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ABSTRACT 
 
 
 

CHARACTERIZING UNIQUE FEATURES OF PRION-LIKE DOMAINS RECRUITED 

TO STRESS GRANULES  

 
 

Upon nucleation into a cross-β-structure, a classical amyloid will elongate in a 

concentration-dependent manner as successive hydrogen bonds are made along each 

exposed β-strand. Solid-state assemblies in biomolecular condensates such as the 

Balbiani Body in oocytes share a similar β-sheet rich structure that contributes to low 

dynamicity of the interactions in this separated phase. Prion-like domains (PrLDs) are 

domains that compositionally resemble yeast prion domains. Some PrLDs can form 

solid-state assemblies; however, PrLDs have also been associated with the formation of 

more liquid-like biomolecular condensates. Liquid-like biomolecular condensates form 

upon varying stimuli, and they appear to assemble through different mechanisms of 

recruitment than what has been observed for solid-state assemblies. Many solid-state 

assemblies form via homotypic interactions between identical assembly-prone PrLDs. In 

contrast, liquid-like assemblies generally form through heterotypic interactions across 

multiple components. Both solid-state and liquid-like condensates recruit domains that 

are currently classified as “prion-like”, but evidence is mounting that these contrasting 

condensates preferentially recruit functionally different types of prion-like domains. A 

unique feature of prion-like domains recruited to liquid-like condensates is that formation 

of these assemblies appears to obey a more diverse set of rules for recruitment. This 

diversity of recruitment of PrLDs may be largely due to the heterotypic interaction 
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mechanism for assembly into liquid-like condensates. This mechanism of recruitment 

may also be partially responsible for the different compositional preferences observed 

for PrLDs recruited to liquid-like assemblies. 

PrLD manipulation is a convenient tool for analyzing the compositional elements 

contributing to formation of both classes of biomolecular condensates. To elucidate the 

divergent features of PrLDs recruited to liquid-like assemblies, we used systematic 

mutation of synthetic PrLDs, among other techniques, to examine their unique 

compositional requirements for assembly. We have created a set of synthetic PrLDs 

which demonstrates a gradient of assembly-propensity, where localization to stress 

granules is modulated by differences in residue composition of the domains. To 

measure the different degrees of assembly propensity of PrLDs, we developed a novel 

means of quantitative image analysis to determine the enrichment of PrLDs in stress 

granules. The goals of this work are to help uncover some of the compositional features 

unique to prion-like domains that are recruited to liquid-like assemblies such as stress 

granules, to introduce a novel method of image analysis that will allow for quantification 

of assembly propensity of PrLDs in yeast, and to probe the concentration dependence 

for assembly of PrLDs into stress granules.  
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CHAPTER 1: INTRODUCTION 

Prion-like Domains  

Devastating neurodegenerative diseases such as Alzheimer’s, Parkinson’s, or 

Amyotrophic Lateral Sclerosis share some common features at the cellular level 

including accumulation of toxic protein aggregates, and the formation of inclusion 

bodies or amyloids, in subsets of neurons  [1]. These amyloids appear to show 

transmission between cells that is reminiscent of observed characteristics for 

proteinaceous infectious particles (prions); their aggregation cooccurs with neuronal 

tissue loss, and amyloid aggregation leading to cell-to-cell transmission is believed to be 

associated with disease progression observed for these conditions [2]. 

Insights into the mechanistic basis for these diseases have emerged from studies 

of prions in yeast. In 1994, the first yeast prions were identified by Reed Wicker. He 

characterized [URE3] and [PSI], the prion forms of the Ure2 and Sup35 proteins, 

respectively [3]. His work illuminated the presence of prions in the proteomes of multiple 

types of eukaryotic organisms, and not just in mammals as previously observed. The 

phenotypes resulting from yeast prions had been encountered years earlier with [PSI] 

imparting non Mendelian inheritance and being proposed as a “cytoplasmic mutation” 

first [4]. Another group later observed ureidosuccinic acid uptake in yeast [5]. These 

curious phenotypes were recognized by Wickner to be [PSI] and [URE3+] strains 

predating the yeast prion classification. This work was followed up to identify the domain 

of Ure2 contributing to prion aggregation, and led to identification of the “prion-inducing 

domain” of Ure2 [6]. 
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Researchers investigated Ure2 and Sup35 as models to examine the sequence 

features that drive prion aggregation. The prion domains of both proteins are enriched in 

glutamine and asparagine, and depleted in charged and hydrophobic amino acids. 

Simple bioinformatics methods using these compositional characteristics, combined 

with phenotypic screens, led to the identification of a third prion, [PIN], which is the prion 

form of Rnq1 [7]. The compositional similarity between the Ure2, Sup35, and Rnq1 

prion domains raised the possibility that amino acid composition could be a primary 

determinant of prion propensity. Indeed, randomizing sequences in the prion-like 

domains of Ure2 and Sup35 had no effect on their prion forming ability [8], [9].  

Based on these compositional biases, other labs began to develop progressively 

more sophisticated methods to identify prion-like domains, which are domains with high 

compositional similarity to known yeast prion domains. Astonishingly, the proteomes of 

many species including humans and Saccharomyces Cerevisiae were found to be 

equipped with numerous prion-like domains [7], [10]. 

Yeast prion formation involves the assembly of intrinsically disordered, glutamine 

and asparagine enriched, low amino acid complexity domains into amyloid fibrils [9]. 

These residues are particularly important for formation of the hyper-stable dry interface 

of the amyloid core. When compositional preferences were illuminated as an important 

feature to seek out when looking for other prion-like domains, common sequence 

features between human prions and yeast prions began to emerge. These features 

were discovered by successive rounds of defining criteria among known yeast prion-like 

domains, followed by discovery of new yeast prions to further define the sequence 
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features of yeast prion-like domains to seek out in bioinformatic analysis. Remarkably, 

many of the prion domains that were discovered can efficiently induce prion formation 

irrespective of primary sequence because their residue composition. 

The research community continued to refine their prion aggregation propensity 

prediction algorithms to reveal compositional requirements for aggregation with greater 

detail [12], allowing for the identification of hundreds of human proteins with prion-like 

domains. Mutations located within the prion-like domains many of these proteins, 

including FUS, TDP-43, hnRNPA1, hnRNPA2, TAF-15, EWSR1, are associated with 

neurodegenerative diseases [13]. The discovery of many proteins existing at the edge 

of pathological aggregation led researchers to examine possible physiological 

implications of aggregation of these domains. Prion-like domains were observed to be 

recruited to both solid-state assemblies like the Balbiani body [14], or more liquid-like 

assemblies such as The P Granule [15], and Stress Granules [16]. Although prion-like 

domains are classically associated with both solid-state and liquid-like assemblies 

evidence is emerging that suggests that the types of prion-like domains recruited to 

liquid-like assemblies represents a functionally separate group from the prion-like 

domains that are recruited to solid-state assemblies. The composition of prion-like 

domains recruited to liquid-like assemblies results in differences in the mechanism of 

recruitment to their respective condensate environment, and these mechanistic 

differences give rise to other features unique to this sub-class of prion-like domains.  
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Solid-state assemblies 

Solid-state assemblies are diverse, however, yeast prions are a highly 

characterized solid-state assembly that provides insight to general properties. The 

prevalence of cross-β-structure, or a parallel β-sheet structure, in a majority of yeast 

prions is a clue that helps explain some of the unique characteristics observed for these 

hyper-stable assemblies. In-register parallel β-sheet structures result from the 

interaction of identical prion-like domains with one-another (Figure 1.2). Identical 

domains bind to the exposed strand in-register so that elongation of the structure 

proceeds perpendicular to the direction of the β-sheet peptide backbones. Each prion-

like domain is added to the parallel β-sheet at an exposed strand, and is incorporated 

with identical orientation each time (Figure 1.1). This means that each cross-β-structure 

that forms possesses a unique structure specific to the prion-like domain that 

contributed to its formation. This allows for many variations in primary sequence of 

prion-like domains.  

It is worth noting that PrLDs represent only a subset of aggregation-prone, 

intrinsically disordered regions (IDRs), and other IDRs may possess different 

compositional preferences. However, in order to understand the homotypic interactions 

that drive recruitment prion-like domains to solid-state assemblies, and why these 

specific compositional preferences arise from homotypic interactions, Figure 1.1 and 

Figure 1.2 depict the peptide configuration characteristic of homotypic interactions. 
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Figure 1.1: Parallel β-sheets can adopt a variety of structures with a common 
homotypic interaction pattern. Identical domains stack one after another along the 
filament long axis. From [16]. 

 

 

 

 

 

 

 

 

 

Figure 1.2: Parallel β-sheet structures maintain interactions upon scrambling promoting 
assembly from a variety of amino acid sequences. The maintenance of residue 
interaction partner specificity is not dependent on primary sequence in these structures, 
and the interaction pattern resulting from randomizing the residue sequence can be 
predicted using the following method shown above. From [11]. 
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An in-register parallel β-sheet structure likely explains the insensitivity of yeast 

prion domains to scrambling (Figure 1.2). Because each amino acid is interacting with 

its identical counterpart in the adjacent peptide chain, scrambling does not change 

these primary interactions. Additionally, this illustration allows for inference of how the 

changes in physicochemical properties introduced by mutation will affect the resulting 

structure. For example, if a single acidic residue were inserted into a sequence it would 

be adjacent to its identical acidic counterpart in a neighboring polypeptide chain when 

attempting to assemble into a parallel β-sheet, and their negatively charged side groups 

would repel each other in close proximity leading to unfavorable conditions for cross-β-

structure formation. This helps to explain the enrichment for uncharged residues in 

prion-like domains, and explains the commonly observed enrichment for one or more of 

the following types of residues: branched chain amino acids, and polar residues such as 

glutamine or asparagine, among other amyloid strain-specific residue features [18]. 

These residues can form structurally favorable non-covalent interactions in a parallel β-

sheet conformation through stabilizing van Der Waals interaction between hydrophobic 

residues, or hydrogen bonding between uncharged polar residues stacked in a cross-β-

structure.  

Not surprisingly, there are exceptions to these rules with formation of variant 

amyloid structures such as amyloidogenic parallel β-helices being observed previously 

[18], along with the demonstration of anti-parallel β-sheet amyloids that form when 

aggregation prone domains meet specific amino acid sequence requirements [19], [21]. 

However, these structures do display either partial β-sheet character, or full β-sheet 

character, respectively, with stacking of identical domains on one-another similarly to 
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parallel β-sheet structures. Fibril elongation for parallel β-helices occurs with a helical 

progression for elongation of the aggregate instead of a linear progression of elongation 

as is classically observed, but nonetheless fibril elongation occurs with the characteristic 

domain stacking that is shared among amyloids and solid-state assemblies. 

 Despite some exceptions in resulting quaternary structure of the solid-state 

assemblies, the prion-like domains recruited to these assemblies share concentration-

dependence for recruitment via homotypic interactions. Solid-state structures that form 

from homotypic interactions display a strong concentration dependence for structure 

elongation, where increases in concentration of monomeric amyloid seed, or prion-like 

domain containing proteins, are highly correlated with increases in amyloid fibril 

elongation rate [21]. 

 

 

 

 

 

 

 

 



8 

 

 

 

 

 

 

Figure 1.3: Low (a) and High (b) monomer concentration effects on elongation rates of 
growing amyloid fibrils. Monomer refers to aggregation prone domains (PrLDs) recruited 
to solid-state assemblies that are characteristic of amyloid fibril formation. The low 
concentration regime on the left (panel a) shows that at equilibrium monomer 
concentration, the elongation rate will be zero. Elongation rate displays a linear 
relationship with concentration at low concentrations of monomer, highlighting the 
simple concentration dependence for these systems. In panel b, at high concentrations 
of monomer, the hyperbolic relationship between monomer and elongation rate displays 
decreases in elongation rate with respect to changes in concentration of monomer 
during saturation of the sites of active elongation as concentration continues to increase 
beyond m1/2. Figure is not real data and is inspired by a figure from [21]. 

 

Importantly, a concentration dependence is observed for the formation of 

pathogenic amyloids such as the Parkinson’s-disease-associated alpha-synuclein [23], 

among many others. A similar concentration dependence for recruitment to solid-state 

assemblies such as yeast prions has also been observed by several groups. Likewise, 

amyloids that facilitate storage of peptide hormones in cross-β-sheets [24], are 

expected to elongate in a concentration-dependent manner as well. This feature of 

concentration-dependence for assembly is due in large part to the homotypic interaction 

mechanism of PrLD recruitment to solid-state assemblies.  
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As the features of solid-state assemblies began to become clearer, the 

correlations between domains recruited to either solid or liquid-like assemblies were 

analyzed. Examination of the interaction mechanisms of these domains leading to their 

recruitment to different types of condensates was a logical next step. In a 2015 paper 

from the lab of Dr. Simon Alberti, the prion-like domains of Rnq1 and Lsm4 were found 

to be recruited to both solid and liquid-like assemblies given the right conditions [25], 

and this work among other manuscripts largely solidified the view that prion-like 

domains are recruited to both types of assemblies. However, there is a subtle piece of 

evidence supporting reclassification in this 2015 manuscript in the parameters needed 

to induce amyloid formation. The PrLD of Rnq1 formed amyloid only in the presence of 

active amyloid seed (pre-formed fibrils), and the PrLD of Lsm4 required over 

expression, or increased monomer concentration, beyond physiologically relevant levels 

to form amyloid. Under normal conditions for formation of liquid-like compartments such 

as the P granule, or stress granules, a marked absence of amyloid formation resulting 

from these reaction conditions was observed. However, it is not clear if persistent stress 

conditions in the cell lead contribute to pathological aggregation, or whether aggregation 

is triggered by mutation in normally reversibly-assembling domains. 

Thus, it appears that some PrLDs have a distinct preference for solid-state 

assemblies, while others are preferentially recruited to liquid-like condensates. It is 

critically important to point out that it is believed that these PrLDs are recruited through 

multivalent heterotypic interactions with identical domains, and other components such 

as nucleic acids in the condensate as well. This is opposed to proceeding through 

concentration-dependent homotypic interactions with only identical domains alone like 
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what has been observed for classical PrLDs. To better encapsulate the multivalent 

nature of heterotypic interactions driving recruitment of prion-like domains leading to the 

formation of liquid-like assemblies, a clear distinction from classical prion-like domains 

must be demarcated. For one to understand why prion-like domains that are recruited to 

liquid-like assemblies are functionally unique, it is important to look at some of the 

current published information on liquid-like assemblies. 

Liquid-like condensates and Liquid-Liquid Phase separation (LLPS) 

 Liquid-like biomolecular condensates represent a functionally separate group 

from solid-state assemblies. Some contrasting features include differences in structure, 

and a different mechanism of recruitment (heterotypic, as opposed to homotypic). One 

striking difference between solid-state assemblies and those that are liquid-like is the 

on/off rate of monomer interaction with their respective structure. In solid-state 

assemblies, monomer binds or dissociates at the exposed β-strand. Formation of a 

cross-β-structure at an exposed β-strand is a very stable interaction, and this leads to a 

low dissociation constant of monomers from the fibril. In contrast, heterotypic 

interactions are primarily responsible for driving the formation of liquid-like assemblies 

through multiple transient contacts between peptides and other condensate 

components like nucleic acids. Heterotypic interactions bind and dissociate readily, 

much like water molecules in the liquid phase interacting transiently. This results in a 

wildly different on/off rate of interaction in heterotypic interactions than the rates 

observed for homotypic interactions in solid-state assemblies. However, the transient 
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nature of heterotypic interactions is consistent with the reversibility of stress granule 

formation, as these structures dissolve when stress is ameliorated. 

The first liquid-like condensate characterized and demonstrated to undergo 

liquid-liquid phase separation was the P granule. The Brangwynne lab showed that P 

granules undergo droplet fusion, and wetting of surfaces; additionally, they showed that 

phase separation occurred in a spatiotemporal manner where droplet size 

corresponded with proximity to cell posterior [15]. Cells have developed means of 

controlling phase transitions to allow for the formation of organelles by liquid demixing 

from the solvent they were dissolved in. Liquid-like assemblies display features of 

liquids such as droplet fusion, a spherical shape due to condensate surface tension 

[26], and free diffusion with the solvent such as cytoplasm for stress granules, or 

nucleoplasm for the nucleolus.  
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Figure 1.4: P granules form via liquid-liquid phase separation in a spatiotemporal 
manner. Droplet size is correlated with proximity to cell posterior. LAF-1 is a component 
recruited through LLPS. Each droplet is comprised of multiple different types of 
components undergoing heterotypic interactions leading to a dynamic phase equilibrium 
with the surrounding solvent. The dynamic nature of these interactions results in 
components readily dissociating from the structure at a higher rate than in solid-state 
assemblies. Figure inspired by a figure from [26]. 

 

Components of liquid-like assemblies are thought to engage in a complex 

network of multivalent homotypic and heterotypic interactions. Liquid-like assemblies 

recruit prion-like domains that are often intrinsically disordered, but of a different 

composition from classical prion-like domains. These prion-like domains have been 

proposed to engage in diverse heterotypic interactions with other PrLDs, RNA-binding 

domains, and RNA. The more transient interaction network of a liquid-like assembly 

allows for more free exchange with the solvent, and heterotypic interactions are 

responsible for many of the other liquid like properties that differentiate these 

condensates from solid-state assemblies. 
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Additionally, it appears that at least in some cases these PrLDs can contain, low-

complexity aromatic-rich segments which are believed to be capable of forming 

homotypic kinked β-sheets. Aromatic residues in PrLDs have been proposed to be 

participating stabilizing, yet transient, cation-pi interactions in kinked β-sheets. Some 

sequences in protein domains associated with human diseases are also believed to be 

capable of forming this variant β-sheet structure [27]. However, it is unclear how crucial 

aromatic residues are for recruitment of PrLDs to stress granules, despite their 

proposed role in forming these structures. These transient interactions between PrLDs 

are expected to be only a portion of the total interaction network facilitating recruitment 

of PrLDs, and thus the primary means of recruitment to liquid-like assemblies is through 

heterotypic interactions. 

Detection of aromatic residues in some intrinsically disordered domains 

associated with neurodegenerative diseases such as ALS led groups to focus on 

domains of these type for their potential role in driving assembly of liquid-like structures 

through liquid-liquid phase separation. The protein FUS was chosen for its ability to 

aggregate as detected in ALS patients, and Simon Alberti & colleagues proposed that 

the aggregation propensity of FUS in liquid-like droplets was directly correlated to the 

valency established by mutation favoring cation-pi interactions. They found that 

mutations introducing polar uncharged residues such as glutamine conferred more 

solid-like characteristics to the condensates such as lower rates of droplet fusion [28]. 

These mutations alter the interaction preference of the IDRs from transient interactions 

to favoring more stable interactions. This modification of composition of the prion-like 

domains (PLD) in FUS represents a deviation from the usual characteristics of domains 
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recruited to liquid-like assemblies toward greater polar enrichment, and highlights the 

role that composition plays in the interaction rates between prion-like domains for both 

solid and liquid-like assemblies. 

The research community now knows that liquid-like assemblies are highly 

diverse in their heterotypic interaction networks. Even though phase separation can 

occur with RNA alone [30], often it occurs in the cell along with other proteinaceous 

components being involved as well. Despite the multicomponent nature of the 

interactions in liquid-like assemblies formed by phase separation, there are shared 

compositional features of PrLDs that are recruited to stress granules. These sequence 

features can be used to predict whether a domain will be recruited to stress granules 

based only on the amino acid composition.  
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Figure 1.5: PrLD-RBD: Prion like domain-RNA binding domain fusions. Domains are 
undergoing LLPS to form separate phase droplets. Cation-pi interaction networks are 
varied depending on residue composition. Cation-pi interactions between tyrosine and 
arginine are believed to be important for LLPS. Figure inspired by a figure from [28]. 

 

Recent generation of a dataset comprised of yeast PrLDs recruited to stress 

granules upon cell stress, as well as domains which remained diffuse, illuminated the 

compositional preferences of PrLDs recruited to stress granules ([29]; Table 1.1). This 

manuscript also described the construction of synthetic prion-like domains (sPrLDs) 

recruited to bona fide stress granules to verify the observed compositional preferences. 

In addition to synthetic assembling PrLDs, non-assembling control PrLDs (cPrLDs) were 

constructed to verify that a composition reflecting non-assembling PrLDs would hinder 

recruitment to stress granules. Indeed, cPrLDs remained diffuse after formation of 



16 

stress granules in cells. For the sPrLDs, colocalization with a known stress granule 

marker confirmed sPrLD recruitment. An absence of assembly for control domains 

verified that colocalization with the stress granule marker was dependent on a 

composition reflecting assembling PrLDs. Compositional changes to these synthetic 

domains are predictive of changes in phenotype, suggesting a change in interaction 

preferences of the prion-like domains. These changes in composition can either favor or 

hinder participation in heterotypic interactions to affect recruitment of PrLDs. 

Interestingly, aromatic residues were not required for assembly of these synthetic 

domains, although it was previously believed that aromatic residues were critically 

important for recruitment to stress granules. Aliphatic residues such as leucine, valine, 

or isoleucine could functionally replace aromatic residues in supporting recruitment [27]. 

This is significant because the synthetic domains are recruited to stress granules, a 

liquid-like assembly. Additionally, these residues had not been previously predicted to 

support recruitment of PrLDs to stress granules in yeast.  
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Table 1.1: Compositional preferences for yeast PrLDs tested for colocalization with a 
known stress granule marker (Pab1). Assembling PrLDs are classified by colocalization 
with Pab1 after stress. Non-assembling PrLDs are classified by remaining diffuse after 
introduction of cell stress. The mean frequency of each residue is calculated as the 
mean frequency of appearance in each type of domain (assembling, or non-assembling) 
within the dataset. Residues in orange are more overrepresented in non-assembling 
domains. Residues in blue are more overrepresented in domains that assemble after 
introduction of cell stress. Adapted from [31]. 
 

Amino Acid 

Mean frequency in                   

assembling PrLDs 

Mean frequency in non- 

assembling PrLDs 

A 2.79 5.38 

C 1.22 0.23 

D 4.58 4.33 

E 4.11 2.44 

F 4.71 2.41 

G 5.27 6.63 

H 2.94 2.06 

I 5.23 2.78 

K 4.83 3.12 

L 6.07 4.26 

M 1.67 2.98 

N 13.06 16.15 

P 3.94 8.30 

Q 6.79 13.91 

R 6.04 3.07 

S 12.57 9.57 

T 4.46 4.54 

V 5.19 2.72 

W 1.22 0.30 

Y 3.31 4.83 
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One of the most striking compositional deviations for PrLDs observed in Table 

1.1 is the preference for the residues isoleucine, leucine, and valine in assembling 

domains. In addition to this, phenylalanine and tryptophan, as well as charged residues 

are over-represented in assembly-prone PrLDs [31].  PrLDs recruited through 

heterotypic interactions to stress granules appear to display a preference for charged 

residues, a preference not observed in PrLDs that are associated with yeast prion 

formation. This is a significant deviation from a classical prion-domain, as charged 

residues are not conducive to homotypic interactions in cross-β-structures because of 

identical side-chain repulsion. Prion-like domains recruited through heterotypic 

interactions not only differ in mechanism of recruitment, but also show clear 

compositional deviations from domains recruited to solid-state assemblies through 

homotypic interactions. These differences suggest that there are distinct classes of 

prion-like domains; since our current methods of identifying prion-like domains are 

derived from studies of yeast prions, they may be poorly suited for identifying prion-like 

domains recruited to liquid-like assemblies through heterotypic interactions. 

Another recent manuscript by the lab of Clifford Brangwynne demonstrated 

heterotypic interactions leading to liquid-liquid phase separation of the nucleolar 

component NPM1 [32]. Their work showed that liquid-like assemblies follow a different 

set of guidelines governing assembly propensity; mainly that recruitment to liquid-like 

assemblies is dependent on the concentrations of multiple components, or the effective 

concentration of interacting partners, and not a simple dependence on concentration of 

monomer observed for homotypic interactions. Heterotypic interactions are 

concentration dependent, but in a different manner. The interactions are believed to be 
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interchangeable among numerous components, and as a result the individual domains 

may possess a functionally static concentration of interacting partners due to the 

interchangeability of interacting partners as well as their abundance. This is in stark 

contrast to the simple concentration-dependence observed formation of solid-state 

assemblies through heterotypic interactions.  

Therefore, in this thesis we examined the concentration dependence of PrLD 

recruitment to stress granules, as well as the compositional features that support 

recruitment. Our preliminary data supports the hypothesis that recruitment to liquid-like 

assemblies through heterotypic interactions does not display a simple concentration-

dependence of prion-like domains in vivo. Changes in concentration of prion-like 

domains have a modest effect on the formation of stress granules. Taken together with 

the data presented from the Brangwynne lab pertaining to the nucleolus, these results 

support the hypothesis that recruitment to liquid-like assemblies can be carried out at a 

variety of concentrations of prion-like domain within the cell. The rules governing 

recruitment of prion-like domains to liquid-like assemblies through heterotypic 

interactions are diverse, and still being defined. However, it has become clear that the 

prion-like domains recruited to liquid-like assemblies are functionally unique from 

classical prion-like domains that are recruited to solid-state assemblies. These 

differences highlight a clear separation as a functionally distinct group of domains 

separate from classical PrLDs. 
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Concluding Remarks 

 The chapters following this introduction will describe the interrogation of the 

necessary and sufficient aliphaticity for recruitment of synthetic PrLDs to stress 

granules, the development of a novel means of image analysis for quantification of 

colocalization with a stress granule marker, and the probing of concentration-

dependence for assembly of PrLDs by varying expression levels in cells. In chapter 2, 

we describe the generation of synthetic PrLDs, and the generation of a set of sPrLDs 

that display an assembly propensity gradient. The assembly propensity gradient was 

created through serial deletion of aliphatic residues in sPrLDs. In chapter 3 we then 

describe the generation of a novel, automated means of quantitative image analysis for 

analyzing subtle changes in colocalization with a known stress granule marker. This 

image analysis technique then allowed us to meaningfully probe the concentration-

dependence for assembly with a more accurate measure of partitioning in chapter 4. 

Finally, in chapter 5 we conclude with what was learned from these experiments, the 

implications these findings may have for the study of liquid-like biomolecular 

condensates, and future directions for this work. 
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CHAPTER 2: SYNTHETIC PRION-LIKE DOMAINS 

Introduction 

 In our previous screen for PrLDs that are recruited to stress granules, we 

observed statistically significant compositional differences between PrLDs that are 

recruited to stress granules and those that are not (Table 1.1; [29]). To test whether 

these compositional biases are sufficient to determine recruitment propensity, our lab 

constructed of a set of synthetic PrLDs, or control PrLDs designed to approximately 

match the average compositions of naturally-observed stress-granule-recruited or non-

recruited PrLDs, respectively. Each domain is 100 residues in length and the primary 

sequence was randomized. Andrew Tonsager and Kacy Paul constructed these 

domains, and performed preliminary microscopy experiments to confirm expression. I 

completed these microscopy experiments and used western blot to verify domain 

expression. Once expression of the synthetic and control domains was verified, I tested 

these domains for recruitment to stress granules. To test the hypothesis that aliphatic 

and aromatic amino acids were key drivers of PrLD recruitment to stress granules, we 

created aliphatic and aromatic deletion mutants. The aliphatic residues isoleucine, 

leucine, and valine were deleted to test the contribution of these residues toward 

recruitment. Additionally, all three aromatic residues (phenylalanine, tryptophan, and 

tyrosine) were deleted from sPrLDs to test the contribution of these residues to 

recruitment of sPrLDs. 
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Results 

 In order to explore the compositional preferences of yeast PrLDs and the 

degrees of compositional enrichment that are necessary to facilitate robust recruitment 

or lack of recruitment to stress granules, domains with compositions reflecting the mean 

frequency of each amino acid in stress-granule-recruited or non-recruited PrLDs (Table 

1.1) were designed as a “baseline” composition starting point. This resulted in three 

“mean frequency” assembly-prone PrLDs that were predicted to be recruited to stress 

granules, and one “mean frequency” non-assembling PrLD which that was predicted to 

remain diffuse upon heat shock. In addition to these “mean frequency” domains, 

domains slightly or substantially enriched in the residues overrepresented for their 

desired phenotype were also constructed to increase the likelihood of a desirable 

domain behavior. These domains were denoted as “+” or “++” for the assembling 

domains that were enriched either a little, or slightly more, respectively, toward a 

composition of residues overrepresented in assembling domains. Enrichment for 

residues overrepresented in non-assembling domains was also performed for the 

cPrLDs as well. These were denoted as “-“ and “- -“ to reflect domains that were 

enriched either a little, or more substantially, respectively, in amino acids 

overrepresented in non-assembling domains. Each PrLD was fused to the C-terminus of 

GFP and transformed into S. Cerevisiae lab strain (YER1405), in which the stress 

granule protein Pab1 is tagged with mCherry (See Materials & Methods). Each of the 

predicted assembly-prone PrLDs showed no detectable expression by western blot, and 

a very weak signal by microscopy that was consistent with autofluorescence. This lack 

of clear expression of sPrLDs in the initial phenotype testing led to the design of two 
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more sPrLDs, and their compositionally-enriched counterparts, to see if different 

randomized sequences could allow for more clear and detectable expression in cells.  

 

 

 

 

 

 

 

 

Figure 2.1: “Mean frequency” domains (Assembly sPrLD & Non-assembly cPrLD) 
displayed with the slight enrichment domains “+” & “-“ as well as the further enriched      
“+ +”, and the “- -“ domains. Expression of GFP-tagged sPrLDs was too low to rule out 
autofluorescence while imaging the assembling domains. sPrLDs, cPrLDs were tagged 
with GFP, Pab1 was tagged with mCherry. Images are a merge of both channels.     
HS: Heat shock 

 

 

From the expanded set of synthetic assembling domains, three domains (Assembly 2, 

Assembly 2++, and Assembly 3++) showed a weak signal by microscopy that was 

consistent with autofluorescence and little or no detectable expression by western blot; 
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three others (Assembly 3, Assembly 2+, and Assembly 3+) showed a diffuse signal prior 

to heat shock and a weak but detectable band by western blot (Figure 2.2).  

Thus, a total of three predicted non-assembling PrLDs (non-assembly 1, 2 and 3) 

and three predicted assembly-prone PrLDs (Assembly 3, Assembly 2+, and Assembly 

3+) showed detectable expression. All six were initially diffuse upon expression in yeast 

in unstressed conditions. Upon heat shock, each of the non-assembling PrLDs 

remained diffuse (Figure 2.1), while each of the assembly-prone sPrLDs assembled into 

foci that co-localized with Pab1 (Figure 2.2). Since only one of the three constructs in 

the initial assembly-prone set and none in the ++ set showed detectable expression, for 

subsequent analysis, we focused on the “+” dataset (Assembly 2+ and Assembly 3+). 

The domains were subsequently relieved of their cumbersome, lengthy names and 

dubbed sPrLD2 & sPrLD3. Their identical compositions serve as perfect platform for 

interrogation of compositional features necessary for recruitment. 
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Figure 2.2: (A) Two more “baseline” mean frequency assembling synthetic PrLDs were 
created (Assembly 2,3), along with their slightly enriched (2+,3+), and severely enriched 
(2++,3++) counterparts. The slightly enriched domains highlighted in the red boxes were 
chosen as a set of two identical domains to use for mutation analysis. Colocalization of 
the highlighted sPrLDs with a known stress granule marker indicates recruitment of 
sPrLDs to stress granules. Assembly 2+ was renamed to sPrLD2, and Assembly 3+ 
was renamed to sPrLD3. sPrLDs were labeled with GFP, and Pab1 was labeled with 
mCherry. (B) Western blot of multiple synthetic domains tagged with GFP. Lanes 
highlighted in the red box indicate Assembly 2+ (sPrLD2) and Assembly 3+ (sPrLD3), 
respectively. Lane contents: 1: Assembly 1, 2: Assembly 1+, 3: Assembly 1++, 4: Non-
assembly, 5: Non-assembly -, 6: Non-assembly - -, 7: Assembly 2, 8: Assembly 3, 9: 
Assembly 2+ (sPrLD2), 10: Assembly 3+ (sPrLD3), 11: Assembly 2++, 12: Assembly 
3++. Western blot was carried out as described in Materials & Methods. 
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 Once we had a validated set of two synthetic assembling domains (sPrLD2 & 

sPrLD3) to go along with a control non assembling domain, we began to ask what 

compositional features are necessary and sufficient for recruitment of sPrLDs to stress 

granules. At that time, aromatic residues were believed by many to be drivers of phase 

separation leading to recruitment to liquid-like assemblies such as stress granules [28], 

[29]. This informed our initial curiosity to delete aromatic residues, and see if recruitment 

could still be supported by sPrLDs. In addition to deleting aromatic residues, we also 

deleted the aliphatic residues isoleucine, leucine, and valine because of the degree to 

which those residues were overrepresented in natural PrLDs that assembled upon 

stress (Table 1.1; [31]). To round out the deletion set, we also deleted both the aromatic 

residues, and the aliphatic residues listed previously. Each deletion mutant was then 

tested by microscopy for colocalization with a stress granule marker (Figure 2.3 A). 

Deletion of either aromatic or aliphatic amino acids, or deletion of both blocked 

stress granule recruitment, demonstrating that both of these types of residues promoted 

recruitment of sPrLDs to stress granules. Because both types of residues were enriched 

in stress-granule recruited PrLDs (Table 1.1), we wondered if aliphatic residues could 

replace aromatic residues in supporting stress granule recruitment. Therefore, we 

generated constructs in which all of the aromatic amino acids were replaced with I, L, or 

V.  Building from these initial results in (Figure 2.3 A), we also asked whether any of the 

aromatic residues were particularly supportive of PrLD recruitment to stress granules. 

Stress granules contain both protein and RNA [28]. In vitro, RNA promotes phase 

separation, and tyrosine residues are believed to be particularly stabilizing for phase 

separation. Interactions with the aromatic rings in RNA leading to recruitment are 
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believed to proceed at least partially through transient pi-pi interactions with tyrosine 

residues in PrLDs [27].  However, tyrosine was the only aromatic amino acid not 

significantly enriched among our stress-granule recruited PrLDs. Therefore, to examine 

the relative ability of each aromatic amino acid to promote stress granule recruitment, 

we replaced all of the aromatic amino acids with either Y, F, or W. Finally, we also 

substituted the aromatic residues for glutamine and asparagine as these residues were 

overrepresented in non-assembling yeast PrLDs (Table 1.1).  

From these substitution mutants, we observed robust recruitment for all of the 

aromatic-enriched sPrLDs, as well similarly robust recruitment of the aliphatic-enriched 

aromatic substitutions (Figure 2.3 B). We were surprised to see replacement of aromatic 

residues with I, L, and V still supported recruitment to stress granules to a similar 

degree. This was a curious result given the established importance of tyrosine and 

aromatic residues in general for phase separation as described in the literature at that 

time. 
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Figure 2.3: (A) Deletion of aromatic residues (ΔFWY) abolishes recruitment of both 
synthetic domains to stress granules after heat shock. Similarly, deletion of isoleucine, 
leucine, and valine also disrupts recruitment to stress granules for both sPrLDs. 
Deletion of both aromatic and select aliphatic residues also disrupts recruitment to 
stress granules. (B) Enrichment for any one aromatic residue seems to have little effect 
on recruitment of sPrLDs to stress granules. ΔFWY→ILV domains displays functional 
replacement of aromatic residues with aliphatic residues in supporting recruitment to 
stress granules for both sPrLDs.  
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We next examined the threshold for aliphaticity required to support stress granule 

recruitment. The initial sPrLDs contain (19% I, L, V). To determine whether we could 

titrate the efficiency of recruitment, we serially deleted aliphatic amino acids in sets of 3 

These constructs were designated “ – 3 ILV”, “ – 6 ILV”, … “ – 15 ILV”, and finally “ – 19 

ILV” (the previously described construct in which all of the I,L, and V are deleted). To 

design the deletions, three I, L, or V residues were randomly selected for deletion; 

because all three showed similar levels of enrichment among the stress-granule-

recruited PrLDs, each residue type was given an equal probability of being chosen. This 

led to random triplets of I, L, or V being chosen for deletion, and a slightly different 

aliphatic profile for each domain due to random selection of I, L, or V residues at equal 

probability (Figure 2.4 A & B). 

 

 

 

 

 

 

 

 

Figure 2.4: (A) Aliphatic profile of sPrLD2 deletions with equal probability of three 
randomly chosen I, L, or V residues being selected for deletion from the domain each 
time. (B) Aliphatic profile of sPrLD3 deletions following the same deletion pattern, but 
displaying a different ratio of I:L:V from sPrLD2. Despite ratio differences, both deletion 
series maintain equal percent composition of selected aliphatic residues. 

A B 
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 When the sPrLD 2 & 3 deletion series was imaged by confocal microscopy, the 

outcome was phenotypically just as predicted (Figure 2.5). We saw a gradual loss of 

recruitment for both sPrLDs as the domains became less aliphatic through deletion. 

This result demonstrated tunable colocalization with a known stress granule marker 

through changes in the number of aliphatic residues leucine, isoleucine, and valine in 

sPrLDs. These residues were not previously characterized as providing a significant 

contribution toward recruitment to stress granules. Thus, we sought to measure the 

subtle changes in colocalization we had produced through deletion of these aliphatic 

residues. While the gradient of assembly propensity was visible by eye, to accurately 

convey the subtle changes in assembly we decided that we needed to develop an 

automated system for image analysis that could quantify the degree of colocalization of 

sPrLDs with Pab1 in cells. Pursuit of a novel image analysis technique was quite an 

easy decision as a tool of this kind would prove to be incredibly useful for PrLD 

colocalization analysis, and we simply could not pass up the potential opportunity to 

have a tool like this at our disposal. 
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Figure 2.5: Deletion of the aliphatic residues isoleucine, leucine, and valine from 
sPrLD2 and sPrLD3 results in a gradual loss of assembly into stress granules. For each 
sPrLD, the top row of images displays the pre-stress phenotype (30 ֯C), and each bottom 
row of images displays the cells after stress conditions (46 ֯C for 30min). Clear granule 
formation is observed in the images labeled “Goes to SGs”, and PrLDs remain diffuse 
after stress in the images labeled “Does not go to SGs”. Images in the labeled 
“Transition range” display the most subtle differences in assembly, and require careful 
measurement of colocalization for accurate depiction of the subtle differences in 
assembly propensity of each domain in the “Transition range”. Images shown in this 
figure display only the GFP channel for clarity.  
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Discussion 

 Our initial excitement over functional replacement of aromatic residues with 

selected aliphatic residues in synthetic PrLDs [31] led to the decision to focus on these 

select aliphatic residues for their contribution to recruitment to stress granules. With 

each residue displaying a roughly similar overrepresentation among yeast PrLDs that 

assemble upon stress in Table 1.1, we selected three random I, L, or V residues at a 

time to delete from each domain. These deletions led to the generation of an assembly 

propensity gradient for both sPrLDs. To our knowledge, aliphatic hydrophobicity had not 

been significantly associated with stress granule recruitment in yeast. Thus, we were 

thrilled to be able to begin to characterize the necessary and sufficient aliphaticity for 

stress granule recruitment through mutation and testing with microscopy. However, 

these claims were lacking quantitative evidence for support, and in chapter 3 we set out 

to create a novel means of automated image analysis to robustly measure the assembly 

propensity gradients we had produced in chapter 2. A tool that would allow for accurate 

measurement of the assembly propensity gradients is essential to begin to characterize 

the subtle differences in assembly of sPrLDs in this dataset. As we will see later, a 

means of quantitative analysis for measuring assembly propensity will also open the 

door for even more exciting questions we will address in chapter 4. 
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Materials and Methods1 

Strains & Growth Conditions 

The experiments discussed in this chapter were carried out using the model organism 
Saccharomyces cerevisiae grown in standard yeast media, and with standard growth 
conditions.[33] Plasmids were transformed into the yeast strain YER1405 (MATa 
his3D1 leu2D0 met15D0 ura3D0 PAB1-mCherry::URA3) using the standard techniques 
detailed in [33]. YER1405 is a derivative of BY4741 [32]. Yeast were grown at 30 ֯C in 
pre-stress conditions, or heat shocked at 46 ֯C for 30 minutes before imaging. 

Plasmid construction 

Generation of plasmid backbone for sPrLD expression (pER843) was carried out by 
inserting GFP between the HindIII and BamHI restriction sites following the SUP35 
promoter in the plasmid pJ526 from [33]. sPrLDs were then cloned into pER843 in 
frame with GFP at its N-terminus between the BamHI and BglII sites. 

Designing sPrLDs & cPrLDs 

Each sPrLD and cPrLD is 100 amino acids long. The average frequency of each amino 
acid among the assembling and nonassembling PrLDs (Table 1.7) were used as a 
starting point for design of the sPrLDs and cPrLDs, respectively. To achieve whole-
number values for each amino acid, frequencies were rounded in the direction predicted 
to promote or inhibit assembly for the sPrLDs and cPrLDs, respectively; the numbers 
were then modestly adjusted such that the final values added up to 100. An Excel 
random number generator was used to randomly order the amino acids. Sequences 
were built synthetically using overlapping primers and then cloned into pER843 as 
described above. 

Stress Conditions 

Cells were grown to midlog phase at 30 °C in SC-Leu media (to select for pER843) prior 
to stress induction. For heat shock, 1 mL of cells was concentrated to 50 μL and 
incubated in a 46 °C water bath for 30 min prior to imaging. 

 

1This section is reformatted from the following publication: Boncella A.E., Shattuck J.E., 
Cascarina S.M., Paul K.R., Baer M.H., Fomicheva A, Lamb A.K, Ross E.D. (2020). 
Composition-based prediction and rational manipulation of prion-like domain recruitment 
to stress granules. Proceedings of the National Academy of Sciences 117 (11) 5826-
5835. My contribution to that work was building and testing of the following constructs 
under heat shock: ΔFWY, ΔFWY→ILV, ΔFWY→QN. As well as imaging sPrLD2, 
sPrLD3, cPrLD1 under heat shock. Aliphatic deletion domains were cloned into pER843 
using the same method listed in this section. 
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Confocal Fluorescence Microscopy 

Imaging was performed on an Olympus (IX83) Inverted Spinning Disk Confocal 
Microscope using a 100× objective, and a 488nm laser along with a 561nm laser. All 
images were captured as single planes. 

Western Blotting 

Cells were grown to midlog phase at 30 °C in SC-Leu media (to select for pER843) 
before harvesting. Volumes collected for each culture were normalized to the lowest 
density culture, as assessed by OD600 measurements. Cells were harvested by 
centrifugation at 3,000 rpm for 5 min at 4 °C. Cell lysis was performed using a SUMEB 
lysis buffer. A volume of 15 μL of each sample was run on a polyacrylamide gel and 
then transferred onto a PVDF membrane. GFP-PrLD fusions were probed using an anti-
GFP antibody (Santa Cruz Biotechnology). Images were acquired using Li-Cor Odyssey 
Clx imaging system. 

 

 

 

 

 

 

 

 

 

 

2This section is reformatted from the following publication: Boncella A.E., Shattuck J.E., 
Cascarina S.M., Paul K.R., Baer M.H., Fomicheva A, Lamb A.K, Ross E.D. (2020). 
Composition-based prediction and rational manipulation of prion-like domain recruitment 
to stress granules. Proceedings of the National Academy of Sciences 117 (11) 5826-
5835. My contribution to that work was building and testing of the following constructs 
after heat shock: ΔFWY, ΔFWY→ILV, ΔFWY→QN. As well as imaging sPrLD2, 
sPrLD3, cPrLD1 after heat shock. Aliphatic deletion domains were cloned into pER843 
using the same method listed in this section. 
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CHAPTER 3: DEVELOPING A NOVEL METHOD FOR AUTOMATED QUANTITATIVE 

ANALYSIS OF PRION-LIKE DOMAIN LOCALIZATION TO STRESS GRANULES 

Introduction 

 In chapter 2 we demonstrated that it was possible to generate a gradient of 

assembly propensity gradient through serial deletion of isoleucine, leucine, and valine 

residues in sPrLDs. However, although subtle changes in colocalization were visible to 

the eye in images, we thought there must be a way to devise an automated means for 

quantitatively measuring subtle changes in colocalization with a stress granule marker. 

This required the generation of an automated method for image analysis. To accurately 

quantify colocalization between PrLDs and a stress granule marker, we needed to be 

able to first isolate the regions of images that contained cells. Once we could isolate 

pixels that contained cells, we could determine the degree of colocalization on a cell-to-

cell basis in sets of images. 

YeastSpotter 

 Quantification of the colocalization between fluorophores in a microscopy image 

first requires one to be able to identify the pixels that correspond to the cell one wishes 

to analyze. In a microscopy image of cells, there are two groups of pixels that contain 

two different types of information. There are pixels that make up the actual image of the 

cells, and the rest of the pixels make up the “background” of the image, or the area that 

does not contain any cells. To accurately isolate yeast cells in microscopy images, we 

utilized YeastSpotter, an image segmentation tool that uses a trained neural network to 

identify yeast cells in images [34]. This tool creates masks that can be applied to 

images to “delete” the background pixel information. With this tool, we only added a 
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small modification to our workflow to minimize changing our experimental set-up. Each 

DIC image is captured using collimated white light at low intensity relative to the 

monochromatic lasers. This additional light exposure is expected to impart low 

phototoxicity to cells to minimize confounding of results. The image masks created by 

YeastSpotter from the DIC images are then used for isolating the “cell” pixels in the 

corresponding fluorescence images used for quantitative analysis.  

Once we had established that we could accurately segment images of yeast cells 

using YeastSpotter, we were able to begin to ask how we would quantify each set of 

pixels corresponding to the individual cells we were interested in analyzing. We started 

with a well established method of quantitative colocalization analysis: The Pearson 

Correlation Coefficient. 

Pearson Correlation Coefficient 

 One of the earliest publications describing a quantitative measurement of 

colocalization between fluorophores in microscopy images was by Manders et al in 

1992 [35]. They plotted the pixel intensity values for each color channel for a given 

image and found the Pearson Correlation Coefficient between the plotted pixel 

intensities. This method is useful for colocalization analysis because it describes the 

degree of overlap between two color channels, irrespective of average intensity 

differences between channels. Using the Pearson Correlation Coefficient as a 

preliminary scoring metric for our microscopy data, we obtained promising initial 

quantification data. The median Pearson Correlation Coefficients decreased as 

assembly propensity of PrLDs decreased. This confirmed that we could quantify 

changes in assembly propensity for the sPrLD deletion mutants (Figure 3.1). 
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 This scoring metric was useful in initial exploratory efforts to define the trend we 

should expect when applying other scoring metrics to our microscopy data. However, 

we did not end up using the Pearson Correlation Coefficient as the final measurement 

method for this data set. There were two problems with this method. First, the resulting 

correlation coefficient does not offer a direct phenotypic description. Pearson 

Correlation Coefficients ranged from -1 to 1, with 1 being perfect correlation. The 

absolute differences between scores for phenotypic extremes was quite small in 

magnitude: assembly-prone domains had a Pearson Correlation Coefficient of around 

0.8, while the non-assembling domain would have a coefficient of around 0.4. A 

coefficient of 0.4 suggests significant correlation, despite no detectable enrichment in 

stress granules. The likely basis for this positive correlation is that both the stress 

granule marker and the cPrLDs/sPrLDs are excluded from the vacuole. This highlights 

the second limitation of the method: we were interested in the fraction of cytoplasmic 

PrLD that localizes to stress granules, but the cytoplasm only occupies a small fraction 

of the cell. Exclusion of both fluorophores from the vacuole artificially inflates the 

correlation coefficient, but since the size of the vacuole varies substantially, some of the 

variation in correlation coefficients could be attributable to differences in vacuole size. 

Additionally, different PrLDs show different degrees of nuclear enrichment; enrichment 

of a PrLD in the nucleus would artificially lower the correlation coefficient. Collectively, 

these results suggested the need for a method that would specifically quantify the 

cytoplasm, and that would report a value that was more directly interpretable.   
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Figure 3.1: (A) Quantification of sPrLD2 & sPrLD2 aliphatic deletions after heat shock. 
2m3 refers to sPrLD2 minus 3 I, L, or V residues, 2m6 is sPrLD2 minus 6 I, L, or V 
residues, etc. Each dot is the correlation coefficient for a single cell in an image. Median 
Pearson Correlation Coefficients tend to decrease as the domains become less 
aliphatic, or correlation with a stress granule marker (Pab1) decreases as assembly 
propensity decreases. (B) Quantification of sPrLD3 & sPrLD3 aliphatic deletions 
following the same naming convention on the X axis as in (A). Correlations are between 
GFP-sPrLDS & Pab1-mCherry. Image analysis carried out as described in Materials & 
Methods. 

A 

B 
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Partition Coefficient 

 One of the challenges with identifying the cytoplasm was the lack of clear pixel 

intensity differences between the vacuole, and the cytoplasm when labeling sPrLDs and 

Pab1. Unless we had diffuse sPrLD in the cytoplasm, the exact boundary between the 

vacuole and the cytoplasm of the cell was unclear to the eye, and even more elusive to 

describe quantitatively. Pixel intensities in the “dark” cytoplasm had no significant 

difference in number value from the pixel intensities in the “dark” vacuole. With the 

inability to clearly distinguish cytoplasm pixels from vacuole pixels in cells, the amount 

of cytoplasm in each cell can be either under- or overestimated, leading to a level of 

“noise” in the data we sought to remove.  

 In order to define the partitioning of sPrLDs between the bulk cytoplasm and 

stress granules, we first needed to be able to define the cytoplasm. To identify 

cytoplasm pixels, we decided to illuminate the cytoplasm by tagging Rpl1b, a yeast 60S 

ribosomal subunit protein [36]. We endogenously labeled Rpl1b with mTagBFP2, a 

monomeric blue fluorescent protein [38]. Endogenous labeling was carried out as 

described in Materials & Methods.  

Importantly, exclusion of fluorophores from the nucleus and vacuole meant clear 

intensity differences between the cytoplasm and these organelles. Thus, we were able 

to demonstrate that the cytoplasm and stress granules in the cell were clearly labeled 

with fluorophores, and that minimal bleed through into the nucleus and vacuole was 

detected (Figure 3.2). With each region in the cell now illuminated, the cell pixels could 

be identified quantitatively because they exceed a fluorescence intensity threshold. 

 



40 

  

 

 

 

 

 

 

 

Figure 3.2: Yeast cells after heat shock expressing Rpl1b-mTagBFP2, and Pab1-
mCherry to label the cytoplasm and stress granules, respectively. Each cell is displaying 
a nucleus and a vacuole devoid of significant fluorescence intensity relative to the 
labeled regions. Accurate isolation of blue “cytoplasm” pixels is now achievable 
thorough selection of pixels exceeding a fluorescence intensity threshold in the blue 
channel. Cell pixels are parsed into either cytoplasmic pixels, or stress granule pixels 
based on exceeding a threshold fluorescence intensity, and the GFP intensity 
distribution between the two pixel types can then be determined. 
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 Once we were able to define cytoplasmic pixels and stress granule pixels, we 

were able to introduce a different measurement coefficient for quantification. We 

proposed creating a ratio: dividing the median GFP pixel intensity in stress granule 

pixels by the median GFP pixel intensity in cytoplasmic pixels (Figure 3.3 A). This would 

allow us to accurately describe the distributions of GFP intensities that arose from 

different assembly propensity phenotypes. In conditions of diffuse GFP-sPrLD after heat 

shock, the median GFP intensity in both compartments (cytoplasm and stress granules) 

is roughly equal, and would have a Partition Coefficient close to a value of one. When 

assembly propensity is high, like with the full-length sPrLDs, GFP signal is more 

concentrated in stress granules after heat shock. This results in a Partition Coefficient 

exceeding a value of one (Figure 3.3 B). 
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Figure 3.3: (A) Equation for the partition coefficient measurement to describe 
colocalization with a stress granule marker. The median GFP intensity in each 
compartment of the cell is divided to reveal the degree of GFP enrichment in stress 
granules. (B) Cytoplasmic labeling (Rpl1b) shown with sPrLD and stress granule (Pab1) 
labeling for three different sPrLD assembly propensities. GFP granules (puncta) in 
sPrLD2 -6 ILV indicates high assembly propensity, diffuse GFP in sPrLD2 -12 ILV 
indicates low assembly propensity. Partitioning into stress granules relative to 
cytoplasm reliably reflects assembly propensity of sPrLDs after heat shock. 
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image from each image we quantify. This background image reflects the 

autofluorescence and scattering of light by buffer and media components. Subtraction of 

this image from images containing cells allows for more accurate reflection of the GFP 

enrichment in lower expressing cells. This background subtraction step also helped to 

correct for differential illumination of specimens in the field-of-view, a problem we had 

noticed on our microscope.  

With this new means of analysis, we set out to quantify the entire assembly 

propensity gradient we had created in chapter 2. The results from quantification using 

the Partition Coefficient revealed standard curves of assembly propensity. Phase 

separation was largely characterized in a binary manner before introducing this type of 

analysis. Here, we had demonstrated measurable yet subtle changes in assembly 

propensity. Inherent to these demonstrations as well was measurement of Partition 

Coefficients for the transition range constructs, or constructs teetering on the edge of 

assembly. Measurement of these teetering domains is significant because they are 

sensitive to subtle changes in assembly behavior in cells. Using our Partition Coefficient 

paired with sPrLDs, we could quantitatively measure subtle changes in assembly across 

several teetering PrLDs in live cells (Figure 3.4). With these tools, we could now probe 

for changes in assembly behavior of the teetering sPrLDs. 
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Figure 3.4: (A) Standard curve of assembly propensity for sPrLD2 & sPrLD2 deletions. 
Each dot represents a single cell calculation of Partition Coefficient after heat shock.                
(B) Standard curve of assembly propensity for sPrLD3 & sPrLD3 deletions. Transition 
range constructs contain the inflection point for each set of sPrLDs in the assembly 
propensity gradient, and are sensitive to subtle changes in assembly. 
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Discussion 

 Once we could accurately and reproducibly measure partitioning, or the degree 

of colocalization of sPrLDs with a stress granule marker, we began to focus on a 

fundamental question regarding the mechanism of PrLD recruitment to stress granules. 

When we revealed the inflection points in the assembly propensity curves, we thought 

we could use those inflection points to measure changes in the assembly behavior of 

sPrLDs. Thus, we set out to test the concentration dependence for recruitment of PrLDs 

to stress granules by expressing them under stronger promoters.  

In chapter 1 we saw that PrLDs are classically associated with concentration-

dependent homotypic interactions when recruited to solid-state assemblies. We also 

saw in chapter 1 that that PrLDs can be recruited to liquid-like assemblies through 

heterotypic interactions. An unanswered question in the field we hoped to address was 

whether the heterotypic interactions that recruit PrLDs to stress granules displayed a 

simple concentration-dependence as well. To address this question in chapter 4, we 

increased expression of sPrLDs to higher concentrations to see if we would observe an 

increase in Partition Coefficients. Our hypothesis was that increases in Partition 

Coefficients upon expression under a stronger promoter would indicate a simple 

concentration dependence. Thus, measuring the effect that increased concentration of 

PrLDs has on PrLD recruitment to stress granules will reveal if there is a simple 

concentration-dependence for heterotypic interactions. 
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Materials and Methods 

Endogenous labelling of mTagBFP2 

The Saccharomyces cerevisiae strain YER1405 was diluted to an Optical Denisty=0.1 in 
100mL YPAD, and grown to an OD between 0.4 and 0.8. Cells were then permeablized 
with TE-LiAc before being transformed through cloning by recombination. mTagBFP2 
was amplified by PCR to contain tails with homology to RPL1B. mTagBFP2 was 
inserted in-frame just before the stop codon of RPL1B with the KanMX selectable 
marker. Cells were selected through plating on YPAD+G418 to select for KanMX 
positive mutants. 
 
Strains & Growth Conditions 

The experiments discussed in this chapter were carried out using the model organism 
Saccharomyces cerevisiae grown in standard yeast media, and with standard growth 
conditions [32]. Plasmids were transformed into the yeast strain YER2453 (MATa 
his3D1 leu2D0 met15D0 ura3D0 PAB1-mCherry::URA3 RPL1B::RPL1B-
mTagBFP2::KanMX) using the standard techniques detailed in [33]. YER2453 is a 
derivative of YER1405. Yeast were grown at 30 ֯C in pre-stress conditions, or heat 
shocked at 46֯C for 30 minutes before imaging. 

Stress Conditions 

Cells were grown to midlog phase at 30 °C in SC-Leu media (to select for pER843) prior 
to stress induction. For heat shock, 1 mL of cells was concentrated to 50 μL and 
incubated in a 46 °C water bath for 30 min prior to imaging. 

Confocal Fluorescence Microscopy 

Imaging was performed on an Olympus (IX83) Inverted Spinning Disk Confocal 
Microscope using a 100× objective, and a 488nm laser along with a 561nm laser. All 
images were captured as single planes. 

Pearson Correlation Coefficient analysis 

Cells were imaged by DIC C, a 488nm laser, and a 561nm laser. Image segmentation 
and quantification was carried out as described in appendix (see Pearson Correlation 
Coefficient analysis) 

Partition Coefficient analysis 

Cells were imaged by DIC C, a 405nm laser, 488nm laser, and a 561nm laser. Image 
segmentation and quantification was carried out as described in appendix (see Partition 
Coefficient analysis) 
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CHAPTER 4: PROBING THE CONCENTRATION DEPENDENCE FOR PRION-LIKE 

DOMAIN RECRUITMENT TO STRESS GRANULES 

Introduction 

 In chapter 3 we developed a method for quantifying the Partition Coefficient of 

PrLDs between the bulk cytoplasm and stress granules. Using the Partition Coefficient, 

we generated standard curves relating the assembly propensity to aliphatic content for 

sPrLDs. In this chapter, we asked whether this standard curve is shifted by changes in 

levels of PrLD expression, as would be expected if recruitment to stress granules was 

concentration dependent.  

The standard curves generated in chapter 3 were quantified using the yeast 

SUP35 promoter for expression of sPrLDs. This promoter provided a moderate level of 

expression as a baseline. It is naturally optimized to keep expression levels from 

creeping up too high due to aggregation of Sup35 resulting from over-expression [38]. 

To probe the concentration-dependence for recruitment of PrLDs, we compared 

recruitment of sPrLDs expressed from the SUP35 promoter to sPrLDs expressed from 

two strong constitutive promoters: GPD and ADH1. 

Results 

 We first tested a number of constitutive promoters. To do this, we expressed 

sPrLD2 – 6 ILV, and sPrLD2 -9 ILV under 6 promoters in addition to SUP35 to verify 

that the level of expression of sPrLDs was consistent with published results, and results 

obtained by other members of the lab using the same promoter set. The promoter set 

expression levels were analyzed by western blot to verify that expression levels of these 

transition range constructs under control of the different promoters was higher than with 
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the SUP35 promoter. Importantly, we saw expression levels for these stronger 

promoters exceeding the detectable levels of expression of sPrLDs under control of the 

SUP35 promoter. (Figure 4.1) Two promoters from this set were chosen for expression 

of sPrLDs at higher levels than with the SUP35 promoter. Very high expression levels 

were observed with the GPD promoter, and moderately high expression was observed 

for the ADH1 promoter (Figure 4.1). 

Further support for selecting these promoters came from a 2018 publication 

where Xiong et al. characterized the expression levels of multiple constitutive promoters 

in yeast in conditions of heat stress [40]. In stress induced by heat shock at 39֯C, 

expression of GFP at 8 hours for the TDH3 (GPD) and ADH1 promoters was detected 

at  around 6, and 2 thousand arbitrary units, respectively above background 

fluorescence. The TDH3 (GPD) promoter, the highest expressing constitutive promoter 

in the yeast genome, showed the highest detectable levels of GFP under heat stress 

conditions at 8 hours, with consistently high but slightly attenuated expression of GFP 

for ADH1 relative to GPD [39].  
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Figure 4.1: (A) Western blot of sPrLD2 -6 ILV under control of seven different 
promoters. Cells were grown to equal density as measured by absorbance at OD600 
before harvest, lysis, and detection with anti-GFP. (B) Western blot of sPrLD2 -9 ILV 
under control of seven different promoters. Cells were subject to the same blot 
conditions as in (A).  
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Once we had verification that the expression levels of the transition range 

constructs was indeed higher than the levels obtained with the SUP35 promoter, we 

tested the highest expressing constructs with our Pearson Correlation Coefficient 

analysis method. To do this, we imaged all of the sPrLDs in the assembly propensity 

gradient under control of the SUP35 promoter, as well as the transition range constructs 

under control of the GPD promoter. If there were a simple concentration-dependence, 

we would be most likely to detect this with the highest levels of expression first, so the 

GPD promoter was a natural first choice. With the SUP35 promoter constructs, we 

imaged each domain in each curve on three separate days, in a random order of 

progression through the dataset. In addition to the SUP35 promoter constructs along 

the entire curve, we also tested the transition range constructs under control of the GPD 

promoter on three separate days per domain across both curves. We subsequently 

analyzed the images using the Pearson Correlation Coefficient method of analysis 

described in chapter 3. From this analysis, we found preliminary evidence for a modest 

concentration dependence for PrLD recruitment to stress granules. (Figure 4.2)  

This preliminary evidence was encouraging, so we transformed the sPrLDs into 

our cytoplasm-labeled strain described in chapter 3 (YER2453) to perform Partition 

Coefficient analysis. To verify the modest concentration-dependence for recruitment of 

PrLDs we had observed using the Pearson Correlation Coefficient method would 

require a more rigorous approach. To examine the heterotypic interactions more deeply, 

we employed use the ADH1 promoter as a “middle” level of expression between SUP35 

and GPD to see if we could detect any changes in recruitment of the teetering 

constructs at these three different levels of expression.  
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Figure 4.2: (A) Pearson Correlation Coefficient statistics for sPrLD2 & sPrLD2 aliphatic 
deletions under control of the SUP35 promoter displayed along with statistics for the 

SUP35 

GPD 
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SUP35 

GPD 



52 

transition range constructs under control of the GPD promoter. Statistics are from 3 
replicate populations of cells from three different days of imaging per construct, per 
promoter. A slightly increased median Pearson Correlation Coefficient for sPrLD2 -9ILV 
(sPrLD2m9) suggests a modest concentration dependence for assembly of this domain. 
(B) Pearson Correlation Coefficient statistics for sPrLD3 & sPrLD3 aliphatic deletions 
under control of the SUP35 promoter displayed along with statistics for the transition 
range constructs under control of the GPD promoter. Statistics are from 3 replicate 
populations of cells from three different days of imaging per construct, per promoter. A 
slightly increased median Pearson Correlation for the sPrLD3 -6 ILV & sPrLD3 – 9ILV 
further supports a modest concentration dependence for assembly of PrLDs to stress 
granules. 

 

 

 

 

 

The ADH1 promoter was added in the next round of testing because a modest 

concentration-dependence for recruitment may present with a modest increase in 

Partition Coefficient. However, if it scored with a higher Partition Coefficient than with 

GPD-promoter-based expression, the results would be difficult to interpret. Testing of 

the constructs under each promoter was carried out as described in chapter 3. We 

measured Partition Coefficients first for SUP35 promoter-based expression of sPrLDs 

as a set of baseline points. We then analyzed images acquired from GPD- and ADH1-

based-expression to test for the presence of a modest concentration dependence in the 

teetering constructs.  
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 We planned to compare the median Partition Coefficients between constructs 

and promoter type for a given round of testing in the final analysis. We first needed to 

ensure that we could obtain reproducible median Partition Coefficients when imaging 

with a given promoter. To address this, the SUP35-based expression standard curve 

data collection and quantification was carried out in triplicate to ensure consistent 

median Partition Coefficients at this lowest expression level (Figure 4.3). Once we had 

data demonstrating reproducibility of the Partition Coefficient analysis technique on the 

SUP35 promoter data, we moved forward with data collection using the GPD and ADH1 

promoter constructs. 

Quantification of images obtained from expression of sPrLDs under the stronger 

promoters revealed that the median Partition Coefficients for some of the transition 

range constructs showed a modest increase when expressed under the GPD promoter. 

The median coefficients tended to be lowest for the SUP35 constructs, and ADH1 

tended to have median Partition Coefficients directly between the strongest and 

weakest promoter scores (Figure 4.4, 4.5). This scoring hierarchy is apparent in Figure 

4.5, where sPrLD3 -6 ILV &sPrLD3 -9 ILV display the ascending order of Partition 

Coefficients based on expression level. Importantly, the increase in median coefficients 

is less than the increase in median coefficients when slightly modifying the aliphatic 

residue content of the domain. This supported the hypothesis that there is a modest 

concentration dependence for recruitment of PrLDs to stress granules. However, when 

compared to the magnitudes of change in Partition Coefficient observed when deleting 

aliphatic residues in sPrLDs, higher concentrations of PrLD appear to have a much less 

significant impact on the recruitment of PrLDs to stress granules (Figure 4.4, 4.5). 
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Figure 4.3: Three replicate measurements of Partition Coefficients for expression of two 
sPrLDs under the SUP35 promoter. Three rounds of imaging were performed for 
sPrLD2 & sPrLD2 deletions in a random order each time (cyan dots). In addition to this, 
three rounds of imaging were performed for sPrLD3 & sPrLD3 deletions in a random 
order each time (magenta dots). 
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Figure 4.4: Median Partition Coefficients for sPrLDs at three expression levels. This 
data is incomplete at this time. Triplicate rounds of testing were carried out for pSUP35 
for every sPrLD in the set. pGPD was tested in only one of the transition range 
constructs so far. Testing of the rest of the transition range constructs with pADH1 and 
pGPD will follow, along with testing of “-3 ILV” & “-15 ILV” at each increased expression 
level to complete this figure. 
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Figure 4.5: Median Partition Coefficients for sPrLDs at three expression levels. This 
data is incomplete at this time. Triplicate rounds of testing were carried out for pSUP35, 
pADH1, and pGPD in the transition range constructs so far. Testing of the “-3 ILV” &     
“-15 ILV” at each increased expression level will be carried out to complete this figure. 
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Discussion 

 Concentration appears to play an important role in phase separation in cells 

because of data collected in vitro [41], [42]. However, protein concentrations for many in 

vitro phase separation studies often exceed one or two orders of magnitude above the 

relevant physiological concentrations [41]. Until now, there had only been early 

indications from work done in vivo that concentration plays a much more modest effect 

on the assembly of some types of LLPS-prone domains, such as those recruited to the 

nucleolus [31]. Now, with quantification of the data from expression of sPrLDs under 

different strength promoters, PrLDs that are recruited to stress granules also display a 

modest concentration dependence for recruitment. Using the Partition Coefficient 

method of analysis we discussed in chapter 3, we showed that small (<15%) increases 

in median Partition Coefficient result from expression under the GPD promoter, the 

strongest constitutive promoter in the yeast genome. To us, this supports the hypothesis 

that a modest concentration dependence is observed for PrLDs recruited to stress 

granules as well. Under control of two different strength promoters (SUP35 vs GPD), 

changes in partition coefficient were less significant than changes in aliphatic content of 

the domains.  

This supports the hypothesis that composition drives recruitment to stress 

granules primarily through heterotypic interactions. Increasing PrLD concentration by 

using a stronger promoter should increase the partitioning of PrLDs into stress granules 

if there is a simple concentration-dependence. However, we did not observe a 
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substantial increase in partitioning that would support the concentration-dependence for 

recruitment of PrLDs to stress granules. 

With an excess of interaction partners for heterotypic interactions between PrLDs 

and components in stress granules, recruitment appears to proceed at similar rates 

from a variety of concentrations of PrLD. Partitioning is only modestly increased when 

PrLD concentration is increased by expression with the strongest naturally occurring 

constitutive promoter in yeast. This may also suggest that homotypic interactions only 

play a small role in the recruitment of PrLDs to stress granules in yeast. This is critically 

important as concentration-dependent, homotypic interactions are classically associated 

with yeast PrLDs. Yet, PrLDs that are recruited to stress granules continue to display 

divergent features from classical PrLDs. These unique features include a necessary and 

sufficient aliphatic residue content for assembly seen in chapter 2, and a modest 

concentration dependence for recruitment to stress granules seen in this chapter. We 

believe the unique features of PrLDs recruited to stress granules characterized in this 

work are early indications of a need for defining a separate class of Prion-like Domains. 

PrLDs that are recruited to stress granules differ in their compositional preferences, and 

their mechanism of recruitment. Additionally, they also display a modest concentration 

dependence for assembly, as opposed to the simple concentration dependence 

observed for classical PrLDs. 
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Table 4.1 Partition Coefficient median values and sample sizes for 3 promoters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUP35 PROMOTER

Construct Round One Medians sample size (n1) Round Two Medians sample size (n2) Round Three Medians sample size (n3)

sPrLD2 2.4082 120 2.2314 127 2.3621 126

sPrLD2m3 2.3301 114 2.4070 126 2.3299 140

sPrLD2m6 2.2579 216 2.1637 131 2.1184 198

sPrLD2m9 1.4302 104 1.4083 106 1.4046 71

sPrLD2m12 1.1810 242 1.1471 154 1.1594 116

sPrLD2m15 1.1338 158 1.1420 141 1.1715 105

sPrLD2m19 1.0845 137 1.0768 130 1.0736 95

sPrLD3 2.2589 168 2.4523 114 2.4311 143

sPrLD3m3 2.1866 183 2.1023 189 2.0689 156

sPrLD3m6 1.4281 135 1.4427 63 1.4356 129

sPrLD3m9 1.3991 264 1.3762 117 1.3794 146

sPrLD3m12 1.1147 154 1.1318 113 1.1062 211

sPrLD3m15 1.0764 122 1.0508 136 1.1073 119

sPrLD3m19 1.1265 173 1.0699 118 1.1012 126

ADH1 PROMOTER

Construct Round One Medians sample size (n1) Round Two Medians sample size (n2) Round Three Medians sample size (n3)

sPrLD2

sPrLD2m3 - - - - - -

sPrLD2m6

sPrLD2m9

sPrLD2m12 1.1985 170 1.1916 150 1.1696 131

sPrLD2m15 - - - - - -

sPrLD2m19

sPrLD3

sPrLD3m3 - - - - - -

sPrLD3m6 1.5003 126 1.4909 115 1.5112 112

sPrLD3m9 1.4027 106 1.4124 128 1.4389 220

sPrLD3m12 1.1018 106 1.1487 83 1.1314 148

sPrLD3m15 - - - - - -

sPrLD3m19

GPD PROMOTER

Construct Round One Medians sample size (n1) Round Two Medians sample size (n2) Round Three Medians sample size (n3)

sPrLD2

sPrLD2m3 - - - - - -

sPrLD2m6 2.2670 145 2.1958 112 2.0975 98

sPrLD2m9 1.5027 81 1.5284 123 1.5924 72

sPrLD2m12 1.2144 128 1.1992 135 1.2059 80

sPrLD2m15 - - - - - -

sPrLD2m19

sPrLD3

sPrLD3m3 - - - - - -

sPrLD3m6 1.5417 73 1.5775 148 1.5132 106

sPrLD3m9 1.4353 106 1.4295 132 1.4059 109

sPrLD3m12 1.1176 93 1.1201 99 1.1450 105

sPrLD3m15 - - - - - -

sPrLD3m19
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Materials and Methods3 

Strains & Growth Conditions 

The experiments discussed in this chapter were carried out using the model organism 
Saccharomyces cerevisiae grown in standard yeast media, and with standard growth 
conditions.[33] Plasmids were transformed into the yeast strain YER1405 (MATa 
his3D1 leu2D0 met15D0 ura3D0 PAB1-mCherry::URA3) using the standard techniques 
detailed in [33]. YER1405 is a derivative of BY4741 [32]. Yeast were grown at 30 ֯C in 
pre-stress conditions, or heat shocked at 46 ֯C for 30 minutes before imaging. 

Plasmid construction 

Generation of plasmid backbone for sPrLD expression under the SUP35 promoter 
(pER843) was carried out by inserting GFP between the HindIII and BamHI restriction 
sites following the SUP35 promoter in the plasmid pJ526 from [33]. sPrLDs were then 
cloned into pER843 in frame with GFP at its N-terminus between the BamHI and BglII 
sites. Generation of the GPD and ADH1 promoter plasmids was carried out by Kacy 
Paul, and was not included in the publication listed below. 

Stress Conditions 

Cells were grown to midlog phase at 30 °C in SC-Leu media (to select for the plasmids) 
prior to stress induction. For heat shock, 1 mL of cells was concentrated to 50 μL and 
incubated in a 46 °C water bath for 30 min prior to imaging. 

Confocal Fluorescence Microscopy 

Imaging was performed on an Olympus (IX83) Inverted Spinning Disk Confocal 
Microscope using a 100× objective, and a 405nm laser, a 488nm laser along, and a 
561nm laser. All images were captured as single planes. 

 

 

 

3This section is reformatted from the following publication: Boncella A.E., Shattuck J.E., 
Cascarina S.M., Paul K.R., Baer M.H., Fomicheva A, Lamb A.K, Ross E.D. (2020). 
Composition-based prediction and rational manipulation of prion-like domain recruitment 
to stress granules. Proceedings of the National Academy of Sciences 117 (11) 5826-
5835. My contribution to that work was building and testing of the following constructs 
after heat shock: ΔFWY, ΔFWY→ILV, ΔFWY→QN. As well as imaging sPrLD2, 
sPrLD3, cPrLD1 after heat shock. Aliphatic deletion domains were cloned into pER843 
using the same method listed in this section. 
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Western Blotting 

Cells were grown to midlog phase at 30 °C in SC-Leu media (to select for the plasmids) 
before harvesting. Volumes collected for each culture were normalized to the lowest 
density culture, as assessed by OD600 measurements. Cells were harvested by 
centrifugation at 3,000 rpm for 5 min at 4 °C. Cell lysis was performed using a SUMEB 
lysis buffer. A volume of 15 μL of each sample was run on a polyacrylamide gel and 
then transferred onto a PVDF membrane. GFP-PrLD fusions were probed using an anti-
GFP antibody (Santa Cruz Biotechnology). Images were acquired using Li-Cor Odyssey 
Clx imaging system. 

Image Analysis 

Images were exported from SlideBook® as 16-bit TIFFS. Image masks were generated 
using YeastSpotter® to identify cells in DIC C images that were exported along with 
fluorescence image stacks. Each three-color fluorescence image taken was exported as 
three separate single channel TIFF files to feed in to in-house built Python scripts to 
perform Partition Coefficient analysis. Background fluorescence subtraction was carried 
out to minimize effects brought on by low expression. Partition coefficient analysis was 
carried out by isolating pixels in images that were illuminated by fluorescently labeled 
cytoplasmic or stress granule components to identify both compartments in cells, 
followed by quantifying the GFP intensity distribution in each compartment of the cell. 

 

Pearson Correlation Coefficient analysis 

Cells were imaged by DIC C, a 488nm laser, and a 561nm laser. Image segmentation 
and quantification was carried out as described in appendix (see Pearson Correlation 
Coefficient analysis) 

Partition Coefficient analysis 

Cells were imaged by DIC C, a 405nm laser, 488nm laser, and a 561nm laser. Image 
segmentation and quantification was carried out as described in appendix (see Partition 
Coefficient analysis) 

 

4Part of this section is reformatted from the following publication: Boncella A.E., 
Shattuck J.E., Cascarina S.M., Paul K.R., Baer M.H., Fomicheva A, Lamb A.K, Ross 
E.D. (2020). Composition-based prediction and rational manipulation of prion-like 
domain recruitment to stress granules. Proceedings of the National Academy of 
Sciences 117 (11) 5826-5835. My contribution to that work was building and testing of 
the following constructs after heat shock: ΔFWY, ΔFWY→ILV, ΔFWY→QN. As well as 
imaging sPrLD2, sPrLD3, cPrLD1 after heat shock. Aliphatic deletion domains were 
cloned into the plasmids using the same method listed in this section. 
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CHAPTER 5: CONCLUSIONS 

 From the characteristics of solid-state assemblies we discussed in chapter 1, we 

saw why amino acid composition drives homotypic interactions of PrLDs into yeast 

prions despite primary sequence. These domains participate in repeated, in register, 

binding events that add to the fibril in the same manner each time. The shared features 

of solid-state assemblies also helps to explain the lack of enrichment for compositional 

elements such as charged residues, due to like charges repelling one another. Solid-

state assemblies share a similar concentration dependence for recruitment of PrLDs 

through homotypic interactions whether they are functional or pathogenic assemblies. 

Thus, the shared classification of prion-like domains due to recruitment to solid-state 

assemblies is appropriately applied based on the shared characteristics. However, this 

contrasts with PrLDs that are recruited to liquid-like assemblies, as they appear to be 

quite different in their shared features from classical PrLDs. 

PrLDs recruited to liquid-like assemblies such as stress granules differ in 

compositional preferences, and they are recruited primarily through a different 

mechanism. PrLDs recruited to liquid-like assemblies participate in heterotypic 

interactions via liquid-liquid phase separation, and recruitment appears to proceed from 

a variety of concentrations without significantly changing PrLD partitioning. In chapter 4 

we saw that expression of several PrLDs teetering on the edge of assembly with the 

strong GPD promoter displayed only a modest increase in partitioning of PrLDs into 

stress granules, supporting this modest concentration dependence hypothesis. 
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The dividing line between classical PrLDs and PrLDs recruited through LLPS 

(Hereafter, LLPS-PrLDs) was obscured in early work by highlighting a concentration-

dependence for LLPS in vitro when characterizing LLPS-PrLDs. Simplified component 

systems failed to account for the reduction of interaction partners for PrLDs compared 

to the potential interactions normally found in cells. This increased the necessary 

contribution of homotypic interactions for recruitment of PrLDs. Subsequently, this 

illuminated a potentially false concentration-dependence for LLPS-PrLDs. This 

perceived feature of LLPS-PrLDs persisted until the publication by the Brangwynne lab 

highlighting the composition-dependent thermodynamics controlling recruitment of 

domains to the nuceolus [32]. This early evidence provided initial support for the 

presence of a modest concentration dependence for LLPS-PrLDs. It wasn’t until we 

were able to demonstrate the insignificant increases to median Partition Coefficients 

observed when sPrLDs were expressed under stronger promoters that we were 

convinced this modest concentration dependence may be ubiquitous among LLPS-

PrLDs. Increased expression through use of the GPD promoter across several sPrLDs 

that teeter on the edge of assembly led to a <15% increase in median Partition 

Coefficient at most, suggesting a modest concentration-dependence for recruitment of 

PrLDs to stress granules. 

 Prion-like domains recruited to liquid-like assemblies, or LLPS-PrLDs, have three 

key deviations from classical PrLDs. The first difference is that domains recruited to 

liquid-like assemblies are recruited through a different mechanism than those recruited 

to solid-state assemblies. Heterotypic interactions comprise the majority of interactions 

leading to recruitment of LLPS-PrLDs, although the presence of homotypic interactions 
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within the separated liquid phase cannot be entirely ruled out. We saw evidence for 

these homotypic interactions in increased expression of sPrLDs in chapter 4. The 

modest increase in partitioning was likely due to a modest increase in homotypic 

interactions from the increased concentration of LLPS-PrLDs. This difference in 

mechanism of recruitment confers distinct compositional characteristics to LLPS-PrLDs 

and is partially responsible for the second deviation from classical PrLDs. The 

preference for charged residues in domains recruited to liquid-like is the second unique 

characteristic among LLPS-PrLDs. Charged residues are largely prohibitive of formation 

of cross-β-structures, and the preference for charged residues in LLPS-PrLDs further 

supports the need for reclassification of this sub-type of PrLD. The third significant 

deviation LLPS-PrLDs display in contrast to classical PrLDs is the lack of a simple 

concentration-dependence for recruitment. In chapter 4, we demonstrated evidence 

against a simple concentration-dependence to support the need for reclassification of 

this sub-type of PrLD.  Heterotypic interactions dictate that the interacting partners for 

LLPS-PrLDs in the cytoplasm are in vast excess. Recruitment can proceed from a 

variety of concentrations of LLPS-PrLD. Reclassification of these functionally distinct 

PrLDs will allow for better understanding of the currently underdiscussed differences 

between these two types of PrLDs. To understand the role of LLPS-PrLDs in diseases, 

it is important to clearly define their unique features from classical PrLDs. To progress 

toward a greater understanding of PrLDs recruited to liquid-like assemblies, we must 

classify them in a way that demonstrates their clear divergence from classical PrLDs. 

Thus, we propose reclassifying PrLDs that are recruited to liquid-like assemblies as 

LLPS-PrLDs to accurately portray the differences among PrLDs. 
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APPENDICES 

Pearson Correlation Coefficient analysis 

General overview of the workflow for analysis: 

1. Export sets of captures from SlideBook as 16-bit TIFF (OME) 
2. Organizing exported image files for analysis 
3. Generate image masks with DIC C images to use with fluorescence 

channel images for each capture (masks are used to delete 
background/define cell locations within images) 

4. Export pixel intensities and image statistics for plotting correlation between 
fluorescence channels within cells 

5. Plot image pixel intensities and export fluorescence channel correlations 
(Pearson’s R, and others) to a spreadsheet 

6. Plot correlation scores for each set of captures into a boxplot (or 
otherwise) for visualization of dataset features across a set of captures, 
between sets of captures, etc. 
 

IMPORTANT NOTE: For this protocol to work each capture must contain a DIC C 
image corresponding to two fluorescence channel images (capture the same cells in the 
same positions in all three images) to calculate correlation between fluorescence 
channel images. 

- For example: One needs a DIC C image plus a 488 channel image (GFP, FITC, etc.) 
and a 561 channel image (mCherry, RFP, etc.) to calculate correlation between the 488 
and the 561 images. On the confocal computer in SlideBook, in the “Capture” window, 
select “DIC+488+561_ROSS” instead of “Default” for a pre-saved set of imaging 
parameters that will work for this protocol. Any custom set of imaging parameters only 
needs to ensure simultaneous capture of DIC C, 488, and 561 channels (or any two 
fluorescence channels) in order to work. 

ANOTHER IMPORTANT NOTE: This protocol is designed to allow the image files to be 
accessed by the Python scripts from a folder on the desktop. Running the scripts to 
access folders from the Rdrive, etc. can create issues with file path length. In order to 
minimize these issues, one should generate a folder on the computer desktop and title it 
with their name, and they should aim to avoid too much “nesting” of files within folders. 

-For example 
  

Ideally the file path length should be short such as:  
“Users>ROSSLAB>Desktop>(your name)>Image_analysis> 30C>XYZ_pSup35-
sPrLD3”, or a title that makes sense for you and your project. 
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One should avoid excessive file name “nesting” or excessive folder name length 
such as  
“Users>ROSSLAB>Desktop>(your 
name)>Image_analysis>Rotation_project_Fall_2022> 
Synthetic_PrLDs_and_Pab1>30C_for_overnight_growth>Day_1>Part_2>Conditi
on_X>…”  
 

-File path length errors can cause the scripts to not run, and concise file paths should 
help in avoiding these issues.  
 

1. Export sets of captures from SlideBook as 16-bit TIFF (OME) 
 
1. Open the set of captures for export in SlideBook 
2. Highlight the captures for export, click on the “Home” tab, click on “→Export”, 

and click on “16-bit TIFF (OME)” 
3. In the “Export Channel Intensities as a 16-bit TIFF” window select either 

“Selected Image” to export only the highlighted captures, or select “All Images 
with Same Channels” to export all captures with the same format as the 
highlighted capture. The “All Images with Same Channels” option can be 
used to export all 2D images for analysis if the set of captures contains 2D 
and 3D images mixed together.  

4. Next, In the “Output Directory” portion of the “Export Channel Intensities as a 
16-bit TIFF” window, make sure “Write Log File” is checked, and click 
“Browse” to specify the location for SlideBook to export the TIFFs for each 
capture.  

-Generally, it is best to create an empty folder with a name corresponding 
to the construct name, condition, etc. for simplicity as each exported TIFF 
file will not contain the file name seen in SlideBook, only the capture 
numbers.  

5. Once a location for the exported TIFFs has been chosen, click “OK” in the 
“Export Channel Intensities as a 16-bit TIFF” window. 

6. Check to ensure that there are four files generated per capture in the 
specified folder once the captures are exported. Expect to see the following 
four files generated for each capture upon successful export: 

1. “Capture #_XY…_Z0_T0_C0” as a Text Document.  
2. “Capture #_XY…_Z0_T0_C0” .TIF or .TIFF 
3. “Capture #_XY…_Z0_T0_C1” .TIF or .TIFF 
4. “Capture #_XY…_Z0_T0_C2” .TIF or .TIFF 

 
-Both TIF or TIFF files will work for analysis 
-TIF or TIFF files ending in “C0” should represent DIC C images, “C1” files 
should represent one fluorescence channel (488/GFP for this protocol), 
and “C2” files should represent the other fluorescence channel 
(561/mCherry for this protocol) 
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2. Organizing exported capture files for analysis 
 
1. Once the capture TIFFs are exported to the new folder (generated in step 1), 

create a folder within that folder and call it “Text files”. Highlight all of the text 
files for each capture, and move them to the “Text files” folder. (Note: to group 
text files together within the folder for highlighting all text files at once, right-
click and select “Sort by” > “Size”. Text files should be much smaller than 
image files and will be grouped together after sorting.)  

2. Next, create three new folders. Each one should contain your initials and a 
title matching the construct name and condition followed by_488channel, 
_561channel, or _DICchannel. 
 
Some folder names for example: 

XYZ_pSup35-sPrLD2_46C_30min_488channel 
XYZ_pSup35-sPrLD2_46C_30min_561channel 
XYZ_pSup35-sPrLD2_46C_30min_DICchannel 
 

-Note: In order to run, scripts require that folder names end in _488channel, 
_561channel, or DICchannel, and folder names should not contain any 
spaces. 
 

3. Next, move all of the DIC C images (C0 files) to the folder ending in 
“_DICchannel”, move all of the 488 images (C1 files) to the folder ending in 
“_488channel”, and move all of the 561 images (C2 files) to the folder ending 
in “_561channel”. 

4. Check to ensure each folder contains the correct number of images, and the 
right type of images (Only files ending in “_C1” should be in the 
“_488channel” folder, etc.) 
 

3. Generating image masks with DIC C images for use with fluorescence 
channel images for each capture  
 
1. After organizing the images into each respective folder, go to the RossLab 

RSTOR (Rdrive), find the folder titled “Image_analysis_tools”, and open this 
folder. 

2. Inside that folder, click on the folder titled “DIC+488+561_quantification”, and 
highlight all of the files within that folder. 

3. Copy and paste these 10 items into the folder that contains the folders ending 
in “_488channel”, “_561channel”, “_DICchannel”, and the folder titled “Text 
files”.  

4. This folder should now contain 14 items including the folders for each set of 
images for each channel, the text files folder, and all 10 items from the folder 
titled “DIC+488+561_quantification”.  

5. Right click on the file titled “opts.py” (may only say opts), and select “Edit with 
NotePad+ +”. 
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6. Once opts.py is open, paste the file path corresponding to the input files into 
the input_directory (line 3) of the script. This can be done by manually typing 
the file path in to NotePad+ +, or by changing the folder name if the path is 
mostly consistent between runs.  
 
Example of an acceptable file path input: 
input_directory = 
"C:/Users/ROSSLAB/Desktop/Your_name/sPrLD2_Pab1_Hyd_Curve/30C/sP
rLD2_30C/ XYZ_pSup35-sPrLD2_30C_DICchannel" 
 
One can paste the file path in from File Explorer to ensure path name 
consistency, but the slashes will be facing the wrong direction. 
 
Example of incorrect slashes, but correct path:  
input_directory = 
"C:\Users\ROSSLAB\Desktop\Your_name\sPrLD2_Pab1_Hyd_Curve\30C\sP
rLD2_30C\ XYZ_pSup35-sPrLD2_30C_DICchannel" 
 
-The file path is correct, but the slash type will prevent the script from running. 
If pasting a file path in from file explorer, ensure slashes face forward. 
 
-If file names vary slightly between runs (e.g. sPrLD2 to sPrLD3), with 
consistent file naming, one only needs to modify the parts of file paths that 
change between runs. Changing sPrLD2 to sPrLD3 in NotePad+ + will allow 
the script to run on sPrLD3 files, etc. 
 

7. Next modify the output_directory (line 6) to be identical to the input_directory, 
except for the addition of “_OUTPUT” at the end. 
 
 
Example:  
output_directory = 
"C:/Users/ROSSLAB/Desktop/Your_name/sPrLD2_Pab1_Hyd_Curve/30C/sP
rLD2_30C/XYZ_pSup35-sPrLD2_30C_DICchannel_OUTPUT" 
 

8. Hit “Control+S” to save the modified script in your folder before running it. 
9. Open Windows PowerShell, type in cd (change directory), and navigate to the 

file path that contains your saved script, then hit enter. 
 
The command line should look somewhat like the following, depending on file 
path: 
 
PS 
C:\Users\ROSSLAB\Desktop\Your_name\sPrLD2_Pab1_Hyd_Curve\30C\sPr
LD2> _ 
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10. Once you have navigated to the correct file location (where your folders 
containing TIFF images are), in PowerShell, type: python .\segmentation.py , 
and hit enter. 

11. You should immediately see the following: 
“Using TensorFlow backend.”, followed by some notifications, and then 
“Preprocessing your images…”, then after each capture is displayed, you 
should see “Running your images through the neural network…” before the 
script completes its run. 

12. Once the script is done running, check the image folders for a newly 
generated folder ending in “_DICchannel_OUPUT”. This folder contains your 
masks, and should have the same number of files as the folder ending in 
“_DICchannel”. 

13. Now, change the name of this folder to end in “_561channel_OUTPUT”. 
14. Next, open the image masks folder and change each mask file name from 

ending in “…Z0_T0_C0”, to end in “…Z0_T0_C2”. This step can be most 
easily performed by renaming each file separately, changing the last digit 
only. 

15. Once all files are renamed to end in “…Z0_T0_C2”, move on to the next step. 
 

4. Export pixel intensities and image statistics for plotting correlation 
between fluorescence channels within cells 
 
1. From the image files folder where you have your mask folder ending in 

“_561channel_OUTPUT”, right-click on 
“CellDimensionsFilter_CreateModifiedImages_FILTER_BORDER_CELLS_Q
uantifySGs.py”, and select “Edit with NotePad+ +”. 

2. In NotePad, navigate to line 28 of the script which should read as follows:  
for (dirname, dirs, files) in os.walk('./XYZ_pSup35-
sPrLD2_30C_561channel_OUTPUT/masks'). 

3. Change the folder name to reflect the folder that contains your newly 
generated masks. 

4. Hit “Control+S” to save the modified script in your folder before running it. 
5. Open Windows PowerShell, type in cd (change directory), and navigate to the 

file path that contains your saved script, then hit enter. If one is running 
“CellDimensionsFilter_CreateModifiedImages_FILTER_BORDER_CELLS_Q
uantifySGs.py” immediately after running “segmentation.py”, then one only 
needs to go back to the command line and type: python .\ 
CellDimensionsFilter_CreateModifiedImages_FILTER_BORDER_CELLS_Qu
antifySGs.py and hit enter since both saved scripts are in the same location 
(file path). 

6. You should see the script running after hitting enter, and new files should be 
generated in the same folder as the script/image folders indicating the script 
is running successfully. 

7. Once the script is done running, open the spreadsheet titled 
“Processed_Image_Data_2p0_multiplier” in that same folder. You should see 
a list of values for each capture representing the channels for each cell within 
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each capture. If the spreadsheet is empty, try checking that image mask file 
names are all changed from C0 to C2, and that the folder name/file path to 
the image masks is typed in to NotePad+ + correctly. 
-Note: This script will always generate a spreadsheet with the same name 
(Processed_Image_Data_2p0_multiplier). In order to open more than one of 
these spreadsheets at a time, or to save them in the same folder, they need 
to be renamed to have a unique title that makes sense for your project. These 
titles will be fed in to later scripts as file names so consistency may help with 
organization. 

 
5. Plot image pixel intensities and export fluorescence channel correlations to 

a spreadsheet 
 
1. In the same folder where your newly generated spreadsheet is, right-click on 

“plot_intensity_correlation_ScatterPlots.py” and select “Edit with NotePad+ +” 
2. Then scroll down to line 36 which should read as follows: file_path = 

'./XYZ_pSup35-sPrLD2_30C_488channel/', and change the file path to reflect 
the name of the folder that contains your 488channel images (C1 files). 

3. Next, scroll down to line 59 which should read as follows: file_path = 
'./XYZ_pSup35-sPrLD2_30C_561channel/', and change the file path to reflect 
the name of the folder that contains your 561channel images. (C2 files). 

4. Hit “Control+S” to save the modified script in your folder before running it. 
5. Open Windows PowerShell, type in cd (change directory), and navigate to the 

file path that contains your saved script, then hit enter. If one is running 
“plot_intensity_correlation_ScatterPlots.py” immediately after running 
“CellDimensionsFilter_CreateModifiedImages_FILTER_BORDER_CELLS_Q
uantifySGs.py”, then one only needs to go back to the command line and 
type: python .\ plot_intensity_correlation_ScatterPlots.py and hit enter since 
both saved scripts are in the same location (file path). 

6. You should see the script running after hitting enter, and new files should be 
generated in the same folder as the script/image folders indicating the script 
is running successfully. 

7. Once the script is done running, open the spreadsheet titled 
“PearsonCorrelationCoefficients_Results_with_tau_rho” in that same folder. 
You should see lists of values for each capture representing each cell within 
each capture. If the spreadsheet is empty, try checking if the file name for the 
image folders is typed in to NotePad+ + correctly, and that no other changes 
to the script were made.  

 
 

6. Plot correlation scores for each set of captures into a boxplot (or 
otherwise) for visualization of dataset features. 
 
1. In the same folder where your newly generated spreadsheet 

(PearsonCorrelationCoefficients…) is, right-click on 
“boxplot_CorrelationCoefficients.py”, and select “Edit with NotePad+ +” 
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2. Navigate to line 12, which should read as follows:  

files = ['PearsonCorrelationCoefficients_Results_with_tau_rho.csv']. 
 
-Note: If you have not modified the name of your new spreadsheet generated 
in step 5, the script is ready to run with no modification needed.  
However, if you wish to plot multiple boxplots in the same figure, simply add a 
comma between the file name in quotations to plot multiple spreadsheets. 
 
Example:  
 
files = ['PearsonCorrelationCoefficients_Results_with_tau_rho.csv'] 
becomes 
files = ['Ex1_PearsonCorrelationCoefficients_Results_with_tau_rho.csv', 
'Ex2_PearsonCorrelationCoefficients_Results_with_tau_rho.csv' ] 
 
One can plot several boxplots together as long as each file name is in 
quotations, and separated by a comma like what is shown above. All files in 
the list must be surrounded by the brackets, and each spreadsheet must have 
a unique name. 

3. Hit “Control+S” to save the modified script in your folder before running it (if 
applicable). 

4. Open Windows PowerShell, type in cd (change directory), and navigate to the 
file path that contains your saved script, then hit enter. If one is running 
“boxplot_CorrelationCoefficeints.py” immediately after running 
“plot_intensity_correlation_Scatterplots.py”, then one only needs to go back to 
the command line and type: python .\ boxplot_CorrelationCoefficents.py and 
hit enter since both saved scripts are in the same location (file path). 

5. You should see the script running after hitting enter, and a new file should be 
generated in the same folder as the script/image folders indicating the script 
ran successfully. 

6. This new file contains your boxplot(s). Open this file, and reveal your new 
data! 
 
Note: The instructions for step 6 also apply to the script titled 
“violinplot_CorrelationCoefficients.py”, as they both accept the same file type 
input ('PearsonCorrelationCoefficients_Results_with_tau_rho.csv’). 
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Partition Coefficient analysis 

General overview of the workflow for analysis: 

1. Export captures from SlideBook as 16-bit TIFFs (OME) 
2. Organizing exported image files for analysis 
3. Generate image masks with DIC C images to use with fluorescence 

channel images for each capture (masks are used to delete 
background/define cell locations within images) 

4. Subtract “blank” or “background” image from images of cells 
5. Filter vacuole & nuclear pixels out from pixel set making up each cell, 

define cytoplasm & stress granule pixels in 3 color image stacks 
6. Export pixel intensity data for 488 channel image pixels (protein of interest 

channel)  
7. Calculate partition coefficient from the pixel intensities for each cell in the 

set of images 
8. Plot partition coefficients  

 

IMPORTANT NOTE: For this protocol to work each capture must contain a DIC C 
image corresponding to three fluorescence channel images (capture the same cells in 
the same positions in all four images) to calculate partition coefficient between 
fluorescence channel images. 

- For example: One needs a DIC C image plus a 405 channel image (BFP), a 488 
channel image (GFP, FITC, etc.) and a 561 channel image (mCherry, RFP, etc.) to 
calculate partitioning of the 488 channel images. On the confocal computer in 
SlideBook, in the “Capture” window, select “DIC+405+488+561_ROSS” instead of 
“Default” for a pre-saved set of imaging parameters that will work for this protocol. Any 
custom set of imaging parameters only needs to ensure simultaneous capture of DIC C, 
405, 488, and 561 channels (or any three fluorescence channels) in order to work. 

ANOTHER IMPORTANT NOTE: This protocol is designed to allow the image files to be 
accessed by the Python scripts from a folder on the desktop. Running the scripts to 
access folders from the Rdrive, etc. can create issues with file path length. In order to 
minimize these issues, one should generate a folder on the computer desktop and title it 
with their name, and they should aim to avoid too much “nesting” of files within folders. 

-For example 
  

Ideally the file path length should be short such as:  
“Users>ROSSLAB>Desktop>(your name)>Image_analysis> 30C>XYZ_pSup35-
sPrLD3”, 
 or a title that makes sense for you and your project. 
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One should avoid excessive file name “nesting” or excessive folder name length 
such as  
“Users>ROSSLAB>Desktop>(your 
name)>Image_analysis>Rotation_project_Fall_2022> 
Synthetic_PrLDs_and_Pab1>30C_for_overnight_growth>Day_1>Part_2>Conditi
on_X>…”  
 

-File path length errors can cause the scripts to not run, and concise file paths should 
help in avoiding these issues.  
 

1. Export sets of captures from SlideBook as 16-bit TIFF (OME) 
1. Open the set of captures for export in SlideBook 
2. Highlight the captures for export, click on the “Home” tab, click on “→Export”, 

and click on “16-bit TIFF (OME)” 
3. In the “Export Channel Intensities as a 16-bit TIFF” window select either 

“Selected Image” to export only the highlighted captures, or select “All Images 
with Same Channels” to export all captures with the same format as the 
highlighted capture. The “All Images with Same Channels” option can be 
used to export all 2D images for analysis if the set of captures contains 2D 
and 3D images mixed together.  

4. Next, In the “Output Directory” portion of the “Export Channel Intensities as a 
16-bit TIFF” window, make sure “Write Log File” is checked, and click 
“Browse” to specify the location for SlideBook to export the TIFFs for each 
capture.  

-Generally, it is best to create an empty folder with a name corresponding 
to the construct name, condition, etc. for simplicity as each exported TIFF 
file will not contain the file name seen in SlideBook, only the capture 
numbers.  

5. Once a location for the exported TIFFs has been chosen, click “OK” in the 
“Export Channel Intensities as a 16-bit TIFF” window. 

6. Check to ensure that there are four files generated per capture in the 
specified folder once the captures are exported. Expect to see the following 
four files generated for each capture upon successful export: 

1. “Capture #_XY…_Z0_T0_C0” as a Text Document.  
2. “Capture #_XY…_Z0_T0_C0” .TIF or .TIFF 
3. “Capture #_XY…_Z0_T0_C1” .TIF or .TIFF 
4. “Capture #_XY…_Z0_T0_C2” .TIF or .TIFF 
5. “Capture #_XY…_Z0_T0_C3” .TIF or .TIFF 

 
-Both TIF or TIFF files should work for analysis  
-TIF or TIFF files ending in “C0” should represent DIC C images, “C1” files 
should represent one fluorescence channel (488/GFP for this protocol), 
“C2” files should represent another channel (561/mCherry for this 
protocol), “C3” files should represent the third channel (405/mTagBFP2 for 
this protocol) 
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2. Organizing exported capture files for analysis 

1. Once the capture TIFFs are exported to the new folder (generated in step 1), 
create a folder within that folder and call it “Text files”. Highlight all of the text 
files for each capture, and move them to the “Text files” folder.   

2. Next, create three new folders. Each one should contain your initials and a 
title matching the construct name and condition followed by, _405channel 
_488channel, _561channel, or _DICchannel. 
 
Some folder names for example: 

XYZ_pSup35-sPrLD2_46C_30min_405channel 
XYZ_pSup35-sPrLD2_46C_30min_488channel 
XYZ_pSup35-sPrLD2_46C_30min_561channel 
XYZ_pSup35-sPrLD2_46C_30min_DICchannel 
 

-Note: In order to run, scripts require that folder names end in_405channel, 
_488channel, _561channel, or _DICchannel, and folder names should not 
contain any spaces. 
 

3. Next, move all of the DIC C images (C0 files) to the folder ending in 
“_DICchannel”, move all of the 488 images (C1 files) to the folder ending in 
“_488channel”, move all of the 561 images (C2 files) to the folder ending in 
“_561channel”, and move all of the 405 images (C3 files) to the folder ending 
in “_405channel”. 

4. Check to ensure each folder contains the correct number of images, and the 
right type of images (Only files ending in “_C1” should be in the 
“_488channel” folder, etc.) 
 

3. Generating image masks from DIC C images for use with fluorescence 
channel images for each capture  
1. After organizing the images into each respective folder, go to the RossLab 

RSTOR (Rdrive), find the folder titled “Image_analysis_tools”, and open this 
folder. 

2. Inside that folder, click on the folder titled “Partition_coefficient” and highlight 
all of the files within that folder, except the word document. 

3. Copy and paste the 7 python scripts & 2 folders into the folder that contains 
the folders ending in “_405channel”, “_488channel”, “_561channel”, 
“_DICchannel”, and the folder titled “Text files”.  

4. This folder should now contain the folders for each set of images for each 
channel, the text files folder, and the items the folder titled 
“Partition_coefficient”.  

5. Right click on the file titled “opts.py” (may only say opts), and select “Edit with 
NotePad+ +”. 

6. Once opts.py is open, paste the file path corresponding to the input files into 
the input_directory (line 3) of the script. This can be done by manually typing 
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the file path in to NotePad+ +, or by changing the folder name if the path is 
mostly consistent between runs.  
 
Example of an acceptable file path input: 
input_directory = 
"C:/Users/ROSSLAB/Desktop/Your_name/sPrLD2_Pab1_Hyd_Curve/30C/sP
rLD2_30C/ XYZ_pSup35-sPrLD2_30C_DICchannel" 
 
One can paste the file path in from File Explorer to ensure path name 
consistency, but the slashes will be facing the wrong direction. 
 
Example of incorrect slashes, but correct path:  
input_directory = 
"C:\Users\ROSSLAB\Desktop\Your_name\sPrLD2_Pab1_Hyd_Curve\30C\sP
rLD2_30C\ XYZ_pSup35-sPrLD2_30C_DICchannel" 
 
-The file path is correct, but the slash type will prevent the script from running. 
If pasting a file path in from file explorer, ensure slashes face forward. 
 
-If file names vary slightly between runs (e.g. sPrLD2 to sPrLD3), with 
consistent file naming, one only needs to modify the parts of file paths that 
change between runs. Changing sPrLD2 to sPrLD3 in NotePad+ + will allow 
the script to run on sPrLD3 files, etc. 
 

7. Next modify the output_directory (line 6) to be identical to the input_directory, 
except for the addition of “_OUTPUT” at the end. 
 
Example:  
output_directory = 
"C:/Users/ROSSLAB/Desktop/Your_name/sPrLD2_Pab1_Hyd_Curve/30C/sP
rLD2_30C/XYZ_pSup35-sPrLD2_30C_DICchannel_OUTPUT" 
 

8. Hit “Control+S” to save the modified script in your folder before running it. 
9. Open Windows PowerShell, type in cd (change directory), and navigate to the 

file path that contains your saved script, then hit enter. 
 
The command line should look somewhat like the following, depending on file 
path: 
PS 
C:\Users\ROSSLAB\Desktop\Your_name\sPrLD2_Pab1_Hyd_Curve\30C\sPr
LD2> _ 
 

10. Once you have navigated to the correct file location (where your folders 
containing TIFF images are), in PowerShell, type: python .\segmentation.py , 
and hit enter. 

11. You should immediately see the following: 
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“Using TensorFlow backend.”, followed by some notifications, and then 
“Preprocessing your images…”, then after each capture is displayed, you 
should see “Running your images through the neural network…” before the 
script completes its run. 

12. Once the script is done running, check the image folders for a newly 
generated folder ending in “_DICchannel_OUPUT”. This folder contains your 
masks, and should have the same number of files as the folder ending in 
“_DICchannel”. 
 

4. Subtracting a “blank” or “background” image from images of cells 
1. From the image files folder where you have your mask folder ending in 

“_DICchannel_OUTPUT”, right-click on 
“Background_fluorescence_subtraction.py”, and select “Edit with NotePad+ 
+”. 

2. In NotePad, navigate to line 13 of the script which should read as follows:  
Bg_images = [“./sPrLD…488channel/Capture...C1.tif”], [“./sPrLD…C2.tif”], 
[“./sPrLD…C3.tif”] 

3. Change the image file names in line 13 to reflect the exact name of the 
background images (C1.tif for 488 image, C2.tif for 561 image, etc.)   

4. Hit “Control+S” to save the modified script in your folder before running it. 
5. Open Windows PowerShell, type in cd (change directory), and navigate to the 

file path that contains your saved script, then hit enter. If one is running 
“Background_fluorescence_subtraction.py” immediately after running 
“segmentation.py”, then one only needs to go back to the command line and 
type: python .\ Background_fluorescence_subtraction.py and hit enter since 
both saved scripts are in the same location (file path). 

6. You should see the script running after hitting enter, and new images should 
be generated in the same folder as the script/image folders indicating the 
script is running successfully. 

7. Once the script is done running, create a new folder called “raw images”, 
select the 405, 488, and 561 image folders, and move these folders to the 
“raw images” folder.  

8. Create three empty folders with the same names as the three folders moved 
to “raw images” (the folders ending in _405channel, _488channel, etc.), then 
put the new images created by background subtraction into the appropriate 
folders. C1 images in 488channel folder, C2 images in 561channel, etc. 
 

5. Filter vacuole & nuclear pixels out from pixel set making up each cell, 
define cytoplasm & stress granule pixels in 3 color image stacks 
1. In the same folder where your newly generated image folders containing the 

background subtracted images are, right-click on “QuantSG.py” and select 
“Edit with NotePad+ +” 

2. Then scroll down to line 24 which should read as follows: for (dirname, dirs, 
files) in os.walk('./sPrLD3m6…OUTPUT/masks'): , and change the file path to 
reflect the name of the folder that contains your DICchannel_OUTPUT masks 
(C0 files). 
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3. Hit “Control+S” to save the modified script in your folder before running it. 
4. Open Windows PowerShell, type in cd (change directory), then navigate to 

the file path that contains your saved script, and hit tab to complete the file 
path. Once you see “QuantSG.py” in powershell, type “-e C1.tif -c 488channel 
-e_sg C2.tif -c_sg 561channel -e_cyt C3.tif -c_cyt 405channel”. These 
command line arguments are crucial to enter for the script to run. If one is 
running “QuantSG.py” immediately after running 
“Background_fluorescence_subtraction.py”, one needs to go back to the 
command line and type: python .\ QuantSG.py “-e C1.tif -c 488channel -e_sg 
C2.tif -c_sg 561channel -e_cyt C3.tif -c_cyt 405channel” then hit enter 

5. You may see the script running after hitting enter, and new files may be 
generated in the same folder as the script/image folders indicating the script 
is running successfully. 

6. Once the script is done running, you should see a spreadsheet created titled 
“Processed_image_data…multiplier.csv” 

 
6. Export pixel intensity data for 488 channel image pixels (protein of interest 

channel)  
1. In the same folder where your newly generated spreadsheet 

(Processed_image_data…) is, right-click on “get_POI_data.py”, and select 
“Edit with NotePad+ +” 

2. Navigate to line 27, which should read as follows:  
dir_leader = './sPrLD3m6_46C_30min_' 

3.  Change line 27 to reflect the beginning of the folder name of the folder that 
contains your 488channel images (C1 files). 
Example: The folder “sPrLD3m6_46C_30min_488channel” is entered 
correctly in line 27 when line 27 contains “sPrLD3m6_46C_30min_” and not 
488channel at the end. The folder name is broken up by this script at the 
underscores in the title. Include the entire folder title except for 488channel. 

4. While this script is running it will actively filter cells out due to low expression 
or overexposure with the lasers while imaging. Cells that are filtered out will 
be displayed in the command line as the script is running. Each filtered cell 
will display the cell number, the median GFP intensity of the cell, and whether 
it was above or below median intensity thresholds used for filtering. 
Note: There are three GFP intensity filters in get_POI_data.py 
1. Overexposure filter: cell median exceeding 50,000 (on a scale from 0 to 

65,535) 
2. Low expression filter (sliding): cell median not exceeding 10% of max GFP 

intensity for a given image 
3. Low expression filter (fixed): cell median not exceeding 1000 in cases 

where 10% of image max is less than 1000 
5. Hit “Control+S” to save the modified script in your folder before running it. 

 
 

7. Calculate partition coefficient from the pixel intensities for each cell in the 
set of images 
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1. In the same folder as before, right-click on 
“calculate_PartitionCoefficient_3colorImaging. py”, and select “Edit with 
NotePad+ +” 

2. Navigate to line 15, which should read as follows:  
dir_leader = './sPrLD3m6_46C_30min_' 

3. Change line 15 to reflect the beginning of the folder name of the folder that 
contains your 488channel images (C1 files). 
Example: The folder “sPrLD3m6_46C_30min_488channel” is entered 
correctly in line 27 when line 27 contains “sPrLD3m6_46C_30min_” and not 
488channel at the end. The folder name is broken up by this script at the 
underscores in the title. Include the entire folder title except for 488channel. 

4. Hit “Control+S” to save the modified script in your folder before running it. 
5. Open Windows PowerShell, navigate to the file path that contains your saved 

script, then hit enter. If one is running 
“calculate_PartitionCoefficient_3colorImaging.py” immediately after running 
“get_POI_data.py”, then one only needs to go back to the command line and 
type: python .\ calculate_PartitionCoefficient_3colorImaging.py and hit enter 
since both saved scripts are in the same location (file path). 

6. You should see the script running after hitting enter, and a spreadsheet 
containing partition coefficients will be generated in the same folder as the 
script/image folders indicating the script ran successfully. 
 

8. Plot partition coefficients 
1. In the same folder where your newly generated spreadsheet is, right-click on 

“plot_PartitionCoefficients.py”, and select “Edit with NotePad+ +” 
2. The file name is broken up into 3 parts. The file leader (line 7) will need to be 

identical in each spreadsheet one wishes to plot. The file ending (line 8) will 
also need to be identical in each spreadsheet one wishes to plot. The 
constructs in single quotation marks (line 9), will be the unique portion of each 
spreadsheet name. This unique name will be the label for the data on the X 
axis. Choose construct names you wish to see on the final plot. Make sure 
each construct name is in quotes, and separated by a comma. 

3. To change the X-axis, navigate to line 40, and change the quoted text from 
'Construct’, to a title that makes sense for your data. Ensure it is in single 
quotes just as the temporary title is. 

4. Hit “Control+S” to save the modified script in your folder before running it. 
5. Open Windows PowerShell, navigate to the file path that contains your saved 

script, then hit enter. If one is running “plot_PartitionCoefficients.py” 
immediately after running “calculate_PartitionCoefficient_3colorImaging.py”, 
then one only needs to go back to the command line and type: python .\ 
plot_PartitionCoefficients.py and hit enter since both saved scripts are in the 
same location (file path). 

6. You should see the script running after hitting enter, and a plot containing 
partition coefficients will be generated in the same folder as the script/image 
folders indicating the script ran successfully. 


