCGCCGCCACCCCCTGCAACGGAGAGAAGCT
 661 GAACCGTTTGGGGATTGATCTTATGGACCTGGAGCAAAGGCTGTGTGAGGTAGAGCGAAG
 721 TGTTGCCTCTCTTCGAGCAGACTTGCCTCCAGCGGTCGAGGAACTGAGGTGTGCTGTGGA
 781 GACCTTCAGGATGAGGCTGGAGACAACTGAGCATCTGTCCTGGCTGGGGTTCTACAAGAA 146 G I G E P L G N L G N P H P 841 GGGCATTGGCGAGCCTCTCGGTAACCTGGGCAATCCTCACCCTTACTGGAAGAACGTGGA
 901 GTATCGCAGGAAGGCGGAGGACGAGGTGGCTACGGTGTGCAACAAGTTTAGAGAAATATG 186 D G V V G E N T Q E L L R L P S F N N 961 TGACGGTGTGGTCGGGGAGAACACACAGGAGCTTCTAAGACTGCCCTCCTTCAACAACTG 206 A W E D W E I L F L L 1021 GGCTTGGGAGGACTGGGAGATTCTGTTCCTCCTCCAGCACATGTACAATGATCTTGGTCT
 1081 CCTGTCTAAGTTTGGGATCGAAACGGAGGTGTTCCGAAGGTTCCTGTGTCAAGTGTACCA
 1141 CTGCTATAACCAAGTGCCDTTCCATAACTTCATGCACGCCTTCTGTGTGACCCAGATGAT
 1201 GTACGGGATGATCTGCAAGTGTGATCTTCAGAGACGCCTGGGTGACTTAGACGCACTTAT
 1261 CCTGTTGACCTCCTGCGTATGCCATGACCTTGACCACCCAGGCTTCAACAATATCTACCA 306 I N A R T E L A L R Y N D I S P L 1321 GATCAACGCCAGGACTGAACTCGCCCTGCGCTACAATGACATCTCGCCCCTGGAGAATCA 326 H C S V A F S V L E R 1381 TCACTGCTCCGTCGCCTTCAGTGTTCTCGAGCGGAATGAGTGCAATATATTTAAGGATCT 346 P A E D Y K K V R 1441 GCCGGCCGAGGACTACAAGAAGGTGCGGGAAGGCATCATCCGGTGCATTCTGGCCACGGA 366 M A R H N E I L S D $\quad \mathrm{F}$ R 1501 CATGGCACGTCACAATGAAATCCTCTCAGACTTTAGAGAAATCACACCGGAATTTGCTTT 386 D N A A H V N V L S M V L I K V A D I 1561 TGACAACGCAGCGCATGTCAATGTGCTGTCCATGGTGCTGATCAAGGTGGCTGACATCAG
 1621 CAACGAGGCACGCCCGCTGGACATCGCTGAGCCGTGGCTGGAGTGTCTCATGCAGGAATT

[^0]Figure 2.16. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE9. A full-length open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow and the stop codon highlighted in green. The conserved catalytic domain is located within the blue boxes started with the initiating (FHN) motif as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$ underlined and in blue.

GlPDE9
CmPDE9:
Dm.PDE9E :
Tc.PDE9A :
Hs.PDE9A:

GlPDE 9	LDDLIICPV	ASEEQEATLEPTVEEEELQVE-RPNS-	307
CmPDE9	LDELIIOPV	FAIDHYRNLKDAQKAAEEQEAALEPAIEEEELEEEEIPNTNTNTNTN	533
Dm. PDE9E	LTELIIIPV	IALEYYRRLND A QTKTRKSVADSNTSATSDSNSGTIDSNAAMVSTPGG	1020
TC.PDE9A	LQDLIVQPV	EALEYYRRLNEATREERLHRKSIVSEMTDQHTPSTQSPDSAVTVPKSL	527
Hs.PDE9A	MVEEIMLQPLW	SRDRYEELK	350

| GlPDE9 | $:$ | SPSRRNSSERRSSVGGRSSCERTVSPRTLEERLLPHAEAKNEPEDGEVHPKKSEKESLFA |
| :--- | :--- | :--- |$: 434$

GlPDE9		537
CmPDE9		
Dm. PDE9E	LLARTEADSDGEGDGNGREDKKIPLVIPSMPQLATSSNGNISPTLVVTEQILP SNGSTRS	1320
TC.PDE9A	HLVKIPSNLEEKRSILKCSDNKSF-TNADKLRMNNVKSSLEDDEKLIVNNRKNSQSRVNN	763
s.PDE9		

GlPDE9		593
CmPDE9		
Dm. PDE9E	SASSGRGGSGVPGGSGGSGMPGPSAGSGSSWKSRLRQFSDYFSFSFDKSNKRFGSTRSSP	1380
TC.PDE9A	TSDSVN--SIDKDEVRKVQAAAGSPRNSRSIFSRFRQFTDRFSLSVDKDSKVKHPKNNNS	821
Is.PDE		


```
GlPDE9 : -------AARFSRHQTFFSQTKGVHSPEGLKGFKKKPESTRALLFKSLSFRKKSPTKDDE : 685
```



```
Dm.PDE9E : GGALTTMTTGNDAHQRHRAYSLDVPGMMRYSSNDSSRHPSNNTLQSAGGGAGLTTGLEVT : 1500
Tc.PDE9A : -------FLVLGKEKDKWASDAAVDKLAVVETDNQSLPSTSQLQSNCASPKTHLEKLEIV : 913
Hs.PDE9A : ------------------------------------------------------------------
```

GlPDE9 : MRHSDSCGPSEERL------------ : 699
CmPDE9 : --------------------------- :
Dm.PDE9E : AQRVPPSLSVEMGLASGSSSEAGPKI : 1526
Tc.PDE9A : SLKEFKVEETVEKTGVEKGEEGGVI- : 938
Hs.PDE9A : ---------------------------- :

Figure 2.17. Multiple alignment of deduced amino acid sequences of PDE9 proteins in two crustacean species, two insect species, and one mammal species. Abbreviations: Gl: G lateralis; Cm: C maenas; Dm: D melanogaster; Tc: T castaneum; Hs: H sapiens. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. The colors of the boxes correspond to the colors of the domains in Fig. 2. 15 \& 2.16.

GlPDE11 5752 nucleotides, structure: sequence C
GGGAGGGCAGAGGCTGTGCTGGGCTTGGCTGAGGCGCAGTGTGTGTTTCGTAGCTTCACG 61 GGCGGCTGTACGTACGCGTGGCAGACAAACTTGACTTCACGCAGCATCGAGGCAGAGAAA 121 GAATAGAAGAAAATGTCTCAACAGGTTCGTCTTCCCTTCAAAGGAATGATGGCGCCCACC 181 TTTACGCCATTCAAGGCTGATGGGTCCCTCAATCTGGAACTGGTGAAGCCGTACGCAGCA 241 CACCTGAAGGCTTCTGGTGTGAAGGGGGTGTGGGTGAACGGCACGGCCGGCGAGGGCATG 301 TCGCAGACGGTGCTGGAGCGCAAGGCGGTGGCGGAAGCGTGGCTGGCGTGCCGCGGTGAC 361 GTGCCGACAGTGATCGTGCATTGCGGCGCGGGATGCCTCAAGGATACACAGGACCTGGCT 421 CGTCACGCGGAGGAGAAAGGGGCTGATGGAGTGGCCGTGTTGCCCCTCCTCTTCGACCCC 481 CCCAAAACCCCCGACGATCTGGTGGACTACATGGTGGAGGTGGCTAAGGCGTGCCCCTCC 541 AGCCCCCTCTTCTACTACCACATCCCCATGAAGACCGGCGTGAAGTTGTCGATGAGCGAG 601 TTCCTGGAGAAGGGCGTGAAGCGTATACCCACGTTGGCGGGGGTCAAGTTTACCGACGGG 661 GACGTGAGCGGCGAGGGCAGGAAGTGTCTGAAGGTGAACGGCGGCAACCTGACCGTATTT 721 AATGGCTTTGACCAGAGCCTTCAGGAGGCTCTCAGCTTGGGCTTCAACTGTGGCGTCAAC 781 TCGAGCTTCACCTTCCTGCCTCACCTGGCTGGCCGCATCTTCACTCTGATGGAGGCCGGT 841 GACAAGGACGAGGCGGTGAAGGTGCAGCAGAGACTCAGCAGCTGCTTCGACGTCATCTAC 901 AGGCAGAGCGGCGGCATTTTCAGCTCGGCCTGCATGAAGGCAGCGTGCAGCCTCCTGACA 961 GGGCTGCAGTTTGGGCCCACACGCCTCCCCGTGAAGCCCCTGACGGAGGAGATGACGGCC 1021 ACGCTGAAGAGAGACCTTGAGAAACACGGCCTCAAGGTGTACTGAAGGGCGAACGGGAAC 1081 AGCAGAAGGAGGAGAAAGGGAAGGGGAGGAGGAAGAGACGGAGGAGGTTGAAGAGGAAGG 1141 GATGGAAGATAAGGGGGAGGAAGGAATAGAGGAGGAGATGGAAGGGTAAAGGCGAAATTG 1201 GGAGCTGATGTAAGTGGAGGAGAAGGAAGACAAGAGAGGGGAAACAAACGAGGAATATAA 1261 GGAAAAAGAGAGTAAGCTGAAAATTATGCTTAGAAGAGGGAACAGCGTAGAGGGGGGAAG 1321 ACATGAGGGAGTTGGTGACGATGGTGCTCGGTAGGAGGAAGAGGAGGAGGGGGAGGAGGA 1381 GGAGGAGGAGGAGGGGGTGGGGGGGAGCCTCCTGACCCTGCCGAGCTGCGAGGGGGAGGA 1441 GGGGGCCCTCTCCCCCTACACACGCCCCCCCAATACAACTACGACCCGGAGTGTGCCAGA 1501 ATGGAGGCGTGGCTGGACGACCATCAAGATTTCGTGTACGACTACTTCATCAGGAAGGCG 1561 $\begin{array}{lllllllllllllllllllll}M & E & A & W & L & D & D & H & \text { Q } & D & F & V & Y & D & Y & F & I & R & K & A & 20\end{array}$ TCTAGGCACATGGTGGACTCTTGGTTGCTCTCCCATGCCCTGCCTCAGAGCCTCGGGATG 1621 $\begin{array}{lllllllllllllllllllll}S & R & H & M & V & D & S & W & L & L & S & H & A & L & P & Q & S & L & G & M & 40\end{array}$ GGCGCCGCGGGGTACTGCGGGGCGGGGCCTGAGGCGGGGGCCGGGGCGGGTCTGGCCACC 1681 $\begin{array}{lllllllllllllllllllll}\text { G } & \text { A } & \text { A } & \text { G } & \text { C } & \text { G } & \text { A } & \text { G } & \text { P } & \text { E } & \text { A } & \text { G } & \text { A } & \text { G } & \text { A } & \text { G } & \text { L } & \text { A } & \text { T } & 60\end{array}$ ACCCCGGGACAGCATCAAAACTCCAAGGCGTCGTCTGGAGCTGCCACGCCAGTTCGCAAG 1741 $\begin{array}{lllllllllllllllllllll}T & \mathrm{P} & \mathrm{G} & \mathrm{Q} & \mathrm{H} & \mathrm{Q} & \mathrm{N} & \mathrm{S} & \mathrm{K} & \mathrm{A} & \mathrm{S} & \mathrm{S} & \mathrm{G} & \mathrm{A} & \mathrm{A} & \mathrm{T} & \mathrm{P} & \mathrm{V} & \mathrm{R} & \mathrm{K} & 80\end{array}$ ATTTCAGCCCACGAGTTCGAGAAGGGCGGCCTCCTCAAGCCCATCGTGACCACTATCGAC 1801
 GGGACGCCCACCTTCATATCTCCTGCCGGGGCTGCCGAGAACGTGGCGATACTGGCGAAG 1861
 GTTCGTCGCAAGTCCCGCACGGAGCTCAAAGGCCTCGACGAGCGGCAATTAATCTTCGAA 1921
$\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{R} & \mathrm{R} & \mathrm{K} & \mathrm{S} & \mathrm{R} & \mathrm{T} & \mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{G} & \mathrm{L} & \mathrm{D} & \mathrm{E} & \mathrm{R} & \mathrm{Q} & \mathrm{L} & \mathrm{I} & \mathrm{F} & \mathrm{E} & 140\end{array}$ CTCGTGAAGGACATTTGCAACGAGCTDGATGTCCGCCCCCTGTGCCACAAGATCCTGCAG 1981 $\begin{array}{lllllllllllllllllllll}\mathrm{L} & \mathrm{V} & \mathrm{K} & \mathrm{D} & \mathrm{I} & \mathrm{C} & \mathrm{N} & \mathrm{E} & \mathrm{L} & \mathrm{D} & \mathrm{V} & \mathrm{R} & \mathrm{P} & \mathrm{L} & \mathrm{C} & \mathrm{H} & \mathrm{K} & \mathrm{I} & \mathrm{L} & \text { Q } & 160\end{array}$ AACGTGTCCATCCTTACCAGCGCTGACAGATGCTCGCTTTTCCTAGTACAAGGGGACAAG 2041 $\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{V} & \mathrm{S} & \mathrm{I} & \mathrm{L} & \mathrm{T} & \mathrm{S} & \mathrm{A} & \mathrm{D} & \mathrm{R} & \mathrm{C} & \mathrm{S} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{V} & \text { Q } & \mathrm{G} & \mathrm{D} & \mathrm{K} & 180\end{array}$ GAGACGGAGAACCGCTGCCTCGTCTCCACGCTCTTCGACGTGAACCCAGACTCGACGGTG 2101 $\begin{array}{lllllllllllllllllllll}\mathrm{E} & \mathrm{T} & \mathrm{E} & \mathrm{N} & \mathrm{R} & \mathrm{C} & \mathrm{L} & \mathrm{V} & \mathrm{S} & \mathrm{T} & \mathrm{L} & \mathrm{F} & \mathrm{D} & \mathrm{V} & \mathrm{N} & \mathrm{P} & \mathrm{D} & \mathrm{S} & \mathrm{T} & \mathrm{V} & 200\end{array}$ GAGGAGATGGAGGAGAAGGAAGAGATCAGGATAGCGTGGGGTAGTGGCATTGTGGGCTAC 2161 E E M E E K $\quad \mathrm{E}$ ACGGCGCAGAGTGGAGCAATGGTTAACATCCCTGACGCCTATGCTGATGACCGCTTCAAC 2221 $\begin{array}{llllllllllllllllllll}T & A & Q & S & G & A & M & V & N & I & P & D & A & Y & A & D & D & R & F & N\end{array} 240$ TCTGAGATCGACTGCATGACGGGATACAAGACGCGTTCGATGCTGTGTATGCCCATCAAG 2281 $\begin{array}{lllllllllllllllllllll}S & E & I & D & C & M & T & G & Y & K & T & R & S & M & L & C & M & P & I & K & 260\end{array}$ GACAGTAACGGGGAGGTGATCGGCGTGGCGCAGGTTATCAACAAGCACCAGGGTCAGTCC 2341
 TTCACGACGGCTGACGAGAAGGTGTTTGAGTCCTACCTCCAGTTCTGCGGCATTGGTCTC 2401 $\begin{array}{lllllllllllllllllllll}\mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{A} & \mathrm{D} & \mathrm{E} & \mathrm{K} & \mathrm{V} & \mathrm{F} & \mathrm{E} & \mathrm{S} & \mathrm{Y} & \mathrm{L} & \mathrm{Q} & \mathrm{F} & \mathrm{C} & \mathrm{G} & \mathrm{I} & \mathrm{G} & \mathrm{L} & 300\end{array}$


```
GGGACAAACAATTGAGTGTGTGTGCTGATATGCCAAGTGCCCTTGCCAACCACTGCACAA 4121
    G T N N - 8 864
AGTGATGCCGTGGACACAAGTAGAGGAAGTGGTGGATTGTAAGCAAGGTTTTGTGCCGTG 4181
GCTGTGTGTTTCAGTTGGACCCAAGGAGTTCGGGCACAAGTGATGGACTGAAGTGAAGTA 4241
GAATGTGTGAGTGTTCAGTGTCTTGATAATGTACATTGTGGCCTTGACCACCACTCTAAG 4301
TTCTGCTTCTCCTGTGTTGACCTTCTGTACTCGTGTGTGAACAGTTCAAAGGCTATTAAT 4361
AGTATATGTTTTGTACTTCTGACTCTATAAGGTTCATAGATATGTTTAATCCGTGAAATG 4421
AACTTCTGTGCTACATATAAGTGTGAGAAAATATGTATTATCACTTGGTTGTATGACAGA 4481
TATATCTTTCATTTTGGCATAATAATAATATTTAATGCTAGGGTGCTCCCCTGCTGGAGT 4541
AGTGAATGTTTTTATTCAGGAATTTCATCAGGAATGTGCAATATTCAGATAGCATGTATG 4601
GGTCATTATTTATTTGATAGGGACATCTGTTCATCTTCCTTTTGTGTTCATTCAGATTTC 4661
AGCAAGTGGGCCCAAGGGACGCTAAAGGCCTCAATGGGGGTAAAGGGAGGGAGGGGGGCT 4721
GTACTGATGGACCTCCACAGTTCATTCATCTAATAAATAACTGGATACTTCTGTCCTCTC 4781
TTGAGTTGCCTCTTTCCACCCTGCCTCTGCCTCTCCTAACAAGTGAATCATGTCTAGCCA 4841
GGAACACCGAACTTGACACACATTAACATGTTCCCAGTCAAGGCTTGATGCCATATTATA 4901
TAAGCAATCCCCAGGTTATCAATGAGTTTCGCTCCTAAACACAGATGTAAGTTAGATTTG 4961
TCTAAGTCAGAAAGGCAGAAGTGTACTGTTTTACTGTGCCTCAGTAAGCAGTGCAGTGGT 5021
CTGTTACCACAAACCATTGTCTCCAATTAAGATTTTTCAAAATGAAGTCTGTGTATGGGC 5081
TGATCTAGGTTGAAACATTCTTGACCCAGGCACTTACTGTGTTGCAGCAAAGGAGTCTTA 5141
GTGATATGTTCTTTACATCTTTGCATTTTCTTTATACAATAAATTGGATCACACTTTAAA 5201
AATGCATGAAATTATGGTCAAGAGCATACACATAACCAAGTGAATAGTACCATCTCAGTT 5261
GGAATTTAAAAAGTAAGGACAGTGCCACCAGTAATGAAAGTTGAAGTAAAATGGCAAATA 5321
GGCTATTTAGTCACTTAGAAGATACAACTTTACAATTACTTAATTCTACACTGCTTAAAA 5381
TCTCTACTAGGTGTAGTTTTTGTCCTGCCTATCTTATGATCCGGTACTTTATCACTCACC 5441
ACCCTCCATTCTCTTGTGAAAGCTGCAGCAAGCAAGACACCCAGCCAGCAGATCAAAGGG 5501
AGAGCAGCAAAGCCCCTCACACCATCACCACCTTGGGCCCTGTAACAAAAGACACCACAG 5561
TTAATACTGACAAACATACAACTCCCATAGAACCACAAGGCCACAAGTGTCAATTTAAAA 5621
AAAGAAAACTACTGTTAAAGTTTGGCTCATCTAAACGTCCTGTTATGTAATGCAGTTCTG 5681
GACTGTTAGATAATCATAATGCTTCAAGTCACACCTCCACAAGACAGAGGAC 5 5 52
```

Figure 2.18. Nucleotide and amino acid sequence of cDNA encoding GI-PDE11. A fulllength open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow, the stop codon highlighted in green. Two GAF regulatory domains; GAF-A \&GAF-B are indicated by green boxes and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains, the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature ($\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}$) underlined and in blue.

CmPDE11 5839 nucleotides

GCTGGGGGAGCCACGGCGATGAGACCAAGAACAGCCCGGGGTCAGGTGAGATCAGTGGAG

GGGGCGGTGGGGAGCCTCCAGACCCTTCAGAAGTGCGTGGGGGGGCGCCTCTCCACTCCC
CGCCTCAGTACAACTACGACCCGGAGTGTGCCCGTGTGGAGGCGTGGCTCGACGACCACC
M V D S W L
181 AGGACTTTGTGTACGACTACTTCATCAGGAAGGCGTCTCGACATATGGTGGACTCGTGGC
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{S} & \mathrm{H} & \mathrm{A} & \mathrm{L} & \mathrm{P} & \mathrm{Q} & \mathrm{S} & \mathrm{L} & \mathrm{G} & \mathrm{V} & \mathrm{G} & \mathrm{A} & \mathrm{G} & \mathrm{A} & \mathrm{Y} & \mathrm{C} & \mathrm{G} & \mathrm{A} & \mathrm{G}\end{array}$
TTCTCTCCCACGCCCTCCCGCAGAGCCTGGGCGTGGGTGCCGGGGCGTACTGCGGGGCGG $\begin{array}{llllllllllllllllllll}\text { P } & G & E & A & G & A & G & P & G & G & I & G & T & A & G & H & Q & N & S & K\end{array}$ GGCCGGGCGAGGCGGGGGCCGGGCCAGGAGGCATTGGCACCGCGGGGCATCAGAACTCCA $\begin{array}{llllllllllllllllllll}A & S & S & G & A & A & T & P & V & R & K & I & S & A & H & E & F & E & K & G\end{array}$ AAGCTTCTTCAGGAGCGGCCACCCCAGTTCGTAAGATTTCGGCGCACGAGTTCGAGAAGG $\begin{array}{llllllllllllllllllll}\mathrm{G} & \mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{P} & \mathrm{I} & \mathrm{I} & \mathrm{T} & \mathrm{T} & \mathrm{I} & \mathrm{D} & \mathrm{G} & \mathrm{T} & \mathrm{P} & \mathrm{T} & \mathrm{F} & \mathrm{I} & \mathrm{S} & \mathrm{P} & \mathrm{A}\end{array}$ GAGGTCTTCTGAAGCCCATCATCACTACCATAGACGGCACGCCCACCTTCATCTCCCCCG $\begin{array}{llllllllllllllllllll}\mathrm{G} & \mathrm{A} & \mathrm{A} & \mathrm{E} & \mathrm{N} & \mathrm{V} & \mathrm{A} & \mathrm{I} & \mathrm{L} & \mathrm{A} & \mathrm{K} & \mathrm{V} & \mathrm{R} & \mathrm{R} & \mathrm{K} & \mathrm{S} & \mathrm{R} & \mathrm{T} & \mathrm{E} & \mathrm{L}\end{array}$ CTGGCGCCGCTGAGAACGTTGCTATTCTGGCCAAGGTGCGCCGCAAGTCCCGGACGGAGC $\begin{array}{lllllllllllllllllllll}K & G & L & D & E & R & Q & L & I & F & E & L & V & K & D & I & C & N & D & L\end{array}$ TCAAGGGATTAGACGAGCGGCAACTTATCTTCGAGCTGGTGAAGGACATCTGCAATGACC TGGATGTGCGTTCCCTGTGCCACAAGATCCTGCAGAACGTGTCCATCCTTACCAATGCCG $\begin{array}{llllllllllllllllllll}R & C & S & L & F & L & V & Q & G & D & K & E & S & D & N & R & C & L & V & S\end{array}$ ACCGTTGCTCACTCTTCCTCGTGCAGGGTGACAAGGAGTCAGACAACCGGTGCCTCGTGT $\begin{array}{llllllllllllllllllll}\mathrm{T} & \mathrm{L} & \mathrm{F} & \mathrm{D} & \mathrm{V} & \mathrm{N} & \mathrm{P} & \mathrm{D} & \mathrm{S} & \mathrm{T} & \mathrm{V} & \mathrm{E} & \mathrm{E} & \mathrm{M} & \mathrm{E} & \mathrm{E} & \mathrm{K} & \mathrm{E} & \mathrm{E} & \mathrm{I}\end{array}$ CCACGCTGTTTGACGTGAACCCAGACTCGACGGTGGAGGAGATGGAGGAGAAGGAGGAGA $\begin{array}{llllllllllllllllllll}R & I & A & W & G & S & G & I & V & G & Y & T & A & Q & S & G & A & M & L & N\end{array}$ TCAGGATAGCGTGGGGCAGTGGCATTGTGGGTTATACTGCCCAGAGCGGCGCTATGTTGA $\begin{array}{llllllllllllllllllll}I & P & D & A & Y & E & D & D & R & F & N & S & E & I & D & C & M & T & G & Y\end{array}$ AtAttcctgatgcttatgaggatgatcgcticaActccgagattgactgcatgacagact
 ACAAGACGCGCTCTATGCTGTGTATGCCCATAAAGGACAGTTGTGGAGAGGTGATTGGTGc $\begin{array}{llllllllllllllllllll}A & Q & V & I & N & K & H & Q & G & Q & S & F & T & N & A & D & E & K & V & F\end{array}$ TGGCACAGGTTATCAACAAGCATCAGGGTCAGTCTTTTACCAATGCCGATGAGAAGGTGT $\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{S} & \mathrm{Y} & \mathrm{L} & \mathrm{Q} & \mathrm{F} & \mathrm{C} & \mathrm{G} & \mathrm{I} & \mathrm{G} & \mathrm{L} & \mathrm{R} & \mathrm{N} & \mathrm{A} & \mathrm{Q} & \mathrm{L} & \mathrm{Y} & \mathrm{E} & \mathrm{R} & \mathrm{S}\end{array}$ TTGAATCCTACCTCCAGTTTTGTGGCATTGGCCTCCGCAATGCTCAGCTGTATGAACGCT cccaActigAAgTGAAAAGAAATCAGGTTCTTCTGGACTTGGCGAGGATCATCTTTGAAG $\begin{array}{llllllllllllllllllll}Q & S & T & I & E & Q & I & V & Y & R & I & M & T & H & T & Q & S & L & L & Q\end{array}$ AGCAGAGCACTATAGAGCAAATTGTGTACCGCATTATGACACACACCCAGAGCCTCTTGC $\begin{array}{llllllllllllllllllll}C & \mathrm{E} & \mathrm{R} & \mathrm{V} & \mathrm{Q} & \mathrm{I} & \mathrm{L} & \mathrm{L} & \mathrm{V} & \mathrm{H} & \mathrm{E} & \mathrm{A} & \mathrm{S} & \mathrm{R} & \mathrm{G} & \mathrm{T} & \mathrm{F} & \mathrm{S} & \mathrm{R} & \mathrm{V}\end{array}$
AATGTGAACGGGTACAGATTCTCTTAGTACATGAAGCGTCTCGGGGAACATTCTCACGTG $\begin{array}{llllllllllllllllllll}\mathrm{F} & \mathrm{D} & \mathrm{L} & \mathrm{E} & \mathrm{V} & \mathrm{K} & \mathrm{D} & \mathrm{L} & \mathrm{Q} & \mathrm{G} & \mathrm{D} & \mathrm{D} & \mathrm{A} & \mathrm{E} & \mathrm{S} & \mathrm{R} & \mathrm{T} & \mathrm{S} & \mathrm{P} & \mathrm{F}\end{array}$
TGTTTGACTTGGAAGTGAAGGATCTGCAAGGAGATGATGCAGAGAGCCGCACAAGTCCCT $\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{S} & \mathrm{R} & \mathrm{F} & \mathrm{P} & \mathrm{I} & \mathrm{N} & \mathrm{V} & \mathrm{G} & \mathrm{I} & \mathrm{T} & \mathrm{G} & \mathrm{H} & \mathrm{A} & \mathrm{A} & \mathrm{T} & \mathrm{T} & \mathrm{G} & \mathrm{E} & \mathrm{T}\end{array}$
TTGAGTCCCGGTTCCCCATCAACGTAGGCATAACAGGACATGCGGCCACAACGGGAGAGA $\begin{array}{llllllllllllllllllll}V & C & I & A & D & A & Y & Q & D & S & R & F & D & Q & S & V & D & E & N & T\end{array}$ CTGTGTGCATTGCTGATGCATATCAAGATTCAAGGTTTGACCAATCAGTCGATGAAAACA $\begin{array}{llllllllllllllllllll}G & F & R & H & K & S & I & L & C & M & P & I & K & N & T & A & R & K & I & V\end{array}$ CAGGCTTCCGCCACAAGTCTATCCTATGCATGCCAATCAAGAACACAGCACGCAAAATAG $\begin{array}{llllllllllllllllllll}G & V & V & \mathrm{Q} & \mathrm{L} & \mathrm{V} & \mathrm{N} & \mathrm{K} & \mathrm{F} & \mathrm{D} & \mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{F} & \mathrm{T} & \mathrm{S} & \mathrm{N} & \mathrm{D} & \mathrm{E} & \mathrm{N}\end{array}$ TGGGAGTCGTGCAACTTGTCAACAAATTTGATAACCTTCCCTTTACAAGCAATGATGAAA $\begin{array}{lllllllllllllllllll}\mathrm{F} & \mathrm{L} & \mathrm{E} & \mathrm{A} & \mathrm{F} & \mathrm{A} & \mathrm{I} & \mathrm{F} & \mathrm{C} & \mathrm{G} & \mathrm{M} & \mathrm{G} & \mathrm{I} & \mathrm{H} & \mathrm{N} & \mathrm{T} & \mathrm{N} & \mathrm{M} & \mathrm{Y} \\ \mathrm{E}\end{array}$

```
1561 ACTTCCTGGA\&GCCTTTGCAATATTCTGTGGGATGGGGATCCACAACACCAACATGTACG
```



```
    1621 AGAAAGCAGTGACAGCAATGGCCAAGCAGAAGGTGACCCTGGAGGTACTGAGCTACCACG
```



```
    1681 CCACAGCCCCGAGGACAGACTCACAGAAGCTGGTGAAGTTGAAAATACCATCAGCTCAGG
```



```
    1741 CATTCCAGCTTTACGACTTCAAGTTTGATGACTTCAGTCTTGATGATGATGGAAGTTTGA
```



```
    1801 AGGCCTGTCTGAGAATGTTCCTCGACCTGGACCTGATTGGAAGGTTCCACATTGAGTATG
```



```
    1861 ATGTGCTGTGCCGTTGGCTGCTCAGCGTCAAGAAGAACTACCGCAATGTCACGTACCATA
```



```
    1921 ACTGGCGACACGCTTTCAATGTGGCTCAGATGATGTTTGCCATTATCACGACAACACAGT
    \(587 \mathrm{~W} \quad \mathrm{~K} \quad \mathrm{~V} \quad \mathrm{~L} \quad \mathrm{G} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{C} \quad \mathrm{L} \quad \mathrm{A} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{V} \quad \mathrm{A} \quad \mathrm{C} \quad \mathrm{L} \quad \mathrm{C} \quad \mathrm{H} \quad \mathrm{D}\)
    1981 GGTGGAAGGTGTTAGGAGAGCTGGAGTGTTTAGCCCTGCTGGTGGCGTGTCTCTGCCATG
    \(\begin{array}{lllllllllllllllllllll}607 & L & D & H & R & G & T & N & N & S & F & Q & I & K & A & S & S & P & L & A & Q\end{array}\)
    2041 ACTTGGATCACCGAGGCACAAACAACTCTTTCCAAATCAAAGCTTCATCTCCATTGGCCC
    \(627 \mathrm{~L} \quad \mathrm{Y}\)
    2101 AGCTGTACACCACCTCTACCATGGAGCACCACCACTTTGACCAGAGTGTCATGATTCTCA
    \(647 \mathrm{~S} \quad \mathrm{C} \quad \mathrm{G} \quad \mathrm{N} \quad \mathrm{Q} \quad \mathrm{I} \quad \mathrm{L}\)
    2161 ACTCGTGTGGCAATCAAATCCTAAGTAACTGCACCCCTGATGAGTACTCCCGTGTCATTA
```



```
    2221 GTGTCCTTGAAGACGCTATCCTGGCCACTGACTTGGCCGTGTATTTCAGGAAGCGCGGTG
```



```
    2281 GATTCTTTAACATGGTGAAGTCAAAACAGTGTGATTTAAACCGGGAGGATGTGCGTGAAC
```



```
    2341 AGGTGCGAGGGATGATGATGACAGTGTGTGACATCGCTGCCATTACTAAGCCCTGGCCCA
        \(\begin{array}{llllllllllllllllllll}\mathrm{Q} & \mathrm{K} & \mathrm{Q} & \mathrm{V} & \mathrm{A} & \mathrm{E} & \mathrm{L} & \mathrm{V} & \mathrm{A} & \mathrm{G} & \mathrm{E} & \mathrm{F} & \mathrm{F} & \mathrm{E} & \mathrm{Q} & \mathrm{G} & \mathrm{D} & \mathrm{I} & \mathrm{E} & \mathrm{K}\end{array}\)
        TCCAGAAACAGGTTGCAGAATTGGTGGCCGGGGAATTCTTTGAGCAAGGTGACATTGAGA
        \(\begin{array}{llllllllllllllllllll}\text { Q } & \mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{I} & \mathrm{T} & \mathrm{P} & \mathrm{I} & \mathrm{D} & \mathrm{M} & \mathrm{M} & \mathrm{N} & \mathrm{R} & \mathrm{E} & \mathrm{K} & \mathrm{K} & \mathrm{D} & \mathrm{K} & \mathrm{L} & \mathrm{P}\end{array}\)
        AGCAGGAGTTGAAGATCACCCCAATTGATATGATGAATCGAGAGAAGAAAGACAAACTAC
        \(\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{M} & \mathrm{Q} & \mathrm{V} & \mathrm{G} & \mathrm{F} & \mathrm{I} & \mathrm{D} & \mathrm{S} & \mathrm{I} & \mathrm{C} & \mathrm{L} & \mathrm{P} & \mathrm{V} & \mathrm{Y} & \mathrm{E} & \mathrm{A} & \mathrm{F} & \mathrm{A} & \mathrm{D}\end{array}\)
        CATTGATGCAAGTGGGTTTCATAGACTCCATCTGCTTGCCTGTGTATGAGGCCTTTGCAG
        \(\begin{array}{llllllllllllllllllll}M & T & \mathrm{P} & \mathrm{D} & \mathrm{L} & \mathrm{Q} & \mathrm{P} & \mathrm{L} & \mathrm{L} & \mathrm{D} & \mathrm{G} & \mathrm{V} & \mathrm{K} & \mathrm{E} & \mathrm{N} & \mathrm{R} & \mathrm{O} & \mathrm{N} & \mathrm{W} & \mathrm{O}\end{array}\)
        ACATGACCCCAGACCTGCAGECTCTACTGGACGGTGTGAAGGAAAACCGGCAAAATTGGC
        \(\begin{array}{lllllllllllllllllllll}\mathrm{K} & \mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{E} & \mathrm{S} & \mathrm{A} & \mathrm{S} & \mathrm{R} & \mathrm{A} & \mathrm{M} & \mathrm{P} & \mathrm{R} & \mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{I} & \mathrm{N} & \mathrm{N}\end{array}\)
        AGAAGCTGGCGGATGAGTCTGCCAGCAGAGCTATGCCTAGAAACAATAACAATATCAACA
            \(\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{Y} & \mathrm{S} & \mathrm{S} & \mathrm{N} & \mathrm{S} & \mathrm{E} & \mathrm{R} & \mathrm{E} & \mathrm{R} & \mathrm{G} & \mathrm{G} & \mathrm{T} & \mathrm{N} & \mathrm{D}\end{array}\)
            ACAATAACAATAACAACTACTCTAGTAACAGTGAACGAGAAAGAGGTGGGACAAATGATT
        AAgTGTGTGCAGATATGTCAAGTGTCCTTGCCACCCATTGCATCAAGTAATGCTGTGGAC
        AACTGAAAGTAGAGTTAAGTGATGAATCACTAGCAAGGTTTGTGCAGTGACAATAATGTA
        GCAGAAGTACAGATGTTAATGAAATGAGGACTTGAGACAAAAAGGTGCGAGTGTTCAGTG
        TGAGTATATGAAGTGTGGCCTTGACCGCTGCTGAAACCATTGCTTCTCCTGTGTGTTGAC
        CTCAAGTGTGTGAACATTGCAAACACTAATAGTATATGTTTTATACTTTTTGACTCTGTA
        GGTTCAAAAATCTATGTAGTCAGTGAAATGGACATCTGTGCTACCTGTACGTGTGAGAAA
        CATACCATCATTGGGTTGTATGATGAGTTTATTGTGGCATAATAATGTTTAATTTAATTA
        TAGGATGCTCCAACAACGGAGTATTTAATGTTTTATTCAGGAATTTCATCAGGAATGTGC
        AATATTCAAATAGCATGTATGGGTCATTATTTATTTACTAGGCATGTCTGTTCATCTTAA
        TGTGTTCACTTAAGGAGTTCAAAAAGTGGGCCCAAGGGATACTTAGGTCCCAAAGTATGT
        GGATGGGAGGGAGTGTTATATTGACCTCCATTCATGTAATAAATAACTAGATATTTCTAT
        TAACTGTGAAATTATCTCTGCCTTGCATTTCTCACTCCTTGAATAATTTCCCACCATGGC
        TACCCAATCTTTCTCGTCACATCAAGAAACATTTGATGTGTGGAAATGCTTTGTTAAAAT
        TGAGTCCAAAGAAACAAACTTCTGAAGCTGAATTTCATGAGTCACACAACGCTATCAAGA
```

```
3 6 6 1 ~ G T A C A A C T C T T A C C A T C T T T A T G C T C A T G G G G A G A C T G C A G C C A G C C A G G A G G A A G A G A G ~
    3 7 2 1 ~ A A A G A G A G A G A G A G A G A A A C A A A T C C C C T C C A T C C A T C T C A T C T T G G G C C C T A T A A C A A A ~
    3 7 8 1 ~ A G A C A G C A C A A G A A T T A A A C C C T T T T G C T A A T T A T G A T A A G C A T A T T T T T T T C T A T G T T C ~
    3841 ACCATTTGGATCAAGGAATGTGTATCTAAAATCAGCTGCATATTTCCACCTGTAAATATA
    3 9 0 1 ~ T A A T G C A T A A A A G A A A T G T G C C A T G T C T T T T T T T T T T T C T C A A A A G A A A T A A T T A G A G C A ~
    3 9 6 1 ~ C T C T T G T G T T T C G T G T T T T T T G T T G A G T G A G G C G A G A T G A A A G T G T T A T G T T A G T A G T G C ~
    4 0 2 1 ~ A T C A T T G C A T C A T C C A C A C T G T G T A C C T G C T G C C A C T G A T G A T A G C A A A G C A A G A G T T A T ~
    4 0 8 1 ~ G A T A G T G T T G C A C A A T G A G G T G A A G C C A A A G T C A T G G A T G G G A G G A C T A T G T T G A G T C A T ~
    4 1 4 1 ~ C A G C C A T A T T C T C T T C C T C T T A A A G T T A G T T T C T C A T C A G T C A G T T C T T G C T G C T T G T T A ~
    4 2 0 1 ~ C A A T T A T G A A A G G C A A A T G A A A A T A T G T G A A T T T T A T A T A T A A A C A T C T G C C T C T T C C C C ~
    4 2 6 1 ~ T C C C A G T G A A T C C C T A C A G A G G A G T A A A C A A G A A G T T A T C C T T T G T C T A C G T A T T A C A A A ~
    4 3 2 1 ~ A A T T A T C A C A T T A A C C A A T T G C A G T G T G A G G C A G G A G T T A T G T T T T C A G A T C A G A T T T A C ~
    4 3 8 1 ~ C A A A C T G T G T C G T T G C C T C A A A C C T G T G A T A G G A A G A G A A T A C T G T A C G T A C A T T G C A A G ~
    4441 GATAACACGGCTCTGGAGGGCAAACTTATCATTGAAGTGAGACAAACAAAGATAAACCTA
    4 5 0 1 ~ C T G T A A G A T T T C A T A T T A A T T C T C A C T T T T C T A A A T G G G A G C C A A T A A G C T G A A G T T T A C ~
    4 5 6 1 ~ C T A C T A A T T A G C G A G A C A C A G A T C C A T C T C G G A A A A A C A T T G A T A G A T G C A G T A T G T A C A ~
    4 6 2 1 ~ C A C T C A A C T A A A A G T T A T C A A A C C T C T T G C A A C A G T T G A T G C C A A A A T T A T T T G T G A G T T ~
    4 6 8 1 ~ A T G A C C A C A C A A T A C T T A G T A T G C C T G G T T A T G A T G A T G C A C A T T A A A G T C A T G C C A C T G ~
    4 7 4 1 ~ G C A T A G C T A C C A T C C A C A C C T T C A C A C A G A A G G A G T T A A A A T T C T T C A T A T T T A G G C C T A ~
    4 8 0 1 ~ T A T C T C A G A A T G C A T G G T G C T T A C A G G G T T T G A G A A C T T A T T G G T G A G A A T G T A C A T A T G ~
    4 8 6 1 ~ A T T A A T G C A C T G G T C T C T G G T G C A A G A C C C A T T A A C T A C A G C C A T T A C C A A A G T G A A T G C ~
    4 9 2 1 ~ C A A A C A A A T C T C A C C A C A A C C T T T C C A T G C T C C C T C A T T C C A G T C T A C A T T T G T A A T A T T ~
    4 9 8 1 ~ G C A C A G C T T T G C A C A A T G C A G C A C A A T G C T A C A G T A A A T T G A G A A C C A G C C A C T G C T G A T ~
    5 0 4 1 ~ G A T T A T A T T T T T G T C T G A T A T A T T C T T C A C T A T T G A A G A T A A T T A T T A A C A C T A C T G A A C ~
    5 1 0 1 ~ T G T A G T G G C G T T C A A T G T G G T T C C T A C T T C T A G T T G G T A A A A A C T G A C T T C T C A A A C A G C ~
    5 1 6 1 ~ A G T C T G G T A G T T A G T A G T C A T C C C A C C T G G G C A A G A C T T G T G C T T C T G A A T C A C C T T G T A ~
    5 2 2 1 ~ T G A G G A G C A G A A A A C T T G T G T T G G T A C T A C A T G G T C T T A A A A G A T A C C T C T T A C T T G T G T ~
    5 2 8 1 ~ C T T T C A T T A T A A C C A T T C G T G A T T C A T A A A G T T T C T G T T C A C T T C A G G A T A T A A C C A T C T ~
    5 3 4 1 ~ T A G A T A G A A G T G C T T T T C T T A C A A T A C A A A A G A T A T T G A G A T A A A C A G A A T G T G T A G C T A ~
    5 4 0 1 ~ T A T G A G T A T A A A A T T T T A A A A C T T C A G T T G A T T A A A T A A C G T G T A A C T T A T C A A C A A T A T ~
    5 4 6 1 ~ A T G T A G T G T C A G T A A G C C A T T A T A C T C A A A C A A A A C A C T T T A C A T T T G G C A G C T G C T T A A ~
    5 5 2 1 ~ C A A A A G A A A T A T T T G A T T G A A A G G A C A T A A T T T T T T G T C A G A A T A G A T T A G A C A G T G T G A ~
    5 5 8 1 \text { GGTGTGGTTTTATGTAATATGTACGTACTAATAATGTGATGTAAACCACAATCTACAAGG}
    5 6 4 1 ~ G A C T A T A T C A C C C A T A G T T A C C C G T A A G C A T C T G C A G A T A A A A A A A A A A A A A A G A T T A T C ~
    5 7 0 1 ~ A A T T G C T A A A C A C T C G C A A G C T C T T C T C T A T T T C A C A C T A T T T G T T T T C A T A A T C G A T T T ~
    5 7 6 1 ~ G T C G G A A C A C A A C C C A T T C A A A A C T G T A A C C A T A A T A T G T T T G C C A A T A A T T A A A A T G A A ~
    5 8 2 1 ~ A C A G T A A G T A A G A A A A A A A ~
```

Figure 2.19. Nucleotide and amino acid sequence of cDNA encoding Cm-PDE11. A fulllength open reading frame (ORF) was expressed by the cDNA, the start codon highlighted in yellow, the stop codon highlighted in green, and the promoter element (CAT box) is highlighted in turquoise. Two GAF regulatory domains; GAF-A \&GAF-B are indicated by green boxes and contains the (NKxxFDxxE) signature sequence found in all mammalian GAF domains, the sequence is underlined and in green. The conserved catalytic domain is located within the blue boxes started with the initiating (YHN) motif as well as the metal binding motif with a specific sequence signature $\left(\mathrm{HDX}_{2} \mathrm{HX}_{4} \mathrm{~N}\right)$ underlined and in blue.

GAF-B

| GIPDE11 | $:$ | CERVQILLVHE---ASRGTFSRVFDLEVKDLQGDDAE--- | 383 |
| :--- | :--- | :--- | :--- | :--- |
| CmPDE11 | $:$ | CERAAVMLIEDGSEKQNVKFSRTFELNCPVSGQSTNN--A | 134 |
| Dm.PDE11C | $:$ | CQRVQILLVHE---ADKGSFSRVFDFEANDLSEEEAT--- | 611 |
| TC.PDE11X1 | $:$ | CQRVQVLLVHQ---GSKISFSRVFDFEANDLSAEEGE--- | 476 |
| Hs.PDE11A | $:$ | CERCSVLLLED-IESPVVKFTKSFELMSPKCSADAENSFK | 208 |

GlPDE11 CmPDE11

	$\xrightarrow[* * * * * * *]{ }$	
GlPDE11	PSVDENTGECHKSILCMPIKNTAGKIVGVV LVNKFDNLP	462
CmPDE11	VEVEKGSAGNVRSMLAMPIRNRNFQIIGVAKIINKLNGQP	205
Dm. PDE11C	ASVDENSCEKHRSILCMAIKNSLGQIIGVIQLINKFNELD	690
TC.PDE11X1	PSVDDGTCEKHKTILCMPIKNSLGQIIGVIQLINKFNDLP	555
Hs.PDE11A	AEADQISGEHIRSVICVP IWNSNHOIIGVAOVLNRLDGKP	288

GlPDE11	FTSNDENFLEAFAIFCGMGIHNTNMYEKAVTAMAKOKVTL	502
CmPDE11	DENDEQLFEAFTIFCGLGINNTLIYNEIEKAMAREKVAI	245
Dm. PDE11C	FTKNDENFVEAFAIFCGMGIHNTHMYEKA IVAMAKOSVTL	730
Tc.PDE11X1	FTKNDENFVEAFAIFCGMGIHNTHMYEKAVVAIAKHSVTL	595
Hs.PDE11A	FDDADQRLFEAFVIFCGLGINNTIMYDQVKKSWAKQSVAL	328

GIPDE11 : EVLSYHATAPRSESQRIMTMKIPSAQAFKLYDFKFDDFST: 542
CmPDE11 : EVLSYHATASADEVLSLQREVIPEASKWNLGSLTFDDFSL : 285
Dm.PDE11C : EVLSYHASATMDEAHRIRRLRVPSAVHERLHDFKFDDIHF : 770
TC.PDE11X1 : EVLSYHATASMEDAQRIRSLRVASAAHERLHDFAFDDINM : 635 HS.PDE11A : DVLSYHATCSKA VDKFKAANIPLVSELAIDDIHFDDFSL : 368

1PDE11		YHNWRHAFNV	MF 1 II	TQ\#WKVLG		LALI	622
mPDE11	: R V	YHNWRHAFNV	HNMF LM	K CNVMSSFED	VE	LAMF	365
m. PDE11C	: R V	YHNWRHAFNV	ME II		IE	LAL	850
c. PDE11X1	: R	YHNWRHAFNV	MESII	ATQ WNIFG	IE	LAL	715
s.PDE11A		YHNWRHAFNV	MF MI	AGEQDILT		LAV	448

1PDE11	DeCVMIL SSGILILSNGTPD Y Sivinviedailaidia	: 701
PDE11	NHAVMIL SEGHNIFSN SST Y SRVMNVLKASIIATDLT	: 445
11C	DeCLMIL SPGNQILAN S DDYCRVIRVLEDAIISTDLA	: 929
DE11X1	DeCIMIL SPGNQLLSN SSE YSRVIRVLEEAILSTDLA	: 794
DE11A	NHAVMILGSEGHNIFAN SSKGYSDLMQLLKQSILATDIT	

1PDE11		: 741
mPDE11	VYFQVRTQ \quad PLVNEGQFDVSNRSHRDITRSL MIACDIA	: 485
m. PDE11C	VYEKKRGPELESVSQPTSYWVAEEPR	969
c.PDE11X1	VYFR RGA ${ }^{\text {a }}$ N-VIRDRPCWSLDEHRELIRAM MTVCDLA	83
s.PDE11A	LYFERTEEELVSKGEYDWNIKNHRDIFRSM MIACDLG	56

lPDE11 mPDE11 m. PDE11C c. PDE11X1 s.PDE11A		1009 873 608
1PDE11	LE MQVGFIDSICLPVYE FAEMTPDL	821
mPDE11	HOLP LQMRWIKDICLPLFEGLAKVIPKLAPMFDEA	: 565
m. PDE11C	LP MQVNEIDSICLPIYE FATLSDKLEPL EG	1049
c. PDE11X1	LP MQVGEIDS ICLPIYE FSRLSPQLEPL E	913
s.PDE11A	NRKDELPRLQLEWI I ICMPLYQ LVKVNVKLKPM DSV	64

GlPDE11	-GNNNNNNN	849
CmPDE11	--AAQENGA	583
Dm.PDE11C	AMSDDDVAASEAEVAVDSPSEKASVNGSNVANNSSNTNKK	1129
Tc.PDE11X1	-DSNDNLSKP	945
Hs.PDE11A	QKRLLAS	666

```
GlPDE11 : YTSNNDREKGGGTNN--------------------------- : 864
CmPDE11 : CDLLEPPDPPPRVPDG-------------------------- : 599
Dm.PDE11C : IAVASHPTSTQPSDDDNDVDADADDVDEQAAEENGHDAEV : 1169
Tc.PDE11X1 : NTPESNPNASSQISD-------------------------------
Hs.PDE11A : TASSSPASVMVAKEDRN-------------------------- : 683
```

Figure 2.20. Multiple alignment of deduced amino acid sequences of PDE11 proteins in two crustacean species, two insect species, and one mammal species. Abbreviations: Gl: G lateralis; Cm: C maenas; Dm: D melanogaster; Tc: T castaneum; Hs: H sapiens. Black shading indicates that amino acid residues that are identical or similar in all sequences; gray shading indicates identical or similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly conserved domains. Blue and green asterisks indicate the signature sequences in the catalytic domain and GAF domain, respectively.r The colors of the boxes correspond to the colors of the domains in Fig. 2. 13.

Figure 2.21. Phylogenetic relationships among the different PDEs of G.lateralis, C. maenas and orthologs of other species. The 102 deduced amino acid sequences used to generate this tree included the entire open reading frame, catalytic domains, and regulatory domains. G.lateralis and C. maenas are shown in red font. Letunic and Bork (2016) Nucleic Acids Res doi: 10.1093/nar/gkw290

spDE7A

GIPDE7 \square 1039

Figure 2.22. A schematic figure showing a comparison of the G. lateralis PDEs with the Homo sapiens PDEs. Regarding the conserved domains; catalytic domains (PDEase_1) are highly conserved throughout all the PDE families are in yellow boxes. The regulatory domains specific for each family, PDEase_1_N, are shown in bright green boxes, GAF A, or GAF B domains are shown in light green and the PAS domain is shown in purple. The length of each protein in amino acids is shown on the left side of each PDE.

Table 2.4. Effects of PDE inhibitors on the ecdysteroid secretion in the YO of the green shore crab, Carcinus maenas. IBMX, a potent and general inhibitor for PDEs, and zaprinast (1 mM) show a very significant effect on ecdysteroidogenesis. Vinpocetine (1 mM), EHNA ($0.5 \mathrm{mM} \& 1 \mathrm{mM}$), zaprinast $(0.5 \mathrm{mM} \& 1 \mathrm{mM})$ and zaprinast/rMIH were significant as well. Other inhibitors had no effect on ecdysteroid secretion.

PDE Inhibitor (conc.)	PDE	$\begin{gathered} \hline \text { Ecdysteroid Secretion } \\ \text { Mean } \pm \text { SE } \\ \text { Control } \quad \text { Inhibitor } \end{gathered}$		N	\% Control	\mathbf{P} - value
IBMX (0.5 mM)	General Potent Inhibitor	12.5 ± 3.7	7.1 ± 3.0	12	57.2	$\mathrm{P}<0.001$
Vinpocetine (0.1 mM) Vinpocetine (0.5 mM) Vinpocetine ($\mathbf{1 . 0} \mathbf{~ m M}$)	$\begin{aligned} & \hline \text { PDE1 } \\ & \text { PDE1 } \\ & \text { PDE1 } \end{aligned}$	$\begin{aligned} & 4.6 \pm 1.1 \\ & 3.5 \pm 0.7 \\ & 2.5 \pm 0.5 \end{aligned}$	$\begin{array}{r} \hline 1.8 \pm 0.4 \\ 1.1 \pm 0.5 \\ 0.4 \pm 0.1 \end{array}$	$\begin{gathered} 13 \\ 7 \\ 8 \end{gathered}$	$\begin{aligned} & 39.1 \\ & 31.4 \\ & 16.0 \end{aligned}$	$\begin{gathered} \mathrm{P}=0.3 \\ \mathrm{P}=0.06 \\ \mathrm{P}=0.005 \end{gathered}$
$\begin{aligned} & \text { EHNA (0.1mM) } \\ & \text { EHNA (} 0.5 \mathrm{mM}) \\ & \text { EHNA }(1.0 \mathrm{mM}) \end{aligned}$	$\begin{aligned} & \hline \text { PDE2 } \\ & \text { PDE2 } \\ & \text { PDE2 } \end{aligned}$	$\begin{aligned} & \hline 3.2 \pm 2.3 \\ & 6.1 \pm 2.0 \\ & 2.1 \pm 0.6 \end{aligned}$	$\begin{gathered} 1.3 \pm 0.9 \\ 0.5 \pm 0.2 \\ 0.8 \pm 0.2 \end{gathered}$	$\begin{gathered} \hline 12 \\ 8 \\ 8 \end{gathered}$	$\begin{gathered} \hline 40.6 \\ 83 \\ 8.2 \end{gathered}$	$\begin{gathered} \mathrm{P}=0.5 \\ \mathrm{P}=0.05 \\ \mathrm{P}=0.02 \end{gathered}$
Rolipram ($1 \mathbf{m M}$)	PDE4	16.1 ± 5.5	13.5 ± 3.3	8	84.4	$\mathrm{P}=0.2$
Zaprinast ($\mathbf{0 . 1} \mathbf{~ m M}$) Zaprinast $(0.5 \mathrm{mM})$ Zaprinast $(\mathbf{1 ~ m M})$	PDE5/PDE11 PDE5/PDE11 PDE5/PDE11	$\begin{aligned} & 5.8 \pm 2.0 \\ & 3.9 \pm 1.2 \\ & 14.5 \pm 4.6 \end{aligned}$	$\begin{array}{r} \hline 2.5 \pm 1.1 \\ 0.9 \pm 0.1 \\ 4.4 \pm 2.8 \end{array}$	6 12	43.1 23.1 30.2	$\mathrm{P}=0.2$ $\mathrm{P}=0.05$ $\mathrm{P}<0.001$
$\begin{gathered} \text { Zaprinast (0.5 } \\ \text { mM/rMIH) } \\ \hline \end{gathered}$	PDE5	1.5 ± 0.5	0.5 ± 0.5	8	33.3	$\mathrm{P}=0.03$
Dipyridamole (0.1mM) Dipyridamole $(0.5 \mathrm{mM})$ Dipyridamole $(1.0 \mathrm{mM})$	$\begin{aligned} & \hline \text { PDE7 } \\ & \text { PDE7 } \\ & \text { PDE7 } \end{aligned}$	$\begin{gathered} 8.3 \pm 2.2 \\ 4.6 \pm 2.2 \\ 7.9 \pm 1.8 \end{gathered}$	$\begin{gathered} 5.2 \pm 1.8 \\ 3.4 \pm 2.0 \\ 6.7 \pm 1.9 \end{gathered}$	$\begin{gathered} 12 \\ 8 \\ 8 \end{gathered}$	$\begin{gathered} 62.7 \\ 74 \\ 84.8 \end{gathered}$	$\begin{aligned} & \mathrm{P}=0.3 \\ & \mathrm{P}=0.6 \\ & \mathrm{P}=0.7 \end{aligned}$
BC 11-38 $(0.1 \mathrm{mM})$ BC 11-38 $(0.5 \mathrm{mM})$ BC 11-38 $(1.0 \mathrm{mM})$	$\begin{aligned} & \hline \text { PDE11 } \\ & \text { PDE11 } \\ & \text { PDE11 } \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \pm 0.5 \\ & 3.7 \pm 0.5 \\ & 2.9 \pm 0.4 \end{aligned}$	$\begin{aligned} & 3.1 \pm 0.6 \\ & 4.3 \pm 0.5 \\ & 2.8 \pm 0.3 \end{aligned}$	8 8 8	$\begin{aligned} & 70.0 \\ & 86.0 \\ & 96.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P}=0.2 \\ & \mathrm{P}=0.3 \\ & \mathrm{P}=0.9 \\ & \hline \end{aligned}$

Table 2.5. Effects of PDE inhibitors on the ecdysteroid secretion in the YO of the blackback land crab, Gecarcinus lateralis. All inhibitors had no effect on ecdysteroid secretion as the p-value was higher than 0.05 .

PDE Inhibitor (conc.)	PDE	Ecdysteroid Secretion Mean \pm SE Control Inhibitor		N	\% Control	P - value
IBMX (0.5 mM)	General Potent Inhibitor	3.4 ± 1.0	3.1 ± 1.3	8	-6.2	$\mathrm{P}=0.9$
Vinpocetine (0.5 mM)	PDE1	4.5 ± 1.5	3.3 ± 1.1	8	-26.1	$\mathrm{P}=0.6$
EHNA (0.5 mM)	PDE2	5.1 ± 2.3	4.3 ± 1.6	8	-14.4	$\mathrm{P}=0.7$
Zaprinast (0.5mM)	PDE5/PDE11	1.5 ± 0.8	2.2 ± 0.6	8	46.8	$\mathrm{P}=0.5$
BC 11-38 (0.5mM)	PDE11	7.4 ± 2.1	4.1 ± 1.5	8	-44.4	$\mathrm{P}=0.3$

(a)
(b)

Figure 2.23. Tissue distribution panels show the expression of PDE1 (a), PDE2 (b), PDE5 (c), PDE11(d) in eleven tissues in Gecarcinus lateralis. qPCR was used to detect the expression of the different PDEs in eleven tissues; Y-Organ (YO), Thoracic Ganglion (TG), Mid Gut (MG), Hind Gut (HG), Eye Stalk Ganglion (ESG), Testis (T), Gill (G), Heart (H), Hepatopancrease (HP), Claw Muscle (CM), Brain (B). Means that were significantly different are represented with a bracket. Data proposed as mean ± 1 SE. ($\mathrm{n}=6$)
(a)
(b)

Figure 2.24. Tissue distribution panels show the expression of PDE4 (a), PDE8 (b), PDE9 (c), PDE11(d) in eleven tissues in Carcinus maenas. qPCR was used to detect the expression of the different PDEs in eleven tissues; Y-Organ (YO), Thoracic Ganglion (TG), Mid Gut (MG), Hind Gut (HG), Eye Stalk Ganglion (ESG), Testis (T), Gill (G), Heart (H), Hepatopancrease (HP), Claw Muscle (CM), Brain (B). Means that were significantly different are represented with a bracket. Data proposed as mean ± 1 SE. ($\mathrm{n}=6$)

CHAPTER THREE

EFFECTS OF MOLT INDUCTION METHODS ON CYCLIC NUCLEOTIDE PHOSPHODIESTERASE EXPRESSION IN THE DECAPOD CRUSTACEAN MOLTING GLAND

Summary

cAMP and cGMP, as second messengers, mediate the suppression of the crustacean molting gland (Y-organ or YO) by molt-inhibiting hormone (MIH). When MIH levels decrease, the YO transitions from the basal to the activated state and the animal enters premolt; such a transition requires mTOR. During mid-premolt, the YO transitions to the committed state, in which the YO becomes insensitive to MIH. Cyclic nucleotide phosphodiesterases (PDEs) convert cAMP and cGMP to AMP and GMP, respectively, and therefore can modify the response of the YO to MIH. Seven PDE contigs were extracted from the YO transcriptome. qPCR was used to quantify the effects of molt induction by multiple limb autotomy (MLA) or eyestalk ablation (ESA) \pm mTOR inhibitor rapamycin on the mRNA levels of PDE 1, 2, 4, 5,7,9, and 11 in Gecarcinus lateralis YO. In response to MLA, all PDEs, except for Gl-PDE5 and Gl-PDE11, were expressed at their highest levels in the intermolt YO. mRNA levels declined during premolt and reached their lowest levels in postmolt. qPCR results from the MLA experiment showed that both Gl-PDE5 and Gl-PDE11 reached high expression levels in mid premolt and late premolt, respectively. MLA transcriptomics revealed that only PDE11 expression maximized at mid premolt. In response to ESA, the mRNA levels of $P D E 4,5,7,9$, and 11 showed no significant change by 7 - and 14 -days post-ESA. Rapamycin had no significant effect, as PDE mRNA levels were comparable to those
of controls at all time points, indicating that PDE expression is not regulated by mTOR. The qPCR results were consistent with RNA-Seq data, showing similar trends of PDE expression in both MLA and ESA \pm rapamycin. The data suggest that transcriptional regulation does not contribute the reduced sensitivity of the committed YO to MIH; the increased PDE activity during mid and late premolt is likely regulated post-transcriptionally in most PDEs. Our data suggest that GlPDE11 is the controlling PDE in the YO and shows mRNA level changes depending on the molt stage. This is consistent with the responsiveness of YO cells to MIH during mid/late premolt.

Introduction

Decapod crustaceans must shed their exoskeleton periodically for order to them to grow and increase in size and this mainly happens in terms of molting, ecdysis. Molting in crustaceans represents a significant event in life, and this complex physiological process requires precise coordination and regulation between the action of two hormones. Ecdysteroids are steroid hormones which are synthesized and secreted from a pair of Y-organs (molting glands) located in the anterior cephalothorax of the animal. The molt inhibiting hormone, (MIH) is a neuropeptide hormone, which is produced and secreted from the X-organ/complex gland found in the eyestalks. Molting is induced when the titers of MIH in the blood (hemolymph) decline, leading to the stimulation of the YOs to produce and secrete molting hormones, ecdysteroids. The molt cycle can be divided into the following stages: intermolt, the longest stage in the molt cycle during which the animal practices routine activities such as foraging and mating. Premolt (proecdysis) the stage preceding molting, is subdivided into 3 substages (early premolt, mid premolt, late premolt). During premolt the hemolymph ecdysteroid titers increase until they reach a peak then drop dramatically just before the actual shedding of the exoskeleton (ecdysis). The last stage is postmolt
(postecdysis); the animal is vulnerable in this stage as it is recovering from this energy consuming process. It also hardens the soft new shell, an essential hallmark observed during this stage.

The molting gland (Y-organ) is a dynamic organ that proceeds through four distinctive physiological phases throughout the molt cycle: basal phase (during intermolt) when hemolymph ecdysteroid levels are inhibited by pulses of MIH. Activated phase (early premolt), the YO shows signs of hypertrophy to elevate ecdysteroidogenesis in response to the declined circulating MIH. The activated YO is still sensitive to MIH since the animal can postpone molting if eyestalk extracts are injected at this period. During mid/late premolt, the YO transitions to the committed phase and it becomes insensitive to MIH and CHH, as ecdysteroid titers reach their maximum. MIH and CHH levels drop dramatically to initiate the actual molting before ecdysis. A repressed YO is observed in postmolt animals, during which calcification and hardening the exoskeleton, as well as claw muscle growth, occur (Nakatsuji et al., 2009; Chung et al., 2010; Chang \& Mykles 2011; Covi et al., 2012; Webster et al., 2012; Shyamal et al., 2014).

Exogenous and endogenous cues contribute to the precise timing for the animal to undergo ecdysis; external factors, such as photoperiod, temperature, stress, and crowding (Skinner \& Graham 1972; Weis 1976) Internal factors, such as the urge to provide extra space for the growing organs and tissues, as well as the action of the two opposing predominant hormones, MIH and ecdysteroids (Skinner 1985). In crustaceans, several physiological events take place upon reaching molting (ecdysis), including new exoskeleton synthesis, old exoskeleton degradation, claw muscle atrophy, and lost limb regeneration (Skinner 1985; Mykles 1997; Chang \& Mykles 2011).

Upon binding of MIH to its receptor on the YO plasma membrane, a transient increase in cAMP, followed by a larger increase in cGMP, is involved. The delayed increase in cGMP suggests that MIH activates a soluble NO-sensitive guanylyl cyclase (GC-I), since activation of a
membrane GC would result in an immediate increase in cGMP. Both cAMP and cGMP inhibit YO ecdysteroidogenesis. Phosphodiesterases (PDEs), such as PDE1 and PDE5, hydrolyze cAMP and cGMP and thus control the responsiveness of YO organs to MIH (Covi et al. 2012).
G. lateralis can be easily manipulated to trigger the process of molting and as in other decapod crustaceans It can be induced by two methods: multiple leg autotomy (MLA) or eyestalk ablation (ESA) (Skinner 1985; Mykles 2001; Chang \& Mykles 2011). The autotomy or voluntary loss of 5 or more of the walking legs mimics the natural way of releasing (autotomizing) an appendage when encountering a predator; this will stimulate molting, so the animal will grow a full set of limbs at the next molt. Extirpation of the eyestalks will remove the main source of MIH, which in turn will induce shedding of the old exoskeleton. ESA is a more intense and precise method to induce molting as one can monitor the different molt stages by the increase in hemolymph titers which occurs upon the activation of the YO organs (Lee and Mykles, 2006; Lee et al., 2007b; Covi et al., 2010; Knope \& Larson 2014).
mTOR (The mechanistic Target of \underline{R} apamycin) is a protein kinase that mediates a variety of cellular functions from cell growth, metabolism, protein and lipid synthesis, to autophagy and cell survival. The mTOR signaling pathway is highly conserved across metazoans (Laplante \& Sabatini 2009; Zonko et al., 2010). mTOR is important to increase ecdysteroid synthesis in the insect prothoracic gland (Layalle et al., 2008; Hietakangas and Cohen, 2009). mTOR is crucial for tissue growth in G. lateralis and C. maenas (Abuhagr et al., 2014). mTOR is believed to be upregulated in the activated YO, so injecting the mTOR inhibitor, rapamycin, in-vivo or incubating YOs with this inhibitor in-vitro inhibits YO ecdysteroidogenesis, thus molting (Abuhagr et al., 2016).

The committed YO becomes insensitive to MIH in mid/late premolt, a phenomenon that putatively is due to the large increase in the glandular activity of PDEs. Our hypothesis is that increased PDE activity contributes to reduced sensitivity in mid/ and late premolt YO organs. Moreover, PDE expression requires mTOR activity. The effects of MLA and ESA \pm rapamycin was determined on the expression of PDEs using both transcriptomics and qPCR.

Materials and Methods

Animals and experimental treatments:

Gecarcinus lateralis Adult male (blackback land crabs) were collected from their natural habitat in the Dominican Republic and then shipped to Colorado, USA by commercial air cargo. The animals were acclimated to the new conditions by maintaining them at $27^{\circ} \mathrm{C}$ and a humidity of 75-90\%. Intermolt crabs were kept in aerated plastic cages lined with moistened aspen bedding by using 5 p.p.t. Instant Ocean (Aquarium Systems, Mentor, OH). Crabs were maintained in an environmental chamber in a 12 hrs light: 12 hrs dark cycle and were fed iceberg lettuce, carrots, and raisins twice a week (Covi et al., 2010). Blackback land crabs molt about once a year and larger crabs molt less frequently.

Two molting induction methods were used in these experiments: multiple leg autotomy (MLA) and eyestalk ablation (ESA). MLA mimics the timing of a natural progression toward molting: limb bud regenerate formation takes about 3-6 weeks before the crab enters premolt and eventually molts (Skinner 1985). ESA, however, is an intense and precise method to induce molting. ESA is effective because the X-Organ/Sinus Gland (XO/SG) (located in the eyestalks) are the primary source of MIH. As a result, ESA has an advantage over MLA in providing a precise time point of YO activation; activation can be verified since ecdysteroid hemolymph titers increase
by day-1 post-ESA (Lee et al., 2007). Limb bud regenerates were used to estimate what molt stage MLA animals are in using a measurement called the Regeneration-index (R-index). Such a measurement is calculated as the length of limb regenerate/100 *carapace width. This value ranges from 0 to ~ 24 upon reaching molting (Skinner and Graham 1972; Yu et al., 2002). Limb bud regeneration can be divided into 2 stages: (1) basal growth involves the formation of a small differentiated limb bud (R-value 8-10). This happens throughout intermolt and low ecdysteroid titers are necessisary; (2) proecdysial growth takes place during premolt and high ecdysteroid titers are required (Yu et al., 2002). Three factors can determine the molt stage: ecdysteroid titers, Rvalue, and the presence/absence of the membranous layer (Moriyasu and Mallet, 1986). A digital caliper was utilized to measure both the limb buds and carapace widths of the MLA animals.
G. lateralis crabs were induced to molt by MLA via autotomizing the eight walking legs (Fig. 3.1). Hemolymph was withdrawn prior to harvesting the YOs from the experimental animals at 5 different molt stages; intermolt (IM), early premolt (EP), mid premolt (MP), late premolt (LP), postmolt (PM). $100 \mu \mathrm{l}$ of hemolymph was added to $300 \mu 1$ of methanol (MeOH 100%) then stored at $-20 C^{\circ}$. Competitive ELISA (Abuhagr et al., 2014b) was used to quantify the hemolymph ecdysteroid titers to determine the accurate molt stage for each animal in addition to the R -value. Harvested YOs were reserved in RNA-later (Ambion®, California) and stored at $20 \mathrm{C}^{\circ}$ until the time of RNA isolation. MLA animals were kept in separate moistened sand cages to provide privacy and mimic their natural habitat (Skinner 1985).

Intermolt animals were ES-ablated using a pair of sharp scissors and then cauterized immediately to minimize the amount of bleeding (Fig. 3.2) To determine the effects of rapamycin (mTOR inhibitor) on YO ecdysteroidogenesis, in-vivo injections were performed. The control group (ESA-rapamycin) crabs were injected by the vehicle ($\sim 1 \%$ DMSO final concentration) on

Day 0. The experimental group (ESA+ rapamycin) crabs were injected by rapamycin ($\sim 10 \mu \mathrm{M}$ final concentration) on Day 0 (mass of the animal $\times 0.3 \mu \mathrm{l}=$ amount to inject). Hemolymph samples were collected and YOs were dissected at Day 0 for intermolt (intact) crabs and Days 1, 3, 5, 7, 14 post-injection for ESA \pm rapamycin. Competitive ELISA (Abuhagr et al., 2014b) was used to quantify the hemolymph ecdysteroid titers. Harvested YOs were reserved in RNA-later (Ambion®, California) and stored at $-20 \mathrm{C}^{\circ}$ until the time of RNA isolation.

RNA isolation, cDNA synthesis and quantitative real-time PCR:

Y-organs from both MLA and ESA \pm rapamycin animals were harvested from land crabs. YOs were placed immediately in RNA-later after cleaning the tissues with crab saline. YOs were kept overnight in $4 \mathrm{C}^{\circ}$, then transferred to $-20 \mathrm{C}^{\circ}$ until the time of RNA purification. Total RNA was isolated from crab YOs using TRIzol reagent (Life Technologies, Carlsbad, CA) as described by (Covi et al., 2010). YO tissues ($50-200 \mathrm{mg}$) were homogenized by using a micro-tube homogenizer system. 1 ml of TRIzol was added to samples, then centrifuged at $12,000 \mathrm{~g}$ for 15 min at $4{ }^{\circ} \mathrm{C}$. Supernatants were phenol-chloroform extracted and RNA in the aqueous phase was precipitated using isopropanol (0.75 ml per 1 ml TRIzol reagent). RNA was treated with DNase I (Life Technologies), extracted twice with phenol: chloroform: isoamyl alcohol (25:24:1), precipitated with isopropanol, washed twice with 70% ethanol in DEPC water, and resuspended in nuclease-free water. cDNA was synthesized using $2 \mu 1$ total RNA in a $20 \mu 1$ total reaction with SuperScript III reverse transcriptase (Life Technologies) and oligo-dT (20) VN primer (50 $\mu \mathrm{mol} / \mathrm{l}$; IDT, Coralville, IA) as described (Covi et al., 2010). RNA was treated with RNase H (Fisher Scientific, Pittsburgh, PA) and stored at $-80^{\circ} \mathrm{C}$.

End-point PCR was used to amplify the desired product and to increase the yield of each PDE gene, as well as for making external standards of the different genes to be used later in qPCR.

Primers (Table 3.1) were utilized to detect the different PDE products in land crab. Each PCR reaction contained; $3 \mu \mathrm{l}$ of DI $\mathrm{H}_{2} \mathrm{O}, 5 \mu \mathrm{l}$ Master Mix, $1 \mu \mathrm{l}$ cDNA template, and $0.5 \mu \mathrm{l}$ of each forward and reverse primers. The concentration of the primers was $20 \mu \mathrm{M}$. cDNA was amplified in a thermocycler where denaturation occurred at $94 \mathrm{C}^{\circ}$ for 3 minutes to initiate the process, followed by $30-35$ cycles of 30 seconds at $94 \mathrm{C}^{\circ}$, and 30 seconds at the lowest annealing temperature (see table 3.1.) 30 seconds at $72^{\circ} \mathrm{C}$. PCR products were then separated on 1% agarose gel that contained TAE buffer (composed of 40 mM Tris acetate and 2 mM EDTA with an 8.5 $\mathrm{pH})$. Ethidium bromide was applied to stain the gel and a UV light was used to visualize the gel.

Real-time PCR (RT-PCR) was used to quantify the expression of Gl-PDEs $1,2,4,5,7,9,11$ in each point molt stage of the MLA animals, and Gl-PDE4,5,7,11in ESA \pm rapamycin animals. cDNA was synthesized as indicated previously, and a LightCycler 480 thermocycler (Roche Applied Science, Indianapolis, IN) was used to quantify the mRNA transcripts of Gl-PDE1, PDE2, PDE4, PDE5, PDE7, PDE9, and PDE11 for MLA G. lateralis animals and PDE4, PDE5, PDE7, and PDE11 for ESA \pm rapamycin G. lateralis animals. Each reaction consisted of $1 \mu \mathrm{l}$ cDNA or standard, $5 \mu \mathrm{l}$ SYBR Green I Master mix (Roche Applied Science), $3 \mu \mathrm{l}$ nuclease-free water, and $0.5 \mu 1$ each of 10 mM forward and reverse primers (Table 3.1). PCR conditions were as follows: an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min , followed by 45 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 10 s , annealing at $62^{\circ} \mathrm{C}$ for 20 s , and extensions at $72{ }^{\circ} \mathrm{C}$ for 20 s , followed by melting curve analysis of the PCR product. Concentrations of mRNA transcripts were determined by the LightCycler 480 software (Roche, version 1.5) using a serial dilution of standards of the PCR product for each gene of interest. The amounts of mRNA transcript in copy numbers per $\mu \mathrm{g}$ of total RNA in the cDNA synthesis reaction were calculated based on the standard curve and the calculated molecular weight of dsDNA products.

Bioinformatics:

The expression of different Gl-PDEs in the G. lateralis YO was assessed using two databases: the MLA transcriptome and the ESA \pm rapamycin transcriptome (Das et al., 2016; Shyamal et al., 2018). Differential expression (DE) of Gl-PDEs 1,2,4,5,7,9, and 11 were determined at each molt stage (IM, EP, MP, LP, and PM) in MLA animals. Moreover, DE of GlPDEs; 4,5,7, and 11 were assessed at Day 0 for intermolt (intact) crabs; and Days 1, 3, and 7 postmolt for the ESA \pm rapamycin animals.

Statistical analysis and software:

(https://www.idtdna.com/Primerquest/Home/Index). Primers were designed by IDT software. Means for mRNA transcript abundance were compared using an analysis of variance (ANOVA) for molt stages versus log copy number in the MLA experiment or days post molt versus \log copy number in the ESA \pm rapamycin experiment. Sigma plot 12.5 software (Systat Software, Inc., Chicago, IL, USA) was used to produce and build up the graphs and figures. Tukey test was used to determine significance among the means.

Results

Effects of Multiple Leg Autotomy (MLA) on Gl-PDEs expression in the molting gland:

G. lateralis animals were induced to molt by automatizing all 8 walking legs. Several weeks later, these crabs entered early premolt. R-values were measured weekly to estimate the molt stage of each crab. To further ensure the accuracy of the crab's molt stage, hemolymph samples were collected just before dissection, so a competitive ELISA could be performed. Ecdysteroid levels showed that the molting hormone was low in early premolt (EP), elevated during mid premolt (MP), then increased to reach its maximum at late premolt (LP) (Fig. 3.3a).
qPCR results showed that Gl-PDE4, Gl-PDE7, and Gl-PDE9 were expressed in very low levels at all molt stages, especially Gl-PDE9 (Fig. 3.3 b). Unexpectedly, Gl-PDE1 was also expressed in low levels, scoring its minimum at early premolt (Fig3.3 c) Gl-PDE2 mRNA level was high in intermolt and decreased gradually through to postmolt. Significant differences were observed between IM/LP and IM/PM, and between EP and PM (Fig3.3c). Gl-PDE5 displayed a different pattern, as a slight increase was seen from IM to EP and was at its highest expression level in MP, then declined to its lowest level in PM. Statistical differences were noticed between IM/ LP and EP/PM in Gl-PDE5 (Fig3.3c). Gl-PDE11 demonstrated a similar pattern to ecdysteroid titers in different molt stages. Gl-PDE11 showed the most robust expresson among the rest of Gl-PDEs; as it increased progressively to reach its maximum expression in LP, then decreased in PM. Expression levels of Gl-PDE11 were not identical to the hypothesized trend but was the closest to our expectations. Significance differences were detected between IM/PM and IM/MP (Fig.3.3 c).

MLA transcriptomics exhibited different expression patterns of Gl-PDEs. Gl-PDE2, GlPDE7, Gl-PDE8 and Gl-PDE9 were expressed at their highest levels at IM and lowest levels at PM (Fig.3.4 a, b). Gl-PDE4 showed levels of similar expression levels in IM, EP, MP; then dropped upon reaching PM (Fig.3.4 b). Gl-PDE5 expression was high in IM, gradually decreased until reaching LP, then slightly increased in PM (Fig.3.4 b). Statistical significance was seen between IM/PM in Gl-PDE2, 4, 7, 8, and 9; whereas there was a significant difference between IM/LP in Gl-PDE5. Once again, Gl-PDE11 displayed a unique pattern; it was the highest gene to be expressed to reach a peak in MP, then drop dramatically when approaching PM and a significant decrease was seen between these two molt stages (Fig.3.4 c).

Effects of Eyestalk Ablation (ESA) \pm rapamycin on Gl-PDEs expression in the molting gland:

G. lateralis crabs were induced to molt ESA. For the qPCR results, YOs were harvested from 3 different groups and intact animals were dissected on Day 0, control (DMSO) group (ESArapamycin) animals were dissected on Days 1,3,5,7, and 14, and experimental (rapamycin) group (ESA+ rapamycin) animals were also dissected on Days 1,3,5,7, and 14. ESA \pm rapamycin animals were either injected with DMSO (control group) or rapamycin (experimental group) on Day 0 .

A significant increase from Day 0 to Day 1 was seen in the expression of Gl-PDE4, GlPDE7, Gl-PDE11 in both control and experimental YOs. Expression then levels off with no difference between the two groups (Fig. 3.5 a, c, d). Gl-PDE5 showed no noticeable elevation in its expression from Day 0 to Day1 and displayed a similar trend with the other PDEs. But there was a slight increase in Gl-PDE5 expression from Day 5 to Day 7 in the control group. Also, there was a significant decrease from Day 3 to day 5 in the experimental group (Fig. 3.5 b). Expression of Gl-PDE4 mRNA increased significantly at day 1 post ESA + rapamycin and Day 3 post ESA rapamycin when compared to intact animals on Day 0 (Fig. 3.5 a). There was a slight, but a significant, increase in Gl-PDE5 expression between day 5 and day 7 in the control group (Fig. 3.5 b). Gl-PDE7 mRNA levels increased drastically from Day 0 to Day 1 and a statistical significance was observed in Day 1 in the control group when compared to Day 0 (Fig.3.5 c). GlPDE11 expression levels illustrated a significant increase in Day 1 post-ESA in experimental animals and 3 days post-ESA in control animals when compared to Day 0 (Fig. 3.5 d).

Comparable to the ESA \pm rapamycin qPCR experiment, $\mathrm{ESA} \pm$ rapamycin transcriptomics showed similar trends and patterns of Gl-PDEs expression in both control and experimental animals; an increase was seen from Day 0 to Day 1 as the YO is activated upon the ablation of the eyestalks.

Gl-PDE4 expression levels increased significantly at 1- day post-ESA in control and experimental animals compared to Day 0 (Fig. 3.6 a). Gl-PDE5 mRNA levels showed a statistical difference between Day 0 and Day 1 post-ESA in control and experimental crabs (Fig. 3.6 b). Expression levels of Gl-PDE7 exhibited a significant increase between Day 0 and Day 3 post-ESA in control animals. Gl-PDE11 expression levels increased extremely from Day 0 to Day 1 which resulted in a significant increase at 1-day post-ESA in both control and experimental animals (Fig. 3.6 d).

Discussion

cAMP and cGMP signaling pathways control a plethora of intracellular proteins that vary depending on the cell type and function. Such signaling pathways are widespread from prokaryotes to eukaryotes and are involved in activating protein kinases, including PKA and PKG. The only known negative regulators of cAMP and cGMP are cyclic nucleotide phosphodiesterases (cNPDEs), which fall under the Class I PDE superfamily. The PDE superfamily includes eleven genes designated PDE1 to PDE11. Each family shares common biochemical features, substrate specificity, cellular/sub-cellular localization, pharmacological characteristics, and regulatory mode. Although all eleven genes include a well-conserved catalytic domain located in the carboxyl terminus, each gene has its unique regulatory domains. Our hypothesis is that an increase in PDE expression will occur in G. lateralis Y-organs at mid/late premolt stages, thus decreasing the responsiveness of YOs to (MIH). Such a finding parallel results from studies done on crayfish, in which glandular PDE activity was detected in YOs at specific molt stages (Nakatsuji et al., 2006a; Nakatsuji et al., 2009), as well as in green crab YOs (Mattson \& Spaziani, 1985b). Prior to the current study, it was unknown which of the PDE genes might be expressed in the YOs and contribute to the most critical time of the crustacean's life.

Hemolymph ecdysteroid titers increased when animals were induced to molt by MLA (Fig. 3.3 a). qPCR showed that Gl-PDE4, Gl-PDE 7, and Gl-PDE 9 mRNA transcripts were expressed in low levels. Moreover, Gl-PDE1 and Gl-PDE2 showed different patterns (Fig. 3.3 c). None of the above Gl-PDE expression profiles met our hypothesis since we did not see increased PDE expression in $\mathrm{mid} /$ late premolt YOs. We conclude that these enzymes might be regulated posttranscriptionally to stabilize the mRNA and to further enhance and modify the structure of the final protein product. Such observations were symmetrical to the beta-subunit in HsPDE5 (Lerner et al., 2006). Moreover, studies on $H s P D E 3 B$ adipocytes revealed both transcriptional and posttranscriptional modifications (Yan et al., 2007). Another interpretation might be that MLA has no effect on the expression of $G l-P D E 1,2,4,7$, and 9 . It is also possible that target cells interpret nuanced changes in PDE activity and even slight changes present a potent impact on the target cell response (Sette \& Conti 1996). Conversely, Gl-PDE5 showed its highest expression in MP, then dropped upon reaching PM. Gl-PDE11 reached its maximum expression in LM and decreased in PM (Fig. 3.3 c). These findings do support our first hypothesis, that PDE activity in mid/late premolt is responsible for the YO insensitivity to MIH, which in turn triggers the animal to be committed to molt (Nakatsuji et al., 2009). Consequently, Gl-PDE5 (a c-GMP specific PDE) and Gl-PDE11 (a dual PDE) might play a remarkable role in the YO's MIH signaling pathway.

Results of the MLA transcriptomics studies demonstrated the relative expression of GlPDEs (Fig. $3.4 \mathrm{a}, \mathrm{b}$). Gl-PDE 2,4,7, and 9 were relatively higher in IM and then decreased gradually while reaching their lowest expression in PM. Gl-PDE5 was high in intermolt then dropped to its minimum expression in LM and slightly increased in PM (Fig.3.4 b). Gl-PDE11 expression reached a peak in MP then declined in PM accompanied with a significant difference between these two stages (Fig.3.4 c). We conclude that MLA had no impact on Gl-PDE 2,4,7, and

9 expression since these results were consistent with the qPCR results seen in the MLA experiment. Notably, Gl-PDE5 and Gl-PDE11 depicted different trends as was observed in the qPCR results from the MLA experiment. Our data strongly suggest that both Gl-PDE5 and Gl-PDE11 act on the intracellular levels of cAMP/cGMP and both converge to stimulate ecdysteroid synthesis in the molting gland. This finding is consistent with recent studies in humans, in which Hs-PDE11A exerted a regulatory effect on cortisol excretion and synthesis (Ceyhan et al., 2012; Vezzosi et al., 2012). In contrast to Gl-PDE5, inhibition of PDE5A in rat and mouse Leydig cells by sildenafil (Viagra) in-vivo, illustrated an activation of the NO/cGMP pathway, thus increasing testosterone synthesis (Saraiva et al., 2009; Andric et al., 2010).
mTOR is a conserved serine/threonine kinase and found from yeast to humans. It represents a central node for a variety of cellular processes, such as gene transcription, protein synthesis, cell growth, and cell metabolism (Cornu et al., 2013). mTOR is important during molting in the activated YO in crustaceans (Abuhagr et al., 2014), as such an activation in early premolt YOs upregulates ecdysteroid synthesis (Mykles 2010). In the fruit fly, Drosophila melanogaster, metamorphosis depends on mTOR signaling pathway in the molting gland (prothoracic gland or PG) (Layalle et al., 2008).

Our second goal was to determine whether Gl-PDE expression requires mTOR activity or not. For this purpose, ESA was performed to induce molting. ESA \pm rapamycin qPCR/transcriptomics results revealed an activation from Day 0 to Day 1 in the expression of $G l$ PDE4,5,7, and 11, which then leveled off on all other days post-ESA (Fig. $3.5 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) and (Fig. 3.6 a, b, c, d). Furthermore, no differences were observed between control and experimental groups. In contrast, previous studies showed that PDE4D5 binds Rheb (upstream regulator of mTOR) in a noncatalytic novel fashion to inhibit mTOR, and that this binding will only be
dissociated if intracellular cAMP levels are elevated (Kim et al., 2010). Furthermore, previous studies provide evidence of cross talk between mTOR and cAMP signaling pathways; an increase in cAMP concentration inhibits mTOR complexes, thus suppressing the catalytic activity of mTOR (Xie et al., 2011). So, cAMP can either activate or inhibit mTOR depending on the tissue type and cAMP distribution (Kwon et al., 2004; Rocha et al., 2008). PDEs might have an indirect regulation mechanism, but this is not fully understood. Taken together, mTOR does not contribute to PDE expression in the crustacean's G. lateralis molting gland, indicating a different mechanism of regulation might be controlling Gl-PDEs, which is distinct from mammalian PDEs.

Conclusions

Molting in the blackback land crab, Gecarcinus lateralis, can be induced by two methods: Multiple Leg Autotomy (MLA) and Eyestalk Ablation (ESA). In mid/late premolt, molting glands (YOs) become insensitive to MIH and the animal is committed to molt. Second messengers cAMP and cGMP play a crucial role in the MIH signaling pathway and their intracellular concentrations are regulated with cyclic nucleotide phosphodiesterases (PDEs). MLA and ESA \pm rapamycin transcriptomes were screened for PDE expression. qPCR for the two molt induction experiments was used to validate the transcriptomics results. MLA showed no effect on Gl-PDE1, 2, 4, 5, 7, and 9 , suggesting these genes might be regulated in a post-transcriptional manner. Conversely, Gl-PDE11 (a dual PDE) is the dominant PDE in the YO and shows molt-dependent changes in the mRNA levels that is consistent with a role in reducing sensitivity in mid/late premolt. ESA increased mRNA levels of Gl-PDE4, 5, 7 and 11, and was associated with YO activation. Such increases do not require mTOR activity. These data were not consistent with our hypothesis that mTOR regulates PDE expression as there was no significant difference between the control and experimental groups based on both transcriptomics and qPCR results.

Table 3.1. Oligonucleotide primers used in qPCR to identify gene expression in GIPDEs in MLA and ESA \pm rapamycin experiments. Abbreviations: Gl, Gecarcinus lateralis; F, Forward; R, Reverse, PDE, cyclic nucleotide phosphodiesterase; Numbers (1,2,4,5,7,9,11), PDE family.

Primer name	Primer sequence ($5^{\prime}-3^{\prime}$)	Amplicon Product (bp)	Annealing Temp.
Gl-PDE1 -F2	GGTGGCAAAGTGGAAAGATAAAG	226	$62 \mathrm{C}^{\circ}$
Gl-PDE1-R2	CCTCCTCGTCTCTCTTCTTAGT		$62 \mathrm{C}^{\circ}$
Gl-PDE2 -F2	GGTGGTAGTGGCACGTTTAT	301	$62 \mathrm{C}^{\circ}$
Gl-PDE2 -R2	TCCCTCTTTCCTTCCTCTTCT		$62 \mathrm{C}^{\circ}$
Gl-PDE4-F1	AGGCTTCTGTGTGGTACATATC	260	$62 \mathrm{C}^{\circ}$
Gl-PDE4-R2	CACAAACTTGCATCCCTCAATC		$62 \mathrm{C}^{\circ}$
Gl-PDE5 -F2	CAGACCACCGGATGCTTATT	316	$62 \mathrm{C}^{\circ}$
Gl-PDE5 -R1	TCCTCGACCCGATTCTATGT		$62 \mathrm{C}^{\circ}$
Gl-PDE7 -F1	CATGGAAGGCATTTGGCTAAG	283	$62 \mathrm{C}^{\circ}$
Gl-PDE7 -R1	CTTCAGTTGGAGGTGAGTCTAC		$62 \mathrm{C}^{\circ}$
Gl-PDE9-F1	CAGTGGACCATTCCTCACTTC	269	$62 \mathrm{C}^{\circ}$
Gl-PDE9-R2	TGGTCATTCATCCCTTGCAATA		$62 \mathrm{C}^{\circ}$
Gl-PDE11-F2	GACTCCAGACTTGGTTCTTTCC	322	$62 \mathrm{C}^{\circ}$
Gl-PDE11-R2	CGACTGATGTCACTTGCATATC		$62 \mathrm{C}^{\circ}$

Figure 3.1. Molting can be induced by Multiple Limb Autotomy (MLA). In this picture, the crab reached ecdysis and is pulling itself out of the old exoskeleton upon losing all the walking legs. Molting in this case is important, so the animal can grow with a full set of limbs.

Figure 3.2. Molting can be induced by Eyestalk Ablation (ESA). This picture depicts the removal of both eye stalks, thus eliminating the main source of MIH (molt-inhibiting hormone).
(a)
(b)

Figure 3.3. Effects of MLA on the YO expression of Gl-PDE4, Gl-PDE 7, Gl-PDE 9 (a) and YO expression of Gl-PDE 1, Gl-PDE 2 Gl-PDE,5, Gl-PDE 11(b). Gl-PDE mRNA expression for the different families was quantified by qPCR at each molt stage point; intermolt (IM), early premolt (EP), mid premolt (MP), late premolt (LP), post molt (PM). $n=10-12$ for each molt stage. Data presented as mean ± 1 S.E. No significant differences were observed in the means of Gl-PDE4,7 and 9. mRNA expression of Gl-PDE $1,2,5,11$ appeared with different trends. Means within the same gene that were significantly different are represented with a bracket.
(a)

(c)

Figure 3.4. Relative expression of Gl-PDE2,9 (a), Gl-PDE4,5,7,8 (b) and Gl-PDE11 (c). Transcriptomics was used to assess the effects of molt stage on PDE expression. There was a significant difference between intermolt (IM) and postmolt (PM) in all Gl-PDEs, except Gl-PDE11 which elucidated a statistical significance between mid premolt (MP) and PM. Gl-PDE11 showed the highest expression among all PDEs (scales are different for each set of PDEs). Means within the same gene that were significantly different are represented with a bracket.
(a)

Figure 3.5. Effect of ESA \pm rapamycin on the expression of Gl-PDE4 (a), Gl-PDE5 (b), Gl-PDE7 (c), and Gl-PDE11 (d) in G. lateralis YO. qPCR was used to evaluate the expression of $G l-P D E 4,5,7,11$ at point times $1,3,5,7,14$ days post ESA in control (DMSO) and experimental (rapamycin) injected animals. mRNA PDEs increased from Day 0 to Day 1, then leveled off throughout the rest time points. Means within the same gene that were significantly different are represented with a bracket. Data presented as mean \pm S.E ($\mathrm{n}=8-10$).

Figure 3.6. Effect of ESA \pm rapamycin on the expression of Gl-PDE4 (a), Gl-PDE5 (b), Gl-PDE7 (c), and Gl-PDE11 (d) in G. lateralis YO. Transcriptomics was used to evaluate the expression of Gl-PDE4,5,7,11 at point times 1,3,7 days post ESA in control (DMSO) and experimental (rapamycin) injected animals. mRNA PDEs increased from Day 0 to Day 1, then leveled off throughout the rest time points. Means within the same gene that were significantly different are represented with a bracket. Data presented as mean \pm S.E.

CHAPTER FOUR

SUMMARY AND FUTURE DIRECTIONS

Cyclic nucleotide signaling mediates the suppression of the crustacean molting gland (Yorgan or YO) by molt-inhibiting hormone (MIH). When MIH level drops the YO transitions from the basal to the activated state and the animal enters premolt. During mid-premolt, the YO transitions to the committed state, in which the YO becomes insensitive to MIH. Phosphodiesterases (PDEs) hydrolyze the phosphodiester bond in cAMP and cGMP to AMP and GMP, respectively, and thus can modulate the response of the YO to MIH. In some species, PDE inhibitors decrease molting hormone (ecdysteroid) biosynthesis by the YO in-vitro, indicating that PDE activity can keep cyclic nucleotide levels low. Increased PDE activity in the YO is correlated with a reduced sensitivity to MIH when the animal becomes committed to molt. In mammals, 21 PDE genes are organized into 11 genes, designated PDE1 to PDE11. Each PDE family has specific catalytic and biochemical properties and tissue distributions. A reference YO transcriptome from the blackback land crab (Gecarcinus lateralis), consisting of 3 biological replicates of intermolt animals, was analyzed for PDE sequences. Nine different contigs encoding seven full-length PDE sequences two partials were identified. Moreover, seven different contigs encoding five full-length PDE sequences two partials were identified in the C. maenas transcriptome. Protein alignments and ClustalX analysis of the Gl-PDE and Cm-PDE sequences with orthologs from other species in the GenBank database showed that the sequences corresponded to PDE1, 2, 3 4, 5, 7, 8, 9, and 11. General and selective inhibitors were used to characterize the PDEs regulating ecdysteroid secretion in the green crab, Carcinus maenas YO. IBMX, vinpocetine, EHNA and zaprinast \pm rMIH significantly inhibited ecdysteroid secretion, while rolipram, dipyridamole, and BC11-38
did not. This suggests that PDE1, PDE2 and PDE5/11 are primarily responsible for regulating cAMP and cGMP levels. No effect on ecdysteroidogenesis was seen on the blackback land crab, Gecarcinus lateralis, YOs when exposed to the same PDE inhibitors in-vitro, indicating different regulatory metabolic machineries between the two species.

PDE gene expression was examined in different tissues of G. lateralis and C. maenas by qPCR. Gl-PDE2 and Gl-PDE5 showed mild levels of mRNA expression. Cm-PDE11 had the highest expression among all examined PDEs which might indicate a pivotal role in cAMP/cGMP signaling pathways.
qPCR was used to quantify the effects of molt induction by multiple limb autotomy (MLA) or eyestalk ablation $(E S A) \pm$ mTOR inhibitor rapamycin on expression of PDE $1,2,4,5,7,9,11$ in Gecarcinus lateralis YO. In response to MLA, all PDEs, except for PDE5 and PDE11, were expressed at their highest levels in the intermolt YO. mRNA levels declined during premolt and reached their lowest levels in postmolt. qPCR results from the MLA experiment showed that both Gl-PDE5 and Gl-PDE11 reached high expression levels in mid premolt and late premolt, respectively. MLA transcriptomics revealed that only PDE11 expression maximized at mid premolt. In response to ESA, the mRNA levels of PDE4, 5, 7, 9, and 11 showed no significant change by 7- and 14-days post-ESA. Rapamycin had no significant effect, as PDE mRNA levels were comparable to those of controls at all time points, indicating that PDE expression is not regulated by mTOR. The qPCR results were consistent with RNA-Seq data, showing similar trends of PDE expression in both MLA and ESA \pm rapamycin. The data suggest that transcriptional regulation does not contribute to the reduced sensitivity of the committed YO to MIH ; the increased PDE activity during mid and late premolt is likely regulated post-transcriptionally in most PDEs. Our data suggest that PDE11 is the controlling PDE in the YO and shows mRNA level
changes depending on the molt stage. This finding is consistent with the responsiveness of YO cells to MIH during mid/late premolt.

The number of PDE families were unknown before this project, and it was proposed that two PDE families might contribute in the MIH signaling pathway. The outcome of this project was surprising, as nine different PDEs, each with their unique properties and characteristics were found in the YO transcriptome of G. lateralis and the transcriptome of C. maenas. Moreover, our data suggest that PDE11 might be the prominent enzyme in the YO.

Future studies should investigate the protein levels of these PDEs in the YO and other tissues. Rapamycin has no effect on PDE mRNA levels, indicating mTOR activity does not control PDE gene expression in the activated YO. However, Activin/TGF β signaling, which is required for YO commitment, may control PDE gene expression in mid and late premolt. Transcriptomics and qPCR can be used to determine whether SB431542, an inhibitor on Activin/TGF β signaling, affects PDE mRNA levels.

REFERENCES

Abuhagr, A. M., MacLea, K. S., Chang, E. S., \& Mykles, D. L. (2014). Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis. Comparative Biochemistry and Physiology A-molecular \& Integrative Physiology, 168, 25-39. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1095643313002730

Ahmad, F., Murata, T., Shimizu, K., Degerman, E., Maurice, D., \& Manganiello, V. C. (2015). Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets. Oral Diseases, 21(1), 25-50. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc4275405

Ahn, H. S., Crim, W., Romano, M., Sybertz, E. J., \& Pitts, B. (1989). Effects of selective inhibitors on cyclic nucleotide phosphodiesterases of rabbit aorta. Biochemical Pharmacology, 38(19), 3331-3339. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/000629528990631x\#!

Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schäffer, A. A., \& Yu, Y.-K. (2005). Protein Database Searches Using Compositionally Adjusted Substitution Matrices. FEBS Journal, 272(20), 5101-5109. Retrieved 2 17, 2019, from https://febs.onlinelibrary.wiley.com/doi/full/10.1111/j.1742-4658.2005.04945.x

Altschul, S., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., \& Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. Retrieved 2 17, 2019

Andric, S. A., Janjic, M. M., Stojkov, N. J., \& Kostic, T. S. (2010). Sildenafil treatment in-vivo stimulates Leydig cell steroidogenesis via the cAMP/cGMP signaling pathway. American Journal of Physiology-endocrinology and Metabolism, 299(4). Retrieved 2 17, 2019, from https://physiology.org/doi/abs/10.1152/ajpendo.00337.2010

Azevedo, M., Azevedo, M., Faucz, F. R., Faucz, F. R., Bimpaki, E. I., Horvath, A., . . . Stratakis, C. A. (2014). Clinical and Molecular Genetics of the Phosphodiesterases (PDEs). Endocrine Reviews, 35(2), 195-233. Retrieved 2 17, 2019, from https://academic.oup.com/edrv/article/35/2/195/2354677

Beavo, J. A., \& Brunton, L. L. (2002). Cyclic nucleotide research - still expanding after half a century. Nature Reviews Molecular Cell Biology, 3(9), 710-717. Retrieved 2 17, 2019, from https://nature.com/articles/nrm911

Beavo, J. A., Rogers, N. L., Crofford, O. B., Hardman, J. G., Sutherland, E. W., \& Newman, E. V. (1970). Effects of Xanthine Derivatives on Lipolysis and on Adenosine 3',5'Monophosphate Phosphodiesterase Activity. Molecular Pharmacology, 6(6), 597-603. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/4322367

Bellen, H. J., Gregory, B. K., Olsson, C. L., \& Kiger, J. A. (1987). Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP on embryogenesis. Developmental Biology, 121(2), 432-444. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/3034702

Bender AT, B. J. (2006). Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacological Reviews,58 (3), 488-520.

Bessodes, M., Bastian, G., Abushanab, E., Panzica, R. P., Berman, S. F., Marcaccio, E. J., . . . Parks, R. E. (1982). Effect of chirality in erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) on adenosine deaminase inhibition. Biochemical Pharmacology, 31(5), 879-882. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/0006295282904798

Bolger G, M. T. (n.d.). A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Molecular and Cellular Biology, 13(10), 6558-71. Retrieved 2 17, 2019, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC364715/pdf/molcellb000220642.pdf

Bolger G, M. T. (n.d.). A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Molecular and Cellular Biology, 13(10), 6558-71. Retrieved 2 18, 2019

Broderick, K. E., MacPherson, M. R., Regulski, M., Tully, T., Dow, J. A., \& Davies, S. A. (2003). Interactions between epithelial nitric oxide signaling and phosphodiesterase activity in Drosophila. American Journal of Physiology-cell Physiology, 285(5). Retrieved 2 17, 2019, from https://physiology.org/doi/10.1152/ajpcell.00123.2003

Ceyhan, O., Birsoy, K., \& Hoffman, C. S. (2012). Identification of Biologically Active PDE11Selective Inhibitors Using a Yeast-Based High-Throughput Screen. Chemistry \& Biology, 19(1), 155-163. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1074552111004625

Chang, E. S., \& Mykles, D. L. (2011). Regulation of crustacean molting: a review and our perspectives. General and Comparative Endocrinology, 172(3), 323-330. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0016648011001444

Chang, E. S., Bruce, M. J., \& Tamone, S. L. (1993). Regulation of Crustacean Molting: A MultiHormonal System. Integrative and Comparative Biology, 33(3), 324-329. Retrieved 2 18, 2019, from https://academic.oup.com/icb/article/33/3/324/165907

Charbonneau, H., Beier, N., Walsh, K. A., \& Beavo, J. A. (1986). Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. Proceedings of the National Academy of Sciences of the United States of America, 83(24), 9308-9312. Retrieved 2 16, 2019, from https://ncbi.nlm.nih.gov/pubmed/3025833

Choi, C. H., Choi, C. H., Choi, C. H., Schoenfeld, B. P., Schoenfeld, B. P., Weisz, E. D., . . . McBride, S. M. (2015). PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome. The Journal of Neuroscience, 35(1), 396-408. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/25568131

Chung, J. S., Zmora, N., Katayama, H., \& Tsutsui, N. (2010). Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues. General and Comparative Endocrinology, 166(3), 447-454. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0016648009004389

Conti, M. (2000). Phosphodiesterases and Cyclic Nucleotide Signaling in Endocrine Cells. Molecular Endocrinology, 14(9), 1317-1327. Retrieved 2 17, 2019, from http://press.endocrine.org/doi/10.1210/mend.14.9.0534

Cornu, M., Albert, V., \& Hall, M. N. (2013). mTOR in aging, metabolism, and cancer. Current Opinion in Genetics \& Development, 23(1), 53-62. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0959437x12001499

Covi, J. A., Bader, B. D., Chang, E. S., \& Mykles, D. L. (2010). Molt cycle regulation of protein synthesis in skeletal muscle of the blackback land crab, Gecarcinus lateralis, and the differential expression of a myostatin-like factor during atrophy induced by molting or unweighting. The Journal of Experimental Biology, 213(1), 172-183. Retrieved 2 17, 2019, from http://jeb.biologists.org/content/213/1/172

Covi, J. A., Chang, E. S., \& Mykles, D. L. (2009). Conserved role of cyclic nucleotides in the regulation of ecdysteroidogenesis by the crustacean molting gland. Comparative Biochemistry and Physiology A-molecular \& Integrative Physiology, 152(4), 470-477. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1095643308012361\#!

Covi, J. A., Chang, E. S., \& Mykles, D. L. (2012). Neuropeptide signaling mechanisms in crustacean and insect molting glands. Invertebrate Reproduction \& Development, 56(1), 33-49. Retrieved 2 17, 2019, from http://tandfonline.com/doi/abs/10.1080/07924259.2011.588009

Das, S., Pitts, N. L., Mudron, M. R., Durica, D. S., \& Mykles, D. L. (2016). Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab, Gecarcinus lateralis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 17, 26-40. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1744117x15000672

Dauphin-Villemant, C., Böcking, D., \& Sedlmeier, D. (1995). Regulation of steroidogenesis in crayfish molting glands: involvement of protein synthesis. Molecular and Cellular Endocrinology, 109(1), 97-103. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/030372079503489t\#!

Day, J. P., Dow, J. A., Houslay, M. D., \& Davies, S. A. (2005). Cyclic nucleotide phosphodiesterases in Drosophila melanogaster. Biochemical Journal, 388(1), 333-342. Retrieved 2 17, 2019, from http://biochemj.org/content/388/1/333

Demirbas, D., Wyman, A. R., Shimizu-Albergine, M., Cakici, O., Beavo, J. A., \& Hoffman, C. S. (2013). A yeast-based chemical screen identifies a PDE inhibitor that elevates steroidogenesis in mouse Leydig cells via PDE8 and PDE4 inhibition. PLOS ONE, 8(8). Retrieved 2 24, 2019, from http://journals.plos.org/plosone/article?id=10.1371/journal.pone. 0071279

Deshmukh, R., Sharma, V., Mehan, S., Sharma, N., \& Bedi, K. (2009). Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine -- a PDE1 inhibitor. European Journal of Pharmacology, 620(1), 49-56. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0014299909007146

Drach, P. (1939). Mue et cycle d'intermue chez les Crustaces Decapodes. Annls. Inst. Oceanogr. 19: 103-391.

Fajardo, A. M., Piazza, G. A., \& Tinsley, H. N. (2014). The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment. Cancers, 6(1), 436-458. Retrieved 2 17, 2019, from http://mdpi.com/2072-6694/6/1/436

Fisher DA, S. J. (n.d.). Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem, 273(25), 15559-64. Retrieved 2 17, 2019
Francis, S. H. (2005). Phosphodiesterase 11 (PDE11): is it a player in human testicular function? International Journal of Impotence Research, 17(5), 467-468. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/16079899

Francis, S. H., Blount, M. A., \& Corbin, J. D. (2011). Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiological Reviews, 91(2), 651-690. Retrieved 2 18, 2019, from https://ncbi.nlm.nih.gov/pubmed/21527734
G.J., S., B.W., A., S.K., F., R.W., A., M.D., U., \& yes. (1999). Basic neurochemistry: molecular, cellular, and medical aspects. American Society for Neurochemistry. Retrieved 2 17, 2019, from https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=bnchm.section. 1181

Gomez, L., \& Breitenbucher, J. G. (2013). PDE2 inhibition: potential for the treatment of cognitive disorders. Bioorganic \& Medicinal Chemistry Letters, 23(24), 6522-6527. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0960894x13012110

Goraya, T. A., \& Cooper, D. M. (2005). Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives. Cellular Signalling, 17(7), 789-797. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0898656804002931

Gresele, P., Momi, S., \& Falcinelli, E. (2011). Anti-platelet therapy: phosphodiesterase inhibitors. British Journal of Clinical Pharmacology, 72(4), 634-646. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc3195739

Halpin, D. M. (2008). ABCD of the phosphodiesterase family: interaction and differential activity in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 3(4), 543-561. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc2650605

Heikaus, C. C., Pandit, J., \& Klevit, R. E. (2009). Cyclic Nucleotide Binding GAF Domains from Phosphodiesterases: Structural and Mechanistic Insights. Structure, 17(12), 15511557. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/20004158

Hietakangas, V., \& Cohen, S. M. (2009). Regulation of tissue growth through nutrient sensing. Annual Review of Genetics, 43(1), 389-410. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/19694515

Ho, Y.-S. J., Burden, L. M., \& Hurley, J. H. (2000). Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. The EMBO Journal, 19(20), 5288-5299. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc314001

Houslay, M. D., \& Adams, D. R. (2003). PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochemical Journal, 370(1), 1-18. Retrieved 2 17, 2019, from http://biochemj.org/content/370/1/1

Ke, H., Wang, H., \& Ye, M. (2011). Structural Insight into the Substrate Specificity of Phosphodiesterases. Handbook of experimental pharmacology(204), 121-134. Retrieved 2 18, 2019, from https://ncbi.nlm.nih.gov/pubmed/21695637

Kelly, M. P. (2017). A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood. Retrieved 2 17, 2019, from https://link.springer.com/chapter/10.1007/978-3-319-58811-7_8

Kim, H. W., Ha, S. H., Lee, M. N., Huston, E., Kim, D.-H., Jang, S. K., . . . Ryu, S. H. (2010). cAMP controls mTOR through regulation of the dynamic interaction between Rheb and Phosphodiesterase 4D. Molecular and Cellular Biochemistry, 30, 5406-5420. Retrieved 2 17, 2019, from https://kclpure.kcl.ac.uk/portal/en/publications/camp-controls-mtor-through-regulation-of-the-dynamic-interaction-between-rheb-and-phosphodiesterase-4d(cf31d25d-ef9f-4a0c-9c27-d39117b3f954).html

Knope, M. L., \& Larson, R. J. (2014). Autotomy in porcelain crabs is an effective escape mechanism from rockfish predation. Marine Ecology, 35(4), 471-477. Retrieved 2 17, 2019, from http://onlinelibrary.wiley.com/doi/10.1111/maec.12103/abstract

Kwon, G., Marshall, C. A., Pappan, K. L., Remedi, M. S., \& McDaniel, M. L. (2004). Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and
growth factors in islets. Diabetes, 53. Retrieved 2 17, 2019, from http://diabetes.diabetesjournals.org/content/53/suppl_3/s225

Laplante, M., \& Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122(20), 3589-3594. Retrieved 2 17, 2019, from http://jcs.biologists.org/content/joces/122/20/3589.full.pdf

Layalle, S., Arquier, N., \& Léopold, P. (2008). The TOR Pathway Couples Nutrition and Developmental Timing in Drosophila. Developmental Cell, 15(4), 568-577. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1534580708003274

Lee, S. G., \& Mykles, D. L. (2006). Proteomics and signal transduction in the crustacean molting gland. Integrative and Comparative Biology, 46(6), 965-977. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/21672800

Lee, S. G., Bader, B. D., Chang, E. S., \& Mykles, D. L. (2007). Effects of elevated ecdysteroid on tissue expression of three guanylyl cyclases in the tropical land crab Gecarcinus lateralis: possible roles of neuropeptide signaling in the molting gland. The Journal of Experimental Biology, 210(18), 3245-3254. Retrieved 2 17, 2019, from http://jeb.biologists.org/content/210/18/3245

Levy, I., Horvath, A., Azevedo, M., Alexandre, R. B., Alexandre, R. B., \& Stratakis, C. A. (2011). Phosphodiesterase function and endocrine cells: links to human disease and roles in tumor development and treatment. Current Opinion in Pharmacology, 11(6), 689-697. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1471489211001858

Libé, R., Fratticci, A., Coste, J., Tissier, F., Horvath, A., Ragazzon, B., . . Bertherat, J. (2008). Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clinical Cancer Research, 14(12), 4016-4024. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/18559625

Lin C S, L. R. (2002). Human PDE5 gene encodes three PDE5 isoforms from two alternate promoters. International Journal of Impotence Research volume 14, 15-24.

Liu, S., Mansour, M. N., Dillman, K. S., Perez, J. R., Danley, D. E., Aeed, P. A., . . . Menniti, F. S. (2008). Structural basis for the catalytic mechanism of human phosphodiesterase 9. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13309-13314. Retrieved 2 17, 2019, from http://pnas.org/content/105/36/13309.full.pdf

Makhlouf, A., Kshirsagar, A., \& Niederberger, C. (2006). Phosphodiesterase 11: a brief review of structure, expression and function. International Journal of Impotence Research, 18(6), 501-509. Retrieved 2 17, 2019, from http://nature.com/ijir/journal/v18/n6/full/3901441a.html

Manallack, D. T., Hughes, R. A., \& Thompson, P. E. (2005). The next generation of phosphodiesterase inhibitors: structural clues to ligand and substrate selectivity of
phosphodiesterases. Journal of Medicinal Chemistry, 48(10), 3449-3462. Retrieved 2 17, 2019, from http://onlinelibrary.wiley.com/doi/10.1002/chin.200534323/full

Martins, T. J., Mumby, M. C., \& Beavo, J. A. (1982). Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. Journal of Biological Chemistry, 257(4), 1973-1979. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/6276403

Matoulkova, E., Michalová, E., Vojtesek, B., \& Hrstka, R. (2012). The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biology, 9(5), 563-576. Retrieved 2 17, 2019, from https://tandfonline.com/doi/full/10.4161/rna. 20231

Mattson, M. P., \& Spaziani, E. (1985). Cyclic AMP mediates the negative regulation of Y-organ ecdysteroid production \approx. Molecular and Cellular Endocrinology, 42(2), 185-189. Retrieved 2 18, 2019, from https://sciencedirect.com/science/article/pii/0303720785901066\#!

Medina, A. E. (2011). Therapeutic utility of phosphodiesterase type I inhibitors in neurological conditions. Frontiers in Neuroscience, 5, 21-21. Retrieved 2 18, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc3044262

Méhats, C., Andersen, C. B., Filopanti, M., Jin, S.-L. C., \& Conti, M. (2002). Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends in Endocrinology and Metabolism, 13(1), 29-35. Retrieved 2 17, 2019, from
https://ncbi.nlm.nih.gov/pubmed/11750860
Miller, C. L., Oikawa, M., Cai, Y.-J., Wojtovich, A. P., Nagel, D. J., Xu, X., . . Yan, C. (2009). Role of Ca2+/Calmodulin-Stimulated Cyclic Nucleotide Phosphodiesterase 1 in Mediating Cardiomyocyte Hypertrophy. Circulation Research, 105(10), 956-964. Retrieved 2 17, 2019, from https://ahajournals.org/doi/10.1161/circresaha.109.198515

Mittal, R., Bencie, N., Shaikh, N., Mittal, J., Liu, X. Z., \& Eshraghi, A. A. (2017). Role of Cyclic Nucleotide Phosphodiesterases in Inner Ear and Hearing. Frontiers in Physiology, 8, 908. Retrieved 2 17, 2019, from https://frontiersin.org/articles/10.3389/fphys.2017.00908/full

Murthy, V. S., \& Mangot, A. G. (2015). Psychiatric aspects of phosphodiesterases: An overview. Indian Journal of Pharmacology, 47(6), 594. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/26729948

Nakatsuji, T., Lee, C.-Y., \& Watson, R. D. (2009). Crustacean molt-inhibiting hormone: Structure, function, and cellular mode of action. Comparative Biochemistry and Physiology A-molecular \& Integrative Physiology, 152(2), 139-148. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s1095643308011823

Nakatsuji, T., Sonobe, H., \& Watson, R. D. (2006). Molt-inhibiting hormone-mediated regulation of ecdysteroid synthesis in Y-organs of the crayfish (Procambarus clarkii): involvement of cyclic GMP and cyclic nucleotide phosphodiesterase. Molecular and

Cellular Endocrinology, 253(1), 76-82. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0303720706002383

NiKulina E, T. J. (2004). The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc. Natl. Aca. Sci.USA 101, 8786-8790. doi: 10.1073/pnas. 0402595101

P, W., P, W., RW, E., \& MM, B. (2003). Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5). Differential tissue distribution and subcellular localization of PDE9A variants. Gene 314, 15-27.

Puzzo, D., Sapienza, S., Arancio, O., \& Palmeri, A. (2008). Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatric Disease and Treatment, 4(2), 371-387. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc2518390

Qiu, Y., Chen, C.-N., Malone, T., Richter, L., Beckendorf, S. K., \& Davis, R. L. (1991). Characterization of the memory gene dunce of Drosophila melanogaster. Journal of Molecular Biology, 222(3), 553-565. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/002228369190496s

Richter, W., Unciuleac, L., Hermsdorf, T., Kronbach, T., \& Dettmer, D. (2001). Identification of inhibitor binding sites of the cAMP-specific phosphodiesterase 4. Cellular Signalling, 13(4), 287-297. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0898656801001504

Rocha, A. S., Rocha, A. S., Paternot, S., Coulonval, K., Dumont, J. E., Soares, P., \& Roger, P. P. (2008). Cyclic AMP Inhibits the Proliferation of Thyroid Carcinoma Cell Lines through Regulation of CDK4 Phosphorylation. Molecular Biology of the Cell, 19(11), 4814-4825. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/18799615

Sandeep, G., Bhasker, S., \& Ranganath, Y. S. (2008). Phosphodiesterase as a novel target in Cancer Chemotherapy. The Internet Journal of Pharmacology, 7(1). Retrieved 2 17, 2019, from http://ispub.com/ijpharm/7/1/3739

Saraiva, K. L., Silva, A. K., Wanderley, M. I., Araújo, A. A., Souza, J. R., \& Peixoto, C. A. (2009). Chronic treatment with sildenafil stimulates Leydig cell and testosterone secretion. International Journal of Experimental Pathology, 90(4), 454-462. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc2741156

Sette, C., \& Conti, M. (1996). Phosphorylation and Activation of a cAMP-specific Phosphodiesterase by the cAMP-dependent Protein Kinase INVOLVEMENT OF SERINE 54 IN THE ENZYME ACTIVATION. Journal of Biological Chemistry, 271(28), 16526-16534. Retrieved 2 17, 2019, from http://jbc.org/content/271/28/16526.long

Shyamal, S., Sudha, K., Gayathri, N., \& Anilkumar, G. (2014). The Y-organ secretory activity fluctuates in relation to seasons of molt and reproduction in the brachyuran crab, Metopograpsus messor (Grapsidae): Ultrastructural and immunohistochemical study.

General and Comparative Endocrinology, 196, 81-90. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0016648013004577

Siegel GJ, A. B. (1999). Basic Neurochemistiry: Molecular, Cellular and Medical Aspects. 6th edition. Philadephia: lippincott-raven.

Skinner, D. M. (1962). THE STRUCTURE AND METABOLISM OF A CRUSTACEAN INTEGUMENTARY TISSUE DURING A MOLT CYCLE. The Biological Bulletin, 123(3), 635-647. Retrieved 2 18, 2019, from https://journals.uchicago.edu/doi/abs/10.2307/1539584

Skinner, D. M. (1985). Interacting Factors in the Control of the Crustacean Molt Cycle. Integrative and Comparative Biology, 25(1), 275-284. Retrieved 2 17, 2019, from https://academic.oup.com/icb/article-pdf/25/1/275/5940264/25-1-275.pdf

Skinner, D. M., \& Graham, D. E. (1972). LOSS OF LIMBS AS A STIMULUS TO ECDYSIS IN BRACHYURA (TRUE CRABS). The Biological Bulletin, 143(1), 222-233. Retrieved 2 17, 2019, from https://journals.uchicago.edu/doi/abs/10.2307/1540342

Smith, W. A. (1993). Second Messengers and the Action of Prothoracicotropic Hormone in Manduca sexta. Integrative and Comparative Biology, 33(3), 330-339. Retrieved 2 18, 2019, from https://academic.oup.com/icb/article/33/3/330/165920

Soderling, S. H., \& Beavo, J. A. (2000). Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Current Opinion in Cell Biology, 12(2), 174-179. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0955067499000733

Sonnenburg, W. K., Seger, D., Kwak, K. S., Huang, J., Charbonneau, H., \& Beavo, J. A. (1995). Identification of Inhibitory and Calmodulin-binding Domains of the PDE1A1 and PDE1A2 Calmodulin-stimulated Cyclic Nucleotide Phosphodiesterases. Journal of Biological Chemistry, 270(52), 30989-31000. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/8537356

Tepolt, C. K., \& Palumbi, S. R. (2015). Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Molecular Ecology, 24(16), 4145-4158. Retrieved 2 24, 2019, from http://palumbi.stanford.edu/manuscripts/tepolt_et_al-2015molecular_ecology.pdf

Thompson, W. J., \& Appleman, M. M. (1971). Characterization of Cyclic Nucleotide Phosphodiesterases of Rat Tissues. Journal of Biological Chemistry, 246(10), 3145-3150. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/4324892

Tomes, C., Rossi, S., \& Silvia, M. (1993). Isobutylmethylxanthine and other classical cyclic nucleotide phosphodiesterase inhibitors affect cAMP-dependent protein kinase activity. Cellular Signalling, 5(5), 615-621. Retrieved 2 18, 2019, from https://sciencedirect.com/science/article/pii/089865689390056r

Tsai, L. C., \& Beavo, J. A. (2011). The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. Current Opinion in Pharmacology, 11(6), 670-675. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc4034742

Tsai, L.-C. L., \& Beavo, J. A. (2012). Regulation of adrenal steroidogenesis by the high-affinity phosphodiesterase 8 family. Hormone and Metabolic Research, 44(10), 790-794. Retrieved 2 24, 2019, from https://ncbi.nlm.nih.gov/pubmed/22903278

Verbruggen, B., Bickley, L. K., Santos, E. M., Tyler, C. R., Stentiford, G. D., Bateman, K. S., \& Aerle, R. v. (2015). De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genomics, 16(1), 458-458. Retrieved 2 24, 2019, from https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1667-1

Vezzosi, D., Vezzosi, D., Libé, R., Libé, R., Baudry, C., Baudry, C., . . . Bertherat, J. (2012). Phosphodiesterase 11A (PDE11A) Gene Defects in Patients with ACTH-Independent Macronodular Adrenal Hyperplasia (AIMAH): Functional Variants May Contribute to Genetic Susceptibility of Bilateral Adrenal Tumors. The Journal of Clinical Endocrinology and Metabolism, 97(11). Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc3485605

Walter, M., \& Kiger, J. (1984). The Dunce gene of Drosophila: roles of Ca2+ and calmodulin in adenosine $3^{\prime}: 5$ '-cyclic monophosphate-specific phosphodiesterase activity. The Journal of Neuroscience, 4(2), 495-501. Retrieved 2 17, 2019, from http://jneurosci.org/content/jneuro/4/2/495.full.pdf

Wang, P., Wu, P., Egan, R. W., \& Billah, M. M. (2003). Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5):
Differential tissue distribution and subcellular localization of PDE9A variants. Gene, 314, 15-27. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0378111903007339

Weber, S., Zeller, M., Guan, K., Wunder, F., Wagner, M., \& El-Armouche, A. (2017). PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cellular Signalling, 38, 76-84. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s089865681730178x

Webster, S. G., Keller, R., \& Dircksen, H. (2012). The CHH-superfamily of multifunctional peptide hormones controlling crustacean metabolism, osmoregulation, moulting, and reproduction. General and Comparative Endocrinology, 175(2), 217-233. Retrieved 2 17, 2019, from http://crustacean-biology.co.uk/wp-content/uploads/2014/02/simon-ref-4_2014-update_webster-et-al-2013_chh-review.pdf

Weeks, J. L., Corbin, J. D., \& Francis, S. H. (2009). Interactions between Cyclic Nucleotide Phosphodiesterase 11 Catalytic Site and Substrates or Tadalafil and Role of a Critical Gln-869 Hydrogen Bond. Journal of Pharmacology and Experimental Therapeutics,
$331(1), 133-141$. Retrieved 2 17, 2019, from http://jpet.aspetjournals.org/content/331/1/133

Weis, J. S. (1976). EFFECTS OF ENVIRONMENTAL FACTORS ON REGENERATION AND MOLTING IN FIDDLER CRABS. The Biological Bulletin, 150(1), 152-162. Retrieved 2 17, 2019, from https://journals.uchicago.edu/doi/abs/10.2307/1540596

Xie, J., Ponuwei, G. A., Moore, C. E., Willars, G. B., Tee, A. R., \& Herbert, T. P. (2011). cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cellular Signalling, 23(12), 1927-1935. Retrieved 2 17, 2019, from https://sciencedirect.com/science/article/pii/s0898656811001975

Xu, R. X., Hassell, A. M., Vanderwall, D., Lambert, M. H., Holmes, W. D., Luther, M. A., . . . Nolte, R. T. (2000). Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science, 288(5472), 1822-1825. Retrieved 2 17, 2019, from https://rcsb.org/structure/1f0j

Xu, R. X., Rocque, W. J., Lambert, M. H., Vanderwall, D. E., Luther, M. A., \& Nolte, R. T. (2004). Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. Journal of Molecular Biology, 337(2), 355-365. Retrieved 2 17, 2019, from https://rcsb.org/structure/1ro6

Yan, K., Gao, L.-N., Cui, Y. L., Zhang, Y., \& Zhou, X. (2016). The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Molecular Medicine Reports, 13(5), 3715-3723. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc4838136

Yu, X., Chang, E. S., \& Mykles, D. L. (2002). Characterization of Limb Autotomy FactorProecdysis (LAFpro), Isolated From Limb Regenerates, That Suspends Molting in the Land Crab Gecarcinus lateralis. The Biological Bulletin, 202(3), 204-212. Retrieved 2 18, 2019, from https://journals.uchicago.edu/doi/full/10.2307/1543470

Yuasa, K., Kanoh, Y., Okumura, K., \& Omori, K. (2001). Genomic organization of the human phosphodiesterase PDE11A gene. FEBS Journal, 268(1), 168-178. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/11121118

Zoncu, R., Efeyan, A., \& Sabatini, D. M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology, 12(1), 21-35. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pmc/articles/pmc3390257

Zoncu, R., Sabatini, D. M., \& Efeyan, A. (2010). mTOR: from growth signal integration to cancer, diabetes and ageing. Retrieved 2 18, 2019, from http://dspace.mit.edu/handle/1721.1/74551?show=full

Zoraghi, R., \& Seebeck, T. (2002). The cAMP-specific phosphodiesterase TbPDE2C is an essential enzyme in bloodstream form Trypanosoma brucei. Proceedings of the National

Academy of Sciences of the United States of America, 99(7), 4343-4348. Retrieved 2 17, 2019, from https://ncbi.nlm.nih.gov/pubmed/11930001

[^0]: 1681 CTTCAATCAAAGTGATCTGGAGAAGCTTGAAGGGCTGCCAGTGTCTCCCTTCATGGACAG

 1741 AGAGAAAGTGACTAAGCCTTCCTCCCAGTGCTCCTTCATTGGCTATGTGTTGCTGCCTCT

 1801 CTTTGAAGCTCTCGGCAAGGTCCTCCCTGAGCTAGATGAACTAATCATTCAGCCGGTGAG

 1861 ATTTGCACTGGACCACTACAGGAACTTGAAGGATGCGGCACAAAAGGCAGCAGAGGAGCA
 $\begin{array}{llllllllllllllllllllll}506 & \mathrm{E} & \mathrm{A} & \mathrm{A} & \mathrm{L} & \mathrm{E} & \mathrm{P} & \mathrm{A} & \mathrm{I} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{I} & \mathrm{P} & \mathrm{N}\end{array}$
 1921 GGAAGCCGCACTGGAGCCGGCCATTGAAGAGGAGGAGCTGGAGGAGGAGGAGATACCCAA

 1981 CACCAACACCAACACCAACACCAACACCAACACCAACACCAACACCAACACTAACACTAA

 2041 CACTAACACTCACCTCACTCACCTGTCTCGGGAAAACTCCAAACGGATCGTGCAGAAAAC

 2101 AGAAAGTTCCTTCAGCATCGGGAGCCGAGCATCATCCCGGATGTCCATGTATCGTTCCAG
 $586 \mathrm{~T} \quad \mathrm{C} \quad \mathrm{D} \quad \mathrm{C} \quad \mathrm{G} \quad \mathrm{D} \quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{D} \quad \mathrm{T}$
 2161 CACCTGTGACTGCGGAGACGGTGGAGAACTGGACACAGAGACGGAAGTGGATGTGAGTGA

 2221 AAGAACGTCGAGATTTAAAATTGCGACAGACATTCACATATCCCCATAGCGGAGGAACAG
 2281 CTCTGAGCGACGGAGTAGTGTGGGCGGGCGGTCCAGCTGTGAGCGAACTGTGTCTCCGAG
 2341 AACCCTGGAGGAGCGGCTTCTCCCACACGCTGAAGCCAAGAATGAACCTGAAGATGGTGA
 2401 AGTGCATCCAAAGAAAAGTGAAAAGGAGTCTTTGTTTGCTCGGCTTAGAGAACGTCTCTC
 2461 TTCCAGTGACAAGGAGAGAACTTCCAACGGATCGACCTTTGTGGGCAGTCGAAGCACGAG
 2521 GTGTAAACAAGGTGGTCTGCAGAGTGTTCTCAAACGTAGTAGGAGTAAATCAGAGCCCAC
 2581 TAAGAGTAGACATCACCGAACATTTCATATATCGCGGCCAAGAATTAGCTTTGGTGCAAA
 2641 TCCCCAGAAATCGCAGTGTGGTGAAAATATGTTTAATAACCATGAAAAAGAGAAGGCACG
 2701 AGACAAGTGCAAGGAATCTTCTTCTGAGGGTCTTATCTCTGCATTAGAAATAAAAACTTC
 2761 TACCTCCTTCGAACTTATTGAACAAAAAAAGCCTTGTGTGTCATCTAGTGCTCAACCTTC
 2821 ACCAACACTCTCAGAAAAGTGTGTATTAGTTACAAACAATATCCTAAAGCACAAAGGTTT
 2881 TAGTTTATCTCTCGACGTATTGCCGAGAAAGAACGGACGACTGAAGAGATCTGAAGCCAC
 2941 CGAAACCAACACAACAGAAAATACTCCTGGTGGCTCCGAGGACAACCTTATAGAGGGGAC
 3001 CAAGAAGCAGCAGGTGGACGGAGCTGTCACACTAATACGACACCAACCAATGCTTAGCCA
 3061 TACCAAAGGAGTTCAGTCATCTGATGCACTAAAGGGATTGAAAAAAAAGCCAGAGTCAAC
 3121 CAGGGCTTTACTTTTTAAATCCCTATCCTTCAGAAAGAAATCTCCCACTAAGGAGGACGA
 3181 GGTGAGACCGGGTGATTCCTGTGGTCCCAGTGAAGAAAGATTATGACAGGCAGGAACCTG
 3241 TTTCTGTTTTTAAGGATTATTTAACGGTTAGGTAGAACCACTGGGAAGATGAAGGATGAT
 3301 GCCGGTCACATTGTATGAAGGGTGAGAGAGTCTTCCACAGTGGATCATTCTTCGTTCCAA
 3361 TTGCAAATATTTTTCTGAGATACATAAAATGTTTAGTAAAACTCTTAGCAATCATCCCTA
 3421 CATCAAAAGACAAACTAGTCAACACTTGTACTGTAGCGAGTGCAGGTATAAACTTCCCAC
 3481 AAATTATCTTGGCACTTAATATTCATGAAGGATCTGACGACTAAGGTGCAATACTTTACA
 3541 CCTCCATGGCAAGGGATGAATGCCCACCCTAAGCACCCTTATGGCTCGTCATTTATCATG
 3601 CCGCTGCTATTAGTGTCATGGGTCCTCTGCAGCATCATATAAATACTGAGGTATTGATCT
 3661 AAAGGCTTGATACACTCTGAGTTGTGAGAGGCACTCTAGATGGAAGAATAGAACCCCTGA
 3721 CAGGGAAGTATAAAGCACAGCACCTTAAACAGCAGGACCATAATGATCATGAGGTGCCAA
 3781 GATCATATTTGGAATCTTTATACCTGTAGTTACTACAGCACTATGACTTGACATGTACTG
 3841 TATCCCTTGCAAAGAGTGTTTACTTACCTTCAGGAACAATATACATACATAGATGTTTAG
 3901 GATGACAGTGGGGAATAAGTTCCAGGGTGGGTGGGCACTCACTCCTGTATCTTGAGGTCC
 3961 ATTGTGTTGCCTCTGCCAGAACACCTTCACTAATCCTCACCTCACCTTGTCTTGCCACAA
 4021 CTCTACCAGCGACTCACTCACCAGGTGCAGTGTAGTTATTTTTTAAAAGTACCTTAATTA
 4081 CTGAGGGTTGTAATCTTCAAATGCCTAGATTATATATAAACATATAAAAATATGTATTTT
 4141 CATAGTATTTTACAAATAATTAAAAGATTTTATTACAAGGGATGAATGACCATGCTATTA
 4201 AACATATTACACTATGTTTGCCATGTGACCCCATCTTTAAAATAGTACATCTATAGATTA
 4261 GAGGAAAACTATTTATTTGCATAGAAAGATGTACAGCTATAAATTTAGCTTCTTCATGCT
 4321 CAAACCAAATTTTTAGTGCCAATTATACTATAGGGA

