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ABSTRACT 
 
 
 

THE ROLE OF PRION PROTEIN GLYCOSYLATION IN PRION PROPAGATION 
 
 
 

Transmissible Spongiform Encephalopathies (TSEs) are a group of neurodegenerative 

diseases that affect humans and animals alike. TSEs are caused by the accumulation of 

a disease producing isoform referred to as PrPSc that results from the misfolding of the 

normal cellular prion protein PrPC. The pathological outcomes of TSEs include amyloid 

plaque build-up and spongiform degeneration in the brain of infected hosts. Clinical 

signs of prion disease can vary between TSEs, but often include neurologic impairment 

that is subtle in onset and tends to progress slowly. Prion diseases are relatively 

recently discovered and have sparked much controversy due to the scientific findings 

that directly challenge some of the most well established scientific dogmas. Among 

these is that the infectious agent responsible for the transmission of TSEs is 

proteinacious in nature and devoid of the nucleic acids present in pathogens like viruses 

and bacteria. As a result of this hypothesis, both PrPC and PrPSc share the same amino 

acid sequence in the host. Therefore, central to our understanding of the prion 

hypothesis is to recognize the structural differences between PrPC and PrPSc. PrPC has 

been proven to include three α-helices and two, short β-pleated sheets whereas PrPSc 

consists of high β-sheet content, aggregates in the presence of detergents, and is 

resistant to protease treatment. These characteristics of PrPSc have inhibited 

researchers to successfully examine the abnormal isoform in high-resolution structural 

studies. Therefore, an alternative means of distinguishing PrPC and PrPSc is necessary. 
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Since then, several groups have created monoclonal antibodies (mAbs) that 

differentiate between infectious prion protein (PrP) aggregates. Two such mAbs, PRC5 

and PRC7 were the first mAbs discovered in which the involvement of individual 

residues in functional, discontinuous, and conformationaly dependent epitopes was 

studied. Of these antibodies, PRC7, is dependent on N-linked glycosylation at mono-1 

of the prion protein and specifically binds to the infected isoform of PrP. Therefore, we 

hypothesized that an underglycosylated form of PrP is preferentially generated during 

prion replication in the infected host. In this body of work, we have systemically ablated 

mono-1, one of the two N-linked glycan attachment sites on the murine prion protein to 

address the role of underglycosylation in prion propagation at N180 and at S/T182 of 

the consensus sequence by mutating N or S/T to each of the other 19 amino acids 

individually. Here we present novel evidence showing the effects of underglycosylation 

in prion propagation of prion isolates RML, 22L, 139A, and mCWD. These preliminary 

data demonstrate the importance of post-translational differences between PrPC and 

PrPSc which represent a fundamental, unresolved aspect of the prion hypothesis. 
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CHAPTER 1 – INTRODUCTION   
 
 
 
Prion Diseases       

Introduction to Transmissible Spongiform Encephalopathies 

Prion diseases encompass a variety of unique ailments that affect animals and humans 

alike. These diseases are collectively referred to as Transmissible Spongiform 

Encephalopathies. The hallmarks of TSEs include a combination of spongiform change, 

astrocytic inflammation, neuronal loss, as well as amyloid plaques that build up and 

cause impaired brain function that worsen overtime. 

 

History of Animal TSEs 

Scrapie is the prototypic prion species causing disease in both sheep and goats. 

Because scrapie has been recognized for over 200 years in Europe, it has often been 

referred as the main reference for prion diseases, especially as it has become a 

worldwide epidemic (McGowan and Scott, 1922).  

 

More recently recognized animal prion diseases have been described in both captive 

and wild animals.  These include transmissible mink encephalopathy (TME), feline 

spongiform encephalopathy (FSE), chronic wasting disease (CWD), and bovine 

spongiform encephalopathy (BSE). In all of these cases, infected animals exhibit some 

combination of clinical signs that are usually insidious in onset and tend to progress 

slowly. In these TSEs, signs tend to be neurologic in nature and once they appear, 

these diseases are relentlessly progressive and fatal.  
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TME has been described as a rare, sporadic TSE that affects ranch-raised mink that are 

bred for their pelts. The only constant factor in the spread of TME is mink feed. Clinical 

signs of this disease differ from other animal TSEs in that the mink initially become 

hyperactive and aggressive before exhibiting other clinical signs of prion disease 

(Hadlow, 1999; Harstough and Burger, 1965; Marsh et. al., 1991; Marsh and Hadlow, 

1992; and McKenzie et. al., 1996). FSE, a TSE of domestic and captive wild cats was 

originally identified in 1990 (Gruffydd-Jones et. al., 1992; Wyatt et. al., 1991). Naturally 

occurring CWD is a TSE of deer and elk highly prevalent in North America and parts of 

Canada and uniquely affects both free-ranging and captive cervid populations (Spraker 

et. al., 1997; Williams and Young, 1980). More recently, CWD has been detected in 

moose and reindeer in Europe (Benestad et. al., 2016). Finally, BSE, a TSE of cattle, 

rapidly developed into an endemic in the United Kingdom (UK) as a result of recycling 

contaminated feed in industry farms (Anderson et. al., 1996; Collinge, 2001; Hadlow, 

1999; Wells et. al., 1987; Wilesmith et. al., 1988). 

 

History of Human TSEs 

Human prion diseases are classified into several groups that include Creutzfeldt-Jakob 

disease (CJD), Gerstmann-Straussler syndrome (GSS), and kuru. These human TSEs 

are organized further into three etiological categories: sporadic, acquired, and inherited 

(Collinge, 2001; Soto, 2007).  

 

Acquired prion diseases include iatrogenic CJD and kuru, which arise through the 

contamination in medical procedures or by cannibalistic rituals (Alpers et. al., 1987). 
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Sporadic CJD is rapidly progressive disease that arises randomly and occurs all over 

the world. It also accounts for the majority of all recognized human prion diseases, 

occurring in a large percentage of all reported human cases (Palmer et. al., 1991). 

Lastly, inherited prion diseases like GSS, familial CJD, and fatal familial insomnia (FFI), 

are associated with coding mutations in the prion protein gene (Collinge, 1997).  

 

There is also evidence of another segmentation of human prion disease called variant 

CJD (vCJD) in the UK. Experimental data shows that vCJD is cause by the same prion 

strain that causes BSE in cattle leading to the concern that dietary exposure to BSE 

prions may lead to an epidemic of vCJD in the human population in the UK (Collinge, 

1999; Cousens et. al., 1997; Ghani et. al., 1998; Hill et. al., 1997).  

 

Collectively, concerns of zoonotic potential combined with iatrogenic transmission have 

intensified efforts for investigators to better understand prion propagation at the 

molecular level. This is necessary to further develop new and effective therapeutic and 

preventative treatments for prion diseases. 

 

Transmissibility      

In 1936, scrapie was shown to be transmissible by inoculation into uninfected sheep 

and goats (Cuille and Chelle, 1936). In these studies, researchers observed extended 

incubation times to the onset of observable disease-like symptoms. Because of this 

result, it was initially thought that the causative agent was viral in nature. In 1954, 
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Sigurdsson coined the term slow-acting infection to represent the phenomenon 

(Sigurdsson, 1954).  

 

Around that same time, there was growing interest in an epidemic occurring in the Fore 

linguistic group of Eastern Highlands of Papa New Guinea because of a 

neurodegenerative disease called kuru, the prominent clinical aspect being progression 

into ataxia. Eventually, several groups of researchers concluded that kuru was being 

transmitted during cannibalistic feasts. And in 1959, Hadlow brought attention to kuru by 

citing the remarkable similarities it shares with scrapie. He ultimately suggested that the 

two diseases were parallel in their epizootiological, etiological, clinical, and pathological 

features indicating that these diseases could also be transmissible (Hadlow, 1959).  

 

The next major turning point in the field came in 1966 when Gajdusek successfully 

transmitted kuru into chimpanzees by inoculation into the brain. Gibbs also showed that 

the same transmission was true of CJD in 1968, and later Masters in 1981 with GSS 

(Gajdusek et. al., 1966; Gibbs et. al., 1968; Masters et. al., 1981). Collectively, these 

studies eventually led to the concept of “transmissible dementias” which encompasses 

a variety of neurodegenerative conditions (Collinge, 2001). 

 

The Prion Protein    

Protein Only Hypothesis 

Unlike other infectious agents, the infective agent of prion disease has proven to be 

unusual and has been a part of debate for some time. In the past, investigators argued 
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that the infective agent was made of a nucleic acid genome because 1. the pathogen 

behaved like a virus and 2. “strains” or distinct isolates of the pathogen exhibited 

different biological properties such as incubation times and patterns of spongiosis in the 

central nervous system (CNS) (Bruce and Dickson, 1987; Dickson et. al., 1968; Dickson 

et. al, 1984). However, the initial assumption that the causative agent was a slow-acting 

virus was disputed and attempts to modify, identify, or clone nucleic acids specific to 

PrPSc have failed to generate polynucleotides of significance (Kellings et. al, 1992; 

Meyer et. al., 1991; Oesch et. al. 1988; Prusiner, 1991). 

 

Additional studies supporting the theory that PrPSc is devoid of nucleic acids emerged 

and several groups demonstrated that the agent in question was highly resilient to harsh 

treatments that are known to inactivate nucleic acids. In scrapie for example, 

researchers were unable to inactivate the infectious agent through many physical and 

chemical treatments such as boiling, freezing and thawing, formalin treatment, 

treatment with chloroform, and ultraviolet radiation (Alper, 1966; Alper et. al., 1966; 

Alper et. al., 1967; Pattison and Millson, 1961a; Pattison and Millson, 1961b; Pattison, 

1965). In 1967 Griffith took this further and suggested that the transmissible agent was 

a protein (Griffith, 1967). 

 

Despite this evidence, there was still speculation regarding this novel idea, in 1982, 

Bolton and colleagues were able to help solidify this theory when they successfully 

isolated a protease resistant sialoglycoprotein through proteinase K (PK) treatment of 

infected brain homogenate (Bolton et. al., 1982). The term “prion” was later coined and 
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defined by Prusiner as “small proteinaceous infectious particles that resist inactivation 

by procedures which modify nucleic acids” (Prusiner, 1982).  

 

Prion Protein Isoforms  

All of the four levels of protein structure (primary, secondary, tertiary, and quaternary), 

in addition to the environment, help to stabilize the folded, native conformation of a 

protein. Therefore, a protein is only functional when in its proper conformation and 

proper three-dimensional form. An inactive protein, with some exceptions, occurs when 

it is improperly folded or denatured often leading to its degradation. 

 

In prion disease, the cellular form of the protein is converted into a new, β-sheet rich 

conformation that has an unknown tertiary structure. This is the conformation that 

causes disease. Therefore, all prion proteins exist in at least two distinct isoforms: the 

normal, cellular prion protein, PrPC and the disease causing isoform referred to as 

scrapie or PrPSc. Moreover, a large body of evidence suggests that prion disease is 

mediated by the abnormal isoform, PrPSc (Prusiner, 1991).  

 

Prion Protein Functions 

While PrPSc is infection specific, PrPC has some normal cellular functions. PrPC is highly 

conserved in most mammals and is found in most adult tissues (Ford et. al., 2002). 

However, PrPC is most prominently expressed in the CNS in synaptic membranes and 

within cells of the immune system as a glycosylphosphatidylinositol (GPI) anchored cell 

surface glycoprotein (Dodelet and Cashman, 1998). The normal function of PrPC is 
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thought to include a role in oxidative stress, copper metabolism, synaptic structure, 

function and maintenance, cell adhesion, and trans-membrane signaling processes 

(Westergard et. al., 2007). However, the exact functions of PrPC within these areas 

have yet to be clearly defined. 

 

Conformational Properties of PrPC and PrPSc 

The two best approaches to analyze the atomic structure of proteins include nuclear 

magnetic resonance (NMR) and x-ray crystallography. Both approaches achieve high-

resolution analysis of protein structure. However, NMR determines the structure of the 

protein in solution, often showing regions that are dynamic and unresolved, whereas x-

ray crystallography looks at the structure in a static crystal form. 

 

The conformation of PrPC was first determined through NMR measurements made on 

recombinant mouse protein (Reik et. al., 1996). Since then, NMR structures have been 

determined for additional strains of the prion protein and have shown to consist 

essentially of the same conformation (Hosszu et. al., 1999; James et. al., 1997). Despite 

the efforts by several groups, determining the three-dimensional structure of PrPC 

through x-ray crystallographic methods has not been successful. Furthermore, the 

insoluble properties of PrPSc have prevented successful determination of its structure by 

either x-ray crystallography or NMR methods. Therefore, our knowledge of PrPSc 

structure remains limited (Cohen and Prusiner, 1999). 
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Cellular Biology of PrPC and PrPSc 

In the first step of the secretory pathway, a new protein is translocated into the 

endoplasmic reticulum (ER) only after it has been fully translated in the nucleus. This 

process is called post-translational translation. Human PrP encodes a ~253 amino acid 

translational product that is moved into the ER. The first 22 amino acids of PrP code for 

a signal peptide and cause the mRNA/ribosome complex to move into the ER mid-

translation. This process is referred to as co-translational translocation. These 22 amino 

acids are removed by signal peptidase from the N-terminus and PrP continues to be 

translated directly once it is in the ER. This occurs because a signal recognition particle 

(SRP) binds to and prevents the ribosome form continuing translation. Translation only 

continues when the ribosome/SRP complex encounters a SRP receptor and each bind 

to one guanosine triphosphate (GTP) molecule on the ER membrane. Once attached, 

translation continues pushing the signal peptide, and eventually the whole molecule of 

PrP into the lumen of the ER. Then, both the SRP and its receptor both hydrolyze their 

GTP and are released and the protein is free to start folding in the lumen. While the 

protein is still being translated, oligosaccharyl transferase (OST), adds glycosyl groups 

to asparagine residues in the nascent protein as a part of the translocon complex. PrP 

has 0, 1 or 2 possible sites on N-glycan consensus sequences, NXS and NXT (Harris, 

2003). 

 

The C-terminus of PrP is a 23 amino acid sequence that signals for the addition of a 

GPI anchor (Stahl et. al., 1987). In this process called glypiation, 23 amino acids are 

cleaved off and replaced with another type of sugar chain referred to as GPI. The GPI 
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then embeds into the membrane and anchors PrP to the ER. After cleavage of the 

signal peptide and the addition of the GPI anchor, human PrP becomes ~208 amino 

acids in length. Collectively, these processes produce a ~17kDa C-terminal fragment 

called C1 that is inserted into the plasma membrane of the cell and a ~9kDa 

unstructured and soluble N-terminal counterpart referred to as N1 that is released into 

the extracellular space (Chen et. al., 1995). 

 

From the ER, GPI-linked PrP travels anterograde through the secretory pathway. It is 

transported in vesicles that bud off of the ER bound for the golgi apparatus for further 

modification and acquire a disulfide bond between its two cysteine residues C180 and 

C214 and also undergoes several modifications to its N-linked glycan chains. The golgi 

apparatus consists of a set of stacked sub-compartments called cinsternae that have 

different properties. These sub-compartments are celled cis, medial, and trans-golgi 

network and the modifications of proteins have to happen in a particular order within 

them. When proteins have finally completed maturation, they do one of three things. 

They either bud off in a vesicle and are exocytosed and fused with the cell membrane, 

get moved into secretory vesicles until needed, or they are placed into lysosomes if they 

are not correctly folded. Normally, PrP gets GPI-linked and delivered to the cell surface 

through an exocytic vesicle. Once there, it remains GPI-anchored to the surface of the 

cell membrane. Moreover, it has been shown that the majority of PrP on the cell surface 

is found within cholesterol and sphingolipid enriched domains (Hnasko et. al., 2010). 

However, there is evidence that PrP can exist in three membrane topologies including 

GPI-anchored and two trans-membrane orientations (Harris, 2003).  
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However, in pathological conditions, PrPC undergoes an additional upstream cleavage 

of ~66 N-terminal amino acids (7kDa N-terminal peptide) and the persistence of a 

protease resistant core (C2) referred to as PrP 27-30 (Chen et. al., 1995). 

 

Structural Features of PrPC 

The resulting, mature PrPC isoform consists of two distinct parts. First, the unstructured 

N-terminal region of the protein contains a segment that includes five repeats of an 

eight amino acid sequence called the octapeptide repeat region and includes one 

binding site for copper ions thought to play a role in oxidative stress (Viles et. al., 1999). 

Studies on post-translational modifications show that PrP undergoes glycan addition at 

two asparagine (N)-linked glycosylation sites which occur on murine (mo) PrP at 

residues 180 and 196 (Bolton et. al., 1985; Oesch et. al., 1985). 

 

Second, the C-terminus aspect of PrP at amino acids 121-231 encompassing murine 

PrP, is structured as it is folded into three α-helices and two, short β-pleated sheets. 

(Fig. 2). These are stabilized by a single, di-sulfide bond that links helices two and three 

(Reik et. al., 1996). In contrast to PrPC, PrPSc has been shown by Fourier transform 

infrared spectroscopic methods to contain high β-sheet content but is indistinguishable 

from PrPC in terms of sequence (Pan et. al., 1993; Stahl et. al., 1993).  

 

Additional structural studies have shown that PrPC is monomeric, sensitive to protease 

treatment, and is soluble in detergents (Wildegger et. al., 1999). In contrast, PrPSc is 

partially protease resistant, insoluble in detergents, and is highly aggregated forming 
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amyloid rods (Barry et. al., 1985; Meyer et. al., 1986). Treatment of PrPSc with 

proteinase K results in cleavage and the persistence of a protease resistant core PrP 

27-30. 

 

Prion Propagation and Recruitment 

The molecular events that occur during infection which lead to the conversion of PrPC to 

the diseased isotype, PrPSc, are still poorly understood. It is known that PrPSc is derived 

from PrPC through post-translational modifications (Borchelt et. al., 1990; Caughey and 

Raymond, 1991). Though no differences between the amino acid sequence of PrPC and 

PrPSc have been found, it was proposed that PrPSc acts as a template to promote the 

conversion of PrPC to PrPSc through either a post-translational or conformational 

modification (Stahl et. al., 1993). Additional PrPC molecules can then be recruited and 

lead to further conversion; which is dependent on the overall PrPC concentration, 

resulting in the etiology of prion disease (Fig. 1) (Halliday et. al., 2014; Prusiner et. al., 

1990; Telling et. al., 1995).  
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Figure 1. Schematic of Prion Conversion Native PrP
C
 (blue) is converted into PrP

Sc
 (black) through 

an autocatalytic process (Halliday et. al., 2014).  
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CHAPTER 2 – THE ROLE OF AGLYCOSYLATION IN MURINE PRION 

PROPAGATION 
 
 
 
Introduction 

N-Linked Glycosylation in PrP 

Detecting TSEs does not come without difficulty as the most reliable confirmations of 

disease are performed post-mortem. Screening animals and humans for PrPSc is not 

possible as PrPSc is derived straight from the host and is not recognized by self as 

foreign. As a result, there is no adaptive immune response mounted during infection to 

activate T and B cells. This makes attempts to isolate PrP monoclonal antibodies 

(mAbs) challenging. Additionally, abnormal accumulation of PrPSc is concentrated in the 

brain and is difficult to detect in other bodily fluids and tissues (Kubler et. al., 2003).  

 

Therefore, the gold standards for post-mortem detection of PrPSc include: a) 

immunohistochemistry (IHC), b) immunoblotting (WB), as well as c) bioassay of infected 

brain material into a susceptible host to demonstrate the transmission of infectious 

particles (Hadlow, 1999; Hnasko et. al., 2010; MacGregor, 2001; Pawel, 2004). 

 

Consequently, to develop innovative diagnostics and treatments for prion diseases, it is 

important to gain a better understanding of the molecular mechanisms by which prions 

replicate and cause disease. It is therefore essential to grasp post-translational 

differences, such as glycosylation, between PrPC and PrPSc, and the role they play in 

prion isotype conversion.  
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Historically, the role of N-linked glycosylation and its role in prion propagation has been 

a subject involving much controversy (Cancellotti et. al., 2007). N-linked glycosylation 

involves an enzymatic transfer of a lipid-linked carbohydrate onto the acceptor 

asparagine of the consecutive amino acid sequence that serves as the N-glycan 

recognition sequence: asparagine (N)-X-serine (S)/threonine(T), where X is any amino 

acid other than proline (P). PrP has two highly conserved sites for N-glycan attachment 

at murine residues 180 and 196. Occupancy at these two sites yields four different 

glycotypes: fully-glycosylated PrP (di-glycosylated), as well as three under-glycosylated 

forms including mono-glycosylated at 180 (mono-1), mono-glycosylated at 196 (mono-

2), and completely aglycosylated with no glycan attachment at either site. N-linked 

glycosylation is one of the most common post-translational modifications of extracellular 

membrane proteins and results in great functional diversity of proteins including protein 

folding, stability, and aggregation (Hanson et. al., 2009; Mitra et. al., 2006). 

 

Mapping Functional Epitopes 

The involvement of specific amino acid residues in conformational epitopes and their 

effects on PrP during infection have only just begun to be defined. There is an 

advantage to understanding the involvement of specific amino acid residues in 

discontinuous, conformational-dependent PrP epitopes as it could provide a means to 

better understanding PrP biochemically both in structure and interactions and can pave 

the way for potential diagnostics and therapeutics. 
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Earlier studies by Kang and colleagues (Kang et. al., 2012) aimed to define the 

involvement of specific amino acid residues in discontinuous, conformation dependent 

PrP epitopes and their role in prion propagation. These studies used shuffled genes 

expressing novel PrP epitopes to determine the reactivities of the resulting mAbs 

against a large panel of PrP primary structures and polymorphic variants. The goal was 

to map out and confirm by mutational analysis the involvement of specific residues on 

epitope binding and PrPC to PrPSc conversion (Fig. 2).  

 

Results show that binding of one monoclonal antibody in particular, PRC7, is sterically 

prevented by N-glycan occupancy at residue N196 on the murine PrP (mono-2) and as 

a result, recognizes only the mono-1 and aglycosylated species of PrP (Kang et. al., 

2012). Through additional studies it was shown that PRC7 recognizes a discontinuous 

epitope on murine PrP that includes Y154, Q185, and F197 in the globular region of the 

protein and requires proximity in the folding of the tertiary structure of PrP for 

recognition. Furthermore, these studies showed that PRC7 reactivity of PrP increases 

during infection and thus mono-1 or aglycosylated PrP could be specific to PrPSc.  

 

Other mAbs of significance to mention include PRC5 and D13. The former recognizes a 

discontinuous epitope on murine PrP including A132 and N158 in the globular region 

and like PRC7, also requires proximity for recognition in the tertiary structure of the 

PrPC. Unlike PRC7, immunoreactivity to this mAb does not increase during infection.  

Because of its location and properties, PRC5 acts very similar to the widely studied 6H4 

mAb with the exception that 6H4 recognizes a linear epitope at amino acids 144-152  
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(Kang et. al., 2012; Korth et. al., 1997). Finally, mAb D13 consists of a continuous, 

linear epitope upstream of the globular region of murine PrP at 94-105 and does not 

depend on the tertiary structure of the protein for recognition and is not specific to 

infection (unpublished data Kang et. al.; Matsunaga et. al., 2001).  

 

 

 

These data suggest that conversion of PrPC to PrPSc depends largely on its state of 

glycosylation. Additionally, these data also provide a means of distinguishing PrPC from 

PrPSc immunologically, without reliance on protease treatment and provide an option for 

use in WB, IHC, and other assays in the future. 

 

Systemic Mutation of N-Glycan Attachments on Murine PrP 

Preliminary Data – Mono-2 Substitutions 

In preliminary, unpublished studies by Kang and colleagues, an innovative molecular 

genetic method was used as a way to remove N-linked glycosylation at residue 196 and 

Figure 2. Mapping of mAbs Generated Murine PrP shown with mAbs of significance in this body of 

work and where their epitopes are located along the protein. Figure adapted from Kang, HE.  
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the downstream T at 198 on murine PrP in order to systematically study the role of 

underglycosylation in prion propagation. These studies mutated the N at glycan residue 

196 and the T at site 198 to each of the remaining 19 amino acids individually. 

Thereafter, these constructs were stably transfected into Rabbit Kidney Epithelial cells 

(RK13), which do not endogenously express PrP (Vilette et. al., 2001). 

 

Through immunoblotting and probing with PRC5 and PRC7, results showed that these 

mutations did not affect the ability of the globular domain to attain the appropriate 

tertiary structure required for the recognition of PrPC (Fig. 3). Additionally, as expected, 

detection with PRC5 showed that all mutations prevented the formation of di-

glycosylated PrP by preventing glycosylation at 196. The resulting immunoreactive 

bands included a ~27kDa unglycosylated full length PrP and its ~33kDa 

monoglycosylated counterpart, mono-1; as well as a ~17kDa C1 fragment and its ~22 

kDa monoglycosylated counterpart (Fig. 3). The two exceptions to these results include 

substitutions N and S made at 198 in which the fully di-glycosylated form of PrP was 

also produced. This can be easily explained by the fact that the third residue required 

for N-glycosylation attachment can be either an S or a T. Moreover, because residue 

200 is a T, the T198N mutation creates an additional cryptic N-glycan attachment site 

(Fig. 3).  
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After confirmation of PrPC expression of these constructs, these mutant cells were 

subsequently infected with prion isolates RML, 22L, 139A, and mCWD. Following four-

weeks of infection, cells were counted and plated onto ELISpot plates, immunodetected 

with 6H4; a widely used, commercially available mAb (Thermo Fisher Scientific, Cat. 

#7500997) with a linear epitope located at amino acids 144-152 on PrP (Korth et. al., 

1997; McCutcheon et. al., 2014), and spots from single cells were counted. Outcomes 

show that substitutions at both N196 and T198 exhibited variability between each of the 

prion isolates with the exception of lysine (K) at 196, in which prion propagation was 

detected in all four (Fig. 4). Because of this interesting result, N196K will be the focus 

for future studies. 

Figure 3. Mono-2 Glycan Site Mutation Western Blots Probed with PRC5 and PRC7 N196 and 

T198 site mutations in mo PrP are shown. Blots were probed with mAbs PRC5 (blue boxes) and 

PRC7 (red boxes). All samples containing glycan substitutions showed detection of all PrP glycoforms 

and their derivatives as predicted with the exceptions of T198N and T198S. Data generated by Kang, 

HE. 
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Even though N196K supported the conversion of PrPC to PrPSc by allowing prion 

propagation, this same mutation may not have similar effects on the second glycan 

attachment site, at residue N180 (mono-1) or its recognition sequence, S/T182. This is 

primarily because the mono-1 and mono-2 consensus sequences (NXS/T) occur in very 

different areas of the primary and secondary structures of PrPC. Mono-2 is located in 

the linker region that connects α-helices two and three while mono-1 is positioned within 

Figure 4. Scrapie Cell Assay PrP
Sc

 production in different murine prion isolates RML (blue), 22L 

(red), mCWD (magenta), and 139A (orange) for N196 (circles) and T198 (squares) site substitutions. 

Each mutant was infected and plated along with controls; cells containing the empty vector (Co), cells 

expressing WT mo PrP chronically infected with RML (first Wt), and freshly infected cells expressing 

WT mo PrP (second Wt) onto ELISpot plates 4-weeks after infection. Detection of infected cells was 

done using mAb 6H4. Prion propagation was variable between both mutation sites and isolates tested 

with the exception of the lysine (K) substitution at N196 (arrow), in which all four isolates provided 

propagation. Data generated by Kang, HE. 
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α-helix two. Therefore, it is important to first investigate the role of these same amino 

acid substitutions at mono-1 during prion infection in order to proceed with further 

studies thereafter. 

 

The strategies started by Kang and colleagues to study each amino acid substitution at 

both mono-1 and mono-2 are continued in this body of work. These studies take a 

unique approach to studying the role of glycosylation in prion propagation by addressing 

each N-glycan attachment sequence on PrP with individual amino acid changes. This is 

essential because each of the glycan attachment sites on PrP is located in unique areas 

of the protein and may affect prion propagation differently. 

 

Introduction to this Body of Work 

In this body of work, I continued the efforts performed previously by Kang and 

colleagues by investigating the effects of amino acid mutations at the N180 glycan site 

(mono-1) on murine PrP in prion propagation. I utilized one of the gold standards, 

immunoblotting, as my readout for baseline PrPC detection as it remains a reliable, 

widely accepted molecular technique. The readout for prion propagation, known as the 

scrapie cell assay (SCA), was used following infection with several lysates. In addition, I 

also used the same laboratory-generated monoclonal antibodies as they provide a new, 

promising tool for prion detection. 

 

Overarching Hypothesis and Specific Aims  

My central hypothesis is that an underglycosylated form of PrP is preferentially 

generated during prion propagation.  
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Specific Aim 1: Investigate the relationship of individual mono-1 mutations on 

murine PrP by analyzing their effects on PrPC expression. 

Specific Aim 2: Address which substitutions at mono-1 are of significance in 

murine prion propagation using four prion isolates. 

 

Experimental Procedures 

Generation of Constructs 

PrP coding sequences with or without single mutations for each of the 19 amino acids at 

N180 or S/T182 of the murine PrP transcript variant 1 mRNA sequence (NCBI reference 

sequence, NM_011170.3) were synthesized (GeneScript, NJ) in a pIRESpuro.3 vector 

(Clonetech, Cat. #631619) with only a single restriction endonuclease recognition sites 

for each AflII and EcoRI at 5’ and 3’ respectively and ampicillin resistance (Fig. 5A,B). 

Ligations were transformed into Top10 chemically competent E. coli cells (Invitrogen, 

Cat. #C404006) according to the provided chemical transformation protocol and grown 

on agar plates with ampicillin (100 µg/mL) at 37ºC overnight.  
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A 

 

B 

 

 

 
Single colonies were immediately selected and inoculated into 3mL of Luria (LB) broth 

containing 100µg/mL ampicillin and expanded for 12-18hrs at 37ºC with agitation. The 

next day, glycerol stocks were made using 500µL of culture and 500µL of 50% glycerol 

and frozen at -80ºC for long-term storage.  

 

Figure 5. Generation of Mutant Constructs Sequences containing individual amino acid mutations 

at N180 and S/T182 of the N-glycan consensus sequence were designed on murine PrP. N180 

represents the mono-1 attachment site and is shown in red along with N196 site for mono-2 (A). 

Mutations were then inserted into a PIRESpuro.3 vector (B). Vector image obtained from Clonetech. 
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Plasmid DNA was then isolated from the remaining construct cultures using the 

QIAprep Spin Miniprep Kit (Qiagen, Cat. #27104) and concentrations were measured 

using a NanoDrop 2000c Spectrophotometer (Thermo Scientific). At the same time, 

samples were checked for acceptable salt contamination (260/230) and purity (260/280) 

ratios of ~2.0 and 1.9 respectively (Thermo Fisher Scientific, 2009).  

 

Confirmation of Constructs 

To confirm that all constructs generated contained the appropriate plasmid and insert, 

restriction digests using EcoRI and AflII were set up using 1µg of plasmid DNA, 1µL of 

each restriction enzyme, 3µL of 10x Buffer (NEB), and brought up to a volume of 30µL 

with dH2O. These mixtures were then incubated at 37ºC for 1-hour, DNA fragments 

separated on a 0.8% agarose gel containing EtBr at 100V for 1-hour, and visualized by 

ultraviolet (UV) light box. Results show that two products form, one at the expected 

plasmid length for pIRESpuro.3 at ~5171bp and one at the insert length at ~777bp (Fig. 

6A,B).  

A 
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B 

 

 
Additionally, 1µL of undigested DNA from all constructs were separated on a 0.8% 

agarose gel containing EtBr at 100V for 1-hour, and visualized using a UV light box to 

determine the relative ratios of naked/circle, linear, and supercoiled DNA (red boxes). 

Supercoiled is the native form of DNA found in-vivo and occurs when extra twists are 

introduced into the double helix strand. Furthermore, supercoiled DNA is the desired 

species when isolating plasmid DNA to use for stable transfections because this 

species results in greater transfection efficiency, increasing the chances of a stable 

transfection (Cherng et. al., 1999). Results confirm that each DNA species is present in 

all construct DNA samples with supercoiled DNA at an acceptable relative ratio to 

proceed with transfections (Fig. 7A,B).  

 

 

 

 

 

 

 

Figure 6. Digested DNA from Generated PrP Mutants DNA from N180 (A) and S/T182 (B) mutant 

cells digested with restriction enzymes EcoR1 and AflII. Results confirm two bands, one at the vector 

length at ~5171bp and one at the insert length at ~777bp. 
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B 

 

 

Transfections 

Following confirmation that satisfactory plasmid DNA was generated to use for 

transfections, Rabbit kidney epithelial cells (RK13) previously obtained from the 

American Type Culture Collection (ATCC, Cat. #CCL-37) were transfected in bulk with 

random insertion of plasmid (pIRESpuro.3) DNA containing murine wild-type (WT), 

altered murine PrP sequence, or empty vector to produce RKM (RKM 1-3), RK13 

mutants, and RKV cells respectively.  

 

Figure 7. Undigested DNA from Generated PrP Mutants DNA from N180 (A) and S/T182 (B) 

mutant cells. Results show the relative ratios of naked/circle, linear, and supercoiled DNA. Supercoiled 

DNA is the species of interest for stable transfections (red boxes).  
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One day prior to transfection, RK13 cells were counted and 4x105 cells/well were plated 

onto 6-well tissue culture (TC) plates in 2mL of media without antibiotics. The following 

day, transfection mixtures were prepared by mixing 2µg of plasmid DNA and 3.4µL of 

Lipofectamine 2000 (Invitrogen, Cat. #11668019) into a total of 1000µL of OptiMEM 

(Gibco, Cat. #31985070) and plated onto the cells. Following a 5-hour incubation at 

37ºC, 2mL of complete DMEM medium (HyClone, Cat. #SH30022.01) containing 

1µg/mL penicillin/100 U/mL streptomycin and 10% FBS (Peak Serum, Cat. #PS-FB1) 

was added. The next day, cells were trypsinized (HyClone, Cat. #SH30236.01) and 

transferred into 10cm2 TC dishes containing 10mL of complete DMEM and maintained 

in 37ºC with 5% CO2.  

 

Puromycin (puro) (Sigma Aldrich, Cat. #P8833) selection began 24-hours later at a 

concentration of 1µg/mL and was refreshed every 2-4 days. Death of cells lacking the 

plasmid insert began a few days post-transfection and continued through to ~1.5 weeks 

in no vector controls.  

 

Successful visualization of single colonies in all cells containing the vector (RKM, RK13 

mutants, and RKV) began around 1-week post-transfection and continued as dishes 

grew to confluency. At this time, all constructs were split into three, 10cm2 TC dishes to 

a) be frozen down in DMEM without antibiotics containing 10% DMSO for later use, b) 

harvested for protein for western blot analysis (WB), and c) maintained in complete 

DMEM with puromycin to be used for prion infections and to be later analyzed by SCA 

on ELISpot plates. 
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Western Blot Analysis 

To determine the base-line expression levels of the PrPC, cell pellets of all constructs 

were individually lysed in 200µL of cold lysis buffer (CLB) containing 50mM Tris pH 8.0, 

150 mM NaCl, 0.5% sodium deoxycholate, 0.5 igpal CA-630 and analyzed through 

western immunoblotting. 

 

Protein concentrations of cell lysates were determined by bicinchoninic acid assay 

(BCA) (Pierce, Cat. #23225). Aliquots containing 50µg of total protein were prepared for 

SDS-PAGE, and boiled for 10-minutes prior to loading. Proteins were separated on 18-

well, Criterion XT 12% acrylamide gels (Bio-Rad, Cat. #3450118) and transferred to 

polyvinylidene difluoride immobilon (PVDF)-FL membranes (EMD Millipore, Cat. 

#IPFL00010). Membranes were blocked with a 1:1 dilution of casein blocking solution 

(LI-COR, Cat. #927-40200) in 1x Tris-buffered saline with 0.1% Tween-20 (TBST) and 

probed with each of the primary mAbs of interest (PRC5, PRC7, and D13) and GAPDH 

loading control in TBST at 4ºC overnight with agitation. Membranes were washed in 

TBST for three consecutive, 10-minute intervals at room temperature with agitation 

followed by incubation for 1-hour at room temperature with the appropriate fluorescently 

tagged secondary antibody (LI-COR). Membranes were washed again and protein 

bands were visualized by immunofluorescence using a LI-COR Oddesy CLx imaging 

system. 
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PrP Strains 

It has been accepted that lesion profiling/vacuolation scoring, electrophoretic mobility, 

incubation times, among others, are reliable methods for prion strain typing (Angers et. 

al., 2010; Bessen and Marsh, 1992; Kovacs et. al., 2013). And as such, these different 

strain dependent features can be a consequence of different tertiary structures of the 

PrPSc molecules.  

 

In this body of work, RML, 22L, 139A, and mCWD murine-adapted strains were used for 

infections. RML, 22L, and 139A are distinct, biologically cloned prion strains that 

originate from sheep scrapie (Bruce et. al., 1991), whereas mouse-adapted CWD is 

derived from chronic wasting disease prions in mule deer (Sigurdson et. al., 2006). 

 

Ethics Statement 

Mice were bred and maintained at Lab Animal Resources at CSU. This facility is 

accredited by the Association for Assessment of Lab Animal Care International in 

accordance with protocols approved by the Institutional Animal Care and Use 

Committee at CSU (IACUC Protocol #17-7266A). Mice were humanely euthanized 

using CO2 inhalation.  

 

Mice 

All mice used in this body of work were originally purchased from The Jackson 

Laboratories and maintained and bred at CSU. 
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Preparation of Brain Homogenates for Infection 

Prion infected and uninfected mice were euthanized and brain samples were harvested 

and frozen at -80ºC. Brain homogenates (BH) were prepared in 10% weight (g)/volume 

(mL) in sterile, 1x phosphate buffered saline (PBS). Samples were then homogenized 

via FastPrep-24 (MP Biomedicals) with glass beads in the tubes at maximum speed for 

three; 20-second intervals with three 5-minute rests on ice in between. After 

homogenization, samples were aliquoted and stored at -80ºC for later use. 

 

Prion Infections 

Frozen aliquots of 10% normal brain homogenate (NBH) samples from uninfected 

FVB/N mice, as well as RML, 22L, 139A, and mCWD infected mice were used to make 

0.1% dilutions in sterile, 1x PBS. Each BH at 100µL/well was coated onto 96-well TC 

plates in triplicate for each cell of interest and left to incubate inside a TC hood for 1-3-

hours at room temperature. Homogenates were then aspirated off and wells were 

washed twice with 200µL/well of sterile, 1x PBS and aspirated off. Plates were then left 

to dry completely in the TC hood before they were covered in saran wrap and stored at 

4ºC until they were needed. 

 

Wild-type RKM, RK13 mutants, RKV, and RKM7, a highly sensitive, single cell clone 

containing the murine wild-type PrP gene, were trypsinized, counted, and re-suspended 

in complete DMEM with 1µg/mL puromycin and plated at 20,000 cells/100µL/well onto 

96-well TC plates containing prion isolates or NBH as described above. Cells were then 
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left to incubate at 37ºC in 5% CO2 for 4-weeks. Complete cell culture medium with 

puromycin (150µL) was changed every 5-days. 

 

Scrapie Cell Assay 

To elucidate which murine PrP N-glycan substitutions play a significant role in prion 

propagation in prion isolates RML, 22L, 139A, mCWD, and NBH control, the SCA was 

used as a highly immunosensitive means to measure the frequency of PrPSc secreting 

cells at the single-cell level. 

 

Enzyme-linked immunospot (ELISpot) plates (EMD Millipore, Cat. #MSIPN4W50) were 

activated with 70% ethanol and washed three times with 1x PBS, the last wash being 

left on the plates. Cells of interest in a 96-well TC plate were washed once with trypsin, 

aspirated, and fresh trypsin was added. Cells were incubated at 37ºC for 5-20 minutes 

or until cells were detached. Cells were counted and re-suspended in complete DMEM, 

and plated at 20,000cells/100µL/well onto the prepared ELISpot plates containing 1x 

PBS as shown in the NBH examples for each of the corresponding construct locations 

and lysates (Fig. 8A,B). A vacuum was applied to remove media, and plates were 

washed twice with 1x PBS. Plates were placed in a 50ºC oven for 1-hour or until 

completely dry, wrapped in plastic wrap, and stored at 20ºC overnight. 
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A 

 

B 

 

Figure 8. ELISpot Plate Layout SCA and analysis layout examples for each of N180 (A) and S/T182 

(B) incubated with NBH (shown), RML, 22L, 139A, or mCWD isolates. Samples were transferred 

directly from 96-well plates that were infected in triplicate for 4-weeks. 
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Immunodetection of experimentally infected RKM, RK13 mutants, RKV, and RKM7 cells 

on ELISpot plates was performed as previously described (Bian et. al., 2010; Bian et. 

al., 2014) using mAb D13, and scanned with Immunospot S6UNIV equipment (Cellular 

Technology Limited). Spot numbers were then determined by using Immunospot 5.0 

Analysis and 5.1 Counting software (Cellular Technology Limited).  

 

Conformation of Murine PrP N-Glycan Mutations through Genetic Sequencing 

To determine if the mono-1 constructs generated were both accurately and correctly 

inserted into RK13 cells, polymerase chain reactions (PCR) were set up for a few of the 

constructs using primers designed through Integrated DNA Technologies (IDT) to 

amplify either the cytomegalovirus (CMV) promoter in vector pIRESpuro.3 as a positive 

control, or murine PrP encompassing the mutations at sites 180 and 182 using 

pIRESpuro.3.  

 

For each PCR reaction, 12.5 µL of GoTaq master mix (Promega, Cat. #M7122) was 

used in combination with 1.25µL of each forward and reverse primer set at 

concentrations of 10µM each and brought up to 22µL with PCR-grade water. Then, 

500ng/3µL of each DNA template to be tested was added, totaling a 25µL/PCR 

reaction. Tubes were then placed in a Thermocycler (Bio-Rad) detailing a protocol 

specific to the primer design, amplified, and 8µL of the reaction was separated by 

electrophoresis on a 0.8% agarose gel at containing EtBr at 100V for 1-hour for product 

visualization using a UV light box. 
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After confirming the appearance of single bands at the correct size (~820bp for murine 

puromycin PrP and ~351bp for CMV), remaining PCR products were purified using a 

QIAquick PCR Purification Kit (Qiagen, Cat. #28104), quantified using a NanoDrop 

2000c Spectrophotometer (Thermo Fisher Scientific), and checked for acceptable salt 

contamination (260/230) and purity (260/280) ratios of ~2.0 and 1.9 respectively 

(Thermo Fisher Scientific, 2009). Sequencing primers were designed to flank the 

mutated region to provide reads on the forward and reverse strands. Samples were 

then sent for sequencing to GENEWIZ, NJ according to the instructions provided. 

Results showed that the construct DNAs tested were the correct mutations at the 

correct site, confirming the successful generation of glycan substitutions at residues 

N180 and S/T182 on murine PrP in RK13 cells. 

 

Results 

Western Blot Analysis 

Western blots have traditionally been used as a reliable readout to detect prion disease 

post-mortem (Hadlow, 1999; Hnasko et. al., 2010; MacGregor, 2001; Pawel, 2004). 

Therefore, we set out analyze immunoreactive bands for both N180 and S/T182 site 

substitutions of the consensus sequence of PrP to confirm mono-1 N-glycan ablation 

and verify PrPC expression including PrP glycoforms. 

 

Data from western blot analysis of substitutions at the N180 site on murine PrP showed 

that all substitutions, with the exception of proline, exhibited immunoreactive bands at 

mono-2 full-length, aglycosylated full-length, the mono-2 C1 fragment, and the 
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aglycosylated C1 fragment when membranes were probed with mAb PRC5 (Fig. 9A,C). 

Moreover, these mutations were confirmed to result in the ablation of N-glycan 

attachment at mono-1 of murine PrP as shown by the absence of the di-glycosylated 

glycoform (Fig. 9A). Because it is well known that the properties of P causes a 

disruption in amino acid structure, it can be assumed that P affects N-glycan attachment 

of these mutant cells and can explain the absence of all other bands, except mono-2 

full-length PrP which was detected. Additionally, these same N180 constructs, with the 

exception of P in which there was a complete absence of banding pattern, showed 

bands consistent with aglycosylated full-length PrP and its derivative, aglycosylated C1 

when stained with PRC7 (Fig. 11A,B). These results confirm the successful generation 

of mono-1 PrP mutants and resulting underglycosylation. They also verify the specificity 

of mAb PRC7 for mono-1 because mono-1 is ablated in all of these mutants and no 

band was detected for mono-2 full-length or its derivative, C1. Lastly, detection of all 

PrP glycoforms, excluding the C1 derivative, was shown in all substitutions, excluding 

P, when stained with mAb D13 (Fig. 13A,B). This is explained by the fact that C1 is 

cleaved upstream of the D13 epitope and therefore could not be detected. 

 

Interestingly, results from western blot analysis of substitutions at the murine PrP 

S/T182 site did not yield any immunoreactive bands with either PRC5 or PRC7 (Figs. 

10A,C; 12A,B). It can be hypothesized that these results are due to the fact that the 

discontinuous epitope for PRC7 is a component of mono-1, and the discontinuous 

epitope encompassing PRC5 is just upstream of mono-1 in the globular region of PrP. 

This means that altering the amino acid structure at either site on mono-1 can result in 
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the misfolding of PrPC, which sterically prevents the detection of these mAbs in the 

S/T182 mutations (Fig. 2). Moreover, these data also suggest that S or T constitute part 

of the epitope recognized by PRC5 and PRC7. These results can also be explained by 

the possibility that during processing, PrP in the S/T182 mutants gets flagged by the 

golgi apparatus and gets caught in the cytoplasm of the cell and is unable to be fully-

processed and sent to the cell surface for expression and detection. Furthermore, 

mono-2 full-length bands were recognized by mAb D13, which is located upstream of 

the globular region in these mutant cells (Fig. 2). These results further demonstrate that 

PrP is expressed at some level in the S/T182 mutations but may not be transported to 

the cellular surface. Interestingly, there was also doublet identified in the N mutation 

with the D13 mAb (Fig. 14A,B). This doublet shows mono-2 full-length bands that are 

similar in size to those of the N180 mutants. The sequence of the S/T182N mutant was 

checked to confirm that there was not a downstream cryptic consensus motif. Analysis 

of the amino acid sequence of the mutation shows that the N substitution does not 

result in a cryptic glycosylation site as the downstream amino acid at 184 is K, not the 

S/T that is required for the consensus sequence (Fig. 5).  

 
A          
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Figure 9. Representative N180 Site Mutation (Mono-1) Western Blots Probed with PRC5 and 

GAPDH N180 site mutations in mo PrP are shown along with controls including freshly infected cells 

expressing WT mo PrP (RKM 1-3), a highly expressive clone expressing WT mo PrP (RKM7), cells 

containing the empty vector (RKV), and RKM7 cells chronically infected with RML (RKM7/RML). 

Samples (50µg total protein) were run twice to confirm bands and probed with mAbs PRC5 at 1:5000 

(A) and (C), and GAPDH at 1:3000 (B) and (D). All samples containing glycan substitutions with the 

exception of proline (P), showed detection of all PrP glycoforms and their derivatives, as predicted. For 

all western blots in this body of work, the immunoreactive bands labeled in (A) as D=diglycosylated 

full-length, M=monoglycosylated (mono-2) full-length, Un=aglycosylated full-length, C1=derivative 

fragments of monoglycosylated and aglycosylated). All samples were evenly loaded as shown by 

GAPDH band intensity.  
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Figure 10. Representative S/T182 Site Mutation (Mono-1) Western Blots Probed with PRC5 

and GAPDH ST182 site mutations in mo PrP are shown along with controls including freshly 

infected cells expressing WT mo PrP (RKM 3), a highly expressive clone expressing WT mo PrP 

(RKM7), cells containing the empty vector (RKV), and RKM7 cells chronically infected with RML 

(RKM7/RML). Samples (50µg total protein) were run twice to confirm bands and probed with 

mAbs PRC5 at 1:5000 (A) and (C), and GAPDH at 1:3000 (B) and (D). No samples containing 

glycan substitutions showed detection of any PrP glycoforms or their derivatives. A transfer error 

resulted in band intensities representative of acceptably loaded samples as shown by GAPDH. 
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Figure 11. Representative N180 Site Mutation (Mono-1) Western Blots Probed with PRC7 N180 

site mutations in mo PrP are shown along with controls including freshly infected cells expressing WT 

mo PrP (RKM 3), a highly expressive clone expressing WT mo PrP (RKM7), cells containing the 

empty vector (RKV), and RKM7 cells chronically infected with RML (RKM7/RML). Samples (50µg total 

protein) were run twice to confirm bands and probed with mAb PRC7 at 1:3000 (A) and (B). All 

samples containing glycan substitutions with the exception of proline (P), showed detection of the 

PRC7-specific glycoform, aglycosylated full-length, and its derivative, C1. Blots were also probed with 

GAPDH to establish evenly loaded samples (data not shown). 
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Figure 12. Representative S/T182 Site Mutation (Mono-1) Western Blots Probed with PRC7 

S/T182 site mutations in mo PrP are shown along with controls including freshly infected cells 

expressing WT mo PrP (RKM 3), a highly expressive clone expressing WT mo PrP (RKM7), cells 

containing the empty vector (RKV), and RKM7 cells chronically infected with RML (RKM7/RML). 

Samples (50µg total protein) were run twice to confirm bands and probed with mAb PRC7 at 1:3000 

(A) and (B). No samples containing glycan substitutions showed detection of any PrP glycoforms or 

their derivatives. Blots were also probed with GAPDH to establish evenly loaded samples (data not 

shown).  
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Figure 13. Representative N180 Site Mutation (Mono-1) Western Blots Probed with D13 N180 

site mutations in mo PrP are shown along with controls including freshly infected cells expressing WT 

mo PrP (RKM 1-3), a highly expressive clone expressing WT mo PrP (RKM7), cells containing the 

empty vector (RKV), and RKM7 cells chronically infected with RML (RKM7/RML). Samples (50µg total 

protein) were run twice to confirm bands and probed with mAb D13 at 1:5000 (A) and (B). All samples 

containing glycan substitutions with the exception of proline (P), showed detection of all PrP 

glycoforms, excluding the aglycosylated C1 derivative, as predicted, which is cleaved upstream of the 

D13 epitope. Blots were also probed with GAPDH to establish evenly loaded samples (data not 

shown). 
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Scrapie Cell Assay 

The SCA developed previously by Klohn and colleagues has been utilized in our lab 

and modified for detection using newly developed mAbs (Bian et. al., 2010; Bian et. al., 

2014). In this body of work, the SCA was used to determine which murine PrP N-glycan 

Figure 14. Representative S/T182 Site Mutation (Mono-1) Western Blots Probed with D13 S/T182 

site mutations in mo PrP are shown along with controls including freshly infected cells expressing WT 

mo PrP (RKM 3), a highly expressive clone expressing WT mo PrP (RKM7), cells containing the 

empty vector (RKV), and RKM7 cells chronically infected with RML (RKM7/RML). Samples (50µg total 

protein) were run twice to confirm bands and probed with mAb D13 at 1:5000 (A) and (B). All samples 

containing glycan substitutions showed detection of mono-2 full-length, with the exception of 

Asparagine (N), which shows mono-1 and mono-2 full-length due to the substitution of N for S/T. This 

substitution does not create a cryptic glycosylation site, as the downstream amino acid at 184 in the 

consensus sequence is lysine (K) not S or T. Blots were also probed with GAPDH to establish evenly 

loaded samples (data not shown). 
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substitutions play a significant role in prion propagation in RML, 22L, 139A, and mCWD 

prion isolates through single-cell PrPSc secretion. 

 

Results from mutations made at sites N180 and S/T182 in murine PrP that were 

infected, plated, and analyzed through mAb D13 detection using SCA showed 

significant prion replication (P ≤ 0.001) to near murine PrP control levels (RKM 1-3) as 

compared with RKV in the N180T mutant infected with RML, and in four 22L-treated 

N180 substitutions: N180D, N180E, N180K, and N180R (Tables 1-2; Fig. 15) when 

analyzed through one-way ANOVA with Tukey’s multiple comparison test. These data 

suggest that N180 site mutations T, D, E, K, and R play a role in murine conversion of 

PrPC to PrPSc. Additionally, these findings combined with preliminary data by Kang and 

colleagues further emphasize the importance of looking at individual amino acid 

changes at each of the two N-linked glycan sites on PrP to study their effects on 

propagation prior to further investigation in murine models. 

 

The properties of the N180 substitutions that allowed prion propagation to occur are 

summarized in Table 5. The only commonality between these mutations is the physical 

property of polarity (Table 5). As glycosylation does not encompass everything 

influencing PrP conversion, it is also necessary to further examine the effects of polarity 

in prion disease highlighting the differences between polar mutations that allowed prion 

propagation and those that did not.  

 

Alternatively, data show that there was a complete absence of prion propagation in all 

S/T182 mutant cells (Tables 3-4; Fig. 16). It can be postulated that there is no prion 
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propagation for mutations at the S/T182 site by SCA using mAb D13, yet one mono-2 

full-length band is detected by immunoblotting because of the possibility that PrP is 

expressed at some level in the S/T182 mutations but may not be transported to the 

cellular surface to be able to become infected by prions. In other words, the proper 

cellular expression of PrP that is required for the conversion of PrPC to PrPSc in the 

S/T182 mutants is not available, yet a partially processed form of PrP within the 

cytoplasm of the cell was available to be extracted and analyzed through western blot 

analysis as PrPC. Moreover, after infection and subsequent PrPC removal in the SCA, 

there was no protease resistant core available for detection with D13 in any S/T182 

substitution.  

 
Table 1. Summary of PrP

Sc
 production in different murine prion isolates for N180 site substitutions  

 

 

 

Summary of individual cell spot counts per well representing PrP
Sc

 production in prion isolates RML, 

22L, 139A, and mCWD and NBH for N180 mutation substitutions. Each mutation and control was 

infected in triplicate and plated onto ELISpot plates 4-weeks after infection. Prion replication was 

detected to near mo PrP control levels (RKM 1-3) in one mutant infected with RML (T), and in four 

22L treated mutants (D,E,K, and R).  
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Table 2. Averages of PrP
Sc

 production in different murine prion isolates for N180 site substitutions  

 

 

 

 

Averages of individual cell spot counts representing PrP
Sc

 production in prion isolates calculated from 

triplicate well numbers in Table 1. 
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Figure 15. Scrapie Cell Assay N180 PrP
Sc

 production in different murine prion RML (purple), 22L 

(red), mCWD (green), and 139A (blue), as well as control NBH (orange) for the N180 site 

substitutions. Each mutation was infected and plated along with controls; freshly infected cells 

expressing WT mo PrP (RKM 1-3), a highly expressive clone expressing WT mo PrP (RKM7), cells 

containing the empty vector (RKV), and RKM7 cells chronically infected with RML (RKM7/RML), onto 

ELISpot plates 4-weeks after infection. Detection of infected cells was done using mAb D13 at 1:600. 

Prion replication was detected to near mo PrP control levels (RKM 1-3) in one mutant infected with 

RML (T), and in four 22L treated mutants (D, E, K, and R) as also shown in Tables 1 and 2. 
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Table 3. Summary of PrP
Sc

 production in different murine prion isolates for S/T182 site substitutions  

 

 

Table 4. Average of PrP
Sc

 production in different murine prion isolates for S/T182 site substitutions  

 

 

 

Summary of individual cell spot counts per well representing PrP
Sc

 production in prion isolates RML, 

22L, 139A, and mCWD and NBH for S/T182 mutation substitutions. Each mutation and control was 

infected in triplicate and plated onto ELISpot plates 4-weeks after infection. Prion replication was not 

detected to near control mo PrP levels (RKM 3) in any prion isolate tested. 

Averages of individual cell spot counts representing PrP
Sc

 production in prion isolates calculated from 

triplicate well numbers in Table 3. 
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Figure 16. Scrapie Cell Assay S/T182 PrP
Sc

 production in different murine prion isolates 

RML (purple), 22L (red), mCWD (green), and 139A (blue), as well as control NBH (orange) 

for the S/T182 site substitutions. Each mutation was infected and plated along with controls; 

freshly infected cells expressing WT mo PrP (RKM 3), a highly expressive clone expressing 

WT mo PrP (RKM7), cells containing the empty vector (RKV), and RKM7 cells chronically 

infected with RML (RKM7/RML), onto ELISpot plates 4-weeks after infection. Detection of 

infected cells was done using mAb D13 at 1:600. Prion replication was not detected to near 

control mo PrP levels (RKM 3) in any prion isolate tested as also shown in Tables 3 and 4. 
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Table 5. Summary of the properties of amino acid substitutions at N180 that allowed successful prion 

replication 

 

 
Genetic Sequencing 

Finally, in terms of the outcomes of PCR amplification and subsequent DNA sequencing 

of three constructs, S/T182W (tryptophan), S/T182Y (tyrosine), and N180D (aspartic 

acid), the successful generation of stable RK13 cells expressing mutations at either 

N180 or S/T182 on murine PrP was confirmed (Figs. 17; 18). All samples showed 

positive bands for murine puro PrP (~820bp) and CMV (~351bp), indicating the 

presence of these sequences in the DNA of the stably transfected cells. Additionally, 

DNA sequencing results confirmed the correct mutation for each construct in murine 

Summary of N180 substitutions that showed a significant increase (P ≤ 0.001) in prion replication to 

near WT levels (RKM 1-3) in one mutant infected with RML (T), and in four 22L treated mutants 

(D,E,K, and R). Bolded codons were used in the generation of these constructs. The one consistent 

similarity between all of these substitutions is the physical property of polar charge. 
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PrP. One thing of importance to note is that the N180D construct is one of four that 

showed significant prion propagation in 22L while S/T182W and Y are constructs that 

did not allow prion proliferation. Therefore, the lack of prion replication in the S/T182 

mutations cannot be explained by the absence of the correct inserts incorporated into 

the gene.  

 
 

 

 
 
 
 
 

Figure 17. Murine PrP and CMV PCR Agarose gel of amplified 500ng of DNA template from three 

representative N180 and S/T182 site mutations. Mo puro PrP (red box), CMV promoter (blue box). 

Two representative S/T182 substitutions negative for prion propagation and one N180 mutation shown 

to replicate prions were chosen for PCR amplification and genetic sequencing to confirm stable 

transfections. All samples showed positive bands for mo puro PrP (~820bp) and CMV (~351bp), 

suggesting the proper insertion of these sequences in the DNA of the stably transfected RK13 cells. 
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Discussion 

In recent years, more work has been implemented into improving our understanding of 

the role of glycosylation in prion disease (Cancellotti et. al., 2005; Cancellotti et. al., 

2010; DeArmond et. al., 1997; Tuzi et. al., 2008). Preliminary data by Kang and 

colleagues combined with the results in this body of work collectively show the first 

evidence of the effects of underglycosylation on prion prorogation by treating each N-

glycan attachment site on PrP individually.  

 

In this body of work, individual amino acid substitutions were made at two points on the 

mono-1 glycan attachment encompassing the consensus sequence NXS/T. Removal of 

this glycosylation event permitted the study of the role of underglycosylation in prion 

disease. This approach to the current study was largely based on unpublished data 

obtained by Kang and colleagues in which the mono-2 N-glycan site on murine PrP was 

individually mutated at either N196 or T198 to each of the remaining 19 amino acids. 

Afterward, cells were treated with NBH, and prion isolates RML, 22L, 139A, and mCWD 

and analyzed for prion propagation. 

Figure 18. Murine PrP DNA Sequencing Analysis of one representative mutant PrP DNA shows the 

confirmation of the correct PrP sequence for the S/T182W mutation (arrow) as compared with mo WT 

PrP. No other alterations in the PrP sequence was detected in any of the three constructs examined. 
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Ablation of the Mono-1 N-Glycan Attachment on PrP and PrPC expression 

Western blots have traditionally been used as a reliable readout to detect prion disease 

(Hadlow, 1999; Hnasko et. al., 2010; MacGregor, 2001; Pawel, 2004). In this body of 

work, we analyzed immunoreactive bands for N-glycan mutations made at N180 and 

S/T182 of murine PrP. PrPC expression was visualized using mAbs PRC5, PRC7, and 

D13. Results confirmed the ablation of the mono-1 N-glycan attachment at both sites. 

 

All N180 site mutations exhibited the expected PrP glycoforms and their derivatives with 

the exception of P when probed with mAbs PRC5, PRC7, and D13. It has been 

demonstrated that P cannot be located in the second motif of the consensus sequence, 

NXS/T. This is largely due to the fact that P is bound in a loop that forms a 180-degree 

turn. Therefore, it can be assumed that the substitution at N180P acts in a similar way 

(Marshall, 1972). Additionally, N180 glycan results confirm that the lack of one glycan 

attachment in the mutants does not de-stabilize the entire protein structure to the extent 

where they acquire PrPSc like characteristics, such as a protease resistant core 

(Lehmann and Harris, 1997; Korth et. al., 2000; Winklhofer et.al., 2003). However, it 

was shown that PrP with alterations to N-glycans exhibit evidence of PrPSc like 

characteristics, like insolubility in detergents, while maintaining sensitivity to protease 

treatment (Neuendorf et. al., 2004). 

 

Interestingly, results from western blot analysis of substitutions made at S/T182 on 

murine PrP resulted in the complete absence of immunodetection with conformationally 

dependent mAbs PRC5 and PRC7. When probed with D13, a mAb located in the 
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unstructured region consisting of a linear epitope, one lower immunoreactive band for 

mono-2 full-length was detected in all mutations with the exception of S/T182N, in which 

a doublet formed resembling the banding pattern of the N180 substitutions stained with 

D13. Overall, these results suggest that PrP is expressed to some level in the S/T182 

mutations, but may not be transported to the cellular surface for detection or prion 

conversion. Moreover, the primary sequence for the N-glycan substitution S/T182N was 

checked at amino acid 184 to confirm that a new cryptic glycosylation site was not 

initiated.  

 

Ablation of the Mono-1 N-Glycan Attachment on PrP and Prion Propagation 

Prior attempts have been made to address the role of post-translational modifications in 

prion propagation. However, these studies fail to recognize prion biology in its entirety. 

Any mutation at the first or the third amino acid of the glycan consensus sequence on 

PrP results in the ablation of glycan attachment. Therefore, it is necessary to study point 

mutation changes at each of the two N-linked glycan sites on PrP and analyze their 

effects on propagation prior to investigation at the level of the organism. 

 

Earlier investigations include in-vivo PrP glycosylation studies using knock-in or gene 

replacement approach to partly or fully ablate glycan attachments on PrP in mice that 

substitute T for N. These studies have reported little to no prion propagation (Cancellotti 

et. al., 2005; Cancellotti et. al., 2010). Importantly, these substitutions have been 

described to affect PrP processing through the secretory pathway, and make it difficult 

to determine whether the lack of transmissibility of PrPSc might be related to 
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aglycosylation, potentially low concentrations of PrPC on the cell surface, or improper 

folding of the tertiary structure (Capellari at. al., 2000; Korth et. al., 2000).  

 

Other research include studies completed by DeArmond and colleagues in which 

genetically modified mice were generated with an A replacing the T at each N-glycan 

site. Results indicated that prion transmission to these mice was strain-selective and 

less efficient than in mice expressing normal PrP glycosylation (DeArmond et. al., 1997; 

Tuzi et. al., 2008). Therefore, it is uncertain whether or not these discrepancies might be 

related to the varying amino acid substitutions used to obliterate PrP glycosylation.  

 

In the present study, the SCA was chosen as the main readout for prion propagation 

and used prion strains RML, 22L, 139A mCWD, and NBH control. This assay was 

selected based off of its highly immune-sensitive properties to measure the number of 

PrPSc secreting cells post-infection. Immunodetection of experimentally infected RKM, 

RKV, RKM7, and RK13 glycan point mutations were performed using mAb D13 as 

described formerly (Bian et. al., 2010; Bian et. al., 2014). Data obtained from mutations 

made at N180 and S/T182 encompassing the mono-1 glycan site showed significant 

prion propagation (P ≤ 0.001) equivalent to RKM control levels after infection with RML 

or 22L in N180T, N180D, N180E, N180K, and N180R. These data suggest that N180 

site mutations T, D, E, K, and R play a role in murine conversion of PrPC to PrPSc. 

Alternatively, a complete absence of prion replication was found in all modifications 

made at S/T182 with each strain tested. These results may indicate a lack of 
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membrane-bound PrPC that is necessary for conversion likely caused by a disruption in 

cellular processing and trafficking. 

 

One potential flaw in the results of the SCA of this study is that only the RKM7 WT 

control samples infected with prion strain 22L exhibited PrPSc positive cell numbers 

comparable to the chronically infected control, RKM7/RML. This outcome makes the 

data inconclusive without additional replicates. It is possible that these results may be 

due to either a technical error in the assay, or to a BH titer difference that was not 

accounted for. Brain weight does not necessarily correspond with the amount of PrPSc 

in a sample. Therefore, it can be assumed that there was likely some variability in PrPSc 

expression between BHs used in this study. To account for this, replicate studies should 

be performed using several isolates for each strain and a consistent trend observed 

before results can be considered conclusive.  

 

In contrast to the aforementioned study performed by Cancellotti and colleagues, our 

N180T mutation at mono-1 resulted in the detection of significant levels of PrPSc by SCA 

after infection with RML to near RKM levels (Cancellotti et. al., 2005; Cancellotti et. al., 

2010). Furthermore, preliminary data by Kang and colleagues demonstrated that the 

N196T mutation at mono-2 had an increase in the levels of PrPSc by SCA when infected 

with RML, 22L, 193A, and mCWD. Therefore, the substitution of T for N at either glycan 

site on PrP may play a role in prion replication. Alternatively, in the present study, there 

was a complete absence of prion propagation in all substitutions made at the third 

sequon S/T182 of the consensus sequence at mono-1 when infected with RML, 22L, 
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139A, and mCWD. These results may bring insight into why lower replication efficiency 

was seen in genetically modified mice consisting of an A rather than a T at each glycan 

site on PrP as seen in former investigations by DeArmond and colleagues (DeArmond 

et. al., 1997).  

 

Ablation of the Mono-1 N-Glycan Attachment on PrP and Trafficking to the Cell 

Membrane 

As previously thought, complete sugar attachment is not required to make a 

glycoprotein functional and stable (Heleius and Aebi, 2001; Lowe and Marth, 2003). In 

2005, it was shown by Cancellotti and colleagues that the presence of a single sugar 

chain is adequate enough for the successful trafficking of PrP to the cell membrane 

(Cancellotti et. al., 2005). They also reported that while glycans appear to control the 

cellular location of PrP, the presence of sugars does not considerably change its 

biology. In the present study, we addressed the same question using our point mutation 

in-vitro model of N-glycosylation by altering each of the sugar attachments on PrP to 

each of the remaining amino acids and treating them individually.  

 

In the current study, mutations were made at mono-1 at two locations and contain only 

one N-glycan attachment at mono-2. These alterations do not create an immature 

glycoprotein unable to be expressed at the cell surface as suggested (Hershko and 

Ciechanover, 1998; Neuendorf et. al., 2004; Petersen et. al., 1996). These inferences 

are supported by successful PrPC immunodetection in the N196, T198, and N180 site 

substitutions by conformationally dependent mAbs that require discontinuous epitopes. 
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Moreover, after infection, mutations N180T, N180D, N180E, N180K, N196K, and 

N180R resulted in significant and quantifiable PrPSc expression that is comparable to 

RKM levels by SCA. This further suggests that these mutations were processed 

correctly in the cell despite the lack of one glycan attachment. 

 

However, the substitutions made at the S/T182 site are an exception to these 

conclusions. In general, the inability for these mutations to express immunoreactive 

bands using conformationally dependent mAbs that are consistent with expected PrP 

glycoforms indicates that they were not fully processed and anchored at the cell 

surface. One explanation for this outcome is that the because mono-1 is located directly 

in α-helix 2, the S/T182 point mutations disrupt the three-dimensional structures of PrP 

to the extent that the un-manipulated mono-2 N-glycan attachment is unable to become 

fully glycosylated as shown by immunoreactive bands for the N180 mutations. This 

outcome may be due to possible steric hindrance of the folding of the protein. As a 

consequence, all S/T182 mutations, with the exception of S/T182N, may have resulted 

in a species of PrP that does not have a fully glycosylated glycan at mono-2 as 

demonstrated by the difference in band width when comparing D13 blots between the 

S/T182 and N180 site mutants. Therefore, the point mutations made at S/T182 may 

represent more of an aglycosylated species of PrP. This theory is supported by 

research that shows aglycosylated PrP gets trapped intracellularly during processing 

(DeArmond et. al., 1997; Lehmann and Harris, 1997; Harris, 2003; Rogers et. al., 1990). 

Alternatively, Korth, Neuendorf, and colleagues were able to detect aglycosylated PrP 

at the cell surface of cells containing several N-glycan mutants. Regardless, these data 
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suggest that the modification of a single amino acid, rather than the complete absence 

of a sugar attachment can influence cellular localization of PrP (Korth et. al., 2000; 

Neuendorf et. al., 2004).  

 

Ablation of the Mono-1 N-Glycan Attachment on PrP and Secondary and Tertiary 

Structures 

Of the 20 amino acids that occur naturally, 6 are considered to be clearly polar. These 

include negatively charged D and E, positively charged R, and K, as well as uncharged 

N and Q (Betts and Russell, 2003). Other slightly polar or indifferent amino acids 

include H, A, Y, T, S, P and G. The properties of the amino acid are due to the side-

chain group (R-group) which is important when it comes to the primary structure of a 

protein. These properties drive the folding and intrarmolecular bonding of the linear 

amino acid chain that determines the protein’s overall shape. All polar amino acids have 

a hydrophilic side-chain when in an aqueous environment and can therefore make 

hydrogen bonds with other suitable groups. For this reason, these amino acids are 

found exposed on the surface of a protein (Betts and Russell, 2003). 

 

Due to the nature of the weak interactions controlling the three dimensional structure, 

proteins are very sensitive molecules. The native state can be disrupted by a number of 

external stress factors including pH or the removal of water (Betts and Russell, 2003) 

Moreover, any mutation that causes an amino acid substitution can have a large 

influence on protein structure and subsequent protein function. In this body of work, only 

strongly polar amino acid substitutions, N180D, N180E, N180K, and N180R, resulted in 
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prion propagation with the exception of one slightly polar replacement, N180T through 

detection by SCA. The chemistry of amino acid side chains is critical to protein structure 

because they bond with one another and hold the protein in a certain conformation. 

Regardless, the alterations of the primary sequence on murine PrP made at mono-1 

that allow prion replication share the property of polarity with the native amino acid N at 

residue 180 in PrP. This common characteristic could mean that a polar amino acid at 

residue 180 of mono-1 is required for the successful conversion of PrPC to PrPSc by 

maintaining the α-helix structure. This finding is novel because mono-1 resides within 

the second helix of PrP and any change in primary structure can greatly impact 

subsequent protein folding and interactions.  

 

It is important to point out that not every polar mutation made in this study supported 

prion propagation. Furthermore there was no consistency observed between the charge 

of the side-chain and prion conversion. These realizations result in further questions 

regarding point mutation changes at the N-glycan consensus sequence and their 

involvement in prion propagation. It is no surprise then that generating and assessing 

individual amino acid mutations for each of the N-glycan sites on PrP was both time 

consuming and costly. There are other ways in which investigators could strategically 

manipulate the consensus sequence and ask a more specific question. However, this 

body of work lays important groundwork that provides an overview for other researchers 

to base new questions on in future investigations. 
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It remains uncertain whether or not an intermediate species of PrP is required for 

conversion of PrPC to PrPSc. Solving the structure of PrPC has provided one part of the 

equation, however our lack of knowledge of the tertiary structure of PrPSc remains a 

clear deficiency. An emphasis needs to continue on studying the post-translational 

differences between PrPC and PrPSc in order to fully understand the prion hypothesis 

and PrPSc. Deciphering the structure of PrPSc will then identify how PrPC is altered and 

lead to a better understanding of the mechanism of conversion and succeeding 

treatment and prevention of prion disease. 
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CHAPTER 3 – CONCLUSIONS AND FUTURE DIRECTIONS 
  
 
 
Conclusions 
 
This body of work completes the initial series of studies started by Kang and colleagues 

to decipher the role of aglycosylation in prion disease through amino acid substitutions 

at each of the two N-glycan sites on murine PrP and subsequent prion conversion using 

four prion strain isolates (RML, 22L, 139A and mCWD).  

 

Collectively, these studies show the first evidence of the effects of aglycosylation on 

prion propagation by treating each of the glycan attachment sites on PrP individually. 

These preliminary findings establish the importance of post-translational differences 

between PrPC and PrPSc which constitute an essential, unresolved aspect of the prion 

hypothesis several decades after it was first proposed. The core hypothesis of this body 

of work, that PrPSc is preferentially generated during prion propagation, in addition to the 

specific aims addressed which attempt to investigate the relationship of individual 

mono-1 mutations on murine PrP through PrPC expression and subsequent propagation 

using four prion isolates, represent both a novel and significant development in 

understanding the mechanism by which prions replicate.  

 
 
Future Directions  

Processing of PrP Mutants 

Once preliminary results from this body of work are confirmed through additional 

experimental replications, further investigations will be performed to examine the 
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processing of these N-linked glycan mutations in the cell prior to infection. These 

experiments will include assays in which the trafficking, distribution, and cellular 

membrane occupancy of the individually mutated prion proteins can be studied. While 

the proper folding of PrP in combination with the ability to support prion propagation is 

consistent with correct protein processing and cellular distribution, it is important to 

confirm, especially in S/T182 mutants in which prion propagation was entirely un-

detected, that the mutated proteins at both mono-1 and mono-2 were able to reach the 

cellular membrane successfully. These studies could be executed by using genetically 

encoded fluorophores, such as super ecliptic pHluorin (SEP), a PH-sensitive derivative 

of green fluorescent protein (GFP) commonly used in live cell imaging (Ashby et. al., 

2004; Sankaranarayanan et. al., 2000) In these experiments, SEP would be used as a 

tag to visualize PrP within living cells in real-time. These studies will allow us to 

determine whether or not the S/T182 site mutations specifically are being processed 

correctly or getting stuck in the cell resulting in the inability for them to be expressed at 

the cell surface. Alternatively, immunocytochemical prion detection using discriminatory 

and non-discriminatory mAbs followed by flow cytometry would be another means to 

differentiate between mutants that were successfully processed and mutants that were 

not.  

 

Biochemical Analysis 

Following the confirmation of proper processing within the cell, biochemical analysis of 

cells containing each mutated PrP will be performed. In these experiments, fractionation 

techniques would be used to separate various cellular components such as organelles 
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and macromolecules. Fractionation would allow us to reduce the size of the protein pool 

to be analyzed and enable us to focus on proteins located within certain cellular 

compartments. This would enable us to focus specifically on PrP for analysis and 

interpretation so we can characterize the PrP mutations with respect to mono-1 or 

mono-2.  

 

Other Future Studies 

Coupled with NMR or x-ray crystallography, these techniques would allow us to obtain 

functional and structural information regarding these N-glycan substitutions in PrP. Our 

goal would be to introduce mutations at both the mono-1 and mono-2 sites on PrP into 

RK13 cells that consist solely of the formation of aglycosylated murine PrP with the 

capability for prion conversion. These cells would undergo infection using several prion 

isolates and control NBH. Thereafter, the same analyses would be performed on these 

double mutants with potential to move forward to in-vivo mouse models for further 

evaluation at the level of the organism. 
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