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This work is concerned with the problem of multiple target

track detection in heavy clutter. Using the ''modified high order

correlation" (HOC) [1-41 process and a track scoring mechanism

a new method is develloped to perform data association and track

identification in the presence of heavy clutter. Using this new

scheme any number of very close, crossing or splitting target

tracks can be resolved without increasing the computational

complexity of the algorithm. The applicability of the method

for continuous detection of target tracks that can originate and

terminate at any scan is also demonstrated. In addition, the

operating characteristics as a function of the clutter density are

also provided. Simulation results on all the cases are presented.
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I. INTRODUCTION

The problem of detection and identification
of multiple low observable targets in a heavily
cluttered background is the primary focus of
this work. The advances made in algorithm and
hardware developments have increased the processing
capabilities of the detection schemes for operation
in more difficult environments. However, because of
the complicated nature of the problem, no general
solution is available for all cases. Some contributing
factors for this deficiency are: extremely low
signal-to-noise/clutter ratio, nonrepeatability of the
target signature, competing clutter forming returns
with similar shapes as those of the actual targets,
obscured targets and lack of a priori information
about the initial conditions and the signal statistics. In
addition, the presence of multiple targets complicates
the detection, data association and classification
processes, especially when targets are allowed to
cross, split, remain close together or be partially
hidden in the background.

Over the years, several target detection techniques
have been proposed in the literature [5-15] which use
different schemes such as spatio-temporal filtering
[5, 6], maximum likelihood (ML) estimation [7,
14], recursive Kalman filtering [8-13] and neural
networks [15]. In [6] a 3-D spatial-temporal filtering
scheme is developed. The operations are done
in the frequency domain by passing the image
through a bank of directional filters each tuned
to extract line features of the tracks with certain
orientations. Recently, Bar-Shalom, et al. [11, 12]
used two different centroid-based measurements
to track targets in forward looking infrared (IR)
data. These provide information about the location
of the single-frame centroid and the offset of the
centroid measured based on two consective frames.
The state variable models and the corresponding
Kalman filters were then derived in which the target
centroid is estimated based upon these measurements.
Comparison between the two filters indicated that
the filter which used autocorrelated measurement
noise provided better performance. In a more recent
paper [13] Shertukde and Bar-Shalom extended
this approach by using the joint probablistic data
association (JPDA) in conjunction with a Kalman
state estimator. The "merged measurement" model
in the state equations presents a linear combination
of centroids of an individual target. This method is
useful for tracking crossing targets. The scheme in
[14] uses a track-before-detect procedure to detect
multiple targets in presence of false measurements.
The methodology is based upon ML estimation as the
measurement model is nonlinear. Roth [15] developed
a neural network-based scheme for detection of
straight line tracks in the background clutter. A
Hopfield network was trained to implement the
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optimum post-detection target track receiver
operation.

In all of the above-mentioned schemes certain
assumptions about the target signatures and the
background clutter are made in order to reduce
the computational requirements. For applications
where such assumptions are valid, these techniques
perform well. However, if no a priori information
about the statistics of signals and clutter and/or noise
is available and further the signals are not simply
distributed or are highly correlated, these techniques
may give inferior results.

In [1-4], a new method referred to as high order
correlation (HOC) was developed which does not
make any a priori assumption about the targets and
background clutter. This method was modified by
imposing velocity and curvature constraints in order
to reject false tracks even at a greater degree and
improve clutter rejection performance. Both the
original and modified HOC methods exploit the
temporal and spatial dependencies of consecutive data
points on a target track to discriminate them from
background clutter. The real-time implementation
of these methods using connectionist networks was
also presented in [1-4] which showed the potential
of these schemes for parallel implementation. The
algorithm was tested on numerous target events
and an average clutter rejection rate of 98% under
moderate clutter density was achieved without losing
any valid information pertaining to the target tracks.
The comparison of the results with those of the 3-D
spatio-temporal filtering [6] indicated the superiority
of the modified HOC method.

This work extends the applicability of the modified
HOC method to practical scenarios which involve
detection of multiple targets in heavy clutter. This
problem is complicated especially when the targets
are allowed to be crossing, splitting, or very close
together. The applicability of the modified HOC
method for multiple target detection scenarios
under various clutter densities is demonstrated
without increasing the complexity of the algorithm.
In addition, it is shown that the detection can be
performed without any prior knowledge of the number
of targets, the target's dynamical information and
initial conditions.

A new scoring process is presented which can be
used in conjunction with the modified HOC scheme to
achieve better clutter rejection performance. Scoring
is a mechanism which assigns likelihood measures to
the spatio-temporal sequences in order to determine
their resemblance to real target tracks. We demonstrate
here how one can easily extract score information
during the modified HOC process without adding
computational overhead to the alogorithm. Substantial
improvements in clutter rejection can be achieved by
rejecting the sequences with low scores.

In order to better identify multiple targets
individually, the properties of the modified HOC
method are exploited to perform data point association
in consecutive scans, formulate independent target
tracks and reject the adjacent clutter. The results not
only indicated significantly better target identification
and clutter rejection rate but also showed the potential
of this approach for other applications such as track
classification, tracking, and data fusion.

In a real target detection environment, there is
usually no a priori knowledge as to when the targets
initiate and terminate in the field of view. To detect a
target in such an environment, the sensor must operate
continuously and be capable of detecting the presence
of the target at any number of scans as soon as there
is sufficient information for making the decision.
Simulation results in this work also demonstrate the
ability of the HOC method to perform continuous
target detection and clutter rejection. This is achieved
with only little modifications to the algorithm.

Experiments were also conducted on various
processing conditions where the clutter density and
the order of HOC are variable. The upper bound on
the clutter density using this method is also analyzed.
The purpose is to study how to fully utilize the
benefits of the modified HOC scheme so that the
detection can be made in a minimum number of scans
using an optimum structure.

This paper is organized as follows. The modified
HOC scheme and its important properties are first
established in Section II. Section III presents the
scoring and track identification processes using the
information available directly from the modified HOC.
Simulation results are presented in Section IV for
various practical scenarios discussed above. Finally,
conclusions are given in Section V.

II. SPATIO-TEMPORAL HOC METHOD

A multiscan image is actually obtained by stacking
several 2-D images collected at some time intervals
by an IR sensor whose field of view is fixed with
respect to the background. This yields a 3-D image
in the Cartesian coordinates (x,y,t) where (x,y) are the
spatial variables and t represents the time. A moving
target in the sensed scene forms a track or a signature
in this 3-D image.

In the IR imagery the intensity of the target is
usually unknown and can vary substantially from
one scan to the next depending on the temperature,
sun angle, etc. As a result, target detection using
intensity-based schemes, such as thresholding,
naturally leads to an unacceptable performance. To
retain dim targets (dimmer than background), in this
work the scan data is converted to binary images by
mapping any sensor return with intensity greater than
zero to one (1). This process yields a 2-D image for
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Ivl lvl ]
y(x,y,tn) =g I= ,L F(x,y,tn)F(x + i.y + ),tn+ l)

l=-[vl/=-Ivl

(2)

where v is the maximum allowable target movement
from scan to scan and Y(.) represents how the
(x,y) points of F() at scan tn are correlated to their
neighboring points, within a window of size (2v +
l)X(2v + 1), at scan tn+ l . The function g(.) is a hard
limiter threshold function defined as

every scan data in which each pixel at (x,y) location
is either "blank", if there is no sensor return at that
location, or one (1), if there is a return associated with
target or clutter. Now, stacking several such binary
images for different time scans gives a 3-D image
which can be modeled [1] by

'"'" y(k-I)( .. .. )]x L L x + II + 12 ,y + h + h,tn +2

'2 J2

(5)

where (il')l) and (i 2,h ) represent the possible
movements from scans tn to tn+ l and tn+ l to tn+2,
respectively. In (5), to compute the correlations
between scans tn and tn+ l , we considered all the
possible movements and used the entire velocity
window, i.e., i l , ) ] E [-lvi, [vll. However, for each pair
of (il')l) generally only a subset of (i 2,h ) values can
be acceptable. This subset which determines the size
and shape of the velocity window between tn+ I and
tn+2 is obtained based upon a given maximum moving

should decrease such that at all times k + nmax =no
where no is number of scans used for detection
[1]. Note that for k = 1, yCO)(x,y,tn) =F(x,y,tn) and
hence y(l)(x,y,tn) provides 2-point correlation as
in (2). For k = 2, y(2)(x,y,tn) gives the correlation
of y(l)(x,y,tn) and yCl)(x,y,tn+I), thus providing
a 3-point correlation. Consequently, yCk)(x,y,tn)
gives correlational information among k consecutive
scans, i.e., if yCk)(x,y,tn) = 1, then there may exist a
track extending from location (x,y,tn) at scan tn to
a point at scan tn+k ; otherwise these data points do
not lie on a possible track and can subsequently be
removed. The processed result of the HOC process
in (4) is a 3-D image in which all the points satisfy
the spatio-temporal correlational criterion and the
background clutter is substantially removed.

In [1], it was also shown that the entire process
can be implemented on a connectionist network
consisting of several planar layers of neurons with
hard limiter activation functions. The number of layers
to be used depends on the choice of the order for the
process. The output of the final layer provides the
HOC image result.

The limitation of the HOC process, however, lies
in the fact that beside the maximum target movement,
this process does not impose any other constraints
based on the target dynamical information such
as curvature and velocity variations. As a result,
certain desirable clutter rejection rates may not be
achieved as clutter with returns similar in shape to
a jagged track would also satisfy the HOC criterion
and hence will be retained in the final image. The
problem can be remedied by modifying the HOC
process in (4) to include spatio-temporal correlations
in three consecutive scans. In this "modified HOC"
the possible movement from scan tn to scan tn+ l
can be used to determine the movements to the tn+2
scan. This can be portrayed by using the following
equation [1]

y(k)(X,y,tn ) = g [y(k-I)(X,y,tn ) LLy(k-])(x + ',» + jl't
n
+])

'1 it

(3)

(4)

if c > 0;

if c::::; o.{
I ,

gee) =
0,

[

Ivl Ivl

yCk)(x,y,tn) =g i~lJ~vl yCk-I)(X,y,tn)

x yCk-I\X + i,y + ),tn+ I ) ]

where n can vary from 1 to nmax ' and k is the order
of the recursion. 'When the order k increases nmax

Obviously, if Y = 1, then there is a two-point
spatio-temporal sequence initiated at location (x,y)

and at scan tn to location (x + i.y +)) at scan tn+ l •

Although this process can be repeated to identify
all such two-point sequences, it cannot provide
correlation information of more than two data points.

To determine the spatio-temporal correlations of
more than two data points, we build memory into the
process and compute the higher order correlations of
y by using a recursive procedure [1] with the general
form of

where x,y represent the spatial locations on a discrete
2-D plane, tn is the time unit or scan number, and
F(·) is the observed binary image consisting of two
disjoint parts, i.e., target image SO, and clutter image
N(·), which are also binary. This model merely states
that the observed image is an additive combination
of disjoint images associated with the target and
clutter and that a particular point in the 3-D image
corresponds to either target or clutter but the two do
not occur at the same location and time.

Since a target moves in a certain direction and
builds a time-dependent track in the 3-D space,
there exists spatio-temporal correlations between
consecutive target points. To find this dependency, we
can use the following equation [1]

LIOU & AZIMI-SADJADl: MULTIPLE TARGET DETECTION USING MODIFIED HIGH ORDER CORRELATIONS 555



!t+1i

Fig. 1. Two 3-point tracks. Left one satisfies modified HOC
criterion while right one does not.

curvature constraint [1]. To see this, let us consider
the target bearing angle () from scan t; to tn+! which
can be calculated using

() = tan"! !!.
I!

Now, if the maximum target moving curvature is t5
then the turning angle from scan tn+! to tn+2 should be
within a bounded region, i.e.,

(6)

Having specified the variables () and t5, the acceptable
range of the values of (i2,j2) in (5) can be determined
using (6). Thus, the range of movements from scan
tn+! to tn+2 is limited according to the assumed
maximum moving curvature. Since there are limited
cases of (i!,j!), the computation in (6) can simply be
replaced by a look-up table as shown in [1].

To see the advantages of the modified HOC in
comparison with the original HOC, let us consider
the simple example in Fig. 1 which shows two 3-point
tracks in the xy plane moving from point 1 to 3. The
moving angle from point 1 to 2 is () and the angle
difference from point 1 to 2 and that of point 2 to
3 is a for the track on the left and (3 for the one on
the right. From (4), both of these tracks satisfy the
condition in the original HOC method which does not
impose any constraint. If we choose the maximum
moving curvature constraint of S, obviously the track
on the left falls within the range [() - t5, () + t5] in (6)
while the track on the right does not. Therefore, this
track would not satisfy the curvature constraint of
the modified HOC criterion and hence will be
rejected.

It was shown [1] that the original HOC method
can provide correlational information for k + 1
consecutive scans, where k is the order of the HOC.
The following result shows that the modified HOC of
the same order provides spatio-temporal correlational
information for 2k + 1 scans, i.e., almost twice that of
its original counterpart.

PROPOSITION 1 Assume that target points are located
at (xn,Yn) for each corresponding scan tn' After

Fig. 2. Connectionist network for one layer of modified HOC.

computing the modified HOC's recursively, if the kth
order correlation y(k)(xn,yn,tn) = 1, then there exists a
track that consists of 2k + 1 points extending from scan
tn to tn+2k, i.e.,

y(k)(Xn,Yn,tn) = F(xn,yn,tn)F(xn+!,Yn+!,tn+!)

x .. ·F(xn+2k,Yn+2k,tn+2k) = 1. (7)

PROOF See Appendix A.

In [1], a neural network implementation of (5)
was suggested using high order neurons [13, 14]. The
structure of a typical layer for computing first-order
modified HOC is illustrated in Fig. 2. Multiple layers
can be cascaded to compute modified HOC of higher
order. The output of the final layer provides the
clutter-free processed image. Simulation results in
[1] on various target events indicated an average
clutter rejection rate of 98% for moderately dense
clutter (density less than 0.8% per scan).' This
close to perfect clutter rejection rate of the modified
HOC is achieved without perturbing or losing the
target information. However, for events with clutter
density higher than 1.1%, more false tracks were
left in the final image. These false tracks satisfy
the spatio-temporal criterion of the modified HOC
process. It is shown later that most of these false
tracks can be removed by incorporating a scoring
scheme into the modified HOC process.

III. MULTIPLE TRACK IDENTIFICATION PROCESS

Conventional target tracking approaches which
rely on data association process [8-10] become
computationally intensive in dealing with multiple
target problems, especially when tracks are very
close and allowed to cross or split. These methods
perform track-before-detect procedure and thus are
very complicated for detection only purposes. The
modified HOC method provides a straightforward
and an easy to implement scheme for detecting the

lThe clutter density is measured by the percentage of random noise
pixels out of all possible pixels in one scan.
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Fig. 3. (a) Crossing tracks. (b)-(e) Possible individual tracks in (a).

where Al is a constant dependent on the maximum
velocity v and 0:1 is a scaling factor which is
empirically determined. In this scoring, the highest
score is obviously Al x 0:1 which occurs when i j = i2
and i, = i2 .

The curvature information can easily be obtained
from the look up table of (i2,i2) values (see [1]).
Thus, the curvature score can be computed using

at a movement and a curvature dependent scoring
criterion based upon values of (il,il ) and (i2,h). The
movements between tn,tn+1 and tn+1,tn+2 are [i2 - ill
and Ih - ill in x and y directions, respectively. Since
i l,i2,i l ,h E [-v,v], where v is the maximum target
movement, thus 0 ::; li2 - ill::; 2v and 0 ::; li2 - ill ::;
2v. For real target tracks, the scan-to-scan variations
of movements li2 - ill, li2 - ill and curvature
[tan" (J2/i2) - tan' (idil)1 are typically small.

Two kinds of scores,based upon the movement and
the curvature, can be derived using (i j ,il) and (i 2 ,h )
values. The scoring based upon the movement can be
generated using

is the difference between the scan-to-scan angles.
Again, A2 and 0:2 are parameters similar to those in
(8). These scores can be obtained directly during the
modified HOC process.

The score information is of particular importance
when several possible tracks are close together.
A simple example is demonstrated in Fig. 3(a)
in which there are two target tracks extending
over three consecutive scans. The associated scan
number for each target point is indicated. Since
no information regarding the target movement or
direction is available, two possible pairs of tracks
can be identified. Figs. 3(b) and 3(c) show the first
pair where the tracks are linear while Figs. 3(d) and
3(e) show two tracks with sharp turns in the middle.
The corresponding movements for the three scans
for each possible track in Fig. 3 are given in Table 1.
Let Al = 9,0:1 = 0.5, A2 = 2.356, and 0:2 = 1.91, then
using (8) and (9) it is realized that the highest possible

(9a)scoreangle = (A 2 - r) x 0:2

where

Significant improvements in the performance can
be obtained by incorporating a scoring process in
the modified HOC method. Scoring information can
be extracted rather easily from the modified HOC
process and then be used to associate target points and
determine the resemblance of a sequence of points to
a real target track. In this section, we discuss how the
score information can be extracted for each possible
target point and then develop an efficient method to
identify individual target tracks in a scene.

One of the most popular scoring process is the
probabilistic data association [8-10] for multitarget
tracking problems. It provides measurements on
different sensor returns to determine if they have a
common source. To obtain the scores soft decision is
typically used. This permits the data to be assigned to
multiple sets with each candidate having a measure of
confidence. The problem of data association is highly
complicated, since the number of possible hypothesis
associated with different returns increases rapidly with
the number of returns. The presence of clutter further
increases this complexity.

Data association can be performed directly
using the modified HOC process based upon its
inherent properties. Using (5), it is possible to arrive

A. Scoring Process

presence of multiple targets before identifying each
individual track in the scene.

If no scans are to be used for detection, using
(5) and the results in Proposition 1, it can be shown
that any track that extends over more than 2k + 1
scans, where 2k + 1 < no, will meet the modified
HOC criterion andl hence will be retained in the
processed image. This is achieved regardless of the
number and locations of the targets in the scene and
their dynamical behavior. Neverthelees, the clarity in
identifying individual tracks obviously depends upon
the density of the surrounding background clutter and
the closeness of tracks to each other. Some clutter
points which are remained in the processed images
and are near the real tracks may cause ambiguity
in identifying the individual tracks. In this section
new schemes for scoring and track identification are
introduced in order to improve the capability of the
modified HOC in identifying individual tracks in a
multitarget scenario.
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TABLE I
Individual Target Movements and Associated Scores

Track (idd (i 2 ,h ) Velocity Score Curvature Score

b (1,1 ) (1,1) 4.5 4.5

c (1,-1) (1,-1) 4.5 4.5

d (1,1 ) (1,-1 ) 3.5 1.5

e (1,-1) (1,1) 3.5 1.5

movement and curvature scores is 4.5. The associated
scores for each track are calculated using (8) and
(9). These are provided in Table I. It is obvious
that targets with more consistent dynamical motion
produce higher scores. Consequently, when several
tracks are crossing, splitting, or close together, the
score information provides a measure to identify the
most likely tracks. However, when clutter points are
close to the tracks they may also satisfy the modified
HOC process hence increasing the total number of
hypothesis. Even though most of these points can
easily be removed as they generally lead to low
scores, it is desirable to reduce the total number of
possible tracks using a data association process.

Additionally, the above scoring process applies
to each individual point. The determination of the
resemblance of a sequence to a real track is achieved
by taking the average of the point scores on the
sequence. However, this can only be made possible
when all the possible target tracks are identified.
In the following section a new track identification
process is introduced which can be used to perform
data association and determine track evolution and
also facilitate the scoring process of individual tracks.

B. Track Identification Process

In the resultant image obtained using the modified
HOC, yCk)(x,y,tn) = I indicates that the sets of
(il,i l) and (i2,i2) form a three-point track for three
consecutive scans tn' tn+I and tn+2. This "short track"
mayor may not be part of a complete target track.
If a complete target track exists, these three-point
sequences consistently occur in the modified HOC
image for all the scans in which case it is possible
to define the entire track by associating these points.
However, at this time there is no effective way
of performing this association, since using serial
processing often requires exhaustive search especially
for a densely cluttered environment.

An efficient method can be developed by
combining the forward and backward correlations in
the modified HOC in order to provide five-point track
information directly. The backward correlations are

evaluated using

y(k)(X,y,f
n

) = g [y(k-I)(X,Y,fn ) L Ly(k-I)(X + il'Y + jl'f
n

_ l )

'1 it

,,",,"y(k-I)( .. .. )]x LJ LJ x + II + Iz,y + J: + h,fn _ Z •

'2 J2

(10)

To demonstrate this idea let us consider a
second-order modified HOC for ten scans of data. In
the forward process, the HOC images can be obtained
from scans t l to t6 (see Proposition 1). On the other
hand, the backward process would provide images
from scans tlO to f5. From the results in scan 5, the
data points in scans 3-7 can be associated, i.e., a
five-point sequence (x + i l b + i2b,y + lib + hb,t3),
(x + ilb,y + i l b,t4) ' (x,y,t5 ) , (x + ilI,y + i lf,(6 ) , and
(x + ill + i 2I,y + ill + hI,t?) is created where the
subscripts band f represent backward and forward
processes, respectively. Similarly, from the results in
scan 6, another five-point sequence for scans 4-8 can
be obtained. Thus, by comparing the results at scans
5 and 6, an eight-point sequence may be identified
instantly. This method considerably simplifies the
effort for finding a complete track in ten scans.

Although the above method provides a quick
way to formulate a track, the points (x + i l b + i2b,
Y + ilb + hb,tn-2), (x + ilb,y + ilb,tn- I), (x,y,tn),
(x + ilI,y + ilf,tn+I), and (x + ill + i2I,
Y + ill + hI,tn+2) may not satisfy the criterion for the
modified HOC and thus may be eliminated from the
resultant image. Some interesting observations can be
made by investigating the occurrence of each point.
Owing to the similarity of the forward and backward
correlation processes, only the example for forward
correlation is given below.

Suppose that there are three points located at
(xn,Yn,tn)' (xn+I,Yn+l,fn+I), and (xn+2'Yn+2,fn+2)
for three consecutive scans and that (il,il) and
(i2,h) are associated with (xn,yn,tn), i.e., xn+1 =
xn + ii' Yn+1 =Yn + i. and xn+2 =xn + i l + i 2,
Yn+2 =Yn + i j +h, where (ij,ij) and (i2,i2) are
obtained during the modified HOC process when
yCk)(xn,Yn,tn) = 1. However, this does not necessarily
imply that (x, + i l 'Yn + li,tn+l) or (xn + t, + --»; +
h + h,tn+2) occur in the modified HOC image, i.e.,
yCk)(xn+j,Yn+l,tn+j) = 1 or yCk)(Xn+2'Yn+2,tn+2) = 1.
Different scenarios can be observed on the occurrence
of yCk)(Xn+I,Yn+l,tn+l) and y Ck)(X

n+2,Yn+2,tn+2) in the
resultant image. Typical examples of these scenarios
are depicted in Fig. 4.

Case 1 When yCk)(Xn+I,Yn+l,tn+j) = 1 and
yCk)(Xn+2,Yn+2,tn+2) = 1, a consistent correlation for
five consecutive scans is obtained which implies that
there is a five-point sequence from tn to tn+4 in the
original image (see Fig. 4(a».
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Fig. 4. Different scenarios for occurrence of y(k)(xn+l'Yn+l'tn+l ) y(k)(xn+2'Yn+2,tn+2)' (a) Complete track for 5 scans. (b) Sharp change
at tn+2. (c) Sharp change at tn+3. (d) Sharp change at tn+2 and tn+3.

Case 2 When yCk)(Xn+l,Yn+l,tn+l) =0 and
y Ck)(x

n+2,Yn+2,tn+2) =1, it implies that the movements
from scans tn+ 1,tn+2 to tn+ 3 in the original image do
not satisfy the criterion in the modified HOC scheme.
This can be caused by a sharp curvature change in the
movements between tn+ 1 to t n+2 and tn+ 2 to tn+ 3 (see
Fig.4(b)).

Case 3 When yCk)(Xn+l,Yn+l,tn+l) = 1 and
yCk)(Xn+2'Yn+2,tn+2) = 0, two possible cases could
occur. a) The movements between scans tn+2, tn+3
and tn+4 do not satisfy the modified HOC criterion
which may occur due to a sharp turning point at scan
tn +3 (see Fig. 4(c». b) The target point at scan tn +4 is
misdetected by the sensor.

Case 4 When yCk) (xn+ 1'Yn+l ,tn+l) = 0 and
yCk)(Xn+2,Yn+2,tn+2) = 0, two possible situations may
happen. a) The movements of any three consecutive
scans from tn+1 to tn+4 do not satisfy either the
movement or the curvature constraints (see Fig. 4(d)).
b) There is a missing target point occurred at scan

tn+3 •
From the above statement, a real target track

should satisfy condition in Case 1 for most of the
scans. Conditions in Cases 3 and 4 can happen seldom
especially when missing target points are expected.
By repeating this process for different n at different
scans and combining the results, data association can
be performed. Several real examples are provided in
the next section to illustrate the application of this
new track identification process for clutter rejection
and data association. This study involves various
multitarget scenarios with different background clutter
densities.

IV. SIMULATIOI'~ RESULTS

This section presents the results of the modified
HOC for different operating conditions. These include
on-line continuous detection, detection under various

operating conditions and multiple target detection and
track identification process.

A. Continuous Mode Operation

So far we have assumed that all the targets initiate
from the first scan and remain in the field of view
until the last available scan, i.e., they appear at all
times. Even though this assumption was also made
in many other target detection approaches, in real-life
applications there is no a priori knowledge as to
when the targets initiate and terminate in the sensor
field of view. As a result, the detector has to operate
continuously in order to be able to make decisions at
any time.

The modified HOC method can easily be applied
to this problem by incorporating limited memory into
the process, i.e., only a limited (recent) part of the
old information is kept for processing. This can be
implemented fairly straightforwardly since after the
available memory is full, the new incoming data can
simply replace the oldest data at each scan. No extra
memory is needed in the structure since the network
itself records all the information that is required for
processing. The memory in the HOC [1] stores the
correlational information for certain number of scans.
When new data arrives, the system discards the oldest
data, stores the new data into the memory and then
performs the decision making for the data currently
available in the system. This is like a moving window
process in the time domain. Therefore, detection can
be made at any scan as soon as there is sufficient
target information available.

To demonstrate the ability of the modified HOC
process for on-line continuous operation, 16 scans
of data were processed continuously and the results
were reported after processing every 10-scan interval.
These intervals are: 1-10,3-12,5-14, and 7-16.
The original images, with and without the clutter,
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for 16 scans of data are first shown in Figs. Sea) and
5(b), respectively, just to show the target locations.
There are six simulated target tracks in the image
which are initiated and terminated at different scan
numbers. These tracks are approximately located
around (100,300), (200,120), (260,270), (310,415),
(410,325), and (420,350) coordinates as seen in
Fig. 5(b). The first four tracks initiate at different
scans within the first interval while the last two
initiate within the second interval. All tracks are
isolated except the last two which are splitting ones.

The processed images for the four chosen intervals are
shown in Figs. 5(c), 5(d), 5(e), and 5(0, respectively.
Comparing with Fig. 5(b) it is clear that all the tracks
are successfully identified in their corresponding
interval. The discontinuation of some of the tracks
can be attributed to (1) early termination of tracks,
i.e., before scan 16, and/or (2) missing target points in
the relevant intervals. Note that all the points remained
in the lower left part of these images correspond to
stationary clutter which also satisfied the modified
HOC criterion.
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correlation number.
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Fig. 5(f). Processed image for scans 7-16.

in the subsequent scan. If this happens continuously
then consistent correlations will result. Thus, this
leads to the upper bound on the clutter density
for discrimination which is 1/81 = 1.23%. For the
modified HOC method, however, the results are
dependent on the correlations between the second
and the third consecutive scans. Due to the curvature
constraint, the movement of the target is limited
between these two scans. Thus, the allowable upper
bound on the clutter density is larger in this case as
the actual size of movement window is smaller. For
example, if the curvature contraint is chosen to be
8 = 1f / 4, this window size is 1/4 of the entire velocity
window between the first and the second scans.
Thus, in this case the upper bound on the clutter
density is (1/81) x 4 =4.92%. Clutter densities above
these limits provide consistent correlations which
in turn lead to false tracks in the processed images.
The above analysis may suggest that the maximum
allowable clutter density can always be increased by
decreasing the size of the window or reducing the
curvature constraint. Even though this is true, the
selected curvature constraint may not be acceptable
for a particular class of targets.

To investigate the clutter rejection performance of
the modified HOC method the total number of scans
is assumed to be fixed while the order was varied. Ten
scans of data were used for processing and the order
of HOC was varied from 1 to 4. As can be observed
from the operating chracteristic plots in Fig. 6 the
clutter rejection rate improves rapidly as the order
of the HOC process increases. The improvement in
clutter rejection is especially evident when clutter
density is high. Excellent performance was achieved
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B. Operating Characteristics

The goal of this section is to determine the
operating characteristics of the HOC method as a
function of the clutter density and for different order.
The upper bound on the clutter density for the HOC
method is obviously dependent on the size of the
movement window. The current assumption on the
maximum target movement is 4 which leads to a
window consisting of (4 x 2 + 1)2 = 81 pixels. For
the original HOC method, correlation is produced
when a pixel exists within the movement window
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TABLE II
Clutter Rejection Results

Total MHOC results Track identification
Density number Points Clutter Points Clutter

ofpoints remained rejection remained rejection
0.8% 13330 78 99.56% 21 99.91%

i 1.1% 18280 510 97.55% 39 99.90%i

1.4% 23100 1406 93.99% 29 99.96%
, 1.7% 28300 3578 87.42% 123 99.64%
i 2.0% 33080 8139 75.44% 578 98.31%
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when fourth order correlation was used. Nevertheless,
the price one pays for this performance improvement
is the increased chance of misdetection due to missing
target points [l].

'50

'..
52

104 1&1 208 210 J12 J64 .16 46B 520

.L-..l.-_-'-_-L_-L_--l_.--l_.,....-L-_..l.-_-'-_~

•C. Multiple Target Track Identification Results

In this section simulations are performed on
several images with different clutter densities. The
tracks were identified using the procedures described
in Section III and scores were calculated for each
track individually by averaging all the point scores.
In the scoring process, the relevant parameters in
(8) and (9) were chosen to be Al =9, A2 =2.12,
0.1 = 1/3, and 0.2 = 2. A threshold for rejecting
tracks with lower scores was then chosen empirically
to be 2.5. Table II shows the clutter rejection
performance for different clutter densities. The first
column of this table indicates the clutter densities.
The numbers in the second column are the total
number of points in the entire image (target as well
as clutter points) before the processing. The total

Fig. 9. Processed image of Fig. 7 using track identification.

number of points that remained in the images after
the processing by the modified HOC method and
the track identification process of Section III are
shown in columns three and five, respectively. Since
all the target information is retained, these numbers
include 20 points corresponding to the two tracks each
ten-point long. The corresponding clutter rejection
rates are given in columns four and six, respectively.
The improvement in the clutter rejection rates is
clearly evident when the modified HOC is used
in conjunction with the new track identification
scheme.
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i Total MHOC results Track identification
I Density number Points Clutter Points Clutter
I

of points remained rejection remained rejectioni
, 0.8% 319 39 96.88% 31 99.66%
! 1.4% 537 77 90.73% 34 99.21%
i 2.0% 738 181 78.67% 48 97,46%

Fig. II. Processed image of Fig. 10 after modified HOC.

To show the usefulness of the track identification
process for detection and identification of multiple
close target tracks which might be crossing or splitting
and also to demonstrate the potential application of
this method for data association and tracking, three
target tracks were synthetically created in 60 x 60
size images. Background clutter with three different
densities was also generated. For each clutter density,
six images were generated in which the target tracks
were positioned and initialized randomly. This means
that the relative positions of the tracks were changed
by random translation and rotation operations to
generate closely spaced, crossing or splitting tracks.
For each event ten scans of the data were used.
The original 3-D images for six events with clutter
density of 1.4% are shown in Fig. 13. Both the
modified HOC method and the modified HOC with
track identification scheme were used and the clutter
rejection results are tabulated in Table III.

The first column in this table gives the density
of clutter. The second column shows the average
(averaged based on six cases) total number of points
in the original images for the specific density case.
Columns 3 and 5, respectively, show the average
number of points remained in the resultant images
after the modified HOC and track identification
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The original and processed images for selected
clutter densities of 1.1% and 2.0% are shown in Figs.
7-12. Note that the clutter density is defined in terms
of the number of points in the movement window as
in Section IVB. There are two target tracks in these
images. One is located around coordinate (l04,312)
and the other one is located around (468,156). They
can clearly be seen in Fig. 9. The result in Fig. 12
indicates a large number of false tracks as the clutter
density is very high in this case. Nevertheless, the
significant improvements in the results of the track
identification process can still be observed.
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Fig. 13. Six multitarget events with density 1.4%.

processes. The corresponding percentages for clutter
rejection in columns 4 and 6 are arrived at taking
into account that there are 3 target tracks each 10
scans long in each image. For example for the last
row in the table when track identification is used the
clutter rejection is 100 x (708 - 18)/708% = 97.46%.
Note that no target point is lost as a result of our
processing.

The actual processed images for the events with
density 1.4% after track identification process are
shown in Fig. 14. In these images, the associated
scan numbers are marked for subsequent data

association and tracking purposes. The results of track
identification are significantly better than those of the
modified HOC process. Using this track identification
in conjunction with the track-oriented scoring process,
close, splitting and/or crossing target tracks can be
identified even in a very dense background clutter.

V. CONCLUSIONS

In this paper the modified HOC scheme was
extended in order to perform track identification
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Fig. 14. Processed image of Fig. 14 after track identification.

and data association on multiple target tracks in a
heavily cluttered environment. A scoring process was
proposed in order to effectively discriminate target
tracks with low scores particularly when the clutter
density was high. A new track identification process
was also developed, based on the properties of the
modified HOC, which cannot only be used as an
effective tool for detecting and identifying very close,
crossing or splitting tracks but also can be of great
use as the first step for data association and tracking
purposes. The new scoring process was then used
in conjunction with the track identification scheme

to further improve the discrimination capability
of the modified HOC method especially when
multiple close, splitting and/or crossing tracks are
encountered. Simulation results indicated the potential
applications of the modified HOC and the new
track identification processes in different operating
scenarios. These include continuous mode operation
for on-line implementation, operating characteristics
under various clutter density and for different system
parameters, and detection and identification of
multiple close, splitting and/or crossing tracks in
heavy clutter. In addition, it was shown that the
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modified HOC process can easily be applied to detect
targets that initiate and terminate at any arbitrary scan
number.

Some of the unique features of the proposed
schemes in this work are as follows.

1) No a priori information pertaining to the
target and/or clutter is required. These include initial
conditions, target speed, number of targets in the
scene, and statistics of clutter.

2) The process can detect any number of target
tracks which can be very close, crossing or splitting
without increasing the computational complexity of
the algorithm.

3) The detection process can be performed
continuously and in one step with no additional
processing, e.g. track initialization.

4) The algorithm is simple in structure and
can easily be implemented in a parallel processing
environment.

APPENDIX A

PROOF OF PROPOSITION 1 We begin by assuming
that at scan tn' the target is located at (xn,Yn). Using
(2) all the target positions (xn,yn,tn) can now be
expressed in terms of the initial target location (x I'YI)
with various shifts in the spatial domain, i.e.,

F(xz,Yz,tz) =g Ltv jtvF(x 1+ il'YI + jl'tz) }

F(X3'Y3,t3) =g {itv jtvF(xz + iz'yz + jZ'!3) }

{

V v v v
=g LLLL

;2=-V h=-vi1=-vh =-v

(11)

The method of induction is used in the sequel. For
k = 1, using (11) in (5) yields

y(l)(xn,Yn,tn)

=g [F(Xn,Yn,tn)00F(xn + il'Yn + il,tn+ l)
'I Jt

x 00F(xn + t. + i2,Yn + i. + h,tn+ 2)]
'2 J2

= F(xn'Yn,tn)F(xn+I,Yn+l,tn+l)

x F(xn+2'Yn+2,tn+2)'

Note that y(O)(xn,yn,tn) = F(xn,yn,tn)' Now we assume
that the result holds for order k - 1, we will then
prove that it is also valid for order k. Using (5) we
can write

y(k\Xn,yn,tn)

=g[y(k-l)(X y t )"",,,",y(k-l)(x +i Y +J' t )
n'n'nL......,L-, n n'n n'n+l

in jn

""' ""' y(k-l)( " " )]X~~ -, + I" + 'n+l'Y" + J" + J,,+l't,,+Z
'n+1 In+l

_ y(k-I)( ) ,{"",,,",y(k-I)( , , )-. X",yn,l"g ~~ Xn+l,."y,,+Jn,tn+ 1
In In

(12)

Since it is assumed that (7) is true for order k - 1, we
have

y(k-I)(xn,Yn,tn) =F(xn,Yn,tn)F(xn+I'Yn+l,tn+l)

x ' .. F(xn+2k'Yn+2k,tn+2k-2) = 1.

Also using the extension of (11) for Y at different
scans tn we obtain

LLy(k-I)(Xn + i,», + in,tn+ l)
in in

- y(k-I)(X t)- n+I'Yn+I' n+1

=F(xn + 1'Yn+l ,tn+ 1)F(Xn +2 , Y n +2 ,tn +2 )

X .. ·F(Xn+2k-I'Yn+2k-l,tn+2k-l) = 1

and

_ y(k-I)( )
- Xn+2'Yn+2,tn+2

=F(Xn+2'Yn+2,tn+2)F(xn+3'Yn+3' tn+3)

x ... F(Xn+2k,Yn+2k,tn+2k) =1.
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