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ABSTRACT OF DISSERTATION

AN ALGORITHMIC IMPLEMENTATION OF EXPERT OBJECT

RECOGNITION IN VENTRAL VISUAL PATHWAY

Understanding the mechanisms underlying visual object recognition has been an

important subject in both human and machine vision since the early days of cognitive

science. Current state-of-the-art machine vision systems can perform only rudimen-

tary tasks in highly constrained situations compared to the powerful and 
exible

recognition abilities of the human visual system.

In this work, we provide an algorithmic analysis of psychological and anatomical

models of the ventral visual pathway, more speci�cally the pathway that is responsible

for expert object recognition, using the current state of machine vision technology.

As a result, we propose a biologically plausible expert object recognition system

composed of a set of distinct component subsystems performing feature extraction

and pattern matching.

The proposed system is evaluated on four di�erent multi-class data sets, compar-

ing the performance of the system as a whole to the performance of its component

subsystems alone. The results show that the system matches the performance of

state-of-the-art machine vision techniques on uncompressed data, and performs bet-

ter when the stored data is highly compressed.

Our work on building an arti�cial vision system based on biological models and

theories not only provides a baseline for building more complex, end-to-end vision
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systems, but also facilitates interactions between computational and biological vision

studies by providing feedback to both communities.

Kyungim Baek
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523
Fall 2002
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Chapter 1

Introduction

How do humans identify and classify objects? This simple question has formed an

active area of study in both human and machine vision. As we experience in every

moment of our life, the human visual system exhibits an amazing capability to rec-

ognize objects. People know about a great number of di�erent types of objects, yet

they can identify the object in front of them almost e�ortlessly under widely varying

circumstances such as changes in viewing position, illumination, occlusion, and object

shape. Current state-of-the-art machine vision systems, however, can perform only

rudimentary tasks in highly constrained situations and, therefore, their recognition

abilities are far less powerful and 
exible than the capability of the human visual

system.

There are many factors that make building an arti�cial object recognition system

a di�cult task. We have only a poor understanding of the mechanisms underlying

the recognition process. When we see 3D objects in a scene we receive 2D stimulation

on our retina, which is transformed into neural signals. Then, the visual information

(signal) is sent to the brain over multiple pathways through di�erent cortical areas,

each of which processes the data until a �nal decision about the objects' identities is

made. The problem is that we do not know how the visual processes are performed,

how the inputs and outputs of each process are characterized, in what forms and how

we store our understanding or knowledge about objects from past experience, or how

1



we extract information from our memory to make decisions. All of these questions

boil down to the previously posited, more comprehensive question: \How does the

human brain solve the visual object recognition problem?"

The question has been a topic of study since the early days of cognitive science.

Scientists in the �elds of psychophysics, psychology, neuroscience, cognitive neuro-

science, and computer science have made tremendous e�orts to understand the mech-

anisms underlying visual perception and theorize computational models for building

arti�cial vision systems. Research in these areas not only enriches our knowledge

of visual perception { we now have an understanding of many visual phenomena,

anatomical structures of visual areas in brain, and functional features related to some

of those areas { but also provides a large number of theories and models that have

been continuously explored and revised.

colliculus
superior

retina

geniculate
lateral

neucleus

primary
visual
cortex

infero−
temporal
cortex

pulvinar
nucleus

posterial
parietal
cortex

ventral stream

dorsal stream

Figure 1.1: Diagram of the major routes of visual processing in the primate visual
system [102].

Figure 1.1 shows a result of such e�orts. It illustrates the major routes of visual

processing in the primate visual system. Information about a scene is captured by the

photoreceptors in the retina which convert light into electrical signals. The signals

generated by photorecptors are transmitted to the lateral geniculate nucleus (LGN)

and the superior colliculus (SC) of the midbrain through the optic nerve connected
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to the retinal ganglion cells. Visual information processed in the SC is conveyed to

the pulvinar nucleus of the thalamus, and eventually arrives at the posterial parietal

cortex. Traditionally, this route is interpreted to be responsible for saccadic eye

movements. Visual information in LGN is further projected onto the primary visual

cortex, where the two major cortical streams originate. The ventral stream, which

ends in the infero-temporal cortex, is known to be responsible for visual perception,

while the dorsal stream is considered as a visuo-motor pathway, which runs dorsally

to the posterior parietal cortex.

Theories and �ndings in visual neuroscience have been applied to the design of

innovative algorithms for computer vision, and some of the most successful computer

vision algorithms have direct biological inspirations [3, 91, 96, 97]. Although they

have provided many useful applications, these previous attempts focused on models

of early vision such as edge detection and color analysis, or partial computational

elements that are roughly in the dorsal visual pathway such as motion detection, 3D

surface reconstruction, and perceptual organization. However, since the two broad

cortical pathways were found in the monkey by Ungerleider and Mishkin [104], it has

been generally considered that the ventral pathway plays the critical role in identifying

and recognizing objects.

In this work, we have tried to provide a possible algorithmic analysis of psycho-

logical and anatomical models of the ventral visual pathway, more speci�cally the

pathway within the ventral stream that is responsible for recognizing familiar objects

seen from familiar viewpoints, using the current state of machine vision technolo-

gies. This work is mainly inspired by two biological theories: Stephen Kosslyn's

psychophysical model of visual perception [82] and Michael Tarr and his colleagues'

work on a viewpoint-dependent mechanism and perceptual expertise for visual object

recognition [49, 51, 144, 145].

The overall structure of our approach is based on Kosslyn's model of visual object
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recognition, in which the ventral visual pathway is composed of a set of function-

ally distinctive and anatomically localized components that interact with each other.

However, while Kosslyn's model provides a good starting point to build practical

arti�cial vision systems that are biologically inspired, he concentrates more on how

the boundaries that delimit distinct processing subsystems are speci�ed than how the

subsystems achieve their computational goals. As described in Chapter 3, there has

been a debate on computational mechanisms for visual object recognition in the brain.

Recent work by Tarr and his colleagues has shown converging behavioral and psy-

chological evidence for viewpoint-dependent mechanisms for visual perception, which

provide strong support for viewpoint-dependent, appearance-based methods for ob-

ject recognition in the machine vision community. Based on Kosslyn's model and

Tarr's theory, we constructed a more complete end-to-end object recognition system

in which a set of interacting yet relatively independent subsystems implement each

of the components.

We begin this introduction with a brief overview of biological vision systems in

which visual processing in the primate is characterized by functional specialization

from the very beginning. The distinctive functionality is related to the two cortical vi-

sual pathways: dorsal and ventral pathway. We then provide a general description of

Kosslyn's psychophysical model of high-level visual processing, in which the primate

vision system consists of multiple processing subsystems interacting with each other

rather than one single process. Then, we describe the proposed approach for building

a computational analogue to the specialized part of ventral visual pathway for recog-

nizing familiar objects seen from familiar viewpoints. We conclude this introductory

chapter by sketching an outline of the rest of the thesis.
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1.1 Biological Vision System

For humans, the sense of vision is a dominant sense, playing a central role in our

interaction with the environment. Standard accounts of vision implicitly assume that

the purpose of the visual system of an organism is to obtain knowledge of its sur-

roundings so as to behave appropriately and in accordance with its current behavioral

goals. From this perspective, the success of the visual process requires that some form

of object identi�cation and movement detection take place based on size, shape, color,

location, and past experience.

A central principle that characterizes vision is functional specialization. Special-

ization in vision occurs at the very earliest point possible: in the photoreceptors.

There are four di�erent types of photoreceptors that are grouped into two classes:

the rod and S-, M-, and L-type cone photoreceptors [99]. The rods are much more

sensitive to low levels of illumination than the cones; the cones are tuned to speci�c

color bands. The functional specialization continues as the optic nerve, a bundle

of �bers, carries visual information from the eyes to the brain. The magnocellular

�bers tend to favor information that varies temporally, such as motion or 
icker,

while parvocellular �bers tend to carry information about static properties such as

color, orientation, or depth [102]. These �bers are connected to the LGN, and the

visual information is transfered to the �rst visual area in the cortex (area V1, which

is also known as striate cortex, primary visual cortex, or area 17 ) through two LGN

channels - the parvo and magno channels.1

Anatomically, the early visual cortex is divided into �ve separate areas: V1 to V5.

As described above, V1 receives visual information directly from the LGN. Since the

1In 1994, a third channel from LGN to V1 was found by Hendry and Yoshioka [62]. However, its

role has not been clearly identi�ed.
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ground-breaking discovery of orientation selectivity in V1 cells by Hubel and Wiesel

[64], mountains of information on V1 has been accumulated. It has been shown that,

in addition to orientation, there are cells in V1 that are selective for other properties,

such as direction of motion, wave-length, and the length of a bar-type stimulus. V1

seems to make those features explicit and provide them as input to other cortical

areas for further processing.

Compared to V1, other areas of the cortex remain a relatively wild neuroscienti�c

frontier. However, recent advances of technologies measuring brain activities, such as

positron emission tomography (PET), functional magnetic resonance imaging (fMRI),

and repetitive transcranial magnetic stimulation (rTMS), provide data for modeling

higher level visual processing in brain. Results from various areas of cognitive science

based in part on the new technologies suggest that di�erent cortical regions appear

to be dedicated to di�erent visual attributes. For example, V2 seems specialized to

process form information, which would be helpful for �gure-ground separation and

object shape identi�cation. Cells in V3 are selective for orientation, and many are

also tuned to motion and to depth although the cell properties provide few clues to

the function of V3 [102]. Also, it has been postulated that V4 is involved in color

perception and V5, also known as the middle temporal (MT) area, processes motion

and depth information [154, 160].

This functional specialization is intimately related to two large-scale cortical path-

ways of visual processing, one originating from the primary visual cortex projecting

ventrally to the inferior temporal (IT) cortex and the other projecting dorsally to the

posterior parietal (PP) cortex (Figure 1.2). Historically, these two distinct streams

are also known as the \what" and \where" pathways based on their role in visual

processing { object identi�cation vs. object localization [104]. The existence of such

distinct pathways has been generally accepted based upon considerable evidence from

animal and human studies [82, 83]. Milner and Goodale, however, view this functional
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Figure 1.2: The two visual processing pathways in the primate cerebral cortex
(reprinted from [162]).

distinction with a somewhat di�erent perspective: instead of the subdomains of per-

ception, they describe the di�erent role of the two pathways as perception and visually

guided action [102]. In this perspective, the dorsal pathway is responsible for vision in

support of immediate physical action and, therefore, models the world in egocentric

coordinates with virtually no memory. On the other hand, the ventral pathway is re-

sponsible for visual perception and maintains visual memory for allocentric modeling

of objects in the environment.

Milner and Goodale further show that multiple subpathways may exist within

the two broad pathways. For example, the dorsal pathway can be further divided

into anatomically distinct components for di�erent egocentric coordinates, such as

eye-centered, head-centered, and shoulder-centered subsystems [102]. Recent neu-

roimageing studies showing preferential activity patterns in discrete areas of ventral

pathway to di�erent objects { faces, houses, chairs, and places { also support the
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hypothesis that multiple subpathways exist in the ventral stream [71, 112]. The in-

tensive brain imaging studies on face recognition, in particular, lead to a debate on a

face speci�c pathway; \Is it really specialized for faces only or the objects for which

people have developed expertise [33, 49, 51, 76, 125, 145]?" Although it has not yet

been resolved completely, more recent results that combine behavioral, psychological

and brain-imaging studies seem to suggest that the pathway is more likely to be an

expert object recognition subsystem rather than a specialized face recognizer.

1.2 Kosslyn's Psychophysical Model of Visual Per-

ception

The studies of biological vision systems described in Section 1.1 have helped us to

understand functional roles and anatomical structures of visual areas in the brain.

Although they have provided much information about visual perception, these studies

do not explain how the bits and pieces can be connected and interact with each other

to achieve the perceptual goal. Now we are in need of a psychological and structured

model which systematically puts a decades' worth of work together, and that is why

we turn to Kosslyn's model of visual perception.

Kosslyn has studied, for at least twenty years, the brain mechanisms underlying

visual mental imagery as well as object recognition. His publication, `Image and

Brain' [82], integrates research on the nature of high-level vision and mental imagery,

and provides a computational theory of processing that underlies object recognition

and imagery. His theory is based on the idea that visual perception and mental

imagery (representation) share common mechanisms, and that mental imagery events

in the brain are generated, interpreted, and actually used in perception [82, 83].

Figure 1.3 shows Kosslyn's model of visual object identi�cation, which consists of

seven major components. Each component has distinct functionality and is imple-

mented in a separate, relatively small region of the brain [82, 83, 84]. The stimulus
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input from the eyes generates an image in a structure called the \visual bu�er", which

corresponds to a set of retinotopically mapped areas in the occipital lobe. To select

information for additional processing in the system, an attention window extracts a

region of the visual bu�er. The information in the attention window is then sent

downstream to two major cortical pathways from the occipital lobe; the object prop-

erties encoding system that runs ventrally to the inferior temporal lobe, and spatial

properties encoding system that runs dorsally to the posterior parietal lobe.

Visual

Buffer

Attention
Window

Attention Shifting

Spatial Properties Encoding

Object Properties Encoding

Associative
Memory

Information Lookup

Figure 1.3: Kosslyn's psychophysical model of visual object identi�cation with seven
processing components [84].

The ventral stream deals with object properties such as shape, color and texture.

The system �rst extracts features that describe object properties from the input

passed from the attention window and then matches those features to representations

stored in visual memory. While the goal of the ventral stream is to match and thereby

recognize objects, the dorsal stream is mainly responsible for guiding actions (e.g. eye

movement) by registering spatial information, such as location, size and orientation

of objects or object parts.

The output from the ventral and dorsal systems converge at an associative memory
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which is a cortical long-term storage structure located partly in the posterior superior

temporal cortex. Associative memory stores multimodal information, containing not

only perceptual information, but also more abstract conceptual information. If the

incoming information is strongly matched with the representation of an object in the

associative memory, the object is identi�ed and more knowledge about the object is

accessed. However, if the match is not strong enough, object identity is hypothesized

and additional information is collected by the information lookup system (located

in the dorsolateral prefrontal cortex). Unlike previously discussed architectures, this

model has a strong top-down component. The hypotheses about an object's identity

guides the search for additional properties that help to determine the presence of the

hypothesized object. This bottom-up and then top-down processing mechanism is in

fact similar to Lowe's model [92, 93] discussed in the next chapter.

Finally, the attention is shifted if the search process �nds a location of informative

or distinctive characteristics in the visual bu�er. Then, the new attended region is

encoded and matched through the ventral and dorsal systems. The object and spatial

properties are registered in the associative memory and possibly activate a di�erent

representation of the same or di�erent object. The identi�cation process is then

applied again.

Kosslyn's model described in this section is for visual object identi�cation in gen-

eral, which covers not only visual processing, but also intelligence, motor control,

and complex object and environmental models. His model, however, makes a strong

distinction between the strictly visual system { visual bu�er, spatial and object prop-

erties encoding systems { and other mixed modality systems { associative memory,

information lookup, and attention shifting systems. Our work applies the ventral

stream of Kosslyn's model in the more limited context of familiar object recognition

seen from familiar viewpoints. A more detailed description of Kosslyn's model of the

ventral visual pathway is given in Chapter 3.
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1.3 The Proposed System

1.3.1 Introduction

Compared to the capability of the human vision system to recognize objects, current

arti�cial vision systems can perform only rudimentary tasks in highly constrained

situations. Thus, researchers have tried to augment studies of biological vision and

apply them to designing innovative computer vision algorithms. As a result, interdis-

ciplinary research in computational and psychophysical aspects of object recognition

is a very active area of study. The research includes experimental studies of human

recognition abilities, computational modeling of the results and the design of practi-

cal computer vision systems. Attempts to build complete, biologically inspired vision

systems have been rare, however. One of the reasons is that integrated work on biolog-

ical vision with speci�cations clear and detailed enough to implement computational

models is hard to �nd.

The primary motivation for this work comes from Kosslyn's functional and psy-

chopysical model of brain mechanisms underlying object recognition [82], and the

recently developed theories on the existence of an expert object recognition path-

way within the ventral visual stream [51, 145]. As described in Section 1.2, Kosslyn

breaks down the recognition process into component subsystems. Each subsystem

is anatomically localized in the brain, has distinctive functionality, and interacts

with other subsystems to achieve the recognition goal. Therefore, it provides a good

structural framework for biologically plausible object recognition systems. Our work

follows the principle of \start from small" based on the expert object recognition

theory, applying Kosslyn's general model of the ventral visual pathway in the more

limited context of recognizing familiar objects from common viewpoints.
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1.3.2 System Description

The goal of this work is to reconsider how we design arti�cial object recognition sys-

tems of practical use to more closely mimic biological ones and provide a possible

algorithmic analysis using the current state of machine vision technologies. There are

plenty of techniques in the �eld of computer vision that can implement components

of biological vision systems. In this work, the ventral visual stream of Kosslyn's psy-

chological model is mapped onto computational algorithms and the resulting system

is tested in the context of expert object recognition.

Our approach for building a computational expert object recognition system is

illustrated in Figure 1.4. The function of the system is to match the current stimulus

image to previously seen images stored in the visual memory. It does not build a 3D

model and does not assign a symbolic or linguistic label to the input image, which

may include multi-modal information processed beyond the ventral stream. Instead,

the system retrieves visually similar images from the memory.

In Figure 1.4, the system consists of two phases { training and run-time (or test-

ing). The input to the system is a set of small image patches, which are assumed

to be focused, scaled, rotated, and registered images of target objects. This is what

the attention window produces in Kosslyn's model, and we do not directly model the

attention mechanism itself in this work.

The visual bu�er includes V1, and it is well known that the receptive �eld pro-

�les of the simple cells in V1 can be approximated reasonably well by Gabor �lters,

and the complex cells approximate frequency energy functions [121]. Thus, a bank

of multi-scale, orientation-selective Gabor �lters are applied to the input images to

model the operation in V1. The parameters for Gabor functions, such as spatial

aspect ratio, spatial frequency bandwidth, and phase o�set, are tuned as suggested

from studies on biological visual systems [116]. The output generated by the �ltering

operation are transformed versions of retinal image patches that form an image pyra-
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Figure 1.4: Overview of proposed expert object recognition system. The solid line
follows training phase, while the dotted line shows the run-time execution.

mid. The operation is basically an image-to-image transformation, so the output is

still retinotopic, which is consistent with the architecture of area V1. Both the raw

images and �lter responses are passed to the preprocessing subsystem where more

complex features are extracted.

The pattern matching in the proposed system consists of two separate processes

that are responsible for di�erent levels of recognition, referred as categorical and sub-

ordinate levels. The categorization subsystem is responsible for the categorical level

recognition. During training, the categorization subsystem is modeled by unsuper-

vised clustering algorithms which group images that are visually similar. Therefore,

images in a cluster do not necessarily share semantic properties. In this work, the pop-

ular K-Means clustering algorithm [42], Expectation-Maximization (EM [35]) cluster-
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ing algorithm, and clustering based on local probabilistic PCA are implemented and

tested.

The subordinate or instance level recognition is performed by subspace projec-

tion and nearest neighbor matching. There are three di�erent unsupervised sub-

space projection algorithms considered in this work: principal component analysis

(PCA [79, 151]), independent component analysis (ICA [9, 34]), and factor analysis

(FA [139]). This approach of modeling the exemplar subsystem as subspace projec-

tion and matching is our interpretation of Kosslyn's description of visual memory as

\compressed images", that do not have topography but contain enough information

to reconstruct the original raw images [82].

In Figure 1.4, the dotted arrows show the run-time execution path. For a given

input image, a set of �lter responses are computed by applying the bank of Gabor

�lters with di�erent orientation selectivity, phase shift, and multiple scales. Then, a

class label is assigned by performing maximum likelihood classi�cation between the

input data and each of the clusters. After this categorical level of recognition, the

input data is encoded as a compressed image using the labeled cluster's basis vectors

computed in the training phase, and the nearest neighbor match retrieves the closely

matched instances.

There are two things to note about the system. First, the run-time processing is

very fast, which is a property found in human expert recognition system. Second,

computing the unique subspace for each cluster formed in the categorization sub-

system realizes a local linear subspace approach. It is unlikely that the images are

drawn from a single global normal distribution as assumed by global linear models,

especially when the objects are from multiple classes. The expert object recognition

system tends to deal with many classes of objects. The proposed system has been

tested in multi-class domains.
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1.3.3 Contributions

The main contribution of this work is a system that implements a psychophysical

model of expert visual object recognition supported by evidence from many related

�elds of study. This system provides explicit connections between computational and

biological models of visual object recognition. Many of the vision theories and systems

developed previously also have biological relevance, but none of them model human

expert object recognition as an end-to-end process, in which every component is

based on a biological model. Kosslyn's model describes visual perception by breaking

the entire process into components according to their functionality and anatomical

localization in the brain. The proposed system strictly follows the structure and

data 
ow depicted in Kosslyn's model and provides each component with a possible

algorithmic mapping based on current work on machine vision technology.

Having di�erent levels of recognition in one framework also allows us to build a

complete vision system that models Tarr and his colleagues' argument for a single,

highly plastic expert visual recognition system [144]. They argue that, for a given

task, a single system can adapt itself for di�erent levels of classi�cation, and that

this is one of the de�ning characteristics of expert recognition [54]. A neural network

model that accounts for this ability has been developed [156], but our approach shows

it in the context of a more complete vision system.

There are many machine vision algorithms that can implement the functionality

of the subsystems in the biological model. Therefore, computational choices have

to be made among them. In the course of developing a biologically plausible vision

system, this work also provides comparative evaluations and performance analysis

among algorithms that have the same gross functionality. Apart from the biological

relevance, it gives valuable information to the machine vision community.

Our interpretation of the biological models and theories for building an arti�cial

vision system is quite simple. As a result, the proposed system is in its early stages at
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this moment. This e�ort, however, provides a baseline for building a more complex,

end-to-end vision system based on functional model of biological vision systems. It

will bene�t both computational and biological vision studies; if the system turns out

to be successful, it provides a practical object recognition system that is biologically

inspired. Otherwise, we can give valuable feedback to the psychological community

about ambiguity, incompatibility with computational techniques, and di�culties in

�tting algorithms to their psychological models. This feedback can reduce the gap

between computational and theoretical �elds of studies and, therefore, facilitate the

realization of machine vision system close to that of humans.

1.4 Outline of Thesis

Chapter 2 reviews the computational approaches for visual object recognition in

studies from both the computer vision and biological vision literatures. Chapter

3 describes Kosslyn's model of the ventral visual pathway in more detail, and also

provides arguments for the existence of an expert object recognition pathway within

the ventral stream. The components of the proposed system are described in Chap-

ter 4 and Chapter 5. In these chapters, the possible computational algorithms for

implementing each of the subsystems are described in connection with the biological

motivation. Chapter 6 shows the results of running the complete system, including

evaluation of the e�ectiveness of the proposed system design. In the course of devel-

oping the proposed system, we performed comparative evaluation on several subspace

projection algorithms to make a computational choice for implementing the exemplar

match subsystem. In Chapter 7, we present these supplementary studies, performed

outside the context of proposed system. Finally, in Chapter 8, we give a summary of

the thesis, present our conclusions, and suggest directions for future work.
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Chapter 2

Computational Approaches for

Visual Object Recognition

The computational approach to human vision goes back to the nineteenth century

when the algebraic formulas for predicting perceived hues from the spectral energy

distributions, perceived sizes and shapes from retinal images, perceived depth from

image disparities between the left and right eyes, and perceived brightness from sim-

ple luminance distributions were formed [13]. Although we still do not have a model

of recognition powerful enough to come close to matching the capabilities of a human,

many plausible theories and models of visual object recognition have been proposed.

The theories and computational models of visual object recognition described later

in this chapter have di�erent explanations of high-level processing { how knowledge

about objects and the world is stored internally, how the information extracted from

the sensory input is represented, how memory can be activated under varying con-

ditions, and how the representation of the input is matched against representations

of objects in memory. The two dominant paradigms are the model-based or view-

invariant approach and the appearance-based approach.
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2.1 Model-Based Approaches

In model-based approaches, objects are represented as 3D geometric models, and

pose constraints direct the process of matching abstract image features to model fea-

tures [115, 20, 92, 93, 66, 19]. Therefore, the observer's viewpoint is assumed not

to a�ect his perception of the object. This approach goes back to one of the most

in
uential books on object recognition, David Marr's Vision [96]. According to Marr,

objects are recognized by matching salient 3D features of a scene to abstract models

containing lists of these features and their interrelations. The processing is accom-

plished through a sequence of stages: the primal sketch which contains signi�cant

changes in luminosity across the image, a 21

2
D sketch which speci�es for each portion

of the visual �eld the depth of the corresponding distal object and the local orienta-

tion of the surface at that point, and, �nally, the full 3D representation of space and

objects within it.

Other than Marr, there are various researchers employing the model-based ap-

proaches to object recognition. Brooks introduced a vision system called ACRONYM

[28], representing the �rst signi�cant e�ort to build full 3D model-based system based

on the parameterized representation of an object. Grimson intensely studied the role

of geometric measurements and constraints in determining the pose of object in the

scene and the correspondence between image features and model features [56]. Find-

ing optimal correspondence and a pose of a 3D object is the core part of model-based

approaches. Beveridge & Riseman [19] proposed search algorithms that e�ciently

solve the problems under full 3D perspective.

Among the notable successful computational work based on full 3D models of

objects are Lowe [92, 93] and Huttenlocher & Ullman [66]. Lowe's model is directed

primarily toward determining the orientation and location of objects, even when they

are partially occluded by other objects, under conditions in which exact 3D object

models are available. For a viewed image, edges are detected by �nding sharp changes
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in image intensity values across a number of scales, and then grouped according to

viewpoint-invariant properties { collinearity, parallelism, and proximity. A few of

these image features (edges) are matched against those of the object model generated

from a particular orientation of the object that would maximize the �t of those

image features. Then the location of additional image features are proposed and

their presence in the image is evaluated.

Whereas Lowe's model is limited to images with straight edges, Huttenlocher &

Ullman's model has the potential for recognizing a broader class of objects, including

those with curved surfaces1. It has somewhat similar characteristics to Lowe's model.

All the object models that are candidates for possible matches for the image are

aligned (rotated) before they are matched with the image and tested for geometric �t.

This alignment model o�ers a possible explanation for those cases in which recognition

depends on re-orienting a mental model.

In the �eld of psychology, Biederman introduced a theory of human visual ob-

ject recognition called Recognition by Components (RBC) [20]. Instead of using full

3D models of objects, RBC models objects as combinations of volumetric primitives

called geons and matches the primitives and their interrelationships extracted from

images to those of object models to recognize an object. To determine a set of geons

present in the scene, Biederman adopts the non-accidental instances of viewpoint-

invariant properties, such as collinearity, curvilinearity, symmetry, parallel curves,

and co-termination, introduced by Lowe. Since non-accidental properties are gen-

erally viewpoint invariant, geons can be di�erentiated by their invariant proper-

ties in the 2D image. The use of those properties for generating and representing

geons is supported by theoretical and empirical evidence, as well as psychological ev-

1Later, Lowe extended his model so that it can be applied to images including curved surfaces

as well [94].
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idence [20]. Biederman also showed that viewpoint-invariant properties are employed

by humans to achieve invariance in their recognition of novel objects at new orien-

tations in depth [22]. Once the arrangement of geons is extracted from the image,

it is matched against that of objects in memory. The simplicity of geons with the

largely viewpoint-invariant properties makes the recognition relatively robust when

the objects are rotated in depth, novel, or extensively degraded [21].

An example of recognition-by-parts had also been proposed by Pentland [115]

in the computer vision community, who used deformable implicit functions (su-

perquadrics) to model objects. Biederman's RBC theory was adapted by the object

recognition community and several geon-based vision systems have been introduced.

Among them are Bergevin & Levin's PARVO (Primal Access Recognition of Visual

Objects) [37] and OPTICA by Dickinson et al. [38]. Also, Biederman proposed his

own implementation of geon theory called JIM, using a neural-net model [65]. Al-

though these systems show some practical use of geon theory, Dickinson mentioned

that there remain obstacles for realizing successful geon-based recognition: the re-

covery of geons from real imagery, the di�culty in explicitly modeling real objects

using geons, and the lack of representational power provided by geons for the task of

interacting with the world [37].

Whether representing objects using complete 3D models or a structural descrip-

tion specifying the relationships among viewpoint-invariant volumetric primitives,

model-based approaches have a number of problems. First, the modeling systems put

limitations on the types of objects that can be recognized, and second, acquiring ac-

curate 3D models of objects is often a very di�cult task. In most cases, model-based

approaches use human-made models and/or require CAD-like representations, but

such representations are not always available, especially for non-rigid objects. Other

problems are unreliable feature extraction methods and the combinatorics of feature

matching for constructing 3D shapes from images.
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In addition to the computational problems, there are psychological arguments

against model-based approaches. Pizlo [117] dismisses model-based approaches on

the grounds that they rely on depth cues which he claims are unimportant, since in

their absence we can still recognize shapes. This oversimpli�es matters somewhat

because model-based schemes such as Biederman's [20, 22] can also be applied to

objects without textural or other depth cues, and because the human visual system

may be redundant; removing one source of information may not necessarily imply

sudden failure. However, empirical evidence of a monotonic relationship between

recognition performance and viewing angle provides further evidence against model-

based schemes.

The correlation between recognition time and the object's disparity from a previ-

ously learned pose was �rst reported by Shepherd & Metzler [135]. It can be inter-

preted as evidence for mental rotation of internal 3D models of objects; however, it

has been shown that the recognition accuracy drops as a function of orientation dis-

parity from a learned view [127], which contrasts to the predictions of model-based

theories. Similar results were reported by B�ultho� & Edelman [29], and they also

showed that if the orientation of an object falls between the two previously learned

views, it can be recognized better than when it is outside of the two views. From this

theory, they proposed an object recognition model that uses nonlinear interpolation

of stored 2D views [43].

Recently, similar psychophysical results have found in more thorough experiments

by Tarr and his colleagues [144]. They found a pattern of viewpoint dependence which

systematically related to the distance from the previously trained views for both 2D

and 3D object recognition rotated in the image plane and in depth [143, 146]. Also,

it is shown that the viewpoint dependent mechanisms are involved in both basic- and

subordinate-level recognition [50, 60, 61]. They conclude that viewpoint dependent

processes can be generalized for a range of recognition tasks with di�erent levels of
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recognition goals.

2.2 Appearance-Based Approaches

Appearance-based approaches model 3D objects as a set of 2D images where each

of the images corresponds to a speci�c view of the object. Therefore, they dispense

with the need for storing explicit 3D models and recognize objects by matching the

input image against the stored views in the set. In other words, appearance-based

approaches consider object recognition to be an image retrieval problem, while model-

based approaches view it as geometric-model retrieval problem. Since appearance-

based approaches may make the recognition process faster, more general and robust,

and also make it easier to obtain training data, the interest in appearance-based

techniques has grown quickly. As a result, many appearance-based theories and

methods have been proposed. They can be categorized roughly into three methods:

view interpolation, feature space matching, and subspace projection methods.

2.2.1 View Interpolation Theory

In view-interpolation theory, recognition is generalized to novel views by linear/non-

linear interpolation of training views. As described in the previous Section, Edelman

& B�ultho�'s work [43] using non-linear interpolation of stored 2D views falls into this

category. Other notable models are those of Poggio & Edelman [119] and Murase &

Nayar [108]. Poggio & Edelman described a view-interpolation theory of recognition

that is particularly well-suited to the constraints imposed by biological implementa-

tions. Their model is based on the mathematical observation, described by Ullman

[153], that the views of a rigid object undergoing transformation such as rotation in

depth reside in a smooth low-dimensional manifold embedded in the space of �xed

2D views of the same object. When the stimulus view of an object is presented inter-

mediate receptive �eld responses { measurement-space distance between the stimulus
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view and the stored views { are formed using Gaussian radial basis functions (RBFs)

centered at the stored views. Then, the responses are used to linearly interpolate

stored views. If enough stored views are available, the model can account for the

variability in pose of the target object.

Murase & Nayar's model is similar to Poggio & Edelman's approach, except that

the low-dimensional manifold is formed using principal components of an image train-

ing set. The connection between principal components and the low-dimensional sub-

space called eigenspace associated with the training images is described in Section

2.2.3. In Murase & Nayar's approach, two types of subspaces are used: the universal

eigenspace formed with all images in the learning set, and the object eigenspace com-

puted from individual object image sets. The appearance representations of objects in

an eigenspace describe a smoothly varying manifold. Murase & Nayar use a standard

cubic-spline interpolation algorithm to compute the manifolds in both universal and

object eigenspaces. An input object is recognized by �nding the closest manifold in

the universal eigenspace. Once the object's identity is known, it is projected onto the

corresponding object eigenspace to estimate the pose by computing the parameters

that minimize the distance between the projected point and the manifold.

2.2.2 Feature Space Matching Methods

In this approach, objects are represented by feature vectors, and recognition is

achieved by matching the feature vector computed from an image with stored model

features. This is by no means a new approach. It has been widely used in traditional

pattern recognition, where the goal is to �nd decision boundaries in the feature space

that separate patterns belonging to di�erent classes. Also, it shares a common mech-

anism with model-based approaches in that features are extracted from input and

compared with stored model features. However, unlike the model-based approaches,

the stored features in appearance-based approaches are all extracted from 2D views,
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therefore no 3D model extraction from input features is involved. The main concerns

in the feature-space matching method are what kind of features are salient (i.e. dis-

criminant), how to combine the di�erent types of features, and how to match them

with the stored feature vectors.

Rao & Ballard proposed an active vision architecture in which an image is repre-

sented as a high dimensional vector of responses to an ensemble of Gaussian derivative

spatial �lters at di�erent orientations and scales for fast computation of visual routines

[126]. To identify an object, image and model response vectors are compared using a

similarity metric called normalized dot-product (or correlation) and a straightforward

voting process is used to determine the winning model. The small changes in viewing

position which causes changes in a few individual �lter responses are ameliorated by

the reliance on a large number of �lter responses. As in most other appearance-based

methods, signi�cant changes in viewing angle are handled by storing feature vectors

from multiple views.

Mel represents a view of an object with a set of feature channels in his 3D ob-

ject recognition system called SEEMORE [100]. The features used in the system are

those that are sensitive to object identity, such as an object's color, shape, or texture,

and relatively insensitive to changes unrelated to object identity, such as pose. Each

feature channel is the sum of responses of elemental nonlinear �lters, which are pa-

rameterized by position and internal degrees of freedom, over the entire image. The

training views cover multiple viewing angles and scales for each object. A nearest-

neighbor classi�er �nds the closest match between the observed feature vector and

the stored models.

Another feature-based approach to be noted is Schmid & Mohr's method of com-

bining greyvalue invariants with local constraints [132, 133]. In this method, features

are computed by applying di�erential greyvalue invariants [80] at several scales to

interest points. These features locally characterize the input and, since the interest
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points are the locations with high information content, they are highly discriminative.

Schmid & Mohr use a voting scheme and multi-dimensional hash table for robust and

fast matching. To reduce false matches, they also add a simple constraint that spec-

i�es the geometric relationship between neighbor interest points. Rotation in depth

is handled by storing multiple views for each object.

2.2.3 Subspace Projection Methods

In subspace projection methods, unknown images are projected onto a space formed

by basis components of an image data set and similarity is measured between the

projected representations. The most popular procedure used is Principal Component

Analysis (PCA). PCA builds a global linear model of the data set, which is an n di-

mensional hyperplane spanned by the leading n eigenvectors of the covariance matrix

of the data set. The number of eigenvectors, n, is determined by the amount of error

that can be tolerated. PCA produces an optimal linear basis in that the expected

squared distance between an input and its reconstruction from an n dimensional en-

coding is minimized. Since n is generally smaller than the dimension of image space,

PCA has been commonly used for compression and encoding as well as for object

recognition. Kirby & Sirovich [79] �rst showed that PCA is an optimal compression

scheme for a set of images and Turk & Pentland [151] were the �rst to apply PCA

to face or object recognition. Later, Murase & Nayar [108] applied PCA for learning

complete parameterized models of objects. As described earlier, a set of images of

an object are projected onto eigenspace and a manifold, which is parameterized by

pose and illumination, is formed by interpolating projected views. Their method has

been successfully applied to recognize more general objects with complex appearance

characteristics [110].

Factor Analysis (FA) is a statistical technique similar to PCA for explaining the

variance in a data set in terms underlying linear factors. FA was originally developed
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in social sciences and psychology, where the major use of FA is to develop objective

tests for measurement of qualities such as personality and intelligence [139]. Its goal

is to explain the correlations among a set of observed variables in terms of a smaller

number of relevant and meaningful factors. A single global FA model, however, has

not been widely exploited for object recognition. Instead, recent work on recognition

tasks �ts mixtures of factor analyzers to data sets using EM algorithm [47, 55, 63].

Linear Discriminant Analysis (LDA) has also been used for computing the basis

vectors for a data set. Given the class assignments of objects in the training data set,

LDA �nds the discriminant axes that maximize between-class scatter while minimiz-

ing within-class scatter. When the number of classes is c, such axes are de�ned by

the c � 1 eigenvectors associated with the largest eigenvalues of a matrix formed by

multiplying the inverse of the between-class scatter matrix and the within-class scat-

ter matrix. Therefore, the problem becomes mathematically the eigenreduction of a

real-valued matrix as in PCA. LDA has been used for �nding discriminant features

for image retrieval [137, 138] and face recognition [161].

Recently, another procedure called Independent Component Analysis (ICA) [34]

has been used for face recognition [9, 122]. While PCA decorrelates the signals, ICA

performs a linear transform to make the resulting variables as statistically independent

from each other as possible. Therefore, the basis axes in ICA are not necessarily

orthogonal to each other. ICA �rst received attention in signal processing, where

it has been used to recover independent sources given sensor observations that are

unknown linear mixtures of unobserved independent source signals [34, 15]. Later,

Bell & Sejnowski [16] proposed that the independent components of natural scenes are

localized and oriented edge �lters similar to Gabor �lters. More recently, ICA has been

applied for representing high dimensional data for object recognition and classi�cation

[27], and comparative studies have been performed between ICA and PCA for face

recognition [6, 9, 7, 10, 90, 105, 159] and facial expression coding [7, 8, 39].
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2.2.4 Other Appearance-Based Methods

Although appearance-based object recognition methods have recently demonstrated

good performance on a variety of problems, they also have some restrictions. Many

methods that use basic image features to hypothesize the identity and pose of ob-

jects in a scene need to compute correspondences between image features and model

features. The complexity of determining feature correspondence grows exponentially

with the number of extracted image features { this is the same case as in the model-

based approaches. Moreover, the image feature extraction and grouping processes are

unstable, often producing broken and spurious features. Also, many appearance-based

approaches require good �gure-ground segmentation of the object, which severely

limits their performance in the presence of clutter, partial occlusion, or background

changes.

More recently, other appearance-based approaches have been proposed to over-

come many of these problems. Among them are Schiele & Crowley's multi-

dimensional receptive �eld histogram matching [131] and Nelson's theory of using

2-stage associate memory for recognizing 3D objects [111]. Although both approaches

use local features, recognition is not achieved simply by matching corresponding fea-

tures. Shiele & Crowley's approach is motivated by the color histogram work of Swain

& Ballard [136], in which objects are modeled by their color statistics. Shiele &

Crowley represent objects using joint statistics of local characteristics. The probabil-

ity density functions for local characteristics are approximated by multi-dimensional

histograms and recognition is achieved by comparing probability distributions using

histogram matching or by computing probabilities for the presence of objects based

on a small number of measured local characteristics.

Nelson's approach combines an associative memory with an evidence combination

technique. The basic idea is to use distinctive local features called `keys' and two

stages of a general purpose associative memory. The recognition system uses key fea-
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tures to extract hypothesis for the identity and con�guration of all objects in memory

that could have produced such features. The second stage associative memory takes

the hypotheses and groups them into clusters that are mutually consistent within a

global context. This step is keyed by con�gurations that represent 2D rigid trans-

forms of speci�c views. The system lists object identity and pose hypotheses. Since

the system uses merged percepts of local features rather than the complete object

appearance, it is less sensitive to background clutter and occlusion.

2.3 Summary

Over the last decade, there has been tremendous progress in visual object recognition.

Researchers in various �elds of study have proposed a large number of theories and

models. Those described in this chapter are just a part of the larger literature. How-

ever, they show the prominent works in the two dominant, long debated paradigms

for visual object recognition. Although we are still short of a general model, a body

of work in psychology and psychophysics [29, 43, 127, 135] provides converging ev-

idence for view-based representations of objects in the human visual system, and

therefore support appearance-based approaches as a more plausible candidate and

more relevant to biological systems.
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Chapter 3

The Ventral Visual Pathway and

Expert Object Recognition

In this chapter, we provide a detailed description of Kosslyn's model of the ventral

visual pathway. The functional role of each component in the ventral visual pathway

is discussed with the biological evidence supporting it. We also review studies on the

existence of an expert object recognition pathway mostly described by Tarr and his

colleagues.

3.1 Kosslyn's Functional Model of Ventral Visual

Pathway

Kosslyn's model of object identi�cation summarized in the �rst chapter involves a

broad range of research areas, covering almost every aspect of a vision system. For

example, it includes integration of 2D and 3D processing and knowledge-base mainte-

nance. In this study, we focus on visual object recognition without 3D modeling. In

fact, this can be considered as a computational goal of the ventral system in Kosslyn's

model. In this chapter, we provide a more detailed description of Kosslyn's model of

the ventral visual pathway shown in Figure 3.1.
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Figure 3.1: Initial processing components and ventral visual pathway of Kosslyn's
model.

3.1.1 Visual Bu�er

The visual bu�er refers to the �rst cortical area that receives signal from the eyes.

(This area is known as area V1, primary visual cortex, striate cortex, OC, and area

17 ([82], pp. 13). See the glossary in Appendix C.) In Kosslyn's model, the visual

bu�er is the place where images are produced as a pattern of neuronal activation. It

can be activated not only through the signal from the eyes, but also by information

stored in memory. The spatial structure of the visual bu�er is \retinotopic" in the

sense that the neurons in this area are organized to preserve the arrangement of a

visual image on the retina { nearby neurons are activated by the stimuli in adjacent

positions in the visual �eld.

Along with PET study results [46], striking evidence of the retinotopic structure
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of the area is provided by Tootell et al. [150]. They injected a Macaque monkey with

2-deoxyglucose (2DG) and 
ashed a visual stimulus composed of eight rays and �ve

logarithmically equally spaced concentric rings for 25 to 30 minutes. The animal was

then sacri�ced and the surface of the striate cortex was smoothed out. The 2DG map

of the surface showed that the pattern of brain activation in the cortex preserved

the structure of rings and rays in the input stimulus (see [150] or pp.14 in [82] for

the resulting 2DG map). Hence, the content of the visual bu�er is considered to be

represented as transformed versions of the retinal image.

The sophistication of the image-like representation in the visual bu�er, however,

should not be underestimated: it appears to be a multi-scale pyramid. Adelson et al.

[2] proposed an image representation based on certain aspects of early information

processing, such as sensitivity to spatial and size frequencies, in the human visual

system. They proposed images be represented as the responses to basis functions,

which resemble the receptive �elds in the human visual system, of many sizes and

locations [2]. Later, Burt & Adelson presented an e�cient encoding scheme of an

image as a Laplacian pyramid [30]. Marr [96] also considered a multi-scale represen-

tation for the edge detection process in his theory of vision. It is also known that

multi-scale representations are useful for many low-level computations [1].

3.1.2 Attention Window

More information is present in the visual bu�er than can be processed in detail, and

an object can appear at di�erent positions, sizes, and orientations on the retina.

Thus, a neural mechanism is required for directing our attention to a useful portion

of the visual �eld to accomplish the task at hand. The role of the attention window in

the model is to select a region in the visual bu�er. The pattern of activation within

the region is passed through deeper into the system for detailed processing. The

attention window can be shifted rapidly to any part of the visual bu�er, and it can
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also be scaled to di�erent size ranges [17, 82].

Psychological evidence for an internal adjustment of the attention window comes

from the cueing e�ect. Eriksen and Ho�man [45] show that, if a target location has

been previously cued, then the response time for detecting the target is faster than

when the location is not cued. In their experiment, the cueing interval was shorter

than the time needed for eye movement, thus providing a evidence for covert attention

shifting.

Another experiment performed by Cave and Kosslyn [32] showed the subject di-

amond and rectangular shaped stimuli successively. The subject was asked to decide

whether the sides of each stimulus were of equal length. The resulting response time

increased linearly with increasing size disparity. That is, when the second stimulus

appeared at an unexpected size, the subject had to adjust the size of the attention

window to cover the region occupied by the stimulus. In fact, Kosslyn hypothesizes

that the size of the attention window is adjusted by selecting the appropriate level of

scale of the multi-scale representation in the visual bu�er ([82], pp.95).

Anderson and Van Essen presented a biologically plausible model of attention

shifting [4]. They introduced \shifter circuits", which control information 
ow in the

visual pathway by dynamically linking and aligning arrays of neurons in di�erent

levels. The circuits also preserve local spatial relationships. The shifter circuit suc-

cessively maps focused regions to the cortical module in higher levels until it reaches

a single \attention center" at the highest level. In this way, information from the

attention window located at an arbitrary position in the visual bu�er is routed to

a high-level cortical area. Later, Olshausen et al. added a scaling mechanism and

autonomous control for shift and scale [113].
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3.1.3 Preprocessing Subsystem

The pattern of the region within the attention window is sent to the preprocessing

subsystem, which extracts object properties, such as shape, color, and texture. These

properties are then sent to the pattern activation subsystem where matching to the

stored representation occurs.

As mentioned earlier, information received in the visual bu�er produces a pattern

of activation. Thus, it is possible that di�erent objects are distinguished by the

di�erential activity of this area. However, the visual bu�er is neither homogeneous

nor isotropic, which means that identical objects at di�erent positions, sizes, and

orientations activate di�erent cells in the area, projecting di�erent input images onto

the visual bu�er. Therefore, object properties that are relatively invariant under

scale, translation, and rotation are required. These properties have been called non-

accidental properties [91], since it is highly unlikely that an accidental alignment of

eye and object features would produce such properties.

Non-accidental properties include collinearity of points or lines, curvilinearity of

arcs, shape symmetry, parallel curves, and co-termination [20]. The use of these

properties in visual recognition is well supported by theoretical and psychological ev-

idence. The principle of perceptual organization is that certain properties of edges in

2D images are taken by the visual system as strong evidence for the same properties

in the 3D world [91]. Results from a naming experiment performed by Biederman

also provide supporting evidence [20]. In the experiment, subjects were shown draw-

ings of objects with part of the contour removed; in one case all the non-accidental

properties were intact, in the other case, the non-accidental properties were deleted.

The subjects spent more time naming the object when the non-accidental properties

were removed.

Since non-accidental properties describe what is invariant under viewpoint

changes, they are powerful and relatively general. Unfortunately, some objects may
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have identical non-accidental properties despite being di�erent. (An example given

by Kosslyn is a pen and a mechanical pencil [82]). When one needs to distinguish a

speci�c object from those having the same non-accidental properties, other informa-

tion should be used. Also, there are many non-rigid natural objects (e.g. trees and

humans) that can not be easily described by non-accidental properties. In circum-

stances, where non-accidental properties are non-discriminating, other characteristics

have to be used for recognition. Kosslyn refers to these characteristics as signal prop-

erties [82]. The preprocessing subsystem extracts signal properties via two di�erent

principles. First, perceptual units, such as regions of homogeneous color and texture

and sets of contiguous elements, are extracted. While the perceptual units are or-

ganized by bottom-up processing in the visual bu�er, the preprocessing subsystem

can also be tuned through top-down processing to extract properties speci�c to the

object to be recognized.

An interesting example that shows the use of signal properties in a human visual

system is the empirical experiment on sexing of day-old chicks performed by Bieder-

man and Shi�rar [24]. The subjects were shown pictures of cloacal regions of male and

female chicks, and asked to judge the sex of each chick. After they were trained to at-

tend to the shape of a critical cloacal structure, the accuracy was increased compared

to the pre-training case. Moreover, their analysis more closely resembled that of the

professional sexers after training. This suggests that object speci�c characteristics

can be learned and used for perceptual distinctions.

3.1.4 Pattern Activation Subsystem

The input is �nally matched with the stored information in the pattern activation

subsystem. There are two important issues regarding this process: the type of repre-

sentation to be used to store information, and how the input is matched to the stored

representation.
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The pattern activation system stores information in a distinct physiological struc-

ture called visual memory. It has been shown in monkeys that the infero-temporal

area of the cortex, which appears to store visual memories, is organized as repeated

sets of columns [48]. Fujita et al. recorded cell responses to sets of stimuli through the

vertical penetration in the cortex as well as across the surface. The results show that

neurons with similar selectivities span most of the cortical layers and are clustered in

patches across the cortical surface. Moreover, they found that the preferred stimuli

shared by vertical columns of neurons were not restricted to shapes, but could be

other visual features of objects such as gradation [48].

Kosslyn argues that the representation in visual memory should include a wide

range of properties so that the image can be reconstructed from the representation.

Non-accidental and signal properties are used to index these representations. From

the columnar structure in the infero-temporal area of cortex, Kosslyn suggests that the

long-term representation of an image would be a feature vector across the functional

columns, called a compressed image [82]. According to Kosslyn, the compressed image

representation lacks topography; however, his intention may be the lack of explicit

physical topographic structure, since topographic information has to be implicitly

included in the representation to be able to reconstruct the image. The precise

representation of compressed images has not been de�ned; however, it seems that

the representation should be determined according to the reconstruction scheme. For

example, if coarse coding is used to reconstruct the image, the relative strengths of

inputs from larger regions have to be stored in high-level visual areas [82].

The pattern activation subsystem is divided into two separate, more specialized

subsystems called the `category pattern activation subsystem' and the `exemplar pat-

tern activation subsystem'. The category pattern activation subsystem encodes cat-

egory information and classi�es an input as a member of a visual category, while

the exemplar pattern activation subsystem stores information about instances, and
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therefore recognizes speci�c exemplars. This hypothesis is based on the idea that

characteristics that are critical for identifying particular instances may not help to

classify them as a member of a category, so the system must put aside that infor-

mation when it categorizes the input. In other words, the information-category and

information-exemplar mappings may be incompatible.

There have been many experiments conducted to show that exemplar recogni-

tion and categorization are performed in separate parts of the brain. For example,

Marsolek [98] conducted a visual pattern categorization task and found that the

performance for categorizing previously unseen prototypes is better when they are

shown initially to the left hemisphere of the brain. Similar results were reported by

Vitkovitch & Underwood on object/non-object (combination of object's parts) deter-

mination tasks [155] and by Sergent et al. on a PET study [134]. Milner's study of

patients whose right temporal-lobes were removed also reported that patients showed

a selective de�cit in memory with the tasks involving speci�c exemplar matching [103].

This empirical evidence suggests that the right hemisphere plays a special role in the

representation of speci�c exemplars, while the left hemisphere is more involved in

accessing stored categorical representations.

Jacobs & Kosslyn further hypothesize that higher resolution encodings are needed

for exemplar identi�cation than for categorization; therefore, relatively large overlap-

ping receptive �elds are used for recognizing speci�c exemplars [72, 82]. They verify

their hypothesis by showing that the receptive �elds of arti�cial neural networks

learned to encode speci�c exemplars are larger and overlap more than the receptive

�elds of networks trained to categorize shapes [72]. Kosslyn listed other experimental

evidence that supports the di�erence of receptive �eld sizes according to the role of

the subsystem ([82], pp. 182{185). He also notes that size di�erences do not always

alter performance; rather, it depends on circumstance and the nature of the stimuli.

For example, simple detection tasks show no di�erence in performance between the
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left and right hemispheres. So the hemispheric di�erences may re
ect attentional bi-

ases rather than the number of hard-wired connections to neurons with di�erent-sized

receptive �elds.

3.1.5 Imagery Feedback

The properties extracted from the input by the preprocessing subsystem and their

relative positions are matched to those of stored visual representations in the pattern

activation subsystem. If the properties are distinctive enough, the representation of

the best-matching object is strongly activated, and recognition occurs. However, if

the activation is not strong enough, the best-matching object sends feedback to the

visual bu�er. The feedback generates a mental image in the visual bu�er [85], which

augments or \�lls in" the input image. Indeed, the mapping from the representation

to the visual bu�er is continuously adjusted until the feedback augments the input

as well as possible ([82], pp.145).

This top-down, imagery feedback process is similar to Lowe's idea - generate an

image by activating a stored model and compare it to the input image [91, 92, 93].

Why not simply match the input bottom-up to the stored image representation,

when the extracted features are too weak to make a strong prediction? According

to Kosslyn, matching compressed images (the internal representation) directly is the

same as simple template matching, and therefore has all the problems that approach

entails (especially with the variations of object views). He also considers deformable

templates, �a la Ullman [152], as being incompatible with the anatomical structure

of the brain; there is no topographic structure in the cortical area that stores visual

memories [36]. Instead, he suggests that the encoded compressed image representation

is used to reconstruct the image so that information that is implicit in the stored

representation can be accessed. For example, if local geometric properties of a shape

are implicit in the compressed image representation, it would be di�cult to generalize
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recognition over variations in the properties when the comparison is made with the

stored representation. The reconstructed image in the visual bu�er makes those

properties explicit, therefore makes recognition of the object more general [82].

Several experimental studies involving imagery feedback in visual perception have

been conducted. Cave and Kosslyn [32] use simple superimposed geometric stimuli

to show that stored shapes are adjusted to match the input. Koriat et al. [81] asked

subjects to identify Hebrew letters with orientation changes. In their experiment, the

response time increased with greater orientation disparity from the preceding letter,

and this only happened when the previously seen letter is the same as the letter

currently showing. Furthermore, the time with large orientation disparity was still

faster than the time for identifying di�erent letters, which suggests that the previous

letter may cause a priming e�ect and may be used for imagery feedback. In other

words, less bottom-up processing makes it faster. Michelon and Koenig [101] also

tested the participation of imagery feedback in perception using a priming paradigm.

Besner conducted an experiment [18] suggesting that imagery feedback is used in

some cases, but not all the time. In their experiment, subjects were asked to judge

whether a pair of stimuli were the same or di�erent. In the �rst case, the judgment

had to be made between a shape and the same shape with di�erent orientation and, in

the second case, the discrimination was between di�erent shapes. That is, for the �rst

case, \di�erent" was required when the stimuli had the same shape but a di�erent

orientation while di�erent shapes made \di�erent" classi�cation for the second case.

In the �rst experiment, the response time increases with the size disparity equally

on the \same" and \di�erent" trials. In contrast, in the second experiment the size

disparity had less e�ect on the \di�erent" trials than \same" trials. Kosslyn interprets

the results as follows: If the shape is di�erent, the non-accidental properties are

distinctive enough to make a decision based on the initial matching process, therefore

no imagery feedback occurs. If the shape is the same, then the initial matching process
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can not distinguish the stimuli based only on non-accidental properties, therefore

imagery feedback is generated. In this case, it takes more time because the mapping

is adjusted until the size and orientation disparity are matched.

It should be noted that the description of the pattern activation subsystem in

the overall recognition system is imprecise. As discussed above, it is not clear what

kind of representation is used for matching properties, or how the matching process

is accomplished. Kosslyn doubts that a template-like image is fully generated and

compared to the input. He says, \rather, a better way to conceive of this imagery-

feedback process involves the concept of vector completion" ([82], pp.121). Kosslyn

also says that vector completion typically does not produce a fully formed image,

therefore di�ers from template matching; however, he never describes what it actually

measures.

3.2 Expert Object Recognition

In [102], Milner and Goodale have argued for modularity within the dorsal pathway:

anatomically distinct regions in the dorsal pathway are modularly arranged according

to their roles in achieving di�erent components of actions. By implication, the ven-

tral stream should also be composed of multiple, anatomically distinct components

performing di�erent functional roles. This hypothesis is veri�ed by brain imaging

studies, which show preferential activity patterns to di�erent classes of objects in

discrete areas of the ventral pathway. Ishai et al. used fMRI to compare activation

in the ventral occipital and temporal cortex of normal subjects while they observe

images of faces, houses, and chairs. The results showed di�erent regions responded

preferentially to images of objects in di�erent categories [70, 71]. Similar results were

found using PET scan while performing face and scene processing tasks [109], and

using fMRI during mental imagery of faces and places [112].

Recently, brain imaging studies for functional specialization in the human cerebral
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cortex have concentrated on the face recognition task. In many studies, a region in

the lateral portion of the fusiform gyrus is consistently reported as a face-speci�c

area which responds more to faces than to other objects. For example, fMRI images

scanned while patients were shown images of human faces revealed activation in the

fusiform gyrus in addition to the primary visual cortex [33, 77, 125]. Subsequent PET

studies con�rmed the activation in the fusiform gyrus, while adding another locus of

activity in the right inferior frontal gyrus, an area previously associated through lesion

studies with visual memory [95]. Moreover, in both the fMRI and PET studies, the

activation was unique to the task of face recognition. Images of places triggered

another, distinct pathway with activation in the parahippocampal gyrus [109, 112].

The specialization for processing faces is also observed in psychological and behav-

ioral studies. For example, Tanaka and Farah reported that detection of the di�erence

in individual face parts is facilitated when the entire face is presented. This holistic

or con�gural e�ect was not found for non-face objects or inverted faces [141]. Kaloc-

sai and Biederman also showed the con�gural characteristics of face recognition by

comparing the recognition performance for complementary pairs of images of faces

and non-face objects created by having every other Fourier component [74]. These

�ndings in neuroimaging and behavioral studies led to speculation that evolution had

created a special visual pathway for recognizing faces, and the locus of activation

within the fusiform gyrus was dubbed the fusiform face area (FFA) [78].

The view of face-speci�c mechanisms, however, has been challenged by more recent

studies. The argument is that the evaluation for face-speci�c mechanism is incom-

plete in that those previous studies did not consider all the factors that play a role

in determining visual recognition behavior [142]. For example, in many cases, the

evaluation was conducted for di�erent level of perceptual categorization { non-face

objects recognition often involves categorical-level judgments while face recognition

involves individual-level judgments { and the degree of perceptual expertise with a
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given class was di�erent: humans are highly experts in recognizing faces compared to

other general objects.

Of particular interest in the argument is the e�ect of domain expertise. An elec-

trophysiological study employing event-related potential (ERP) showed that the early

negative component N170, whose magnitude is signi�cantly larger during face pro-

cessing, was found when dog and bird experts performed categorization in di�erent

levels for objects in their domain of expertise [140]. In fact, N170 was larger when

the task was performed in the domain of expertise than outside of the domain of

expertise. These results indicate that face-speci�c mechanisms are also recruited for

expert object recognition.

Most notably, a body of work on perceptual expertise by Tarr and Gauthier,

and their colleagues provides very thorough and strong evidence for a mechanism

specialized for recognizing objects in the expert domain. They factored in the past

experience of their subjects, and found FFA activation in dog show judges when they

view dogs, and in bird experts when they view birds [145]. Most convincing of all,

Tarr and his colleagues show that as people learn to become expert at recognizing

a class of objects, their recognition mechanism changes [49, 51, 53, 145, 157]. They

created a class of characters called greebles, which in addition to individual identities

can be grouped according to gender and family. When novice subjects view greebles,

fMRI results show that their FFAs are not active. The subjects are then trained

to be experts at recognizing greebles, where the de�nition of expert is that they

can identify a greeble's identity, gender, or family with an equal response time. After

training, the FFAs of these subjects are active when they view greebles. It is therefore

reasonable to conclude that the previously known face-speci�c pathway is recruited

more generally for expert object recognition, and the FFA is part of the pathway.

To model and evaluate expert object recognition, it has to be speci�ed what

properties constitutes expert object recognition. Gauthier and Tarr use categorizing
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objects at multiple levels with equal time as a de�ning characteristic of expert recog-

nition in their greeble studies [54]. For example, people recognize faces they have

never seen before as being human faces and, at the same time, they can instantly

identify familiar faces. Another property of expert object recognition is that it is

viewpoint dependent. The response of the FFA to images of faces presented upside-

down is minimal [59]. The FFA responds to faces viewed head-on or in pro�le, but

not to images of the back of the head [149]. In [52], upright and inverted greebles are

presented to both novices and expert subjects. While novices do not show activation

in FFA, the activation pattern is remarkably di�erent for the greeble experts and

clearly shows the presence of FFA in fusiform gyrus.

The second property of expert object recognition indicates that recognizing famil-

iar objects from familiar viewpoints is di�erent from recognizing objects from novel

or unusual viewpoints. Since our work focuses on modeling the expert object recogni-

tion pathway in the ventral visual stream, we assume that the system can be trained

for given classes of objects viewed from �xed viewpoints as humans learn from expe-

rience. The system's structure is designed following Kosslyn's ventral stream model,

except for the attention window and imagery feedback mechanisms. Expert object

recognition also indicates that the same pathway may be recruited by di�erent classes

of objects as people gain expertise for objects, even though the visual features are

very di�erent. This justi�es our application of the same underlying mechanism to

recognizing objects in di�erent domains in the experiments performed in this study.
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Chapter 4

Early Stages of the System

In the preceding chapters, we described computational approaches and biological

models of object recognition. In this chapter and the next, we describe an algorithmic

implementation of Kosslyn's model of visual object recognition in the context of

expert object recognition. The computational methods used for implementing the

proposed system are described in relation with the biological theory of vision for the

corresponding functional role.

Kosslyn's model of visual object recognition described in Section 3.1 is divided

into three components. An initial processing component provides inputs to the ventral

visual pathway. At the beginning of the ventral pathway, a preprocessing subsystem

extracts features and passes them to the pattern recognition subsystem, which per-

forms classi�cation and recognition of the input objects (Figure 3.1). In this chapter,

we �rst describe the initial processing as image patch extraction and transformations.

Then, we describe the features used and how those features are generated from the

data provided by the initial processing component (Figure 1.4). The next chapter

will describe algorithms for classi�cation and exemplar recognition.

4.1 Patch Extraction

As shown in Figure 3.1, the input to the ventral visual pathway is the visual bu�er,

including but not limited to the attention window. In perception, the visual bu�er
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receives far more information than can be processed in detail. Also, an object in

a scene can appear at di�erent locations, sizes, and orientations on the retina. The

attention window is capable of selecting a region in the visual bu�er and can be scaled

to di�erent size ranges. The information in the selected region with speci�c scale is

further processed as it pass through the cells in the visual bu�er so that the end

product of early vision is generated, which are the scaled and �ltered versions of the

retinal image centered on a �xation point. In this study, we do not directly model the

attention window because we do not know how to model its operation algorithmically,

and because attention is a super-visual task involving non-visual inputs (see Section

3.1.2). Instead, we assume that the attention window produces a set of unlabeled

patch images.

To extract patches from an input image, the system exhaustively searches the

input by running a corner detector1 across the image. Then, it focuses sequentially

on every point, generating image patches that are rotated according to the dominant

edge orientations2. Figure 4.1 shows the detected interest points and the extracted

patches from two locations with di�erent orientations.

The role of patch extraction is consistent with that of a biological attention win-

dow in that it selects regions that will be sent down the ventral pathway for further

processing. It should be noted, however, that the mechanism does not follow any

biological model of attention. Computational models of attention have been pro-

posed by other authors. Posner and colleagues proposed a spotlight-like operation,

1For a block of pixels, a matrix [
P

I2
x
,
P

IxIy ;
P

IxIy,
P

I2
y
] is formed where Ix and Iy are

the �rst derivatives with regard to the x and y axis within the block. Then, the eigenvalues of the

matrix is computed. Interest points found are corners with large eigenvalues in the image [58].

2Each image in all data sets, except aerial image data set, used in this study contains one objects

and approximately registered. Therefore, corner detector runs only on aerial images, so the scale is

�xed.
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Figure 4.1: Patch extraction from an input aerial image. The interest points are shown
with red circles on top of the image. Sample patches extracted from two locations
and rotated according to the two dominant orientations are also shown. (Images are
generated using the patch extraction system implemented by Bruce Draper.)

where the attention window focuses on a small region and shifts continuously when

necessary [123]. Downing and Pinker suggested that attention decreases gradually as

the distance from the center of focus increases [40]. Although describing the atten-

tion mechanism in di�erent ways, studies show that humans cannot pay attention to

more than one set of contiguous locations at the same moment [86]. The goal of our

implementation is to provide a way to generate input images for the system.
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4.2 Modeling the Primary Visual Cortex

The primary visual cortex (V1) is the �rst cortical area that receives visual infor-

mation from the LGN. It consists of about 200 million neurons in total. Since the

1950's, researchers have used single-cell recording techniques to decipher the proper-

ties of neurons in V1. Hubel and Wiesel discovered that about 80 percent of the cells

in V1 are selective to the orientation of the visual stimulus [64]. They divided the

orientation selective cells into two categories, referred as simple and complex cells,

based on the receptive �eld characteristics. Simple cells di�er from complex cells in

the fact that they show distinct excitatory and inhibitory regions in their receptive

�elds.

4.2.1 A Simple Cell Model

Since the early visual system is thought to provide the basis for later visual processing,

much research e�ort has been made to seek the receptive �eld pro�les of neurons in

V1. Simple cells, the minority of orientation selective cells in V1, respond according

to individual spots of light, and the receptive �elds of most simple cells have an

elongated structure. They are often called edge or line/bar detector cells because

they maximally respond to a line/bar or an edge with a particular orientation and

retinal location [64, 114]. A simple view of the elongated structure of receptive �eld

and the response pro�les of simple cells are shown in Figure 4.2.

Later, more sophisticated simple cell properties were found. At any given visual

eccentricity, there are simple cells with di�erent spatial scales of receptive �eld, i.e.

cells optimally tuned to di�erent spatial frequencies [121]. Furthermore, simple cells

also respond to stimuli o� the preferred orientation and spatial frequencies. In this

case, however, the cell response will be lower than the maximal response, which

produce additional smaller excitatory and inhibitory waves to the side of the primary

peak response (Figure 4.3). How strongly a cell responds to an o�-peak stimulus
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Figure 4.2: Receptive �eld (top row) and the response pro�les (bottom row) of simple
cells selective to vertically oriented lines and edges (reprinted from [114]).

depends on the di�erence between the actual and preferred orientation and spatial

frequency, and also on the orientation bandwidth and spatial frequency bandwidth

of the cell. The orientation bandwidth of a cell is de�ned to be the range of stimulus

orientations over which the cell response is at least half of its maximal response.

Similarly, the spatial frequency bandwidth is de�ned as the range of spatial frequencies

in which the cell response is at least half of its maximal response [116].

The receptive �eld pro�les of simple cells are also considered to be linear in the

sense that the response to complicated stimuli can be predicted by the sum of the

responses to a set of small stimuli that compose the stimuli [114]. This provides a good

reason to model a simple cell as a linear �lter with adaptive weights. In fact, it has

been shown and generally accepted that the receptive �eld pro�les of simple cells can

be approximated by 2D Gabor �lter functions, de�ned as the product of a Gaussian

with a sinusoidal wave [116, 121]. (See equation (4.1) below.) Like simple cells,

Gabor functions are linear and local, and can be tuned to particular orientations and

spatial frequencies. Therefore, the operation of the simple cells in V1 can be modeled
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Figure 4.3: 1D view of response pro�le of a simple cell to a narrow bar in the preferred
orientation [114].

as �ltering the visual scene through a bank of orientation selective Gabor functions

operating at a variety of scales.

A bank of 2D Gabor functions can be de�ned as follows [88]:

g�;�;� = exp

 
�

x02 + 
2y02

2�2

!
cos

 
2�

x0

�
+ �

!
(4.1)

x0 = (x; y) � (cos �; sin �) (4.2)

y0 = (x; y) � (� sin �; cos �) (4.3)

� determines the receptive �eld size and 
, the spatial aspect ratio, speci�es the

eccentricity of the Gaussian factor. For 
 = 1, the �lter is symmetric, and as 
 gets

smaller, the �lter becomes more elongated. � speci�es the wavelength of the cosine

factor, and �
�
determines the spatial frequency bandwidth b of the �lter. b is measured
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in octaves and de�ned as follows [88]:

b = log
2

�
�
� +

q
ln 2

2

�
�
� �

q
ln 2

2

;
�

�
=

1

�

s
ln 2

2

 
2b + 1

2b � 1

!

Finally, � speci�es the orientation of the �lter, and � is the phase o�set of the cosine

factor. Phase o�sets of 0� and 180� correspond to even symmetric center-on and

center-o� functions, respectively, while 90� and 270� correspond to odd symmetric

functions. Figure 4.4 shows how the �lter changes depending on the parameter values.

In this work, the parameters are tuned as suggested in [116] from studies on biological

visual systems, with 
 = 0:5 and �
�
= 0:56.

The patch images extracted by the attention window, as described in Section 4.1,

are convolved with a bank of Gabor functions. The resulting responses form a Gabor

feature image pyramid for each input image. Figure 4.5 shows sample input patch

images and the images of the Gabor �lter responses.

4.2.2 A Complex Cell Model

Complex cells make up the majority of neurons in V1 (75%) and are di�erent from

simple cells in several ways. Complex cells are highly nonlinear and usually have

larger receptive �elds than simple cells have. They are more sensitive to motion and

invariant to the spatial position of the stimulus in their receptive �eld, as long as

the orientation and direction of motion of the stimulus match the cells' preferred

selectivity [114].

The empirical results of complex cell responses are as if the cell sums outputs of

several simple cells with the same orientation selectivity, but the phase of their recep-

tive �eld pro�les are o� with respect to each other [121]. Pollen and his colleagues

describe pairs of simple cells with quadrature or 180 degree inter-pair phase shift re-

lationship while preferred orientation, position, and spatial frequency are maintained

[121]. (See the third column of Figure 4.4.) They suggest that these four simple cell
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Figure 4.4: 2D Gabor functions. For all, � = 20 and � = 0�. Left column, from top
to bottom, 
 = 0:25; 0:5; 0:75, and 1:0 (� = 0 and b = 1). Middle column, from to
to bottom, b = 0:5; 0:7; 0:9, and 1:8 (� = 0� and 
 = 0:5). Right column, from top
to bottom, � = 0�; 180�; 90�, and 270� (
 = 0:3 and b = 1). (Images were generated
using the applet at [163].)
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Figure 4.5: Left to right: Input images, �lter responses for even symmetric Gabor
function with � = 0�, for odd symmetric Gabor function with � = 45�, for even
symmetric Gabor function with � = 90�, and for odd symmetric Gabor function with
� = 135�. (Images were generated using the system implemented by Je� Boody.)

outputs can be used to represent the combined cell responses for the input image.

Their complex cell model explains the empirical results quite well and is widely ac-

cepted as a general model [88, 116]. In that model, the outputs from simple cells

sharing the same orientation selectivity but having 90 degree phase di�erence are

recti�ed by taking squares (energies), and fed into the complex cells, which then sum

them. Computationally, this operation produces the Gabor energy as follows [88]:

e�;�(x; y) =
r
r2�;�;�(x; y) + r2

�;�;�� 1

2
�
(x; y) (4.4)

where r�;�;� is the image of Gabor responses with the function de�ned in equation

(4.1). Figure 4.6 shows the six Gabor energy images for the cat image shown in Figure

4.5.

4.3 Feature Generation

The visual input changes its representation continuously as it passes through visual

areas in the brain. As described in Section 1.1, di�erent cortical areas seem to be

largely specialized by their functionality. However, there are few hard biological
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Figure 4.6: Six Gabor energy images computed at a given scale for the Cat image
shown in Figure 4.5. From left to right, � is increased by 15 degrees. The �rst �gure
is produced by combining Gabor responses with � = 0 and 90.

constraints on the actual representation of the visual information, or features, related

to the visual processing in each area. For example, there are many di�erent shape

features that might be assumed for processing in V2 and many di�erent ways to

represent color information for color perception in V4, but no biological evidence

shows what and how features are generated when they are needed for processing.

Currently, neuronal pro�les of representing information in visual areas are not well

understood beyond V1. Lacking a de�nitive model of feature sets, our approach for

feature extraction begins with the well-known simple and complex cell models in V1.

The features used in this study are simple features computed using the simple

and complex cell responses previously described in terms of Gabor fuctions. These

features are basically edge and line-based features; (1) local edge magnitude images

are computed from the output of the complex cell model, and (2) linear patterns of

local edges are represented in Hough space. There are two reasons for using these

simple edge and line-based features. First, biological vision systems are capable of

recognizing objects in line drawings. Second, previous results of timing studies for

cell activation may restrict the level of complexity of features to be used in expert

object recognition.

Using fMRI, Kourtzi & Kanwisher [87] found regions in the lateral occipital com-

plex (LOC) that are activated by both line drawings and grayscale photographs of

the same object, as long as the object structures are intact. Furthermore, there is no
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signi�cant e�ect from the di�erent stimulus formats on the strength of the activation

in those regions. The edge and line features extracted from the grayscale image and

line drawings are very similar because the line drawings are usually based on the in-

ternal contours and the outlines of the objecs [26]. Therefore, Kourtzi & Kanwisher's

work may indicate that such features are used in higher level visual processing. Al-

though LOC seems to respond generally to di�erent types of objects, there is overlap

between the LOC and the nearby object-selective regions such as FFA [73]. Thus,

we may consider that the regions involved in expert object recognition may also be

invariant to the stimulus format, and make use of edges and line features computed

in the earlier processing stage.

Expert object recognition is also very fast. While fMRI and PET studies do not

give timing information, expert object recognition in humans can also be detected in

ERP studies through an early negative component N170, which is found when the

subjects perform recognition tasks in their domain of expertise (see Section 3.2). The

peak latency of the N170 occurs, on average, 164ms post stimulus onset [140]. This

implies that the unique stages of expert object recognition must begin within 164ms

of the presentation of the stimulus. The timing studies for the initial responses of

the neurons in V1 show that the �ltering to the local features appears in about 40

to 80ms post stimulus onset [89]. More complicated features such as texture and

boundary completion properties appear as much as 200ms post stimulus onset [89]

and, therefore, are probably too late to in
uence the expert object recognition process.

The features computed in the preprocessing subsystem described by Kosslyn cover

a broad range of low-level features computed by the early vision system and more

abstract features computed later in the ventral stream. There is, however, no de�nite

resolution showing exactly what features are involved in this stage of processing and

how they are computed. Although these features may evolve continuously as they

pass through the ventral pathway, biological constraints on the changes of features
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in relation with the changes of visual processing stages are not well explored at this

moment. Therefore, based on the previously described arguments on stimulus format

invariance and timing studies, we consider Hough space representation and a combi-

nation of complex cell responses as the features computed in the preprocessing stage

related to the expert object recognition, and use them in the later processing stages.

It should be noted, however, that there are a variety of other features, such as those

related to color and shape, that could be added to this processing stage.

4.3.1 Average Complex Cell Edge Magnitude

The edge magnitude features used here are the average complex cell edge magnitudes.

They are generated by averaging across orientation the Gabor energies computed by

equation (4.4). They are computed at di�erent resolutions to create a pyramid of

edge magnitude reponses. Figure 4.7 shows the Gabor energy images and the average

edge magnitude image for an input image at a given scale.

4.3.2 Hough Space Representation

The Hough transform is a popular method in image analysis that allows recognition of

global patterns in an image space by recognizing local patterns in a transformed pa-

rameter space. Generally, it can �nd complex parameterized features such as straight

lines, polynomials, and circles in a suitable parameter space. Here, we use the sim-

plest version of the algorithm to map edges in the input images onto a Hough feature

space.

The basic idea is as follows. A straight line in an image space can be represented

by the equation r = x cos(w) + y sin(w), where r is the perpendicular distance from

the origin to the line, and w is the angle of that perpendicular line to the x axis (left

graph of Figure 4.8). The Hough space is formed as (r; w) coordinates. As shown in

Figure 4.8, the set of lines throuth a point in image space create a curve in Hough
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Figure 4.7: Computing average complex cell edge magnitude. The three Gabor energy
images are computed using (0�; 90�), (45�; 135�), and (75�; 165�) phase pairs. The
average edge magnitude is computed with six Gabor energies computed every 15
degrees. (Images generated using the feature extraction system implemented by Je�
Boody.)
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space, and the curves generated by a set of collinear points in image space intersect

at the point (r; w) in Hough space, which de�nes the line in the image space.
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Figure 4.8: The Hough transform. Left �gure shows a straight line y = �0:5x + 10
in the (x; y) coordinates space, while right �gure shows the representation of the
three collinear points p1=(1.6, 9.2), p2=(6, 7), and p3=(8, 6) in the Hough space
parameterized by r and w. The intersection is approximately (8:9; 63:9).

Hough space can be implemented as a 2D histogram. Each edge pixel in the image

provides a radius and orientation of the edge, and is mapped to a point in Hough

space; the corresponding bin gets a vote. After all pixels have been processed, the bin

with the maximum vote count corresponds to the largest number of collinear edges in

the image. Typically, a threshold is applied to determine the salient line segments in

the image. Here, the Hough transform is applied to a set of edge images with di�erent

orientation but no threshold is applied. The 2D histograms of the Hough space are

combined by summing the votes in the corresponding bins and form the �nal feature

vector for the input image. It should be noted that the Hough transform captures

collinear and parallel lines in close proximity, therefore implicitly representing some of

the non-accidental features described in Section 2.1. Figure 4.9 shows sample Hough

feature images.
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Figure 4.9: The grayscale cat and dog images and their corresponding Hough feature
images. In the Hough feature images, vertical axis corresponds to the radius r, and
horizontal axis corresponds to the angle w. Origin is the top-left corner.

4.4 Summary

In this chapter, we described the implementation of early stages of the proposed sys-

tem. It consists of two major components: initial processing for extracting input

patches and preprocessing for feature generation. When the system is fed a large im-

age, small patches are extracted around the interest points found by a corner detector.

It �lls the role of an attention window in biological vision systems, although the actual

mechanism does not follow any biological model of attention. Our implementation is

just a way of generating input images for the proposed system. Then, the extracted

patches are �ltered through a bank of orientation selective Gabor funtions operating

at di�erent scales. It produces a Gabor feature image pyramid for each patch, which

models the output of simple cells in area V1. These features are combined by complex

cells to produce a pyramid of phase-insensitive edge/bar energy values.

The representation of visual input evolves continuously through visual areas in

the brain. The types of features computed in the preprocessing system described by

Kosslyn includes both low-level features computed by the early vision system and

more abstract features computed later in visual areas. Less is known about biological

constraints on the representation of the visual information related to the processing in

visual areas beyond V1. Lacking a de�nitive model for features, our implementation

extracts simple edge and line-based features based on V1 cell responses. We combine

complex cell responses into edge magnitude image, and also use Hough space repre-
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sentation over edges in the input image. Our use of this simple feature set is based

on an fMRI study showing that edge-based features are indeed used in expert object

recognition system, and the timing studies for cell activation indicating that more

complicated features are probably too late to in
uence the expert object recognition

process.

In the next chapter, we will present the implementation of the pattern matching

system, which consists of two separate processes: category and exemplar recognition.

We will describe a set of unsupervised clustering and subspace projection algorithms

as computational methods for the two stages processing.
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Chapter 5

Pattern Matching

The pattern matching stage consists of two separate processes. The classi�cation

process corresponds to the category pattern activation subsystem and the exemplar

recognition process corresponds to the exemplar pattern activation subsystem. The

goals of the two processes di�er in terms of the level of recognition; classi�cation

is basic or superordinate level recognition, while exemplar recognition works at the

subordinate level. Although Poggio & Hurlbert [120] proposed an architecture for

recognition with both functionalities, as they also mentioned, most object recognition

systems tackle the tasks separately; they are designed to detect a certain type of

object (e.g. face) in an image cluttered with other objects (classi�cation), or to

identify individual instances presented in the image (exemplar recognition). In this

work, we implement both level of tasks in the proposed system and make hierarchical

interconnections between them. It should be noted, however, that there may also be

direct routes from early stages where features are extracted to the exemplar pattern

recognition subsystem.

As discussed in Chapter 3, the category and exemplar pattern activation sub-

systems are associated with di�erent receptive �eld sizes, and therefore use di�erent

types of information to achieve their goal. This motivates us to propose that di�erent

mechanisms are used to implement each subsystem. Classi�cation is modeled as un-

supervised clustering during training followed by maximum likelihood classi�cation

59



during testing, and exemplar recognition is implemented as subspace extraction dur-

ing training and subspace projection followed by nearest neighbor matching during

testing. In this work, a unique subspace is computed for every cluster de�ned by

the category subsystem, therefore, a set of local linear models is built rather than

a single, global model as in many PCA-based systems. The local linear approaches

may model the data containing multiple classes of objects better than global ap-

proaches. Localized models have previously been used for face recognition [47] and

image compression and reconstruction [75], but not in the context of multiple object

classes. The argument is that global PCA subspaces are optimal when the images are

drawn from a single underlying normal distribution, however, they may not align to

any meaningful axis of variance if the underlying distribution is a mixture of normal

distributions. A local subspace for each population is required for this case. The

argument is even stronger in the context of expert object recognition, since people

are experts in recognizing many types of objects, and images of di�erent objects are

unlikely to come from a single normal distribution.

5.1 Classi�cation

The task of classi�cation is to assign images to categories. In this work, categories

are not linguistic or logical labels that share semantic properties but groups of images

that are visually similar. It is the task of super-visual processes accessing associative

memory to assign linguistic or logical labels to visual categories, not the task of the

ventral visual pathway. Therefore, classi�cation is modeled by unsupervised clustering

algorithms operating on previously computed feature values.

There exist many algorithms for unsupervised clustering. In this study, we inves-

tigate three algorithms: K-Means, EM with a mixture of Gaussians, and clustering

with probabilistically weighted PCA.
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5.1.1 K-Means Clustering

The K-Means algorithm [42] partitions the input samples into K disjoint clusters such

that all data points in a cluster are associated with the center (or prototype) of the

cluster. K-Means starts by initializing the K centers to either random values or the

positions of randomly chosen training samples. Then, it keeps track of the centers of

the clusters as it proceeds through iterations performing the following two steps:

1. Classify the data: For each training sample, �nd the closest center and assign

the sample to the center. If two or more centers are equally close to a sample,

break the ties by random selection.

2. Update the K centers: The center of each cluster is recomputed by taking the

mean of all samples assigned to it.

The algorithm terminates when no sample changes clusters, or there is no signi�cant

changes in the center locations, or after running a �xed number of iterations.

K-Means is a very simple and robust unsupervised clustering method. It is known

that K-Means converges to a local optimum which minimizes the sum of squared

distances between data samples in a cluster and the cluster's center [42]. It is essen-

tially an approximation to a maximum-likelihood estimates for cluster centers, under

the assumption that every data cluster represents a symmetric Gaussian distribution

located at the cluster center.

5.1.2 Mixture of Gaussians

A more general mixture model framework can e�ectively represent arbitrarily shaped

clusters by selecting appropriate component density functions. Mixture models as-

sume that the observed data set is a mixture of samples from multiple populations.

The probabilistic nature of mixture models do not require the speci�cation of a dis-
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tance metric, and allows soft decision criteria as oppose to the hard decision made by

K-Means clustering.

In a mixture model, component density functions are selected, and then the un-

known parameters are estimated. One of the classic and popular techniques used

for mixture model parameter estimation is the Expectation-Maximization (EM) al-

gorithm [25, 35]. EM �nds the maximum-likelihood estimate of the parameters of a

mixture model. Let g
i
, i = 1; : : : ; K, be K component density functions and x 2 Rp

be a data sample. Then, the mixture model probability density function evaluated

at x is:

G(xj	) =
P

K

i=1wigi(xj�i)

where	 = (wi; �i) is a set of parameters and wi are weights for corresponding clusters.

Thus,
P

iwi = 1 and wi � 0.

The log-likelihood expression of the data set given the density functions is:

L(	) = log
MY
i=1

G(xij	)

=
MX
i=1

logG(xij	)

=
MX
i=1

log

 
KX
h=1

whgh(xij�h)

!

where M is the number of data samples. The log-likelihood quanti�es the quality of

the set of parameters 	, which explains how well the mixture model �ts the data set.

The EM algorithm �nds 	 such that L(	) is maximized.

In this work, we model each cluster by a multivariate Gaussian probability distri-

bution. The multivariate Gaussian for cluster i = 1; : : : ; K, is parameterized by the

mean vector �i and covariance matrix �i (i.e. 	 = (wi; �i;�i); i = 1; : : : ; K). Then,

gi(xj�i) =
1q

(2�)p det(�i)
exp

�
�
1

2
(x� �i)

T��1
i
(x� �i)

�
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EM begins by initializing parameters, �i, �i, and wi for i = 1 : : :K, and iterates the

following two steps:

� E-step: Estimate the membership probability of x for each cluster i

Pi(x) =
wigi(x)P
K

i=1wigi(x)

� M-step: Update mixture model parameters. The log-likelihood computed using

the newly estimated parameters increases from the previous iteration.

wnew

i
=

P
x
Pi(x)

M

�new
i

=

P
x
Pi(x)xP
x
Pi(x)

�new

i
=

P
x
Pi(x)f(x� �new

i
)(x� �new

i
)TgP

x
Pi(x)� 1

The EM algorithm terminates if jL(	) � L(	new)j � � or the number of iterations

reaches to the given maximum value.

Clustering by �tting Gaussian mixtures using the EM algorithm allows for asym-

metric Gaussian distributions to model each cluster. However, when the dimension

of data samples gets large, it su�ers from numerical instability (including under
ow)

and a possibly singular covariance matrix to be inverted when computing the proba-

bility. Therefore, it is di�cult in practice to apply EM with Gaussian mixture model

to high dimensional data.

5.1.3 Clustering with Probabilistically Weighted PCA

To �t asymmetric Gaussians while avoiding these problems, we approximate the

multi-dimensional Gaussian by decomposing it into two parts using PCA. The de-

composition of the probability function can be shown as in [106]. Let us assume that

the density function of input data x is a multivariate p-dimensional Gaussian:
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p(x) =
exp

n
�1

2
(x� �x)T��1(x� �x)

o
2�p=2j�j1=2

where �x and � are the mean and covariance of the training set fxijxi 2 Rp; i =

1; : : : ; ng. As described in Section 5.3.1, PCA factors � using an orthogonal matrix

� of eigenvectors and a diagonal matrix � of eigenvalues �i's:

� = ���T

Then, the Mahalanobis distance term can be represented as follows:

(x� �x)T��1(x� �x) = ~xT��1~x

= ~xT (���1�T )~x

= zT��1z

=
pX
i=1

z2
i
=�i

=
qX
i=1

z2
i
=�i +

pX
i=q+1

z2
i
=�i

where z is the principal components vector obtained by z = �T~x. The �rst part

corresponds to the error in the q-dimensional principal subspace and the second part

is the error in the orthogonal complementary subspace (reconstruction error).

Therefore,

p(x) =
exp

�
�1

2

�Pq

i=1

z2
i

�i
+
Pp

i=q+1

z2
i

�i

��
2�p=2j�j1=2

�
exp

�
�1

2

Pq

i=1

z
2

i

�i

�

(2�)q=2
Qq

i=1 �
1=2

i

�
exp

n
� 1

2�

Pp

i=q+1 z
2
i

o
(2��)(p�q)=2

where � is the average of the trailing eigenvalues �q+1; : : : ; �p. p(x) can be computed

using only the q-dimensional principal components since the error term
Pp

i=q+1 z
2
i
is

equal to k~xk2 �
Pq

i=1 z
2
i
. It makes

p(x) �
exp

�
�1

2

Pq

i=1

z2
i

�i

�

(2�)q=2
Qq

i=1 �
1=2

i

�
exp

n
� 1

2�
(k~xk2 �

Pq

i=1 z
2
i
)
o

(2��)(p�q)=2
(5.1)
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This density estimation using PCA subspace decomposition has been applied to prob-

abilistic target detection and object recognition [106].

The clustering algorithm assigns a sample to each cluster with a probability com-

puted as in equation (5.1). Then, a new PCA subspace is formed independently

for each cluster taking the data samples weighted by the probability as input. The

probabilistically weighted PCA (PWPCA) clustering algorithm proceeds as follows:

1. For each cluster Cj (j = 1; : : : ; k), initialize the probability of xi drawn from

cluster Cj, p(xijCj), using Euclidean distance to the randomly selected cluster

center �j. Update �j as weighted mean: 1P
i
wij

P
iwijxi, where wij =

p(xijCj)P
j
p(xijCj)

.

2. Perform PCA for Cj on the weighted input, w1j(x1 � �j); : : : ; wnj(xn � �j).

3. Recompute p(xijCj) using newly formed PCA subspace and update �j's and

wij's.

4. Iterate step 2 and 3 until it stabilizes.

5. For each sample xi, assign it to the maximum-likelihood cluster:

xi 2 Cj, if p(xijCj) > p(xijCl), 8l 6= j

PWPCA clustering is basically a combination of nearest neighbor partitioning by

the sample probability and probability computation using PCA. A similar approach

using nearest neighbor clustering and PCA is also proposed by Kambhatla and Leen

[75]. Unlike PWPCA, their algorithm, called VQPCA, utilizes only the reconstruc-

tion error as the clustering criterion since VQPCA is applied to the dimensionality

reduction problem. Another di�erence is that, while PWPCA softly assigns each

sample to all clusters according to the probability, VQPCA uses hard assignment

during clustering in each iteration.
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The PWPCA clustering algorithm is intimately related to Tipping and Bishop's

Mixture of Probabilistic PCA model [148]. They introduced a probabilistic model

for PCA and developed an EM algorithm for a mixture model of principal compo-

nent analyzers. It iteratively estimates maximum-likelihood model parameters and

partitions the data set according to the mixture component's responsibility for gen-

erating each data sample. As shown in [148], the responsibility is proportional to the

probability given in equation (5.1), therefore, we believe1 that it operates similarly to

PWPCA clustering. Tipping and Bishop's approach also avoids the dimensionality

problem that the traditional EM for Gaussian mixtures has, requiring the inversion

of a q� q matrix instead of a p� p matrix. The PWPCA clustering algorithm which

we developed uses conventional closed-form PCA and computes the probability us-

ing eigenvalues and subspace projection vectors. A numerical stability problem can

occur for probability computation in both algorithms due to the large negative expo-

nential values. The implementation details that avoid this problem are described in

Appendix B.

5.2 Illustration of Clustering Algorithms for Syn-

thetic Data

In this section, we brie
y show how the three clustering algorithms work using a 2D

synthetic data set, which consists of a mixture of two Gaussian distributions.

5.2.1 Data Set

To illustrate the clustering algorithms, we generated a 2D synthetic data set with 800

data points randomly sampled from two Gaussian distributions. To generate Gaus-

1At this moment, we are not able to directly compare the clustering results from both algorithms.

66



sian random points, we used the Box-Muller method, which transforms uniformly

distributed random variables to a new set of random variables with a Gaussian distri-

bution [124]. Let x1 and x2 be random variables drawn from a uniform distribution

in (0, 1). Then, the following transformation produces two new random variables y1

and y2, which have a Gaussian distribution with zero mean and a standard deviation

of one.

y1 =
q
�2 lnx1 cos(2�x2)

y2 =
q
�2 lnx1 sin(2�x2)

If we set

z1 = s1y1 +m1

z2 = s2y2 +m2

then, z1 and z2 are random variables drawn from N (m1; s1) and N (m2; s2), respec-

tively. Therefore, (z1; z2) forms a 2D Gaussian random point. In this way, we gen-

erated 800 data points from two di�erent Gaussian distributions with means of (0,

0) and (15, �7), and standard deviations of (12, 4) and (2, 4). Then, we rotated

the points 45 degrees and shift the rotated points by (45, 45). Rotation of the data

points makes the standard deviations for the x and y dimensions no longer indepen-

dent. Figure 5.1 shows the resulting data set. The mean locations of the two Gaussian

distributions are (45, 45) and (60, 50).

5.2.2 Clustering Results

We tested K-Means, traditional EM, and PWPCA clustering algorithms with two

clusters for ten iterations. The clustering progress for each algorithm is shown in

Figure 5.2 and Figure 5.3. Note that the scales are di�erent for PWPCA because the

points are scaled between 0 and 255 in order to use the OpenCV eigen-decomposition
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Figure 5.1: The 2D synthetic data set.

function. Although soft assignment is used in each iteration for traditional EM and

PWPCA clustering, the resulting clusters in the �gures were formed by hard assign-

ment; a point is assigned to the cluster with higher probability. As we can see in the

�gures, K-Means clusters look more like a mixture of circularly symmetric Gaussian

distributions, while the clusters from the other two algorithms �t the true asymmet-

ric Gaussian distributions more closely. The mean locations that K-Means found are

(40, 40) and (59, 51) while traditional EM �nds clustering centers (45, 45) and (61,

51). The means found by PWPCA clustering are (116, 117) and (193, 148), which

correspond to (44, 44) and (60, 51) in the original space. The mean locations found

by traditional EM and PWPCA clustering are closer to the true means, (45, 45) and

(60, 50), than those found by K-Means.

To show the behavior of PWPCA clustering in more detail, we plot the principal

axis for each cluster in Figure 5.4. The data points are computed by subtracting

weighted-mean of the training samples and then weighting them according to the

probability for the cluster. In the �gures at the bottom row of Figure 5.3, the small

group of points in the middle-left side that are clustered di�erently from the sur-
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Figure 5.2: Intermediate clustering results at iteration 1 (left) and iteration 4 (right)
for K-Means (top), traditional EM (middle), and PWPCA clustering (bottom). Star
(*) is the cluster mean.

69



20 25 30 35 40 45 50 55 60 65 70
20

30

40

50

60

70

80
K−Means: iteration 7

20 25 30 35 40 45 50 55 60 65 70
20

30

40

50

60

70

80
K−Means: iteration 10

20 25 30 35 40 45 50 55 60 65 70
20

30

40

50

60

70

80
EM: iteration 7

20 25 30 35 40 45 50 55 60 65 70
20

30

40

50

60

70

80
EM: iteration 10

0 50 100 150 200 250
0

50

100

150

200

250

300
PWPCA: iteration 7

0 50 100 150 200 250
0

50

100

150

200

250

300
PWPCA: iteration 10

Figure 5.3: Intermediate clustering results at iteration 7 (left) and iteration 10 (right)
for K-Means (top), traditional EM (middle), and PWPCA clustering (bottom). Star
(*) is the cluster mean.
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Figure 5.4: Principal axis computed by PWPCA for cluster 1 (left) and cluster 2
(right) at iteration 1 (top), 7 (middle), and 10 (bottom). The data points are weighed
mean-subtracted values.

71



rounding points is the result of taking both principal subspace and outer-subspace

distance into account for probability computation. For comparison, Figure 5.5 shows

the resulting clusters obtained by using the outer-subspace distance (reconstruction

error) only.
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300

Figure 5.5: PWPCA clustering result obtained when only the reconstruction error
was used as a clustering criterion.

5.3 Exemplar Recognition

While the classi�cation system matches images to categories { clusters of images in

memory { the exemplar recognition system matches current input images to a speci�c

image in visual memory. As for the actual matching mechanism, Kosslyn denies that

a complete template-like image is generated to match to the input, partly because no

anatomical structure matching a template has ever been found, and partly because

template matching is considered as too rigid for biological vision. Instead, he suggests

that objects are represented as \compressed images" in the visual memory and used
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by the exemplar subsystem. Compressed images are smaller than the source images,

and yet su�cient to regenerate an approximation of the source image for imagery

feedback.

The notion of \compressed images" can be modeled as subspace projection for

image matching in the machine vision literature. Subspace projection techniques

de�ne the input images as points in a p-dimensional space where p is the number

of pixels in each image. p is generally very large and the meaningful features are

often obscured by noise and complicated dependencies between variables in the p-

dimensional space. Therefore, it may be important to reduce the dimensionality of

the input data by projecting it into a smaller and more manageable space in which

the relevant features are more explicit. In many cases, the mapping is sought as a

linear transformation of x 2 Rp into z 2 Rq where q < p, i.e.

z =Wx

The projections, z, are the \compressed images" referred to by Kosslyn. New im-

ages are projected into the subspace and matched by measuring the subspace distance

from previously stored images. In this work, we have considered three di�erent sub-

space projection algorithms for exemplar recognition: principal component analysis

(PCA), independent component analysis (ICA), and factor analysis (FA).

5.3.1 PCA

PCA has been widely used for object recognition since it was �rst applied to face

recognition [79, 151]. PCA seeks a linear combination of variables such that the

maximum variance is extracted from the variables. It then removes this variance

and seeks a second linear combination which explains the maximum proportion of

the remaining variance, and so on. Let w1 be the direction of the �rst principal
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component. Then w1 is de�ned as

w1 = arg max
kwk=1

E [(wTx)2]

Thus the �rst principal component is the projection of the datawTx onto the direction

that maximize the variance of the projection. The i-th principal component is found

by

wi = arg max
kwk=1

E [fwT (x�
i�1X
c=1

wcw
T

c
x)g2]

This results in a set of orthonormal (linearly uncorrelated) vectors, w1;w2; : : : ;wq.

In practice, the eigenvectors of the sample covariance matrix of the data set are

used to compute the principal components. Let � be the sample covariance matrix.

Then, the eigenvalue decomposition of � is

�T�� = �

where � is a diagonal matrix of eigenvalues ordered as �1 � �2 � � � � � �p, and

� = [w1jw2j � � � jwq] is an orthonormal matrix whose columns are the q principal

eigenvectors of �. Geometrically, � rotates the coordinate system onto the eigen-

vectors, where the eigenvector associated with the largest eigenvalue is the axis of

maximum variance, the eigenvector associated with the second largest eigenvalue is

the axis with the second largest variance orthogonal to the previous eigenvector, etc.

The variables z = (z1; : : : ; zq) computed by the transformation z = �Tx are the

principal components of the input vector x. The principal components are uncorre-

lated, i.e. cov(zi; zj) = 0 for all i 6= j, and the variance of zi is �i. Therefore, the

�rst principal component z1 is the linear combination of x1; : : : ; xp with the highest

variance and, similarly, zi has the highest variance among all linear combinations of

x1; : : : ; xp which are uncorrelated with z1; : : : ; zi�1. In other words, each principal

component captures `as much as possible' of the variation in x unexplained by previ-

ous principal components. The number of principal components, q, is selected so that
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the �rst q principal components explain enough of the total variation. This mapping

of x to a lower dimensional representation z is optimal in the mean squared error

sense. That is, the inverse mapping of z back into x has minimum reconstruction

error. In fact, if � includes all the eigenvectors with non-zero eigenvalues, the inverse

mapping is lossless.

Although PCA can be implemented by standard closed-form numerical approaches

performing the eigen-decomposition directly from the input matrix, there also exist

biologically inspired neural network algorithms [118, 130]. They use a linear neural

network with a layer of neurons that receive their input via Hebbian synaptic connec-

tions, and an anti-Hebbian learning rule for the lateral connection within the output

layer. The weight vectors learned by the neural network tend to converge to the

eigenvectors of the data correlation matrix. In this study, however, we use a standard

closed-form method for implementing PCA.

5.3.2 ICA

While PCA decorrelates the input data using second-order statistics and thereby gen-

erates compressed data with minimum mean-squared reprojection error, ICA mini-

mizes higher-order dependencies in the input (in addition to linear decorrelation). It

is intimately related to the blind source separation (BSS) problem, where the goal

is to recover the unknown independent signals from observed linear combinations of

them. Let z be the vector of unknown source signals and x be the vector of observed

mixtures. IfA is the unknown mixing matrix that relates the observed and the source

signals, then the mixing model is written as

x = Az

It is assumed that the source signals are independent of each other and the mixing

matrix A is invertible. Based on these assumptions and the observed mixtures, ICA

algorithms try to �nd the mixing matrix A or the separating matrix W such that
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u =Wx =WAz

is an estimation of the independent source signals [31] (Figure 5.6).

source signal observed mixtures estimation of s

WA

mixing process separating process

x uz

Figure 5.6: Blind source separation model.

ICA can be viewed as a generalization of PCA. As previously discussed, PCA

decorrelates the data so that the covariance of the data is zero. A slightly stronger

constraint than being uncorrelated is whiteness, which further restricts the data to

have unit variance. The whitening transform can be determined as D�1=2RT where

D is the diagonal matrix of the eigenvalues and R is the orthogonal matrix of eigen-

vectors of the covariance matrix. Applying whitening to observed mixtures, however,

results in the source signal only up to an orthogonal transformation. ICA goes one

step further so that it transforms the whitened data into a set of statistically inde-

pendent signals [68].

Unlike PCA, there is no closed form expression to �ndW. Instead, many iterative

algorithms have been proposed based on di�erent search criteria [69]. However, it has

been shown that most of the criteria optimized by di�erent ICA algorithms lead

to similar or even identical algorithms [31, 67]. In this work, we will use InfoMax,

one of the best-known ICA algorithms by Bell and Sejnowski [14]. InfoMax is a

gradient based, unsupervised learning algorithm for ICA based on the information

maximization principle of data transfer between sigmoidal neurons. The information
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maximization criterion is essentially equivalent to the maximum likelihood criterion

[31].

5.3.2.1 Architecture I: Statistically Independent Basis Images

In [9], Bartlett et al. introduced two di�erent ways to apply ICA to object recognition.

In Architecture I, the input images in X are considered to be a linear mixture of

statistically independent basis images in Z combined by an unknown mixing matrixA.

The InfoMax algorithm learns the weight matrixW, which is used to recover a set of

independent basis images in the rows ofU (Figure 5.7). In this architecture, the input

images are variables and the pixel values provide observations for the variables. The

source separation, therefore, is performed in image space and �nds the weight vectors

in W in the directions of statistical dependencies in the set of input images. The

independent basis images, which span the image space, are produced by projecting

the input images onto the learned weight vectors. The compressed representation

of an image is a vector of components used for linearly combining the independent

basis images to generate the image. The middle row of Figure 5.8 shows eight basis

images produced in this architecture. They are spatially localized, unlike the PCA

basis images (top row) and those produced via Architecture II (bottom row).

image 1

image 2

image n

A
Z

Mixing
Matrix

basis image n

basis image 2

basis image 1

UX

Independent Basis Images

W
Learned
Weights

Input Face Images

Figure 5.7: Finding statistically independent basis images.
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Figure 5.8: Eight basis vectors for PCA and ICA computed on a face image data set.
The top row contains the eight eigenvectors with highest eigenvalues for PCA. The
second row shows eight localized basis vectors for ICA Architecture I. The third row
shows eight, non-localized ICA basis vectors for ICA Architecture II.

In [9, 10], Bartlett and colleagues �rst apply PCA to project the data into a

subspace of dimension q to control the number of independent components produced

by ICA. The InfoMax algorithm is then applied to the eigenvectors to minimize the

statistical dependence among the resulting basis images. This use of PCA as a pre-

processor in a two-step process allows ICA to create subspaces of size q for any q.

In [90], it is also argued that pre-applying PCA enhances ICA performance by (1)

discarding small trailing eigenvalues before whitening and (2) reducing computational

complexity by minimizing pair-wise dependencies. PCA linearly decorrelates the

input data. The remaining higher-order dependencies are separated by ICA.

5.3.2.2 Architecture II: Statistically Independent Components

While the basis images obtained in Architecture I are statistically independent, the

components that represent input images in the subspace de�ned by the basis images

are not. The goal of ICA in Architecture II is to �nd statistically independent com-

ponents for input data. In this architecture, the input is transposed from architecture

I, that is, the pixels are variables and the images are observation. The source separa-
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tion is performed on the pixels, and each row of the learned weight matrix W is an

image. A, the inverse matrix of W, contains the basis images in its columns. The

statistically independent source components in Z that comprise the input images are

recovered in the columns of U in Figure 5.9.

X

Z
A W

Images
Learned
Weights

U

Basis

pixel 2

pixel p

pixel 1

Input Face Images Independent Components

component 1

component 2

component p

Figure 5.9: Finding statistically independent components.

This architecture was used in [16] to �nd image �lters that produced statistically

independent outputs from natural scenes. The eight basis images shown in the bottom

row of 5.8 show more global properties than the basis images produced in architecture

I (middle row). In this study, ICA is performed on the PCA components rather than

directly on the input images to reduce the dimensionality as in [9, 10].

5.3.3 FA

Factor analysis [139] is a statistical multivariate analysis technique similar to PCA

for explaining the correlations among observed variables in terms of a smaller number

of unobservable variables. The crucial di�erence between FA and PCA is that FA

is concerned with the common variance accounted for by linear factors excluding

the noise due to unique variance. PCA, on the other hand, �nds the basis vectors

that optimally explain the total variance; the unique variance is not computed or

accounted for separately.
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In the general FA model, a p-dimensional, mean centered observed vector x =

(x1; : : : ; xp)
T is composed of a vector z = (z1; : : : ; zq)

T of q latent variables (factors),

and the vector n = (n1; : : : ; np)
T of p independent disturbance variables [11]:

x = �z+ n (5.2)

where � is called the factor loading matrix, whose element �ij determines the im-

portance of factor zj to xi. Since all factors are unobservable, the factor loadings

provide the only means of `labeling' each factor. The disturbance term n accounts

for independent noise in each element of x.

In this model, it is assumed that the underlying distribution of z is N (0; I) and

n follows N (0;	), where 	 = diag( 1; : : : ;  p). Since it is assumed that ni's are

uncorrelated to each other, xi's are conditionally uncorrelated given z. The covariance

matrix of x is computed as:

cov(x) = � = ��T +	

Therefore, the variance of a variable is split into two parts:

var(xi) = �2
i
=

qX
j=1

�2
ij
+  i (5.3)

The �rst term, the sum of squared factor loadings across factors, is called the common

variance or communality, which is the variance accounted for by the factors. The

second term,  i is called speci�c or unique variance of xi, which determines how

much of the variability in each xi is not attributable to the common factors. It is the

variance due to ni, not shared by other variables xj(j 6= i). The goal of FA model is

to determine the � and 	 that best explain the covariance structure of x [11, 55].

In this work, we tested an EM algorithm for maximum likelihood estimation of

FA proposed in [128] and reviewed in [55] and [129]. Let X be a data matrix whose

rows are m observed sample vectors. Then, the expected log-likelihood for FA is

L(�;	) = log

"
mY
i=1

(2�)�p=2j�j�1=2 exp
�
�
1

2
xT
i
��1xi

�#
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= �
mp

2
log(2�)�

m

2
log j�j �

m

2
trace(Cx�

�1)

where Cx = XTX=m. The EM algorithm maximizes L by going through two steps

iteratively. In the E-step, E[zjx
i
] and E[zzT jxi], i = 1; : : : ; m, are computed by:

E[zjx
i
] = Wxi

E[zzT jxi] = I�W�+Wxix
T

i
WT

where W = �T (	 +��T )�1. Then, in the M-step, new estimates for � and 	 are

computed as follows:

�new =

 
mX
i=1

xiE[zjxi]
T

!0
@ mX
j=1

E[zzT jxj]

1
A
�1

	new =
1

m
diag

 
mX
i=1

xix
T

i
��newE[zjx

i
]xT

i

!

(For the detailed derivation of the formula described in [55], see Appendix A.).

5.4 Summary

In this chapter, we proposed possible computational algorithms to implement cat-

egory and exemplar pattern activation subsystems. Categorization is modeled as

unsupervised clustering during training followed by nearest neighbor match during

testing while exemplar recognition is modeled as subspace extraction during training

and subspace projection followed by nearest neighbor match during testing. It builds

a local linear model rather than a single, global model, which would be more suitable

for expert object recognition paradigm where images of di�erent objects are less likely

to come from a single distribution.

We described three unsupervised clustering algorithms: K-Means, Gaussian Mix-

tures with traditional EM, and Gaussian Mixtures with probabilistically weighted

PCA. K-Means is fast, simple, robust, and easy to apply to high-dimensional data,

but implicitly models every data cluster with a symmetric Gaussian distribution. On
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the other hand, Gaussian mixtures with traditional EM can �t arbitrary asymmetric

Gaussian distributions to model the data set. In practice, however, it is di�cult to

apply traditional EM to high-dimensional data because of numerical problems with

inverting near singular matrices. This problem can be avoided to some degree by

decomposing the probability into two parts corresponding to the principal subspace

probability and the probability in the orthogonal complementary subspace. We illus-

trated how di�erently the three clustering algorithms work using a 2D synthetic data

set.

Kosslyn suggests that objects are stored as \compressed images" in the visual

memory and used for exemplar recognition. A possible way to implement \com-

pressed image" representation is to map the data onto a lower dimensional space

found by subspace projection algorithms. We described three di�erent algorithms in

this chapter; PCA is the most popular and widely used technique for data analysis,

which decorrelates the input data using second-order statistics. ICA goes a step fur-

ther to minimize higher-order dependencies in the input data in addition to linear

decorrelation. By transposing the input data matrix, ICA can be applied to object

recognition in two di�erent ways. Lastly, FA is a similar technique to PCA except

that it separates out the noise due to the unique variance in each dimension.

In the next chapter, we put all pieces together and present experimental results

from running the complete expert object recognition system with multi-class data

sets.
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Chapter 6

An Expert Object Recognition

System

We have now described the main components of an object recognition system based

on a biological model of visual object recognition. We have presented how the role of

the attention window is implemented as a patch extraction process, how to generate

biologically plausible features from images, and how pattern matching mechanism

can be implemented using unsupervised clustering and local subspace projection. In

this chapter, we link these pieces together to make a complete end-to-end object

recognition system and discuss how the system works by running the system on four

multi-class data sets: one of them is a simple synthetic data set containing a set of

2D points, while the other three data sets contain real images.

Although the system is composed of distinct components, they are linked by feed-

forward connections and therefore any change to one component may a�ect the sys-

tem's overall behavior. In the experiments presented in this chapter, however, we

focus on the pattern matching mechanism. Following Kosslyn's biological model, the

system implements pattern matching using two separate, hierarchically connected

components: classi�cation and exemplar matching. The classi�cation and exemplar

matching modules can be considered as standard object recognition systems by them-

selves. The experimental goal is to analyze the e�ectiveness of designing the system
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using combinations of classi�cation and exemplar matching components. For that,

the system's overall performance is compared to the performance of its components

alone.

The experiments are performed in the context of expert object recognition. As

described in Section 3.2, expert object recognition is viewpoint dependent. Here,

the system is trained for given classes of objects viewed from �xed viewpoints, and

tested with familiar objects viewed from the same viewpoints as the training objects.

Another characteristic of expert object recognition is multiple-level categorization.

The objects in a data set of aerial images are de�ned using a hierarchy of categories

so that we can test the system for recognizing objects in di�erent levels of categories.

We made independent studies on subspace projection algorithms as presented

in the next chapter. The results indicate that ICA sometimes outperforms PCA,

however, the performance of ICA varies depending on the architecture and the task.

Compared to ICA, PCA shows more stable performance regardless of the nature of

the task. Moreover, PCA is robust, runs faster than ICA, and is considered as a

standard subspace projection technique. Therefore, the current system implements

exemplar matching by PCA. For categorization, all three clustering algorithms were

tested on the synthetic data set, but traditional EM was not applied for the other

two data sets because of the dimensionality limitation.

6.1 Experiments

6.1.1 Performance on 2D Synthetic Data Set

The synthetic data set used in this experiment contains 1,400 2D points randomly

sampled from two Gaussian distributions as described in Section 5.2.1. Each Gaussian

distribution generates 700 data points, and the set is divided into a training set of

800 points and a test set of 600 points (Figure 6.1). Data values are assumed to be

the extracted features so categorization is directly applied to the data set.
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Figure 6.1: The 2D synthetic training (left) and test sets (right). Point patterns are
di�erent according to the underlying Gaussian distribution.

Table 6.1 shows the recognition rates for three versions of the proposed system,

each using K-Means, traditional EM, and PWPCA clustering. The number of clusters

is two and data points are projected to the �rst principal axis to �nd the closest match.

All clustering algorithms ran for 10 iterations. Table 6.1 also shows the results of PCA

analysis without clustering, and for clustering without PCA, where points are assigned

to the label of the Gaussian distribution which produces the majority of the points in

the cluster. Table 6.2 shows the con�dence in the hypothesis that the version shown

in the left-most column is more accurate than the versions shown in the same row,

as measured by McNemar's signi�cance test [158] for paired binomial values.

As can be seen from the tables, best performance was obtained using traditional

EM without PCA, which performs signi�cantly better than all three versions of the

system. This result can be explained from the structure of the data set. The data set

is a mixture of two Gaussian distributions, and EM �nds nearly perfect clusters as

shown in Figure 5.3. A hard assignment is applied after the �nal iteration, so some

points from the elongated Gaussian distribution in the crossing area are assigned to

the wrong cluster. When PCA is performed in the cluster, these points cause incorrect
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matches for some points that would otherwise be correctly classi�ed by the clustering

algorithm. As a result, the performance of the overall system drops. While tradi-

tional EM uses exact probability computation, PWPCA clustering approximates the

probability as shown in equation (5.1). However, when the data dimension is reduced

from two to one as in this experiment, there is no error caused by the approxima-

tion. Although PWPCA clustering seems to produce slightly less accurate clustering

result than the traditional EM, the di�erence is not statistically signi�cant as shown

in Table 6.2.

Overall Overall Overall Global Clustering Clustering Clustering

(KM) (EM) (PWPCA) PCA (KM) (EM) (PWPCA)

Recog.

rates 86.3% 92.3% 92.7% 86.8% 82.8% 95.3% 94.2%

Table 6.1: Recognition rates of the system using K-Means, traditional EM, and PW-
PCA clustering followed by PCA, along with PCA without clustering and clustering
without PCA.

Overall Overall Overall Global Clustering Clustering Clustering

(KM) (EM) (PWPCA) PCA (KM) (EM) (PWPCA)

Overall

(KM) - - - - 98% - -

Overall

(EM) 99% - - 99% 99% - -

Overall

(PWPCA) 99% 56% - 99% 99% - -

Global

PCA 58% - - - 98% - -

Clustering

(EM) 99% 99% 99% 99% 99% - 85%

Clustering

(PWPCA) 99% 94% 92% 99% 99% - -

Table 6.2: Con�dence evaluated by the McNemar's test on the hypothesis that the
version of the system shown in the left-most column is more accurate than the versions
shown in the same row.

When K-Means is used, the results are quite di�erent. The overall performance of

the system is signi�cantly better than with clustering alone, but it does not improve
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the performance over global PCA. This result can be expected again from the distri-

bution of the data points; the principal axis of the data set as a whole is approximately

45 degrees, so most of the errors are from points in the top half region. As we can see

in Figure 5.3, K-Means was not able to separate data points in that region, therefore

it performs similarly to global PCA. On the other hand, traditional EM and PWPCA

clustering can �t the underlying Gaussian distributions very closely (Figure 5.3). As

a result, the recognition rates using the two algorithms are signi�cantly better than

global PCA and the version using K-Means.

The experiment discussed in this section shows how the system would behave on

data sets that are perfect mixtures of Gaussians. The EM and PWPCA clustering

algorithms �t the underlying distributions, and therefore produce near optimal clas-

si�cation results. In this case, combining classi�cation and exemplar matching does

not perform better than the classi�cation alone, however, it still improves the per-

formance over global PCA. If the underlying Gaussian distributions are asymmetric,

using K-Means for clustering does not help the system at all. However, if we increase

the number of clusters K-Means may perform better, since an asymmetric Gaussian

can be approximated by multiple symmetric Gaussian distributions. The next two

experiments are performed on real data sets, where the underlying distributions are

unknown.

6.1.2 Performance on Real Data Sets

6.1.2.1 Data Sets

Cat and Dog Database: This data set contains 200 64�64 black and white images

of cat faces and dog faces { 100 cats and 100 dogs. No subjects are repeated in the

database. The images were collected from the web, and exhibit a wide range of

backgrounds and illumination conditions. The images were registered by hand to

within a similarity transform { translation, rotation, and scale { by roughly aligning
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the eyes of the faces in all 200 images. This data set is challenging because although

there are di�erences between cats and dogs, there are also many variations among

instances of each animal class. Figure 6.2 shows some examples of images from the

data set.

Since each image in the data set contains one subject and is approximately reg-

istered to the other images, no focus of attention process is needed. Images are

directly presented to the feature generation system, where the average complex edge

magnitudes and Hough space representations are computed.

Figure 6.2: Sample images from the Cat and Dog data set. The top row is all cats
and the bottom row is all dogs.

Ft. Hood Imagery Data Set: The Ft. Hood Data set is a moderately large data

set containing 8-bit gray-scale images of size roughly 7700 � 7700 collected around

the Ft. Hood, TX area. In the data set, there are seven vertical-view images, which

were taken with the camera pointing down almost strictly vertically1. In this study,

we use two vertical-view images containing several di�erent types of objects. Figure

6.3 shows a small image cut from an original large size image.

As we can see in the �gure, it contains di�erent styles of buildings, parking lots,

roads, and sidewalks. To generate patch images containing interesting objects, the

1The o�cial description of the data set and the images can be obtained at

http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/fthood/.

88



Figure 6.3: A sample Ft. Hood image of size 1927� 1922.

Ft. Hood images are fed into the patch extraction system described in Section 4.1.

The extracted patch images are hand-labeled according to the object within them.

The labels are de�ned in multiple levels. For example, at the highest level, objects

can be di�erentiated as buildings or �elds. And those objects de�ned as a �eld can

be separated as natural grounds or parking lots. Parking lots can be further divided

into paved and unpaved parking lots.
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Figure 6.4 shows patch images of six di�erent objects. For the experiments per-

formed in this study, we created two data sets from Ft. Hood images, both containing

four di�erent types of objects. The �rst data set, referred to as FH1, contains 600 im-

ages of an industrial building style, paved parking lot, natural ground, and sidewalks.

The second data set, called FH2, contains 600 images of two styles of industrial

building and paved/unpaved parking lots. Therefore, at a higher level, the FH2 data

set contains two classes of objects { industrial buildings and parking lots { while four

classes are still de�ned for the corresponding level in FH1 data set. The number of

images of each object is equal in both data sets.

Figure 6.4: Example patch images extracted from the Ft. Hood data set. The two
leftmost images contain di�erent styles of industrial building, the two middle images
contain paved and unpaved parking lot, and the remaining two images show natural
ground and sidewalk.

6.1.2.2 Feature Extraction

To compute the average complex edge magnitudes at multiple scales, images are

successively scaled down by a factor of two until they get to 8 � 8 pixels. Then, a

bank of Gabor �lters are applied and the resulting even and odd �lter responses are

combined to produce the Gabor energy output. (For a more detailed description,

see Chapter 4.) The average edge magnitude is computed by combining six Gabor

energies computed every 15 degrees (Figure 4.6 and Figure 4.7). This process is

applied at every scale from 32� 32 pixels to 8� 8 pixels, generating a total of 1,344

feature values.

The Hough space representation described in Section 4.3.2 is computed by quan-
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tizing the parameters r and w at every �ve pixels and 15 degrees, respectively. Since

the maximum perpendicular distance from the origin to a line in a 64� 64 image is

64
p
2, r is divided into 18 bins and w is divided into 24 bins. The Hough transform

is applied to the edge images computed at every 45 degrees, and combined into one

Hough space histogram without thresholding. The resulting non-zero votes in the 432

bins are the �nal feature values to be used in pattern matching.

6.1.2.3 Recognition Results: Cat and Dog data set

For the Cat and Dog data set, the system was tested 25 times, each time training on

160 randomly selected images and testing on the remaining 40 images. The system

maps test images onto images in memory (training images) and assigns labels to

objects by replicating the semantic labels of the retrieved training image. A test

image was recognized correctly if the retrieved training image was of the same species

as the test image. With 40 test images per trial and 25 trials, each version of the

system was evaluated on a total of 1,000 matches.

Table 6.3 shows the recognition rates on average edge magnitude features for two

versions of the system, one using K-Means and the other using PWPCA clustering,

along with the results for each component alone { PCA without clustering and clus-

tering without PCA. Traditional EM can not run on the real data sets because of

the dimensionality problem. For clustering without PCA, images are assigned to the

species that is dominant in their cluster. This is only for evaluation; the system trains

and runs without supervision. Since there are two object types in the domain, the

number of clusters was two except for the third and last column, where K-Means was

run with �ve clusters. In all cases, the number of PCA subspace dimension was 10.

Table 6.4 shows the con�dence level for pairs of techniques.

The results in Table 6.3 show that, using PWPCA clustering, the system as a

whole outperforms any of its components. The performance of clustering alone is
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signi�cantly worse than the overall system, which indicates that the classes are not

drawn from cleanly separated Gaussian distributions. The clusters found by the cat-

egorization system contains mixed set of objects, and the following exemplar match

re�nes the system's performance. With K-Means, the system still outperforms cate-

gorization alone, but makes no di�erence over exemplar matching without clustering.

However, the performance of the system using K-Means improves if the number of

clusters is increased to �ve, even though there are only two object classes in the data

set, presumably because asymmetric Gaussian distributions can be approximated us-

ing multiple symmetric distributions.

Overall Overall Overall Global Clustering Clustering Clustering

(KM) (PWPCA) (KM:K=5) PCA (KM) (PWPCA) (KM:K=5)

Recog.

rates 77.3% 80.5% 79.1% 77.5% 64.8.8% 60.7% 71.6%

Table 6.3: Recognition rates of the system for the Cat and Dog data set on average
complex edge magnitude using K-Means, PWPCA, and K-Means with �ve clusters
followed by PCA, along with PCA without clustering and clustering without PCA.
Except for the third and last column, the number of clusters was two, and the subspace
dimension was 10 for all cases.

Overall Overall Overall Global Clustering Clustering Clustering

(KM) (PWPCA) (KM:K=5) PCA (KM) (PWPCA) (KM:K=5)

Overall

(KM) - - - - 99% 99% 99%

Overall

(PWPCA) 98% - 83% 99% 99% 99% 99%

Overall

(KM:K=5) 91% - - 86% 99% 99% 99%

Global

PCA 53% - - - 99% 99% 99%

Clustering

(KM) - - - - - 97% -

Clustering

(KM:K=5) - - - - 99% 99% -

Table 6.4: Con�dence evaluated by the McNemar's test on the hypothesis that the
version of the system shown in the left-most column is more accurate than the versions
shown in the same row.
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Figure 6.5 through Figure 6.8 show the recognition rates on both average edge

magnitude features and Hough space features for a range of number of clusters K

and subspace dimension q. In all graphs presented here, comparisons between the

system's performance and the categorization component alone are omitted since the

system always signi�cantly outperforms the categorization component. For average

edge magnitude features, it can be seen that the performance of the K-Means version

of the system improves as K increases. For Hough features, the performance is still

better when K is larger than two.

Another thing that can be noted from the graphs is that, for a range of small q's,

both versions of the system performs better than global PCA. After the performance

of the system crosses with the performance line for global PCA, the PWPCA clus-

tering version of the system mostly performs worse than global PCA. The K-Means

version of the system, on the other hand, keeps doing a better or comparable job for

larger q values. In general, the system works more e�ectively when more information

in the data set is not kept; that is, when the data compression rate is high.

For the results for categorization alone, an interesting observation can be found

from Table 6.3. It shows that K-Means does a better job than PWPCA clustering for

assigning images to clusters according to their symbolic labels. However, the overall

performance of the system using K-Means is lower than using PWPCA clustering,

which indicates that the categories found by PWPCA clustering may not match the

symbolic object labels. As can be seen in Figure 6.2, there are cat-like dogs with

pointy ears. Images of these cat-like dogs may have similar underlying distribution to

cat images in feature space and PWPCA clustering might group these images with the

cats, producing mixed clusters in terms of symbolic labels. The exemplar recognition,

however, matches cat-like dogs to other cat-like dogs, as a result, it produces a correct

classi�cation.
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Figure 6.5: Recognition rates for the two versions of the system and global PCA on
average complex edge magnitude of the Cat and Dog data set for K = 2 (top) and
K = 3 (bottom). The subspace dimension q varies from 1 to 25.
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Figure 6.6: Recognition rates for the two versions of the system and global PCA on
average complex edge magnitude of the Cat and Dog data set for K = 4 (top) and
K = 5 (bottom). The subspace dimension q varies from 1 to 25.
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Figure 6.7: Recognition rates for the two versions of the system and global PCA
on Hough space features of the Cat and Dog data set for K = 2 (top) and K = 3
(bottom). The subspace dimension q varies from 1 to 25.
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Figure 6.8: Recognition rates for the two versions of the system and global PCA
on Hough space features of the Cat and Dog data set for K = 4 (top) and K = 5
(bottom). The subspace dimension q varies from 1 to 25.
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6.1.2.4 Recognition Results: Ft. Hood data sets

When we tested the system on Ft. Hood data sets, we faced the numerical problem

described in Appendix B for probability computation in PWPCA clustering. The

range of exponent in the outer-subspace probability term is very sensitive to the

average trailing variance � which varies across clusters in every iteration. So, as

described in Appendix B, we assume that the average trailing variance are equal for

every cluster in each iteration and set � as the average of �'s of all clusters. From

now on, the performance of the system with PWPCA clustering is obtained using

this version. The e�ect of using di�erent � will be discussed later in this section.

The Ft. Hood data sets are divided into a training set containing 400 images and

a test set containing 200 images. The patch images in the training and test sets were

extracted from di�erent parts of a vertical-view image. Therefore, there is no overlap

between training and test sets. To test the system for the Ft. Hood data sets, we

ran each version of the system 250 times for di�erent number of clusters using 10

subspace dimensions, therefore evaluate the system on a total of 50,000 matches.

Table 6.5 and Table 6.6 show the average recognition rates for average complex

edge magnitude features of the FH1 and FH2 data set, respectively. As we can see

in Table 6.5, the results for the FH1 data set are similar to those for the Cat and

Dog data set; using PWPCA clustering, the system as a whole outperforms any of

its components. However, the results do not hold for the FH2 data set shown in

Table 6.6. Although the two versions of the system with either clustering methods

still outperform the categorization component alone and the version using K-Means is

comparable to global PCA, the version with PWPCA clustering performs signi�cantly

worse than global PCA.

While seeking an explanation for the di�erent results on the Ft. Hood data sets,

we tried two things: (1) explore the parameter space for the subspace dimension and

(2) compare PWPCA clustering with non-constant � { the original implementation
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Global Overall Overall Clustering Clustering
PCA (KM) (PWPCA) (KM) (PWPCA)

K=1 41.5% - - - -
K=2 - 42.37% 42.60% 29.51% 26.48%
K=3 - 39.33% 43.89% 36.61% 24.57%
K=4 - 42.05% 43.77% 39.35% 24.53%
K=5 - 42.69% 44.28% 39.73% 28.90%
K=6 - 42.90% 43.24% 40.60% 27.44%

Table 6.5: Recognition rates of the system for FH1 data set on average complex edge
magnitude using PCA without clustering, K-Means and PWPCA clustering followed
by PCA, and clustering without PCA for di�erent number of clusters. The results
are from a total of 250 runs with subspace dimension 10.

Global Overall Overall Clustering Clustering
PCA (KM) (PWPCA) (KM) (PWPCA)

K=1 62.5% - - - -
K=2 - 62.21% 57.52% 47.34% 26.05%
K=3 - 61.60% 57.36% 37.98% 24.20%
K=4 - 60.06% 56.30% 37.91% 24.12%
K=5 - 59.01% 54.53% 40.34% 28.86%

Table 6.6: Recognition rates of the system for FH2 data set on average complex edge
magnitude using PCA without clustering, K-Means and PWPCA clustering followed
by PCA, and clustering without PCA for di�erent number of clusters. The results
are from total of 250 runs with subspace dimension 10.

{ and constant � to see how the performance changes with the modi�cation we made

in the implementation to run the algorithm for Ft. Hood data sets.

Figure 6.9 through Figure 6.14 show recognition rates for the two versions of

the system and global PCA on the Ft. Hood data sets across a range of subspace

dimension q. The results were obtained by running each version of the system 10

times for every combination of K and q. As we have seen with the Cat and Dog data

set, the graphs show that both versions of the system performs better than global

PCA for a range of small q's. In most cases, the performance of the system using

PWPCA clustering crosses with the performance line for global PCA more quickly
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than K-Means version, and from that point, mostly performs worse than global PCA.

The K-Means version of the system, on the other hand, keeps doing a better job than

global PCA even for larger q values if not comparable to it.

The results for using two di�erent implementations of PWPCA clustering in the

system are shown in Figure 6.15. In one implementation, the probability de�ned in

equation (B.2) is computed using a separate � for each cluster, while the other imple-

mentation uses a constant �, the average value of �'s of all clusters, for the probability

computation. Even though the entire training samples are used in PWPCA cluster-

ing, the intrinsic dimensionality of each cluster can di�er depending on the weights

of the samples. Since the in-subspace dimension is constant for all clusters, using a

separate � essentially discards di�erent amounts of error for each cluster causing the

clustering process to be unstable. That is why a constant, average � was considered.

For this comparison, the system was run on the Cat and Dog data set since both

version of PWPCA clustering runs without any numerical problem for the data set.

The �gure shows that using a constant � does not change the overall performance in

general.

As described in Appendix B, � has the role of balancing the in
uence of in-

subspace distance and outer-subspace distance in the probability computation. For

example, if � is very small, that is most of the variances are kept within the principal

subspace, then the probability would be very sensitive to changes in outer-subspace

distance. Therefore, the importance of outer-subspace probability in equation (B.2)

will vary depending on the magnitude of � used.

We tested the system for several � values by multiplying di�erent weight values

to the average �. Figure 6.16 shows how the recognition rates changes as � varies

when 5, 10, 15, and 20 subspace dimensions are used. Although the graphs are not

monotonic and change di�erently for each q, it seems that weight values smaller than

one produce better results in general; the best performance is obtained using weights
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Figure 6.9: Recognition rates for the two versions of the system and global PCA on
the average complex edge magnitude features of the FH2 data set for K = 2 (top)
and K = 3 (bottom). The subspace dimension q varies from 1 to 25.
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Figure 6.10: Recognition rates for the two versions of the system and global PCA on
the average complex edge magnitude features of the FH2 data set for K = 4 (top)
and K = 5 (bottom). The subspace dimension q varies from 1 to 25.
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Figure 6.11: Recognition rates for the two versions of the system and global PCA on
the Hough space features of the FH1 data set for K = 2 (top) and K = 3 (bottom).
The subspace dimension q varies from 1 to 25.
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Figure 6.12: Recognition rates for the two versions of the system and global PCA on
the Hough space features of the FH1 data set for K = 4 (top) and K = 5 (bottom).
The subspace dimension q varies from 1 to 25.
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Figure 6.13: Recognition rates for the two versions of the system and global PCA on
the Hough space features of the FH2 data set for K = 2 (top) and K = 3 (bottom).
The subspace dimension q varies from 1 to 25.
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Figure 6.14: Recognition rates for the two versions of the system and global PCA on
the Hough space features of the FH2 data set for K = 4 (top) and K = 5 (bottom).
The subspace dimension q varies from 1 to 25.
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Figure 6.15: Recognition rates of the system on the Cat and Dog data set using two
di�erent implementations of PWPCA clustering for K = 2. Solid lines show the
exemplar match results while dashed lines show the results for assigning dominant
cluster labels.

less that one except for q = 10, in which case the performance for the weight of

0.75 is close to the best result. The results indicate that the system using PWPCA

clustering can behave di�erently depending on how in-subspace and outer-subspace

terms are balanced and the optimal balancing point may change as di�erent subspace

dimensions are used.

6.2 Summary

In this chapter, we presented experimental results of running the complete system on

four multi-class data sets. The experiments focus on the pattern matching mechanism
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Figure 6.16: Recognition rates of the system using PWPCA clustering on the Cat
and Dog data set for di�erent weights applied to the �. For K = 2, 5, 10, 15, and 20
subspace dimensions are tested.

designed as a combination of classi�cation and exemplar matching components. We

compared the system's overall performance with the performance of its components

alone.

For the 2D synthetic data set generated by randomly sampling points from two

Gaussian distributions, the system did not perform as well as the classi�cation com-

ponent with clustering algorithms that are able to �t the underlying distributions

almost perfectly. However, the system's performance is not much lower and it still

improves the performance over exemplar matching component { global PCA { alone.

To test the system on real images, we formed three data sets containing images

of cats and dogs, and di�erent types of objects extracted from aerial images. On

108



these data sets, the experiments were conducted for average complex edge magnitude

and Hough space features with di�erent values for number of clusters and subspace

dimensions. We also showed the in
uence of balancing in-subspace distance and

outer-subspace distance in probability computation for the PWPCA version of the

system.

The results showed that designing a recognition system using a combination of

classi�cation and exemplar matching components can perform more e�ectively than

any of its components alone. Although the relative performance of the system and the

global PCA varies depending on K and q, regardless of the features used, the system

as a whole outperforms or is at least comparable to its component subsystems. More

particular, the K-Means version of the system performs very e�ectively most of the

time for the FH1 and FH2 data sets. The fact that our system works particularly

well for small q's indicates that the system is more bene�cial when the stored data is

highly compressed.
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Chapter 7

Supplementary Studies on

Subspace Projection Algorithms

As described in Section 5.3, exemplar matching is implemented by subspace pro-

jection algorithms. Currently, only PCA was used in the proposed system because

PCA is considered a standard technique for subspace projection and is more stable

and robust than the other algorithms described in Section 5.3. Psychological and

anatomical data, however, give no reason to prefer PCA over other subspace projec-

tion techniques. We performed comparative studies on subspace projection algorithms

in isolation of the rest of the proposed system to provide an insight for their e�ec-

tiveness in practice. The work presented in this chapter has its own importance in

the machine vision community, where researchers have recently studied this subject,

and provides some future directions for expanding the current system.

In the proposed system, a unique subspace is extracted for every cluster formed by

the categorization subsystem. To compare subspace projection algorithms, we assume

that the input data set is a single class cluster, i.e. a set of data samples already

grouped by the clustering process so that they look alike. Hence, we performed the

evaluation with a set of face images. Faces not only compose a single class data set,

but are a well-known domain that humans become expert with. Moreover, many of

the previous comparative studies on subspace projection algorithms were performed
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for face recognition, so our work can be directly compared with those previous results.

Indeed, experimental results described in this section verify the results of previous

comparisons in the literature.

7.1 The FERET Face Database

The FERET face recognition database is a set of face images collected by NIST from

1993 to 19971. In the following studies, we used head-on images only, with 1,196

gallery images, 501 training images and four di�erent sets of probe images. Using the

terminology in [107], the fb probe set contains 1,195 images of subjects taken at the

same time as the gallery images. The only di�erence is that the subjects were told to

assume a di�erent facial expression than in the gallery images 2. The duplicate I probe

set contains 722 images of subjects taken between one minute and 1,031 days after

the gallery image was taken. The duplicate II probe set is a subset of 234 duplicate

I probes, where the probe image is taken at least 18 months after the gallery image.

Finally, the fc probe set contains 194 images of subjects under signi�cantly di�erent

lighting conditions.

The face images in the database are pre-processed through a normalization pro-

cess which produces images in the format used by NIST in FERET studies. In the

process, the images are �rst registered by the eye positions and cropped to a smaller

size so that only the face is included. Then, the backgrounds, such as hair and clothes,

are removed by applying an oval-shaped mask to each image and histogram equal-

ization is performed on the resulting non-masked pixel values. Finally, each image

1http://www.itl.nist.gov/iad/humanid/feret/

2Subject were not told what type of facial expression to assume for either the gallery or fb images,

only that the two expressions should be di�erent.
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is standardized over non-masked pixels so as to have zero mean and unit standard

deviation. Examples from the FERET database are shown in Figure 7.1.

Figure 7.1: Sample images from the FERET database.

7.2 PCA vs. FA

In this section, we compare PCA and FA on a standard face recognition task. The

results show that PCA signi�cantly outperforms FA. In the second experiment, how-

ever, we show that the unique variances estimated by FA can be used to automatically

detect and suppress background pixels prior to the application of PCA, and thereby

improve the performance of PCA-based object recognition systems. This work is also

presented in [5].

7.2.1 Recognizing Facial Identities

While PCA has been a popular method for face and object recognition, FA has not

been widely exploited for object recognition. Here, a comparison between PCA and

FA is made on a standard face recognition task using images from FERET database.

To run FA, the 150�130 images were scaled down to 24�21 pixels3. The recognition

process is as follows. First, a set of subspace basis vectors are computed for both

3When the dimension of input data is p, FA requires the inversion of p � p matrix. To avoid

inverting singular matrices, we scaled down the image size. For comparison, we also used scaled

images for PCA.
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PCA and FA using 501 training images and the gallery images are projected into the

subspace. For matching, a probe image is projected into the subspace and the closest

gallery image to the probe image, as measured in the subspace, is retrieved. The FA

model in equation 5.2 shows that there are p(q + 1) parameters when p dimensional

data is represented by q factors. On the other hand, PCA only needs pq parameters

in such case. Therefore, to make the number of parameters in FA and PCA the same,

we used 200 factors and the �rst 201 (40%) principal components. The factor scores

were computed as expected values conditioned on the observation [129]:

E[zjxi] = (I+�
T
	

�1
�)�1

�
T
	

�1(xi � �)

Table 7.1 shows the recognition results for each probe set. Clearly, PCA always

signi�cantly outperforms FA, which explains why FA has not been used as a single

global model for object recognition.

PCA FA

fb 1015 (84.93 %) 725 (60.67 %)

dup I 281 (38.92 %) 157 (21.75 %)

dup II 36 (15.38 %) 15 ( 6.40 %)

fc 63 (32.47 %) 9 ( 4.64 %)

Table 7.1: Performance of PCA and FA on di�erent probe sets [5].

7.2.2 FA for Background Suppression

FA has been used to �t mixtures of local linear models [47, 63]. These systems ex-

ploit an Expectation-Maximization (EM) [35] algorithm for �tting mixtures of factor

analyzers to data sets [47, 55]. On the other hand, PCA has been considered simply

a transformation of the data. Recent work by Tipping and Bishop [148], however, de-

rives a probabilistic model for PCA and extends it to a mixture of local PCA models.

As a result, there are now methods to compute mixtures of PCA models as well as

mixtures of FA models.
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Is there any reason, then, to prefer FA over PCA for object recognition? We

can �nd no comparisons in the literature, but the data presented earlier re
ects our

experience that PCA outperforms FA on standard face recognition tasks. There are

circumstances, however, under which a combination of FA and PCA outperforms

either alone. The key observation lies in the analysis by Tipping and Bishop, who

show that the di�erence between FA and PCA lies in the residual error model [148].

PCA assumes that all variance not accounted for by the eigenvectors is drawn from

a single zero-mean Gaussian distribution with standard deviation �, and determines

the principal components which can account for the total (both common and unique)

variance. Therefore, PCA is highly sensitive to variation in pixel noise and the pres-

ence of background.

FA, on the other hand, �ts a unique standard deviation �i to every pixel. As a

result, the variance of a variable is split into common and unique variance in the FA

model (equation 5.3 in Section 5.3.3). Typically, FA applications are concerned with

the common variance and exclude the unique variance; however, we are more inter-

ested in the latter. The unique variances (i.e. the diagonal elements of 	) determine

how much of the variability in each input dimension is not attributable to linear fac-

tors. Therefore, when the input data is a set of 2D images, it models the independent

pixel noise in the data set. We assume that non-linear variances are attributable to

backgrounds since this model is applied to a set of independently collected images

rather than a video sequence in which same backgrounds appear repeatedly. This

implies that FA may have an advantage over PCA in circumstances where the fore-

ground and background pixels are not separated a-priori, since background pixels

should receive higher unique variances.

In fact, this is what happens for object recognition systems taking a set of images

as input. Even though the images contain similar objects, the background may still

be quite di�erent, unless the images are preprocessed to separate background from

114



foreground. It would severely a�ect the system's performance especially when PCA-

like matching methods are used. The proposed system also has the same problem.

A scene generally contains a variety of objects with di�erent shapes and, as shown

in the previous chapter, the input patch images are generated independently and no

preprocessing is applied for background removal. Once they are grouped by clustering

methods, each cluster includes images of similar objects, but they may have quite

di�erent backgrounds, which will consequently drop the performance of exemplar

matching. Therefore, it is important to suppress background pixels before a subspace

is �t to a cluster.

To test our hypothesis, we apply FA to two di�erent versions of the FERET face

database with di�erent amounts of background. They are formed by cropping the

images in the database to two di�erent sizes: a standard size of 150� 130 pixels (as

in [107]), and 200�170 pixels. The left column of Figure 7.2 shows the images of one

person from each data set. Obviously, the larger image includes more background,

particularly hair and clothes. To run FA, the 150� 130 images were scaled down to

24� 21 pixels, while the 200� 170 images were scaled to 25� 21 pixels. The matrix

	 is computed by FA on 1,301 training and gallery images. The diagonal elements

form the variance images shown in the right column of Figure 7.2. As we can see,

pixels outside the face and around the extreme points of some facial structures {

eyebrows, nose and mouth { vary a lot across the data set, while areas of facial skin

have lower unique variance. This is particularly true in the bottom right image, where

the background is captured quite well by the unique variances.

In order to suppress background pixels relative to foreground pixels, source pixels

in the images are weighted by the inverse of their unique standard deviation as esti-

mated by FA. The recognition algorithm applied after weighting is PCA followed by

a nearest neighbor classi�er, as in [107]. To demonstrate the use of FA in suppressing

background pixels, we compare the recognition performance of PCA on the weighted
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Figure 7.2: The left column shows an example from the FERET database cropped
into two di�erent sizes. On the right, the variance map of the data sets of smaller

sized images (top) and larger sized images (bottom) computed by applying FA to
combined set of training and gallery images from each data set.

images (WPCA) to that of PCA performed on an unweighted data set.

Table 7.2 and 7.3 show the resulting recognition performance. The weighting pro-

cess does not help for the smaller images, since they do not include much background

to suppress. Most of the unique variance captures internal variations around the fa-

cial structures. Statistically4, there is no signi�cant di�erence in performance between

the two methods, except on the fb probe set where PCA outperforms WPCA. This

makes sense, since the fb images were taken immediately after the gallery images.

The backgrounds (e.g. hair, clothes) are therefore the same for each individual in

the gallery and fb data sets, so the background represents useful information rather

than noise. In all instances where the background is di�erent between the probe and

4To test statistical signi�cance, we apply McNemar's pairwise-di�erence test.
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gallery, WPCA performs as well as PCA.

PCA WPCA

fb 1015 (84.93 %) 989 (82.76 %)

dup I 281 (38.92 %) 278 (38.50 %)

dup II 36 (15.38 %) 36 (15.38 %)

fc 63 (32.47 %) 67 (34.54 %)

Table 7.2: Performance of PCA and WPCA on di�erent probe sets. The original

image size of the data set is 150 x 130 pixels [5].

However, with larger images that include more background, WPCA outperforms

PCA except for the fc probe set. For the fb, dup I, and dup II probe sets, WPCA

performs signi�cantly better than PCA with over 99% con�dence. Compared to the

results on the set of smaller images shown in Table 7.2, this shows that the proposed

weighting process, using the unique variances captured by FA, helps suppress the

background. As for the fc probe set, it is not clear what causes the anomalous result.

The fc probe set is the smallest probe set, and the lighting for the fc images is from

a di�erent direction than in the other three probe sets. The fc images are also darker

than the other images, so there is less dynamic range in the source pixels. Why

any of these factors should di�erentially e�ect WPCA and PCA remains for further

investigation.

PCA WPCA

fb 1046 (87.53 %) 1087 (90.96 %)

dup I 285 (39.47 %) 308 (42.66 %)

dup II 30 (12.82 %) 40 (17.09 %)

fc 108 (55.67 %) 93 (47.94 %)

Table 7.3: Performance of PCA and WPCA on di�erent probe sets. The original
image size of the data set is 200 x 170 pixels [5].

It can be argued that using FA for background suppression seems to have an

inherent contradiction when it is applied to face recognition as described in this
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Section. FA captures high variance in pixels around facial structures (Figure 7.2),

which are often considered prominent features in face recognition, and the proposed

process seems to suppress these features. The results in Table 7.2, however, show that

suppressing these pixels does not lower performance; there is no signi�cant di�erence

between PCA and WPCA. It may be that movable features are less predictable than

�xed features that are not suppressed, or it may be because face recognition is more

sensitive to holistic or con�gural properties than localized features [23]. Indeed, in the

next section, we show that localized features may be more important for analyzing

facial expressions [8] than recognizing individual identities.

7.3 PCA vs. ICA

Compared to PCA, it is quite recently that ICA has been applied to image analysis

[16], recognizing faces [9, 90, 105, 159] and expressions [39]. Since then, a number

of comparisons between PCA and ICA have been made. The comparisons were per-

formed mostly in the context of face recognition system and the results are somewhat

contradictory. Bartlett, et al. [9], Liu and Wechsler [90], and Yuen and Lai [159] claim

that ICA outperforms PCA for face recognition, while Baek et al. [6] claim that PCA

outperforms ICA and Moghaddam [105] claims that there is no statistical di�erence

in performance between the two. The relative performance of the two techniques is

therefore an open question. Adding to the confusion are the two di�erent architec-

tures for applying ICA to recognition tasks as described in Section 5.3.2. In this

section, the space of PCA and ICA comparisons is explored by systematically testing

two ICA architectures and three PCA distance measures. This work is previously

reported in [6] and [41].
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7.3.1 Recognizing Facial Identities

The baseline face recognition system used in this comparison is the same as describe

in Section 7.2. This time, we scaled down the face images to 60 � 50 pixels to run

ICA and PCA is run on the same sized images. The training images are a randomly

selected subset of 500 gallery images.

In this experiment, we kept 200 subspace dimensions (40% of the maximum pos-

sible number of non-zero eigenvalues given a training set of 500 images). Rather than

pick a single distance measure, we tested PCA three times, once using the L1 (city-

block) distance metric, once using the L2 (Euclidean distance) metric, and once using

a Mahalanobis (L2 after scaling each dimension by the square root of its eigenvalue)

distance metric. ICA was tested also keeping 200 basis vectors and a cosine distance

measure was selected to retrieve images in the ICA subspaces5. The other InfoMax

parameters for architecture I were a block size of 50, and a learning rate that began

at 0.001 and was annealed over 1,600 iterations to 0.0001. The parameters for archi-

tecture II were the same, except that the learning rate began at 0.0008 rather than

0.001 because of numerical limitations. These parameters match those used in [9].

Table 7.4 shows the recognition rate for PCA, ICA architecture I, and ICA archi-

tecture II, broken down according to probe set. Results for PCA are divided according

to whether the L1, L2 or Mahalanobis distance metric was used. The most striking

feature of Table 7.4 is that ICA architecture II always has the highest recognition rate.

PCA is second, with both the L1 and Mahalanobis distance measures performing well.

The performance of ICA architecture I and PCA(L2) are very close, and neither is

competitive with architecture II or PCA with L1 or Mahalanobis. According to Mc-

5We also tested L1, L2, and Mahalanobis distance measures. For ICA architecture II, the cosine

measure clearly outperforms these other measures. For architecture I, cosine clearly outperforms L1

and L2 and there is no signi�cant di�erence between cosine and Mahalanobis.
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Nemar's signi�cance test, the di�erence in performance between architecture II and

PCA(L1) is signi�cant for all four probe sets at a con�dence level of 97% or higher.

probe ICA (cosine) PCA

set Arch. I Arch. II L1 L2 Mahalanobis

fb 73.72 % 82.26 % 80.42 % 72.80 % 73.23 %

dup I 36.15 % 48.48 % 40.30 % 33.24 % 39.34 %

dup II 14.53 % 32.48 % 22.22 % 14.53 % 24.36 %

fc 5.67 % 51.03 % 20.62 % 4.64 % 39.69 %

average 50.62 % 64.31 % 57.31 % 49.17 % 56.16 %

Table 7.4: Recognition rates for PCA and both architectures of ICA on the FERET
face database. The task is to match the identity of the probe image [41].

The results in Table 7.4 were generated using 200 subspace dimensions. In general,

the relative ordering of the subspace projection techniques does not depend on the

number of subspace dimensions. Figure 7.3 and Figure 7.4 plot the recognition rate for

all �ve techniques as a function of the number of basis vectors. For most techniques,

the lines never cross. The one exception is PCA with the Mahalonobis distance

metric, which performs almost as well as ICA architecture II with small numbers of

subspace dimensions, but whose performance drops o� relative to ICA architecture

II and sometimes relative to PCA with L1 as the number of subspace dimensions

increases.

In many cases, the results shown in Table 7.4 do not contradict the previous

results in the literature, if the ICA architecture and distance measures are taken

into account. For example, Baek et al. [6] found that PCA with the L1 distance

measure outperformed ICA architecture I, which is consistent with Table 7.4. Liu

and Wechsler [90] compared ICA architecture II to PCA with L2, and found that

ICA was better. Again this agrees with Table 7.4, even though on the surface it

appears to contradict the results in Baek, et al. Similarly, Bartlett et al. reported in

1998 that ICA architecture II outperformed PCA with L2 [9, 10], a result predicted
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Figure 7.3: Recognition rates for ICA Architecture I (black), ICA Architecture II
(green), and PCA with the L1 (blue), L2 (red) and Mahalanobis (magenta) distance

measures as a function of the number of subspace dimensions. Top graph corresponds

to fb probe set and the bottom graph corresponds to fc probe set. Recognition
rates were measured for subspace dimensionalities starting at 50 and increasing by

25 dimension up to a total of 200 [41].

121



50 100 150 200
20

25

30

35

40

45

50

55

60

65

re
co

gn
iti

on
 r

at
es

# of basis vectors

dup I probe set

ICA I
ICA II
PCA (L1)
PCA (L2)
PCA (MH)

50 100 150 200
0

5

10

15

20

25

30

35

40

45

re
co

gn
iti

on
 r

at
es

# of basis vectors

dup II probe set

ICA I
ICA II
PCA (L1)
PCA (L2)
PCA (MH)

Figure 7.4: Recognition rates for ICA Architecture I (black), ICA Architecture II
(green), and PCA with the L1 (blue), L2 (red) and Mahalanobis (magenta) distance

measures as a function of the number of subspace dimensions. Top graph corresponds

to dup I probe set and the bottom graph corresponds to dup II probe set. Recognition
rates were measured for subspace dimensionalities starting at 50 and increasing by

25 dimension up to a total of 200 [41].
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by Table 7.4.

The breakdown of results in Table 7.4, however, reconciles results previously re-

ported in the literature that appeared contradictory. It shows that appropriate dis-

tance measure and ICA architecture have to be used for comparison. Two of the

papers mentioned above compared ICA architecture I to PCA with the L2 distance

metric, and found that ICA outperformed PCA [9, 159]. Our study also found that

ICA architecture I was slightly better than PCA with the L2 distance metric, but

our results were only statistically signi�cant for the dup I probe set. With di�er-

ent training and test images, these studies may have detected a signi�cant di�erence

where we did not. Our data does not contradict their results, although it fails to �nd

strong support for them. We think, however, that the previous conclusions should be

limited to the architectures and distance metrics that they tested.

The one previous result that contradicts ours is the study by Moghaddam [105]

which found no statistically signi�cant di�erence between ICA architecture II and

PCA with the L2 distance metric. According to Table 7.4, ICA architecture II should

have won this comparison, and the result should not have been in doubt. From the

paper, however, it appears that Moghaddam may have used the L2 distance metric for

ICA as well as for PCA. This signi�cantly lowers the performance of ICA architecture

II6 and may explain part of the discrepancy.

7.3.2 Recognizing Facial Actions

In comparisons between PCA and ICA on face recognition tasks, we showed that

the superiority of one algorithm over another is not absolutely decidable, but rather

depends on the distance measures for matching and the ICA architecture types to be

6The average recognition rate of ICA architecture II with the L2 distance metric dropped to

55.32%, a 9% drop in accuracy. But ICA still performs better than the PCA with L2 distance.
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applied. In this section, we expand the study to a di�erent domain of task: facial

action recognition. We show that the relative performance of the two techniques also

depends on the nature of given task.

7.3.2.1 The Facial Action Database

The data set, called the Ekman-Hager data set of directed facial actions, consists

of images of subjects performing speci�c facial actions. In particular, Ekman has

described a set of 46 human facial actions [44], and Paul Ekman and Joe Hager

have collected images of people performing these actions. They asked 20 subjects

to perform six facial actions each. Not all subjects were capable of performing all

actions in isolation of others, so only 80 total subject/action pairs were collected7. A

temporal sequence of �ve images was taken of each subject performing each action,

where the �rst image shows only small movements at the beginning of action. The

movements become successively more pronounced in images 2 through 5. The data

set also contains mirror-reversed examples of each action in order to boost the amount

of training data. All �ve images are then subtracted from the picture of the same

subject with a neutral expression, prior to the start of the facial action. The resulting

data is composed of di�erence images, as shown in Figure 7.5. This data is further

described in [8]. For the experiments in this study, only the upper halves of the faces

were used.

7.3.2.2 Recognition Results

The appropriate distance measure and ICA architectures are also dependent on the

nature of the given task. In this Section, we compare the performance of PCA and

ICA on recognizing facial actions rather than facial identity. The motivation is that

7For the Action Units 1, 2, 4, 5, 6, and 7, there are 9, 10, 18, 20, 5, and 18 subjects, respectively,

who were able to perform each action, which make total of 80 subject/action pairs.
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Figure 7.5: Sequences of di�erence images for Action Unit 1 and Action Unit 2. The

frames are arranged temporally left to right, with the left most frame being the initial

stage of the action, and the right most frame being its most extreme form [41].

recognizing expressions is a signi�cantly di�erent task from recognizing identity, as

suggested in [8, 39]. Identity recognition is hypothesized to be a con�gural (as opposed

to spatially localized) task [23], therefore it should be modeled better by spatially

overlapping (global) basis vectors. Our data presented in Section 7.3.1 suggests that

ICA architecture I, which produces spatially localized basis vectors (middle row in the

Figure 5.8), performs worse than either PCA or ICA architecture II, both of which

produce global basis vectors (top and bottom rows in the Figure 5.8), and thereby

supports the con�gural view of facial identity recognition. On the other hand, facial

actions are formed by moving localized muscle groups, therefore it seems reasonable

that localized features would form a better basis for recognizing facial actions than

spatially overlapping features. Here we show how the recognition performance is

in
uenced by the localized properties of the given task.

For testing purposes, the subjects in the Ekman-Hager data set were partitioned

into four sets. The four sets were designed to keep the total number of actions as

even as possible, given that not all subjects performed all actions. This partition by

subject index is given in the Table 7.5. Otherwise, the methodology and parameters

were the same as described in Section 7.3.1, except that in this experiment a trial was

a success if the retrieved gallery image was performing the same facial action as the
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probe image. We performed the experiments twice, once restricting the probe set to

only the third image in each temporal action sequence (as in [8]), and once allowing all

�ve images to be used as probes. Once again, ICA architecture I, ICA architecture II,

and PCA with the L1, L2 and Mahalanobis distance metrics were compared. Because

of numerical limitations in our ICA architecture II implementation, only 110 features

were computed for each technique.

action partition (subject #)

unit # 1 (0,2,4,5,14) 2 (1,7,8,9,16) 3 (3,10,11,12,13) 4 (6,17,18,19,20)

1 2 2 2 3

2 2 3 2 3

4 5 4 4 5

5 5 5 5 5

6 1 1 2 1

7 4 4 5 5

total 19 actions 19 actions 20 actions 22 actions

Table 7.5: Subject partition. Each row corresponds to a facial action, each column

to a set of subjects. Table entries correspond to the number of subject/action pairs
in a partition for the corresponding facial action [41].

One di�erence between ICA and PCA is that the basis vectors in ICA are not

ranked in order. To compare the performance for subsets of basis vectors, class dis-

criminability r is used to order the basis vectors in ICA8 [8]. To compute r, each

training image is assigned a facial action class label. Then, for each feature, the

between-class variability �between, and within-class variability, �within of the corre-

sponding coe�cients are computed by:

�between =
X
i

(�i � �)2

8ICA basis vectors were not ordered by relevance for the identity recognition task because the

FERET data set contains only two head-on images of most subjects, and no more than four head-on

images of any subject.
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�within =
X
i

X
j

(bij � �i)
2

where � is the overall mean of a coe�cient across the training images, �i is the mean

for class i, bij is coe�cient of j
th training image in class i, and r is the ratio of �between

to �within, i.e. r = �between=�within. This allows us to rank the ICA features in terms of

discriminability and to plot recognition rate as a function of the number of subspace

dimensions. We create the same plot for PCA, ordering its features according to the

eigenvalues (Figure 7.6)9.

The results of this experiment are a little more complex than in Section 7.3.1, in

part because recognition rate did not increase monotonically with the number of sub-

space dimensions. Figure 7.6 shows the recognition rate as a function of the number

of dimensions for each of the �ve techniques (ICA architecture I, ICA architecture

II, and PCA with L1, L2 and Mahalanobis), averaged across all four test sets. For

all �ve techniques, the maximum recognition rate occurs with a di�erent number of

subspace dimensions on every test set, suggesting that it may not be possible to tune

any of the techniques by changing the number of subspace dimensions. Table 7.6

therefore presents the recognition rates for every technique using 110 basis vectors.

For the same results when only the third images from each temporal sequence are

used as probes, see [41]. (The results are essentially equivalent.)

When recognizing facial actions, it is ICA architecture I that outperforms the

other four techniques at a con�dence level of 99% or higher. PCA(L2) is second best,

followed by PCA(L1), ICA architecture II, and PCA(Mahalanobis). This is consis-

tent with the hypothesis that spatially localized basis vectors outperform spatially

overlapping basis vectors for recognizing facial actions, and underscores the point

that the analysis technique must be selected based on the recognition task. It is also

9We also tested PCA using relevance ordering, but its performance was better using the ordering

of the eigenvalues.
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Figure 7.6: Recognition rates vs. subspace dimensions. On the top, both ICA and

PCA components are ordered by the class discriminability while PCA components
are ordered according to the eigenvalues in the bottom plot. ICA architecture I is

magenta, ICA architecture II is green, PCA with L1 is blue, PCA with L2 is red,

PCA with Mahalanobis is black [41].
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test ICA (cosine) PCA
set Arch. I Arch. II L1 L2 Mahalanobis

1 87.37 % 74.73 % 83.16 % 83.16 % 52.63 %

2 95.79 % 84.21 % 84.21 % 92.63 % 70.53 %

3 82.50 % 69.00 % 80.00 % 83.00 % 53.00 %

4 87.27 % 75.91 % 70.00 % 81.82 % 58.18 %

average 88.12 % 75.87 % 79.00 % 85.00 % 58.50 %

Table 7.6: Recognition rates for facial actions using PCA and both architectures of

ICA. The images were divided into four sets according to Table 7.5 and evaluated

using 4-fold cross validation. Techniques were evaluated by testing from 1 to 11-

subspace dimensions and taking the average [41].

consistent with the data in [8, 39]

7.3.3 Discussions

Comparisons between PCA and ICA are not simple, because no single technique is

always best. Di�erences in parameters, architectures, distance metrics, and given

tasks must be taken into account. Experiments presented in this section explore the

space of PCA/ICA comparisons, by systematically testing two ICA architectures and

three PCA distance measures. In the process, we were able to verify the results of

previous comparisons in the literature and to relate them to each other. Of partic-

ular interests, the nature of given tasks in
uence the performance of di�erent ICA

architectures. ICA architecture I is suitable for tasks with localized properties while

ICA architecture II is better for con�gural tasks.

As with any comparative study, there are also limitations. The space of InfoMax

parameters were not explored because of its size and run-time constraints. Instead,

parameters were selected based on previous experience with the algorithm [9, 8, 7, 39].

It is always possible that another choice of parameters might have improved the

performance of ICA. By testing only InfoMax, we did not explore the space of ICA

algorithms, either. However, others have reported little di�erence between di�erent
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ICA algorithms [31, 67].

A more serious limitation is that PCA and ICA were evaluated according to only

one criterion, recognition rate. Other criteria, such as computational cost, may apply

in some circumstances. PCA has also been demonstrated to be e�ective across a wide

range of task domains while ICA is less thoroughly investigated.

7.4 Summary

In this chapter, we presented supplementary studies on subspace projection algo-

rithms for face recognition tasks. Face images taken from a same viewpoint compose

a single class data set, which can be assumed a cluster output from the categorization

subsystem. Since a subspace is extracted for each cluster independently, the evalu-

ation done here should apply to the proposed system. Faces are also a well-known

domain that humans become an expert with, and the literature provides many com-

parative studies on subspace projection algorithms for face recognition tasks. Our

results were compared with those previously reported evaluations.

It is shown that FA does not do well for recognizing objects by itself. The linear

factors computed by FA did not outperform the PCA basis vectors, however, the

resulting unique variance image separated background from foreground pixels quite

well. We used the unique variance to inversely weight pixels prior to applying PCA.

This suppressed background pixels relative to foreground pixels, and improved the

performance of PCA. Therefore, FA can be applied to automatically suppressing

backgrounds prior to the recognition process. The method presented here has the

property that it improves recognition performance when background is present in the

images, but does not signi�cantly reduce performance when no or little background

is present.

Comparisons between PCA and ICA were done by exploring ICA architectures,

distance measures for matching, and di�erent nature of given tasks. The results show
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that no single technique is always the best, and the relative performance of the two

techniques is depending on many factors. Especially, the performance of di�erent ICA

architectures is in
uenced severely by the nature of given tasks, while PCA maintains

relatively stable performance.

The experimental results presented in this chapter are not yet embedded in the

proposed system. However, the tasks evaluated here are important in the context of

the current system. At this moment, PCA is the only technique used for exemplar

recognition and there is no explicit background removal mechanism implemented in

the system. Including di�erent architectures of ICA as system options and applying

FA prior to exemplar matching to suppress backgrounds would improve the system's

performance.
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Chapter 8

Conclusions

Understanding the mechanisms underlying visual object recognition has been an im-

portant subject since the early days of cognitive science. Researchers in various areas

have made tremendous e�orts to provide a general model for biological vision systems

and to theorize computational models for building arti�cial vision systems. Although

still far from �nding a complete model for biological vision systems, results from

many studies indicate that a central principle that characterizes vision is functional

specialization. It has been generally considered that the ventral visual pathway plays

the critical role in identifying and recognizing objects. Furthermore, it has been pro-

posed that there are separate visual areas dedicated to recognizing objects with which

humans become expert.

In this work, we have tried to provide a possible algorithmic analysis of psycho-

logical and anatomical models of the ventral visual pathway, more speci�cally the

pathway that is responsible for expert object recognition, using the current state

of machine vision technology. As a result, we propose an expert object recognition

system based on two biological theories: Kosslyn's model of higher-level visual pro-

cessing and Tarr and his colleagues' work on viewpoint-dependent mechanism and

perceptual expertise for visual object recognition. Kosslyn's model provides a de-

sign framework for the overall structure of the system, while Tarr's work provides a

theoretical context for training and testing the system.
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The proposed system is composed of multiple, functionally distinct components

performing feature extraction and pattern matching. When evaluating the system,

we focus on the last two components that are responsible for matching input patterns

to those stored in memory. They correspond to classi�cation and exemplar matching

and each of the components alone can be considered as a standard object recognition

system. The main purpose of the experiments conducted in this work was to analyze

the system's e�ectiveness as designed by a combination of the two components.

The proposed system is tested with four di�erent multi-class data sets. The over-

all performance of the system is compared to the performance of classi�cation and

exemplar match alone. In general, the system's performance varies depending on the

features used in the pattern matching component and the parameter values that a�ect

each component's behavior. However, for all data sets, the results showed that the

system as a whole outperforms any of its component subsystems when the number of

sub-dimensions used for matching is relatively small. This indicates that the system

can be more e�ective when the data is highly compressed. Performance of the system

also changes according to the clustering algorithms. Currently, K-Means produces

better performance than the PWPCA clustering, which has many more parameters

than K-Means that have to be tuned.

Even though the system was not tuned to behave optimally for di�erent input data

sets, it performs better than or comparable to the component subsystems. It should be

noted that the exemplar matching subsystem alone implements global PCA, which is

one of the most-studied and the best performing techniques for 2D object recognition.

The experimental results show that a recognition system designed based on biological

models described in this work matches the performance of a single state-of-the-art

machine vision technique and can perform even better when it is appropriately tuned.
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8.1 Contributions

The main contribution of this work is a system that implements a biological model

of expert object recognition. The system provides explicit connections between com-

putational and biological models of visual object recognition at the level of major

components. It is also a complete end-to-end system, in which every component is

based on a biological model. Each of the computational approaches implementing the

di�erent levels of recognition for pattern matching in the system can be considered as

a standard object recognition system by itself. Combining them into one framework

is shown to be more e�ective than using the components alone, and it also enables

the system to perform recognition in di�erent levels, which is a de�ning characteristic

of expert object recognition.

The system also provides a baseline mechanism for testing Kosslyn's biological

model of object recognition. The system can be used to test Kosslyn's model with

di�erent computational alternatives and to be extended to a more complex, biolog-

ically plausible vision system. Some connections in Kosslyn's model, however, were

not implemented in the proposed system. For example, in Kosslyn's model, there is a

connection from the exemplar pattern activation subsystem to the category pattern

activation subsystem and a direct connection from the preprocessing subsystem to the

exemplar pattern activation subsystem. While the latter is implemented indirectly

since it is equivalent to setting the number of clusters to one, the connection from

the exemplar subsystem toward the category subsystem did not exist in the current

system. It is hard to �t this connection with the algorithms used for implementing

the two subsystems. This demands a clari�cation of the role of the connection from

the psychological community so that more suitable algorithms can be considered.

Feedback like this can facilitate interactions between computational and theoretical

�elds of study in vision.

While implementing the system, we developed a clustering algorithm, which ap-
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proximates traditional EM for �tting a Gaussian Mixture model to the data set. Our

algorithm reduces the dimensionality limitation of the traditional EM to some extent.

We also conducted a thorough comparative evaluation on the subspace projection al-

gorithms. It provides important feedback to the machine vision community, where

many researchers have studied the subject. Our work resolved somewhat contradic-

tory results previously reported in the literature. In addition to the performance

evaluation, we also proposed an alternative way of using FA for background sup-

pression. Although these studies on subspace projection algorithms were conducted

independently from the context of the proposed system, they provide valuable insights

for future directions to expand the current system.

8.2 Future Work

Many issues for future work are suggested by the work presented in the previous

chapters. Among them are the following:

� Include ICA for exemplar matching: The experiments described in Section

7.3 showed that ICA can outperform PCA if an appropriate architecture is

applied. Therefore, including the two architectures of ICA into the system

provides more options for exemplar matching and might improve the system's

overall performance.

� Include FA for background suppression: As discussed in Section 7.2, the

unique variances computed by FA separates background from foreground pixels

quite well. Computing the unique variance image for each cluster and inversely

weighting pixels by the variances prior to exemplar matching would have the

e�ect of automatically suppressing backgrounds, thereby improving exemplar

recognition performance.
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� Evaluate clustering algorithms: Currently, the clustering algorithms used

for classi�cation are evaluated by the �nal exemplar matching performance. As

shown in Section 6.1.2.3, clustering performance is not well measured by com-

paring samples to the dominant label in their cluster. As with the comparative

studies performed for subspace projection algorithms, we need to develop a way

to evaluate clustering algorithms in terms of grouping visually similar images.

� Include imagery feedback model: In Kosslyn's model of visual object recog-

nition shown in Figure 3.1, there is a backward connection from the pattern

recognition subsystem to the visual bu�er, called imagery feedback. Kosslyn

says that, when the recognition task is di�cult, this top-down process maps

the current hypothesized representation back to the visual bu�er by continu-

ously adjusting it until the feedback augments the input as well as possible. In

practical systems, one way to model imagery feedback is to reconstruct strongly

matched images in the memory and, rather than just �lling in the input, com-

pare them with the input for further analysis and performance improvement. In

[147], imagery feedback is implemented as PCA followed by perceptron learning

for di�erence estimation and it is shown that the recognition performance can

be improved by the post-PCA processing.

� Model self adaptation capabilities: There are many factors that in
uence

the system's behavior for given tasks. As discussed in Chapter 6, the system

does not always perform e�ectively; its performance depends on the parameter

values used. If we can make the system adaptive to given tasks, it will provide

a far more e�ective arti�cial vision system that is biologically inspired. How-

ever, this work would require e�ort from both the machine and biological vision

communities. A computational model should be provided based on the studies

about the underlying mechanisms for the adaptive capabilities of biological vi-
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sion systems, and we have to �nd a technical way to embed the model in the

current system's framework.
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Appendix A

EM Algorithm for Factor Analysis

In this appendix, we review the derivation of an EM algorithm for FA described in

[55].

The generative factor analysis model is de�ned as:

x =Wz+ u

where z � N (0; I) and u � N (0;	).

p(z) = (2�)�k=2 exp
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Using the joint normality of data and factors, the expected value of factors given x

is computed by:

E(zjx) = �x (A.1)

where � =W
T (WW

T
+	)�1.

Also, the second moment of the factors given x is computed by:

E(zzT jx) = C
zjx � E(zjx)E(zjx)T (A.2)

= I� �W + �xxT�T (A.3)

Then, the log-likelihood of x is:
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where Cx is the sample covariance matrix de�ned by xxT . W and 	 are estimated

so that the log-likelihood is maximized.

E-Step : Compute E(zjxi) and E(zzT jxi) for each xi, given W and 	 using equa-

tions A.1 and A.3. Since 	 is diagonal, the following Matrix Inversion Lemma can

be used in this step to e�ciently invert the matrix WW
T +	.
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Appendix B

Probability Computation in

PWPCA Clustering

To implement PWPCA clustering, we rewrite the probability de�ned by equation

(5.1) as follows:
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Adding a constant c to the exponent is the same as multiplying ec to the exponential

value, and therefore does not change the weights computed by normalizing p(x)'s

across clusters. Since q
2
ln(2�) and p�q

2
ln(2�) are constants, those terms are dropped

in the probability computation. Therefore,

p(x) � exp
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The average trailing variance � is di�erent for each cluster. In practice, we observed

that the outer-subspace probability is very sensitive to � which makes the cluster size

bouncing from iteration to iteration. For example, when p is order of hundred and q

is order of ten, p�q
2
ln� can easily become order of thousand which then dominate the

exponential term. It makes the outer-subspace probability extremely small so that it

loses most of the samples in that iteration. In the next iteration, the � gets small and

the cluster attracts more samples than other clusters having larger �. Although small

� makes the magnitude of the �rst term in the exponent increase, for the data set

we tested, it does not have much in
uence on the magnitude of the entire exponent.

Therefore, when � values are radically di�erent between clusters, the size of some

clusters might change back and forth for each iteration.

After observed this phenomena, we made an assumption that all clusters have the

same average trailing variance at each iteration. This is a rather strict assumption and

might not be true in general. Although all samples are used for subspace computation

in each cluster, samples are weighted �rst so those samples with negligible weights do

not contribute to the computation. If q is not large enough to keep most variances

within the subspace, di�erent � will be obtained for each cluster depending on the

number of samples that had signi�cant contribution to the subspace computation in

the cluster. In our implementation, we set � as the average of all �'s across clusters.

Therefore, p�q
2
ln� can be dropped in equation (B.2) so the outer-subspace probability

is solely decided by the �rst term in the exponent. In this case, � determines the

importance of the error k~xk2 �
Pq

i=1
z2i in the probability computation. The e�ect of

changing the magnitude of � can be seen in Chapter 6.

Furthermore, to avoid numerical under
ow caused by a very small negative ex-

ponent, we shift the exponents by some constant amount. Let MaxExpInSpc and

MaxExpOutSpc be the maximum values of the exponents (�1

2
(
Pq

i=1

z2
i

�i

+
Pq

i=1
ln(�i))

and (� 1

2�
(k~xk2 �

Pq
i=1

z2i )) across clusters for a given sample x, respectively. Then,
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the probability computed in the actual implementation is:

p(x) = exp
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Appendix C

Glossary

allocentric coordinates: a coordinate system centered on a point external to the

viewer, whose body axes are not used to code location.

area 17: see primary visual cortex.

complex cell: the most common type of cells in the primary visual cortex that is

sensitive to motion and has a relatively large receptive �eld. It is less sensitive to
position than simple cells [114].

cones: a type of retinal photoreceptors that is active in daylight (photopic)
conditions. The three di�erent types of cone found in the human retina provide the

basis for color vision [164].

dorsal pathway: one of two theorized systems of visual information processing.

Information thought to progress toward the parietal cortex V1!V2!MT!PP
(posterior parietal cortex). Functions in comprehension of spatial arrangement. See
Figure 1.2.

egocentric coordinates: a coordinate system centered on the viewer.

ERP: see event-related potential.

event-related potential: the electromagnetic brain activity. The method of ERPs

recording the brain activity such as EEG and MEG signals re
ects real-time neuronal

functioning.

fMRI: see functional magnetic resonance imaging.

functional magnetic resonance imaging: a technique used for imaging brain
activity by visualizing changes of deoxygenated hemoglobin in the brain area
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that occur over timespans. The concentration of deoxygenated hemoglobin changes

systematically where there is neural activity, and can be detected by the MRI scanner.

fusiform gyrus: the spindle-shaped convolutions on the surface of the cerebral

hemispheres located in the medial part of the occipital lobe.

ganglion cells: the last neurons in the retina, whose axons exit the eye as the optic

nerve. [114]. M-type ganglion cells are characterized by a large cell body, a transient

response to light, and no sensitivity to di�erent wavelengths of light. On the other

hand, P-type ganglion cells are characterized by a small body, a sustained response

to light, and sensitivity to di�erent wavelengths of light [12].

Gaussian pyramid: in the Gaussian image pyramid, the resolution is decreased

by successive convolutions of the image at the previous level of the pyramid with a
Gaussianlike kernel. After the low-pass Gaussian convolutions, the sample density is
typically decreased by sampling every other pixel [57].

image pyramid: a sequence of copies of an image in which both sample density

and resolution are decreased in regular steps. The bottom level of the pyramid is
the original image. Each successive level is obtained from the previous level by a
�ltering operator followed by a sampling operator [57].

infero-temporal (or inferior temporal) cortex: lower part of the temporal
cortex.

inferior temporal lobe: lower part of the lobe of the brain that is inferior to

the lateral sulcus and anterior to the occipital lobe; it is associated with auditory
processing and olfaction.

Laplacian pyramid: in Laplacian image pyramid, each layer is obtained by taking

the Laplacian of the corresponding level on the Gaussian pyramid. The Laplacian
convolution kernel is typically de�ned as the kernel obtained by taking the Laplacian

of a Gaussian having an appropriately chosen value for its standard deviation. It can
be rapidly implemented by taking the di�erence between two successive layers in the

Gaussian pyramid [57].

lateral geniculate nucleus: the thalamic nucleus that relays information from the

retina to the primary visual cortex [12].

LGN: see lateral geniculate nucleus.

lateral occipital complex: the region located on the later bank of the fusiform

gyrus extending ventrally and dorsally.
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LOC: see lateral occipital complex.

magnocellular channel: the visual information processing channel that begins

with the M-type retinal ganglion cells and leads to a layer of the primary visual

cortex. It is believed to process information about visual movement [12].

middle temporal area: an area of the neocortex, at the junction of the pari-

etal and temporal lobes, that receives input from the primary visual cortex and

appears to be specialized for the detection of stimulus movement (also called V5) [12].

MT: see middle temporal area.

occipital lobe: the region of the cerebrum lying under the occipital bone [12]; the
posterior lobe of the brain.

optic nerve: the bundle of ganglion cells that passes from the eye and carries visual
information to the brain.

parvocellular channel: the visual information processing channel that begins with
the P-type retinal ganglion cells and leads to a layer of the primary visual cortex. It

is believed to process information about object shape [12].

PET: see positron emission tomography.

photoreceptors: the specialized nerve cells in the retina that transduce light energy

into changes in membrane potential [12].

positron emission tomography: a technique used for imaging brain activity by

measuring the 
ow of blood containing radioactive atoms that emit positrons [12].

posterial parietal cortex: the posterior region of the parietal lobe, located roughly

`after' vision and `before' motor control in the cortical information processing

hierarchy. It is involved in visual and somatosensory integration and attention [12].

posterial parietal lobe: the backside of the parietal lobe.

primary visual cortex: the �rst cortical visual area of the brain, which receives

input directly from the LGN; also called area 17, striate cortex, and V1.

pulvinar: located in the posterior thalamus of the brain. The pulvinar receives

input from the superior colliculus and projects to V1 [102].
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receptive �eld: the region of the visual �eld in which a stimulus can evoke a change

in the �ring rate of the cell.

retinotopic: the topographic organization of visual pathways where the neurones

from the retina are projected orderly so that the spatial structure of the image is

preserved at the destination [164].

rods: a type of retinal photoreceptors that contain rhodopsin and, are specialized

for low light levels [12].

repetitive transcranial magnetic stimulation: transcranial magnetic stimula-

tion (TMS) utilizes an electromagnet placed on the scalp that generates magnetic

�eld pulses roughly the strength of an MRI scan. The magnetic pulses pass readily

through the skull and stimulate the underlying cerebral cortex. Low frequency
(once per second) TMS has been shown to induce sustained reductions in cortical
activation [168].

rTMS: see repetitive transcranial magnetic stimulation.

saccadic eye movements: the ballistic movements of the eyes that we use to
explore the visual surroundings. The eyes jump from one �xation point in space to

another by saccadic movements [12].

SC: see superior colliculus.

simple cell: the cells found in the primary visual cortex having an elongated

orientation selective receptive �eld with distinct on and o� subregions [12].

single-cell recording: a technique which records the action potential of a neuron

without contamination ofaction potentials of neighboring neurons. For that, a small
electrode is lowered into the brain area of interest while the subject is anesthetized.
The electrode is positioned close to a cell whose action potential is to be recorded.

striate cortex: see primary visual cortex.

superior colliculus: a structure in the tectum of the midbrain that receives direct
retinal input and directs saccadic eye movements [12].

thalamus: a paired structure of two tiny egg-shaped structures in the diencephalon.

This structure is a crucial area for integrating and organizing sensory information
that comes into the brain. In the thalamus, this information is processed and

forwarded to the key cortical areas where more processing and integrating will take

place [165].
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V1: see primary visual cortex.

V2: a visual area which receives a somewhat patchy input from V1 and has a

rather disorderly topographic organization. It is revealed that, in V2, a pattern of

alternating thick and thin stripes, each separated by a thin interstripe region exists.

The thick stripes are a part of the magnocellular channel, while the thin stripes and

interstripes are a part of the parvocellular channel [167].

V3: a visual area which receives inputs from the thick stripes in V2, and from layer

4B in V1. Only the lower part of the visual �eld is represented in V3. Properties of

cells in V3 o�er few clues as to its function. Most are selective for orientation, and

many are also tuned to motion and to depth. Relatively few are color sensitive [167].

V4: a visual area which receives input mainly from the thin and interstripe regions of
V2. It also has connections from V1 and V3. Although the area contains many cells

that are color selective, indicating a role in color analysis, cells are also found with
complex spatial and orientation tuning, suggesting that the area is also important

for spatial vision [167].

V5: see middle temporal area.

ventral pathway: one of two theorized systems of visual information processing.
Information though to progress toward the temporal cortex V1!V2!V4!IT

(inferior temporal cortex). Functions for analysis of object qualities such as pattern
shapes, size and colors. See Figure 1.2.

visual cortex: the neocortex that appears to be directly involved in vision, with
over twenty distinct areas. Some of the areas concerned are quite well understood,

others are still a complete mystery.

visual mental imagery: a form of experience that resembles perceptual experience,

but which occurs in the absence of the appropriate stimuli for the relevant perception;
sometimes colloquially called visualization, or \seeing in the mind's eye" [166].
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