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ABSTRACT 

This work extends asymmetric balance theory (AB) to the shallow water beta plane 

(,6-AB). The physical problem studied is that of vortex motion on a beta plane in the 

absence of environmental steering flow. To reduce the problem to its essential physics, the 

mathematical formulation developed is restricted to purely linear dynamics. The linear 

dynamics precludes wave-wave and wave-mean-flow interactions. 

Vortices placed in the ,6-AB model correctly develop the wavenumber one asymmetries 

(the "beta" gyres) necessary for vortex self-advection. The vortices move in a northwest 

direction consistent with their relative strengths. Finite drift speeds are reached in all 

cases. 

Both the ,6-AB model and a linear barotropic nondivergent model are used to in-

vestigate the existence of a translating normal mode of zero frequency. If such a mode 

exists, the beta gyres would be expected to remain unchanged in the absence of beta forc-

ing. When the beta forcing is discontinued, the beta gyres axisymmetrize in both models, 

refuting the normal mode hypothesis. 
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Chapter 1 

INTRODUCTION 

The success of barotropic models in tropical cyclone track forecasting has been estab-

lished and well documented (Aberson and DeMaria 1994; among others). Their success 

is likely due to the fact that in the deep tropics there is weak vertical shear of the hor-

izontal winds and baroclinic processes appear secondary to what controls the motion of 

the vortex. Although George and Gray (1976) and Chan and Gray (1982) established the 

dominance of the environmental steering flow in tropical cyclone motion, deviations from 

the environmental steering flow can nevertheless be significant. The difference between the 

actual cyclone motion and the steering flow is called the propagation vector (Elsberry and 

Abbey 1990, Elsberry et al. 1993). The self-advection mechanism arising when a circular 

vortex is placed in the Earth's vorticity gradient, "beta drift," is one of several factors 

(e.g., vertical and horizontal shear, upper level anticyclone influences, cyclone intensity, 

asymmetric convection, vortex tilting, etc.) believed responsible for track deviations from 

a given steering flow. 

Modeling studies suggest it is not the planetary vorticity gradient alone but the gradi-

ent of absolute environmental vorticity - an "effective beta" - which is partly responsible for 

a storm's propagation vector (DeMaria 1985, Evans et al. 1991). Other modeling studies 

showing a more tenuous relationship between the gradient of absolute environmental vor-

ticity and the storm's propagation vector (Shapiro and Ooyama 1990) have gone as far to 

suggest that no practical relationship exists for tropical cyclones (Smith and Ulrich 1993). 

Observational studies, however, such as Carr and Elsberry (1990), Elsberry et al. (1993), 

and Franklin et al. (1996) suggest that effective beta contributes significantly to tropical 

cyclone track deviations from the environmental steering flow. Specifically, in an analysis 
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of 16 environmental datasets for 10 Atlantic tropical cyclones, Franklin et al. attribute 25% 

of the variance in the magnitude of the propagation vector to the effective-beta drift. Thus 

in order to correctly interpret results from complex three-dimensional primitive equation 

(PE) models we must thoroughly understand the dynamics of the beta drift problem. 

Recently, Shapiro and Montgomery (1993; hereafter SM) developed a three dimen-

sional theory for rapidly rotating vortices. The theory is called asymmetric balance (AB) 

and represents a new framework for investigating the slow evolution of rapidly rotating 

vortices. SM made use of the highly symmetric nature of strong atmospheric vortices to 

linearize about a symmetric balanced vortex and took advantage of the dominance but rel-

ative weakness of the low-wavenumber asymmetries. AB includes the full inertial dynamics 

of the vortex core, allows for order one asymmetric divergence, is valid for large Rossby 

numbers, and has a uniformly valid continuation to three-dimensional quasi-geostrophic 

theory in the environment, all while filtering gravity-inertia waves (SM). 

To simplify the mathematics, Kallenbach and Montgomery (1995; hereafter KM) 

applied the theory to a shallow water model. In KM the AB formulation was validated on 

an f-plane through extensive axisymmetrization experiments. This thesis will extend AB 

theory to the shallow water beta plane. The physical problem studied is that of vortex 

motion on a beta plane in the absence of environmental steering flow. To reduce the 

problem to its essential physics, the mathematical formulation developed is restricted to 

purely linear dynamics. An investigation of the role of nonlinearities is a topic reserved 

for future work. 

In addition to the "practical" side of this problem, there is also a geophysical fluid dy-

namical (GFD) interest in the purley linear formulation. The linear formulation allows us 

to examine the hypothesis of constantly accelerating vortices on the ,B-plane (Willoughby 

1990b ), a hypothesis which appears at odds with the analytical theory of Sutyrin and Flierl 

{1994) for quasi-geostrophic shallow water vortices. The linear formulation also enables 

us to determine if a near-zero frequency translating normal mode exists in the absence of 

beta forcing (Willoughby 1988, 1990b, 1992, 1995). 



Chapter 2 

AB THEORY ON A SHALLOW WATER BETA PLANE 

2.1 Introduction 

Previous work demonstrated the consistency and accuracy of the linear /-plane AB 

formulation by carrying out extensive symmetrization experiments on a stable hurricane-

like vortex in gradient balance (KM). This thesis extends the AB formulation to the beta 

plane. A beta plane formulation of AB theory is desirable since it should prove useful 

in attaining a deeper understanding of vortex motion in barotropic and baroclinic vortex 

flows where large Rossby numbers and 0(1) asymmetric divergence is the rule rather 

than the exception. Other problems for which an asymmetric balance analysis should 

prove useful include horizontally and vertically sheared steering flows and upper-level 

anticyclonic outflows. Here we focus on the simplest motion problem, beta drift. 

Complications associated with a moving coordinate system are circumvented by 

adopting a stationary coordinate system. When the vortex has moved more than a pre-

scribed distance from the grid center, defined as a best circle fit around some closed height 

contour, the coordinate system is relocated to the center of the vortex and the total poten-

tial vorticity field is interpolated onto the new coordinate system. Future work will explore 

the potential advantages of a storm-relative coordinate system in the AB formulation. 

2.2 Governing Equations 

We begin with the shallow water equations in cylindrical coordinates on a ,8-plane. 

A stationary coordinate system positioned initially at the vortex center is adopted. The 

radial momentum, tangential momentum, and continuity equations are, respectively: 

8u 8u V 8u v2 8</J -+u-+-- -fv- - - --at ar r a>. r - 8r' (2.1) 
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8v 8v V 8v UV 1 8</J 
at + u 8r + -:;: 8A +Ju+ -; = --:;: 8A' {2.2) 

8</J + u 8</J + 8</J + <P (! 8( ru) + ! av) = 0. 
at 8r r 8A r 8r r 8A (2.3) 

In (2.1) - (2.3), r and A denote radius and azimuthal angle, f denotes the Coriolis pa-

rameter, u and v denote ground-based radial and azimuthal winds, and ¢ denotes the 

geopotential. Consistent with the ,B-plane formulation, the Coriolis parameter is approx-

imated by two terms in a Taylor series about a reference latitude. We therefore take 

J = Jo + ,Br sin A, where Jo denotes the planetary vorticity at the reference latitude and .B 
denotes its meridional gradient there. 

As shown by SM for Hurricane Gloria, within approximately 500 km from the 

storm center, hurricane vortices are dominated by their axisymmetric component. If 

the quadratic terms in the governing equations are small compared to their linear coun-

terparts one may neglect them in a first approximation. Although this level of approx-

imation precludes examination of nonlinear phenomena, previous work has demonstated 

that linearized dynamics captures much of the essential physics of the beta drift problem 

(Smith et al. 1990, Reznik and Dewar 1994). To this end let u = u', v = v(r) + v', and 

¢ = <I>(r) + ¢', where the overbar denotes an azimuthal mean basic state and a prime 

denotes non-axisymmetric departures from the basic state. In subsequent mathematical 

manipulations the material derivative following the basic state tangential wind will be 

designated as 
Dv 8 v 8 
Dt =at+-:;: 8A. (2.4) 

Upon neglecting products of primed quantities, the momentum and continuity equations 

become 
Dv 1 1 v2 2v 1 8 (- ') . -u -fov-fv ----v =-- g>+</J +,BvrsmA, Dt r r or 

Dv , , dv , v , 1 8 ( - , -v +u-+fu +-u =--- g>+</J), Dt dr r r oA 
Dv ¢' + u,d<I> +<I>(! o(ru') + ! ov') = O. 
Dt dr r or r 8A 

(2.5) 

(2.6) 

(2.7) 

The basic state vortex is assumed in gradient balance with J approximated by its reference 

value 
v2 d<I> fov+- = -. r dr (2.8) 
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A preponderance of observations support the gradient balance approximation. As one 

example, Willoughby (1990a) showed the mean tangential wind for a large sample of 

Atlantic storms was within 1.5 ms-1 of gradient balance. 

Substituting (2.8) into (2.5) - (2. 7) simplifies the linear PE to 

(2.9) 

Dv 1 + _ 1 18¢' -v nu= Dt ·, --:;: a>.' (2.10) 

and 

Dv ¢' + (! 8(ru') +!av')+ u'd~ = O. 
Dt r 8r r a>. dr 

(2.11) 

In (2.9) - (2.11), ( = r-1 d(rv)/dr the basic state relative vorticity, fi = f + ( the basic 

state absolute vorticity, and ( = f + 2v/r the inertia parameter. The definitions for fi and 

( include the azimuthally dependent Coriolis parameter on a beta plane and represent a 

departure from the customary practice of reserving a bar for an azimuthal mean. Unless 

otherwise stated all other barred quantities denote azimuthal averages. 

Although the inviscid PE (2.1) - (2.3) possess well known conservation laws for verti-

cal vorticity, energy, and potential vorticity, their linearized counterparts are summarized 

below as they help establish the formal consistency of the balance model to be proposed 

in the upcoming sections. 

2.2.1 PE Vorticity 

The linearized vorticity equation follows on taking the curl of (2.9, 2.10) . The result 

is 
Dv,., ,dfi (- ')18f -[18(ru1

) 18v'] -.., +u-+ v+v -- = -r, ---+-- , Dt dr r 8>. r 8r r 8>. (2.12) 

where 

(
1 = k • V x u'. (2.13) 
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2.2.2 PE Potential Vorticity 

The linearized PV equation results upon eliminating the divergence term between the 

continuity equation (2.11) and the vorticity equation (2.12), and invoking the beta-plane 

approximation in the vorticity equation: 

Dv , , dijo u' 8 f 1 (- ') 1 8 f O -q +u-+-=--+-=- v+v -- = Dt dr <I> or <I> r 8>.. 

where 
I (' - q/ 

q = -=- - qo-=-
<I> <I> 

is the perturbation PV and 

is the basic state f-plane PV. 

2.2.3 PE Energy 

The disturbance energy equation results from the combination 

(u' x (2.9) + v' x (2.10)) + q/ x (2.11). 
g g 

Some manipulation yields 

[- 2] (- ) - - -Dv <I> ,2 ,2 ( ¢/) <I> , , <I> , , dQ <I> , • 
- -(u +v )+-- +V• -</>u +-vur---urvf3sm>..=O. Dt 2g 2g g g dr g 

2.3 ,B-AB Formulation 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The objective of this section is to develop a useful balance model for investigating 

vortex motion in divergent flows which contains full inertial effects in the near-vortex 

region yet blends smoothly onto linearized quasi-geostrophic (QG) /3-plane dynamics in 

the environment where the Rossby number (R = v/ for) is small compared to unity and 

/Jr/ Jo ~ O(R). Letting ~ 00 denote the.environmental geopotential and ¢ = ~00 - ~, the 

pseudo-PV equation governing linearized QG ,B-plane vortex dynamics is 

(2.19) 
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where 

_ 1 8 ( 8¢) Jo¢ 
qo = for 8r r 8r - ~oo 

is the basic state pseudo-PV for the QG system. The asymptotic errors incurred in deriving 

(2.19) scale as O(R2, (/Jr / /o)R). In the near vortex region, where R > l, the QG /3-plane 

formulation is no longer valid and a simple balance formulation incorporating gradient 

balance rather than geostrophic balance as a zeroth-order approximation is needed. 

To include full inertial effects in the near-vortex region we follow SM and filter gravity-

inertia waves at the momentum level. Differentiating (2.9) and (2.10) with respect to 

Dv / Dt and cross substituting yields an equivalent set of momentum equations in the 

radial and azimuthal directions, respectively: 

(2.20) 

( 
Dv 2 

-) 1 8¢' Dv ( 1 8¢') 1 • -- + ii{ v = r;- - - -- - u fi/3 cos). - rr;v/3 sm .A. Dt2 or Dt r 8). (2.21) 

Eqs. (2.20) and (2.21) resemble the forced harmonic oscillator equation. If the forcing 

is confined to "low frequencies", i.e., frequencies small compared to r;( ( the intrinsic 

frequency of the vortex), the response should be confined to low frequencies also. For 

advective dynamics then the magnitude of Dv 2 / Dt2 scales as 

(2.22) 

where n is the azimuthal wavenumber. It proves convenient to define 

(2.23) 

from which (2.22) implies 
2-2; 2 

1)2 ~ n ;( r = Rn 2' (2.24) 

the square of a local Rossby number for wavenumber n. The smallness of Rn 2 justifies 

neglecting the acceleration term in (2.20) and (2.21). SM provide an in-depth discus-

sion of the conditions for which the neglect of terms scaling as Rn 2 can be considered 
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valid. For hurricane-like vortices only R1 2 can be considered less than unity throughout 

the near-vortex region. For weaker vortices (i.e., vortices possessing order unity Rossby 

numbers) the approximation is also valid for n = 2 and becomes significantly more accu-

rate for n = l. For high azimuthal wavenumbers the quadratic dependence of Rn 2 with 

azimuthal wavenumber suggests that large errors may occur in the near-vortex region. In 

the strictly linear vortex motion problem, however, this issue is not a concern since the 

leading order dynamics is determined by the structure of wavenumber one asymmetries. 

Nevertheless, for weakly nonlinear dynamics including azimuthal wave-wave interactions 

this issue cannot be ignored. As a first step towards validating the consistency of the AB 

approximation in such flow regimes, KM showed that high wavenumber asymmetries on 

stable hurricane-like vortices quickly axisymmetrize in the linear AB formulation. There-

fore, on the basis of previous work the wavenumber one restriction will be relaxed in the 

upcoming derivations. 

Invoking the AB approximation Rn 2 < < 1 allows (2.20) to be approximated by 

(2.25) 

Dividing (2.25) by { and using (2.9) to substitute for v' yields 

_ , 1 8¢/ 1 Dv (8¢/) 1P f3 cos>. vf3 cos>. (Dv , 8¢/ _ f3 . ') TJU = --- - -=- - +---+ - -u +- -vr Slll/\ . (2.26) r 8>. { Dt 8r { { 2 Dt 8r 

Now if throughout the flow 
V f3 cos >. Dv 1 _ , ,2 Dt u < < 'TJU ' (2 .27) 

then (v/3 cos (>..)/f )(Dv u' / Dt) may be neglected. The quotient of these two terms scales 

as 
vfJ cos>. IbL 1 - 2 2 2 e2 Dt u f3vlli!. f3r 1 n v f3r Rn 
--'"--- ~----:!:- = -=---- = -=--. (2.28) 

t;u' rj{2 { n r 2t;{ ( n 

Figure 2.1 plots (f3r /(o)R1 2 for the hurricane-like benchmark vortex of chapter 3 at 20° 

N and this term is clearly small throughout the vortex and its environment. Neglecting 

(vf3 cos (>.)/f )(Dv u' / Dt) from (2.26) then yields 

(2 .29) 
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Figure 2.1: Plot of (/3r /[o)R1 2 for the benchmark vortex. 
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Figure 2.2: Plot of (/3r/fio)R1 2 for the benchmark vortex. 

Similar arguments applied to (2.21) give an equation for v' solely in terms of ¢/ 

provided 
fJ /3 cos >. Dv 1 _ 1 

fj~ Dt V < < 1]V • (2.30) 

The corresponding quotient (v/3cos>./rj2(v')(Dvv'/Dt) scales as (f3r/rjn)R,,,2. A plot of 

(/3r /fio)R1 2 for the benchmark vortex is shown in Fig. 2.2 and it is evident this term is also 

small throughout the vortex and its environment. Neglecting (v/3 cos(>.)/,;;() (Dv v' / Dt) 

then furnishes the equation for v': 

v' = 1._ 8¢/ _ 1_ Dv ( 1 8¢/) _ vrf3sin>. . 
· or Dt fjr 8>. (2.31) 
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Together, (2.29) and (2.31) form approximate polarization equations for the balanced 

wind in the zeroth-order approximation: 

u' = 

and 

1 8¢/ ----
fir 8>. ----"Geostrophic" "lsallobaric" "Beta terms" 

v' = 18¢' 
( 8r ---.._.., 

"Geostrophic" 

+! Dv (-.!. 84>') _ vr,6 ~in>. . 
( Dt fir 8>. ( -----"Isallobaric" "Beta term" 

(2.32) 

(2 .33) 

The "Geostrophic" and "lsallobaric" terms are gradient-wind generalizations of the 

geostrophic wind and isallobaric wind, respectively, from QG theory. Equations (2.32) 

and (2.33) are similar to those developed by Montgomery and Kallenbach (1996) except 

for the "beta" terms and the beta dependence implicit in r; and (. 

Substituting (2.32) and (2.33) into the continuity equation (2.11) gives a first-order 

evolution equation for ¢' that is a minimal truncation of the linear PE: 

Dv <I>'+!!_ [r~ {-.!. 8¢' _ ! Dv (! 8¢/) + v2,6cos>. + ,6
2v2

rsin>.cos>.}] 
Dt r 8r rfi 8>. ii Dt ( 8r ii( ( 2 

+ 4> 8 [~ 8¢' _ Dv ( 1 8¢') _ vr,6 sin>.] = 0 (2_34) 
r 8>. ( 8r ( Dt fir 8>. ( 

The errors incurred to derive (2.34) scale as follows. In the near-vortex region the er-

rors scale as O ( R,/, (,Br/ ()Rn 2, (,Br /r;)R,/). In the vortex environment the Ross by 

number is small compared to unity and the errors scale as O(R2 , (,Br/ fo)R2 ) . Since 

f3r/f0 = (/3r2 /v)R, then for horizontal scales such that R << 1 and {3r2/v ~ 0(1) the ne-

glected (,Br/ f 0 )R2 terms scale as O(R3). In practice, the ratio {3r 2 /v becomes large in the 

vortex environment (r > 1000 km) and the ,6-plane approximation begins to break down. 

Since the beta gyres typically form within this region the inaccuracy of the beta-plane 

approximation at a large radius is not a serious concern for vortex motion studies. 

Although (2.34) is a minimal truncation of the PE it can be nonetheless simplified by 

making additional approximations which are formally no worse than the approximations 

already made. In addition, terms containing beta can be approximated by their / -plane 

counterparts unless these terms are explicitly differentiated (,6-plane approximation). The 
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further simplified balance system incurs errors that scale with (2.34) and (2.19) in the near-

vortex region and environment, respectively. Details of the additional approximations are 

summarized in Appendix A. Adopting subscript notation for partial derivatives, the final 

geopotential evolution equation is given by: 

(2 .35) 

where fio, (o,and 1'6 denote the /-plane counterparts of fj , ( and i-2, where i-2 = rj(/~. 

Denoting the AB-Laplacian operator as 

(2.36) 

and inverting (2.35) for 8</>' /&t gives the geopotential tendency 

8¢/ _ (v2 _ ~02)-1 [~o dijo <I>'>. _ (v2 
&t - AB qo dr r r AB 

2) , . lo - a ( r ) <I>'>. -i'o <I>>..+ ,BsmA-=--~- -=- -TJo8r~ r 

- ,B cos A iio ( v + ;~ ) ] . (2.37) 

The ,B-plane model encapsulated by (2.35) is hereafter designated ,B-AB. The ,B-AB 

model has two noteworthy and desirable properties: 

(i ) When v = 0 it reduces to the linearized QG ,B-plane PV equation (eq. 2.19 with 

v = 0). 

(ii) When ,B = 0 it reduces to the /-plane AB evolution equation of Montgomery and 

Kallenbach (1996) bridging quasi-gradient and quasi-geostrophic balance dynamics 

in flow regimes of order one asymmetric divergence. 

The ,B-AB model thus qualifies as a valid intermediate balance model which should prove 

useful in examining intense vortex motion in divergent flows retaining full inertial effects. 

For Rossby numbers of order unity the ,B-AB model is expected to furnish accurate 

forecasts since in such flows R1
2 is typically very small compared to unity (SM). Be-

cause the balance approximation places no restriction on the magnitude of asymmetric 
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divergence it remains valid for relatively shallow flows where the squared Froude number 

is subcritical (i.e., v2 / gh < 1) but near unity. The /3-AB model therefore complements 

the nonlinear balance model proposed by McWilliams et al. {1986) and McWilliams and 

Gent (1986) for examining the motion of mesoscale and sub-mesoscale oceanic vortices 

possessing order unity Rossby numbers and small Froude numbers. 

2.4 Analogous Conservation Laws 

As verification of formal consistency, several conservation laws for (2.35) analogous 

to those of the linearized PE may be derived. 

2 .. 4-1 Momentum 

Consistent with the approximations made to obtain (2.37), equations (2.32) and (2.33) 

may be rewritten as 
, 1 8¢' 1 Dv (8<1>') 

u - fjr 8>. iiolo Dt 8r ' (2.38) 

v' _ 8¢' _ 1_ Dv (! 8¢') _ vr,Bsin>.. 
€ 8r iiofo Dt r 8>. {o 

(2.39) 

Upon defining 

/ 1 8¢/ u =---, w rifo 8>. 
I 1 8¢1 

V ---~o - (o 8r' 

and multiplying (2.38) by 110 and (2.39) by €0 yields the following the radial and azimuthal 

pseudo-momentum equations; 

Dv , - , (o 8¢' _ . 
-u -{ov = ---=-- + vr,Bsm>. Dt w € 8r ' 

Dv , _ , iio 1 8¢' 
Dt v~o + 1]oU = - fj ;: 8>. . 

(2.40) 

(2.41) 

On an f-plane the multiplicative factors in front of the pressure gradient terms are equal to 

one. On a ,8-plane these terms are necessary to correctly represent Rossby wave dispersion 

in a resting fluid layer (v = 0). 
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!Lt.~ Vorticity 

A pseudo-vorticity equation results upon curling the pseudo-momentum equations 

and making approximations consistent with (2.35). The result is 

Dv , ,dfio , of iio c- , ) 1 8/ _ [1 o(ru') 1 av'] -( +u-+u -+-=- v+v{ -- = -TJo ---+-- . Dt {o dr 170 or ~o O r {)).. r or r o>.. (2.42) 

The pseudo-vorticity ({o = k · V x u' fo is derived from the pseudo-momentum based on 

the inertia parameter lo: , (-1 8¢/ 1 8¢/) 
u {o = rlo a>.. 'lo ar · (2.43) 

The pseudo-vorticity equation (2.42) and the corresponding PE vorticity equation 

(2.12) are quite similar. Both include advection of /-plane absolute vorticity by a per-

turbation radial wind. Both also include the convergence of basic state vorticity. The 

PE, however, converges ,B-plane basic state vorticity while ,B-AB converges the /-plane 

counterpart. They also differ slightly in the advection of the planetary vorticity by the 

total tangential wind. The AB version carries the distortion term fJo/lo in front of the 

"total" azimuthal wind, ii+ v{o' Since fJo/lo approaches one in the environment, where 

the beta gyres typically attain their maximum amplitude, it is anticipated that the fJo/lo 
term should only introduce quantitative but not qualitative differences between the PE 

and the ,B-AB solutions when the ,B-AB approximation is valid. 

2.4.3 Potential Vorticity 

The PV conservation principle for the /3-AB model results by eliminating the diver-

gence term between the continuity and pseudo-vorticity equations: 

(2.44) 

where 

(2.45) 

is the perturbation pseudo-PV. Except for the distortion term multiplying the tangential 

wind (2.44) is similar to its PE counterpart (2.14). 



14 

2.4.4 Energy 

A disturbance energy equation results upon forming, 

! ( Ue0 X (2.40) + V~ X (2.41)) + !' X (2.11), 

and applying the ,8-plane approximation. The result is 

Dv[4>(', 1 ') (cf>')2] c/>' '[18(-') 184>v'] 
Dt 2g ufou110 + vfov110 + 2g +g -:;:a,;: r<I>u + -:;:""a,\ 

Term A Term B 

+~ [iiou' v;. - (ov'u(,] +~ [ u(, ?/: + ~i] -~ H, Vr /J sin~] - 0. 

Term C Term D ,8-plane term 

{2.46) 

(2.47) 

Term A represents the disturbance energy (kinetic plus potential) integrated over the fluid 

depth. Terms B and C combine to 

(2.48) 

a depth integrated pressure work term. Term D simplifies to 

4> I , dQ 
gvf.o u'10 r dr ' (2.49) 

a depth integrated Reynolds stress. The last term in (2.47) arises due to the ,8-effect 

and represents a source of perturbation energy associated with the advection of planetary 

vorticity by the mean circular vortex. Inserting these substitutions into (2.47) yields an 

equation similar to the PE energy equation (2.18): 

Dv [ 4> ( 1 1 1 1 
) (cf>') 

2 l ( 4> 1 ') Dt 29 ufou'10 + v(.0 v'10 + 2g + 'v · 9ct> u 

4>,, dfl 4>,_ . 
+-v(.0 u110 r-d - -uforv,Bsm>. = 0, g r g 

(2.50) 

Integrating (2.50) over the entire vortex gives a bulk measure of the amplitude of the 

asymmetries. Assuming cf>'u' -+ 0 as r -+ oo and recalling ef/(r = 0) = 0, the boundary 

terms vanish leaving 

(2.51) 
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A useful model diagnostic is therefore the integrated disturbance energy 

{2.52) 

2.5 Summary 

The /3-AB shallow water model is both a simplification and an extension of the SM 

balance model originally developed for studying continuously stratified baroclinic hurri-

cane vortices on an f-plane. The theory has been simplified to shallow water dynamics, 

yet retains the Earth's planetary vorticity gradient. Unlike the linear f-plane formulation 

employing a binomial expansion in the square of the local Rossby number and a trunca-

tion of the asymptotic series at zeroth order, the /3-plane formulation requires not only 

the smallness of the local Rossby number squared but also the smallness of certain beta 

terms that arise in the derivation of the traditional quasigeostrophic /3-plane equations. 

Making further approximations consistent with the derivation of the minimally truncated 

system yields a natural extension of the f-plane geopotential tendency equation derived by 

Montgomery and Kallenbach {1996). The simplified forecast equation has an associated 

pseudo-momentum principle, a vertical vorticity equation, a PV equation, and an energy 

equation that are all analogous to the linearized PE. 

We next examine the usefulness of the /3-AB model by investigating by the canonical 

problem of vortex motion on a beta plane. 



Chapter 3 

THE LINEAR BETA DRIFT PROBLEM 

3.1 Introduction 

For the most part the physics of the beta drift problem is reasonably well under-

stood. When an intense cyclonic circular vortex is placed on a beta plane in the Northern 

Hemisphere the vortex advects higher planetary vorticity to the south on the west side of 

the storm, while lower planetary vorticity is advected to the north on the east side. The 

advection of planetary vorticity distorts the vortex, its asymmetric part dominated by a 

wavenumber one asymmetry. The resulting vorticity dipole ( the "beta gyres") is initially 

oriented east-west and the flow between these gyres advects the vortex to the north. The 

basic state vortex then advects these gyres so as to orient the flow between them to the 

northwest. Fiorino and Elsberry (1989) describe this as a balance between the beta forcing 

and the advection of the gyres. The advection of the beta gyres is in equilibrium against 

the forcing of the gyres and is responsible for the westward component of the drift. 

A vortex on a beta plane in the absence of environmental flow has been investigated 

by many researchers in a variety of different ways. Much work has been done using the 

barotropic nondivergent vorticity equation, as in DeMaria (1985), Smith et al. (1990), 

Chan and Williams (1987), and Fiorino and Elsberry (1989; hereafter FE) among others. 

Shapiro and Ooyama (1990), Sutyrin and Flierl (1994), Willoughby (1988, 1990b, 1992, 

1994, 1995) and others have investigated this problem in a-shallow water setting to allow 

for the effect of divergence. Shapiro and Ooyama (1990) attribute little difference in vortex 

track to divergent effects, while Willoughby (1990) predicts up to a factor of ten in the 

asymptotic drift speed of the vortex due to divergence. The shallow water AB formulation 

naturally lends itself to examining such potential effects. 
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The "linear" aspect of this presentation follows that of Willoughby (1988). Here, as 

in Willoughby's work, linearity means axisymmetric mean PV is advected by the pertur-

bation flow, and axisymmetric mean flow advects both planetary and perturbation PV. 

Explicitly left out is the perturbation advection of planetary vorticity. Smith et al. (1990; 

hereafter SUD) and Reznik and Dewar (1994) give scaling arguments for discarding this 

term. 

For the AB model to·· capture the essential physics of the beta drift J>roblem, the 

desired results are clear. The vortex should initially force east-west oriented gyres, then 

advect them so that the flow between them is towards the northwest. The vortex should 

then asymptote to a steady state speed of a few meters a second. 

3.2 Governing Equations 

As discussed above, we consider the canonical beta drift problem. Because the ensuing 

asymmeteries are proportional to the forcing, they scale as 0(/3). The solution can then 

be expanded in an asymptotic series (Reznik and Dewar 1994) involving the dimensionless 

parameter o = {3(RMW)2 /Vmax < < 1. To first order in o the asymmetries are determined 

by neglecting the perturbation advection of planetary vorticity. Planetary Rossby wave 

radiation is therefore precluded at this level of approximation. The simplified forecast 

equation is equivalent to ignoring the beta dependence in the dimensionless distortion 

factors multiplying the perturbation pressure gradient terms in the radial and tangential 

pseudo-momentum equations (2.40 and 2.41). 

3.2.1 Momentum 

The simplified pseudo-momentum equations are 

Dv 1 - 1 8¢' . -u -{ov =--+vr{3sm>. Dt l70 8r 

3.2.2 Vorticity 

The simplified vorticity equation is 

Dv , , dfio _ [1 8(ru') 1 av'] ifo _ -(! +u - = -TJo ---+-- - -=-vf3cos>.. Dt O dr r 8r r 8>. {o 

(3.1) 

(3.2) 

(3.3) 
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3.2.3 Potential Vorticity 

The simplified PV equation is 

Dv , 1 dijo 1 fio _ 
-D q{o + u -d + ii... -=-v/3cos>.. = 0. t r ~o (3.4) 

3.2.4 Forecast Equation 

The simplified forecast equation is 

8¢/ = (v2 _ ;;',2)-1 [lo difo <I>~ _ (v2 -15) </>~ - fiov/3 cos>..] . (3.5) 8t AB o if o dr r r AB 

3.3 Setting Up The Model 

The benchmark vortex is identical to the one used in KM (1995), see Fig. 3.1. It 

possesses a large Rossby number in the inner core region (R '.::::: 18) and is assumed in 

gradient balance with Jo = 5 x 10-5 s-1. As shown in KM (1995), the vortex scales as a 

minimal hurricane while ensuring that R1 2 < 1 throughout. By choosing the basic state 

PV to be smooth, monotonic and everywhere positive the profile is guaranteed to be both 

inertially (centrifugally) stable and shear stable in the AB formulation. 

The numerical model is semi-spectral, using Fourier modes azimuthally and grid 

points radially. Because of the pure linearity of the problem, all wavenumbers higher 

than one are forced to zero throughout the model runs. Thus in the linear beta drift prob-

lem the basic state vortex is modeled as a time invariant swirl in gradient balance and all 

wave-mean-flow interactions are neglected. The model is time-stepped with a fourth-order 

Runge Kutta scheme and typical time steps are on the order of five minutes. With a radial 

grid spacing of 2.5 km, the chosen timestep falls sufficiently below the empirically deter-

mined CFL stability threshold. In the case of the Willoughby vortex a 2 km gridspacing is 

employed. -All model runs use 1200 -r-adial-gridpoints and employ energetically consistent 

vV2 diffusion with 11 200 m2s-1 in the near-core region in order to remove fine-scale PV 

associated with the potential enstrophy cascade. 

The model is a stationary grid model whose center is located at the center of the 

vortex. A stationary grid model is adequate for the physics examined since the difference 
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Figure 3.1: The benchmark vortex: v the tangential wind; the geopotential for a fluid 
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are shown. 
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between the tracks in a stationary vs. moving coordinate system has been found to be less 

than one percent in (FE). The center of the vortex is identified using a best circle fit to 

the height field inside the radius of maximum winds. The method parallels that of Flatau 

(1992). The center of the vortex is checked after a prescribed time, and if it has moved 

more than a desired distance, the grid center is moved and the total potential vorticity 

is reinterpolated to the new grid. "High-wavenumber noise" associated with multiple 

grid moves and interpolations is avoided by the zeroing of higher azimuthal wavenumber 

coefficients. 

The linear /3-AB formulation was found to be somewhat sensitive to the initial profile 

used in these runs. A popular vortex profile used by many researchers is the Chan and 

Williams profile (1987). Presented in Fig. 3.26 is their "benchmark" profile, given by the 

formula 

(3.6) 

where b = 1, Vmax = 40 ms-1, and Tmax = 100 km. Figure 3.26 elucidates the problem 

with this vortex when using it in the linear /3-AB model. Most striking are the spikes in 

local Rossby number for wavenumber one between 200 km and 400 km. These are caused 

by a sign change in the absolute vorticity in these regions. The AB formulation is not 

valid for inertially unstable vortices. 

SUD slightly modified the Chan and Williams profile to avoid the nonzero derivative 

in relative vorticity at r = 0. Their remedied profile is presented in Fig. 3.27. The SUD 

profile is essentially the same as Chan and Williams, except the nonzero value of dq0 / dr 

at r = 0 and the sign change in absolute vorticity has been eliminated. The SUD vortex 

still has the undesirable property that the local Rossby number for wavenumber one is 

not small, approaching three near r = 250 km (see Fig. 3.27). 

Also presented are Willoughby's~ompletely cyclonic vortex (Fig. 3.28) and DeMaria's 

(Fig. 3.29) vortex. As is evident from Fig. 3.28, Willoughby's profile possesses a discon-

tinuity in d(o/dr, reflected by the kink in the plot of local Rossby number. DeMaria's 

profile, on the other hand, is well behaved throughout the near-vortex region and the 

environment. 
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Another vortex considered here is the Schloemer vortex (Myers 1957) shown in 

Fig. 3.30. It most resembles the benchmark vortex in that the tangential wind decays 

relatively slowly with radius and exponentially approaches but never reaches zero in the 

model domain. Track results with the Schloemer vortex have been included here to facil-

itate a direct comparison with recent work by Willoughby (1995). 

By observing the behavior of vortices with 0(1) Rossby numbers the robustness. of 

the AB approximation may be elucidated. When R1
2 is not much less than unity we 

are pushing the limit of the AB approximation. Although AB was shown to correctly 

represent the symmetrization process for freely evolving asymmetries on an /-plane (KM 

1995), it proves constructive to consider two vortices that have truly small local Rossby 

numbers in the forced beta drift problem. These are presented in Figs. 3.32 and 3.33. 

Both vortices have positive, monotonically decreasing, and infinitely differentiable PV 

profiles but because of the reduced tangential winds have small local Rossby numbers for 

azimuthal wavenumber one. 

3.4 Cyclone Track Results for the Benchmark Vortex 

3.4.1 Geopotential and Potential Vorticity Fields 

When a circular vortex is placed on a beta plane an initial vorticity dipole forms which 

is oriented east-west possessing maxima and minima near the vortex core. At subsequent 

times the distance between these extrema gradually increases and the dipole axis rotates 

counterclockwise (SUD). From Figs. 3.2 - 3.5 we see that the AB model evolves the beta 

gyres as described. The gyres are qualitatively similiar to the gyres presented in SUD, 

Willoughby (1995), and Shapiro and Ooyama (1990). At long times the <// and q{o fields 

possess extrema at approximately 1500 km. The time series clearly shows the extrema 

working their--way outwards-and -approaching a steady state limit. Both the q/ and q{o 
fields even show the trailing spiral pattern mentioned in Willoughby (1995) as a byproduct 

of having a vortex where tangential winds do not vanish within the model boundary. 

While the gross features of the AB beta gyres are qualitatively similar to previous 

works, a quantitative difference in the near-core asymmetric structure is noteworthy and 
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deserves mention. Close inspection of the <j/ fields shows a slight "pinching" in the inner 

part of the beta gyres. This pinching shows up as a secondary wave peak in Figs. 3.2 and 

3.3. At this time it is unclear whether the pinching is an artifact of a misplaced center and 

numerous interpolations or the manifestation of the distortion factor fio/[o in equations 

(3.3) and (3.4) which deviates significantly from unity for intense vortices where R 1
2 is less 

than but not much less than unity. The pinched geopotential field is thus slightly different 

from those presented in previous work showing a "near uniform" flow between the gyres 

(Elsberry and Abbey 1991). Further discussion of this issue is reserved for section 3.6.2. 

3.4,2 Speed, Direction, and Track for the Benchmark Vortex 

The speed of the benchmark vortex has been correlated with the vortex's outer wind-

strength (FE). The slow decay of v with radius of the benchmark vortex prevents direct 

comparison to the majority of previous track studies using more confined vortices. For-

tunately FE used several vortices which scale similarly to the ones presented here. FE 

define outer wind-strength as 

Va= 
[

1000km l ½ J rv2dr 
300km 

1000km 
J rdr 

300km 

(3.7) 

The relationship between asymptotic speeds in the FE runs and outer wind-strength are 

plotted in Fig. 3.6. The asymptotic speeds attained in the AB model for both the bench-

mark and the Schloemer vortex are also indicated in Fig. 3.6. For both vortices the 

asymptotic speeds slightly exceed those calculated by FE. This is consistent with the find-

ings of Willoughby (1994) where nonlinear interactions were shown to reduce the drift 

speed relative to its purely linear model run. FE's numerical simulations include these 

nonlinear interactions. As Fig. 3.6 is for the initial strength, nonlinear interactions tend 

to reduce the basic state vortex tangential wind (FE) and should reduce the asymptotic 

limit. Since the basic state was not allowed to vary in the /3-AB calculations the vortex 

strength does not change and a higher asymptotic speed should be expected. 

Figure 3. 7 plots the speed of the benchmark vortex with time. After 240 hours the 
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beta gyre peak (near 1500 km) and its attaining a fairly constant amplitude. 
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vortex is close to obtaining its asymptotic limit of approximately 6 ms-1. By this time 

the vortex has reached its asymptotic northward drift speed, but has not yet attained its 

westward speed. These properties are also reflected in Fig. 3.8 showing vortex direction 

( clockwise from north) with time. The qualitative behavior of the linear /3-AB model with 

respect to storm speed and direction is similiar to previous motion studies on the /3-plane. 

As evidenced by the track plot in Fig. 3.9 the vortex undergoes an initial northward 

drift , followed by an increasing westward component as the beta gyres get cyclonically 

advected. In the linear /3-AB model the drift speed asymptotes to a finite value as a 

balance is obtained between the forcing of the beta gyres, advection of perturbation PV 

by the basic state, and perturbation advection of basic state PV 1 . This balance is obtained 

by setting 8/at = 0 in either (3.4) or (3.5) . In contrast to other investigations employing 

1The speed and track results presented here are not sensitively dependent on the frequency with which 
the grid is moved. For example, doubling or halving the grid-move frequency produces virtually identical 
tracks. 
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fully nonlinear nondivergent models on the /3-plane (DeMaria 1985, FE, and many others) 

vortices in the linear /3-AB model take a relatively long time to attain their asymptotic 

drift speed. This is most likely an artifact of the linear formulation. These results are 

in contrast to Willoughby's purely linear PE formulation where the vortex continues to 

accelerate, never reaching a constant speed. The /3-AB track forecast is a compromise 

between the nonlinear nondivergent model and Willoughby's linear work: The vortex 

speed ultimately asymptotes to a constant value but only after a relatively long time. 

3.5 Cyclone Track Results for the Schloemer Vortex 

As a consistency test it is important that the linear /3-AB formulation of the AB model 

give qualitatively similar results for other vortex profiles. An alternate profile presented 

in Figs. 3.30 - 3.31 is based on the empirically deduced pressure profile of Myers (1957). 

3.5.1 Geopotential and Potential Vorticity Fields 

Inspection of Figs. 3.10 - 3.13 shows that both the wavenumber one qf
0 

and ¢/ fields 

are similiar to the fields presented for the benchmark vortex. On comparing the evolution 

of wavenumber one perturbation PV and ¢/ fields for the two vortices some subtle differ-

ences are apparent. The beta gyres have less magnitude in the Schloemer vortex and are 

located closer to the center. 

3.5.2 Speed, Direction, and Track for the Schloemer Vortex 

The Schloemer vortex exhibits qualitatively similar characteristics as the benchmark 

vortex. It eventually asymptotes to a steady-state speed of approximately 3.7 ms-1 , see 

Fig. 3.14. The asymptotic drift speed compares favorably to the outer-wind strength 

dependence demonstrated by FE (1989). Like the benchmark vortex, the vortex speed 

lies above the least squares fit to the FE data. 

The direction and track (Figs. 3.15 and 3.16) are in agreement with previously pub-

lished results and with the benchmark vortex runs. The vortex takes an initially northward 

track, gradually turning more to the west as the beta gyres are advected by the basic state 

flow. The Schloemer vortex reaches a drift angle of about 315°, close to the 310° drift 
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Figure 3.16: 240 hr. track of the Schloemer vortex. Cyclone symbols denote vortex 
location every 24 hours. 

angle found by Willoughby (1995) when his model was run 240 hrs. with the same vortex. 

The /3-AB model contains an option for including a sponge layer near the outer boundary 

as described by Willoughby. However, a sponge layer was not found to be necessary in any 

of these calculations. J?epending on the strength of the imposed sponge layer, seperate 

numerical experiments (not shown) showed that the Schloemer vortex could be made to 

asymptote to a direction more westward than 315°. The sponge ring acted to inhibit the 

very outermost part of the gyres. Because of the weak basic state flow near the edge of the 

domain, these gyres are mainly oriented east-west. If these edges of the beta gyres are not 

allowed to exist due to the sponge layer, the vortex loses a slight northward component 

to its translation. This serves to turn the vortex more to the west. The Schloemer vortex 

also does not show the uniform acceleration to over 9 ms-1 as in Willoughby. Therefore, 

while the directions are similiar, the 240 hour tracks are not. In Willoughby's PE model 

(1995) the vortex travels nearly 5000 km in 240 hours, compared to a traverse about of 

2200 km in the linear /3-AB run. 
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3.6 Other Vortices 

3.6.1 More Confined Hurricane-like Vortices 

The track of the DeMaria vortex in the /3-AB model is shown in Fig. 3.17. Up to 72 

hours, the track looks quite reasonable. The vortex has obtained a speed of about 2 ms-1 

and a direction of 325° , comparable to DeMaria's nondivergent work wi~h the same profile 

(2.5 ms-1 and 320°). After 72 hours, however, the vortex starts a westward turn, heading · 

due west by about 240 hours. This behavior was also observed when the Willoughby vortex 

was run in /3-AB, except the Willoughby vortex made its westward turn at an earlier time. 

Whether the secondary gyre inside the beta gyres is responsible for this behavior is unclear. 

The distortion in the basic state advection of planetary vorticity associated with ifo/f.o is 

certainly closer to the beta gyres in both the Willoughby or DeMaria case than in the 

benchmark or Schloemer cases. On the other hand, this behavior seems most accute 

at later times for vortices with sharper gradients in the basic state variables than the 

benchmark - possibly causing truncation errors in the interpolation scheme to accumulate 

and force spurious asymmetries in the near-core region. The large distance between the 

near-core beta distortion and the beta gyres in the larger intense vortices may be the 

factor enabling the /3-AB formulation to correctly capture the physics of the beta gyres 

for high Rossby number (R >> 1) vortices. These issues require further exploration. 

3.6. 2 Reducing the Rossby Number 

For truly hurricane-like vortices the AB approximation is not expected to be highly 

accurate as R1
2 is often less than but not much less than one. Perhaps it is this stretching 

of the theory that manifests itself in such a way as to pinch the ¢/ fields in the benchmark 

vortex and give rise to an inner peak in q{o. This section presents work done with vortices 

with order unity Rossby ·numbers· but ·small local Rossby numbers, representative of a 

sub-mesoscale oceanic ring vortex (McWilliams et al. 1986) or a weak tropical storm or 

depression. 

The first case shown in Fig. 3.32 is the monopolar vortex scaled as a tropical depres-

sion. It is evident that the local Rossby number squared is never much above 0.1, making 
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Figure 3.17: The track of the DeMaria vortex. The hurricane symbols denote the vortex 
position every 24 hours. 

the AB approximation (R1
2 << 1) a very good one. The evolution of the fields (Fig. 3.18 

and 3.19) is evidence of the validity of such an approximation. The /3-AB model develops 

clean q{o gyres, and shows no hint of a maximum inside the main beta gyres ( except for 

a pseudomode). The¢/ field has uniform flow between the gyres and exhibits none of the 

pinching of the previous examples. 

The second case is a vortex that scales as a tropical storm. It possesses a local 

Rossby number between that of the benchmark vortex and the depression (Fig. 3.33) . 

This intermediate vortex shows properties of both the tropical depression and the minimal 

hurricane. Unlike the benchmark vortex, the tropical storm vortex develops an inner peak 

in q{o (Fig. 3.20) whose amplitude is smaller than the beta gyres. The ¢/ fields exhibit 

only a slight pinching near the center (Fig. 3.21). 

The distortion in the wavenumber one ¢/ and q{o was already anticipated in the 

formulation of the vorticity equation. The AB vorticity equation differed from the PE 

vorticity equation in the distortion factor fJo/(o multiplying the advection of planetary 

vorticity, v/3 cos >. .- ·A plot of fJo/(o ·is shown·in Fig; 3.22 for the minimal hurricane, tropical 

storm, and the tropical depression vortices. A ratio of fio/(o approaching unity corresponds 

to a small local Rossby number, so it is not possible to separate the two effects. The 

maximum local Rossby number and minimum fio/(o nearly coincide with the secondary 

k . / pea m qfo . 
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Figure 3.18: Tropical depression q~
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evolution for wavenumber one. Contour interval 
1 x 10-10 sm-2• Values outside of ±14.5 x 10-10 sm-2 have not been contoured. 
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Figure 3.20: Tropical storm qeo evolution for wavenumber one. Contour interval 1 x 10-10 
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The final family of vortices considered briefly are spatially confined but are of small 

amplitude. Consider a profile analogous to the DeMaria profile in every way except all 

velocities have been divided by nine. Such a profile possesses the property that ii = 0 near 

1000 km, but it also possesses very small local Rossby number and a ratio of fio/[o close to 

unity. The /3-AB model produced fields and tracks consistent with those produced in the 

barotropic nondivergent model, where such "problems" associated with the local Rossby 

number and fio/[o are not a consideration. 

3. 7 The Linear Barotropic N ondivergent Model 

As an investigative tool into both the previously mentioned distortion effects and 

Willoughby's translating normal mode (Ch. 4), a barotropic nondivergent model linearized 

on a circular vortex in gradient balance has also been developed. The forecast equation 

for this model is 

(3.8) 

where '1/J' is the perturbation streamfunction. 

3. 7.1 Steamfunction and Vorticity Fields 

For the benchmark vortex, the linear barotropic nondivergent model develops vorticity · 

and streamfunction fields (Figs. 3.23 and 3.24) similar to the /3-AB runs. Of note is the 

absence of the aforementioned secondary gyre and lack of pinching in the streamfunction 

fields. Between the wavenumber one dipole we find uniform flow as described by FE. 

3. 7.2 Vortex Tracks 

As a further test of the robustness of the linear barotropic nondivergent formulation, 

a plot of two qualitatively different vortex tracks is presented in Fig. 3.25. The first track 

is for the · standard benchmark vortex, which· slowly accelerates in a straight line. The 

second track is for the DeMaria vortex, which takes a northward turn at long times. Both 

tracks are consistent with the theoretical predictions for (3.8) in storm-moving coordinates 

by Reznik and Dewar (1994). In their analytical theory of distributed vortices on a /3-
plane, they predict that large distributed vortices (like the benchmark), will accelerate 
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along a straight line path. On the other hand, confined vortices (like DeMaria's vortex) 

will approach purely meridional motion at long times. 

3.8 Summary 

For a smooth hurricane-like vortex the linear /3-AB formulation has been shown to 

correctly capture the formation of the beta gyres and produces vortex tracks consistent 

with previous research results using fully nonlinear, nondivergent vortex models. · The 

gyres are initially oriented east-west, and get advected by the basic state swirl so the flow 

between the gyres is oriented towards the northwest. Storm track and direction were also 

shown to be consistent for another relatively large-sized vortex, the Schloemer vortex. Of 

note is the finite speed of the vortices obtained in the /3-AB model. 

Fully nonlinear divergent models have long demonstrated that intense vortices attain 

finite and steady drift speeds on time scales smaller than the Rossby radiation time scale 

(McWilliams et al. 1986, McWilliams and Gent 1986, Willoughby 1994). Sutyrin and 

Flierl (1994) have recently shown, however, that QG vortices attain finite drift speeds 

even in the limit of linear dynamics on a circular Rankine-like vortex possessing piecewise 

uniform PV. Their result suggesting nonlinearity is unessential for attaining finite drift 

speeds is limited to small Rossby number vortex flows. This work confirms and extends 

Sutyrin and Flierl's analytical prediction to order unity and higher Rossby number flows 

with distributed PV profiles. 

Mc Williams and Gent (1986) showed the asymptotic drift speed of oceanic mesoscale 

and sub-mesoscale vortices in the nonlinear formulation is a significant fraction (::::: 70%) 

of (Rd 0 ,,)
2 /3, where Rd00 

2 is the square of the environmental Ross by deformation radius. 

In this chapter the drift speed was found to be a smaller fraction (::::: 7%) of ( Rd00 ) 
2 /3 for 

the benchmark vortex. These results indicate the drift speed in the linear problem should 

be described by (Rd} 2 /3, where Ra is the local -Rossby Tadius. · For this description to be 

useful, however, one needs to know the appropriate radius at which Rd is to be evaluated. 

For the benchmark vortex one obtains a radius ::::: 200 km. It would be of great interest to 

be able to predict this radius a priori since this would enable one to predict the asymptotic 

drift speed of an arbitrary vortex profile. This is reserved for future work. 
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A linear barotropic nondivergent model has also been developed and tested. As both 

linear models have been demonstrated to capture the fundamental physics of the beta 

drift problem, both can be used to investigate the performance of other linear models; 

specifically the search for a translating normal mode. 
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Chapter 4 

IN SEARCH OF A TRANSLATING NORMAL MODE 

4.1 Introduction 

In a series of papers examining the linear motion of shallow water hurricane-like 

barotropic vortices, Willoughby (1988, 1990, 1992, 1995) interprets the vortex dipole forced 

by the mean-flow advection of planetary vorticity (the beta gyres) as a normal mode of 

the linear system. In simple terms a normal mode of a dynamical system is simply a free 

oscillation of that system 1. In an analysis of linear vortex motion Willoughby ( 1995) 

states: "These modes can exist and maintain themselves independent of any forcing." 

This interpetation is perhaps driven by the peculiar property of constant acceleration 

of vortices that are placed into Willoughby's linear model, results which could not be 

duplicated in the linear /3-AB model or the linear barotropic nondivergent model. The 

search for a normal mode of near-zero frequency has been a subject of some additional 

research in recent years. Peng and Williams (1991) and Weber and Smith (1993) were 

both unsuccessful in finding the desired normal mode. Willoughby (1995) addresses their 

failure, citing two possible reasons. The first is that their specific boundary conditions for 

a stationary vortex are not the same as for a moving vortex. The second concerned their 

numerical solution method. Both groups used shooting and relaxation algorithms to find 

eigenvalues of the barotropic vorticity equation. Willoughby claims such a method will 

11n shear flows the concept of free oscillatory modes remains valid (e.g., Drazin and Reid 1981}, but 
the non-normality of the associated linearized dynamical operator renders their description as "normal 
modes" probably more confusing than useful (Farrell and Ioannou 1993}. Since this terminology persists 
in both textbooks and the literature we adhere to its usage with the understanding that it is the free 
oscillation aspect being referred to rather than the orthogonality in function space. 



58 

almost always converge on the pseudomode (a wavenumber one gyre resulting simply due 

to the mispositioning of the vortex grid when compared to the vortex center). Willoughby 

states the aforementioned studies found the normal modes of nontranslating vortices only. 

This chapter takes a different approach to the problem of finding a possible normal 

mode. If the beta gyres are indeed representations of a near-zero frequency normal mode 

of the system, their amplitude, orientation, and the corresponding motion of the vortex 

should remain unchanged in the absence of forcing. In this section we will duplicate 

Willoughby's {1995) most recent experiments justifying the normal mode interpetation 

and will provide an alternative and more consistent interpretation of the phenomenon. 

4.2 Results for the Linear Barotropic Nondivergent Model 

4.2.1 The Experiment 

The experiment to be run is detailed in Willoughby {1995). Because a normal mode 

should persist in the absence of forcing, the idea is to "turn off" the forcing after the beta 

gyres have "spun up". This is accomplished in both models by setting /3 = 0 after 240 

hours. The vortex is then free to evolve on an f-plane. If the beta gyres do indeed force 

a normal mode of near-zero frequency, then the vortex should continue at its speed and 

direction obtained at 240 hours for all time thereafter. Careful analysis of the pertinent 

fields, as well as vortex track, should provide solid evidence for or against a normal mode 

in the harotropic nondivergent linear model. 

4.2.2 Vortex Tracks 

The experiment was run for two qualitatively different vortices, one the benchmark 

vortex of the previous chapter, and another for the completely cyclonic Willoughby profile. 

Recall that the benchmark vortex has a finite v throughout the model domain, while the 

Willoughby vortex has v = 0 outside of 1000 km. Both vortices were allowed to evolve on 

the f-plane in the absence of /3-forcing for times well beyond those run in Willoughby's 

experiments, 1920 hours for the benchmark vortex and 1320 hours for the Willoughby 

profile. 
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Figure 4.1: The track for the benchmark vortex in the linear barotropic nondivergent 
model. Beta forcing was discontinued at 240 hours. The cyclone symbols denote the 
vortex position at every 120 hours. 
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Figure 4.2: The track for the Willoughby vortex in the linear barotropic nondivergent 
model. Beta forcing was discontinued at 240 hours. The cyclone symbols denote the 
vortex position at every 120 hours. 



As evidenced by Figs. 4.1 and 4.2, the vortices in question do not exhibit behavior 

consistent with that of a normal mode at near-zero frequency. For the benchmark vortex, 

the track takes a decidedly westward turn after the beta forcing is discontinued. The 

vortex eventually comes to rest. When the beta forcing is switched off in the Willoughby 

vortex, the vortex takes a northward turn and comes to rest at long times. To elucidate 

what is happening we now examine the perturbation streamfunction ( 'lj;')_ and perturbation 

vorticity ( (') fields. 

4.2.3 Stream/unction and Vorticity Fields 

As discussed in section 4.2.2, the tracks of the tested vortices do not exhibit behavior 

compatible with a near-zero frequency normal mode. Inspection of the wavenumber one 'lj;' 

and (' fields suggests these fields are not consistent with the hypothesis of a normal mode. 

Figures 4.3 and 4.4 both show a long lived '1/J' asymmetry. Closer inspection, however, 

reveals this asymmetry is losing its amplitude in both cases. In the case of the benchmark 

vortex, the asymmetry also gets advected with the basic state flow. This is consistent 

with the track of the benchmark vortex shown in Fig. 4.1. On the other hand, the gyres 

found in the Willoughby vortex do not seem to be advected with the basic state flow, 

suggesting a fundamental difference in the behavior of the two vortices, best illustrated in 

the (' fields. 

The wavenumber one(' fields {not shown in Willoughby's work) for the benchmark 

vortex (Fig. 4.5) clearly shows the asymmetries at 2160 hours are not the same as those 

generated by the beta effect (240 hours). There is now little doubt that once the beta 

forcing is discontinued, the asymmetries that were a result of that forcing begin to sym-

metrize. At 2160 hours they can hardly be recognized as beta gyres at all. We believe 

this behavior is inconsistent with a normal mode forced by beta. 

The (' fields for the Willoughby vortex are-shown in Fig. 4.6. At the 240 hour point, 

the beta gyres have pushed out rather far into the vortex, reaching a maximum at about 

750 km. Refering to the basic state of the Willoughby vortex (Fig. 3.28), at 750 km 

v '.::::'. 0.5 ms-1. The result of such small mean tangential winds is that these gyres are 

oriented so the flow between them is almost northerly. As shown in the radial plots of (' 
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Figure 4.3: The wavenumber one '1/J' fields for 240 hours through 2160 hours for the 
benchmark vortex. The beta forcing was discontinued at 240 hours. Contour interval: 
5 x 105 m2s-1• 
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Figure 4.4: The wavenumber one 1/J' fields for 240 hours through 1560 hours for the 
Willoughby vortex. The beta forcing was discontinued at 240 hours. Contour interval: 
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(Fig. 4.7), the beta gyres are eroded most efficiently from the inner vortex side as that 

side possesses the most differential shear. This effect gives the appearence of an outward 

moving maximum. The part of the gyre in the least differential shear is the longest lived. 

More discussion on this topic is in section 4.4. 

4.3 Results for the Linear /3-AB Model 

The linear /3-AB model differs from the linear barotropic nondivergent model in that 

the linear /3-AB model allows for divergence, being a shallow water model similar to what 

Willoughby used for his normal mode work. The experiments run in the /3-AB model are 

formally identical to the ones in the previous chapter; specifically, the beta gyres were 

allowed to evolve for 240 hours at which point the beta forcing was discontinued. 

4.3.1 Vortex Tracks 

The tracks for the Schloemer and benchmark vortex are shown in Figs. 4.8 and 4.9. 

Both tracks are qualitatively similar to the benchmark vortex track in the linear barotropic 

nondivergent model. Neither vortex continues at the speed obtained by the 240 hour point 

and both take a decidedly westward turn after the beta forcing is discontinued . 

. .f..3.2 Geopotential and PV Fields 

As found in the linear barotropic nondivergent model, the geopotential fields 

(Fig. 4.10) and the potential· vorticity fields (Fig. 4.11) produced by the beta effect for 

the benchmark vortex for wavenumber one do not persist unchanged as one would ex-

pect if they were indeed reflections of a zero frequency normal mode. Instead, the beta 

gyres symmetrize once the beta forcing is discontinued, consistent with the results in the 

linear barotropic nondivergent model. The Schloemer vortex shows qualitatively similar 

behavior (fields not shown). 

4.4 Discussion 

Three vortices have been run in two different linear models, the barotropic linear 

nondivergent and the /3-AB, duplicating Willoughby's experiment of turning off the beta 
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Figure 4.5: The wavenumber one(' fields for 240 hours through 2160 hours for the bench-
mark vortex. The beta forcing was discontinued at 240 hours. Contour interval: 1 x 10-6 

s-1. Values outside of ±14.5 x 10-6 s-1 are not contoured. 
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Figure 4.6: The wavenumber one (' fields for 240 hours through 1560 hours for the 
Willoughby vortex. The beta forcing was discontinued at 240 hours. Contour interval: 
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Figure 4.9: The track for the benchmark vortex in the linear /3-AB model. Beta forcing 
was discontinued at 240 hours. The cyclone symbols denote the vortex position at every 
120 hours. 

forcing after 240 hours. If a normal mode of near-zero frequency was present in these 

formulations, the vortices should have continued in the same direction and at the same 

speed as that obtained at the end of 240 hours. 

Close examination of vortex track and speeds as well as relevent fields in both models 

leads us to the conclusion that what is observed in these linear models is a symmetrization 

process rather than the behavior of a near-zero frequency normal mode. This interpetation 

is not inconsistent with the results presented in Willoughby (1995). For the same exper-

iment as listed in this chapter, Willoughby's linear model shows qualitatively the similar 

behavior as both the the barotropic linear nondivergent and the /3-AB for the Schloemer 

profile. In Willoughby (1995), the Schloemer vortex takes a turn to the west and slows 

down when the beta forcing is discontinued, and the wavenumber one gyres associated with 

the beta forcing also lose amplitude. This behavior is identical to the behavior of both 

benchmark vortex and the Schloemer profile in the barotropic linear nondivergent and 

linear /3-AB models. · Examination of the corresponding(' and q~
0 

fields reveals filamen-

tation, a tell-tale mark of the symmetrization process. The vortex tracks are consistent 

with the behavior of vortices on an /-plane subject to outer-core asymmeteries as shown 

in Smith and Ulrich (1993) and Kallenbach and Montgomery (1995) . These latter works 
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fields for the benchmark vortex from 288 hours 
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demonstrated that vortices on an /-plane turn toward the low-pressure asymmetry, just 

as we found in the experiment with the Schloemer and the benchmark vortex. 

The behavior of the Willoughby vortex in the linear barotropic nondivergent model 

is consistent with the hypothesis of symmetrization when one considers the small basic 

state tangential wind near the beta gyres. The pertinent equation given in Smith and 

Montgomery (1995) relates the limiting energy-decay half-life of an asymmetry to the 

differential shear as 

thalf = - r!~ [ -i-1 (4.1) 

Plotted in Fig. 4.12 is thalf for the vortices discussed in this chapter. Refering to both 

Fig. 4.12 and Willoughby's (1995) results, if Willoughby were to initialize his model with 

his vortex and gyres centered " ... at the edge of axisymmetric circulation", approximately 

1000 km in his case, the corresponding gyres would be long-lived. The long-life of the gyres 

centered near 1000 km in the Willoughby vortex is likely not the reflection of a normal 

mode at a near-zero frequency but rather with the behavior of eq. (4.1) and how it relates 

to the basic state velocity profile. Even with their long half-life, the gyres presented in 

Willoughby (1995) appear to be undergoing the initial effects of the symmetrization process 

as evidenced by the decrease amplitude of the gyres. That the Willoughby vortex does 

not turn or slow down as much as the Schloemer profile should be expected by Fig. 4.12. 

The Schloemer vortex contains a higher differential shear, so the signs of symmetrization 

( track deviation to the west,- loss of speed, loss of amplitude of the gyres) will be seen 

sooner and will be more pronounced in the Schloemer ( or benchmark) vortex than in the 

Willoughby vortex. 

4.5 Summary 

While certainly not as exotic as a normal mode at zero frequency, detailed analysis 

of experiments performed both in this chapter and in Willoughby (1995) suggest that the 

beta gyres are not a normal mode in the traditional sense, but are simply asymmetries 

possessing long but not infinite lifetimes. While the Schloemer and Willoughby vortices 
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appear to behave differently when viewed from the normal mode perspective, when con-

sidered as a symmetrization problem they in fact behave quite similarly. The experiments 

performed in this chapter, as well as those executed in Willoughby (1995) , are more con-

sistent with the symmetrization of outer core gyres than the forcing of a normal mode at 

near-zero frequency. 



Chapter 5 

CONCLUSION 

Asymmetric balance theory has been extended to the ,B-plane in the context of shallow · 

water linear dynamics. The linear ,B-AB forecast equation was shown to have an associated 

pseudo-momentum principle, a vertical vorticity equation, a PV equation, and an energy 

equation that are all analogous to the linearized PE. 

For two seperate vortices the linear ,B-AB formulation has been shown to correctly 

capture the formation of the beta gyres and produces tracks consistent with previous 

research using fully nonlinear, barotropic nondivergent vortex models. Finite drift speeds 

were obtained in both cases, a result in opposition to Willougby's linear PE formulation 

(Willoughby 1990b, 1992). 

In an investigation of the beta effect forcing a near-zero frequency normal mode, 

experiments were run in both the linear ,B-AB model and a linear barotropic nondivergent 

model in which the beta forcing was discontinued after 240 hours. Once the forcing was 

discontinued, the vortex speeds in both models steadily decreased and the associated beta 

gyres lost amplitude consistent with the axisymmetrization process. In contrast to the 

interpretation of a near-zero freqency normal mode, these findings suggest the beta gyres 

are simply asymmetries possessing long but not infinite lifetimes. 

5.1 Suggested Future Work 

The distortion term noted in Ch. 3 associated with the advection of planetary vortic-

ity raises some unresolved issues. Possibly a higher-order scheme or a coordinate system 

moving with the storm would reduce the interpolation errors associated with grid repo-

sitioning and quantify whether the aforementioned distortion is a reflection of the ,B-AB 

formulation or of numerous grid moves and reinterpolations. 
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The weakly nonlinear terms in the environment and the fully nonlinear terms in 

the core are future enhancements. These terms will elucidate how the beta effect acts 

to modify the initial basic state vortex. The model could then be expanded to include 

various environmental factors such as shortwaves or horizontal shear. 

Expanding the model into more than one layer is likely the only way to make full 

use AB's property of no formal restriction on the magnitude of divergence. It is here that 

AB could be used to understand the influence of outflow layer dynamics or how strong 

convection and its associated high divergence affect a hurricane's track. 



Appendix A 

FURTHER SIMPLIFICATION OF EQ. (2.34) 

The rationale behind the additional simplification of eq. (2.34) is as follows. Neglected 

beta terms must be small compared to both the leading /-plane terms in the near-vortex 

region where R 0(1) and the leading QG ,B-plane terms in the environment where 

R < < I and ,Br/ Jo ~ O(R). Beta terms not satisfying these requirements must be kept. 

Further simplifications and their associated relative errors in the near-vortex region and 

environment are summarized below: 

1 Dv ¢>>.. Dv ¢>>.. ! m core 
-=- -::- - -::-= ;ERRORS: 

I I { Q(§z.). 

( Dt ( rrJ) Dt ( rrJ() O(R) in environment 
(A.I) 

-=~~ ;ERRORS: ;; ID ,1..1 D (,1,') { O(f!!.) in core 

TJ Dt ( Dt TJ( O(R) in environment 
(A.2) 

-'i.'- -- V 'f'! __ 'i.'_ V 'f'~ ; ERRORS: ;; dJi.. [ 1 D ( ,;,, ) ] dJi.. D ( ,;,, ) { 0( l!!.) in core 
dr fj Dt ( dr Dt fj( O(R) in environment 

(A.3) 

On making these replacements, (2.34) becomes 

(A.4) 

We further approximate 

<I> 8 Dv ( ¢~) <I> Dv (¢>~>..) { 0('%!-)in core - ---- --- --- -- ;ERRORS: 
r 8).. Dt rfj( r Dt rfj( 0(2R) in environment 

(A.5) 
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After further manipulation {A.4) may be written as 

(A.6) 

To further simplify the ,B-plane formulation it proves useful to make the dependence of ij, 

(, and ij on ,B explicit by defining: 

ij = f + ! !£ (TV) = f o + ! dd ( Tv) + T ,B sin >. = iJo ( T) + T ,B sin >., T dT T T 
(A.7) 

__ ij _ fo+~f,.(Tv)+T,Bsin>. __ () T,Bsin>. q - -=- - -~~----- - qo T + ---, 
cI> cI> cI> 

(A.8) 

- 2v 2v -= J + - =Jo+ - + T,Bsin>. = ~o(T) + T,Bsin>.. 
T T 

(A.9) 

In (A.7) - (A.9) the zero subscripts refer to the f-plane definition. Consistent with 

approximations already made, (A.6) simplifies to 

(Tv,Bsin>.) + T 8). . (A.10) 

Now, let the inverse local Rossby radius squared be denoted as 1'6 = ij0( 0 /~. Multiplying 

(A.10) by 16 and rearranging yields 

Dv [1'6~ (T!~) + <P~>. _ 15</J']- ~odiio<P~ -,Bsin>.~o~~ (~) ¢~ 
Dt T 8T 16 T2 qo dT T T/0 8T cI> T 

+ ,B cos>. iJ~(o ¢' = 16 ( T~v2 ,B cos>. _ ,B2v2T2~ sin>. cos>.) 
~2 r T 8T ij~ iJoe 

_ iJo(o ( vT ,B sin >.) . 
T 8). 

(A.11) 
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We next invoke the standard ,8-plane approximation whereby .8-terms that are not 

explicitly differentiated are approximated by their /-plane counterparts. The .8-plane 

approximation introduces errors of O(.Br / Jo) relative to the leading QG .8-plane terms in 

the environment. Consistent with this approximation the fj and ( terms on the right side 

of (A.11) are replaced by fj0 and (0 . The result is 

Dv [1'6 (r!,~) + <I>~>. - 1'J¢'] - ~o difo </>~ _ .8 sin .X ~o 4?~ ( ~) 
Dt r or 'Yfi r2 qo dr r 1/o or <p r 

fio A-' .8 , 1'6 o (rv2 .8 cos .X ,82v2r24? sin .X cos .X) _ -,a , +-=-'l'r COS A= -- -2 - _ 2 - TJOV COS A. 
{o r or 'Yo fio{o 

(A.12) 

When the first term in parentheses on the right-hand side of (A.12) is compared to 

the second term on the left-hand side of (A.12) the ratio scales as O(v2.Br/(o</>~)- In 

the beta drift problem the perturbation geopotential l</>'I ~ 0(.8) (Reznik and Dewar 

1994). Guided by the knowledge that the geopotential gradient across the storm center 

is proportional to the drift speed of the vortex, dimensional considerations based on the 

first term in (2.32) suggest that within the beta gyres WI ~ .BL2rfj0(0), where L is the 

characteristic horizontal length scale determining the drift speed of the vortex ({3L 2) . 

As long as (r2/L2)(fjo(r)/fjo(O)) does not greatly exceed unity in the region of the beta 

gyres, O(v2{3r/(o</>~) ~ O(R1
2) and to be consistent with the approximations already 

made to derive (2.34) this first term in parentheses on the right-hand side of (A.12) can 

be neglected. Because the second term on the left-hand side of (A.12) scales as O(/3r/(0 ) 

compared to the first, it may also be neglected. The final result is eq . . (2.35). 
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