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CONSIDERING CANAL POOL RESONANCE IN CONTROLLER DESIGN 
 

Albert J. Clemmens1  
 

ABSTRACT 
 
The Integrator-Delay (ID) model (Schuurmans et al 1999) is a simple model of canal 
response that is used for design of various canal controllers. It describes the change in 
water depth at the downstream end of a canal pool as a function of flow changes at the 
upstream and downstream gates. Canal pools are characterized by a Delay time and a 
backwater surface area (Integrator). This model works very well for canal pools where 
water is flowing under normal depth conditions for a portion of the length, or where there 
are drops. For canal pools where the upstream flow depth is influenced by the 
downstream flow depth (that is, where canal pool is under backwater) the ID model often 
does not properly represent the water-level response. Changes in gate flows often cause a 
step change in water level. Schuurmans (1997) and Miltenburg (2008) propose the use of 
filters to account for this step change (ID-F), where the filter effectively causes a delay in 
response. Litrico and Fromion (2004) proposed the IDZ model, where a gate flow change 
causes a step change in downstream water level, after which the water level response 
follows the integrator of the ID model. The IDZ model does not fully account for 
resonance. An IDZ model with Filtering (IDZ-F) is proposed to account for additional 
resonance. In this paper, we compare the resulting water level response when the ID-F 
and IDZ-F models are used to design canal controllers for canal pools under backwater. It 
is shown that controllers designed with the IDZ-F model provide slightly better control 
than when designed with the ID-F model, although differences are not significant.  

 
INTRODUCTION 

 
Canal controller design requires a mathematical model of canal pool response. Most 
canal control methods rely on a linear model of canal pool response. Schuurmans (1997) 
suggest that there are two types of canal pools: 1) pools in which flow is governed by 
normal depth for some length at the upstream end and under back water at the 
downstream end and 2) pools which are entirely under backwater. For 1), Schuurans, et al 
(1999) propose the use of the Integrator-Delay (ID) model to describe canal response. 
The ID model determines the response of the water level at the downstream end of the 
pool to changes in gate discharge at either the upstream or downstream end. Resonance is 
usually not a problem for this type of canal pool. The model has two parameters: a delay 
time, τ, generally associated with the section under normal depth, and a backwater 
surface area, A, which functions as the integrator of the flow change. Clemmens and 
Schuurmans (2004) use state-transition equations to describe the ID model and then use 
Linear Quadratic Regulator (LQR) design to develop canal controllers. For 2), Litrico and 
Fromion (2004) propose the Integrator-Delay-Zero (IDZ) model to predict the water level 
response associated with canal pools under backwater. They use the same integrator and 
delay as in the ID model. The Zero essentially describes the influence of the celerity 
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wave on the water level response. The purpose of this paper is to develop state-transition 
equations for the IDZ model and to compare canal controllers developed with the ID and 
IDZ models (with filters). 
 

ID MODEL 
 
The ID model assumes the water level at the downstream end of a pool responds linearly 
to changes in flow from steady state. It assumes immediate response to downstream flow 
change and a delayed response to upstream flow change. The ID model in continuous 
form is: 
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where y is water depth at the downstream end of a pool, Q is discharge, j represents the 
pool number and the gate at the downstream end, t is time, τ is the delay time for a wave 
to travel from the upstream to the downstream end of a pool, and A is the backwater 
surface area of a pool. 
 
A discrete form of the ID model is: 
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where Δ represents the change in conditions over one time step, Δt, and φ are weighting 
coefficients that describe the water level slope change at each time step. The φ 
coefficients for any pool j sum to one. If a delay time falls in the middle of a time step, a 
portion of the water surface slope (and associated water level increase) occurs. The rest 
of the water surface slope is added at the next times step so that future water level slopes 
match the ID model slope (ΔQ/A). The follow expression defines the φ terms for any pool 
j: 
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Eqs (2) and (3) were used by 
Clemmens and Schuurman 
(2004) to develop state-
transition equations as input 
into controller design as Linear 
Quadratic Regulators (LQR) 
[linear model with quadratic 
penalties]. Figure 1 shows the 
downstream-water-level 
response in a canal pool for a 
step increase in flow at the 
upstream gate. The water level 
was computed from simulation 
with Sobek (2000). This pool 
does not display resonance. The 
ID model shown was fit by trial 
and error. Changes in cross 
section with depth cause the 

model to deviate from the simple ID model. The water level shown is for canal pool CD-
12 at the Central Arizona Irrigation and Drainage District (CAIDD), Eloy, AZ. The pool 
has a bottom width of 4 ft, side slopes 1.5:1 (horizontal to vertical), slope 0.0012 m/m, 
length 3025 ft, a downstream set point depth of 5.05 ft, and a capacity of 110 cfs. The 
flow change was 5.5 cfs, and the backwater area was 0.346 ac.  The ID discrete model in 
Figure 1 shows the water surface slope which is initially shallower than the ID model 
because of the discrete data points used (i.e., every 10 minutes). The change in slope is 
reflected by values of φ. The delay time, τ, for this model is 7 minutes, giving φ0 = 0.3 
and φ1 = 0.7. Thus the initial slope of the response curve is 0.3 times the slope of the ID 
model. 

ID-F MODEL 
 
In canal pools under backwater, the dynamic wave created from an upstream flow change 
arrives suddenly at the downstream end, causing a sudden change in water level there. 
This can cause difficulty with water-level controllers. Schuurmans (1997) proposed the 
use of proportional-integral (PI) controllers with filtered water levels (PI-F) to assure 
control stability. This is currently the primary method for dealing with resonance in the 
design of canal controllers. A linear filter is used where 

)()1()1()( kyFkyFky cfcf −+−=  (4)
where yf(k) is the filtered water level at time step k and Fc is the filter constant. The filter 
constant is determined from 

fs TT
c eF /−=  (5)

where Tf is the filter time constant and Ts is the time step for water level sampling. For 
Schuurman’s (1997) PI-F controller based on the ID model, Tf is found from 
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Figure 1. ID model in discrete and continuous form 
fit for canal pool CD-12. Step change in upstream 

discharge. 
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where Rp is the resonance peak height, ωr is the resonant frequency. The resonant 
frequency is 2π divided by the time for a wave to travel the length of a pool and back. 
Any disturbance in a canal pool causes a wave. These waves travel at the speed of 
celerity 

gDc =  (7)

where g is the acceleration of gravity and D is the hydraulic depth (area divided by top 
width). The wave travel time can be estimated from 
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where L is the pool length, v is the average flow velocity, τz is the time for the wave to 
travel to the downstream end, and τzu is the time for the wave to travel to the upstream 
end. Then ωr = 2π /τr. 
 
The filter causes a delay in the water level response, which can be estimated from 
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For controller design, this delay time is added to the ID model time delay. The filter 
constant computed above based on Eq. 6 is for Schuurmans’ PI-F controller, and may or 
may not be appropriate for other controllers. 
 
Figure 2 shows the simulated (Sobek 2000) downstream-water-level response in a pool 
for a step increase in flow at the upstream gate. This canal pool clearly shows resonance. 
The ID model is fit to the long-term response. The oscillations of the water level around 
the ID model line indicate resonance. The response in Figure 2 is for pool CM-1 for the 
Central Main Canal of CAIDD, which has a capacity of 900 cfs, bottom width 12 ft, sides 
slopes 1.5 to 1 horizontal to vertical, length 17,119 ft, slope 0.00013 ft/ft, downstream 
water level set point depth 11.0 ft. The step change was 35.3 cfs. 

 

 
Figure 2. IDZ model in discrete and continuous form for canal pool CM-1 at a) 20% and 

b) 50% flow. Step change in upstream discharge. 
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IDZ MODEL 
 
Litrico and Fromion (2004) proposed the IDZ model to account for the sudden rise in 
water level that occurs for pools which are under backwater, as shown in Figure 2. They 
developed a set of frequency-based relationships to describe the IDZ model. A time-
based version in continuous form is: 
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where τzj is the wave travel time through pool j (Trd in Eq.8), and p21 and p22 are the 
transfer function for the sudden change in downstream water level for a change in 
upstream and downstream flow, respectively.  
 
The height of the water level above the ID model line in Figure 2 (i.e., the first cycle) is 
an indicator of the resonance peak, although a higher wave would result if the input 
(upstream flow change) were cycled at the resonance frequency. The IDZ model response 
shown in Figure 2 was computed with equations for p21 and p22 from the Litrico and 
Fromion (2004). Note that for the lower flow rate, the peak height was under predicted. 
(This is not unexpected. Litrico 2010, personal communication). And this model over-
predicts long-term changes in water level response. I also found that the estimates for this 
step height were very sensitive to estimates for the downstream water surface slope. Thus 
I decided to determine p22 and p21 based on matching the ID model, and then account for 
the additional resonance with a water level filter, as in the ID-F model. This approach can 
be considered a filtered IDZ model, or IDZ-F.  
 

IDZ-F MODEL 
 
For step changes in upstream discharge, we assume that the IDZ-F model steps up to the 
ID model line when the wave arrives. The step height is thus 

Thus p21 =τz /A. For a change in discharge at the downstream gate, the solution is less 
obvious. If we assume that the backwater area equals the pool length times the top width 
( Aj ≈ Lj Bj) and that celerity is much larger than the average velocity (τzj ≈ Lj/cj) 
substituting these relationships into Eq. 11 gives  

(This matches the solution for p22 by Litrico and Fromion (2004) for a Froude number of 
zero.) Figure 3 shows simulation results (Sobek 2000) where a step change in 
downstream discharge of 17.2 cfs (0.5 m3/s) was made in pool CM-1. Initial flow was 
450 cfs (50% of capacity). The value of the step change computed for p22 from Litrico 
and Fromion (2004) was 0.0272 ft. Eq (12) gives 0.0269 ft. The initial drop in level is 
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well predicted (Figure 3). For simplicity, we can use Eq. 11 for changes in either the 
downstream or upstream gate.  

 
 
 
Figure 3. IDZ model response 
for CM-1 at 50% flow. Step 

change in downstream 
discharge. 

 
 
 
 
 
 
 
 

 
A discrete version of the IDZ-F model is: 
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The last term in the first of Eq. (13) brings the water level slope back to the ID model 
after the initial shock from moving the downstream gate. The filter delay is included in τj. 
 
The following equation defines the φ terms for the IDZ-F model for any pool j. This 
version of the IDZ-F model is essentially a piece-wise linear model of dy/dt over time, 
where the response over the duration of one time step is linear. The functions described 
by φ essentially changes dy/dt. The slope dy/dt returns to the simple ID model after the 
step increase.  
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Figure 4. IDZ-F model in discrete and continuous form fit for canal pool CM-1 at 50% 
flow. (Filter time delay not shown). 

 
Eqs. (3) and (14) are very similar. The only difference is that τzj influences the time step 
in which the step increase in water level occurs, while τ has essentially the same 
influence as in the ID model. A large difference occurs if τzj is large. Values of the first 
non-zero φ-term can be larger than unity, but the second non-zero φ-term is then negative 
to bring the sum back to unity, which brings the water level slope back to the ID model 
slope. An example of the step change for the discrete IDZ-F model (without filter delay) 
is shown in Figure 4, for the same scenario as given for Figure 2. 
 

CONTROL EXAMPLE 
 
The details of the Central Main Canal, the delay times and the filter constants are 
presented in Clemmens and Strand (2010). The parameters for the ID model were 
determined from steady-state simulation with Sobek (2000). For the ID-F model, filters 
were designed with the procedures of Schuurmans (1997). The filter delay for the ID-F 
model response was 14 minutes for all but pool 3, which had a delay of 8.7 min. For the 
IDZ-F model, we used a much smaller filter, essentially for antialiasing, with a 4.4 
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Figure 5. Water level response to upstream flow changes for pool CM-1 at 50% flow. 
a) Filtered water level and delayed ID-F model (14 minute delay) and  
b) Filtered water level and delayed IDZ-F model (4.4 minute delay). 
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minute delay. Figure 5 shows the approximate match between the filtered water level for 
pool CM-1 and the ID-F and IDZ-F models. These models fit the filtered water levels 
pretty well. 
 
Downstream-water-level controllers were developed with the procedures of Clemmens 
and Schuurmans (2004) with either Eqs (2) and (3) for the ID-F model or Eqs (13) and 
(14) for the IDZ-F model. Controller tuning (i.e., tradeoffs between water level deviations 
and flow rate changes) was the same for both. Steady flow was established, and a turnout 
in pool CM-5 was suddenly increased by 17.6 cfs (0.5 m3/s) without knowledge by the 
controller. Figures 6 and 7 show the water level response for these controllers. Overall, 
both controllers performed well. The controller designed with the IDZ-F model had a 
smaller deviation in water level than ID-F. However, the difference was not great. This is 
expected, since this controller had the most mechanistic response and shorter filter 
delays. Deviations in neighboring pools differed somewhat in which controller responded 
better. A more careful analysis of filter constants and tuning would be required to give a 
more definitive comparison. 
 

 

Figure 6. Response of water level to disturbance in pool CM-5: controller designed from 
ID-F model. (14 minute filter delay). 
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Figure 7. Response of water level to disturbance in pool CM-5: controller designed from 
IDZ-F model. (4.4 minute delay) 
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