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ABSTRACT 
 
 
 

TEMPERATURE SENSITIVITY AS A MICROBIAL TRAIT 
 
 
 
Reaction rates in biological systems are strongly controlled by temperature, yet the 

degree to which temperature sensitivity varies for different enzymes and microorganisms is 

being largely reformulated. The Arrhenius equation is the most commonly used model over the 

last century that predicts reaction rate response with temperature. However, the Arrhenius 

equation does not account for large heat capacities associated with enzymes in biological 

reactions, thus creating significant deviations from predicted reaction rates. A relatively new 

model, Macromolecular Rate Theory (MMRT), modifies the Arrhenius equation by accounting 

for the temperature dependence of these large heat capacities found in biological reactions. Using 

the MMRT model I have developed a novel framework to assess temperature sensitivity as a 

biological trait through a series of experiments. This work provides evidence that microbes and 

enzymes can have distinct heat capacities, and thus distinct temperature sensitivities, 

independent of their external environment. I first assessed temperature sensitivity of soil CO2 

production from different soil microbial communities and then worked with pure cultures to 

examine temperature sensitivity of enzyme activities from soil microbial isolates. From these 

experiments I determined that temperature sensitivity varies based on genetic variation of the 

microbe and substrate type as well as examined the importance of using MMRT over the 

Arrhenius equation. Finally, I used a meta-analysis to analyze the distribution of temperature 

sensitivity traits to look across a variety of biological systems (e.g., the food industry, wastewater 

treatment, soils). I found that temperature sensitivity traits vary with organism type, 
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environment, process type, and biodiversity. Exploring temperature sensitivity as a trait allows 

for new insights of soil microbes from an ecological perspective as well has the potential to 

inform ecosystem climate models.  
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Chapter 1: Introduction 
 
 
 

The Arrhenius equation has been around for over a century and is the accepted way of 

modeling how reactions vary with temperature (Laidler, 1984). This equation predicts that 

reaction rates increase exponentially with increases in temperature. Although originally intended 

to describe simple chemical reactions, the Arrhenius equation is applied abundantly to 

biochemical reactions (Sierra, 2012; Schulte, 2015). As most biological reactions are unimodal, a 

consequence of applying this equation in biological settings is that the Arrhenius equation can 

only apply across a particular temperature range, above which it is assumed that denaturation of 

the enzymes cause declines in rate and thus deviance from the Arrhenius equation (Dell et al., 

2011; Pawar et al., 2016). However many studies have noted that declines in reaction rates are 

within temperature ranges where enzyme denaturation is unlikely to occur (Ratkowsky et al., 

2005; Knies and Kingsolver, 2010; Schipper et al., 2014; Pawar et al., 2016).  

A relatively new model, Macromolecular Rate Theory (MMRT), explain this decline in 

rate as a function of the large heat capacities associated with enzyme-catalyzed reactions (Hobbs 

et al., 2013; Arcus and Pudney, 2015; Arcus et al., 2016). So, while the Arrhenius definition of 

temperature sensitivity is strictly a function of reaction thermodynamics, MMRT suggests that 

enzyme properties can also impact temperature response curves.  Hobbs et al. (2013) show that 

minor mutations to an enzyme can change the heat capacity of the reaction, and thus significantly 

change the temperature dependence of the enzyme-catalyzed rate, in the absence of any enzyme 

denaturation. Thus, different isoenzymes may respond to temperature differently. Like the 

Arrhenius equation, MMRT has the potential to be applied not only to specific chemical or 

biochemical reactions, but also to whole organismal or community functions (e.g., growth rate or 
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respiration rate) as a measure of temperature sensitivity (Knies and Kingsolver, 2010), providing 

critical information about thermal performance of organisms (Schulte, 2015).  

Soils are particularly pertinent in this discussion of temperature sensitivity. Soil microbial 

communities produce an immense amount of carbon dioxide and other greenhouse gases 

(Falkowski et al., 2000; Canfield et al., 2010; Conant et al., 2011; Lu et al., 2013). Small 

variations in microbial community composition and how they respond to environmental change 

may have enormous impacts for carbon and nitrogen budgets and subsequently global warming 

(Bradford, 2013; Karhu et al., 2014). Because biological reaction rates are fundamentally 

controlled by temperature, small changes in surface temperatures may significantly alter rates of 

greenhouse gas emissions as well as rates of nutrient cycling in soils (Crowther et al., 2016). 

Thus, using the best model to predict the response of soil microbes to changes in temperature is 

critical. Another facet of this inquiry is if different microbes and enzymes will have dissimilar 

temperature responses, convoluting our predictions. Although many studies support the notion 

that different microbes have dissimilar growth curves at different temperatures (Ratkowsky et al., 

1982; Huang et al., 2011; Martiny et al., 2016), in the soils literature, differences in temperature 

sensitivity between different communities is predominantly attributed to differences in substrate 

and other abiotic characteristics (Conant et al., 2008; Haddix et al., 2011), and assumes that the 

importance of the microbes themselves in determining temperature sensitivity of a soil system to 

be static.  

The objective of my dissertation is to improve understanding of temperature sensitivity of 

microbial communities. I address two major questions: 1) how does the activity of soil microbes 

vary with temperature? And 2) how should temperature sensitivity be characterized? I developed 

a novel framework to examine temperature sensitivity as a biological trait. I first identified that 
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soil microbial communities and microbial isolates do have distinct temperature sensitivities 

independent of their environment through two experiments (carbon dioxide flux of whole soil 

communities and enzyme assays of soil microbial isolates) that are better characterized by 

MMRT than by the Arrhenius equation. I then developed a temperature sensitivity framework 

introducing the concept of temperature sensitivity as a biological trait and characterized the 

distributions of those traits using a meta-analysis.  
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Chapter 2: Temperature sensitivity of soil microbial communities: an application of 

macromolecular rate theory to microbial respiration1 

 

Introduction 

Heterotrophic soil respiration rates are one of the greatest sources of uncertainty in our 

current understanding of the earth’s climate system (Mukhortova et al., 2015). While soil 

respiration rates are primarily driven by substrate availability, temperature, and moisture, 

roughly 30% of observed variation cannot be explained by these factors (Ayres et al., 2009; 

Cleveland et al., 2014; Keiser et al., 2013; Strickland et al., 2015). Microbial community 

composition sometimes explains part of this variation in rates of soil respiration (Cleveland et al., 

2014; Strickland et al., 2009), indicating that differences in microbial physiology and kinetics 

among microbial communities may be important mediators of carbon (C)-climate feedbacks. For 

example, the extracellular enzyme produced by microbes to decompose C-rich organic matter 

can vary in their temperature sensitivity (Subke et al., 2006), resulting in different respiration 

kinetics among sites. 

The thermal sensitivity of heterotrophic soil respiration rates can vary substantially 

among microbial communities due to thermal adaptation, changes in carbon use efficiency 

(CUE) (Frey et al., 2013; Steinweg et al., 2008), accelerated enzyme kinetics, and increased 

turnover (Bradford, 2013; Bradford et al., 2008). However, few studies have attempted to 

attribute variations in the temperature sensitivity of soil organic matter decomposition to 

variation in the physiology of soil microbial communities (Balser and Wixon, 2009). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Alster, C.J., Koyama, A., Johnson, N.G., Wallenstein, M.D., and von Fischer, J.C. (2016). 
Temperature sensitivity of soil microbial communities: An application of macromolecular 
rate theory to microbial respiration. Journal of Geophysical Research-Biogeosciences 
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Understanding if microbial communities have unique/differing temperature sensitivities, 

independent of the soil or soil organic matter, that impact rates of heterotrophic soil respiration is 

important not only for fundamental understanding of microbial enzyme dynamics, but also may 

have implications for global C modeling as small changes in respiration rates can correspond to 

major shifts in atmospheric CO2 concentrations (Riley, 2015). 

Most models predicting temperature sensitivity of microbial respiration rely on a version 

of the Arrhenius equation. This model predicts an exponential increase in reaction rate with 

temperature, but does not include mechanisms that might cause enzymatically-driven non-

linearities with temperature (e.g., a temperature optimum before enzyme denaturation). 

However, numerous observations from both field and experimental studies indicate a 

temperature optimum of both soil enzymes and of soil microbial functions, such as respiration 

and nitrification, that happens at significantly lower temperatures than would be expected for 

enzyme denaturation (see Schipper et al. 2014). These optima often occur within a normal range 

of temperatures found in situ and contradict the reaction rate response predicted in the Arrhenius 

equation. A new model proposed by Hobbs et al. [2013] called Macromolecular Rate Theory 

(MMRT) explains this observed decline in rate that appears before true denaturation as a 

consequence of the change in the heat capacity (ΔCP
‡) of the enzyme; heat capacity is the 

amount of thermal energy added (measured in Joules) that causes the temperature of the system 

to increase by 1°C. We hypothesize that, because different microbial communities may produce 

different isoenzymes (enzymes with different structures, but similar functions, (Wallenstein et 

al., 2011), communities differ in their temperature response because the various isoenzymes may 

have different ΔCP
‡ values. While there are several semi-empirical theories that attempt to 

explain this nonlinear fit (Corkrey et al., 2014; Daniel and Danson, 2013; Del Grosso et al., 
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2005; Peterson et al., 2004), MMRT provides theoretical justification for declines in temperature 

sensitivity as temperature increases, and has been shown to fit soil respiration data well 

(Schipper et al., 2014).  

Our focus here is on an emerging and little addressed question: how important are differences 

in the microbial community for determining the temperature sensitivity of microbial respiration? 

This question falls under the more general realm of microbial community effects on 

decomposition dynamics. Here, we aim to 1) evaluate the relative importance of the source 

microbial community on individual components of soil microbial respiration, and 2) estimate the 

temperature sensitivity of different microbial communities. Our approach uses a reciprocal 

transplant design to measure rates of soil microbial respiration over time in microcosms at 

different temperatures. By setting up the experiment as a reciprocal transplant, we were able to 

isolate the effects of the microbial community from those of the soil and temperature. A 

complicating factor is that soil microbes draw upon disparate pools of soil organic C (SOC) that 

vary in size and reactivity (Davidson and Janssens, 2006; Haddix et al., 2011). To quantitatively 

account for this effect, we interpret our results in light of a two-pool model, divided into a labile 

and recalcitrant C pool. Unlike similar studies conducted by Strickland et al. (2009) and 

Cleveland et al. (2014) that examine the relative importance of microbial communities on soil 

respiration as a whole, we attempt to discern which aspects of heterotrophic soil respiration and 

temperature sensitivity are explained by differences in the microbial community. To calculate the 

temperature sensitivity of the different communities, we compared predictions of the Arrhenius 

and MMRT equations to find which was more consistent with our data. It should also be noted 

that this is also the first independent test of MMRT. We anticipate that understanding the relative 

importance of different microbial communities in predicting rates of soil respiration and how 
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changes in temperature could impact microbial communities and thus cause variation in rate of 

respiration is of fundamental and applied ecological importance.  

 

Materials and Methods 

Study Sites and Field Sampling 

We collected soil from plots on three grassland sites that fall along a climatic gradient 

across the US Great Plains: Makoce Washte Prairie (MA) in South Dakota (43º32'N, 96º58'W); 

Shortgrass Steppe (SG) in Colorado (40º49'N, 104º43'W); and Sevilleta in New Mexico 

(34º21'N, 106º52'W). We chose these sites primarily because they vary in mean annual 

temperature, although they also differ in mean annual precipitation, vegetation, soil texture, and 

soil C:N (Table 2.1). Soils were sampled as cores 5 cm in diameter and 10 cm deep and were 

shipped overnight to Colorado State University. Upon receipt, the cores were homogenized and 

passed through a 2-mm sieve, then stored at 4°C until processing. 

 

Reciprocal Transplant Incubation 

We established a reciprocal transplant microcosm experiment in order to assess the 

relative importance of soil type, temperature, and source inocula on soil microbial respiration. 

We added 5 g (dry weight) of field-moist soil from each site to 60 mL glass vials and added 

water so that the soils were at 50% water holding capacity (WHC). After being covered with 

aluminum foil, the vials were autoclaved for 90 minutes at 121°C to sterilize the soil. We 

measured soil respiration rates after autoclaving to test for sterility and found that CO2 

production rates were below detection limits. To create the microbial inocula slurry, 4 g of 

unsterilized soil from each site was incubated at 10°C for 14.5 hours to acclimate the community 
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from the colder refrigerator temperature. We then added 45 mL of sterile DI water to each 

incubated soil and stirred for 2 minutes, followed by a 10 minutes settling period. This last step 

of stirring and settling was repeated and the supernatant was passed through a 1 mm mesh sieve 

to remove large organic debris, aggregates, and particulates from the inoculum (van de Voorde et 

al., 2012). We recognize that the water-extracted inocula may not be a representative sample of 

the in situ communities, but consider it a safe assumption that inocula from the different study 

sites contain different communities. Previous work in our laboratory has shown stark differences 

in methane-consuming microbial community composition at the 3 study sites (Johnson et al., 

2014). 

We then inoculated the microcosms by adding 0.25 mL of the inocula slurry to vials of 

sterilized soil, following our reciprocal transplant design. For example, inoculum slurry that 

originated from the MA site was added back to the sterilized MA soil, the sterilized SG soil, and 

the sterilized SV soil. This was done for each of the inoculum types onto each of the soil types, 

for a total of nine site × inocula combinations. Additional sterilized DI water was added to each 

microcosm to replace water lost during autoclaving. Afterwards, we incubated the microcosms 

containing the soil-inocula mixtures at 10, 20, and 30°C, for a total of 27 site × inocula × 

temperature combinations. Each set of the site × inocula × temperature combinations contained 6 

replicates for a total of 162 microcosms in the experiment. Eighteen control microcosms for each 

soil type, with no microbial inocula added, were also created (6 for each soil type at each 

temperature) to check for contamination over the course of the incubation.  

Rates of CO2 production were measured at seven time points throughout the experiment 

(days 6, 16, 27, 37, 59, 89, and 124) through injections of 3 mL of the headspace gas from the 

vials into a continuously following stream of sample air into a Los Gatos DLT-100 
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Methane/Carbon Dioxide Analyzer using an autosampler. The resulting peak of CO2 from the 

injections was measured and calibrated against known standards to estimate the concentration of 

CO2 in each the vial. Vials were capped and sampled for an initial CO2 concentration and then 

resampled four days later for a second CO2 concentration measurement. We calculated rates of 

CO2 production from these two time points. Respiration rates were not measured until day 6 to 

allow for acclimation of the microbes to the environmental conditions and for biomass to reach 

stable levels. Throughout the experiment the control vials produced CO2 at rates 1-3 orders of 

magnitude lower than the experimental vials, although by the last month of the experiment, two 

of the 54 control vials produced CO2 at rates closer to those of the sample vials. Therefore, 

although contamination was possible there is not evidence that it was a dominant factor driving 

variation throughout the experiment.   

In between sampling dates, the vials were uncapped and covered with a thin polyethylene 

film (12.5 µm thick) to allow oxygen to enter the microcosms and to limit evaporation or 

movement of microbes, and additional sterile DI water was periodically added to maintain vials 

at 50% WHC. 

 

Data Analysis: Two-Pool Model 

It has long been recognized that temporal patterns in rates of soil respiration can be 

modeled as microbial consumption of organic matter pools that span from more quickly to more 

slowly depleted (e.g., Parton et al. (1980)). For the 124-day timescale of this experiment, 

quantifying this effect was important because recalcitrant versus labile organic matter pools can 

be differently temperature sensitive (Davidson and Janssens, 2006). To characterize this effect, 

we applied a two-pool model, assuming that CO2 production from the more rapidly depleted 
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(hereafter “labile”) pool could be modeled as a first-order process, while respiration dependent 

on the slower pool (“recalcitrant”) could be treated as constant over time (Figure 2.1a). Equation 

1 is the predicted microcosm CO2 production rate over time. [Parton et al., 1993] 

 

 !"#$%&'(%)*(!) = !!!!!!" + !, (1) 

 

where L0 is the initial size of the labile C pool, k is the first order CO2 production rate from the 

labile pool, R is the asymptotic rate of respiration, and t is time. In this model, a large value of L0 

would indicate a large initial labile C pool, a large R would indicate higher rates of respiration 

from the recalcitrant C pool, and a large k would indicate faster depletion of the labile C pool. An 

idealized temporal pattern is illustrated in Figure 2.1b.  

 To emphasize the importance of using Equation 1 in our analysis we illustrate in Figure 

2.2 how the percent of respiration derived from the labile C pool changes over time among 

temperature treatments. This figure, which is developed from mean parameter values from a 

sample combination in this experiment (MA soil with SG inocula), illustrates the intuitive result 

that labile pools are more quickly depleted at warmer temperatures. If we had simply fit a 

temperature model (either MMRT or Arrhenius) to the respiration rate at some time point, Figure 

2.2 shows that the respiration rates would also differ due to varying depletion of the labile pool. 

Thus, use of Equation 1 allows us to avoid this potentially confounding bias. 

Parameter values L0, k, and R were determined for each microcosm vial using JMP Pro 

11 using an analytic Gauss-Newton solution to the non-linear model. We then assessed the 

relative importance of temperature, site, and microbial community for explaining variation in L0, 

R, and k. We used Grubbs’ test for outliers to remove anomalous parameter values from the data 
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set using the package outliers (Komsta, 2011) in R (R 3.1.1 GUI 1.65). Each parameter was 

examined using a linear model with a full factorial design (temperature, soil source, inoculum, 

and their interactions) and tested with an ANOVA using the package lmerTest (Kuznetsova et 

al., 2014) to determine which effects were significant, and to quantify the explanatory power 

from the sum-of-squares (SS) statistic. We also used the parameter values to integrate for the 

cumulative C respired from each vial over the course of incubation and then conducted another 

ANOVA with a full factorial design to determine significance of effects and their SS for the 

percent of the total C respired from initial SOC in each vial.  

 

Comparison of Temperature Models 

We used the k parameter values to estimate the activation energy and the heat capacity 

(temperature sensitivity) for each site × inocula combination. Activation energy was estimated 

using the Arrhenius equation: 

 

  ln ! = ln ! − !!
!", (2) 

 

where k is the rate constant, A is a pre-exponential factor, EA is the activation energy, R is the 

universal gas constant, and T is temperature. The Arrhenius model assumes that activation 

energy is a barrier to the rate of the reaction, such that reactions with greater activation energies 

are more temperature sensitive (Davidson and Janssens, 2006). However, the Arrhenius equation 

assumes that the rate of reaction increases exponentially with temperature. Empirical 

observations of declines in rate as temperature increases, which by definition do not correlate 

with Arrhenius predictions, are attributed to enzyme denaturation.  
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We also examined the explanatory power of MMRT (Hobbs et al., 2013; Schipper et al., 

2014), which incorporates additional principles from physical chemistry; that is, enzyme activity 

has a parabolic response to temperature, due in part to the heat capacity of the enzyme (CP) 

(Arcus et al., 2016). The CP of the system is simply the temperature dependence of enthalpy (H) 

of the system. Unlike in reactions with small molecules where the temperature dependence of 

Gibbs Free Energy (ΔG‡) can be assumed to be negligible, biological reactions involve enzymes, 

which are relatively large and thus have large ΔCP
‡ values making ΔG‡ a function of 

temperature, allowing for an inaccurate estimate of EA (Hobbs et al., 2013). The MMRT equation 

is: 

 
 ln ! = ln !!!

! − ∆!!!
‡ !∆!!‡ !!!!

!"  + ∆!!!
‡ !∆!!‡ !"!!!"!!

! , 
(3) 

 

where kB is Boltzmann’s constant, h is Planck’s constant, R is the universal gas constant, T is 

temperature, S is entropy, and ‡ indicates that it is the transition state. When ΔCP
‡ is large and 

negative, the temperature response will deviate significantly from what is predicted in the 

Arrhenius equation, but when ΔCP
‡ is zero, the temperature response will follow the predicted 

Arrhenius temperature response. Both EA and ΔCP
‡ were determined by fitting these equations to 

the site × inocula combinations in JMP Pro 11 using an analytic Gauss-Newton solution and a 

numerical Gauss-Newton solution to the linear and non-linear models, respectively. Following 

Hobbs et al. (2013), the T0 value in the MMRT model was set to approximately 10º below 

average temperature at the maximum rate. Adjusted R2 values for each of the Arrhenius and 

MMRT models were calculated in Excel. We compared Arrhenius and MMRT model fits using 

Akaike Information Criterion values corrected for a finite sample size (AICc). We calculated the 

differences between the ΔCP
‡ values using a two-sampled approximate Z-test. In order to 
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calculate the point of maximum temperature sensitivity (TSmax) and temperature optima (Topt) of 

the MMRT equation, we took the derivative with respect to temperature (dk/dT). The point of 

maximum temperature sensitivity occurs at the peak of the parabola, where variation in 

temperature has the largest effect on reaction rate, and the temperature optima occurs when 

dk/dT is zero, at the temperature where the reaction rate is at its maximum. For the Arrhenius 

equation, temperature sensitivity rises exponentially with temperature, thus there is no Topt and 

TSmax. 

 

Results 

Exponential Decay Model 

Our exponential decay model for respiration rates over time (Equation 1) gave a strong fit 

for the overwhelming majority of the CO2 production data from each of the microcosms. The 

median R2 value for the model fit was 0.988, with a range of 0.934 to 1. One vial was excluded 

from analyses due to a high CO2 flux at the last time point, and 23 out of the 161 vials analyzed 

had a single data point excluded, usually because the first CO2 production rate was lower than 

subsequent measurements. Example respiration data with corresponding fits are given in Figure 

2.3. It should be noted that the majority of the cases (19 out of 22) where the first time point was 

excluded was at the lowest temperature (10°C) and in 12 of these cases, contained the SV-

derived inocula.  

The range of estimates for each of the three parameters, k, L0, and R, varied considerably 

(Table 2.2). Parameter k, which corresponds to the rate that the labile C pool is depleted, ranged 

from 0.230 day-1 in SV soil with MA-derived inocula at 30°C to 0.007 day-1 in MA soil with SV- 

derived inocula at 10°C. Parameter L0, corresponding to the initial labile C pool, also varied two 
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orders of magnitude, from 12.0 mg CO2-C g soil C-1 in SG soil with SG- derived inocula at 30°C 

to 0.377 mg CO2-C g soil C-1 in SV soil with MA- derived inocula at 10°C. Lastly parameter R, 

the asymptotic rate of CO2 production, varied less than the other two parameters and ranged from 

0.655 mg CO2-C g soil C-1 day-1 in SG soil with SG- derived inocula at 30°C to 0.008 mg CO2-C 

g soil C-1 day-1 in MA soil with MA- derived inocula at 10°C. 

 

Sums of Squares Analysis for k, L0, and R 

In examining the relative explanatory power for k, L0, and R, we found that all three of 

these response variables were well explained, with overall R2 values of 0.635, 0.868, and 0.936, 

respectively. We found that temperature was the most important factor in explaining variation in 

k, but that additional important predictors exist as well. To compare the relative explanatory 

power of temperature, soil type, and inocula type, we calculated a combined contribution of each 

factor. For example, we computed the importance of temperature as the individual sum of 

squares (SS) contribution for temperature (i.e., just the SS for the main effect of temperature) 

plus SS for all interactions where temperature is present (i.e., the main effect of temperature plus 

the two-way interactions and three-way interaction of temperature with inocula and soil). Thus, 

while temperature is the most important factor explaining variation in k, we found that inocula 

type is nearly as important as soil type in explaining variation in k according to the combined SS 

results for inocula (Figures 2.4a and 2.4b). Because two-way and three-way interactions 

dominate in explaining variation in k, the total explanatory power of inocula in determining the 

rate of CO2 flux in this experiment was 32%. Variation in L0 is best explained by temperature, 

followed by soil type, although several higher order interactions are also significant (Figures 2.4c 

and 2.4d). Lastly, both the individual SS and combined SS analysis for R indicate that 
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temperature and soil type are most important and explain roughly equal amounts of variation in 

R, although inocula type and two two-way interactions are also significant (Figures 2.4e and 

2.4f). Interestingly, the combined SS analysis for inocula type for L0 and R were relatively small 

at 6.4% and 6.1%, respectively. 

 

Cumulative C Respired 

In addition to comparing the relative importance of temperature, soil type, and inocula 

type for parameters k, L0, and R, we also examined the relative significance of each of these 

factors for the cumulative C respired. Although investigating each of the effects of temperature, 

soil type, and inocula type on aspects of soil microbial respiration separately provides greater 

resolution, we conducted this additional analysis in order to compare our results to similar 

studies as well as to assess the relationship between each of the parameters and total C respired. 

In our calculations, cumulative C respired is presented as a percentage of the total soil C. On 

average, 5.2% of soil C was respired away during the 124-day incubation (range 1.3% to 14%).  

This fraction was highest for SG soil with SG-derived inocula at 30°C and lowest for SV soil 

with SV-derived inocula at 10°C. The majority of variation in the cumulative C respired can be 

explained by soil type (55%), followed by temperature (40%) (data not shown). All of the 

inocula terms from the combined SS analysis explain less than 1.5% of the variation in C 

respired. The largest percent of C respired came from the incubations with the SG soil type with 

an average of 12% at the 30°C to an average of 5.0% at the 10°C (P<0.001). SV soil type had the 

smallest percent of C respired with an average of 3.9% at the 30°C to an average of 1.5% at the 

10°C (P <0.001). 
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Arrhenius Versus MMRT Models Fits 

Arrhenius and MMRT model fits to data can be evaluated on two criteria: do they give 

thermodynamically plausible results and does one model give a statistically superior fit as 

compared to the other. The Arrhenius equation predicted thermodynamically plausible results for 

all nine soil × inocula combinations (Figure 2.5), but MMRT predicted thermodynamically 

plausible results for only six of the nine combinations. Concave up curve fits occur under the 

thermodynamically impossible situation when the model fit yields a positive value for ΔCP
‡.  

When both models provided plausible fits to the data, MMRT was statistically superior to 

Arrhenius in all six combinations. AICc statistics found the most parsimonious model to be 

MMRT, with all probabilities ranging from 0.942 to 1. Our experiment utilized only three unique 

temperature points (note: each point was replicated). However, since our model comparisons 

were based on AICc, which penalizes model fit using the number of parameters in the model, we 

can conclusively state that MMRT was superior to Arrhenius in the six soil × inocula 

combinations tested. Thus, heat capacity values derived from successful MMRT model fits were 

chosen for further analysis.  

 

Variation in the MMRT Model 

Heat capacity values, derived from the MMRT equation, varied among soil × inoculum 

combinations (Figure 2.6a). Values were least negative for the MA-derived inoculum in the SG 

soil, and most negative for two of the SV-derived inocula. When averaging the ΔCP
‡ of inocula 

across soils (Figure 2.6b), we found that the MA-derived microbial community has a heat 

capacity value that is significantly smaller in magnitude than SG or SV-derived microbial 

communities (P<0.0001). Following Figure 2.5 from Schipper et al. (2014), we also plotted 
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dk/dT as a function of temperature to illustrate the sensitivity of reaction rate (k) changes to 

variation in temperature (Figure 2.7), and to understand variation in ΔCP
‡ at a more intuitive 

level. We found that Topt ranged from 19.5°C to 37.2°C and TSmax ranged from 9.1°C to 15.4°C 

with the high Topt and TSmax occurring in the SG soil with MA inocula and the low Topt occurring 

in the SG soil with SV inocula, but the low TSmax occurring in the MA soil with SV inocula.  

 

Discussion 

Soil respiration comprises between 50-80% of total ecosystem respiration (Bradford and 

Ryan, 2008) with microbial respiration contributing an average of 54% annually to that total 

(Ryan and Law, 2005), yet much is still unknown about the key roles and mechanisms that 

differences in the microbial community play in global C cycling and how much it is impacted by 

changes in temperature. While the framework of Arrhenius kinetics underlies most current 

models of soil C, many studies have pointed out the need for increased sophistication for 

modeling temperature sensitivity of soil C stocks (Conant et al., 2008; Davidson and Janssens, 

2006; Liang et al., 2014; Sierra et al., 2015). Our study provides new insights into the 

temperature sensitivity of soil microbial respiration and reaffirms the need for improved model 

representation of this process.  

Although a few studies have noted moderate explanatory power of the microbial 

community in predicting rates of microbial respiration from soil and litter (e.g., Balser and 

Firestone (2005), Cleveland et al. (2014)), here we show that differences in temperature 

sensitivity of the microbial community are most pronounced in the rate that labile C pools are 

depleted (parameter k), and that temperature sensitivity varies with different soil × microbial 
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community combinations. Furthermore we find that the MMRT model is better than Arrhenius at 

explaining temperature sensitivity of microbial communities. (Balse 

r &  Firestone,  

Importance of the Microbial Inocula 

The importance of microbial community composition for predicting rates of CO2 flux 

from soils is not well established. The few studies to date have focused on microbial respiration 

from litter and have not elucidated the components of respiration where differences in microbial 

community composition may have an effect (e.g., Strickland et al. (2009), Cleveland et al. 

(2014)). Temporal trends in soil respiration are complex and emergent features of soils that we 

characterized using a three-parameter equation (i.e., Equation 1). Although we found statistically 

significant effects of the microbial inocula for all parameters, only in k, the rate that the labile C 

pool is depleted, did the microbial inocula explain a large proportion of the variation. As 

illustrated in Figure 2.4b, the microbial inoculum was almost as important as soil type for 

explaining variance in k. Our experimental design did not allow us to determine the mechanisms 

for why the microbial inoculum type notably influenced variation in k (Figure 2.4b), while not 

strongly influencing variation in L0 and R. One possible explanation for the insensitivity of L0 to 

different microbial inocula is that it truly represents the size of the labile SOC pool, and this 

property is invariant with differences in the microbial community. Similarly it appears that the 

microbial inocula was also not an important determinant of R, the combined size and reactivity 

of the recalcitrant SOC pool, over the time scales of our experiment (Davidson and Janssens, 

2006; Townsend et al., 1997). However for both L0 and R, temperature was highly important and 

did drive increases in L0, R, and cumulative C respired. Interestingly, this suggests that microbes 

perceive a larger pool of C at warmer temperatures and that temperature has a direct effect on 
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how much the microbial community perceives as available C, perhaps due to increased microbial 

activity and kinetics at the warmers temperatures.   

Microbial inoculum type and its interactions with temperature and soil type may cause 

variation in k for a number of reasons such as differences in microbial biomass, CUE, genetic 

suite of enzyme production, and microbial physiology. Changes in microbial biomass over time 

could lead to changes in rate of respiration because a larger number of microbes could result in a 

larger value of k (Huang et al., 2015). However, it is unlikely that changes in biomass were the 

driving factor for variation in k because of the following observations. In 84% of the cases, there 

was a monotonic decline in respiration rate over time, suggesting that the incubation was 

immediately substrate limited. In the few instances where the second respiration rate time point 

(i.e., 16 days) was higher than the first, we infer that microbial biomass, as opposed to substrate, 

was the rate-limiting factor during the first 6 days of the incubation. Once respiration rates began 

to decline, which in most cases was immediately, we can assume that the microbial biomass had 

reached a maximum, and so variation in k was attributable to differences between communities. 

Independent of microbial biomass, k may also vary due to differences among 

communities in CUE. CUE manifests as the interaction between specific inocula and organic 

matter quality at a particular temperature (Frey et al., 2013; Steinweg et al., 2008) and can be a 

function of both the community’s ability to find and access physically protected substrates and 

the chemical suitability of the enzyme produced for the particular substrate (Cotrufo et al., 2013; 

Six et al., 2006). Microbial growth rates generally increase with increasing CUE (Sinsabaugh et 

al., 2013). Thus, when microbes are in an environment where their enzymes are more efficient at 

processing the dominant substrates, it is possible that they would exhibit a lower rate of 

respiration, and consequently a lower relative k. Over time, shifts in microbial community 
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composition to favor organisms that produce more suitable enzymes may cause an increase in 

efficiency (Allison, 2014), lowering respiration rates and impacting the overall value of k. 

However, the ability of the community to adapt throughout the course of the experiment may be 

confounded by insufficient genetic variation in the seed inoculum community (Aguilar et al., 

2013) or by nutrient depletion (Sinsabaugh et al., 2013).  

Along with differences in microbial CUE, other aspects of microbial physiology likely 

play an important role in predicting parameter k. Changes throughout the course of the 

incubation experiment, such as adaptation of the microbial inocula to the incubation 

temperatures and depletion of labile substrates, might affect the physiological state of microbial 

communities by changing their level of activity and consequently affecting their rate of 

respiration over time. Some of these changes in physiology could include shifts from the 

dormant state to active state or vice versa, increased metabolic costs with sustained warming, and 

energy spilling (Allison et al., 2010; Bradford, 2013; Curiel Yuste et al., 2007; Stenström et al., 

2001). While our experiment was relatively short, 124 days, microbial communities have short 

generation times resulting in many generations throughout the course of the experiment and 

allowing for some level of adaptation at both the organismal and community scale. 

Understanding which, if any, of these mechanisms explain variation in k is certainly worth 

further inquiry in order to better predict how differences in microbial communities will influence 

soil CO2 production.  

 

Scope of Model Inference  

We recognize that features of our laboratory incubations may limit extrapolation back to 

field conditions. In natural field sites, the sources of labile C are likely to vary widely and 
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include litter inputs, root exudates, dissolved organic C flows, and turnover of microbial 

biomass. In contrast, our experimental system likely has a larger initial pool of necromass than 

field systems because autoclaving of soils produces an abundance of microbial biomass that 

would be available for decomposition, thus leading to a larger value of L0 for the laboratory than 

would be expected for the field. The first order decay constant, k, may differ between field and 

lab if early-phase microbial respiration is limited by factors other than labile C availability, or if 

the community composition in the inoculum differs from that of the natural soils. Likewise, 

sieving and autoclaving of soils likely altered the physical and chemical structures that influence 

rate of respiration from the recalcitrant pool (Berns et al., 2008). Even though autoclaving likely 

changed the relative proportions of the labile and recalcitrant C pools from field conditions, 

changes in the total organic C pool are should be relatively small (Berns et al., 2008; Shaw et al., 

1999).        

Despite the potential for differences between lab and field behaviors, we expect that the 

model described in Equation (1) characterizes structural similarities that are shared between 

natural and field systems. We took advantage of these shared structures to make comparisons of 

respiration patterns (from extracted model parameters) between treatments, even if such 

comparisons cannot be made between the incubations and natural systems. 

 

Heat Capacity Varies with the Microbial Inocula 

Our study is, to our knowledge, the first to observe that different microbial communities 

produce enzymes with different heat capacity values. Larger ΔCP
‡ values indicate more degrees 

of freedom (i.e., an increased physical flexibility) of the enzyme (Hobbs et al., 2013). Increased 

values of ΔCP
‡ lead to significant temperature dependence of ΔG‡, which corresponds to 
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deviations from the Arrhenius equation and is accounted for in the MMRT equation. The 

interaction between ΔCP
‡ and ΔG‡ drives the curvilinearity that we see in Figure 2.5. 

Interestingly, microbial inocula from the same source environment often had similar trends in 

curvature and magnitude in their respiration-temperature response curves (e.g., SV inocula in 

Figure 2.5), independent of the soils in which they were incubated (Figure 2.6b), giving rise to 

similar ΔCP
‡ values. This suggests that different microbial communities produce different 

enzymes that, in turn, respond differently to changes in temperature. Our study is the first to 

show the indirect effect of the microbial community on respiration via a heat capacity effect. 

Previously, studies have shown that microbial communities and their interaction with particular 

OM can directly affect the rate of soil respiration under different temperatures (Frey et al., 2013; 

Karhu et al., 2014). Here, we show that microbial community type also has an indirect effect on 

respiration due to a difference in heat capacity.  

 

Temperature Sensitivity 

As others have previously noted (e.g., Sierra (2012), Liang et al. (2014)), the notion of 

temperature sensitivity is deceptively complex. The comparison of Arrhenius and MMRT model 

fits (this study, and Schipper et al. (2014)) indicates that the temperature response of many soil 

microbial communities and their functions are not linear. The implication is that apparent 

temperature sensitivity, when defined as the slope of the respiration-temperature response line, 

changes depending on the range of temperatures observed. Interestingly, MMRT captures an 

important natural pattern: the rate of reaction is most variable with temperature at common 

environmental temperatures (Figure 2.7). This peak in temperature sensitivity is not captured in 
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the Arrhenius model, which instead predicts an exponential rise in temperature sensitivity with 

increasing temperature.   

Variation in TSmax observed in this study is consistent with the idea that history shapes 

microbial community composition and thus “selects” for enzymes that are less temperature 

sensitive over a given temperature regime. However, the lack of a monotonic response to 

temperature complicates discussion of temperature “sensitivity” by requiring that the temperature 

range be specified. We therefore suggest that discussions of temperature sensitivity become more 

nuanced, considering dk/dT and the associated quantitative features like the temperature of 

maximum rate and the temperature of maximum temperature sensitivity. 

[Sierra, 2012] 

Patterns in Temperature Sensitivity  

Although extrapolation back to the original microbial communities and field conditions is 

beyond the scope of this study, we consider a few interesting aspects of the data for further 

inquiry based on geographic location of source inocula. We found that the microbial community 

derived from the MA site had a ΔCP
‡ closest to zero, indicating the lack of a thermodynamic 

temperature optimum and generally less variation in dk/dT with temperature. In contrast, the 

microbial community derived from the SV site, at the other end of the temperature gradient, 

appeared to have a strong thermodynamic optimum and wide variation in dk/dT with 

temperature. The microbial community with the most prominent temperature optimum is from 

the warmest and driest site, while the community found to lack a temperature optimum is from 

the coolest and wettest site (Table 2.1). This is consistent with results found in Strickland et al. 

(2015), which found that microbial inocula from their coolest site showed least variation in 

respiration with moisture and temperature manipulations and the microbial inocula from their 
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warmest site showed most variation in respiration rates. We speculate that at the MA site there is 

not a competitive advantage for enzymes to be optimized for temperature, but at the SV site, 

where temperature and moisture are more extreme, a competitive advantage for enzymatic 

temperature optimization may exist. The mechanisms causing differences in ΔCP
‡ between 

communities deserves further attention.  

 

Conclusions 

Overall our results provide the first outside evidence of MMRT outperforming Arrhenius 

in explaining the temperature sensitivity of soil microbial respiration. Moreover, we found wide 

variation in ΔCP
‡ values with different soil × inoculum combinations. What drives this variation 

in ΔCP
‡ warrants further investigation since a priori knowledge of temperature sensitivity of 

microbial communities has potential implications for modeling of SOC dynamics. Because the 

importance of the microbial community has not been well understood, the microbial component 

of soil microbial respiration has largely been left out of models until very recently (Treseder et 

al., 2012; Wieder et al., 2013; Wieder et al., 2015). We anticipate that significant improvements 

in theory, simulation modeling, and lab and field experiments, can come from focusing on 

factors that cause variation in enzyme activation energy that gives rise to the phenomenon of 

thermodynamic temperature optima. 
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Table 2.1. Site characteristics. Mean annual precipitation (MAP), mean annual temperature 
(MAT), grassland type, soil texture, gravimetric % carbon, and molar C:N ratio. 
 
Site MAP (mm) MAT (°C) Grassland Type Soil Texture (%) %C C:N 

        Sand Silt Clay    

Makoce Washte (MA) 627 7.8 Tall 17 49.3 33.8 6.2 11.6 
Shortgrass Steppe (SG) 320 8.6 Short 50.8 22.8 26.3 1.8 10.6 
Sevilleta (SV) 244 13.3 Desert 61 20.4 18.7 1.4 6.5 
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Table 2.2. Mean values for parameters k, L0, and R ± SEM. 

  k   L0   R 

  10°C 20°C 30°C   10°C 20°C 30°C 
 

10°C 20°C 30°C 
MA soil, MA 
inocula 0.056±0.006 0.048±0.005 0.066±0.013   0.875±0.133 1.256±0.141 2.329±0.393   0.031±0.006 0.067±0.009 0.250±0.046 

SG soil, MA inocula 0.056±0.002 0.092±0.004 0.120±0.007 
 

1.592±0.060 4.269±0.244 6.778±0.508 
 

0.199±0.015 0.297±0.011 0.501±0.023 

SV soil, MA inocula 0.055±0.006 0.083±0.006 0.206±0.009 
 

0.587±0.056 1.535±0.072 4.399±0.361 
 

0.041±0.003 0.073±0.007 0.137±0.010 

MA soil, SG inocula 0.051±0.011 0.105±0.007 0.118±0.007 
 

0.923±0.192 2.022±0.164 4.462±0.326 
 

0.042±0.009 0.128±0.007 0.327±0.016 

SG soil, SG inocula 0.055±0.004 0.150±0.009 0.148±0.009 
 

1.634±0.177 7.848±0.481 8.824±0.763 
 

0.164±0.006 0.356±0.018 0.586±0.014 

SV soil, SG inocula 0.074±0.012 0.065±0.013 0.145±0.009 
 

0.880±0.126 0.861±0.219 3.062±0.151 
 

0.042±0.004 0.066±0.010 0.118±0.010 

MA soil, SV inocula 0.067±0.004 0.110±0.008 0.091±0.006 
 

0.957±0.061 2.012±0.195 3.221±0.313 
 

0.064±0.005 0.159±0.006 0.404±0.009 

SG soil, SV inocula 0.073±0.004 0.135±0.008 0.094±0.008 
 

2.032±0.149 5.068±0.287 4.914±0.326 
 

0.150±0.004 0.267±0.010 0.474±0.020 

SV soil, SV inocula 0.073±0.004 0.150±0.011 0.100±0.008   0.576±0.022 2.029±0.139 2.131±0.103   0.042±0.001 0.108±0.003 0.157±0.010 
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Figure 2.1. (a) Conceptual model for CO2 produced from soil divided into two organic matter 
pools, L and R. The CO2 produced from the labile pool changes over time, so it is multiplied by a 
constant, k. (b) Sample exponential decay curve (Equation 1) with fitted parameters. L0 is SOC 
pool; R is asymptotic rate of respiration dominated by C from recalcitrant pools; and k is first 
order CO2 production rate. 
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Figure 2.2. Percent of the respired CO2 that is derived from the labile pool for an example 
incubation (MA soil × SG-derived inocula) at 10, 20, and 30°C over time. The red vertical line 
indicates that a comparison of respiration rates at one month would confound the direct effect of 
temperature and the indirect effect of lost labile carbon. We implement a multi-pool analysis 
framework to overcome this potential source of bias. 
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Figure 2.3. Example decay curves for individual incubation vials with fitted exponential 
decay curve from (a) MA soil with MA inocula at 10°C, (b) SG soil with MA inocula at 20°C, 
(c) SV soil with SG inocula at 20°C, and (d) SG soil with SV inocula at 30°C. These four vials 
illustrate the diverse types of kinetics exhibited among the set of incubations. 
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Figure 2.4. Sum of squares analysis for extracted parameters k, L0, and R. The left side panel, 
(a), (c), and (e), represent the percent sum of squares for temperature (T), soil (S), inocula (I), 
temperature × soil (T*S), temperature × inocula (T*I), soil × inocula (S*I), and temperature × 
soil × inocula (T*S*I). (*) indicates P<0.05, (**) indicates P<0.01, and (***) indicates P<0.001. 
The right side panel, (b), (d), and (f), represent the percent sum of squares for the sum of all of 
the sum of squares relating to T, S, or I. Total percentages are indicated above each bar.  
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Figure 2.5. The fit of MMRT (solid line) and Arrhenius (dashed line) equations for each soil 
x inocula combination. Adjusted R2 values for the Arrhenius and MMRT models are given in the 
top left corner. 
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Figure 2.6. (a) Heat capacity values for each soil × inocula combination where MMRT was 
successful, thus heat capacity values that are >0 are not included; error bars (±2SE) represent 
uncertainty in the model fit. (b) Average heat capacity values for each microbial inoculum where 
MMRT was successful; error bars represent two standard errors above and below the mean and 
letters group similar means at P<0.05. 
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Figure 2.7. Temperature sensitivity, defined as the first derivative of reaction rate with 
respect to temperature (i.e., dk/dT), is a more complex feature of the MMRT model, when 
compared with Arrhenius. Panels a-f illustrate dk/dT of the MMRT equation (solid line) and 
Arrhenius equation (dashed line) for each of the soil × inocula combinations where MMRT was 
successful. Topt and TSmax for MMRT are given in the top right corner.  
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Chapter 3: Temperature sensitivity as a microbial trait using parameters from 

macromolecular rate theory2 

 

Introduction 

The activities of extracellular enzymes, a rate-limiting step in decomposition and important 

component in biogeochemical cycles (Burns and Dick, 2002), are strongly controlled by in-situ 

temperatures (Davidson and Janssens, 2006; Wallenstein et al., 2011). Although the importance 

of enzyme temperature sensitivity is widely recognized, the degree to which temperature 

sensitivity is an inherent property of the enzymes versus a response to environmental conditions 

(Davidson and Janssens, 2006) is largely unknown. It has been difficult to parse the mechanisms 

underlying observations of enzyme temperature responses in part because assays are typically 

conducted at the community level where the contribution of isoenzymes produced by individual 

taxa cannot be isolated (Bradford, 2013; Karhu et al., 2014). In addition, relative and absolute 

measures of temperature sensitivity using the same, simple models often produce contradictory 

results (Sierra, 2012). Understanding if these soil extracellular enzymes have inherent 

temperature sensitivity is critical for accurate predictions of soil carbon (C) and other nutrient 

dynamics in changing environments. In this study we attempt to determine the degree to which 

soil enzymes are responsive to temperature. In addition, we focus on clearing up some of the 

definitional confusions regarding temperature sensitivity in soils.  

Over most of the last decade, the debate on if and how temperature sensitivity differs 

among enzymes has used parameters from two models: the Q10 temperature coefficient and 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Alster, C.J., Baas, P., Wallenstein, M.D., Johnson, N.G., and von Fischer, J.C. (2016). 
Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular 
Rate Theory. Frontiers in microbiology 7(1821). doi: 10.3389/fmicb.2016.01821. 
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activation energy, EA, derived from the Arrhenius equation. Q10 is a unitless measure of the 

change in rate with a ten-degree increase in temperature, 

 !!" = !!
!!

!"/(!!!!!)
, (1) 

where R is reaction rate and T is temperature. The Q10 of biological systems is generally thought 

to be ~2 or 3, although it has been found to be substantially higher in some soils and enzymes 

(Lloyd and Taylor, 1994; Chapin III and Matson, 2011; Elias et al., 2014). The Arrhenius 

equation describes temperature response as 

ln ! = ln ! − !!
!", (2) 

where k is the reaction rate constant, A is a pre-exponential factor, EA is the activation energy, R 

is the universal gas constant, and T is temperature. According to the Arrhenius model, 

temperature sensitivity is compared using EA as the parameter of interest instead of or in addition 

to Q10. Reactions with higher Q10 values require a larger “push” or activation energy (EA) to 

initiate the reaction (Davidson and Janssens, 2006).   

Previously, studies have drawn varying conclusions about how Q10 and EA vary with 

enzyme structure and function. From an evolutionary perspective, selection should generate an 

adaptive fit of enzyme kinetics to their thermal environment (Allison et al., 2011; Bradford, 

2013). For example, thermophilic enzymes tend to have increased conformational rigidity 

(Zavodszky et al., 1998), while psychrophilic enzymes have improved flexibility, particularly at 

the active site (Feller, 2003; Struvay and Feller, 2012), impacting temperature sensitivity. Many 

soil studies have observed significant differences among Q10 and EA values at a range of spatial 

and temporal scales (Koch et al., 2007; Trasar-Cepeda et al., 2007; Wallenstein et al., 2009; 

Brzostek and Finzi, 2012; Steinweg et al., 2013). Despite the predicted and observed differences 

between these different types of enzymes and isoenzymes, an analysis conducted by (Elias et al., 
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2014) found no statistical difference across enzyme classes in Q10 values from 150 enzymatic 

reactions.  

One reason why patterns in Q10 and EA are not easily explained is that they may not be 

the most appropriate parameters to evaluate temperature sensitivity from soil microbial enzymes 

(Schipper et al., 2014). It has long been recognized that Arrhenius and Q10 do not always 

accurately describe the relationship between temperature and reaction rates in soil systems 

(Lloyd and Taylor, 1994), yet they have continued to be used out of convenience, convention, or 

perhaps due to lack of a better alternative model. The most conspicuous disparity between these 

models is the empirical data commonly observed showing negative curvature (i.e., a concave-

down parabolic response) in rate versus temperature, which is not explained by either Q10 or EA. 

This negative curvature is typically ascribed to enzyme denaturation even though the pattern is 

sometimes observed at relatively low temperatures. We hypothesize that this negative curvature 

causes estimated Q10 and EA values to vary with the temperature range where they are measured, 

thus making them more phenomenological parameters than fundamental system properties 

(Pawar et al., 2016). A second issue is that thermodynamic principles indicate that the Arrhenius 

models are missing a key term when applied in biological systems: for large macromolecules like 

enzymes, it is not appropriate to assume that the transition state of Gibbs Free Energy (ΔG‡) is 

constant across temperatures (Hobbs et al., 2013).  

A relatively new model, Macromolecular Rate Theory (MMRT), accounts for both the 

physical and biological components of reaction rate with temperature (Hobbs et al., 2013). 

MMRT is defined as,  

ln ! = ln !!!
! − ∆!!!

‡ !∆!!‡ !!!!
!"  + ∆!!!

‡ !∆!!‡ !"!!!"!!
! , 

(3) 
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where k is the rate constant, kB is Boltzmann’s constant, h is Planck’s constant, R is the universal 

gas constant, T is temperature, H is enthalpy, S is entropy, CP is heat capacity, and ‡ indicates 

that it is the transition state. Thus, we propose that the idea of “temperature sensitivity” when 

described by MMRT emerges as three fundamental components: the heat capacity of the enzyme 

(!"!‡), the temperature optimum (Topt), and the point of maximum temperature sensitivity 

(TSmax). The heat capacity of the enzyme describes the degree of curvature in the parabolic 

response of reaction rate with temperature; more parabolic curves have larger, negative values of 

!"!‡ that arise when enzymes are more rigid at the transition state. The temperature optima 

denote the point at which the reaction rate is greatest, with lower reaction rates at higher 

temperatures not necessarily indicating enzyme denaturation. The point of maximum 

temperature sensitivity is calculated from the first derivative of k with temperature (dk/dT), and 

indicates the temperature where the rate of change is greatest. 

Our proposed concept of temperature sensitivity could enable use of traits-based 

approaches for understanding how community-level patterns in temperature sensitivity are 

related to thermal responses of the many isoenzymes produced by diverse microbes. Under this 

definition of temperature sensitivity, !"!‡, Topt, and TSmax are measurable properties of individual 

organisms, or enzymes from organisms, and one that clearly would influence organismal 

performance, falling under the ecological definition of a functional trait (McGill et al., 2006). 

Including temperature sensitivity in a traits-based framework could enable the linking of the 

microbial community with soil ecosystem functioning (Green et al., 2008), as well as allow for a 

stronger quantitative approach to integrate temperature sensitivity into models for improved 

predictive power (Webb et al., 2010).  
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If temperature sensitivities of enzymes are in fact traits and exhibit variation based on 

genetic and environmental variation, we hypothesize that different enzymes will demonstrate 

distinct temperature sensitivities, as defined by the terms !"!‡, Topt, and TSmax. Because the 

difference in !"!‡ is impacted by the physical flexibility of the enzyme (Hobbs et al., 2013), 

which we hypothesize is a result of genetic variation among communities and/or from interaction 

with substrate type, we predict that temperature sensitivity of soil extracellular enzymes will vary 

by the microbe from which the enzyme was derived or by the enzyme type. Because most 

enzymes are substrate specific, different enzyme-substrate complexes can have a wide range of 

!"!‡  values. Moreover, different microbes produce different isoenzymes, so temperature 

sensitivity may also vary among microbes.  

We measured extracellular enzyme activity from seven soil isolates and three different 

enzymes at six temperatures, in order to advance the study of temperature sensitivity as an 

intrinsic microbial trait. In a previous study (Alster et al., 2016), we found that temperature 

sensitivity varied among soil microbial communities. We applied both Arrhenius and MMRT to 

our data to compare the effectiveness of each of these models and demonstrate how Arrhenius 

estimates of temperature sensitivity may not be sufficient, even within in situ representative 

temperature ranges.  

 

Material and methods 

Experimental design 

Extracellular enzymatic assays were performed for three enzymes, β-glucosidase (BG), 

leucine aminopeptidase (LAP), and phosphatase (PHOS) on seven soil isolates, each from a 

different genera—Acinetobacter, Bacillus, Citrobacter, Comamonas, Enterobacter, 



! 48 

Flaviobacterium, and Pseudomonas. The isolates were derived either from soil or worm castings 

and kept at -80°C with 20% glycerol until use. The isolates were revived from storage and grown 

in nutrient broth over a 2-3 day period at 25°C. We added 3-(N-morpholino)propanesulfonic acid 

buffer to maintain a pH of 7.2, which is the same pH as the microbes were originally isolated at. 

Before we began the enzyme assays, the isolate solution was plated on nutrient broth agar and 

total incubation time was determined by when cultures reached between 105-107 colony-forming 

units per mL.  

The isolates were incubated in 96-well microplates with substrates at six temperatures: 4, 

11, 25, 35, 45, and 60°C. We chose a large initial temperature range in order to capture the most 

accurate temperature response curve. The enzyme assay was modified from Bell et al. (2013). 

Forty microliters of 200 mM fluorometric substrate—4-MUB-β-D-glucopyranoside for BG, L-

leucine-7-amido-4-methylcoumarin hydrochloride for LAP, and 4-MUB phosphate for PHOS—

was added to 160 µL of a 1 isolate mixture: 15 acetate buffer solution. For each isolate x 

substrate combination, there were eight replicates for each temperature (7 isolate x 3 enzymes x 

6 temperatures x 8 replicates). Standards ranging from 2.5 µM to 100 µM were used to calibrate 

the enzyme activity from each enzyme. 4-methylumbelliferone (MUB) was used to calibrate BG 

and PHOS and 7-amino-4-methylcoumarin (MUC) was used to calibrate LAP. The plates were 

incubated between 1 and 23 hours depending on the temperature and scanned on a Tecan Infinite 

M200 plate reader at optimal florescence as determined by the MUB and MUC standards. 

Reaction rates were linear regardless of incubation time, as determined by preliminary 

experiments. The MUB and MUC standard curves were used to calculate the raw florescence of 

the samples using the slope and y-intercept, as described in Bell et al. (2013) and converted into  
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units of nmol activity L culture-1 hour-1, so that samples were comparable across temperatures 

with varying incubation times.  

 

Calculating temperature sensitivity 

In order to quantitatively characterize temperature responses of each of the 21 isolate × 

enzyme combinations, we plotted the natural log of the reaction rate against temperature and 

fitted both the Arrhenius and MMRT equations using an analytic Gauss-Newton for Arrhenius 

and a numerical Gauss-Newton for MMRT in JMP Pro 11 (Alster et al., 2016; Schipper et al., 

2014). Parameters EA and !"!‡, along with their uncertainty, were reported by the software. The 

optimum temperature (Topt) and point of maximum temperature sensitivity (TSmax) from the 

MMRT curve fits were calculated by taking the derivative of the MMRT equation with respect to 

temperature (Alster et al., 2016). We used a Monte Carlo Simulation to estimate the standard 

error for Topt and TSmax.  

Analysis of variances (ANOVA) were performed using the software R version 3.2.1 

(Core Team, 2015) to determine the relative importance of substrate type and species type in 

explaining variation in the parameters from each of the models (!"!‡, !"!!
‡ , !"!!

‡ , EA, and A) as 

well as for Topt and TSmax. We also used R to run pairwise comparisons with a Holm multiple 

testing adjustment to examine differences between each of the model parameters and Topt and 

TSmax from each of the isolate × enzyme combinations. Differences in !"!‡‡ were calculated 

using a two-sampled approximate Z-test.  
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Comparison of MMRT and Arrhenius equations 

We used adjusted R2 and Akaike information criterion corrected for a finite sample size 

(AICc) to determine the most parsimonious model between the Arrhenius and MMRT model fits 

for the full temperature range (4-60°C). Additionally, we re-ran the Arrhenius model fit for each 

isolate × enzyme combination, but only using temperatures 4-25°C and 4-35°C to evaluate if, 

under more biologically relevant temperatures, the Arrhenius model fits were accurate predictors 

of reaction rate. To assess this, we calculated the percentage that each of the three models 

(MMRT from 4-60°C, Arrhenius from 4-35°C, and Arrhenius from 4-25°C) over or 

underestimated the reaction rate as compared to the actual experimental values and conducted 

corresponding lack-of-fit (LOF) tests. The importance of each of these models for predicting the 

percent error was examined with a linear model and tested with an ANOVA using the lmerTest 

package in R (Kuznetsova et al., 2014).   

 

Results 

Temperature sensitivity differs for isolate × enzyme combinations 

Out of the 21 isolate × enzyme combinations we tested, we present here the results from 

the 19 that worked. BG activity in Bacillus and PHOS activity in Comamonas were below 

detection limits. Thus, these two combinations were eliminated from the analysis. We plotted the 

reactions rates of the remaining 19 isolate × enzyme combinations versus temperature and fit 

both the MMRT and Arrhenius equations to the data (Figure 3.1).  These model fits for MMRT 

give temperature sensitivity parameters !"!‡, Topt and TSmax, while Arrhenius gives EA as a 

parameter.  
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We found that !"!‡ differed for some, but not all of the isolate × enzyme combinations. 

The !"!‡ differed among microbial isolates in BG and LAP enzymes (P<0.05; Figure 3.2a, b). 

However, in PHOS, the isolates did not differ in !"!‡ (P>0.05; Figure 3.2c). When comparing if 

!"!‡ differed between the same isolate for different enzymes we found significant differences in 

!"!‡  for Acinetobacter, Citrobacter, and Enterobacter (P<0.05), but not for Bacillus, 

Comamonas, Flaviobacterium, or Pseudomonas. Patterns in statistical differences were identical 

for !"!‡, ΔS‡, and ΔH‡. Overall 70.9% of variation in !"!‡ was explained by the microbial isolate 

type, compared with 29.1% of the variation explained by the enzyme type.  

The temperature optima (Topt) and point of maximum temperature sensitivity (TSmax) also 

varied with the isolate × enzyme combinations (Table 3.1). Despite the 25ºC conditions used 

during initial culturing of the inoculum isolates, Topt ranged from 33.5°C in BG for the 

Enterobacter isolate to 60.7°C in LAP for the Bacillus isolate and TSmax ranged from 18.2°C in 

BG for the Acinetobacter isolate to 40.3°C in LAP for the Bacillus isolate. Pooling the Topt and 

TSmax values across the same microbial isolate and enzyme type, we found differences for some 

of the values across both microbial isolate and enzyme type (P<0.05). While differences between 

these pooled values for Topt and TSmax were similar, they were not identical. Furthermore, similar 

to !"!‡, variation in Topt and TSmax are best explained by the microbial isolate type, with SS 

values of 86.7% and 80.0%, respectively. 

The three metrics of temperature sensitivity, !"!‡, Topt and TSmax, each have unique 

statistical patterns of similarity across inocula × enzyme combinations. In this paper, we do not 

deeply examine the basis for groupings but focus instead on identifying if patterns of similarity 

and difference exist or if all enzymes behave similarly. For conciseness, we illustrate only 

patterns of differences for !"!‡ in Figure 3.2, and provide Topt and TSmax findings in Table 3.1. 
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For PHOS we found no differences in !"!‡ among the different microbial isolates (Figure 3.2). 

For TSmax of PHOS there were no differences, but for Topt we found several significant 

differences among isolates (Table 3.1). Likewise for BG, there were quite a few differences 

among isolates in !"!‡ (Figure 3.2). However, there were no significant differences between 

different microbial isolates in TSmax for BG, and while there are differences in Topt, they are not 

the same as the differences identified for !"!‡. Interestingly, patterns in significant differences 

among isolates for LAP are the same for Topt and TSmax, but show a different pattern for !"!‡.  

Some of these patterns likely emerge because Topt and TSmax are positively correlated (R2 = 

0.84), while !"!‡ does not correlated with Topt or TSmax (R2 = 0.23 and R2 = 0.01, respectively).  

 

MMRT provides better statistical fit than Arrhenius 

For the temperature range of 4-60°C, we found that MMRT gave vastly superior fits to 

the data as compared to Arrhenius according to both AICc and R2 criteria (Table 3.2). MMRT 

was also superior when the Arrhenius model was fit to the more linear part of the temperature 

range (4-35°C, and 4-25°C) for 13 of the 19 isolate × enzyme combinations (see example, Figure 

3.3a and Table 3.2). For the 6 combinations where MMRT was not superior, AICc analysis 

found MMRT and Arrhenius to have equivalent explanatory power; in no case was Arrhenius the 

superior model. Phosphatase was the only enzyme where MMRT was significantly better in all 

isolates tested.  

Despite the statistically improved fit of MMRT as compared to Arrhenius, when 

comparing the overall error produced from each of the model predictions, the results were less 

striking. We found 3.8% of the total variation was explained by LOF from the model in MMRT 

compared with 6.2% for Arrhenius from 4-35°C and 10.3% for Arrhenius from 4-25°C. This 
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means that by using Arrhenius instead of MMRT we are introducing 1.6 and 2.7 times more 

error into our predictions for the Arrhenius 4-35°C and 4-25°C models, respectively. ANOVA 

results for the percent error of the models compared to the experimentally observed results at 4, 

11, 25, and 35°C, revealed a significant difference between MMRT and the Arrhenius 4-25°C 

model (P ≤ 0.05) and between the two Arrhenius models (P = 0.02). However, there was no 

significant difference in percent error between MMRT and the Arrhenius 4-35°C model fits 

when compared to original activity values at 4, 11, 25, and 35°C.  

 

Comparison of activation energy values 

To examine the value of using activation energy as a trait, we compared activation 

energies derived from different temperature ranges to see if they vary. In a 3-way ANOVA 

examining the EA values from all three of the Arrhenius model temperature ranges tested, we 

found that the temperature range explained 68.5% of variation in the data, compared to 12.7% 

explained by enzyme type and 11.0% explained by isolate type. Overall, we found that as the 

temperature range increased EA values decreased (Figure 3.3b, c, d). Not only did the absolute 

values of EA vary based on temperature range, but the relative EA values also differ (Figure 3.3b, 

c, d) leading to different groupings of similarity among assays. In comparisons of EA values for 

the different inocula × enzyme combinations that shared either the same enzyme or same isolate, 

25% of the relationships changed between the Arrhenius 4-25°C and 4-35°C estimates, and 

36.8% of the relationships changed between the Arrhenius 4-35°C and 4-60°C estimates. A 

similar analysis capturing different temperature ranges was not needed for MMRT since MMRT 

captures the peak.  
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Discussion  

Heat Capacity Differs Significantly Among Enzymes 

This study advances efforts to understand how temperature sensitivity of extracellular 

enzymes varies by substrate and isolate type. Such an effect has long been speculated, based on 

assays conducted at the community level with whole soils (e.g. Steinweg et al., 2013 and Trasar-

Cepeda et al., 2007). We found that !"!‡ differed significantly among isolates for the BG and 

LAP enzymes, across the different isolates measured (Figure 3.2). Furthermore, heat capacity of 

different enzymes varied within the same isolate for three out of the seven isolates measured. 

While this study was not designed to elucidate the mechanisms behind why heat capacity varied 

between some enzymes and isolates but not others, here we provide a few possible explanations. 

One broad explanation for why we see these differences is that microbes adapt to their 

environment and more efficient enzymes are selected for in accordance to the thermodynamic 

conditions in that environment (Bradford, 2013); thus, microbes will adapt to produce 

isoenzymes with varying degrees of flexibility and consequently different heat capacities values 

depending on what is most advantageous for the microbial cell’s survival. The idea that 

isoenzymes have distinct temperature sensitivities is not particularly groundbreaking if 

comparing enzymes derived from thermophilic, psychrophilic, and mesophilic conditions 

(Zavodszky et al., 1998; Lonhienne et al., 2000; Feller and Gerday, 2003) or even across the 

same soil microbial community throughout seasons (Koch et al., 2007; Trasar-Cepeda et al., 

2007; Wallenstein et al., 2009). However, in this study all of the isolates measured were derived 

from a mesophilic environment and raised in culture at the same temperature (25°C). Thus, we 

found that temperature sensitivity varies even among organisms raised under the same 

temperature conditions.  
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In contrast to BG and LAP, the heat capacity of PHOS was invariant with isolate type, 

suggesting that perhaps this enzyme did not undergo a similar type of adaption over evolutionary 

history or that there are simply fewer isoenzymes. Although the PHOS enzyme is ubiquitous 

across different types of organisms, the genomic region encoding for the active site is highly 

conserved and fairly homologous across plants, animals, and bacteria, at least for the acidic 

version of the enzyme (Anand and Srivastava, 2012). As opposed to aminopeptidases in which 

relatively few homologies have been observed despite their high abundance (Taylor, 1993), gene 

conservation of PHOS might explain the lack of variation in heat capacity. Thermodynamic 

constraints of the enzyme or active site may also limit adaptation if there is a fundamental 

evolutionary tradeoff between the structure and function of the enzyme that is specific to the 

catalytic properties of PHOS (Bradford, 2013).  

It is also worth noting that because these estimates of heat capacity were not necessarily 

of individual enzymes, but of the all of the isoenzymes produced by the isolates under the 

incubation conditions of this experiment. While it is unclear if multiple enzymes acting on the 

substrate impacted the results, it is worth highlighting that these results might be the average of 

one or more isoenzymes. It is also possible that given our sample size (seven isolates and three 

enzymes), more differences in heat capacity may have been observed if we had increased the 

diversity and number of the isolates and enzymes in the experiment. Furthermore, specific 

experimental conditions, such as pH, could potentially alter the temperature-response curve. 

Determining how heat capacity varies phylogenetically for different enzymes is an important 

avenue for future research. 
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Exercising caution for Arrhenius estimates of temperature sensitivity  

Despite clear evidence of MMRT’s statistical superiority to Arrhenius in this experiment, 

we found that at the lower temperature ranges (i.e., 4-25°C and 4-35°C) Arrhenius estimations 

were not necessarily poor. However, we still recommend that future estimations of temperature 

sensitivity for soil microbial enzymes that apply the Arrhenius equation use caution for the 

following reasons. First, we found that EA values varied significantly with the range in which 

they were evaluated, making them an unreliable metric to use for comparisons across studies. 

These results are corroborated by Pawar et al. (2016), who tested 1,085 temperature-response 

curves from a variety of organisms and systems and determined that the calculated EA value is an 

artifact of the temperature range, spread of temperatures measured, and where the temperature 

range falls. In order for temperature sensitivity to be used as a common currency of discussion 

and incorporated as a microbial trait, relationships should not be a function of different 

measurement methods. Second, even if Arrhenius is comparable to MMRT in a narrow 

temperature range, EA fails to capture key phenomenological features of temperature sensitivity 

in soil biological systems. Other nonlinear models have also been shown to give suitable 

empirical fits to the temperature dependence of enzyme activity (Peterson et al., 2004; Del 

Grosso et al., 2005; Daniel and Danson, 2013; Corkrey et al., 2014), but MMRT not only fits 

well empirically, but is derived from thermodynamic theory and thus has an underlying 

theoretical basis. Thus, even if EA continues to be used in the future, EA values should not be  

 

Conceptual framework 

For nearly a decade, scientists have recognized the importance of using microbial traits as 

a framework for predicting ecosystem response to climate change (Green et al., 2008; 
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Wallenstein and Hall, 2012). Many of these studies make predictions about how microbial traits 

(e.g., nutrient use efficiency) respond across a gradient of temperatures (Rinnan et al., 2009; Dell 

et al., 2011; Wallenstein and Hall, 2012). In this study we argue that temperature sensitivity is 

not only a measure of how biological traits respond across a gradient of temperatures, which is 

how it is typically characterized, but also that temperature sensitivity is an inherent biological 

trait. In light of this interest and our results, we developed a new conceptual model that develops 

a more precise definition of temperature sensitivity and organizes the factors that can lead to 

variation in temperature sensitivity itself.  

In our framework, we first consolidated the Arrhenius and MMRT definitions of 

temperature sensitivity. Under the Arrhenius equations, activation energy is the singular factor 

driving the apparent temperature response (Figure 3.4). But, this violates laws of 

thermodynamics with regards to biological systems because of the large molecular size of 

enzymes characterized by large heat capacities impacting the temperature response (Arcus et al., 

2016). MMRT expands thermodynamic theory initiated with Arrhenius by incorporating heat 

capacity as part of the temperature response (Figure 3.4). Implicit within the MMRT theory is 

that the !"!‡ is a function of enzyme flexibility and thus !"!‡ varies among enzymes (Schulte, 

2015; Arcus et al., 2016). Given existing evidence for substrate type influencing activation 

energy (Davidson and Janssens, 2006), our outline of temperature sensitivity includes potential 

for enzyme flexibility to be a product of the substrate upon which the enzyme acts as well as the 

genetic variation among different enzymes (Figure 3.4). In this experiment, we tested if these 

additional factors (i.e., substrate type and genetic variation) impacted the temperature sensitivity 

by measuring heat capacity as a proxy for enzyme flexibility and found strong evidence for heat 

capacity varying by both enzyme and isolate type.  
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Based on this expanded framework of temperature sensitivity, we propose that use of 

!"!‡ and TSmax will give a more comprehensive basis to describe “temperature sensitivity” than 

Q10 or EA. Q10 gives a false sense that a single constant can characterize the temperature 

sensitivity of a system (Davidson and Janssens, 2006). In order to overcome this obvious 

discrepancy authors using Q10 often present multiple temperature sensitivity values at different 

temperature ranges for a given system, leading to results that are often difficult to compare. 

Conceptually, we consider temperature sensitivity to be the change in velocity per change in 

temperature (dV/dT). Unlike Q10, EA can be used as a summary term to capture temperature 

sensitivity of a system; this is effective because Arrhenius predicts a monotonic increase in rate 

with temperature. Since MMRT captures the inherently non-monotonic response of enzyme-

catalyzed reactions, a single variable cannot fully capture the temperature sensitivity from the 

MMRT curve as is done by EA in the Arrhenius equation. Thus the use of TSmax and Topt provide 

two practical metrics to characterize this non-linear response of temperature sensitivity to 

temperature, although for modeling purposes !"!‡ and other thermodynamic parameters (i.e., 

!"!!
‡  and !"!!

‡ ) are sufficient to explicitly predict reaction rates with temperature. Temperature 

optimum values are also commonly reported in the literature for extracellular enzymes (Huston 

et al., 2000; Daniel et al., 2001; Peterson et al., 2004; Eijsink et al., 2005), but are typically quite 

high and perhaps not biologically relevant. We argue that TSmax is actually a more important 

term to consider than Topt because TSmax describes where the greatest change in rate occurs and it 

typically falls within environmentally relevant temperature ranges (Table 3.1). Consequently, by 

focusing on TSmax we capture the area of the temperature-reaction curve that will have the 

greatest impact on rates of nutrient cycling and greenhouse gas production. Characterizing 
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temperature sensitivity with these unifying parameters gives us an avenue to incorporate 

temperature sensitivity into traits-based microbial models.  

Our new framework suggests a number of future lines of inquiry. One immediate 

question is: how broadly does temperature sensitivity vary under this new definition of 

temperature sensitivity? If temperature sensitivity of different enzymes, microbes, or 

communities exhibit vastly different !"!‡  and TSmax values then this might impact current 

calculations of soil C and N dynamics. As the climate warms, does this inherent temperature 

sensitivity adapt or acclimate? What are the evolutionary constraints on rate of evolution and 

how is the overall temperature sensitivity value impacting by different groups of organisms? 

What other factors besides enzyme type and the microbe from which it was produced might 

impact enzyme flexibility? We hope that future research will be conducted in many of these 

avenues to elucidate mechanisms controlling temperature sensitivity of enzymes and determine 

what impact this has on communities, ecosystems, and nutrient cycling in soils. 
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Table 3.1. Mean temperature optima (Topt) and point of maximum temperature sensitivity (TSmax) for each isolate and enzyme 
combination ± SEM. Pooled estimates are averages either across enzymes for a given isolate or across isolates for a given enzyme. 
 
!! BG! !! LAP! !! PHOS! !! Pooled&Estimate&

!! Topt! TSmax! !! Topt! TSmax! !! Topt! TSmax! !! Topt! TSmax!

Acinetobacter! 36.0±1.9! 18.2±2.4!

!

37.7±0.6! 24.45±0.6!

!

37.55±2.1! 18.85±2.6!

!

37.1±2.9! 20.5±3.6!

Bacillus! NA! NA!

!

60.7±2.5! 40.25±1.5!

!

48.05±1! 27.95±0.7!

!

54.2±3.3! 34.1±3.0!

Citrobacter! 38.1±0.7! 22.6±0.8!

!

39.7±0.6! 24.55±0.6!

!

47.95±0.9! 27.95±0.7!

!

41.7±1.3! 25.0±1.2!

Comamonas! 39.1±2.5! 19.0±3.1!

!

40.6±0.7! 24.55±0.8!

!

NA! NA!

!

39.8±2.6! 21.8±3.2!

Enterobacter! 33.5±0.6! 19.8±0.7!

!

40.0±0.4! 25.25±0.5!

!

46.85±0.5! 28.25±0.4!

!

40.1±0.9! 24.4±0.9!

Flaviobacter! 38.4±0.5! 23.2±0.6!

!

39.4±0.8! 23.85±0.9!

!

41.85±2.2! 23.25±2.3!

!

39.9±2.4! 23.4±2.5!

Pseudomonas! 39.0±2.6! 19.1±3.2!

!

41.4±1.1! 23.25±1.1!

!

40.45±2.7! 18.55±3.1!

!

40.3±3.9! 20.3±4.6!

Pooled&Estimate& 37.3±4.2! 20.3±5.2! !! 42.6±3.1! 26.6±2.4! !! 43.8±4.3! 24.1±4.8! !! LL! !LL!

!
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Table 3.2. Akaike information criterion corrected for a finite sample size (AICc) and R2 values for each model × isolate × enzyme 
combination. The MMRT values reported are for the full 4-60°C temperature range, while all three temperature ranges are reported for 
Arrhenius.  
 
!! !! MMRT! Arrhenius!4L60°C! Arrhenius!4L35°C! Arrhenius!4L25°C!!
Enzyme! Isolate! AICc! R2! AICc! R2! AICc! R2! AICc! R2!
BG! Aci! 63.54! 0.62! 97.38! 0.22! 10.36! 0.40! 7.45! 0.39!

!
Cit! L0.71! 0.94! 105.69! 0.47! 41.32! 0.82! 58.69! 0.81!

!
Com! 65.62! 0.58! 88.42! 0.32! 65.42! 0.40! 79.04! 0.38!

!
Ent! 3.42! 0.94! 118.95! 0.14! L13.52! 0.97! L6.32! 0.97!

!
Fla! L30.38! 0.97! 105.27! 0.51! 14.30! 0.92! 20.72! 0.92!

!! Pse! 73.32! 0.55! 94.03! 0.30! 70.72! 0.34! 98.53! 0.33!
LAP! Aci! 11.87! 0.96! 129.19! 0.45! L2.28! 0.97! L2.06! 0.97!

!
Bac! 24.69! 0.97! 526.13! 0.90! L25.26! 0.99! L23.92! 0.99!

!
Cit! L4.67! 0.96! 110.94! 0.54! 14.02! 0.95! 25.17! 0.95!

!
Com! 4.62! 0.95! 96.74! 0.60! L57.48! 0.99! L52.69! 0.99!

!
Ent! L29.40! 0.98! 108.18! 0.59! 22.37! 0.93! 37.94! 0.93!

!
Fla! 14.13! 0.93! 102.20! 0.53! 38.37! 0.87! 54.45! 0.86!

!! Pse! 14.16! 0.91! 77.15! 0.60! 12.22! 0.91! 13.92! 0.90!
PHOS! Aci! 65.40! 0.62! 94.15! 0.30! 57.43! 0.59! 75.01! 0.58!

!
Bac! L38.32! 0.97! 93.07! 0.81! 4.56! 0.93! 21.31! 0.93!

!
Cit! L31.69! 0.97! 55.21! 0.80! 6.98! 0.92! 21.43! 0.92!

!
Ent! L85.80! 0.99! 64.58! 0.80! L21.68! 0.97! 0.56! 0.97!

!
Fla! 67.49! 0.72! 97.18! 0.49! 67.79! 0.57! 93.49! 0.56!

!! Pse! 56.54! 0.59! 77.34! 0.37! 55.42! 0.48! 83.56! 0.47!
!
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Figure 3.1. Temperature response of each isolate and enzyme combination. MMRT is 
represented by the solid line and Arrhenius is represented by the dashed line.  

!
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Figure 3.2. Heat capacity for each isolate and enzyme combination. Error bars (±2SE) 
represent uncertainty in the model fit. Letters represent significant differences (P<0.05) between 
isolates of the same enzyme (i.e., within panels), but not across the different enzyme types (i.e., 
not between panels).  
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Figure 3.3. (a) Example temperature response plot (LAP for Enterobacter) showing fits for 
MMRT, Arrhenius with temperature range 4-60°C (blue, dashed line), Arrhenius with 
temperature range 4-35°C (green, dashed line), and Arrhenius with temperature range 4-25°C 
(pink, dashed line). (b), (c), and (d) Activation energy estimates from the three Arrhenius fits 
with bars corresponding to Arrhenius 4-25°C (pink), Arrhenius 4-35°C (green), and Arrhenius 
with temperature range 4-60°C (blue). Error bars (±2SE) represent uncertainty in the model fit. 
Letters represent significant differences (P<0.05) between different isolates for the same 
Arrhenius fit (i.e., 4-25°C, 4-35°C, or 4-60°C, not between different fits for the same isolate) and 
within the same enzyme types (i.e., not between panels). Only compare same colors within the 
same panels.  
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Figure 3.4. Theoretical framework and hypotheses. In this figure, we demonstrate how the 
Arrhenius and MMRT frameworks fit together conceptually and how that impacts our view of 
the temperature response, which in our case refers to the reaction rate of extracellular enzymes. 
Under the Arrhenius framework, activation energy is the singular factor driving the apparent 
temperature response. MMRT expands upon this framework, suggesting that the temperature 
response is a function of the heat capacity of an enzyme, which is related to the enzyme’s 
flexibility. While there is already evidence for substrate type influencing activation energy (solid 
arrow connecting substrate to activation energy), in this experiment (red lettering) we extend this 
framework and hypothesize that the enzyme flexibility is also a product of the substrate type and 
genetic variation among different enzymes (dashed arrows). We posit that this overarching 
framework could be applied in a variety of situations relating to the temperature response. 
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Chapter 4: A meta-analysis of temperature sensitivity as a microbial trait 
 
 
 
Introduction 

Understanding distributions of ecological communities is one of the central themes in 

ecology. Distributions are particularly difficult to measure in microbial communities where the 

species concept is difficult to define and communities are constantly changing (Antwis et al., 

2017). Although a common approach in plant and animal ecology, trait-based ecological research 

is starting to gain traction in microbial ecology as a way to assess the biogeography of microbial 

communities and overcome the constraint of species diversity and ambiguity (Green et al., 2008; 

Crowther et al., 2014). Traits-based microbial ecology is also valuable in that it is a way to 

measure the impact of ecological response to environmental change and the importance of 

individual organisms in a community.  

In light of present and future anthropogenic changes in climate, there is rising interest for 

predicting the response of microbial processes to temperature, and theoretical motive to use a 

traits-based approach in this effort. The response of microbial metabolism to temperature is of 

particular interest because 1) virtually all metabolic reactions are highly dependent on 

temperature, and 2) with global warming, small changes in temperature have the potential to 

severely impact organismal performance and consequently ecosystem functioning (Dell et al., 

2014). Recently, we (Alster et al., 2016a) introduced the concept of temperature sensitivity as a 

microbial trait. We find in our previous work that temperature sensitivity can be characterized as 

a microbial trait itself with distinct temperature sensitivity trait values, influenced by genetic and 

environmental variation (Alster et al., 2016a; Alster et al., 2016b). Defining temperature 

sensitivity as a microbial trait with measurable and intercomparable characteristics adds another 
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technique to predict microbial community assemblage and creates an important tool to evaluate 

microbial response to climate change and impact on ecosystem function. 

We have defined three meaningful temperature sensitivity traits (heat capacity, point of 

maximum temperature sensitivity, and the temperature optimum) derived from Macromolecular 

Rate Theory (MMRT). This theory, proposed by Hobbs et al., 2013, expands the Arrhenius 

equation to account for temperature dependence of activation energy found in enzyme-catalyzed 

reactions due to negative changes in heat capacity. The consequence of incorporating these 

thermodynamic principles into the Arrhenius equation is a concave down response in rate to 

temperature, instead of an exponential increase in rate. MMRT uses three parameters to 

characterize temperature sensitivity traits including the change between the ground state and 

transition state for enthalpy, entropy, and heat capacity (!"!!‡ , !"!!‡ , and !"!‡), which can be 

directly estimated from the MMRT equation,  

 

ln ! = ln !!!
! − ∆!!!

‡ !∆!!‡ !!!!
!"  + ∆!!!

‡ !∆!!‡ !"!!!"!!
! , 

(1) 

where !  is the rate constant, !!  is Boltzmann’s constant, ℎ  is Planck’s constant, !  is the 

universal gas constant, ! is temperature, and !! is the reference temperature (Hobbs et al., 2013). 

Enthalpy and entropy are very closely related and reflect the intercept location of the temperature 

response curve. Heat capacity directly reflects the degree of negative curvature in the 

temperature response curve where more negative !"!‡ values correspond to a more narrow 

temperature response curve (i.e., more temperature sensitive) and less negative !"!‡  values 

correspond to a flatter temperature response curve (i.e., less temperature sensitive). From these 

parameters, we derived two temperature sensitivity traits in addition to !"!‡, the temperature 
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optimum (Topt) and the point of maximum temperature sensitivity (TSmax), which can be 

estimated by taking the derivative of MMRT and provides perhaps a more practical measure of 

temperature sensitivity. The temperature optimum denotes the temperature with the greatest rate 

value, while the point of maximum temperature sensitivity denotes the point where the change in 

rate is greatest. While Topt and TSmax are functions of !"!‡ and !"!!‡ , the relationships between 

these traits have not yet been reported. Furthermore, although the Topt and TSmax do not 

theoretically need to be correlated, it is likely that higher Topt corresponds to higher TSmax. 

Together, these three traits (!"!‡, Topt, and TSmax) provide the fundamentals to examine the 

ecological ramification of temperature sensitivity of enzymes and organisms.  

While the concept of temperature sensitivity as a trait could be applied using other types 

of temperature response models besides MMRT, we chose this approach for several reasons. 

First, our previous work (Alster et al., 2016a), along with work of others (Schulte, 2015; Pawar 

et al., 2016), shows that parameters from the commonly used Arrhenius equation are 

inappropriate and misleading for traits-based approaches. Unlike most biological processes, the 

Arrhenius equation predicts monotonically increasing reaction rate with temperature, whereas 

biological rates are unimodal functions with distinct rate maxima (DeLong et al., 2017). 

Secondly, even if applied within a biologically relevant temperature range, activation energy 

estimated from the Arrhenius equation is strongly contingent on the experimental temperature 

range, producing vastly different parameter estimates depending on incubation conditions 

(Schulte, 2015; Alster et al., 2016a; Pawar et al., 2016). Several models besides MMRT have 

modified the Arrhenius equation to better fit unimodal temperature response in biological 

reactions including Johnson-Lewsin (Johnson and Lewin, 1946), Sharpe-DeMichele (Sharpe and 

DeMichele, 1977), Schoolfield (Schoolfield et al., 1981), Ratkowsky (Ratkowsky et al., 2005), 
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Equilibrium model (Daniel and Danson, 2010), and enzyme-assisted Arrhenius (DeLong et al., 

2017) which could also be a basis for the temperature-traits approach. However, except for 

MMRT and enzyme-assisted Arrhenius, these other models assume an unlimited substrate supply 

and that reactions would occur in the absence of enzymes, which ignores the purpose of 

incorporating enzymes in the first place (DeLong et al., 2017).  

Under this innovative approach identifying temperature sensitivity as a biological trait, 

we are now able to address a new suite of ecological questions and their relevant applications. 

Because temperature is a foundational property for regulating biological reaction rates (Cossins, 

2012), comparing temperature sensitivity traits has the potential to provide nuance into 

organismal competition, biogeography, and adaptation at various thermal regimes and 

environmental conditions. Furthermore, assessing temperature sensitivity, as a microbial trait is 

pertinent as it has the potential to improve modeling of organismal and ecosystem response to 

climate change. For example, differential thermal response of organisms is not currently 

accounted for in ecosystem climate models (e.g.,(Wieder et al., 2013). Incorporating temperature 

response as a trait would allow easy incorporation into existing trait-based ecosystems models 

such as the Decomposition Model of Enzymatic Traits (DEMENT) model or the Microbial-

Mineral Carbon Stabilization (MIMICS) model (Allison, 2012; Wieder et al., 2015). Delving 

into temperature sensitivity traits may also give us a better understanding of functional 

biodiversity of microbial communities and how we might expect individual taxa and microbial 

communities to adapt to warming.  

In this meta-analysis we explore how temperature sensitivity varies as a biological trait. 

We aim to identify how broadly temperature sensitivity varies under this new definition of 

temperature sensitivity traits and assess the relationships between these temperature sensitivity 
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traits. We also begin identifying which characteristics of organismal type and environmental 

conditions are most important for predicting temperature traits. In this experiment we synthesize 

results from 113 studies by analyzing nearly 400 different temperature response curves from 

bacteria and fungi from a diverse array of systems including natural systems such as soils and 

oceans, wastewater treatment plants, and a variety of food sources in order to being filling in 

these gaps in understand of how temperature sensitivity varies as a trait. We hypothesize that 

organisms from a more variable thermal environment will produce enzymes that are less 

temperature sensitive (less negative !"!‡ ) than organisms from a less variable thermal 

environment due to thermal adaptation, but there will likely be trade-offs involving resource 

availability and competition, as well as gene conservation (Wallenstein and Hall, 2012; Alster et 

al., 2016a), and that Topt and TSmax will reflect the average thermal environment from which the 

organisms originate. We also hypothesize that measurements of temperature sensitivity of larger 

groups of organisms or enzymes will result in lower temperature sensitivity, due to those 

estimates being a summation of a variety of individual temperature responses.  

 

Methods 

Literature survey 

We searched Web of Science and Agricola databases for published papers reporting 

reaction rates by temperature interactions for bacteria and fungi. Each search contained at least 

one organismal term: microbes, "microbial communities", bacteria, bacterium, fungi, or 

microorganism*; at least one rate term: "respiration rate", "microbial growth", "carbon use", 

“ammonia oxidation”, “denitrification”, or “nitrification”; and at least one temperature term: 

“temperature sensitivity”, Arrhenius, MMRT, "activation energy", “ratkowsky model”, or 
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“macromolecular rate theory”. Our search yielded 263 total studies, however 149 were 

eliminated after initial review based on preliminary criteria. The majority of data sets were 

excluded because the studies measured less than four separate temperatures and/or the 

temperature range measured spanned less than 15°C. We chose these criteria because they 

minimize the opportunity for thermodynamically implausible values once run through the 

MMRT model. Furthermore, we chose four temperature points for statistical purposes because it 

is one fewer than the number of parameters in the MMRT model. Several studies were 

eliminated because they did not measure an explicit rate (e.g., total growth or percent of activity) 

or did not measure bacteria and/or fungi (e.g., virus or algae). A few papers were also excluded if 

they were generated from a model as opposed to experimental data, if English versions of the 

papers could not be obtained (four studies), or if the paper could not be found by the Colorado 

State University Library services (four studies). In eight of the papers, the analyzed data were 

from previous studies, so in those cases we used the data from the original source paper 

(Supplementary Table S4.1).  

 

Data acquisition  

After initial review, we extracted data from the remaining 113 studies using 

WebPlotDigitizer, manually entering data from tables, or emailing the authors. After emailing, 

we were unable to obtain the specific data needed from the authors from eight papers that 

matched the experimental criteria. A total of 625 temperature response curves (rate vs. 

temperature) were obtained from the 134 papers we extracted data from (including the original 

data papers). Data from each temperature response was then fitted to the MMRT equation using 

a numerical Gauss-Newton approach in JMP Pro v.11. MMRT model parameter values (!"!!‡ , 
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!"!‡, !"!!‡ ) and associated standard errors were estimated for each curve. After fitting each 

temperature curve, we eliminated temperature response curves that were concave up as 

thermodynamically implausible, and remained with MMRT parameter estimates of 531 

temperature response curves. We calculated temperature trait values (Topt and TSmax) for each of 

the successfully fitted temperature response curves using the first derivative of the MMRT 

equation and estimated the standard errors for these traits using a Monte Carlo simulation in R 

version 3.2.1.  

For each of the temperature trait estimations, we also gathered additional meta-data from 

each of the curves, including: average native pH, average experimental pH, organismal type (i.e., 

bacteria, fungi, or a mix of bacteria and fungi), bacteria type (i.e., gram-positive or gram-

negative), assortment of organisms measured (i.e., isolate, group of similar organisms, or 

community of organisms), microbial source, average native thermal environment, pre-incubation 

temperature, thermally/anthropogenically managed or unmanaged system, aquatic or terrestrial 

source (if from an unmanaged system), and rate type (Supplementary Table S4.1). It is important 

to note that not all of the trait values have all of the meta-data, either because the information 

was not reported in the paper or because the information was not relevant for that particular 

study (e.g., bacteria type when the paper measured fungal temperature response).  

 

Statistical analysis 

Temperature curves were removed as outliers if any of the standard errors of the 

parameter or trait values (!"!!‡ , !"!‡, !"!!‡ , Topt, and TSmax) fell above 1.5 of the interquartile 

range of the upper quartile. The final number of temperature response curves analyzed after 

outlier removal was 381. Summary statistics for the mean, range, standard deviation, and 
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weighted mean (using the standard error) were calculated with their associated histograms. 

Correlations between each of the temperature traits were estimated. We ran a random effects 

model (REM) to estimate the difference between the means for each of the parameter values for 

each of the meta-data that we collected. In groups with categorical variables, we only report 

results where there were at least ten temperature response curves in a particular category. We 

checked the normality of the residuals for every distribution of temperature traits values that we 

examined and took the natural log of !"!‡ in order to normalize in all cases. All of these statistics 

were conducted in R 3.2.1. 

 

Results 

Summary statistics 

One of the main goals of this meta-analysis was to characterize the frequency 

distributions of the MMRT parameters and temperature traits (!"!!‡ , !"!‡, !"!!‡ , Topt, TSmax), in 

order for this temperature sensitivity framework to be more widely incorporated into other 

studies and analyses. Overall, we found that the type of distribution varied based on the 

parameter estimated and the ranges of possible trait values were diverse. The temperature 

optimum and point of maximum temperature sensitivity have approximately normal 

distributions, with Topt, skewed slightly right with a mean of 29.5°C, a standard deviation of 

10.8°C, and a range of 4.6 to 96.1°C (Figure 4.1a). TSmax is skewed slightly left with a mean of 

17.8°C, a standard deviation of 9.5°C, and range of -33.4 to 61.6°C (Figure 4.1b). Heat capacity 

has a roughly bimodal lognormal distribution with a mean of -8.4 kJ mol-1 K-1, a standard 

deviation of 6.5 kJ mol-1 K-1, and a range of -33.8 to -0.328 kJ mol-1 K-1 (Figure 4.1c). The 

values closer to zero indicate a more linear temperature response (or the rate is less sensitive to 
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changes in temperature) whereas the more negative !"!‡  values indicate a more curved 

temperature response and thus more sensitive to changes in temperature. Lastly, enthalpy and 

entropy both have approximately normal distributions with means of 36.5 and -0.111 kJ mol-1 K-

1, standard deviations of 58.1 and 0.190 kJ mol-1 K-1, and ranges of -172 to 385 and -0.887 to 

0.998 kJ mol-1 K-1, respectively (Figures 4.1d, e). Weighted means vary slightly from the 

reported means with a TSmax of 17.5°C, Topt of 26.1°C, !"!‡ of -4.58 kJ mol-1 K-1, !"!!‡  of 36.0 

kJ mol-1 K-1, and !"!!‡  of -0.110 kJ mol-1 K-1.  

 

Temperature trait correlations 

Correlations among the MMRT parameters and temperature traits varied considerably. 

There was a nearly perfect positive correlation between !"!!‡  and !"!!‡  (r = 0.98). We also 

found a strong positive correlation between Topt and TSmax (r = 0.89, Figure 4.2a) with an offset 

of Topt approximately 8.6°C higher than TSmax, which has not been reported previously. We 

observed no correlation with !"!‡ for !"!!‡  and !"!!‡  (r = -0.09 and r = -0.05). Correlations 

between !"!!‡  and !"!!‡  with Topt and TSmax were positive with correlation coefficients between 

0.73 and 0.81. The relationships between !"!‡ and Topt and TSmax (Figure 4.2b, c) had a T-shaped 

or right-angled type of curve where a variety of Topt and TSmax values are possible when !"!‡ is 

less than about -10 kJ mol-1 K-1, but values for higher negative !"!‡ values Topt and TSmax fall 

within a very narrow temperature range.  
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Variation in temperature sensitivity traits 

Using a random effects model, we compared how !"!‡ , Topt, and TSmax varied for 

different organism types and environmental factors. We found that bacteria had a higher Topt and 

TSmax than fungi or than the mix of organisms (Figure 4.3a), however we did not find any 

difference in !"!‡ between those three groups (Figure 4.a). We also found considerable variation 

in temperature sensitivity within bacteria as a group. Gram-positive and gram-negative bacteria 

were found to differ in all of their temperature sensitivity traits, with gram-positive bacteria 

having a higher TSmax, Topt, and more negative !"!‡ (Figures 4.3b and 4.4b).  

Environmental conditions also varied with temperature sensitivity traits. We found weak, 

but significant positive correlations with average native thermal temperature (Figure 4.5a, b, c) 

and lower Topt and TSmax values in sources with where we might expect lower average 

temperatures, like marine water and ice, and marine sediments. We found higher Topt and TSmax 

values in sources where we might expect to have high average temperatures, like wastewater and 

sludge and food animal products (Figures 4.3d and 4.4d). Aquatic systems were found to have a 

higher Topt and TSmax values than terrestrial systems (Figure 4.3c). We find that in thermally 

managed systems (i.e., wastewater and sludge and food animal products) !"!‡ is more negative 

than in unmanaged systems (Figure 4.4d). In contrast we find that in aquatic and unmanaged 

systems !"!‡ is less negative, with marine water and ice being the lowest, followed by soil 

(Figure 4.4c, d, e). We found only weak correlations between temperature sensitivity and pH 

(Figure 4.5g-l). 

Temperature traits also varied with the type of rate measured and the assortment of 

organisms measured. The assortment of organisms measured (i.e., isolate, selected group of 

similar organisms, and community) resulted in significantly different temperature trait values. 
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TSmax and Topt were both lowest for the community, followed by the isolate, and then by the 

group of similar organisms (Figure 4.3f). Heat capacity was also least negative for the 

community, followed again by the isolate and group of similar organisms (Figure 4.4f). 

Similarly, we found the type of rate measured in the analysis to make a difference in the 

temperature traits. Carbon dioxide flux and enzyme activity had the least negative !"!‡ values, 

but carbon dioxide flux had the largest TSmax and Topt values whereas enzyme activity had one of 

the lowest TSmax and Topt values (Figures 4.3g and 4.4g). Growth rate and nitrogen-related rates 

had more intermediate temperature sensitivity trait values (Figures 4.3g and 4.4g). 

 

Discussion 

Relationships among temperature traits 

This is the first study, to our knowledge, to document the distribution of these 

temperature sensitivity traits, and explore how they diverge for different organisms, 

environments, and biological processes. Information about these distributions is necessary in 

order to accurately parameterize models. Moreover, establishing functional relationships 

between temperature sensitivity traits are necessary to further ecological theory (McGill et al., 

2006). The relationships we observed between !"!‡ and Topt and TSmax (Figure 4.2b, c) were not 

as expected based on data from Hobbs et al., 2013. Instead of a gradually sloping and saturating 

type of curve, we find a T-shaped or right-angled type of curve. The many more data points we 

have in our meta-analysis might explain the different relationship observed in the Hobbs et al., 

2013 study. Another possibility for this discrepancy is that we included all types of metabolic 

rates in our analysis instead of rates for only individual enzyme activities. Regardless, these 
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relationships suggest a tradeoff between !"!‡ and Topt and TSmax making it is unusual to have 

high temperature sensitivity with very high Topt or very high or low TSmax values.  

 

Temperature sensitivity traits vary among organism 

In this meta-analysis we primarily explore how temperature sensitivity varies as a 

microbial trait. The differences expressed in temperature sensitivity traits among the different 

categories measured could be a function of variation in organismal physiology and adaptation, 

competition between organisms, thermal regime and other environmental trade-offs, or 

measurement approaches. The fact that more differences exist for Topt and TSmax than for !"!‡ 

among different organisms, suggests that temperature sensitivity of bacteria, fungi, and a mix of 

organisms is largely driven by enthalpy as opposed to heat capacity. Similarities in !"!‡ between 

these different groups of organisms are consistent with the literature. Both(Pietikainen et al., 

2005)and(Bárcenas‐Moreno et al., 2009)found overall temperature response to be similar 

between bacteria and fungi. Furthermore, fungal to bacterial ratios have been found not to 

change with temperature (Allison and Treseder, 2008; Strickland and Rousk, 2010), suggesting 

similarities in temperature sensitivity. However, higher Topt and TSmax in bacteria than fungi or 

the mix of organisms, contrasts(Immanuel et al., 2006)which found higher Topt values for fungal 

enzymes than for bacterial enzymes, although they only surveyed a few microbial strains. 

However, many thermophilic bacteria exist with high temperature optima due to highly 

thermally stable macromolecules (Zeikus, 1979).  

Although both gram-positive and gram-negative bacteria are ubiquitous, with 

exceptionally high and low temperature optima found in both types of organisms (Pask-Hughes 

and Williams, 1975; Huston et al., 2000), gram-negative bacteria are more commonly known for 
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their ability to withstand extreme temperatures and pH levels due to their strong, but elastic outer 

membranes (Beveridge, 1999). However, this pattern is in contrast with our results. It is possible 

that thicker cell walls in gram-positive bacteria or other features of their cell wall allow them to 

have the higher TSmax and Topt values observed in our study. The result of gram-negative bacteria 

having a less negative !"!‡  is also surprising. Both(Schwab et al., 2014)and(Eber et al., 

2011)report higher densities of gram-negative bacterial pathogens in warmer months as opposed 

to cooler months, but little change in densities of gram-positive bacteria throughout the year. 

Thus, gram-negative bacteria appear to be more temperature sensitive in these studies, while our 

meta-analysis reveals that gram-negative bacteria are less temperature sensitive. We hypothesize 

that this difference could be due to the fact that the range of temperatures experienced by these 

pathogenic gram-negative bacteria were more in the range close to their TSmax where small 

changes in temperature can result in large changes in growth rate, while if the gram-positive 

bacteria had a higher TSmax, as our results suggest, then the apparent temperature sensitivity 

would appear negligible, even if the actual temperature sensitivity (i.e., !"!‡) is higher.  

It is also possible that the differences in the temperature traits observed between gram-

positive and gram-negative bacteria in our study are an artifact of the meta-analysis itself. All 

gram-positive bacteria in our meta-analysis were derived from thermally managed (mostly food 

systems), where the temperature was likely higher and more constant. The environmental source 

for gram-negative bacteria was much more varied, but included sources where the native thermal 

temperature was likely lower and more variable, e.g., soil. However, we do not presume this to 

be the dominant cause of the differences we observed since these results do not correspond with 

the TSmax, Topt, and !"!‡ values found for the microbial source data.  
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Temperature sensitivity traits vary among environments 

The source environment proved to be an exceptionally strong predictor of variation in 

temperature sensitivity traits. At the outset of this study, we expected temperature sensitivity to 

be highly dependent on the source environment—a function of the thermal regime (average 

temperature and stability of temperature), substrate quality and quantity, and pH. Specifically, 

we predicted that Topt and TSmax would follow average temperature from the source environment, 

while !"!‡ would more strongly reflect the temperature variation. Unfortunately, our dataset did 

not include sufficient information about temperature variance to allow us to directly test this 

hypothesis. However, Topt and TSmax were correlated with environmental temperature (Figure 

4.5a, b, d, e). Based on our hypothesis, !"!‡ should be most negative (greatest temperature 

sensitivity) for environments that experience large changes in temperature (Wallenstein and Hall, 

2012), have more recalcitrant substrate (Fierer et al., 2005; Davidson and Janssens, 2006; Conant 

et al., 2008; Craine et al., 2010), or that have low substrate availability (Nedwell, 1999; Pomeroy 

and Wiebe, 2001). Our findings indicate that thermally managed systems have more negative 

!"!‡ than in unmanaged systems, which perhaps indicates a greater thermal stability in these 

managed systems and increased substrate availability, contrasting with aquatic and unmanaged 

systems where !"!‡ is less negative. Low temperature sensitivity in aquatic systems is somewhat 

surprising, as we would expect temperature sensitivity to be higher because of greater temporal 

stability, thus selecting for microbial communities composed of more temperature specialists as 

opposed to generalists (Wallenstein and Hall, 2012). However,(Yvon-Durocher et al., 2012)did 

find lower apparent activation energies for respiration in aquatic systems compared with 

terrestrial systems, which is roughly in line with our results that terrestrial systems are more 

temperature sensitive (i.e., more negative !"!‡). Higher temperature sensitivity in terrestrial 
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systems may also reflect a narrower range of temperature environments recorded in this meta-

analysis compared to aquatic systems, thus providing a mean aquatic !"!‡ with a less sensitive 

temperature response even if some temperature response curves for individual organisms or 

communities may be more sensitive than in terrestrial.  

The discrepancy in our results for aquatic and terrestrial systems could also be due to 

tradeoffs in temperature sensitivity with substrate or difficulties in disentangling nutrient 

availability from temperature response. Membrane structure and function exhibit a tradeoff 

between resource acquisition and thermal adaptation, and as temperature decreases, substrate 

affinity also decreases. Therefore, cold-adapted organisms might be less temperature sensitive in 

order to increase their competitive advantage for resources at colder temperatures (Nedwell, 

1999). Thus, in marine water and ice lower average temperatures may restrict substrate uptake 

ability, which would result in minimal temperature sensitivity in order to compete for substrates 

at these low temperatures. In resource poor environments, a tradeoff may also exist between 

temperature response and nutrient acquisition, where temperature sensitivity must be lower to 

compete for resources (Hall et al., 2008; Manzoni et al., 2012). Lastly, a tradeoff between 

substrate type and temperature sensitivity has been widely documented in the literature where 

increasing temperature sensitivity corresponds to increasing substrate complexity or recalcitrance 

(Fierer et al., 2005; Conant et al., 2008; Craine et al., 2010). However, it is beyond the scope of 

this study to disentangle the constraints on temperature sensitivity due to substrate complexity 

and total substrate availability beyond speculation. Greater detail on substrate availability and 

recalcitrance may provide further insight into predicted temperature response of organisms from 

different environments. We also expected temperature and pH to be major drivers of microbial 

temperature sensitivity. Although pH is a major driver of microbial community composition 



! 86 

(Fierer et al., 2009) and its intrinsic relationship with temperature suggests a potential 

relationship with temperature sensitivity (increase in temperature corresponds to a decrease in 

pH), we did not find strong support for this in our analysis, which corroborates Craine et al., 

2010 that found no relationship between pH and activation energy.  

 

Temperature sensitivity traits vary based on measurement types 

We found some interesting relationships between temperature sensitivity trait values and 

the type of rate measured and the assortment of organisms measured. The results supported our 

hypothesis that !"!‡  would be less negative in communities than isolates, suggesting that 

temperature responses of a community are the summation of individual temperature response 

curves. This effect lowers the !"!‡  and effectively flattens the temperature response curve 

(see(Schipper et al., 2014), Fig. 2). Heat capacity may also be less negative in communities 

versus individual isolates because microorganisms often have altered phenotypic expression in 

communities than as individuals (Paul, 2014; Wagg et al., 2014). Persisting in a community 

versus individually could lessen the apparent temperature sensitivity due to reducing other 

environmental constraints (i.e., resource acquisition). In contrast to these findings, the !"!‡ 

values for groups of similar organisms were the most negative (or most temperature sensitive). 

This is consistent with the hypothesis that increased competition between very similar organisms 

drives some sort of “niche” response (Crowther et al., 2014), resulting in large, negative !"!‡ 

values as microbes adapt to specific temperature regions where they outperform others. 

However, it is also conceivable that the temperature response we see in the group of similar 

organisms category (as opposed to the community and isolate category measurements) is due to 

the majority of this group coming from wastewater and food animal product studies where 
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temperature is highly managed compared to the other sources, driving the similar organism 

group to have a higher than natural temperature sensitivity.   

  The type of rate measured also explains variation in the observed temperature traits. 

Interestingly, the heat capacity results did not fully match our hypotheses, which predicted that 

rates involving a broader range of activities (i.e., carbon dioxide flux) would be less temperature 

sensitive than rates involving singular enzymes (i.e., enzyme activity rates). Consistent with our 

hypothesis, we found carbon dioxide flux to be the least temperature sensitive (Figure 4.4g) as it 

involves many different enzymes, which might combine to produce an overall less temperature 

sensitive response. However, we predicted that as enzyme activity is a more specific rate 

function, !"!‡ would be most negative, which was not the case (Figure 4.4g). This inconsistency 

might be due to the fact that enzymes are known to have different temperature sensitivities 

(Koch et al., 2007; Trasar-Cepeda et al., 2007; Steinweg et al., 2013; Alster et al., 2016a), so 

grouping them into one large group in the meta-analysis may have misconstrued the results. The 

rate with the most negative !"!‡, or most temperature sensitive, was denitrification, which 

follows reports of the Q10 of denitrification exceeding that of carbon dioxide flux due to the 

tight coupling of the microbial C and N cycle (Butterbach-Bahl et al., 2013). Denitrification also 

takes place under very specialized conditions (i.e., high nitrate availability, low oxygen 

concentrations, and electron donor availability) compared with the other metabolic functions 

(Seitzinger et al., 2006), perhaps restricting their ability to adapt to different temperature 

continuums. 

It is widely assumed that reaction rates of all kinds will increase exponentially as 

temperature increases (Davidson and Janssens, 2006), unless limited by other factors such as 

water or other nutrients (Bouletreau et al., 2014) until reaching a very high temperature. The 
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results found in this study indicate that the temperature at which reaction rates might be expected 

to decline is lower than previously assumed, or at least the temperature where exponential 

growth in the rate term is lower than expected (Figure 4). Although a plethora of studies exist on 

how different rates vary with temperature, how temperature sensitivity varies between those 

different rates within the same system is not commonly studied. In agreement with our results, 

Pietikainen et al., 2005 found that the Topt for respiration rate in soils was higher than the Topt for 

growth rate. However, this study was included in our meta-analysis. Furthermore, many 

respiration studies do not capture the Topt, which implies that the Topt might be quite high 

(e.g.,(Lloyd and Taylor, 1994), which is consistent with our data. What we find most insightful 

about this analysis is the knowledge about which types of microbial functions might be most 

impacted by global warming and impact ecosystem models the greatest. Microbial 

transformations involving nitrogen appear to have the greatest temperature sensitivity as defined 

by a highly negative !"!‡, as well as moderate TSmax and Topt values. Thus, modest increases in 

temperature could strongly affect how much nitrous oxide could be released from our soils and 

water and modeling of those changes could be largely inaccurate (Butterbach-Bahl et al., 2013).  
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Figure 4.1. Histograms of TSmax (a), Topt (b), ln(-ΔC!‡) (c), ΔH!"‡  (d), and ΔS!"‡  (e). The black line 
represents true shape of the distribution, while the red line indicates what the distribution would 
be if it was normally distributed (or lognormally distributed for ΔC!‡).  
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Figure 4.2.  Correlations among temperature sensitivity traits.  
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Figure 4.3. Mean TSmax and Topt for organismal type (a), bacterial type (b), aquatic or terrestrial 
source (c), microbial source (d), thermally/anthropogenically managed or unmanaged system (e), 
assortment of organisms measured (f), and rate type (g). Error bars represent ±2 standard errors 
above and below the mean. Letters indicate significant differences (P <0.05) between groups 
within TSmax or Topt (not between the two temperature traits).  
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Figure 4.4. Mean !"!‡ for organismal type (a), bacterial type (b), aquatic or terrestrial source (c), 
microbial source (d), thermally/anthropogenically managed or unmanaged system (e), assortment 
of organisms measured (f), and rate type (g). Error bars represent ±2 standard errors above and 
below the mean. Letters indicate significant differences (P <0.05) between groups. 
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Figure 4.5. Correlations for temperature traits (TSmax, Topt, and ΔC!‡ ) and native thermal 
temperature, pre-incubation temperature, native pH, and experimental pH.  
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Chapter 5: Summary and Conclusions 

 

The primary objective of my dissertation was to improve understanding of temperature 

sensitivity of soil microbial communities. I addressed two main questions: 1) how does the 

activity of soil microbes vary with temperature? And 2) how should temperature sensitivity be 

characterized? In chapters two and three I addressed question one by comparing the Arrhenius 

equation with Macromolecular Rate Theory (MMRT) and determined that MMRT is a better 

estimate of temperature response for both carbon dioxide flux from soil microbial communities 

and also for enzyme activity from soil microbial isolates. These results are some of the first 

empirical studies testing MMRT. I also determined here that microbes have distinct temperature 

sensitivities that can vary independent of their environment. Chapters three and four address 

question two and develop a comprehensive way to examine temperature sensitivity for soil 

ecology and potentially other biological systems and organisms. Using MMRT, I developed the 

idea of using temperature sensitivity as a biological trait in order to more meaningfully evaluate 

temperature sensitivity across different types of organisms and enzymes. I identify in chapter 

three that this traits-based approach cannot be supported using the Arrhenius equation since 

parameter estimates are so heavily dependent on methodology. In chapter four, I evaluated the 

distributions and correlations of these temperature sensitivity traits using a meta-analysis and 

show that they vary with organism type, environment, process, and biodiversity, further 

developing an understanding of how temperature sensitivity should be characterized. 

Importance of this work is multi-faceted. First, it highlights the importance of differences 

among microbial communities. This work supports the notion that not everything is everywhere 

(even functionally), and that microbes and communities of microbes should be expected to have 
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differential responses to changes in temperature. Secondly, this work demonstrates that the 

Arrhenius equation is not the best approach to abstract temperature sensitivity for soil microbes 

and offers an alternative approach. Using MMRT, I developed the novel concept of temperature 

sensitivity as a microbial trait, which allows for integration of temperature sensitivity into other 

areas in ecology and climate science in new ways. Operating under this traits-based approach, it 

is easier to compare temperature sensitivities from soil microbial communities (and other 

organisms) across locations and to begin making ecological inferences about competition, 

adaptation, microbial community assemblage, etc., as it relates to temperature sensitivity. The 

traits-based approach might also be a practical method to discreetly incorporate differential 

temperature responses into trait-based ecosystem models to more accurately predict ecosystem 

functions. The meta-analysis performed in this dissertation provides the necessary data to begin 

parameterizing these models. Lastly, this work provides new insights into how temperature 

response of organisms might impact global climate change. For example, I found in the meta-

analysis that processes related to nitrogen metabolism have higher temperature sensitivities than 

does respiration. This inspires new lines of inquiry as to what functions or organisms might be 

most sensitive to global warming.   

While I believe that this body of work has made a contribution to advancing 

understanding of temperature sensitivity in soil microbial communities, there are still many 

unanswered questions. One major question is how temperature sensitivity traits respond to stress 

both on an individual level and as a community. Are temperature traits highly conserved or prone 

to adaptation? Better understanding of how these traits will adapt to climate change will allow us 

to improve predictions of both organismal and ecosystem responses to climate change. Secondly, 

what are the interactions between temperature sensitivity traits and resource availability? Finally, 
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how can we continue to scale up from organisms to communities and enzyme activities to large 

processes in the most realistic ways? 

 


	Dissertation
	Dissertation.6
	Figure 2.1
	Dissertation.7
	Dissertation.8
	Dissertation.9

