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ABSTRACT 

 

USING SNOW TELEMETRY (SNOTEL) DATA TO MODEL STREAMFLOW:  

A CASE STUDY OF THREE SMALL WATERSHEDS IN COLORADO AND WYOMING 

 

The use of operational snow measurements in the Western United States is 

instrumental in the successful forecasting of water supply outlooks. The focus of this study is to 

determine if hydro-meteorological variables available from Snow Telemetry (SNOTEL) stations 

could successfully estimate the annual total runoff (Q100) and components of the hydrograph, in 

particular, the date of the passage of 20% of the Q100 (tQ20), 50% of Q100 (tQ50), 80% of Q100 

(tQ80), and the peak runoff (Qpeak). The objectives are to: (1) determine the correlation between 

streamflow and hydro-meteorological variables (from SNOTEL station data); (2) create a 

multivariate model to estimate streamflow runoff, peak streamflow, and the timing of three 

hydrograph components; (3) run calibration/testing on the model; and (4) test the 

transferability to two other locations, differing in catchment area and location.  

Snow water equivalent (SWE) data from the Natural Resources Conservation Service 

(NRCS) Joe Wright Snow Telemetry (SNOTEL) was correlated to streamflow at the United State 

Geological Survey (USGS) Joe Wright Creek gauging station. This watershed is located between 

the Rawah and Never Summer Mountains in Northern Colorado and has a drainage area of 8.8 

km2. Temperature data were not used due to non-stationarity of this time series, while the SWE 

data were stationary over the 33-year period of record. From the SNOTEL SWE data, peak SWE, 
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date of peak SWE, and number of consecutive days with snow on the ground up to the date of 

peak SWE had the strongest correlation to streamflow (R2 = 0.19 to 0.58).  

A collection of models runs were tested with various SNOTEL variables to develop 

optimal models for each of the five hydrograph components (tQ20, tQ50, tQ80, Q100, Qpeak). Five 

of the six estimates of were made at the date of Peak SWE. A refined estimate was made for 

the Q100 at melt-out, when the SWE equaled zero at the SNOTEL station. For the model 

development, most of the model trials (78%) had a Nash-Sutcliffe coefficient of efficiency 

(NSCE) value of greater than 0.50. The variables were analyzed for collinearity through a 

Variance Inflation Factor (VIF). Models with low collinearity (VIF < 5) and greatest accuracy from 

the calibration and testing periods were selected as optimal model configurations for each of 

the hydrograph components. The optimal model configuration in the Joe Wright Creek 

watershed had strong performance for the tQ20, tQ50, Q100 and Qpeak (NSCE > 0.50). The tQ80 

model was the least accurate model (NSCE = 0.32).  

Applying the optimal model equation to the two larger watersheds; Shell Creek is 

located in Big Horn Mountains of Northern Wyoming (with a drainage area of 59.8 km2) and 

Booth Creek is located north of Vail in Central Colorado (with a drainage area of 16.0 km2). 

Basin specific coefficients were generated for a calibration period (1980 to 1996), and 

evaluated for a testing period (1997 to 2012). A majority of the model outcomes were 

considered good, with 72% of the outcomes having NSCE > 0.50. The Q100 at melt-out model 

performed the best (NSCE = 0.62 to 0.94).  
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In a final analysis, the Joe Wright Creek coefficients were applied directly to the two 

larger watersheds to test model transferability. The location specific model coefficients did not 

perform well for the other two basins. However, for the Shell Creek watershed, results were 

still good for the following variables: tQ20, Q100 (using data up to peak SWE and using all SWE 

data including melt-out) and Qpeak, with NSCE values of 0.45, 0.46, 0.47, and 0.37, respectively. 

The similar results between Joe Wright Creek and Shell Creek watersheds suggest comparable 

physiographic characteristics between the two watersheds. An earlier observed onset of 

snowmelt (as indicated by tQ20) at the Booth Creek watershed influenced the overall accuracy 

of the model transferability. Despite the differences in the transferability of the model, the 

optimal configured models derived from accessible SNOTEL data and basin specific coefficients 

serve as a beneficial tool to water managers and water users for the forecasting of hydrograph 

components. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1 The Importance of Snow 

The influence of the seasonal snowmelt runoff on surface water resources has been well 

documented (Doesken and Judson 1996, Cooley and Palmer 1997, Serreze et al. 1999, Pagano 

et al. 2004, Clow 2010). Snowmelt runoff has been estimated to contribute 50% to 80% of the 

annual runoff in the Western United States (Doesken and Judson 1996, Pagano and Garen 

2006, Day 2009). The effective management of this limited natural resource in the Western 

United States is vital to the livelihood, prosperity and sustainability of the cultural and 

environmental assets of the region (Pagano et al. 2004). Snowmelt supplied water resources 

satisfies the demand for agriculture, municipal, hydropower, recreational and environmental 

uses (Ferguson 1999, Werner 2006, Perkins et al. 2009).  

In a high snow accumulation year and/or years with high runoff, flooding streams and 

rivers can lead to costly damages and threaten the loss of lives (Cooley and Palmer 1997). Years 

with low snowpacks and the associated low runoff affect water supplies to industries that so 

heavily rely on water for their economic success, as well as for the downstream environment. 

Additionally, with the demand for water increasing, the uncertainty in climate change, a higher 

frequency of droughts, and the spatiotemporal variability of the snowpack have all escalated 

conflicts among water users (Gleick 1987, Kult et al 2012).  

Furthermore, the spatiotemporal variability of snowmelt runoff can greatly impact 

water users and interests, furthering the importance of reliable snowmelt modeling. Proper 
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planning for such future uncertainty will be fundamental to the quantity, as well as quality, of 

our water resources.   

1.2 Snowmelt Modeling 

Successfully modeling the annual (even daily) fluctuations in snowmelt and seasonal 

water yields relies largely on accurate representation of the melt process (Hock 2009). 

Snowmelt runoff models vary in complexity and sophistication but work with the general 

approach of simulating the ablation of the snowpack using variables that directly or indirectly 

approximate the energy that diminish the snowpack (Ferguson 1999, Hock 2009, Day 2009). As 

such, energy balance models (direct) and temperature index models (indirect) each have 

benefits and limitations (Ferguson 1999, Hock 2003 and Day 2009).  

While snowmelt modeling predicts the output of water from a melting snowpack, 

streamflow forecasting typically uses statistical regression of meteorological variables and 

correlates them to streamflow to predict a volume of runoff over a period of time (Pagano et al. 

2004). For example, in the Western United States, snow water equivalent (SWE) from the first 

of the month measured during the winter (usually January to May) are used to estimate 

summer runoff volumes (cumulative runoff from April 1st to September 30th). Specific methods 

and the history of operational water supply forecasting are outlined in Pagano and Garen 

(2006). Since snowmelt runoff is so interconnected to the populations, communities and 

industries of a region, the annual streamflow forecasting plays an extremely important role in 

water planning and management, not only in the Western United States but also worldwide. 
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The common goal among successful modeling and forecasting of runoff is the use of 

accurate, representative and complete hydro-meteorological data (Richard and Gratton, 2001). 

Operational snowpack measurements have been extensively used for water supply outlooks 

(Pagano et al. 2004). Streamflow volume forecasts were originally derived through simple 

regression analysis from manual snow course measurements of snow water equivalent (SWE) 

and streamflow. The manual snow course surveys started in the mid-1930s, and starting in the 

late 1970s they have been supplemented and replaced with automated Snow Telemetry 

(SNOTEL) stations; snow courses and SNOTEL stations are usually located in headwater 

catchments (NRCS, Cooley and Palmer 1997, Serreze 1999). The technology utilized at the more 

than 700 SNOTEL stations across the Western U.S. are described in Serreze et al. (1999) and 

NRCS.  

1.3 SNOTEL Data 

While SNOTEL data have been scrutinized for their limitations (spatial representatively 

of the basin snowpack) and quality control (missing and erroneous values) concerns, 

technological advances have improved the quality and benefits of the vital data (Serreze et al. 

1999, Leibowitz et al 2012). One such strategic advantage of the automated SNOTEL station is 

the continuous collection of real-time daily and even hourly data, providing vital information to 

water managers (Clow 2010). Specifically, these continuous data provide precise measurements 

of snowpack characteristics at a point, as opposed to the standard manual snow course 

measurements taken monthly or occasionally semi-monthly. Thus a benefit of the SNOTEL 
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network is that the daily data can capture the actual peak SWE and can be used to define other 

specific characteristics of the snowpack, such as the number of days of accumulation or melt.  

 The real-time availability of SNOTEL data in recent years has increased the use of such 

data by private companies, industries, governments and researchers (NRCS). SNOTEL data have 

been used to categorize snowpack characteristics and trends of the Western U.S. For example, 

Cooley and Palmer (1997) analyzed daily SNOTEL data from 94 stations to detect similarities 

and differences in the accumulation and melt throughout the Western U.S., and found the 

accumulation potential, the decline in SWE (melt) potential, and a date range in peak SWE and 

melt out for each site.  An analysis of SNOTEL data from 625 stations distributed across the 

mountains of the Western U.S. illustrated the regional similarities and differences in mountain 

snowpacks (Serreze et al. 1999). Subsequently, Serreze et al. (2001) used SNOTEL data to 

understand the spatiotemporal characteristics of large snowstorm events across the Western 

United States. Snow climatologies have been developed for the stations in and around the 

Colorado River basin using the daily data (Fassnacht and Derry 2010).  

Collocated SNOTEL April 1st SWE correlate well with measurements taken from snow 

course surveys with an R2 ranging from of 0.87 to 0.93, suggesting a significant spatial relation 

among the two independent data sets (Serreze et al. 1999). Interpolation using SNOTEL station 

SWE data compared to snow course measurements across the Colorado River Basin highlighted 

the utility of the daily data, but also that the use of SNOTEL data in conjunction with snow 

course surveys could provide improvements to models (Dressler et al. 2006a).  
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SNOTEL data have been increasingly used to provide meteorological variables for 

models, basin-wide temperature, SWE interpolation, and model evaluation (Molotch et al. 

2004, Fassnacht 2006, Richer 2009, Harshburger et al. 2012, Jin and Wen 2012, Kashipazha 

2012, Leibowitz et al. 2012, Raleigh and Lundquist 2012). The increasing number of SNOTEL 

stations and the availability of the data have allowed for greater incorporation into water 

resources studies.  

The data have also been used to understand the effects of climate change on the timing 

and quantity of snowpack and runoff (Peterson et al. 2000) and have illustrated that snowpack 

accumulation has been decreasing in many areas of the Western U.S. (Stewart et al. 2004). 

Across Colorado, the data were analyzed to determine trends in snowmelt and streamflow 

timing, showing a general warming trend in temperatures and a decrease in SWE values (Clow 

2010). Clow (2010) developed predictive models with the SNOTEL data, and assessed the 

changes to the onset of melt as estimated by the passage of 20% of annual runoff volume (tQ20) 

and middle of melt (50% of runoff volume denoted as tQ50) compared to trends in precipitation 

and temperature. The model suggested a shift in the timing with an earlier onset of melt and 

middle of melt.   

1.4  Research Objective 

Expanding on the findings of Cooley and Palmer (1997) and the work from Clow (2010), 

the motivation of this study was to investigate the application of SNOTEL data in a predictive 

hydrologic model for headwater catchments. Specifically, the purpose of this study was to 

estimate runoff (Q100) and components of the hydrograph, the date of the tQ20, tQ50, tQ80 
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(timing of 80% of the annual runoff), and peak runoff (Qpeak) from hydro-meteorological data 

available from SNOTEL stations. Specifically the objectives of the research are as follows: 

1. Determine the correlation between streamflow and hydro-meteorological variables 

(from SNOTEL station data), 

2. Create a multivariate model to estimate streamflow runoff and the timing of several 

hydrograph components, 

3. Calibrate and test the model, and 

4. Test the transferability of the model to two other watersheds differing in catchment 

area and location.  
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CHAPTER 2: STUDY AREAS 

Site selection for this study was based on four requirements. Firstly, the watershed was 

a headwater catchment in the Rocky Mountains of the Western United States with a snow 

dominated hydrology system. Secondly, the streamflow was unregulated, or naturalized 

streamflows were computed from available data with a gauging station at the outlet to the 

watershed.  Thirdly, a SNOTEL station was located either in or adjacent to the basin. The study 

assumed the SNOTEL station was representative of the snow characteristics of the watershed of 

study (Bohr and Aguado, 2001). Finally, the SNOTEL and stream gauging stations had accurate, 

complete datasets each with a long period of record, specifically spanning 33 water years, i.e., 

October 01, 1979 through September 30, 2012. 

Joe Wright Creek watershed, with a drainage area of 8.8 km2, is located in the Medicine 

Bow Mountains of north central Colorado (Figure 2.1), and was utilized in the model 

development and evaluation. The Joe Wright SNOTEL station is located in the center of the 

watershed (Figure 2.1). The USGS stream gauging station in located upstream of the Joe Wright 

Creek Reservoir; the creek receives additional water from the Michigan Ditch (MICDCPCO) 

which is a trans-basin water diversion owned and operated by the City of Fort Collins and 

monitored by the Colorado Division of Water Resources (CDWR). 

To test the transferability of the models, two additional watersheds with larger drainage 

areas were selected (Table 1). Booth Creek watershed has an area of 16.0 km2 and is located in 

the Gore Range Mountains of central Colorado (Figure 2.1). The USGS gauging station on Booth 

Creek is located upstream of the confluence with Gore Creek; the watershed is unregulated, 
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with only natural lakes occurring in the higher elevations. The SNOTEL station is located 

adjacent to the Booth Creek Watershed. Shell Creek is the largest watershed with an area of 

59.8km2 and is located in the Big Horn Mountains of north central Wyoming (Table 2.1).  The 

USGS gauging station is located upstream of the Shell Creek Reservoir, and it is also unregulated 

with only natural lakes occurring in the higher elevations. The SNOTEL station is located 

adjacent to the watershed, near the stream gauging station.  

The SNOTEL stations are located in a similar elevation range around 3,000 meters, with 

the outlet of the watersheds varying more, having a mean elevation of 2,870 meters (Table 

2.1). Additionally, the vegetation types within each of the headwater basins are similar with 

coniferous vegetation (Pinus contorta, Picea engelmannii, Abies lasiocarpa and Pseudotsuga 

menziesii) in the lower to mid elevations and alpine areas at the higher elevations (Figure A4.1). 

Booth Creek has more occurrences of deciduous trees (Populus tremuloides) in the lower 

elevations. While there is more variability in the annual SWE, precipitation and cumulative 

runoff from year to year in the two Colorado watersheds than at Shell Creek, the climatology of 

the two Colorado sites is similar (Table 2.1). Joe Wright Creek receives 18% more precipitation 

than Booth Creek and experiences on average a Qpeak of 6% higher. Booth Creek, however, 

experiences 27% higher runoff (Q100) than Joe Wright Creek. Shell Creek watershed receives less 

precipitation, 36% less precipitation than Joe Wright Creek, lower observed runoff (44% less 

than Booth Creek) with noticeable less year to year variability in the SWE, precipitation and 

cumulative runoff (Table 2.1, Figure 2.2, Figure 2.3, Figure A1.1). 
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Table 2.1: Summary information of the SNOTEL station, USGS stream gauging station, 
watersheds characteristics and catchment hydro-climatology for the Joe Wright Creek, Booth 
Creek, and Shell Creek watersheds. 
 

 
 
 

 
  

 Joe Wright Creek, CO Booth Creek, CO Shell Creek, WY 
SNOTEL Station    
Station name Joe Wright Vail Mountain Shell Creek 
Station number 05J37S 06K39S 07E23S 
Elevation (m) 3,085 3,139 2,920 
Latitude (°N) 40.32  39.62  44.50  
Longitude (°W) 105.53  106.38  107.43  
USGS Gauging Station    
Gauge name Joe Wright Creek above 

Joe Wright Reservoir 
Booth Creek above 
Minturn, CO 

Shell Creek above Shell 
Creek Reservoir 

Gauge number 06746095 09066200 06278300 
Gauge elevation (m) 3,045 2,537 2,758 
Gauge latitude (°N) 40.54 N 39.65 N 44.51 N 
Gauge longitude (°W) 105.88 W 106.32 W 107.40 W 
CDWR station Michigan Ditch  at 

Cameron Pass (MICDCPO) 
N/A N/A 

Watershed    
Basin area (km2) 8.8 16.0 59.8 
Elevation range (m) 3,045 – 3,675 2,537 – 3,960 2,758 – 3,500 
Vegetation cover Mixed coniferous forest, 

Alpine 
Mixed deciduous and 
coniferous forest, Alpine 

Mixed coniferous forest, 
Alpine 

Hydro-Climatology    
 Max.         Min.       Mean Max.        Min.       Mean Max.       Min.       Mean 
Annual Peak SWE (mm) 1,331        366         690 996          284         637     752         328         472 
Cumulative precipitation (mm) 1,636       789         1,129 1,369       577         927 871         467         723 
Annual specific runoff (mm) 924           219         524 1,059       309        663 673         267         461 
Annual peak runoff (mm) 32              5             16 35            5             17 35           10            20 
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Figure 2.1: Topographic maps of the Joe Wright Creek, CO, Booth Creek, CO and Shell Creek, WY watersheds (Source: nationalamp.gov).  
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Figure 2.2: Summary of the catchment hydrology for the Joe Wright Creek, Booth Creek and Shell Creek watersheds. Upper plots are 
the median daily runoff at the USGS stream gauging stations for each of the watersheds. Lower plots are the cumulative 
precipitation (solid dark blue) and cumulative runoff (solid light blue), as well as the median daily SWE (dashed red), the maximum 
SWE year (thin blue line) and minimum SWE year (thin red line) to show the variability in the snowfall at each of the watersheds. 
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Figure 2.3: Time series of the a) cumulative precipitation b) peak SWE and c) Q100 for the Joe Wright Creek (dashed blue diamond), 
Booth Creek (dotted red circle), and Shell Creek (solid black triangle) watersheds from the 1980 to 2012 water years. The calibration 
(1980 to 1996) and testing (1997 to 2012) periods are noted on the figure.  

 

B 
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CHAPTER 3: DATA AND METHODOLOGY 

3.1 Data  

The Natural Resource Conservation Service (NRCS) SNOTEL data and United States 

Geological Survey (USGS) streamflow data are available online at 

http://www.wcc.nrcs.usda.gov/snow/ and http://waterdata.usgs.gov/co/nwis/rt, respectively. 

Using the daily time step interval, the available data for each of the three watersheds were 

downloaded for all water years from 1980 through 2012, organized into a dataset and analyzed.  

Streamflow data from the Michigan Ditch (MICDCPO) that flows into Joe Wright Creek were 

obtained from the Colorado Division of Water Resources (CDWR) 

(http://www.dwr.state.co.us/). All stations metadata were reviewed for understanding of 

station precision and maintenance record. The daily data were screened for missing values, 

errors and anomalies (Serreze et al. 1999). In the event of a day with a missing value, error 

value or an anomaly, an average value were gathered from the preceding and following day 

and used as a surrogate. Due to the high quality assurance and quality control standards by the 

NRCS, USGS and CDWR, there were no modifications to the variables specific to this study.   

Booth Creek and Shell Creek watersheds are unregulated, but the streamflow at the Joe 

Wright Creek gauging station required naturalized flows. This was achieved by subtracting the 

flows from the CDWR Michigan Ditch from the Joe Wright flows to yield naturalized streamflow 

values.  At the time of this current study, the 2012 water year streamflows from both the USGS 

(at all three watersheds) and the CDWR were classified as “provisional” and therefore are 

subject to change. It is assumed that these provisional data are representative of the 2012 

conditions.  

http://www.wcc.nrcs.usda.gov/snow/
http://waterdata.usgs.gov/co/nwis/rt
http://www.dwr.state.co.us/
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3.1.1 Temperature Data 

Since the variable selection for the models was based on the Joe Wright SNOTEL 

and streamflow data, the presence of stationarity or non-stationarity (e.g., Milly et al., 2008), 

i.e., temporal trends, was evaluated.  This station was part of the “orange” central northern 

Colorado station grouping defined by Clow (2010) that included five other SNOTEL stations 

(Roach, Willow Creek Pass, Stillwater Creek, Phantom Valley, Lake Irene).  For this group over 

the period from approximately 1978 through 2007, there was a significant decrease (at the 5% 

confidence level) in April 1st SWE (12 to 27 mm per decade), as well as an earlier onset of 

snowmelt (2 to 4 days per decade) and timing of the snowmelt hydrograph 

(from streamflow data at multiple locations).  As well, Clow (2010) reported a significant 

monthly warming in this area for all months except February, September and October, and the 

median temperature increased across the entire state was 0.7 degrees Celsius per 

decade.  However, the snow climatology for only four of these stations were the same, with the 

Stillwater Creek and Phantom Valley stations being in different groupings derived with the 

SNOTEL data using self-organizing maps (Fassnacht and Derry, 2010). 

 From the Joe Wright SNOTEL data, the average annual air temperature was warming 

significantly at a rate of 1.1 degrees Celsius per decade for the entire period of record (1990 to 

2012) and 1.2 degrees Celsius per decade from 1990 to 2007 (the period 

that Clow used).  Annual maximum and minimum air temperatures were also significantly 

warming, at a rate of 1.4 and 1.0 degrees Celsius per decade, respectively.  The months that are 
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significantly warming at Joe Wright are the same as those that Clow (2010) found for the 

grouping of stations.   

The SNOTEL temperature data demonstrated heterogeneity in the time series from 

1990 to 2012 (Figure 3.1). The cause of the temporal trends in the temperature data is 

uncertain. Joe Wright SNOTEL station metadata (sensor data history) detailed on 12 May 2005 

the temperature sensor was updated with new instrumentation (NRCS). In addition, the sensor 

was relocated within the SNOTEL site. The instrumentation change corresponds to the shift 

shown in Figure 3.1 during the 2005 season, especially in the maximum temperature for 2005.  

Since the model development was based on the Joe Wright Creek watershed, the problematic 

temperature data was not used in the model development.     

However, of the other hydro-climatic variables, only tQ20 and tQ80 were becoming 

significantly earlier (4.8 and 4.1 days per decade, respectively), and that was only for the period 

that Clow (2010) used, i.e., 1980 to 2007.  For the entire period (1980 to 2012), these trends 

were not significant.  Thus the period of record is important (e.g., Venable et al., 2012); for the 

full period of record, all the variables, except temperature, showed stationarity.  Also, the 

temperature data had the shortest period of record of all variables.  Therefore, it was decided 

that the temperature data would not be used in this analysis. 

3.2  Variables 

 Five components of hydrograph (tQ20, tQ50, tQ80, Q100 and Qpeak) were chosen as the 

dependent variables for the models (Table 3.1).  The independent hydro-meteorological 

variables (Table 3.1) were divided into three time periods for use in the model runs, capturing 
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the time of peak SWE, at the end of melt-out when SWE reached zero at the snow pillow, and 

at the end of the water year.  

3.3  Analysis  

3.3.1  Correlation of Streamflow to Hydro-meteorological Data 

Linear regression analyses were conducted to correlate the Joe Wright catchment 

streamflow to the independent hydro-meteorological variables. Determination of the strongest 

correlations between the streamflow data and the SNOTEL station data provided the 

foundation for model development.  

3.3.2  Peak SWE and Melt Season Indices 

The independent variables were derived on an annual basis for the water year, and 

during the melt period to focus on snowmelt driven runoff. The specific melt period was 

assessed annually for each watershed. This period reflected when snowmelt starts, from the 

date of last peak SWE to the time when snow was no longer present on the SNOTEL snow 

pillow. This melt time period varied inter-annually as well as among the study watersheds.  

 
 3.3.3  Model Selection  

To generate a predictive-type model, the tQ20, tQ50, tQ80 and Qpeak model runs focused 

only on variables (Table 3.1) that could be measured or known at the time of peak SWE, since 

the timing of the Q20, Q50, Q80 and Qpeak generally occurred during or shortly after melt-out of 

the snowpack at the SNOTEL station. The Q100 was modeled at both the time of peak SWE and 
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at the time of melt-out, with the former to match the estimation of other variables and the 

latter to refine the total runoff estimation once snow melt concluded. The most correlated 

variables for the Joe Wright Creek watershed provided the variables that were used in multiple 

model configurations. The correlated independent variables were tested for multicollinearity 

through a Variance Inflation Factor (VIF) (Leamer 1973, Fox and Monnette 1992). Variables with 

a VIF greater than fiver were considered highly collinear and were eliminated as an optimal 

model. Ultimately, a series of model configurations were conducted on the Joe Wright Creek 

watershed to determine the optimal models. 

3.3.4  Calibration and Testing 

The data set was divided into two time periods, a 17-year calibration period (1980 to 

1996) and a 16-year testing period (1997 to 2012). The data for the calibration period were run 

through a multiple linear regression analysis to derive equation coefficients, and then the 

models were evaluated for the testing period.  

 3.3.5  Model Evaluation  

The performances of the various models were evaluated using the coefficient of 

determination (R2) and the Nash-Sutcliffe coefficient of efficiency (NSCE) (Equation 1) (Martinec 

and Rango 1986, Richard and Gratton 2001, Richer 2009): 

𝑁𝑆𝐶𝐸 = 1 − ∑ (𝑋𝑖−𝑋𝑖′)2𝑛
𝑖=1
∑ (𝑋𝑖−𝑋�)2𝑛
𝑖=1

                                                                 (1), 

where X is the measured dependent value (e.g., annual runoff or Q100 for a specific year i), X’ is 

the simulated dependent value, 𝑋� is the mean dependent, and n is the number of values. The 
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results were analyzed to identify the highest NSCE and R2 values to assist the determination of 

the optimal model configuration to estimate tQ20, tQ50, tQ80, Q100 and Qpeak for Joe Wright 

Creek.  

3.4  Optimal Model Application 

The optimal model configurations generated at the Joe Wright Creek watershed for the 

five dependent variables/hydrograph components were then applied to the Booth Creek and 

Shell Creek watersheds. Using the same methods as applied to Joe Wright Creek, the data from 

the two larger watersheds were used to generate basin specific coefficients for the calibration 

period (1980 to 1996) and then evaluated for the testing period (1997 to 2012) using the NSCE 

and R2 evaluations.   

3.5  Joe Wright Creek Model Transferability 

In a final evaluation of the Joe Wright Creek model performance, the transferability of 

the models for that watershed were tested by applying them to the larger two watersheds. The 

observed independent variables from the two watersheds were inserted into the optimal Joe 

Wright models to estimate tQ20, tQ50, tQ80, Q100 and Qpeak, and then evaluated using the NSCE 

and R2 evaluations.   
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Table 3.1: Table of the hydro-meteorological variables and their corresponding description. The 
variables are divided by the dependent variables  and the variables available in subsequent 
order to the timing of the water year, at peak SWE, at melt out of snow on the snow pillow, and 
at the end of the water year.  

 

 

 

 

 

 Variable Description 

D
ep

en
de

nt
 V

ar
ia

bl
es

 tQ20 The date (timing) of the 20th percentile on cumulative discharge curve 
tQ50 The date (timing) of the 50th percentile on cumulative discharge curve 
tQ80 The date (timing) of the 80th percentile on cumulative discharge curve 
Q100 at Peak SWE Value for the cumulative runoff forecasted at the date of the Peak SWE observed at the 

SNOTEL Station 
Q100 at Melt Out Value for the cumulative runoff forecasted at the date of the snowpack melt out as 

observed at the SNOTEL station 
Qpeak  Forecasted value for the maximum daily discharge  for a given water year observed at the 

USGS stream gauging station 

 ___________________________________________________________________________________________________________________________________________ 

At
 P

ea
k 

SW
E April 1st SWE The SWE at the SNOTEL station on April 1 of each year.  

Peak SWE The maximum accumulation of SWE at the SNOTEL station.  
Date of Peak The corresponding date of Peak SWE, signaling the onset of snowmelt with no later peaks 

and the continuous decline in SWE recorded at the snow pillow. 
Number of days with snow 
on the ground to date of 
peak 

The number of consecutive days with an accumulated snowpack (SWE>0) observed at the 
SNOTEL station beginning at the start of the water year up to the Date of Peak SWE  

 ___________________________________________________________________________________________________________________________________________ 

At
 M

el
t O

ut
 

Number of melt days  The number of positive melt days that occur from the Date of Peak SWE to the day of zero 
snow remaining on the snow pillow at the SNOTEL station (melt period specific). 

Total number of days with 
snow on the ground 

The number of consecutive days with an accumulated snowpack (SWE>0) observed at the 
SNOTEL station beginning at the start of the water year and concluding at the end of the 
snow melt season (melt period specific). 

Last day with snow on the 
ground (date of melt out) 

Observed date when the SWE value on the snow pillow reach zero (SWE = 0). Due to site 
and watershed characteristics, this value does not necessarily reflect the last day with 
snow of the ground in the watershed (melt period specific). 

Mean daily change in SWE 
(loss to snowpack) during 
melt 

Also considered the daily melt. The average daily change in SWE values observed on the at 
the SNOTEL station. Represents water leaving the snowpack as a positive melt value (melt 
period specific). 

Number of days of with 
positive snow melt 

The total number of days between the Date of Peak SWE and the date in which the 
snowpack has melted out (SWE = 0) at the SNOTEL snow pillow (melt period specific).  

 __________________________________________________________________________________________________________________ 

En
d 

of
 W

at
er

 Y
ea

r Cumulative precipitation The sum of daily precipitation observations at the SNOTEL station 
Percentage of precipitation 
as snow 

The portion of the precipitation that falls as snow in the watershed. The ratio of the Peak 
SWE from the SNOTEL station compared to the cumulative precipitation value.  
 

Cumulative runoff  (Q100) The sum of daily runoff observations from the USGS gauging stations. Presented as a depth 
of water (mm) over the entire watershed 

Mean daily discharge 
during melt 

The mean daily observed runoff at the USGS stream gauging stations during the season 
specific melt period (from the date of peak SWE to the last day with snow of the ground). 

Date Peak Runoff The date of the greatest mean daily runoff observed at the USGS stream gauging stations. 
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Figure 3.1: Temperature data from the Joe Wright Creek SNOTEL station from 1990 to 2012. 
The maximum temperature is in red, the average temperature in green, and the minimum 
temperature in blue. Note the noticeable “shift” in the temperature data beginning in 2005, as 
identified with the dashed vertical line. Temperature data was partial or missing for 1994 and 
2001. 
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CHAPTER 4: RESULTS 

4.1 Correlation of Hydro-meteorological Data to Streamflow 

There was an overall strong positive correlation between streamflow and the snowpack 

variables derived from the SNOTEL SWE data at Joe Wright Creek (Table 4.1). The variables 

available at the time of Peak SWE , i.e., April 1st SWE, peak SWE, date of peak, and the number 

of days with snow on the ground up to peak, consistently had R2 values ranging from 0.19 to 

0.58. Peak SWE was the most correlated variable with a mean R2 value of approximately 0.57, 

and was most correlated to the tQ50 dependent variable (Table 4.1). Variations in the R2 values 

for the calibration and testing periods were minimal with the exception of April 1st SWE which 

had an 1160% stronger correlation during the testing period.  

The R2 values from the melt period variables, i.e., number of melt days, number of days 

with snow of ground, last day of snowpack on the ground, mean daily change in SWE (melt) and 

average runoff during melt shown in Table 3.1 support a strong correlation to streamflow. The 

total number of days with snow on the ground, the last day with snow on the ground, and 

average runoff during the melt period had the greatest correlation to the hydrograph 

components (R2 = 0.32 to 0.85). From all the considered variables, the date of last day with 

snow on the ground was most correlated to tQ50 (R2 = 0.85). The number of melt days was not 

well correlated to the dependent variables of streamflow (R2= 0.00 to 0.04). The deviation in 

the R2 values between the calibration period and the testing period had a 20% difference 

among the variables, with greater accuracy in the testing period (excluding the poorly 

correlated variable of the number of melt days).  
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The end of the water year variable of cumulative precipitation, was highly correlated to 

streamflow (R2 = 0.60). Among this strongly correlated variable, there was a 16% increase in R2 

values from the calibration to the testing period. The percentage of precipitation falling as snow 

was less correlated to streamflow (R2 = 0.20 to 0.40). There was a 70% decrease in correlation 

during the calibration period than the testing period.  

4.2  Model Development 

Up to eight model configurations with differing variables were conducted to determine 

the optimal model configuration. Table 4.2 shows the model matrix identifying the model run 

number and the independent variables that were used during model trials. The independent 

variables were analyzed for collinearity through an analysis of the Variance Inflation Factor 

(VIF). The VIF results illustrated a wide range of low to high collinearity among the independent 

variables (Table 4.3). Model configurations that expressed a VIF of greater than five were 

considered strongly collinear and not utilized in the optimal model selection. As the models 

incorporated additional variables the collinearity tended to increase, especially with peak SWE 

and the estimated Q100 being used as a dependent variable. The simulated Q100 had the greatest 

VIF (greater than 20) in each of model runs, suggesting greater collinearity to the independent 

variables. At the time of melt-out, independent variables had higher collinearity with the VIF 

being consistently greater than five. The evaluation of the model trials suggests the majority of 

the model configurations performed well. Of the 68 total model outcomes, a total of 15 had 

NSCE values of less than 0.50. Of those 15 only three outcomes were less than zero (Table 4.4). 

With the exception of the Qpeak trials, the model run outcomes experienced strong correlation 
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values consistently explaining on average 66% of the variance. The optimal model runs were 

selected for each of the five dependent variables based on utilizing the fewest and least-

multicollinear independent variables while maintaining the greatest NCSE and R2 values at the 

calibration and testing periods. Summarized in Table 4.4, the optimal model run for tQ20 was 

selected as model run three (NSCEtesting = 0.59), the tQ50, tQ80 and Q100 at peak SWE were 

selected as model run two (NSCEtesting = 0.55, 0.32 and 0.83 respectively), the Q100 at melt out 

was selected as model run six (NSCEtesting = 0.84) and the Qpeak model run was selected as model 

run three (NSCEtesting = 0.52). The least performing optimal model run was tQ80 (NSCEtesting = 

0.32). It is important to note that while the results for the Q100 at melt-out are strong, the 

independent variables in the optimal model run express strong collinearity (Table 4.3). 

4.3  Optimal Model Run  

The selected model configurations were applied to the three watersheds. Basin specific 

coefficients (Table 4.5) were then generated during the calibration period and applied to the 

testing period. The optimal models performed well when applied to the Joe Wright Creek, 

Booth Creek and Shell Creek watersheds. The positive relations among the observed and 

simulated dependent variables during the calibration and testing period are illustrated in Figure 

4.1. The timing of the Q20, Q50 and Q80 had similar results with confined clustering along the one 

to one line. The results of the optimal model run for the tQ50 had greater accuracy than tQ20 

and tQ80. In comparing the watersheds, Shell Creek’s results were less accurate with greater 

residuals; smaller values were overestimated while larger values were underestimated.  
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Evaluation from the optimal model runs supports the accuracy of the models (Table 

4.6). In 26 of the 36 model trials the NSCE value were greater than 0.50. In only 10 cases were 

the values less than 0.50, of which only one was less than zero. Additionally the R2 values 

demonstrated a strong correlation among the calibration and testing period with values on 

average consistently greater than 0.62. There was a consistent, although minimal, decrease in 

modeling performance from the onset of melt (tQ20) to the end of the melt period (tQ80).  The 

testing period of the model runs performed slighter better than the calibration period. The best 

performing model was the Q100 at melt-out in each of the watersheds (NSCE = 0.62 to 0.94), 

though the variables expressed stronger collinearity. The Qpeak and tQ80 model trails were found 

to have the weakest performing models. NSCE and R2 values were consistently lower in both 

the calibration and testing periods and well as from watershed to watershed.  While Joe Wright 

watershed generally had a slightly better performance, the overall model applications to each 

watershed performed well with few exceptions. The results of the Qpeak were mostly the lowest 

of all the model dependent variables (NSCE = 0.23 to 0.55, R2 = 0.22 to 0.64). The Qpeak model 

run in the Booth Creek watershed was a weak performing model (NSCEcalibration = 0.23; NSCEtesting 

= 0.35), while the tQ80 model application in the Shell Creek watershed was found to be the least 

accurate of the optimal model runs (NSCEcalibration = 0.15; NSCEtesting = -0.03).   

4.4  Optimal Model Transferability 

Transferability of the Joe Wright Creek watershed model configurations and coefficients 

resulted in range of model performances (Figure 4.2). The R2 values for both watersheds had 

consistently strong correlations, with 10 of the 12 values being greater than 0.70. However, the 
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NSCE values had a greater range of variability and an overall weaker performance, with values 

ranging from -3.17 to 0.47. Shell Creek watershed outperformed Booth Creek watershed when 

using the Joe Wright Creek models. The Q100 both at peak SWE and at melt-out in the Shell 

Creek watershed resulted in the strongest performance of the models (NSCE= 0.46 and 0.47 

respectively).  A consistent result of using the Joe Wright Creek watershed models in the larger 

two watersheds was the inability for the model to estimate the range of variability seen in the 

dependent variables.  As such, the resulting slopes were less than the one to one line (<1) in 

83% of the model runs. Qpeak model runs simulated significantly less variability than what was 

observed. 
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Table 4.1: Correlation of the hydro-meteorological variables to dependent variables of the tQ20, tQ50, tQ80, Q100 and the Qpeak from 
the Joe Wright Creek watershed. The R2 value, slope and y-intercept are shown for all years (1980-2012). Furthermore, the 
calibration period (1980 to 1996) and the testing period (1997 to 2012) values are shown for comparison.

  All years (1980 – 2012) Calibration (1980 – 1996) Testing (1997 – 2012) 
 Variable R2 Slope Y-inter. R2 Slope Y-inter. R2 Slope Y-inter. 
tQ20 peak SWE 0.51 0.04 41027.4 0.41 0.05 41026.1 0.62 0.04 41028.5 

date of peak 0.47 0.44 22842.2 0.40 0.49 20763.9 0.53 0.39 24873.2 
days with snow up to 
peak 

0.35 0.34 40989.1 0.22 0.32 40995.7 0.49 0.34 40987.6 

April 1st 0.28 0.05 41028.3 0.06 0.03 41044.2 0.61 0.07 41018.7 
          
# of melt days 0.00 -0.01 41057.5 0.01 0.37 41045.7 0.02 -0.24 41063.4 
# days with snow 0.37 0.46 40944.1 0.32 0.48 40941.7 0.40 0.42 40951.9 
last day snow 0.62 0.77 9597.6 0.72 0.91 3799.8 0.52 0.62 15415.0 
Mean delta SWE 0.45 1.64 41024.2 0.32 1.67 41025.1 0.60 1.55 41024.3 
Avg runoff at melt 0.55 2.91 41040.5 0.43 2.87 41042.6 0.69 2.85 41038.9 
          
Sum of P 0.50 0.04 41009.3 0.51 0.05 41004.7 0.49 0.04 41014.3 
Sum of Q 0.56 0.05 41031.0 0.54 0.06 41027.7 0.55 0.04 41033.5 
% Precip as snow 0.30 76.42 41011.2 0.07 41.63 41034.3 0.65 99.42 40995.9 
          
          

tQ50 peak SWE 0.58 0.03 41051.7 0.55 0.04 41048.3 0.62 0.03 41053.8 
date of peak 0.55 0.36 26230.0 0.52 0.42 23852.1 0.58 0.32 28078.1 
days with snow up to 
peak 

0.44 0.29 41018.1 0.32 0.28 41020.1 0.57 0.28 41018.3 

April 1st 0.29 0.04 41053.6 0.07 0.02 41064.4 0.58 0.05 41046.8 
          
# of melt days 0.02 0.23 41067.0 0.00 0.13 41072.5 0.02 0.22 41065.8 
# days with snow 0.55 0.42 40971.5 0.41 0.40 40977.6 0.69 0.43 40969.6 
last day snow 0.85 0.67 13403.6 0.84 0.73 11049.6 0.87 0.62 15558.6 
Mean delta SWE 0.39 1.14 41052.6 0.36 1.31 41050.0 0.42 1.00 41054.3 
Avg runoff at melt 0.51 2.11 41063.5 0.50 2.28 41063.6 0.53 1.92 41063.3 
          
Sum of P 0.60 0.03 41036.2 0.66 0.04 41030.8 0.54 0.03 41041.1 
Sum of Q 0.63 0.04 41054.7 0.60 0.04 41052.2 0.64 0.04 41056.4 
% Precip as snow 0.30 57.88 41040.8 0.12 39.22 41053.2 0.54 69.90 41032.6 
          
          

tQ80 peak SWE 0.45 0.03 41071.3 0.35 0.03 41072.6 0.55 0.03 41071.0 
date of peak 0.35 0.29 29271.0 0.24 0.27 29996.6 0.46 0.28 29783.3 
days with snow up to 
peak 

0.24 0.21 41050.1 0.09 0.15 41065.1 0.41 0.23 41043.6 

April 1st 0.19 0.03 41074.4 0.02 0.01 41088.6 0.45 0.04 41066.3 
          
# of melt days 0.04 0.36 41078.6 0.03 0.40 41079.7 0.03 0.27 41079.5 
# days with snow 0.36 0.34 41008.5 0.22 0.28 41025.7 0.51 0.36 41001.7 
last day snow 0.68 0.59 16651.8 0.61 0.59 16754.2 0.74 0.56 17985.0 
Mean delta SWE 0.23 0.87 41074.6 0.11 0.70 41080.1 0.33 0.88 41072.4 
Avg runoff at melt 0.32 1.65 41082.7 0.25 1.55 41085.4 0.39 1.62 41080.6 
          
Sum of P 0.50 0.03 41056.6 0.47 0.03 41057.4 0.53 0.03 41057.8 
Sum of Q 0.52 0.04 41073.3 0.40 0.03 41075.1 0.60 0.03 41073.0 
% Precip as snow 0.20 46.70 41064.1 0.05 24.08 41080.0 0.40 58.81 41054.9 

 

  All years (1980 – 2012) Calibration (1980 – 1996) Testing (1997 – 2012) 
 Variable R2 Slope Y-inter. R2 Slope Y-inter. R2 Slope Y-inter. 
Q100 peak SWE 0.79 0.04 41027.4 0.69 0.05 41026.1 0.87 0.04 41028.5 

date of peak 0.43 0.44 22842.2 0.40 0.49 20763.9 0.43 0.39 24873.2 
days with snow 
up to peak 

0.43 0.34 40989.1 0.49 0.32 40995.7 0.37 0.34 40987.6 

April 1st 0.47 0.05 41028.3 0.12 0.03 41044.2 0.83 0.07 41018.7 
          
# of melt days 0.01 -0.01 41057.5 0.00 0.37 41045.7 0.01 -0.24 41063.4 
# days with snow 0.56 0.46 40944.1 0.69 0.48 40941.7 0.45 0.42 40951.9 
last day snow 0.70 0.77 9597.6 0.69 0.91 3799.8 0.69 0.62 15415.0 
Mean delta SWE 0.64 1.64 41024.2 0.57 1.67 41025.1 0.68 1.55 41024.3 
Avg runoff at melt 0.74 2.91 41040.5 0.66 2.87 41042.6 0.82 2.85 41038.9 
          
Sum of P 0.84 0.04 41009.3 0.77 0.05 41004.7 0.89 0.04 41014.3 
Sum of Q 1.00 0.05 41031.0 1.00 0.06 41027.7 1.00 0.04 41033.5 
% Precip as snow 0.40 76.42 41011.2 0.18 41.63 41034.3 0.60 99.42 40995.9 
          
          

Qpeak peak SWE 0.54 0.02 0.6 0.31 0.02 4.1 0.73 0.02 -1.1 
date of peak 0.47 0.23 -9382.7 0.45 0.24 -9942.8 0.48 0.21 -8628.5 
days with snow 
up to peak 

0.47 0.20 -23.8 0.50 0.22 -27.0 0.43 0.18 -20.3 

April 1st 0.24 0.03 2.7 0.00 0.00 17.1 0.68 0.04 -6.6 
          
# of melt days 0.01 -0.12 20.9 0.05 -0.37 31.6 0.00 -0.07 17.6 
# days with snow 0.48 0.27 -49.6 0.57 0.29 -55.1 0.39 0.23 -42.4 
last day snow 0.58 0.38 -15423 0.57 0.38 -15420.6 0.55 0.36 -14803.4 
Mean delta SWE 0.54 0.92 -2.2 0.34 0.79 1.1 0.70 0.95 -3.6 
Avg runoff at melt 0.75 1.75 6.2 0.62 1.59 8.1 0.88 1.82 4.9 
          
Sum of P 0.56 0.02 -9.6 0.48 0.02 -7.1 0.62 0.02 -10.6 
Sum of Q 0.72 0.03 1.0 0.72 0.03 0.6 0.71 0.03 1.5 
% Precip as snow 0.29 38.45 -6.8 0.02 10.71 11.1 0.70 58.13 -19.4 
Date of PeakQ 0.17 0.23 -9393.1 0.30 0.30 -12245.6 0.09 0.16 -6507.2 
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Table 4.2: Matrix of correlated hydro-meteorological variables used for model run 
development. Check marks represent the model run included the corresponding variable. 
Empty boxes reflect the corresponding variable was not used in that model configuration. 
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Date of Peak          
Number of Days 
with Snow on 
Ground to Peak 

        

April 1 SWE         
Forecasted Q100         

          

At
 M

el
t-

O
ut

 

Average Runoff 
during Melt 

        

Last day with 
Snow on Ground 
(melt out) 

        

Mean Daily 
change in SWE 
during Melt 

        

tQ* = tQ20, tQ50, and tQ80  
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Table 4.3: Matrix of the Variance Inflation Factor (VIF) for the model runs and their corresponding correlated hydro-meteorological 
variables. The numerical value identifies the respective VIF for the variable with greater values signifying greater multicollinearity. 
The dash line indicates that variable was not included in the corresponding model configuration (See Table 4.2). TQ* includes the 
tQ20, tQ50 and tQ80. 
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Peak SWE 1.7     1.7    1.0 1.8    1.8    1.7 4.5    4.4    1.8 17.8   4.5    16.0 16.0   8.0   14.3 16.0   21.6   16.0 17.8    23.8    -  -       7.3      - 
Date of Peak 1.7     1.7     - 3.5    3.5    1.7 4.1    2.1    3.5 2.9     4.1    2.4 2.4     6.1      - 2.4     9.6     2.4 2.9     10.1     -  -         -        - 
Number of Days 
with Snow on 
Ground to Peak 

 -          -        - 3.4    3.4      - 3.4      -      3.4 0        3.4      0  -        3.7      - 0        3.9       -  -         4.0       -  -         -        - 

April 1 SWE  -         -        -  -         -         - 2.8    2.7       - 2.8     2.8      -   -        4.9      -  -        8.8       - 2.8      9.3      -  -         -        - 
Forecasted 
Q100 

 -         -        -  -         -         -  -         -         - 20.2     -      20.1 20.1     -     14.3 20.1     -     20.1 20.2      -        -  -         -        - 

                

At
 M

el
t-

O
ut

 

Average Runoff 
during Melt 

 -         -        -  -         -         -  -         -         -  -          -         -  -        9.3      -  -       10.1      -  -       13.5      -  -      5.8       - 

Last day with 
Snow on 
Ground (melt 
out) 

 -         -        -  -         -         -  -         -         -  -          -         -  -          -        -  -       10.3      -  -       12.6      -  -      6.7       - 

Mean Daily 
change in SWE 
during Melt 

 -         -        -  -          -         -   -        -         -  -          -         -   -          -       -    -          -          -  -        7.7       -  -       6.2      - 

tQ* = tQ20, tQ50, and tQ80  
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Table 4.4: Nash-Sutcliffe coefficient of efficiency (NSCE) and Correlation strength (R2) values for 
calibration and testing period of the model trial configurations. 

 

 

 

 

 

 

 

 Model Run  
 1 2 3 4 5 6 7 8 
tQ20         
NSCE (Calibration) 0.50 0.53 0.59 0.59 0.53 0.59 - - 
R2 (Calibration) 0.49 0.52 0.58 0.58 0.52 0.52 - - 
NSCE (Testing) 0.65 0.59 0.53 0.59 -4.66 -4.66 - - 
R2 (Testing) 0.65 0.59 0.53 0.65 0.68 0.68 - - 
         
tQ50         
NSCE (Calibration) 0.65 0.68 0.77 0.77 0.68 0.68 0.77 - 
R2 (Calibration) 0.65 0.67 0.77 0.77 0.68 0.68 0.77 - 
NSCE (Testing) 0.63 0.55 0.51 0.51 0.56 0.56 0.51  
R2 (Testing) 0.71 0.66 0.60 0.60 0.66 0.66 0.60  
         
tQ80         
NSCE (Calibration) 0.38 0.44 0.62 0.62 0.44 0.44 0.62 - 
R2 (Calibration) 0.37 0.44 0.62 0.62 0.44 0.44 0.62 - 
NSCE (Testing) 0.45 0.32 0.06 0.06 0.32 0.32 0.06 - 
R2 (Testing) 0.60 0.50 0.38 0.38 0.50 0.50 0.38 - 
         
Q100         
NSCE (Calibration) 0.71 0.75 0.86 0.90 0.92 0.94 0.96 0.82 
R2 (Calibration) 0.71 0.74 0.85 0.90 0.93 0.96 0.90 0.82 
NSCE (Testing) 0.84 0.83 0.71 0.71 0.76 0.84 -0.18 0.88 
R2 (Testing) 0.86 0.86 0.77 0.78 0.83 0.90 0.74 0.91 
         
Qpeak         
NSCE (Calibration) 0.33 0.49 0.55 0.55 0.51 0.55 -  - 
R2 (Calibration) 0.31 0.47 0.53 0.53 0.49 0.53 - - 
NSCE (Testing) 0.64 0.60 0.52 0.52 0.58 0.52 - - 
R2 (Testing) 0.73 0.63 0.56 0.56 0.63 0.56 -  - 
 

At Peak SWE At Melt-out 
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Table 4.5: The calculated coefficients from the optimal model configurations at the Joe Wright 
Creek, Booth Creek and Shell Creek watersheds. Coefficients developed from the calibration 
period (1980 to1996) of the study 

 

 

 

 

Dependent 
Variables 

Coefficient of Independent 
Variables  

Joe Wright Booth Creek Shell Creek 

tQ20 Intercept 27545.5 -12519.1 11680.9 
 Peak SWE 0.0616 0.0440 0.0352 
 Date of Peak SWE 0.3298 1.3084 0.7160 
 No. Days with snow on ground 

to Peak SWE 
-0.1874 -0.6947 -0.1932 

 April 1st SWE -0.0455 -0.0208 0.0295 
     
tQ50 Intercept 26521.8 16722.1 17482.8 
 Peak SWE 0.0282 0.0301 0.0334 
 Date of Peak SWE 0.3549 0.5942 0.5748 
 No. Days with snow on ground 

to Peak SWE 
-0.1363 -0.2572 -0.0966 

     
tQ80 Intercept 29104.9 19689.6 36443.3 
 Peak SWE 0.0292 0.0334 -0.0188 
 Date of Peak SWE 0.2928 0.5222 0.1125 
 No. Days with snow on ground 

to Peak SWE 
-0.2343 -0.2346 0.1561 

     
Q100 Intercept 38720.3 252380.9 -36879.6 
(At Peak SWE) Peak SWE 0.6312 0.9591 0.3625 
 Date of Peak SWE -0.9561 -6.1743 0.8965 
 No. Days with snow on ground 

to Peak SWE 
3.0848 4.9801 1.8885 

     
Q100 Intercept 121050.7 195831.8 -137136.4 
(At Melt Out) Peak SWE 0.5235 0.6268 0.3645 
 Date of Peak SWE -8.5380 -8.7363 -3.2631 
 No. Days with snow on ground 

to Peak SWE 
3.2786 4.1741 1.1293 

 April 1st SWE -0.2686 -0.0013 -0.3345 
 Average Runoff during Melt 33.343 31.518 14.998 
 Date of last day with Snow on 

the Ground 
5.5686 3.9406 6.6003 

     
Qpeak Intercept -3133.6 -4077.0 -1127.7 
 Peak SWE 0.0045 0.0090 0.0227 
 Date of Peak SWE 0.0760 0.0995 0.0271 
 No. Days with snow on ground 

to Peak SWE 
0.1407 0.0355 0.1203 
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Table 4.6: Optimal model run accuracy and efficiency results for the Joe Wright Creek, Booth 
Creek and Shell Creek watersheds (corresponds to the results displayed in Figure 4.1). 

 

 

 

  

 Joe Wright Creek Booth Creek Shell Creek 
 Calibration Testing Calibration Testing Calibration Testing 
Dependent 
Variable NSCE R^2 NSCE R^2 NSCE R^2 NSCE R^2 NSCE R^2 NSCE R^2 
tQ20 0.59 0.58 0.59 0.64 0.56 0.56 0.54 0.62 0.69 0.69 0.63 0.62 
tQ50 0.68 0.67 0.55 0.59 0.76 0.81 0.49 0.66 0.54 0.55 0.62 0.58 
tQ80 0.44 0.44 0.32 0.50 0.71 0.77 0.45 0.56 0.15 0.14 -0.03 0.00 
Q100 at Peak 0.75 0.74 0.83 0.86 0.74 0.79 0.59 0.67 0.52 0.52 0.38 0.66 
Q100 at Melt Out 0.94 0.94 0.84 0.90 0.81 0.85 0.62 0.71 0.86 0.86 0.85 0.85 
Qpeak 0.55 0.53 0.52 0.56 0.23 0.22 0.35 0.45 0.45 0.44 0.55 0.64 
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Joe Wright Creek           Booth Creek         Shell Creek 

 
Figure 4.1: Results of the tQ*, Q100 and Qpeak dependent variables from the application of the optimal model configurations for the 
Joe Wright Creek, Booth Creek and Shell Creek watersheds. Model coefficients are basin specific for each of the three watersheds. 
Symbols in black represent the calibration period (1980 to 1996) of the model development and red symbols represent the testing 
period (1997 to 2012). 
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Figure 4.2: Results of the optimal model configurations as developed from the Joe Wright Creek 
watershed. Model coefficients are specific to Joe Wright Creek watersheds and have been 
applied to the larger Booth Creek (shown in blue) and Shell Creek (shown in purple) watersheds 
to test the transferability of the model application. The NSCE and R2 values from the results are 
shown on their respective plot. 
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CHAPTER 5: DISCUSSION 

The purpose of this study is to estimate runoff (Q100) and components of the 

hydrograph, in particular, the date of the Q20 (tQ20), Q50 (tQ50), Q80 (tQ80), and peak runoff 

(Qpeak), from the SNOTEL data. This study showed that SNOTEL stations can be used to estimate 

these components of the streamflow hydrograph; the models illustrate a means to use SNOTEL 

data to estimate streamflow for headwater basins. The SNOTEL data represent a point 

measurement (Kashipazha 2012); they can be used to represent the snowpack across an area, 

i.e., a watershed (Bohr and Aguado 2001). The SNOTEL data report continuously and provide 

more information in real-time than the monthly manual snow surveys (Bohr and Aguado, 

2001).  

5.1  Correlation to Streamflow 

Cooley and Palmer (1997) established the concept of using additional variables from the 

SNOTEL data, compared to the snowcourse data in forecasting streamflow. Their interpolations 

of characterizing the SNOTEL data derived the accumulation and melt potentials and provided 

understanding of the range in peak SWE and melt out dates. Hydrological models have only 

used precipitation and temperature data from SNOTEL stations as inputs, and SWE data for 

comparison or assimilation (Dressler et al. 2006b; Clow et al. 2012).  Clow (2010) showed 

significantly increasing temperatures of 1.2 degrees Celsius, thus the non-stationarity of the 

temperature data may limit the accuracy or applicability of models that incorporate such data, 

especially if other variables are stationary. No other studies were found to use additional 

variables derived from SNOTEL data (Table 3.1) for use in streamflow forecasting. 
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As expected peak SWE was strongly correlated to streamflow since this correlation, 

traditionally made with April 1st SWE as a surrogate for peak SWE, has been the basis for water 

supply outlooks since the initial forecast were made in the earlier 1900’s (Garen 1992, Pagano 

and Garen 2006). With SNOTEL stations, the actual peak SWE can be captured, rather than just 

using the manually measured April 1st SWE; on average across the Western U.S. SWE on April 1st 

was 12% less than the actual peak SWE, occurring before or after April 1st (Bohr and Aguado 

2001). While the snowpack at lower elevation or lower latitude sites typically peak prior to April 

1st (Fassnacht 2006), the lower correlation using April 1st SWE (Table 4.1) can mainly be 

attributed to the additional precipitation that accumulates, usually as snow, in the headwater 

catchments after April 1st. This is especially true for Colorado and Wyoming, which receive a 

greater portion of snow accumulation later in the winter and in early spring (Serreze et al. 

2001); the mountains near the Front Range of Colorado, such as Joe Wright receives substantial 

upslope events in March and April during El Niňo years. This iterates the benefit of having 

automated real-time SNOTEL stations. 

The highest correlation was associated with the tQ50 dependent variable. The melt-out 

period variables were also highly correlated to the streamflow characteristics as tQ50 

demonstrated the greatest R2 value for the date of last day with snow on the ground. The 

strong correlation could be associated with the close proximity in time to the Q50 and the end 

of the melt period at a SNOTEL station. The limited variation among the calibration and testing 

period suggests there is less variability in melt variables than variables for the prior period. The 

calibration period at Joe Wright Creek experienced more frequent wet years with larger 

snowpacks than the testing period (Figure 2.3, Figure A1.1). The greater peak SWE and later 
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peak SWE dates are associated with more precipitation and a delayed melt season (Cooley and 

Palmer 1997). The delayed onset to melt slightly decreased the correlation of the hydro-

meteorological variables during the calibration period. The drier testing period with slightly 

smaller snowpacks and earlier onsets to melt (Q20) had greater correlation due to the closer 

proximity in the timing of tQ20 and tQ50 as well as Qpeak.  

The high correlation to the end of the year variables is associated with the dependent 

variables inherent relation to the amount of precipitation a watershed receives. In years with 

abundant precipitation it can be expected that there would likely be an increase in runoff with 

more water moving through the system (Figure 2.2, Figure 2.3, Figure A1.1).  

5.2  Model Development and Configuration 

In developing the models, the strongest correlated variables with minimal collinearity 

among the independent variables were selected to configure an optimal model (Garen 1992, 

Fassnacht 2006, Clow 2010). The model trials performed well with the optimal models being 

selected from their low collinearity (Table 4.3) and the results of the Nash-Sutcliffe coefficiency 

of efficiency (NSCE) and the R2 values (Table 4.4). The tQ20 model was selected with four 

variables (Table 4.2) which produced the best model configuration. The tQ50, tQ80, Q100 (at peak 

SWE) and Qpeak all incorporated the same three variables (peak SWE, date of peak SWE, and 

number of days with snow on the ground up to peak SWE). There were additional variables 

incorporated into the model’s configuration that resulted in the same results but with greater 

collinearity among the variables. Therefore, the models with the fewest and least collinear 

variables and strongest evaluations were selected for the model development. The tQ80 that 
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also considered the end of snowmelt had the weakest performing model. The poor model 

performance could be associated with the lag time in melt waters reaching the streamflow as 

well as any additional melting snowpack in the watershed after melt-out at the SNOTEL station, 

which is typically at a low elevation in the watershed (Figure A2.1 - A4.1). The runoff time lag 

and additional snowpack contributing to the streamflow vary depending on the amount SWE 

remaining in the watershed and how much of the catchment is still snow covered.  

Incorporating Snow Covered Area data into the model could improve the later tQ80 models 

(Richer 2009).  

 5.3  Optimal Model Run 

Overall the models performed very well (Figure 4.3 and Table 4.6). As expected the Q100 

at melt-out resulted in the best model. The incorporation of variables associated with the 

snowmelt period as well as snowmelt runoff strongly influenced the cumulative runoff from 

each watershed. Melt indices of the timing of the 20%, 50% and 80% of the total annual stream 

flow are commonly used to approximate the onset of melt (tQ20), the middle of melt or centroid 

of runoff (tQ50), and the end of snowmelt (tQ80) (Peterson 2000, Richer 2009, Clow 2010). The 

tQ20 model performed well for Joe Wright Creek and Shell Creek but slightly poorer for Booth 

Creek. The weaker performance in Booth Creek is representative of the earlier onset on melt 

(tQ20) and the ultimately a longer melt season (Figure 2.2, Figure A1.1). Booth Creek begins 

melt (tQ20) on average 8 days before Shell Creek and fourteen days earlier than at Joe Wright 

Creek. The middle of melt (tQ50) and the end of melt (tQ80) are similar at Booth Creek and Shell 

Creek, with melt at Joe Wright Creek occurring on average 8 days later for both the tQ50 and 
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tQ80. Booth Creek has greater range in elevation, with a lower gauge elevation (2,500 m) as well 

as a more southerly aspect and steeper slopes (Figure A2.1 - A4.1). As such, the physiographic 

characteristics of the catchment could be conducive to earlier snowmelt than the other 

watersheds. Joe Wright Creek watershed has moderate slopes up to 30% with dividing east and 

west aspects and a mix of coniferous and alpine land cover (Figure A2.1 - A4.1). The catchment 

receives more precipitation and snowfall than Booth Creek and Shell Creek (Figure 2.1 and 2.2). 

Shell Creek receives less precipitation overall, with a high percentage of alpine land cover, 

gentler slopes and a dominant northern aspect (Figure A2.1 - A4.1). As a result both Shell Creek 

and Joe Wright Creek watersheds experience a delayed onset to melt (tQ20), with short wave 

radiation strongly influencing melt later in the spring. (Table 2.1, Figure 2.1, Figure A1.1).  

The implications on a shorter runoff period are that water managers need to plan for 

and capture the runoff in greater quantities over a shorter time period. The timing of the runoff 

can have implications with water right owners and water uses. A shorter runoff period could 

trigger the need for great water storage to capture the high flows while being able to satisfy 

water rights. With the model runs performing well overall, the tQ80 model application to Shell 

Creek did not perform well (NSCE = -0.03 to 0.15). Additionally, the Qpeak values in the Booth 

Creek watershed demonstrated poor model performance (NSCE = 0.23 to 0.35) (Figure 4.2). In 

these two cases the models fail to account for the greater variability of the independent 

variables associated with the peak runoff and the timing of the Q80 (Figure 4.2). 
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5.4  Optimal Model Transferability 

In five of the six cases the transferred model overestimated values less than average 

and underestimated values more than average, i.e., a regression between observed and 

simulated values had a slope was less than one. The simulated models estimated less variability 

than was observed. The results demonstrate the inefficiency to adequately estimate the 

extreme events, such as in Q100, and Qpeak. The two most recent years present interesting 

contrasts; 2011 was the wettest year on record while 2012 was the driest year on record in 

Colorado (Figure 2.2, Figure 2.3, Figure A1.1). The two extreme years were difficult to simulate 

at the Colorado sites since they deviated so greatly from the mean (Figure 2.2, Figure 2.3, 

Figure A1.1).   

The Joe Wright Creek models fit better to Shell Creek than Booth Creek, with model 

result deviations due to physiographic and climatic differences (Figure A2.1 - A4.1). While there 

is variation in the coefficients due to the difference in the watersheds, some of the coefficients 

at the Shell Creek are close with those at Joe Wright Creek (Table 4.5). The greatest differences 

by less than a factor of five were from the date of peak, illustrating greater variability in date of 

peak SWE among the three watersheds. Similarly, there was as greater difference in the 

average runoff for the Q100 at melt-out between Shell Creek and the two Colorado watersheds 

since Shell Creek usually has less annual runoff (Q100); 14% less than Joe Wright Creek and 44% 

less than Booth Creek (Figure 2.2, Figure 2.3). The models performed better when applied to 

other watersheds with similar variability in the independent variables. The Joe Wright Creek 

models accounts for the greater variability in the precipitation and runoff. When applied to the 
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Shell Creek site in Wyoming that has less variability in inter-annual precipitation, the model 

performs more poorly.   

The three watersheds have different physiographic characteristics (Table 2.1, Figure 2.1, 

Figure A2.1 - A4.1). Booth Creek has a greater range of elevation, nearly twice that of Shell 

Creek, steeper slopes, and streamflow to the southwest, while Shell Creek flows west and Joe 

Wright Creek flows north. The more southerly watershed also has some differing vegetation 

with deciduous and mixed forests at the lower elevations. As such, the initial melt out at lower 

elevations generates an earlier tQ20 and an overall longer melt season compared to the other 

two watersheds (Figure 2.2).  Joe Wright Creek and Shell Creek both have shorter melt periods 

than compared to Booth Creek by nine and 12 days, respectively.  The tQ50 and the tQ80 are 

similar for the three headwater catchments, demonstrating similar timing for the middle and 

end of melt.  

While the SNOTEL SWE data (Figure 2.2, Figure 2.3, Figure A1.1) illustrate similar SWE 

patterns, Booth Creek has more runoff than the other two basins (Figure 2.2). As discussed 

above, these differences could be a result of physiographic, vegetation and soil properties; 

however the Vail Mountain SNOTEL station is located outside of the Booth Creek watershed 

(Figure 2.1) and may be less representative of the basin than the other SNOTEL stations are of 

their watershed. This basin abuts the western side of the Continental Divide on the windward 

side of the range, exposing the watersheds to greater frequencies of orographic precipitation. 

As a result the basin may receive more precipitation or blowing snow inputs than recorded at 

the Vail Mountain SNOTEL station. 
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While the cumulative runoff for all three basins is similar, there is greater variability in 

the two Colorado watersheds, depicting greater variability in the precipitation across each 

watershed. It is likely that Colorado experiences more large scale climatic influences, such as 

the El Niño Southern Oscillation, while the impact of the Pacific Decadal Oscillation is lesser in 

northern Wyoming. As a result of the greater variability in precipitation, there is more 

variability in the inter-annual peak SWE, cumulative runoff, and timing of the melt indices (Q20, 

Q50, and Q80). As such, the Joe Wright model performs better in like headwater catchments. 

5.5  Study Limitations 

While the models produce reasonable estimates, there are limitations. The site selection 

of using a headwater catchment with an unregulated and gauged creek was challenging. The 

hydrology of many streams across the mountainous Western U.S. has been altered by human 

development. The great demand for water has created a history of water projects including 

diversions and storage, yielding few unregulated gauged basins or the associated naturalized 

flows with an associated SNOTEL station, each of which having a longer (30+ year) period of 

record.  

Additionally, the assumption of a SNOTEL site being representative of the entire 

watershed may not as appropriate in such a study (Kashipazha 2012). The variability of the 

snowpack can differ significantly throughout a watershed. While the precipitation and 

snowpack characteristics may vary throughout the watershed from year to year, there are 

numerous consistencies across a watershed that allow point data to represent an entire 

watershed; the point data can be used as an index for the area rather than a direct measure of 
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what occurs over the area. Vegetation remains generally unchanged from year to year, with the 

exception of disturbances, such as beetle kill, forest fires and forest harvesting. Changes in the 

terrain, in particular slope, aspect and elevation, are negligible over time, with the exception of 

catastrophic geological events; such events have not occurred over the period of instrument 

record.  Therefore, the physiographic variables that drive the meteorological forcing’s across a 

watershed can be considered constant over an annual basis. 

5.6  Implications to Water Resources 

Traditional streamflow forecasts produce a quantitative volume of water over a 

specified period of time, such as April 1st through September 30th (Pagano et al. 2004). The 

additional estimation of various streamflow components provides for more detail on the 

seasonal hydrograph. Supplementing the Q100 estimation with the tQ20, tQ50, tQ80, and Qpeak 

provides further information that can be used to construct and refine a seasonal hydrograph. 

The models presented in this study illustrate what streamflow could look like, aiding in more 

accurate streamflow forecasts. Being able to estimate the streamflow components is important 

for water managers, water right holders, water users and recreational outfitters.  

The successful forecast of the tQ20 could help establish when water managers begin 

storing runoff in reservoirs. On the recreational side, it could allow rafting outfitters to plan and 

prepare for their season with more confidence. Additionally knowing the onset of snowmelt in 

snow dependent regions could aid in the agricultural decision making processes for farmers and 

ranchers. The successful forecasting of the tQ50 could aid in water planners to know when the 

center of mass of runoff has occurred and assist in their reservoir management plans.  
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While tQ80 was less successfully estimated, the potential of knowing such information 

would be instrumental for reservoir managers and water commissioners to begin releasing 

stored water in order to satisfy downstream water rights holders and water users. The 

prediction of the cumulative runoff (Q100) would be instrumental to all water users. While the 

estimates of peak runoff (Qpeak) were less efficient, the forecasts are important for emergency 

management, environmental planners and recreational outfitters. 

Finally, if climate change causes warmer temperatures and a decrease in the amount of 

winter precipitation (Knowles et al. 2006, Clow 2010), successfully modeling a possible shift in 

the timing of the onset of melt and the central timing (Q50) could be beneficial for the future of 

management of the limited changing water resources.  

5.7  Future Work 

With snowpack characteristics varying spatially and temporally across a watershed 

(Fassnacht 2006), especially across different elevations, it becomes practical to integrate 

multiple measurement sites within a model. Incorporating more point measurements into 

models would provide more representative snowpack measurements (Dressler et al. 2006a), 

especially since SNOTEL measurements often over-estimate the snowpack in a watershed (Daly 

et al. 2000) and the surrounding area (Kashipazha 2012, Meromy et al. in press). Additionally, 

with the year to year variability in some watersheds, it may be useful to develope individual 

models that focus on extreme (i.e., wet and dry) years (e.g., 2011 and 2012).  

Additional hydro-meteorological variables could be incorporated into streamflow 

models. The apparent warming trend in the SNOTEL temperature data should be investigated 
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further as the rates are almost an order of magnitude more than the global average.  Newer 

enhanced SNOTEL station instrumentations could provide more information about snowpack 

and snowmelt characteristics, including soil temperature and moisture data, solar radiation 

data, and snowpack density derived using the snow depth sensors implemented in the last 

eight years.  
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CHAPTER 6: CONCLUSIONS 

Hydro-meteorological variables from SNOTEL stations were strongly correlated with 

streamflow at the Joe Wright Creek watershed. The variables were analyzed based on the 

following three periods: at the time of peak SWE, melt-out of the snowpack on the snow pillow, 

and at the end of the water year.  Peak SWE had the strongest relation to streamflow, and the 

greatest correlation to tQ50. At snowpack melt-out and end of the water year, variables were 

also strongly correlated to streamflow with average runoff during melt, last day with snow on 

the ground and cumulative precipitation having the greatest correlations to streamflow. Since 

SNOTEL temperature data expressed non-stationarity they were not used in this study. 

A multivariate model was successfully created at Joe Wright Creek to accurately 

estimate runoff (Q100) and components of the hydrograph, specifically, the date of the Q20 

(tQ20), Q50 (tQ50), Q80 (tQ80), and peak runoff (Qpeak).  Selected models were tested with multiple 

variable configurations to develop optimal models for each of the dependent variables. Six 

models were generated: five models for streamflow estimates at the date of peak SWE and an 

additional refined estimate of streamflow for the Q100 at melt-out.   

The modeling period was divided into 1980 to 1996 for calibration and 1997 to 2012 for 

testing. Model variables were analyzed for collinearity and evaluated using the Nash-Sutcliffe 

coefficient of efficiency (NSCE) and the coefficient of determination (R2). Most of the models 

(78%) had a NSCE value greater than 0.50 during both the calibration and testing periods. The 

accuracy of the models were greatest for Q100 at melt-out (NSCE = 0.82) followed by the Q100 at 

peak SWE, tQ50 and tQ20, with a NSCE of 0.64, 0.61 and 0.60 respectively. The Qpeak model 
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accuracy was modest (NSCE = 0.44) while the tQ80 was the least accurate (NSCE = 0.36). The 

optimal model from Joe Wright Creek was used to test the validation and transferability to the 

two larger watersheds: Booth Creek, CO and Shell Creek, WY. 

The optimal models were modified to generate basin specific coefficients for Booth 

Creek and Shell Creek. The resulting streamflow estimates had mostly accurate, with 72% of the 

outcomes having a NSCE value greater than 0.5. The greatest accuracies were the tQ20, tQ50, 

and Q100 components of the hydrograph, with the tQ80 and Qpeak models being less accurate. 

The application of the models to the other headwater basins demonstrated the successful 

streamflow estimation with the incorporation of basin specific coefficients. 

The Joe Wright Creek model direct transferability to the other two watersheds failed to 

be as successful. While the R2 values showed strong correlation in the modeled versus observed 

values (R2 = 0.35 to 0.90), the NSCE values illustrated the poorer performance. The only 

exception was Shell Creek’s result for the Q100 at peak SWE and melt-out with a NSCE of 0.46 

and 0.47, respectively). The weak results suggested the hydro-climatology of the three 

watersheds differ enough from one another to null the application of the Joe Wright Creek 

specific equations to other headwater basins.   

Overall, the optimal model equations did produce good streamflow estimates for the 

other watersheds once new coefficients were determined. The study supports the use of basin 

specific coefficients derived from SNOTEL data as a beneficial tool to estimate hydrograph 

components. SNOTEL data are available in real-time and can thus be used to develop models to 

go beyond the seasonal streamflow volume forecast, estimating additional components of the 
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hydrograph. These findings are important for expanding the traditional water supply forecasts 

for water resource managers, recreational outfitters, water right holders and other water users 

in the Western United States.  
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APPENDIX I: WATERSHED HYDROLOGY 
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Figure A1.1: Time series of the a) SWE b) cumulative runoff for the Joe Wright Creek (dashed blue), Booth Creek (dotted red), and 
Shell Creek (solid black) watersheds from the 1980 to 2012 water years. The calibration (1980 to 1996) and testing (1997 to 2012) 
periods are noted on the figure. 
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APPENDIX II: WATERSHED SLOPE ANALYSES 
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Figure A2.1:  Slope map for the Joe Wright Creek, Booth Creek and Shell Creek Watersheds (Source: http://nationalmap.gov/viewer.html). 
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APPENDIX III: WATERSHED ASPECT ANALYSES 
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Figure A3.1: Aspect map for the Joe Wright Creek, Booth Creek and Shell Creek Watersheds (Source: http://nationalmap.gov/viewer.html). 
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APPENDIX IV: WATERSHED LAND COVER ANALYSES 
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Figure A4.1: Land Cover map for the Joe Wright Creek, Booth Creek and Shell Creek Watersheds (Source: http://nationalmap.gov/viewer.html

http://nationalmap.gov/viewer.html
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