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ABSTRACT 

 

PARSIMONY AND COMPLEXITY IN EPIDEMIOLOGICAL MODELS FOR DECISION SUPPORT IN 

ANIMAL HEALTH 

 

This thesis is concerned with epidemiological models used as decision-support tools in animal 

health. By definition, models are representations of reality, and the epidemiological models I 

examine here are a simplification of complex ecological systems involving the interactions of 

host, agent, and environment. The development of new analytical methods and tools, and 

faster computing capabilities has motivated the creation of increasingly realistic 

epidemiological models. The development and parameterization of such sophisticated models 

can take considerable time and effort, and can potentially reduce the model’s transparency 

when communicating the modeling results to decision makers. Hence, it is relevant to evaluate 

whether extra model complexity provides more accurate or useful information for health policy 

than more parsimonious modeling approaches.  

 

The overall objective of this thesis was to evaluate the role that parsimony and complexity has 

in epidemiological models used to inform animal health policy. For this, I developed and used 

several models to explore different aspects of model parsimony and complexity in the context 

of animal health policy.  
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Chapter 1 provides an introduction to the subject of epidemiological models, parsimony and 

complexity in modeling, and a review of the different models used in animal health policy, 

focusing on the levels of complexity and parsimony approaches used in the published literature. 

For this, I make a distinction between complexity in the model structure (structural complexity) 

and in the corresponding parameters used in the epidemiological models (parameter 

complexity), and I use examples such as the 2001 Foot-and-mouth disease (FMD) outbreak in 

the UK to depict how complexity and parsimony can directly affect health policy. In general, 

consensus on the level of complexity necessary to provide useful information for animal health 

policy doesn’t seem to exist, as some researchers advocate very realistic (and thus, complex) 

models, whereas others use simplistic (parsimonious) models to inform policy. 

 

In Chapter 2, I explore the effect that structural complexity and parsimony in the model 

(specifically, population, contact, and spatial heterogeneity) can have in the results commonly 

used for policy. For this, I developed a flexible herd-level model that simulates the spatial and 

temporal spread of infectious diseases between animal populations, and used it to evaluate 

sixteen scenarios , involving combinations of multiple production-types (PT) with 

heterogeneous contact structure versus single PT with homogeneous contact structure; 

random versus actual spatial distribution of population units (based on an existing dataset from 

the state of Minnesota); high versus low disease infectivity; and no vaccination versus 

preemptive ring vaccination. The results from the scenarios revealed that for fast spreading 

epidemics, the actual locations of population units (e.g. herds) may not be as relevant to 

predict outbreak size and duration as information on population and contact heterogeneity. 
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Nonetheless, both population and spatial heterogeneity might be important to model slower 

spreading epidemic diseases. This information is relevant to inform data collection and model 

building efforts for epidemiological models used to inform health policy.  

 

In chapter 3, I used an epidemiological modeling framework to estimate the potential losses 

from a new emerging disease (ED) in channel catfish ponds in Mississippi, with the purpose of 

estimating animal inventory losses for agricultural insurance purposes. Given the uncertain 

epidemiology of a new ED, the predictions naturally have a high level of uncertainty, which 

motivated the design of a structurally complex model to try to evaluate the potential spread of 

the disease from the “bottom-up”. For this, I used two coupled stochastic models that simulate 

the spread of an ED between and within ponds under high, medium, and low disease impact 

scenarios, which were parameterized based on a meeting with fish disease experts. The mean 

(95% prediction interval (PI)) proportion of ponds infected within disease-impacted farms was 

7.6% (3.8%, 22.8%), 24.5% (3.8%, 72.0%), and 45.6% (4.0%, 92.3%), and the mean (95%PI) 

proportion of fish mortalities in ponds affected by the disease was 9.8% (1.4%, 26.7%), 49.2% 

(4.7%, 60.7%), and 88.3% (85.9%, 90.5%) for the low, medium and high impact scenarios 

respectively. The farm-level mortality losses from an ED were up to 40.3% of the total farm 

inventory. The models provided a systematic method to organize the current knowledge on the 

emerging disease perils and, ultimately, use this information to help develop actuarially sound 

agricultural insurance policies and premiums. The conclusions from this chapter was that a 

structurally complex model was necessary to make inferences about a hypothetical ED for 

which no empirical data is available, but the estimates obtained included a large amount of 
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uncertainty driven by the stochastic nature of disease outbreaks, by the uncertainty in the 

frequency of future ED occurrences, and by the often sparse data available from past 

outbreaks.  

 

After reviewing the impact of structural complexity and parsimony in chapter 2, and the 

application of a structurally complex model in chapter 3, chapter 4 evaluates the impact that 

parsimony and complexity in model parameters can have in model predictions. For this, I 

developed a Bayesian model that estimates the confidence on individual infection progression 

using longitudinal screening test results, and use the results to estimate infectious disease 

model parameters using a Monte Carlo simulation model. Test results from a Mycobacterium 

avium subsp. paratuberculosis (MAP) control program from three Wisconsin dairy herds were 

used to build a stochastic Markov Chain model for the within-herd spread of MAP and estimate 

its parameters. The infection/disease states were Susceptible, Non-shedder adult, Latent, Low 

Shedder, Heavy Shedder, Clinical, and Culled. Test parameters estimated with a latent-class 

Bayesian model were used to simulate a longitudinal disease trajectory for each tested animal 

and for the herd. The disease trajectories were used to estimate the joint uncertainty 

distributions of the transition probabilities of the stochastic Markov Chain model, and were 

then used to project the yearly progression of disease in 20 years. The joint uncertainties in 

both, the test characteristics and the disease parameters exhibited a significant level of 

correlation, and sensitivity analysis showed that ignoring parameter correlation considerably 

underestimated the variance of the model predictions. The main conclusion from this chapter is 

that the correlation between disease parameters can have an important impact in the variance 
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of relevant disease model outputs and therefore, this correlation should be taken into account 

when parameterizing stochastic epidemic models. In other words, assuming a more 

parsimonious structure in the correlation parameters underestimated the variance of the 

results, justifying the model complex methodology used to derive the correlated parameters.  

 

This thesis explored different aspects of parsimony and complexity in the structure and 

parameters of epidemiological models used for decision support in animal health. From the 

studies, I conclude that complexity in both, the model structure and its parameters can be 

needed depending on the disease modeled and types of results required from the model. 

However, in other instances a more parsimonious model structure could have yielded 

equivalent results and thus, should be favored. Although aspects of this work agree with the 

literature, the results from this thesis are novel, as all models used were created in response to 

a specific animal health application and thus, have direct application to animal health policy. 
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CHAPTER 1: PARSIMONY AND COMPLEXITY IN EPIDEMIOLOGICAL MODELS USED TO SUPPORT 

ANIMAL HEALTH DECISION-MAKING 

 

“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.” 

- John Von Neumann 

1 Introduction 

Livestock production is continuously faced with significant disease challenges, from 

Transboundary Animal Diseases (highly contagious infectious diseases that spread rapidly 

regardless of country borders) with significant impact on trade (1), to endemic diseases that 

affect production, and zoonotic diseases that can also affect humans (2). In response to the 

challenge imposed by animal diseases, a wide range of quantitative models have been 

developed to support animal health decisions, ranging from simple empirical statistical models, 

to sophisticated mechanistic models that simulate the dynamics of disease transmission in 

populations (3). 

 

This work is concerned with epidemiological models used as decision-support tool for animal 

health management. Such models are described in the literature with a variety of names, such 

as disease spread models, epidemic models, mathematical models, disease models, and 

infectious disease models. Here I use the term “epidemiological models” exclusively to describe 

mechanistic models that simulate disease spread in animal populations.  

At this point it is important to make a distinction between empirical and mechanistic models: 

empirical models attempt to best match the observed pattern in the data using mathematical 
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functions and/or probability theory (4). In contrast, mechanistic models specify the underlying 

processes that are hypothesized to have generated the observed data (4). For example, when 

fitting a time series model to disease incidence data we find the set of parameters that best 

match the data, but the parameters may not directly explain what caused the incidence 

pattern. In contrast, if an epidemiological model was used on the same dataset, the model 

parameters and relationships could implicitly incorporate the underlying disease mechanisms 

such as transmission rates and population dynamics.  

 

Although the basis of the epidemiological models used today dates back to a landmark article 

published over 80 years ago (5), the first formal treatment on the subject was provided relatively 

recently by Anderson and May (6). Nowadays, epidemiological models are described extensively 

in the literature. For instance, Vynnycky and White (7) provide an excellent introductory 

reference book to epidemiological modeling, whereas Keeling and Rohani (8) present a more 

detailed treatment of infectious diseases models used in both humans and animals. 

Hollingsworth (9) offers a brief review of selected epidemiological models for controlling 

infectious disease outbreaks in humans, and Eisenberg et al. (10) discuss the application of 

epidemiological modeling to support decision making in public health, highlighting that models 

can be used both to identify data gaps, and to aid in decision making, and therefore models 

create a link between science and policy. Garner and Hamilton (11) recently discussed the 

principles and applications of epidemiological models in animal health, while others have 

reviewed the applications of models to animals diseases such as foot-and-mouth disease (FMD) 

(12) and avian influenza (13). Woolhouse (14) connects both worlds by examining models used to 
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predict diseases in humans and animals, and calls for more complex models that incorporate 

exogenous factors such as human behavior and climate change.  

 

By definition, epidemiological models are a simplification of complex ecological systems 

involving the interactions of host, agent, and environment (7). Nonetheless, the advance of new 

analytical methods and tools, and faster computing capabilities has motivated the creation and 

adoption of increasingly realistic epidemiological models (11). The development and 

parameterization of such sophisticated models can take considerable time and efforts, and can 

potentially reduce the model’s transparency when communicating the modeling results to 

decision makers or even between modeling practitioners. Hence, it is relevant to evaluate 

whether extra model complexity provides more accurate or useful information for health policy 

than more parsimonious modeling approaches.  

 

The overall objective of this thesis was to evaluate the role that parsimony and complexity has 

in epidemiological models used to inform animal health policy. 

 

2 Model parsimony and complexity 

Parsimony can be loosely described as the general principle of favoring simplicity over 

complexity. In the scientific literature, this is often equaled to Occam’s (Ockam’s) razor 

principle, which (translated from Latin) states that “entities should not be multiplied 

unnecessarily” (15). Although this quote is highly cited in a wide range of scientific work, the 

vague nature of the statement makes it widely open to interpretation, but in general, the 
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concept is commonly understood as “all other things being equal, scientists ought to prefer 

simpler theories” (16). The direct implication of the principle of parsimony in modeling is that the 

simplest of competing models providing equally compelling explanation about a natural process 

should be preferred to the more complex model. Therefore, parsimony and complexity are 

opposite directions in any modeling effort. 

 

Abundant literature exists arguing in favor (15-16), and against (17-18) parsimony in statistical 

modeling. For example, a prominent Bayesian statistician and his colleagues (18) discuss the 

practical limitations of traditional compartmental pharmacokinetics models in which model 

complexity is largely reduced to be able to estimate parameters, and presents an alternative 

complex hierarchical Bayesian model, arguing that the hierarchical structure of the model 

decreases the risk of overfitting, without losing predictive power. However, his criticism 

appears to be confined to parsimony in hierarchical Bayesian models, as overfitting remains a 

problem for statistical models that use optimization methods such as Maximum Likelihood 

Estimation (MLE) to fit model parameters. Indeed, Hitchcock and Sober (19) discuss the 

importance of differentiating prediction vs. accommodation (i.e. using observation(s) to 

formulate a theory) in scientific theory, and Forster (20) more specifically argues that tests for 

parsimony in MLE-based statistical models, such as Akaike’s Information Criterion (AIC) only 

account for parsimony to minimize the potential errors in parameter estimation, while failing to 

incorporate the potential for errors of extrapolation or generalization, which are relevant to 

models with the goal of making predictions.  
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Although the aforementioned principles may also apply to mechanistic models, less work 

directly address the role of parsimony and complexity in such models. In an opinion article 

discussing general rules to judge ecological theories, Ginzburg and Jensen (21) provide discussion 

and examples in favor of parsimony, and conclude that if a theory greatly exceeds the 

complexity of the problem it addresses, it should be rejected. Asgharbeygi et al. (22) present an 

innovative model selection algorithm where an initial model, a data set, and a set of allowed 

revisions are used to explore alternative parameterizations of the model that may explain the 

dataset. Cox et al. (23) applies a simplified version of the Asgharbeygi et al. (22) algorithm to 

compare thousands of reduced formulations of a published radiocaesium plant-uptake model, 

based on goodness-of-fit measures on existing data and also to predict an independent dataset, 

and conclude that the simplified models provide a better fit both for the existing and 

independent datasets.  

 

Parsimony and complexity in epidemiological models has also been directly addressed by some 

authors. Bauch and Bhattacharyya (24) present a modified Susceptible-Infectious-Recovered 

(SIR) epidemiological model that incorporates social learning and game theory to model disease 

incidence and vaccine coverage during a vaccine scare, reporting that a structurally more 

complex model consistent with human behavior improved the model fit with little parsimony 

penalty. In another example, as the persistence of low pathogenic avian influenza in waterfowl 

in North America could not be explained with traditional SIR models, Breban et al. (25) 

incorporated environmental transmission in a simple SIR model, providing a parsimonious 

explanation of the observed incidence patterns. Wearing et al. (26) describe how the commonly 



 

6 
 

used assumption of exponentially distributed latent and infectious periods in models of 

diseases in humans can have a direct impact on public health policy, by overestimating the 

value of potential management options. In this case, the authors proposed replacing the 

Exponential with a Gamma distribution, which only results in one extra (shape) parameter. In all 

three examples, the authors favored slightly more complex models to be able to explain 

empirical observations not supported by their simpler models. However, their solutions can still 

be considered parsimonious, as the complexity added was small relative to the extra knowledge 

gained by the addition of the extra parameters.  

 

In contrast, many authors advocate the use of much more realistic and thus, complex 

epidemiological models. For instance, Eubank et al.(27) used a sophisticated model that includes 

urban traffic simulations, land-use, and population-mobility data to evaluate strategies to 

contain smallpox spread, and concluded that targeted vaccination and early detection could be 

used in favor of mass vaccination. Similarly complex models are also described in the veterinary 

literature (28-31), and will be discussed in the next section. 

 

3 Parsimony and complexity in models used for supporting animal health decision making  

A wide range of quantitative models are used to support animal health decisions. Singer et al (3) 

found that thirteen out of the 35 animal health-related scientific opinions adopted by the 

Animal Health and Animal Welfare panel of the European Food Safety Authority relied on at 

least one quantitative model, resulting in a total of 23 models used. Three of those models 

were epidemiological SIR-type of models, with two of them being based on systems of 
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differential equations, and one of them being a spatially explicit, individual-based model. 

Although this number might seem small relative to the total models used, the other models 

were used to answer non-transmission questions such as diagnostic test evaluation, and 

introduction and exposure risk assessments. In an article advocating the use of quantitative 

modeling for the evaluation of strategies for animal disease control, Saegerman et al. (32) 

categorizes models as descriptive, predictive, and explicative, including epidemiological models 

in the explicative category. The authors argue that modeling is one of the “key investments in 

Veterinary services for the future” and modeling efforts should make the “fewest assumptions 

possible”. Although the recommendations do not seem to be derived directly from their 

findings, the authors seem to advocate for more realistic (and thus, more complex) models.  

 

Epidemiological models are indeed increasingly being used for animal health policy. Garner et al 

(33) review the role of epidemiological models to support policy, and advocate the use of models 

for informing disease control policy before an outbreak, particularly in the areas of 

retrospective outbreak analysis, contingency planning, resource planning, risk assessments, and 

training, while cautioning on the use of models during an outbreak, a point also made by 

Keeling (34) when describing the models used to inform policy during the 2001 FMD outbreak in 

the UK. In contrast, other authors seem to advocate the use of models to inform policy during 

animal disease outbreaks (35). The use of models to support policy during an outbreak remain 

controversial, and their usage during the 2001 FMD outbreak in the UK has been particularly 

criticized (36-37). For instance, in a critical review of the modeling efforts during the 2001 FMD 

outbreak in the UK, Taylor (38) highlighted that some complex features in the models used to 
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inform a controversial “contiguous culling” policy may not have been well understood by the 

non-modeling experts in the FMD Science Group appointed by the UK veterinary authority to 

advise policy during the outbreak. Although 3 of the 4 models used to inform policy were fairly 

simple extensions to the SIR model (34), the confusion and criticism created by the use of these 

models during an outbreak highlights the difficulties in communicating the results of 

epidemiological models to decision makers, and thus why this should be taken into account 

when deciding in the level of complexity of a model. 

 

The types of epidemiological models used to inform policy varies considerably. For example, 

during the aforementioned FMD outbreak in the UK, the models used ranged from a simple 

deterministic SIR model (39), to a very detailed stochastic simulation model (40) that explicitly 

modeled multiple modes of direct and indirect spread. Although both approaches are applied 

to a variety of other applications, more detailed stochastic simulation models seem to be more 

commonly adopted by national veterinary authorities, especially for the purpose of emergency 

planning. Some of the most widely known models used for emergency planning and policy 

evaluation are the InterSpread Plus (30) from New Zealand, the InterFMD model from The 

Netherlands (41), the AusSpread from Australia (28), and the North American Animal Disease 

Simulation Model (NAADSM) (29). Although the aforementioned models are unique, a common 

trait among them is that they tend to be more structurally complex than more traditional 

epidemiological models based on differential equations. For example, all four models allow for 

the inclusion of detailed population data and the explicit modeling of multiple modes of 

transmission. Some example applications of these models include: 
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 InterSpread/InterSpread Plus: Prediction of control strategies during the FMD epidemic 

in the US (40); evaluation of different control strategies for an FMD outbreak in Korea (42); 

evaluation of control strategies against Classical Swine Fever in Denmark (43); assessment 

of the use of antiviral supplementation as an alternative to stamping using a modified 

version of the model (44).  

 AusSpread: Garner and Becket (28) describe how the model is used by the Australian 

Government Department of Agriculture, Fisheries and Forestry for emergency 

preparedness purposes. 

 InterFMD: Evaluation of movement restrictions to reduce FMD spread (41) 

 NAADSM: this model is used by veterinary authorities in North and South America for 

the purpose of emergency preparedness for a variety of transboundary infectious 

diseases (45-46),and to quantify the value of animal traceability (47). 

 

Dubé et al. (48) compared the predictions of an FMD outbreak from NAADSM, AusSpread, and 

InterSpread plus and found that although the model predictions were different, they would not 

have affected the management decisions adopted based on the models results. 

 

Beyond the application to epidemics and emergency management, epidemiological models are 

also used to support decisions for a variety of endemic diseases. Examples include the 

development of a national control program for Johne’s disease (49), economic evaluation of 

badger culling strategies to reduce tuberculosis in UK cattle (50), and the evaluation of 

surveillance protocols for a swine disease (51). 
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The common denominator in all applications of the epidemiological models described is that 

researchers must decide on the level of complexity in their models based on a priori 

understanding of the epidemiology and ecology of the disease being modeled, but the potential 

impact that such structural assumptions have in the outputs used for animal health policy is 

rarely tested explicitly. An example of such tests is provided by Tildesley et al.(35), who used a 

spatially explicit model to evaluate the level of spatial granularity required to determine 

optimal ring vaccination strategies against FMD, and concluded that using herds randomly 

generated (without spatial clustering) from aggregate US county-scale data was sufficient to 

closely determine an optimal ring culling strategy, and did not significantly modify the 

prediction of epidemic size when compared against a fully spatial model containing 

representative herd locations. Likewise, Danon (52) discusses the hypothetical effect that 

movement of humans have on the spread of FMD, concluding that more realistic routine 

movements (such as daily commuting) resulted in slower epidemic spread compared to the 

movements with random destinations which are typically assumed in epidemiological models. 

Such findings show that the structural complexity of a model can impact animal health policy, 

and thus deserve further exploration. 

 

Just as the assumptions on the structure of a model may impact predictions, the correct 

selection and modeling of model parameters can also have a considerable impact in the model 

predictions. The most intuitive challenge when modeling disease spread is that of determining 

the correct parameter estimates (e.g. the proper distribution of contact distances or animal 

level latent duration), but a more insidious and less addressed problem is that of correctly 
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modeling the joint uncertainties (i.e. the correlations) in model parameters that are not 

perfectly known. For example, diagnostic tests such as serological or culture tests that are 

commonly used to infer disease status in populations can be correlated (53). Incorrectly 

accounting for parameter correlations can alter the scale and shape of the model predictions, 

and thus, potentially bias the information provided to animal health decision makers. 

Traditionally, this problem has been avoided by using point estimates of epidemiological 

parameters (6), while still sometimes allowing for stochasticity in the disease spread dynamics 

(29, 42, 54). As uncertainty analysis is now a fundamental part of decision support models, many of 

them now include parameters with uncertainty, but often correlations are ignored as their 

estimation from observational data is not straightforward, or in many instances such as Morris 

et al (40), parameter estimates rely on expert opinion. Capaldi et al.(55) recently provided a 

statistical assessment of estimation and correlation of the parameters of the simple SIR model, 

and reported that the transmission parameter and recovery rates are correlated. The fact that 

parameters are correlated even in the simplest of epidemiological models suggests that much 

more research should be focused on this neglected area. 

 

4 Objectives of this thesis 

The primary aim of this thesis was to compare parsimony and complexity approaches in the 

design and parameterization of epidemiological models used as decision aid tools in animal 

health. The following sub-objectives were established to achieve the primary objective: 
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1. To develop and use a generic model for an epidemic disease to evaluate the impact of 

different degrees of complexity in the structure of epidemiological models, and evaluate 

their impact in disease predictions used to establish animal health policy;  

2. To develop and use a model that quantifies the potential impact of an emerging disease 

in an animal production system, to explore the level of complexity needed to provide 

predictions for a disease risk transfer strategy (insurance); 

3. To develop and use a model for the spread of an endemic disease to evaluate the effect 

of different degrees of complexity in the modeling of parameter uncertainty. 

 

5 Outline of this thesis 

Chapter 2 describes a study designed to explore the effect of structural complexity and 

parsimony in epidemiological models, in the form of population, contact, and spatial 

heterogeneity, and how variations in this complexity can affect the results commonly used for 

policy. For this, I developed an epidemiological simulation model that simulates the spatial and 

temporal spread of infectious diseases in large scale populations, and used it to explore a range 

of combinations of alternative model structures and parameterizations.  

Chapter 3 then describes the application of a structurally complex epidemiological modeling 

framework to predict the potential spread a new emerging disease in channel catfish ponds in 

Mississippi, with the goal of estimating animal inventory losses for agricultural insurance 

purposes. Given the uncertain epidemiology of a new emerging disease, the predictions have a 

high level of uncertainty, which motivated the design of a structurally complex model that 
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attempts to evaluate the potential spread of the disease more mechanistically than the more 

parsimonious models usually applied to model epidemics. 

Chapter 4 then focuses on parameter complexity, with the goal of evaluating the impact that 

parsimony and complexity in the estimation and representation of model parameters can have 

in model predictions. This is approached with a Bayesian modeling framework that estimates 

the confidence on the infection progression of individual animals using longitudinal screening 

test results, and uses the results to estimate infectious disease model parameters using a 

Monte Carlo simulation model. The model is applied to results from a Mycobacterium avium 

subsp. paratuberculosis (MAP) control program, and highlights the impact that different 

parameter assumptions can have in the model predictions. 

Finally, chapter 5 discusses the approaches and main findings of this thesis, and their practical 

implications to epidemiological models used to support animal health decisions.  
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CHAPTER 2: THE QUANTITATIVE IMPACT OF POPULATION, CONTACT, AND SPATIAL 

HETEROGENEITY TO MODEL INFECTIOUS ANIMAL DISEASES1 

 

Summary 

Epidemiological simulation models are increasingly used to support human and animal health 

policy. Models vary in complexity, ranging from simple differential equations, to complex 

mechanistic models considering the spatial and demographic components of the disease 

spread. The development and parameterization of such sophisticated models may take 

considerable time and effort and can reduce the model’s transparency. Hence, it is relevant to 

evaluate whether the extra complexity provides more accurate or useful information for health 

policy. 

The objective of this study was to evaluate the effect that complexity in the form of different 

levels of spatial, population, and contact heterogeneity have in the predictions of a mechanistic 

model for the spread of infectious animal diseases. 

 

A flexible herd-level model that simulates the spatial and temporal spread of infectious diseases 

between animal populations was developed.  

Sixteen scenarios were analyzed, involving combinations of the following factors: multiple 

production-types (PT) with heterogeneous contact structure versus single PT with 

homogeneous contact structure, random versus actual (clustered) spatial distribution of 

population units, high versus low infectivity, and no vaccination versus preemptive ring 

                                                      
1
 Simulation scenarios and model developed in collaboration with Dr. Mark A. Schoenbaum (USDA-APHIS-VS) 
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vaccination. The mean epidemic size (cumulative number of infected population units at the 

end of the outbreak) and duration was considerably larger for scenarios with multiple PT than 

for scenarios with a single PT. Ignoring the actual unit locations did not appreciably affect the 

epidemic size in scenarios with multiple PT and high infectivity, but resulted in smaller epidemic 

sizes in scenarios using multiple PT and low infectivity. 

 

In conclusion, knowing the actual locations of population units may not be as relevant as 

collecting information on population and contact heterogeneity when modeling fast spreading 

epidemics. In contrast, both population and spatial heterogeneity might be important to model 

slower spreading epidemic diseases. Our findings can be used to inform data collection and 

model building efforts for mechanistic epidemic models used to inform health policy and 

planning. 

 

1 Introduction 

The emergence of economically important animal diseases such as H1N1 Avian Influenza has 

increased awareness of the importance of disease emergency planning (56). One of the main 

tools used for emergency planning is simulation models that mimic the progress of the disease 

under different scenarios to evaluate disease control strategies, and that may be used to 

predict the potential impact of disease outbreaks (31). 

 

Disease simulation models range from simple mass action models based on systems of ordinary 

differential equations (57), to complex models taking into account details such as the spatial and 
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demographic components of the disease spread (29, 58-60). As modeling platforms and 

inexpensive computer capacity have become readily available, some researchers have naturally 

moved towards more complex simulation models that include further details on the dynamics 

of disease spread. However, complex models can have several caveats, including lack of data to 

support parameters (61), intractability of their calculations (62), difficulty to validate predictions 

(60), and more importantly, they may be less transparent and therefore harder to understand for 

non-modelers and decision makers. For example, a critical review of the modeling efforts 

during the 2001 FMD outbreak in the UK (38) highlighted that some complex features in the 

models used to inform a controversial “contiguous culling” outbreak control policy may not 

have been well understood by the non-modeling experts in the FMD Science Group appointed 

by the UK veterinary authority (formerly DEFRA) to advise policy during the outbreak. 

Thus, model complexity should only be justified when its components have a large enough 

impact on the final outcome such that decisions would change. 

 

Several studies have explored the effect that model complexity has on model predictions, but 

they are largely focused on mathematical aspects (54), and/or on the impact of limited elements 

of the disease dynamic in human populations. For example, Hufnagel et al.(63) studied the effect 

of network heterogeneity in a severe acute respiratory syndrome (SARS) simulation model, but 

did not explicitly consider the effect of spatial heterogeneity and mixing. Similarly, Bombardt (64) 

compared predictions from a simple ordinary differential equations (ODE) model against a 

model based on contact networks of SARS, concluding that the simpler ODE model was 

adequate to assess the general impacts of disease progression control, whereas the network-
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based model provided insights into disease transmission within and between connectivity 

classes. Diekmann et al.(65) and Kiss et al.(66) also explored the effect of contact heterogeneity 

and multiple transmission mechanisms in the reduction of infectious output, and final epidemic 

size respectively, but did not evaluate the effect of the spatial heterogeneity in the model 

predictions. Similarly, Dickey et al. (67) found that a mechanistic model with homogeneous 

contact parameters predicted fewer FMD infected premises than a model with heterogeneous 

operation-specific contact parameters. However, no comprehensive comparisons of the impact 

of different levels of population and spatial heterogeneity have been made for models of 

animal diseases used in practice to inform decision makers.  

 

The objective of this study was to evaluate the effect that different levels of spatial, population, 

and contact heterogeneity have in the predictions of a mechanistic model for the spread of 

infectious animal diseases.  

 

2 Materials and methods 

A simulation model that takes into consideration spatial and demographic components relevant 

for the spread of infectious diseases was used to evaluate the impact of modeling multiple 

animal species and production systems versus modeling a single species and production system 

on the simulation output. The impact of the spatial distribution of the population units and of a 

ring vaccination strategy was also included.  
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2.1 Model description 

A spatial stochastic model that simulates the spatial and temporal spread of infectious animal 

diseases was developed based on previous work by Schoenbaum and Disney (31). As a 

description of a descendant version of the model for this study is published (29), only the model 

functions and features relevant to this study are described in the following sections. 

 

2.2 Population units 

The basic entity modeled is a collection of one or more animals called a unit (e.g. a herd or 

flock). Each unit has basic attributes including a point-based geographical location (latitude and 

longitude), the number of animals contained in the unit, and a user-defined production type 

(PT). A production type is typically an animal production system with distinct epidemiological 

features resulting in similar model parameters. For example, dairy and beef cattle can be of the 

same species, but usually have very different contact networks. Therefore, disease progression 

and spread parameters can be individually parameterized for each PTs to allow for scenarios 

with heterogeneous populations and contact structures.  

 

2.3 Transition states 

The disease progression is simulated and reported in daily time steps. A unit is Susceptible 

(Figure 2.1) when all the animals can contract the disease. If one or more animals in the unit are 

infected (effective exposure), the unit becomes Latent (infected but not infectious). A Latent 

unit naturally progresses to the Sub-Clinical state (infectious without clinical signs of disease), 

then to the Clinical state (infectious clinical animals) and if no interventions are implemented, 
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the unit progresses to the Natural Immune state. As natural immunity wanes, after a certain 

number of days a Natural Immune unit progresses to the Susceptible state. The progression 

between states and interventions occurs as following:  

 

 

Figure 2.1. Transition states included in a simulation model for the spread of infectious 
animal diseases. 
 

Natural progression: as time progresses in the simulation, a production unit transitions from 

one state to another (excluding susceptible and destroyed). When the unit originally enters a 

transition state the number of days for the unit to be in that state is randomly sampled from a 

user-defined probability distribution (PD). Each day of simulation decreases the days left for the 

unit in the state, and the unit transitions to the next state after the day drops to zero.  



 

20 
 

Vaccination: units can be vaccinated within a specified radius of detected, contagious units (ring 

vaccination). When units are vaccinated, they remain in their current state for a specified 

period of days before transitioning to the Vaccine Immune state. The time the unit will stay 

vaccine immune is randomly sampled from a user-defined PD. A unit is not revaccinated within 

a user-specified number of days. The maximum number of units to vaccinate per day and the 

prioritization order of vaccination can also be specified, to take into account resource 

constraints during an outbreak. 

 

Exposure and infection: three possible modes of disease exposure are simulated: direct contact 

(animal movements), indirect contact (any other movements potentially resulting in disease 

transmission, e.g. feed trucks, veterinary visits, etc.), and airborne spread, taking into account 

the sizes and distances between the units. The infectivity (probability of infection given 

effective exposure to contagious unit) of direct and indirect contacts is a user defined 

parameter. 

When two units are at the same distance from the infected unit, the probability of infection is 

weighted by the number of animals in the unit. The actual infection is modeled as 

multinomial(ni, pi), where ni are the number of i units potentially receiving the infectious 

contact, and pi are the probabilities of infection for each i unit, based on movement and 

airborne spread exposures and infectivity. 

 

 Movement exposures (direct and indirect contact) are based on the rate of daily movements 

(sampled from a Poisson distribution with a user-defined intensity rate) and random directional 
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movements within distances around contagious units. The distance of the movements from 

each unit is based on a user-defined PD. 

  

Airborne spread is simulated with a user-specified infectivity parameter (probability of transfer 

from a contagious unit to a susceptible unit at a distance of 1 km). The probability of transfer 

decreases (with a user-defined function) as the distance from the contagious unit increases. 

 

Detection/Destruction: Destruction or slaughter is based on the detection of contagious units 

via two user-defined time-series charts; daily probability of detection since the herd became 

clinically ill and daily probability of detection since first clinical detection of the outbreak. If 

detected units are chosen to be slaughtered during a simulation run, they are slaughtered at 

the end of the day that they are detected. The slaughter of the first confirmed case-unit can be 

delayed by a specified number of days. Capacity to slaughter can also be specified. 

 

Pre-emptive slaughter: Units can be preemptively destroyed in three different ways: a) Within a 

specified radius of detected, contagious units (sometimes called ring slaughter), b) Units that 

had direct contact with the contagious unit during a specified time period, c) Units that had 

indirect contact with the contagious unit during a specified time period. Options b and c are 

determined from tracing activities, which are also user-defined. 
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The model is a standalone windows application developed with Delphi 72 and includes a user-

friendly graphical user interface (GUI). All the simulation routines were tested using an 

automated suite that included comprehensive tests for each core function of the model (tests 

for transition between states, random number generators, generation of spatial movements, 

etc.). The model software and testing suite are available upon request from the authors. 

 

2.4 Scenarios evaluated 

A total of sixteen scenarios were used, involving all possible combinations of the following 

disease determinants: multiple production-types versus single production-type, random versus 

heterogeneous spatial distribution of population units, high versus low infectivity, and no 

vaccination versus 3km ring vaccination (Table 2.1). The scenario parameters are described 

below. 

  

                                                      
2
 Embarcadero Technologies, Inc., San Francisco, California, USA 
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Table 2.1. Summary of sixteen scenarios simulating a hypothetical outbreak of foot-and-
mouth disease in a Midwestern US state. 

Scenario ID Spatial distribution Population Infectivity Vaccination 

1 Heterogeneous† Single PT High No 
2 Heterogeneous Single PT High Yes 
3 Heterogeneous Single PT Low No 
4 Heterogeneous Single PT Low Yes 
5 Heterogeneous Multiple PTs High No 
6 Heterogeneous Multiple PTs High Yes 
7 Heterogeneous Multiple PTs Low No 
8 Heterogeneous Multiple PTs Low Yes 
9 Homogeneous‡ Single PT High No 
10 Homogeneous Single PT High Yes 
11 Homogeneous Single PT Low No 
12 Homogeneous Single PT Low Yes 
13 Homogeneous Multiple PTs High No 
14 Homogeneous Multiple PTs High Yes 
15 Homogeneous Multiple PTs Low No 
16 Homogeneous Multiple PTs Low Yes 
† Heterogeneous: actual unit locations based on data from a Midwestern US state. Beef herds 
randomly allocated based on survey data. 
‡Homogeneous: unit locations created under Complete Spatial Randomness  
 

2.4.1 Population location and demographics 

Four population datasets with 4,048 animal population units were used to include the four 

combinations of spatial distribution (homogeneous and heterogeneous) and PTs (multiple and 

single). The latitude and longitude of the spatially heterogeneous population units were 

obtained from a randomly sampled subset of data from animal production units previously 

collected from a Midwestern US state3. A subset of the original population was used to have a 

reduced population dataset, increasing the simulation speed. Each unit included a PT identifier 

based on the main purpose of the production unit, and the number of animals in the unit 

                                                      
3
 Unpublished (2002). Courtesy of Dr. Paul Anderson, Minnesota State Board of Animal Health. 
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(Figure 2.2.a). Ripley’s K-function (68) was calculated on the resulting dataset to evaluate spatial 

clustering. 

 

Figure 2.2. Spatial distribution for a sample of 4,048 actual animal population units from a 
Midwestern US state (a: heterogeneous locations), and for locations randomly generated 
under Complete Spatial Randomness (b: homogeneous locations). 
 

The spatially homogeneous population dataset was constituted of geographic coordinates 

randomly generated under complete spatial randomness (CSR), using a spatial Poisson process. 

(Figure 2.2.b.).  

 

Since the MN dataset did not contain beef herds or swine markets (Table 2.2), the production 

types Beef breeders, Cattle on feed and Market were added to provide a realistic population 

dataset. Herd locations were randomly generated, excluding geographical and natural 

boundaries such as cities, lakes, and rivers. The proportion of beef breeders and cattle on feed 
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herds, and the number of animals per unit were allocated to each unit randomly, based on 

Minnesota Beef cattle inventories for the 2002 US census of agriculture (69), resulting in 1556 

beef breeders, 699 beef in feed, and 1 market. Therefore, the PTs included were beef breeders 

(BEEFB), cattle on feed (BEEFF), dairy (BOV), sheep (OVI), farrow-to-finish pig (PORFTF), feeder 

pig (PORFP), finisher pig (PORFF), and pig market (MKT) (table 2.2)  

 

Both the spatially heterogeneous and homogeneous datasets were populated with either the 

multiple PTs, or with a single PT for a total of 4 datasets  

 

Table 2.2. Summary of population used in eight multiple production type scenarios simulating 
a hypothetical outbreak of foot-and-mouth disease in a Midwestern US state. 

Production type (abbreviation Number of units Mean (SD) animals per unit 

Dairy (BOV) 792 80.4 (99.59) 
Beef breeder (BEEFB) 1556 28.1 (47.67) 
Cattle on feed (BEEFF) 699 74.1 (147.35) 
Pig - farrow-to-finish (PORKFTF) 437 934.2 (1698.93) 
Pig - feeder (PORFP) 329 310.3 (955.14) 
Pig - finishers (PORFF) 206 1143.7 (1725.06) 
Ovine (OVI) 28 56.8 (66.99) 
Pig Market (MKT) 1 2000.0 (-) 
   

 

2.4.2 Contact rates, infectivity, and disease states duration 

Direct and indirect contact rates and their infectivity for the multiple PT scenarios were derived 

from published survey data(70-72), an earlier version of this model (31) (Table 2.3), and expert 

opinion from the authors and an expert from the United States Department of Agriculture. 
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Table 2.3. Main baseline parameters used for in eight multiple production type scenarios simulating a hypothetical outbreak of 
foot-and-mouth disease in a Midwestern US state. 

 Parameter All cattle All swine Ovine/goat Generic References1 

 Disease transitions         
  Latent Pert(0,3.7,6.1) Pert(0,6,8.7) Pearson(15.3, 94.7) Weighted2 (71) 
  Subclinical-infection Pert(0,2.6,5.9) Pert(0,4.3,10) Pert(0,2.2,5.5) Weighted (71) 
  Clinical infection Pert(7,18,60) Pert(7,18,60) Pert(7,18,60) Weighted (72) 
 Distances      
  Direct Weibull(.94,30.6) Weibull(.94,30.6) Weibull(.94,30.6) Weighted (71) 
  Indirect- high Weibull(0.69, 13.7) Weibull(0.69, 13.7) Weibull(0.69, 13.7) Weighted (71) 
  Indirect-low Weibull(.94,30.6) Weibull(.94,30.6) Weibull(.94,30.6) Weighted (71) 
 Contacts3      
  Direct Poisson(0.013) 

Poisson(0.157) 4 
Poisson(0.023) Poisson(0.038) Poisson(0.044) (70) 

  Indirect Poisson(1.135) 
Poisson(13.555)4 

Poisson(15.087) Poisson(1.352) Poisson(6.924) (31, 70) 

      
1Some published parameters were corrected to exclude unfeasible values (i.e. negative disease periods) 
2Weighted: mixture distribution obtained by sampling disease duration from each individual PT, weighted by the number of units of 
each PT. 
3Baseline contact rates only. 
4Different parameter used for Dairy (BOV) herds.  
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The baseline contact rates for each production type were adjusted to account for heterogeneity 

in movements between PTs (Table 2.4). For most PTs, it was assumed that 90% of the 

movements occurred between the same PTs and the remaining 10% was evenly allocated to 

the other PTs. However, for the swine PTs the combination of contacts was weighted based on 

the knowledge of the US swine industry of one of the experts. For example, the movement of 

animals between Feeder-pig units was assumed to be smaller than to Feeder-finisher units 

(Table 2.4).  

Table 2.4. Special cases of heterogeneous direct contact rates used to simulate a hypothetical 
outbreak of foot-and-mouth disease in a Midwestern US state. All other contact rates were 
assumed to be 90% movements between the same PT and 10% between all the others. 

Source Recipient Percentage of baseline 
contact rate 

PORFF PORFF 5% 
 PORMKT 90% 
 Others 5% 
   
PORFP PORFP 5% 
 PORFF 45% 
 PORMKT 45% 
 Others 5% 
   
PORFTF PORFTF 5% 
 PORMKT 90% 
 Others 5% 
    
PORMKT PORFP 32% 
 PORFTF 32% 
 PORFF 32% 
 Others 4% 
   

 

For the single PT scenarios, the mean of the production type specific direct and indirect contact 

rates were weighted by the number of units of each production type, to obtain a general direct 
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and indirect contact rate equivalent to the average rate for the multiple PT scenarios (Table 

2.3).  

 

The infectivity of direct contacts was set to 90% and 60% for the high and low infectivity 

scenarios respectively, and 1.5% and 1% for indirect contacts (modified from Schoenbaum and 

Disney (31), using expert opinion). The infectivity and maximum distance of airborne spread at 

1km was 1% and .5% , and 4km and 2km for the high and low infectivity scenarios respectively. 

Airborne infectivity was intentionally high, to incorporate the effect of local disease spread 

beyond known movements described by Green et al (73).  

 

2.4.3 Disease states periods 

For the multiple PT scenarios, disease periods were parameterized using a PT-specific rate 

based on published data (70-72) and expert opinion (Table 2.3). In most instances, the same 

disease parameters were used for PTs of equal or similar species. Hence, parameters are 

presented for all cattle, all swine and Ovine/Goat.  

 

Some of the previously reported distribution periods were modified to avoid unfeasible values. 

For example, Bates el al (71) reported a Subclinical period of Normal(2.6, 1.1) for cattle, which 

has a 2.2% chance of sample negative values, so this distribution was re-parameterized to 

Pert(0,2.6,5.9). 
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To make the disease states between multiple PT and single PT scenarios comparable, mixture 

distributions of disease periods for the single PT scenarios were approximated by sampling the 

distributions of disease periods for each production type, weighted by the number of units of 

each production type. The resulting distributions were normalized using a Gaussian kernel 

density estimator (Figure 2.3). 

 

 

Figure 2.3. Disease states periods used in eight single production type scenarios simulating a 
hypothetical outbreak of foot-and-mouth disease in a Midwestern US state. 
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2.4.4 Disease detection and surveillance 

The conditional probability of reporting a unit as positive given clinical signs (Pc), and the 

probability of reporting as a function of the days from the beginning of the outbreak (Pd) for 

each PT were specified based on expert opinion and previous studies (31). For the single PT 

scenarios, compound estimates of the two probabilities of detection were derived by fitting a 

locally-weighted polynomial regression to the daily probabilities of detection for all the 

individual production types, with Pc starting at roughly 10% on the first day the herd exhibited 

clinical disease, 40% on day 5, and 100% by day 10. Pd was set to 20% on the first day of the 

outbreak, almost linearly increasing to reach 100% by day 60.  

 

For all the scenarios, disease detection, surveillance, and tracing were allowed, and all traced 

direct contacts were destroyed with unlimited capacity. No ring slaughter was used. 

 

2.4.5 Simulation and output analysis 

As some scenarios were very computationally intensive, 300 Monte Carlo iterations were 

initially simulated for each scenario, based on convergence testing. Additional iterations were 

run for selected scenarios to reach convergence. The means and 95% prediction intervals (PI) 

for the cumulative total (epidemic size) and daily number of infected units, and the total 

outbreak length per scenario were tabulated and plotted. Since all scenarios started with one 

infected unit, an alternative calculation of the cumulative total number of infected units 

removing the index case was reported to provide a more realistic estimate of the 2.5% PI. 
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Given that the results are based on a simulation model where the variance on the input 

parameters and the sample size is controlled, no statistical analyses were performed to test for 

statistical significance on the model differences.  

 

All the data manipulation, parameter estimation, spatial analyses, summary statistics, and 

figures were generated using the R statistical language (74). 

3 Results 

The units used in the heterogeneous spatial dataset presented significant clustering, as Ripley’s 

K-function of the unit locations was significantly higher than that from a CSR simulation 

envelope (Figure 2.4) 
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Figure 2.4. Cumulative distribution function of distances between point locations (Ripley’s K-
function) of actual population units in a Midwestern state in the US (Data), expected K-
function from a Complete Spatially Random process (CSR), and simulation envelope of a 
Poisson CSR process (CSR envelope). Randomly distributed spatial point patterns should fall 
within the simulation envelopes. 
 

The mean number of total infected units at the end of the outbreak was highest in scenarios 

combining multiple PTs, high infectivity, and no vaccination (5, 13), followed by equal scenarios 

that included vaccination (14, 6), and a scenario with multiple PTs, heterogeneous spatial 
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distribution, and no vaccination (7) (Table 2.5, Figure 2.5). Scenarios 8 and 1 presented similar 

results, with 196.6 (1.0, 626.1) and 193.2 (1.0, 1023.1) total infected units respectively, with 

only the heterogeneous spatial population as a common factor. The order above remained 

after removing the index case from the calculations, whereas the results were slightly modified 

for the scenarios with lowest total infected units (scenarios 3, 4, 11, and 12). 

 

In some of the scenarios with the highest results, the 2.5th percentile of the total infected units 

at the end of the outbreak was largely increased when removing the index case (Table 2.5). For 

example, the 2.5th percentile for scenarios 5 and 6 increased from 2.0 to 1,718.3, and 1.0 to 

1,172.8 respectively. In contrast, scenario 13 had the second highest mean total infected units 

(1,616.4), but the 2.5th percentile of the total infected units only went from 3.0 to 3.9 after 

removing the index case. 

 

Most of the iterations of the 4 scenarios with the highest cumulative number of infected units 

predicted large outbreaks, with only a few iterations predicting small outbreaks, or no 

outbreaks beyond the index case (Figure 2.5). 
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Table 2.5. Total animal production units infected with a hypothetical outbreak of foot-and-
mouth disease in a Midwestern US state, under different assumptions of spatial population 
distribution, population heterogeneity, infectivity, and vaccination (sorted by total mean 
infected units, including index case). 

Scenario ID 
 
 

Total infected units  
mean (95%PI) 

 

Total infected units  
mean (95%PI) 

Index case removed 

Scenario 
Spatial/Pop/Inf/Vacc 

 

5 1725 (2, 1836) 1751 (1718, 1836) He/M/Hi/N 
13 1616 (3, 1779) 1649 (4, 1779) Ho/M/Hi/N 
14 1414 (2, 1629) 1450 (12, 1629) Ho/M/Hi/V 
6 1314 (1, 1614) 1362 (1173, 1615) He/M/Hi/V 
7 546 (1, 1195) 590 (4, 1200) He/M/Lo/N 
8 197 (1, 579) 215 (2, 586) He/M/Lo/V 
1 193 (1, 680) 211 (2, 698) He/S/Hi/N 
15 106 (1, 342) 115 (3, 359) Ho/M/Lo/N 
2 104 (1, 367) 118 (2, 375) He/S/Hi/V 
16 74 (1, 262) 78 (3, 263) Ho/M/Lo/V 
9 72 (1, 318) 81 (2, 323) Ho/S/Hi/N 
10 51 (1, 221) 58 (2, 226) Ho/S/Hi/V 
3 10 (1, 38) 13 (2, 38) He/S/Lo/N 
11 10 (1, 42) 12 (2, 44) Ho/S/Lo/N 
4 10 (1, 45) 13 (2, 49) He/S/Lo/V 
12 8 (1, 33) 11 (2, 36) Ho/S/Lo/V 
†He: Spatially heterogeneous, Ho: Spatially homogeneous, S: Single Production Type, M: 
Multiple production types, Hi: high infectivity, Lo: low infectivity, N: no vaccination, V: 
vaccination. 
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Figure 2.5. Total animal production units infected with a hypothetical outbreak of foot-and-
mouth disease in a Midwestern US state, simulated under 16 scenarios with different 
assumptions of spatial population distribution (He: Spatially heterogeneous, Ho: Spatially 
homogeneous), population heterogeneity (S: Single Production Type, M: Multiple production 
types), infectivity (Hi: high infectivity, Lo: low infectivity), and vaccination (N: no vaccination, 
V: vaccination). 
 

The cumulative daily number of infected units followed a similar pattern, with scenarios with 

multiple PTs and high infectivity exhibiting rapidly spreading outbreaks reaching between 1200 

and 2000 infected units by day 200 (Figure 2.6.a), and smaller, slower spreading outbreaks for 

the scenarios with single PTs and low infectivity (Figure 2.6.b). In general, when everything else 

was held constant, vaccination reduced the mean number of daily and total infected units  
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a 

 
b 
Figure 2.6. Mean cumulative number of infected animal production units per day for a 
hypothetical outbreak of foot-and-mouth disease in a Midwestern US state. Scenario with 
multiple animal production types (a), and single animal production types (b). 
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The total outbreak length (Figure 2.7) varied widely, with the longest outbreaks observed in 

scenarios with multiple PTs (scenarios 5-8, and 13-16), and the shortest outbreaks observed in 

scenarios with low infectivity and no vaccination. Scenarios 13, 7, and 14 exhibited the overall 

longest mean outbreak lengths, lasting 422 (12, 800), 415 (24, 625), and 457 (13, 820) 

respectively, whereas scenarios 12, 4, 11, and 3 each lasted only 46 (10,109), 50 (10, 129), 49 

(10,120), and 51 (10, 132) days (Figure 2.7).  

 
Figure 2.7. Box-and-whiskers plot of total outbreak length for 16 scenarios of a hypothetical 
outbreak of foot-and-mouth disease in a Midwestern US state. The notches provide an 
approximate 95%CI (i.e. no overlap provides strong evidence that the medians differ). The 
center line is the median, the box height shows the inter-quartile range, and the whiskers 
show the most extreme observation within 1.5 times the inter-quartile range.  
 

4 Discussion 

The purpose of this study was to understand the potential role of population, contact, and 

spatial heterogeneity in the predictions of models for the spread of infectious animal diseases 

used in animal health policy. For this, several parameterizations of a mechanistic model were 
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used to isolate the effect of population, contact, and spatial heterogeneity in epidemic size and 

length, while considering the effect of infectivity and vaccination strategies. 

 

The six scenarios with the highest mean cumulative number of infected units at the end of the 

outbreak corresponded to parameterizations of the model assuming population and contact 

heterogeneity (multiple PT), whereas the six scenarios with the lowest number of infected units 

included single PT and homogeneous contact rates. 

 

Our findings suggest that in our model, the heterogeneity in populations and their respective 

contact structure has a significant implication in model predictions regardless of the scenarios 

evaluated, whereas spatial heterogeneity may only have an impact in model predictions under 

specific disease assumptions. 

 

Differences observed across scenarios 

Our findings of consistently larger outbreaks for the scenarios including heterogeneity in the 

populations and their respective contact rates agree with other studies exploring the effects of 

contact rates in model predictions. For example, Dickey et al. (67) used a complex mechanistic 

model to explore the effect of operation-specific contact rates in the prediction of epidemic 

size, duration of epidemic, and relative risk of infection, and found that models with weighted-

average homogeneous contact parameters predicted fewer infected premises. Cook et al.(75) 

estimated multiple transmission rates from data from a fungal plant pathogen affecting two 

plant species and concluded that ignoring multiple transmission rates could largely 
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underestimate the rate of disease spread, but in the same study also some scenarios with 

multiple transmission rates underestimated the rate of disease spread. In contrast, Brauer (57) 

compared a simple non-spatial SIR model with one and two populations using weighted 

averages for the one population model, and found the final epidemic size of both scenarios to 

be comparable, but still advocated the use of two populations to enable the evaluation of 

group-specific treatment strategies. However, the authors used a simple SIR model that did not 

take into account complex population and spatial contact interactions, thus his results are not 

directly comparable to ours. 

 

Scenarios with high infectivity always yielded bigger outbreaks than comparable scenarios, with 

lower infectivity. This is consistent with our parameterization as on average, the low infectivity 

scenarios required roughly 1.5 contacts for every 1 infectious contact in the high infectivity 

scenario. As expected, ring vaccination also considerably reduced outbreak sizes when 

compared to identical scenarios without vaccination.  

 

In the scenarios simulating fast spreading epidemics with heterogeneous populations and 

contact structure (scenarios 5 and 6), knowing the actual spatial location of population units did 

not provide more predictive accuracy than a simplified model with randomly generated herd 

locations (scenarios 13 and 14). Several factors could explain this effect, but the most obvious is 

that for the fast spread scenarios, the effect of population and contact heterogeneity may have 

overwhelmed the incremental spread created from using actual unit locations that we observed 

in the lower spread scenarios. In other words, the spread occurred quickly and strongly, 
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regardless of the clustering of the units. Also, even though we randomly allocated population 

units, we explicitly modeled the spatial spread of disease (see contact and distance 

parameters). The importance of modeling the spatial dynamics of disease spread is well 

documented (54, 58-59, 76), so our findings only suggest that while the spatial component is 

relevant, having exact population unit locations may not be necessary under certain conditions 

of disease spread and parameters. Tildesley et al.(35) used a spatially explicit model to evaluate 

the level of spatial detail required to determine optimal ring vaccination strategies, and found 

that using herds randomly generated (without spatial clustering) from aggregate US county-

scale data was sufficient to closely determine optimal ring culling strategy, and did not 

significantly modify the prediction of epidemic size when compared against a fully spatial model 

containing representative herd locations. Although the approach used was different from ours 

(spread based on spatial kernel vs. our explicit simulation of movements) and relied on the 

reparameterization of the candidate models to standardize the results, their findings are in line 

with ours. 

 

Potential relevance to animal health policy 

Epidemiological models are commonly used to evaluate disease control and eradication policies 

and for contingency planning (77). Yet, the general validity of different modeling approaches is 

seldom compared (60).  

 

The study described here does not attempt to validate the examined models against real 

outbreak data, nor does it attempt to make realistic predictions of future disease outbreaks. 
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Therefore, our findings cannot be used to directly conclude the superiority of the more complex 

parameterizations of the model to inform policy. However, as the heterogeneous population 

model provides a more realistic scenario of the dynamics of disease spread in a complex 

agricultural setting, it would be reasonable to assume that this model could be used as a “gold 

standard” for the comparisons made here. That is, if the simpler models provided predictions 

similar to those from the complex model, it would be difficult to advocate the use of a complex 

model for the purpose of disease prediction, but the meaningful differences between the 

models reported here, even after adjusting for many potential effect modifiers such as spatial 

heterogeneity, infectivity rates, and vaccination strategies can be interpreted as an indication 

that population and contact structure heterogeneity are important to be incorporated in 

epidemic models used for disease policy.  

 

Heterogeneity in the modeled populations can also be important for informing policy, as many 

disease control programs target high risk and/or “super-shedder” individuals (78), thus these 

populations must be explicitly modeled to understand the impact of mitigation strategies. For 

example, Longini et al. (79) concluded that treating the highest risk population with antiviral 

prophylaxis during a pandemic influenza outbreak was almost as effective as vaccinating 80% of 

the entire population modeled. Such findings have resulted in the so called “20/80 rule” which 

suggests that roughly 20% of the most infectious individuals in a population are responsible for 

80% of the disease transmission (78). 
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Our results could provide useful information for focusing data collection efforts and for the 

design of models used to inform health decisions. The most relevant finding was that for fast 

spreading epidemics with heterogeneous populations and contact structure, knowing the actual 

spatial location of population units did not provide more predictive accuracy than a simplified 

model with randomly generated herd locations. This suggests that when modeling fast 

spreading diseases such as certain variants of FMD or African Swine fever, knowing the location 

of population units may not provide more accurate information for policy and contingency 

planning purposes (i.e. in a country free of the disease). Nonetheless, knowing unit locations 

during an outbreak would be relevant not only to model the disease spread in real time, but 

also for epidemiological investigations such as tracing activities (47).  

 

In contrast, for diseases with lower infectivity and heterogeneous populations and contact 

structure, ignoring the real spatial location of population units (scenarios 15 and 16) may result 

in predicted epidemic sizes of as little as 19% of that predicted using actual spatial locations 

(scenarios 7 and 8). Nonetheless, these differences disappear in similar scenarios with single PT 

(scenarios 3, 4, 11, and 12). 

 

Study limitations 

The parameters used for the scenarios simulated may or may not be representative of the real 

contact and disease rates in the US livestock industry, as they are mostly based on published 

parameters for a region in California (70-72) and for a hypothetical FMD outbreak in the US (31). 

However, the emphasis of this study was to provide a consistent comparison across scenarios, 
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while using reasonable parameters. Sensitivity analyses (results not shown) reveal that the 

model results are very sensitive to relatively small changes in the contact and infectivity 

parameters used, suggesting that special efforts should be placed in the proper estimation of 

these parameters when models are to be used for health policy support. 

 

Given the computationally intensive model we developed for this study, only 300 iterations 

were used for most scenarios. Although convergence testing showed that number to be 

sufficient, running more iterations may have provided more precise estimates for the scenarios 

with the smallest spread. However, the differences between scenarios seemed very apparent, 

suggesting that more iterations may not have changed our main findings. 

 

The model includes many parameters not usually available in other models used for policy, such 

as tracing activities, on-farm detection, and surveillance. Although these factors were kept 

constant across scenarios, our results may not directly apply to simpler models, as they may 

have had an intrinsic effect in our predictions. For example, the effect of disease detection and 

surveillance, and the resulting culling of animals may have reduced the total epidemic size and 

length when compared to SIR models without such parameters. 

 

Conclusions 

Our results suggest that for a fast spreading epidemic, ignoring heterogeneity in the 

populations and their respective contact rates greatly underestimated the total outbreak size, 

whereas using randomly generated population locations rather than actual herd locations had a 
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limited to nil effect in the final epidemic size. In contrast, when modeling a slower spreading 

disease with population and contact heterogeneity, ignoring actual herd locations may also 

underestimate the outbreak size.  

 

In conclusion, in models used to inform health policy and planning, knowing the actual 

population units (e.g. herds) locations may not be as relevant as understanding the number of 

unit types and their contact structure when modeling fast spreading epidemics. In contrast, 

both population and spatial heterogeneity seems to be relevant when modeling slower 

spreading epidemic diseases. Our findings may provide useful information to prioritize data 

collection and model building efforts. 
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CHAPTER 3: DISEASE SPREAD MODELS TO ESTIMATE HIGHLY UNCERTAIN EMERGING DISEASES 

LOSSES FOR ANIMAL AGRICULTURE INSURANCE POLICIES: AN APPLICATION TO THE U.S. FARM-

RAISED CATFISH INDUSTRY4. 

 

Preface 

As discussed in chapter 1, and shown with simulation experiments in chapter 2, the level of 

structural complexity in a model is dependent among other things, on the epidemiology of the 

disease modeled, and the level of granularity expected from its results. In this chapter I present 

a structurally complex set of epidemiological models that were designed to answer a 

challenging question; what would be the potential inventory losses at the pond, farm, and 

regional level in case of a new emerging disease affecting catfish in an intensive production 

environment? The ultimate goal was to provide estimations of losses that could be used within 

an actuarial framework to calculate disease insurance premiums for catfish producers. The 

uncertain nature of the new disease to be modeled, and the uncertainty in the frequency of 

future disease occurrences motivated the use of the detailed epidemiological model described 

in this chapter. 

  

                                                      
4
 Article formatted and submitted to the Risk Analysis journal. 
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Summary 

Emerging diseases (ED) can have devastating effects on agriculture. Consequently, agricultural 

insurance for ED can develop if basic insurability criteria are met, including the capability to 

estimate the severity of ED outbreaks with associated uncertainty. The U.S. farm-raised channel 

catfish (Ictalurus punctatus) industry was used to evaluate the feasibility of using a disease 

spread simulation modeling framework to estimate the potential losses from new ED for 

agricultural insurance purposes. Two stochastic models were used to simulate the spread of 

emerging diseases between and within channel catfish ponds in Mississippi (MS) under low, 

medium, and high disease impact scenarios. The mean (95%PI) proportion of ponds infected 

within disease-impacted farms was 7.6% (3.8%, 22.8%), 24.5% (3.8%, 72.0%), and 45.6% (4.0%, 

92.3%), and the mean (95%PI) proportion of fish mortalities in ponds affected by the disease 

was 9.8% (1.4%, 26.7%), 49.2% (4.7%, 60.7%), and 88.3% (85.9%, 90.5%) for the low, medium 

and high impact scenarios respectively. The farm-level mortality losses from an ED were up to 

40.3% of the total farm inventory and can be used for insurance premium rate development. 

Disease spread modeling provides a systematic way to organize the current knowledge on the 

emerging disease perils and, ultimately, use this information to help develop actuarially sound 

agricultural insurance policies and premiums. However, the estimates obtained will include a 

large amount of uncertainty driven by the stochastic nature of disease outbreaks, by the 

uncertainty in the frequency of future ED occurrences, and by the often sparse data available 

from past outbreaks.  
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1 Introduction 

International trade and movement of live animals represent a major route of disease 

introduction to new areas in the world (80). Furthermore, many emerging diseases (ED) are 

believed to come from pathogens that are already present in the environment and become 

important due to changing factors that alter the natural equilibrium of the disease agent in the 

environment (81).  

 

ED can greatly impact animal agriculture. For example, the 2001 outbreak of Foot and Mouth 

disease (FMD) in the UK alone resulted in £3.1B (US$4.8B) in losses to agriculture and the food 

chain (82). Insurance can be a relevant strategy to manage the risk of disease in agriculture, as it 

allows the producer to transfer the risk of ED losses to an insurer, in exchange for a fee (83). 

Insurance including coverage for ED could develop if basic insurability criteria are met, including 

the capability to estimate the severity of ED outbreaks with associated uncertainty.  

 

Conventional empirical methods are of limited use to estimate the impact of new ED since 

outbreak data are usually scarce and/or may not be relevant to the new disease. Hence, the 

feasibility of alternative methods to quantify the impact of ED should be further explored. 

Disease spread models (DSM) mimic the dynamics of disease spread in populations, and have 

been extensively applied to a variety of human and animal diseases (7, 84). DSM can allow for the 

inclusion of variability in the model predictions and uncertainty in the model structure and 

accompanying estimates used to parameterize the model (7), making them potentially suitable 

to calculate impact from ED for which knowledge is limited. DSM have been proposed to 
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estimate disease impact for both human (85) and livestock agricultural insurance (86), but have 

not been applied for ED insurance in specific sectors such as aquaculture. Authors exploring the 

actuarial applications of deterministic DMS suggested that stochastic DSM could provide a 

more generalized and pragmatic alternative to actuarial applications (85). 

 

There are several examples of ED affecting aquatic animals: Taura Syndrome Virus, an 

infectious disease agent of shrimp, was originally transmitted to Taiwan from live shrimp 

imports from Ecuador in the late 1990s, and then further spread throughout Asia (87). Koi 

Herpes Virus (KHV) has spread in cyprinid species throughout the world due to international 

trade and international shows of ornamental fish (88). In the last two decades, the farmed 

channel catfish populations have been exposed to emerging diseases such as Visceral Toxicosis 

of Catfish (VTC), digenetic trematode infestations, and Proliferative Gill Disease (PGD) (89-91). 

Also, the farmed salmonid industry has experienced the emergence of a variety of diseases 

such as Piscirickettsiosis, Infectious Salmon Anemia, and Sea lice (92-94).    

 

Aquaculture producers and researchers have identified disease as the peril of greatest 

economic concern for several aquaculture industries, including the U.S. farm-raised catfish 

(Ictalurus punctatus) industry (83). However, the authors of this article are unaware of 

government-backed insurance policies available to protect U.S. catfish producers from 

economic losses due to a disease outbreak.  

The aim of this study is to evaluate the feasibility of using disease spread models to estimate 

the magnitude of new ED outbreak losses on a farm level for animal agriculture insurance 
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policies.  The U.S. farm-raised catfish industry was used as an example for the application of this 

approach.  

 

2 Materials and methods 

For insurability purposes, the direct impact of an ED outbreak in a livestock facility such as a 

farm or aquaculture site is proportional to the total number of animals affected by the 

outbreak and the severity (i.e. mortality) of the disease outbreak. Impacts such as production 

losses due to non-covered mortality events or other causes, and loss of marketability of 

surviving animals are often not considered insurable. The ED impact is influenced not only by 

the disease agent, but also by the management practices at the facility and the characteristics 

of the animal population. Animal holding facilities are often comprised of sub-populations of 

animals such as in separated poultry houses, corrals, or ponds. Therefore, to quantify the ED 

losses it is necessary to estimate the disease spread between and within such sub-populations. 

The framework presented here utilizes the U.S. farm-raised catfish industry as an example of 

using models that simulate the spread of an ED outbreak to quantify the expected total number 

of animals affected by the outbreak in any given farm.  

 

2.1 Insurability framework 

Insurability criteria such as those proposed in Table 3.1 (adapted from Coble et al. (83)) should 

be considered to evaluate the applicability of the modeling estimates of the expected farm-

level loss from an ED. For example, it must be assumed that management practices that reduce 

the risk or prevent losses for an emerging disease are either non-existent (i.e. new/poorly 
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understood emerging disease) or not easily applied to the disease affected area (e.g. 

vaccination is not possible, treatment not approved in the country). Also, attributing death 

losses to a single disease when other diseases are present can be difficult, unless ED outbreaks 

are confirmed by the competent authority using recognized diagnostic tests. For this study, it is 

assumed that the losses are only caused by the ED under investigation, as typically ED 

outbreaks are confirmed by the competent authority using recognized diagnostic tests. Insurers 

often pool policies to reduce the variability of losses in their overall policy portfolio (83). 

However, the standard methods used to model pooled policies can only be applied when the 

elements pooled (e.g. farms holding individual policies) are sufficiently uncorrelated. As 

infectious disease outbreaks can often cluster in a region, DSM can be used to calculate pooled 

estimates while taking into account clustering. The farm-level risk classification for ED could be 

evaluated considering management and biosecurity practices (e.g. all-in/all-out management, 

stocking density, mortality removal), that are known to mitigate the introduction and spread of 

infectious diseases, and could then be used to adjust the premium rate accordingly. Such 

classification is beyond the scope of this work, but risk factors could be established with 

observational epidemiological studies. For the purpose of this study it is assumed that the ED 

modeled satisfy all insurability criteria. 
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Table3.1. Suitability of disease simulation modeling of an emerging disease in meeting 
Insurability Criteria for Aquaculture Diseases.  

Insurability criteria questions 
Answer for an emerging disease 
and epidemic model predictions 

Satisfies criteria? 

Determinable loss   
Are losses caused from single disease alone? Most likely Most Likely 

Is this the primary cause of loss? Most likely, but all other causes must 
be ruled out 

Most Likely 

Measurable loss   
Does the disease cause acute losses? ED must cause acute losses so they 

could be easily enumerated 
Unknown 

Accidental and unintentional   
Are the probabilities of getting these diseases 
conditioned on management? 

Possibly, unless ED is poorly understood Yes 

Are there available control measures to 
prevent the disease outbreak? 

No method to prevent until disease is 
well understood 

Yes 

Are there available control measures to 
mitigate the severity of the outbreak? 

There may be minimal control methods 
outside of standard biosecurity and 
management practices 

Most likely 

Sufficient information to conduct risk 
classification 

  

Within a region is one farm more prone to 
this disease than another farm? 

Unknown Unknown 

Is the disease endemic or exotic? Exotic Yes 

Between two regions can one farm be more 
prone to this disease than another farm? 

There may be regional and production 
differences. The epidemic model takes 
this into account 

Unknown 

How contagious is the disease between pond-
raised catfish? 

The epidemic model takes this into 
account 

Unknown 

Sufficient data to establish accurate premium 
rates 

  

Can we estimate the frequency of losses from 
this disease? 

Difficult to estimate given emerging 
pattern of disease 

Not at this time, 
scenario analyses 
used 

Can we estimate the magnitude of losses 
from this disease? 

The epidemic model estimates this 
value 

Yes, through this 
modeling exercise 

Losses sufficiently uncorrelated to allow for 
pooling 

  

Are losses largely idiosyncratic or systemic? Unknown Unknown 

Are there factors that may affect the 
frequency of occurrence over time? 

Unknown Unknown 

Will future outbreaks be more probable after 
the first outbreak occurs? 

Unknown Unknown 
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The anticipated loss cost is the expected exposure that an insurer would have related to a 

payout for any given farm. That is, the expected total cost of fish mortalities in foodsize fish 

ponds due to an ED in a given farm in a year period. Thus, the loss cost for an emerging disease 

can be defined as: 

 

edmfied cpNpLC                    (1)  

  

Eq. 1 shows that the expected loss cost from emerging diseases LCed depends on the number of 

ponds in a farm N, the proportion of infected ponds on an infected farm pi, the mean number of 

foodsize fish per pond f, the proportion of mortalities pm that occur within an infected pond, 

the cost per fish c, and the mean yearly frequency of covered ED infections in the farm ed. 

 

The total number of ponds in the farm N can be assumed as known at the time the loss cost is 

estimated. Likewise, the mean number of food size fish per pond f and the cost per fish c could 

be available or estimated from production records, and there would be expected variations 

from pond to pond. Such variation could be accounted for by calculating a loss cost function for 

different population strata (e.g. ponds ready to harvest vs. young stock). As c would be 

accessible to the insurer but highly variable over time and regions, it is excluded from the 

results reported hereafter, but this value could be readily incorporated when calculating the 

loss cost. 
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The three parameters pi, pm, and ed are uncertain as they depend on the epidemiological 

characteristics of the ED. Thus, two disease spread models were used to estimate pi and pm. pi 

was estimated using a model that simulated the spatial and temporal spread of a hypothetical 

transmissible disease between ponds in the region, and pm was estimated using a separate 

model that simulated the disease spread and mortality within infected ponds. Both models 

were stochastic and incorporated variability in the prediction, and uncertainty in their 

parameters; therefore their results were probability distributions obtained via Monte Carlo 

simulations. The models provide results at the individual pond and farm level, offering the 

potential for detailed farm and regional-level analyses. For illustration purposes, the analysis 

presented in this article uses only the arithmetic means from the simulated values from pi and 

pm in the loss cost calculation, as they represent the expected value of the losses and thus are 

influenced by the variability and uncertainty in the models predictions. Further details on the 

models are described in the next sections. 

Finally, using historical records of catfish disease emergence to estimate ed would assume that 

the historical rate of disease emergence is a valid estimate of future disease emergence, so 

instead the effect of ed in the estimation of farm-level inventory losses is evaluated via 

scenario analysis.  

 

The estimated loss cost for the emerging disease LCed could then be incorporated into a total 

loss cost estimate for all potential payouts. 

 

 pedt LCLCLC                   (2) 
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The total estimated loss cost LCt (Eq. 2) is the estimated mean loss cost from emerging diseases 

LCed plus the estimated expected loss costs from all other perils LCp named in the policy. Finally, 

the estimated premium rate (excluding overhead and profit margin) for the insurance product 

can be calculated as: 

 

dLCPR t                     (3) 

 

The premium rate PR is the estimated total loss cost LCt minus the deductible d (Eq. 3).  

 

This article focuses on the estimation of the farm-level inventory losses (i.e. pi, pm) using the 

DSM methods described hereafter.  

 

2.2 Models for the spread of diseases in farmed catfish populations 

Two DSM for the spread of a hypothetical ED in farm-raised catfish populations were 

developed. The first model simulated the spatial and temporal spread of a transmissible disease 

between ponds, and the second model simulated the spread of the disease within infected 

ponds. The models were used to estimate pi and pm respectively. Foodsize fish producing farms 

are the target population for potential insurance products and thus used in LCed. However, the 

disease spread was simulated for both foodsize and fingerling catfish as both populations are 

likely to participate in the transmission of an emerging disease outbreak. Only the simulation 

results for foodsize fish producing farms are reported.  
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A meeting with fish disease experts was held to identify the key scenarios and parameters 

needed to model emerging diseases in aquaculture, including a definition of a representative 

hypothetical emerging disease to develop the models (further description in parameters 

estimation and data sources section). The resulting models were based on a hypothetical 

infectious disease that could be transmitted between and within ponds horizontally via direct 

contact (e.g. stocking of fingerling into foodsize fish ponds), or indirect contacts (e.g. vehicles, 

equipment transfer). The disease was detected only by clinical signs (i.e. mortalities) and since 

the natural occurrence of a new emerging disease was modeled, no interventions (vaccination, 

quarantine, etc.) on the detected ponds were modeled. However, both models currently 

accommodate such interventions and could be used for the evaluation of further scenarios.  

 

2.2.1 Model for the spread of disease between ponds (between-ponds model) 

A spatial, pond-based, discrete-time, state-transition stochastic model to simulate the spread of 

an ED between ponds was implemented in Delphi 75. The basic model structure was similar to 

that of a previously described model (31), but also accommodated for multiple farm types 

(fingerling vs. foodsize) and for the stratification of ponds within farms so the proportion of 

infected ponds on an infected farm pi could be estimated. The pond was the individual unit, and 

had attributes that changed in daily time steps. The attributes of the pond included the number 

of fish (inventory on hand), the farm type (predominantly fingerling or foodsize), the spatial 
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location (geographical coordinates), and the disease state of the pond (Susceptible, Exposed, 

Infected, Immune).  

 

When the pond received a successful direct or indirect contact (contact that resulted in 

infection) it was considered exposed (but not yet infectious). The pond became infected (and 

infectious) after time e once the fish in the pond started shedding the agent. The pond became 

immune after infection. After a number of days i, an immune pond could become susceptible 

again (Figure 3.1).  

 

 

Figure 3.1. A spatially explicit, pond-based, discrete-time, state-transition stochastic model to 
simulate the spread of an ED between ponds of farmed-raised catfish.   
Transitions between states are represented as arrows. Ponds transition from susceptible (S) 

status to exposed (E) after a successful direct or indirect contact determined by d,d,d and 

id,id,id respectively, from E to infected (I) after e days, from I to immune (R) after i days, 

and may again become S after r days. Parameters above are randomly sampled from 
probability distributions.  
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I
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R
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E
Exposed
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Direct
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r
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For each infected pond, the lengths of disease periods (at the pond level) were sampled from 

Pert distributions (Table 3.2), with minimum, mode, and maximum parameters listed in the 

parameter estimation and data sources section). A dead state was not considered since 

mortalities were modeled at the fish level with the more detailed intra-pond model. No 

intervention strategies such as vaccination and treatments were included since the intention 

was to simulate the course of the outbreak without interventions.  



 

58 
 

Table 3.2. Relevant parameters used in three scenarios simulating the spread of a new emerging disease between farmed catfish 
ponds in Mississippi. 

Category Parameter Name Low scenario Medium scenario High scenario Source 

Disease 
duration 
(days)

e Exposed Pert(0,1,2) Pert(0,1,2) Pert(0,1,2) Expert1 
i Infectious Pert(0,100,300) Pert(0,100,300) Pert(0,100,300) Expert 

 r Immune Pert(182,300,365) Pert(182,300,365) Pert(182,300,365) Expert 
       
Movements 
(days) 

d Direct  contact rate Poisson(0.02) Poisson(0.025) Poisson(0.03) Expert 

d Direct probability of 
infection transfer 

1 1 1 Expert 

 d Direct distance Uniform(0,300) Uniform(0,300) Uniform(0,300) Expert, spatial 
dataset2 

 id Indirect rate Poisson(0.8) Poisson(1) Poisson(1.1) Expert 

 id Indirect probability of 

infection transfer 

0.01 0.025 0.035 Expert 

 id Indirect distance Exponential(1) Exponential(1) Exponential(1) Spatial dataset2 

       
1Estimates derived from the expert elicitation meeting. 
2Estimates from spatial population dataset of ponds.  
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The spread of the disease between ponds was modeled by direct and indirect movements. A 

direct movement was a fish transfer from fingerling ponds to foodsize fish ponds. Indirect 

movements were all the other movements that could potentially transfer the infection from 

one pond to another, for example movement of equipment (e.g. seine nets), accidental 

movement of fish from pond to pond (e.g. bird predation), water transfer from pond to pond 

(e.g. hill ponds), and personnel.  

 

The daily number of direct kd and indirect ki contacts from each infected pond was: 

)(

)(

idij

dij

Poissonki

Poissonkd









                  
(4) 

That is, for each i infected pond on each j day a movement was randomly sampled from a 

Poisson distribution with direct and indirect contact rates d and id respectively. Eq. 4 could be 

simplified to Poisson(id+ d), but was separated to take into account the different infectivity 

(probability of infection transfer to susceptible recipient pond given an infective contact) from 

direct and indirect contacts (dandid respectively). The distance of each direct d and indirect 

id contact was sampled from a Uniform and Exponential probability distribution respectively 

(Table3.2) and the susceptible pond closest to the distance sampled was identified as the 

recipient of the contact. The infection transfer (transition from S E) was modeled as 

Bernoulli(d) and Bernoulli(id) for each direct and indirect contact respectively. As the sum of n 

Bernoulli trials with equal probability p is Binomial(n, p) the incidence of all newly infected 

ponds on any given j day can be summarized as: 

),(),( idijdijj kiBinomialkdBinomialI                  (5) 
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A fingerling pond was randomly infected, and was used as seed to start each simulation and the 

simulation was run for a year. As the model was very computationally demanding, 300 

iterations were used based on tests for convergence of E[pi]. Histograms were used to visualize 

the distribution of the total numbers of ponds affected at the end of the outbreak, and the 

proportion of the cumulative number of ponds affected in infected farms at the end of the 

outbreak. The mean proportion of the cumulative number of ponds affected in infected farms 

E[pi],was used in the farm-level inventory loss calculation, as the expected value is influenced 

by the variability and uncertainty in the estimates and can be readily added to the expected 

loss costs from all other perils LCp named in the policy.  

 

2.2.2 Model for the spread of disease within ponds (Intra-pond model)  

A stochastic, continuous-time state transition model that simulates the spread of an infectious 

disease between fish in ponds was implemented in the R statistical language (74). The model 

follows the principles of the density-dependent (individual contact rate is proportional to 

population size) Susceptible-Infectious-Recovered (SIR) Kermack-McKendrick model (7), while 

simulating individual disease transitions in continuous time using a Gillespie-based algorithm 

(95). An explicit dead state was added to quantify the mortalities for the farm-level inventory 

loss estimation. Figure 3.2 summarizes the model structure and parameters, and equation 6 is a 

differential equation representation of the stochastic model. 
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Figure 3.2. Within pond stochastic state-transition model for simulation of a new emerging 
disease in farmed-catfish ponds in Mississippi.  
Transitions between states are represented as arrows. Fish transition from susceptible (S) 

status to infected (I) at a rate SI, from I to recovered (R) (e.g. immune) at a rate I, and from I 

to dead at a rate I. The transition times are exponentially distributed. 
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The susceptible (S) state included all fish in foodsize fish ponds that could be potentially 

infected by the agent, infected (I) comprised all the fish that were infected and capable of 

transmitting the disease, the removed (R) state included the fish that were immune, harvested, 

or that died of causes other than the disease being modeled, and the dead (D) state included all 
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the fish that died due to the disease. Susceptible fish were infected at rate SI, and infected fish 

were either removed at rate I or dead due to the disease at rate I. The times at which fish 

remained in a state was sampled from an exponential() distribution, where  was the relevant 

transition rate (SI,I, or I).  

 

Given the uncertainty in the dynamics of an ED outbreak, the model structure was kept simple 

to avoid over-parameterization. Thus, the following was assumed: (1) closed population; that is 

no baseline births or deaths other than the mortality caused by the disease, which is reasonable 

to assume for an epidemic scenario in a confined population such as a fish pond (96). (2) Every 

susceptible fish had the same probability of becoming infected. (3) Fish remained in the 

removal state for the lifetime of the outbreak. (4) the stochastic variability in transition times 

between fish in a pond was explicitly modeled, while the transition coefficients remained 

constant. (5) the time scale of the within pond dynamics is independent of that from the 

between pond model. 

 

The simulation algorithm was fast, but it was computationally implausible (and unnecessary) to 

simulate all fish in a pond, so the proportion of mortalities pm in an infected pond was 

calculated from a population of 1,000 fish/pond. The simulation started with the introduction 

of infectious fish in a completely susceptible population of catfish in a pond and was run for 

1,000 iterations. The mean pm in infected foodsize fish ponds at the end of the outbreak was 

calculated and used in the farm-level inventory loss estimation. Histograms were used to 
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display the simulation summary for the three scenarios, including the distribution of the 

cumulative proportion of fish mortalities in a pond at the end of the outbreak.  

 

2.3 Parameter estimation and data sources 

2.3.1 Expert elicitation to derive key scenarios and parameters 

A new ED is by definition unknown; thus the scenarios and parameters to model such ED must 

be discussed and derived with experts in the disease and production system under evaluation. 

An elicitation meeting with 14 fish disease experts was held to identify the key scenarios and 

parameters needed to model emerging diseases in catfish aquaculture. The expert panel 

included six researchers in aquatic diseases, five epidemiologists, two agricultural economists, 

and one expert in aquaculture predators. Experts were first presented with conceptual DSM for 

current catfish diseases and were then asked to discuss approaches to adapt the models for an 

unknown ED, including the disease characteristics to derive the disease scenarios and 

parameters. Experts also discussed available sources of data to derive the ponds populations. 

The elicitation was a panel discussion rather that individual questionnaires, thus a professional 

moderator was used to guide the discussions and reduce biases resulting from face-to-face 

meetings, such as dominance and availability bias (97).  

 

2.3.2 Pond locations 

As the location of catfish ponds was not available, pond locations and attributes were 

generated based on a combination of census data published by the National Agricultural 

Statistics Service (NASS) (98-99), the National Animal Health Monitoring System (NAHMS) studies 
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(100-101), and a geospatial dataset of catfish ponds that was created using a classification 

algorithm on Landsat® satellite imagery for the state of MS. Although a more recent NAHMS 

Catfish study was published in 2010, the data required to create the pond population was only 

available in the earlier 2004 publication.  

The geospatial dataset was used to calculate the spatial centroids for a total of 3,543 ponds in 

eastern and western (delta) regions of Mississippi. After all the ponds were geo-referenced, 

foodsize farms were generated by randomly selecting ponds to represent farm centers, and 

then n ponds closest to the farm center were selected, where n was a number randomly 

sampled (with replacement) from the distribution of the numbers of ponds per farm reported 

by NAHMS (100-101). The remaining ponds were assumed to be fingerling ponds. The ponds were 

then classified by location (east or west MS) and by production goal (fingerling or foodsize fish 

ponds) to use different parameters for each of the categories in the model. The population 

calculations were made using the R statistical language and the geospatial manipulations were 

performed in ESRI ArcGIS 96. Figure 3.3 shows the resulting pond locations used to simulate the 

disease in MS. 

                                                      
6
 Environmental Systems Research Institute, Inc. (ESRI), Redlands, California, USA 
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Figure 3.3. Distribution of pond centroids used to simulate an outbreak of an emerging 
infectious disease in farm-raised catfish in Mississippi. 
 

2.4 Scenarios evaluated 

Disease outbreaks can have different impacts on a population depending on the characteristics 

of the agent (e.g. infectivity, pathogenicity), the host (immune status, species) and the 

environment (e.g. water quality, fish movement, management). Combinations of those factors 

were used to develop scenarios for diseases with high, medium and low farm-level impact in 
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terms of disease incidence and mortality. The scenario and parameters were generated based 

on published literature and expert opinion. The results from the three scenarios provided a 

range of possible values of pi and pm representing the uncertainty in the epidemiological 

behavior of the ED considered.  

 

2.4.1 Scenarios for the between-ponds model  

The most relevant parameters used for the high, medium and low disease impact scenarios are 

summarized in table 3.2. The pond-level exposed period (infected not yet infectious) e was 

assumed to be short (0 to 2 days), the infectious period i was assumed to have a highly variable 

length to represent the range of pond-level infection (from fast die-off to persistent infection, 

thus 0 to 300 days), and the immune period r went from half of a year to a full year to simulate 

the scenario where most ponds would not be restocked while experiencing an outbreak. The 

direct contact rate d was .02, .025, and .03 contacts/day (roughly 7, 9, and 11 fish movements 

from fingerling ponds to foodsize fish ponds/year) for the low, medium, and high scenario 

respectively, whereas indirect contacts id happen much more often, with rates 0.8, 1, and 1.1 

contacts/day. The probability of infection transfer from direct contacts dwas assumed to be 1 

since large numbers of fingerlings are usually stocked in foodsize fish ponds. In contrast, as 

indirect contacts are less likely to result in infection (lower dose of the agent, fewer fish 

exposed), id was 1%, 2.5%, and 3.5% for the three scenarios respectively. Fingerlings could be 

moved to any pond in the population, so the distance of direct contacts d ranged from 0 to 300 

km, based on the maximum distance between ponds in the population database. Indirect 

movements were assumed to be mostly local (at the farm or pond group level); hence id was 
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exponential (1), effectively simulating most of the distances at a short range, with 99.995% of 

movements under 10 km. This parameterization was consistent with the distribution of 

distances between the centroids of pond clusters.  

 

2.4.2 Scenarios for intra-pond model 

 At the time this study was done there were no catfish-specific disease spread parameters 

published in the literature and no data were readily available to estimate them. Furthermore, 

even currently known diseases may not be representative of new ED in catfish; therefore 

similarly to the between-ponds model, high, medium and low disease impact scenarios were 

selected to exemplify the use of the model for a broad range of ED losses depending on a 

combination of parameters that affect disease spread and mortality  

The scenarios were discussed with fish disease experts and their parameters were derived from 

published work for two salmonid diseases; Furunculosis (Aeromonas salmonicida) and 

Infectious Pancreatic Necrosis (Infectious pancreatic necrosis virus) (96, 102-103). The low scenario 

simulated a relatively low spreading disease with low mortality rates, whereas the high scenario 

modeled a fast spreading disease with high mortality. The medium scenario simulated 

intermediate spread and mortality (table3.3). 
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Table 3.3. Scenarios and parameters used to simulate the spread of a new emerging disease 
in catfish ponds in Mississippi 

Coefficient Low spread, low 
mortality3 

Intermediate spread 
and mortality4 

Fast spread, high 
mortality5  

R0 1 1.45 3.25 

Transmission () 0.0075 0.0096 0.0214 

Mortality ()1 7 6.12 6.08 

Removal ()2 0.5 0.5 0.5 
Total population (N) 1,000 1,000 1,000 
    
1,2  solved using eq.8 and parameters above.  assumes 2 days infectious period across all 

scenarios. For the range of parameters used above, mortality decreases as increases. 
3Assumed R0=1 for epidemic to quickly die-out.   =.001 lowest value reported by (96).  
4R0=1.45 and  =.0096 reported for high stocking density experiment in (96). 
5R0=3.25 and  =.0214 reported by (102). Highest spread parameters estimated from data found 
for fish diseases models reviewed.  
 

The studies above report parameters from experimental infections of young (fry/fingerling) 

salmonids in controlled environments and under different densities ranging from very high to 

very low fish stocking densities. Thus, the reported parameters may not be interpreted as a 

direct representation of those from a naturally occurring outbreak. For example, the observed 

mortality from experimental infection in fingerling fish under high density is likely higher than 

that of a foodsize catfish in a pond stocked at lower densities. However, the aforementioned 

studies provide model parameters for different stocking densities and trial designs, providing a 

range of spread and mortality parameters to parameterize the model. The parameters for each 

scenario were derived starting from a basic reproductive number, R0. R0 represents the mean 

number of secondary infections caused by an infectious individual in a completely susceptible 

population (7), and thus provides a measure of the spread potential of the disease. From eq. 6 it 

can be shown that R0 is: 
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(7) 

And since R0,  and N were known for the three scenarios (Table 3.3), only  and had to be 

derived.  is the inverse of the average duration of the infectious period and was assumed to be 

1/2 across scenarios to match the infectious duration reported by (102). Rearranging eq. 7,  was 

solved for using the following equation: 
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0R

N

                   

(8) 

This formulation allowed for a consistent usage of the reported data and parameters rather 

than imposing a pre-defined mortality rate which would defeat the purpose of the modeling 

work.  

 

2.5 Combined estimates used for the farm-level inventory loss calculation 

All possible combinations of the expected values from the three scenarios for Pi (proportion of 

infected ponds on an infected farm) and Pm (percent mortality of fish within infected ponds) 

were combined to evaluate their effect on LCed. Since the yearly frequency of an emerging 

disease impacting the farm ed is unknown, the analysis provides a baseline scenario assuming 

one ED outbreak per year (ed=1). An alternative approach often used in simulation analysis is to 

calculate the expected value across scenarios via Monte Carlo simulation. With this approach, 

each scenario is sampled with weights relative to their (often subjective) likelihood of 

occurrence and the expected value from the combined scenarios is reported. Here the 
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estimates were reported separately to show the impact that the potential disease dynamics 

could have in the LCed estimate.  

 

3 Results 

 As expected, the high scenario produced the largest outbreak, with a mean of 1,061 infected 

ponds (29.9% of total, 95%PI: 730 (20.6%), 1,296 (36.6%)) (Table 3.4, Figure 3.4). The 

proportion of ponds infected within infected farms was high (45.6%) and highly variable (4.0%, 

92.3%) (Table 3.4, Figure 3.5), and the mortality within infected ponds was high 88.3%, with 

fairly small variation (85.9%, 90.5%) relative to the other scenarios (Table 3.4, Figure 3.6). 

 

The medium scenario predicted a mean of 357 (10.0%) infected ponds (95%PI: 122(3.4%), 

547(15.4%))  

 

The low scenario exhibited a mean of 7 infected ponds (0.2% of total in region, 95%PI: 0 (0.0%), 

29(.8%)), with most scenarios showing no spread of infection between ponds (Table 3.4, Figure 

3.4). Of the infected farms, a mean of 7.6% ponds were infected (3.8%, 22.8%) (Table 3.4, 

Figure 3.5), with a small number of small farms (farms with one or very few ponds) exhibiting 

100% pond infection (Table 3.4, Figure 3.5). Pond mortality for this scenario was 9.8% (1.4%, 

26.7%), the lowest of the three scenarios (Table 3.4, Figure 3.6)  
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Table 3.4. Predicted mean and 95%PIs of the proportion of catfish ponds infected in the 
region, proportion of ponds infected within infected farms (pi), and proportion of catfish 
(Ictalurus punctatus) mortality due to disease within infected ponds (pm) in farms infected 
with a new emerging disease outbreak in a year in Mississippi, USA.  

 

  

Result High scenario Medium scenario Low scenario 

% of total ponds  

infected in region 

29.9% (20.6%, 36.6%) 10.0% (3.4%, 15.4%) 0.2% (0%, 0.81%) 

% ponds infected within  

infected farm (pi) 

45.6% (4.0%, 92.3%) 24.5% (3.8%, 72.0%) 7.6% (3.8%, 22.8%) 

Mortality within  

infected ponds (pm) 

88.3% (85.9%, 90.5%) 49.2% (4.7%, 60.7%) 9.8% (1.4%, 26.7%) 
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Figure 3.4. Total number of ponds affected at the end of the simulated ED outbreak in catfish, 
for three scenarios in the state of Mississippi. The index (initially infected) pond is included. 
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Figure 3.5. Proportion of catfish ponds affected within infected farms (pi) at the end of an 
emerging disease outbreak, for three scenarios in the state of Mississippi. 
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Figure 3.6. Proportion of cumulative fish mortalities due to ED per pond after one year, for 
three emerging disease spread scenarios in catfish ponds in Mississippi, USA. 
 

3.1 Estimated farm-level inventory loss 

The estimated proportion of inventory loss from an outbreak of an ED on an average catfish 

farm in a year is expected to range from 0.7% to 40.3% depending on the combination of 

disease spread and mortality exhibited by the ED outbreak (Table 3.5). However, the absolute 
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maximum losses can be as high as 100% of the farm’s inventory, since there were a few farms 

with only one or a few ponds and all ponds were infected.  

 

Table 3.5. Estimated proportion of total farm-level inventory loss (mean proportion of ponds 
infected within infected farms (pi)* mean proportion of catfish (Ictalurus punctatus) mortality 
due to disease within infected ponds (pm)) in simulated outbreaks of an emerging disease in 
farmed catfish ponds in Mississippi. Numbers assume one outbreak/year. 

 

The estimates in Table 3.5 are based on a frequency of one ED outbreak ed per year. If it can be 

assumed that the risk of ED outbreaks remains constant across the years analyzed (i.e. that the 

number of ED outbreaks are Poisson distributed with an unknown ed intensity), ed can be 

varied to evaluate the effect that the outbreak frequency have on the estimation of farm-level 

inventory losses. For example, if it is believed that an ED outbreak would occur once every 10 

years (ed= 1/10), the estimates from Table 3.5 can be multiplied by 0.1 to obtain the expected 

losses per year. Alternatively, the uncertainty about the true rate of outbreaks per year could 

be modeled using a Bayesian approach that relies on historical outbreak frequencies. For 

example, assuming an uninformed prior (ed)= 1/ed, and a Poisson likelihood based on  

historical ED outbreaks in  years, the resulting conjugate posterior is Gamma(, 1/). This 

distribution could be used to incorporate the uncertainty on ed in the loss cost calculation 

Percentage of loss of farm inventory on a given year 

High 
* 

High 

High 
* 

Med 

Med 
* 

High 

Med 
* 

Med 

Low 
* 

High 

High 
* 

Low 

Low 
* 

Med 

Med 
* 

Low 

Low 
* 

Low 
40.3% 22.5% 21.6% 12.1% 6.7% 4.5% 3.7% 2.4% 0.7% 
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rather than using a fixed value. However, this approach assumes that future outbreaks will 

occur with the same frequency as historically so it was not further explored in this study.  

 

4 Discussion 

The DSM were useful to estimate the magnitude of ED farm-level outbreak losses for 

agricultural insurance policies. However, the large uncertainty in the results, driven by the lack 

of knowledge of several key disease and population parameters warrants a critical discussion of 

the potential and limitations of the proposed approach. The scenarios and parameters used in 

this feasibility study are not comprehensive; hence the findings from this study should be used 

as a reference for further applications of DSM for the insurability of animal ED. For example, 

the disease duration parameters in the between-ponds model were the same for all scenarios, 

but these values are likely to vary depending on the disease and population modeled. Likewise, 

several important parameters of current diseases in aquaculture are not known; consequently, 

it cannot be expected that the parameters for new ED will be known precisely. Since catfish 

data were not available to estimate some of disease parameters, they were obtained from 

expert opinion and/or approximated from experiments for existing diseases (96, 102). Although 

this approach is adequate to show the applications of the modeling framework, special 

attention should be placed in the parameterization of the models if applied in a real loss cost 

calculation. DSM predictions are particularly sensitive to the contact rates, infectivity, and 

transmission parameters (7, 104). Moreover, those parameters are also harder to estimate as, 

unlike mortality rate and disease duration, they cannot be directly observed under field 

conditions. Therefore, when using our proposed framework to estimate losses from a disease 
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newly emerging in an area, the estimation of parameters such as R0 from outbreak data should 

be prioritized over other less relevant parameters. Mardones et al. (105) provide an example of 

such an application to Infectious Salmon Anemia Virus. Likewise, expert opinion was used to 

model movement parameters, as no empirical data was available to estimate movements. For 

future analyses, the frequency and distance of shipments of fingerlings to foodsize fish ponds 

from on-farm (between ponds) and off-farm (private hatcheries) sources, and of indirect 

movements could be estimated using survey-based methods, while capturing the movement 

variation between farms and years. 

In contrast, if the disease modeled is not yet known and the estimation aims to cover all 

feasible ED manifestations, further scenarios including other types of ED such as parasitical or 

vector-borne diseases and an estimate of the frequency of loss should be considered.  

 

The scenarios used here assumed an emerging disease with no readily available mitigation 

strategies. However, the models used in this study can also accommodate for the modeling of 

intervention strategies such as movement restrictions, vaccination, slaughter, and quarantine 

which can then be applied using the proposed framework. Such interventions could be 

incorporated in the estimation of premiums based on lost cost for individual farms or specific 

farm types.   

Accurate data on the population of animals modeled is also important to generate sound 

estimates. For this study, the population data required included the location of ponds and 

farms, the number of fish in the ponds and the number of ponds in a particular farm. Some of 

that information was not readily available so catfish populations were inferred using a variety 
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of sources available at the time including categorized satellite images, population studies, and 

surveys. Although these calculations were feasible to perform for this study, having more 

detailed population information should be a minimum requirement to establish insurance 

premium and indemnity payments from/to an individual producer. 

 

The wide variation in estimated farm-level inventory loss depending on the ED characteristics in 

the three scenarios evaluated highlights the challenge of incorporating coverage for an emerging 

disease into an insurance product. For example, an insurer may choose to use the highest 

estimated loss cost estimate for an ED occurring once every five years, but this may make the 

insurance premium rates cost prohibitive, diminishing the demand for the product. Likewise, if an 

insurer favors one of the lowest estimates it may be exposing itself to excessive risk, should an ED 

occur. An insurer may elect to diversify the coverage region and limit the number of policies 

available in any one given locale so that the risk exposure is minimized. However, an insurance 

policy provided by a government agency where public welfare, rather than profit, is the motive 

might allow a lower premium rate and coverage for all individuals regardless of region, hence 

exposing itself to an increased likelihood of payouts being larger than premiums received, 

especially when faced with a highly virulent and pathogenic ED such as the one explored in the 

high scenario in this study. To overcome this, policies may need to cover multiple years to receive 

premiums during ED loss years and non-ED (non-loss) years. 

Previous outbreaks of important catfish diseases include Visceral Toxicosis of Catfish (VTC), 

digenetic trematode infestations, and Proliferative Gill Disease (PGD) (89-91). Since estimating the 

frequency of a new ED impacting the farm-raised catfish industry is not readily possible, a 
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scenario analysis provides a measure of the impact of this lack of knowledge about the value of 

these parameters; however further statistical methods to estimate this parameter combining 

historical data and expert opinion should be explored.  

 

Conclusions 

Disease spread modeling provides a systematic way to organize the current knowledge on 

emerging disease perils and this information can be used to estimate ED losses in agricultural 

insurance policies. However, the estimates obtained will include a large amount of uncertainty 

driven by the stochastic nature of disease outbreaks, and by the uncertainty in the nature of 

future ED occurrences. Some parameters such as the direct and indirect contacts are very 

influential in the results and could be further explored using on-farm surveys, whereas 

transmission parameters such as R0 could be estimated early during the emergence of a 

disease. Scenarios assuming different disease types (e.g. infectious, parasitical, vector-borne) 

could be explored to broaden the spectrum of the analysis when the purpose is to estimate the 

impact of a not yet manifested ED. The frequency of ED outbreaks was not explicitly modeled in 

this study, and requires further attention so the farm-level inventory loss and thus, the loss cost 

can be more accurately estimated.  
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CHAPTER 4: A SIMULATION METHOD TO ESTIMATE THE INDIVIDUAL LEVEL INFECTION 

PROGRESSION AND THE JOINT UNCERTAINTY OF INFECTIOUS DISEASE MODEL PARAMETERS 

BASED ON LONGITUDINAL SCREENING TEST RESULTS WITH NO GOLD STANDARD: AN 

APPLICATION TO PARATUBERCULOSIS MODELING7 

 

Summary 

 

As gold-standard tests are not always available or feasible to use, evaluating the performance 

of imperfect tests is important to determine the infection status of individuals screened for 

disease. Although methods to evaluate performance of longitudinal screening tests with binary 

outcomes exist (106), no methods are available to determine multiple levels of infection/disease 

states from longitudinal data such as fecal culture tests for Mycobacterium avium subsp. 

paratuberculosis (MAP).  

 

The parameters for infectious disease models are often estimated from such imperfect test 

results. Yet, the joint uncertainty in the test results is rarely considered in the estimation of 

disease model parameters. The objective of this study was to develop a method to estimate the  

confidence on the animal-level infection progression using longitudinal screening test results, 

and use the results to estimate infectious disease model parameters. 

 

                                                      
7 Article prepared for submission to Epidemiology and Infection. 
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Test results from a paratuberculosis control program were used to demonstrate the method. 

The results from 1,034 fecal culture tests (TREK) from 3 Wisconsin dairy herds for 6 years were 

used to build a stochastic Markov Chain model for the within-herd spread of MAP and estimate 

its parameters. The infection/disease states were Susceptible, Non-shedder adult, Latent, Low 

Shedder, Heavy Shedder, Clinical, and Culled. Test parameters estimated with a latent-class 

Bayesian model were used to simulate a longitudinal disease trajectory for each tested animal 

and for the herd. The disease trajectories were used to estimate the joint uncertainty 

distributions of the transition probabilities of the stochastic Markov Chain model, and were 

then used to project the yearly progression of disease in 20 years.  

 

The joint uncertainties in both the test characteristics and the disease parameters exhibited a 

significant level of correlation (up to Pearson’s r=-.99(-.987, -.989)). Sensitivity analysis showed 

that ignoring parameter correlation greatly underestimated the variance of the model 

predictions.  

 

It is concluded that for MAP, in the presence of imperfect disease diagnostic data, the 

uncertainty distributions of the test characteristics and disease prevalences can considerably 

impact in the uncertainty distributions of disease parameters estimated from the data. 

Furthermore, the correlation between the disease parameters can greatly increase the variance 

of relevant disease model outputs and therefore, this correlation should be taken into account 

when parameterizing stochastic epidemic models. The simulation method described provides a 
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likelihood-free alternative to derive the joint uncertainty in the disease parameters, and can be 

extended to a variety of disease spread models.  

 

1 Introduction 

Screening tests are used to determine the disease status of individuals and/or populations. 

When individuals are repeatedly tested over time, the results from the test provide an 

indication of their longitudinal disease state. Example of longitudinal disease screening tests 

include breast or prostate cancer screening in humans (107-108), HIV screening (109), and bovine 

tuberculosis (110), or paratuberculosis (111) surveillance and/or eradication programs in cattle.  

 

Commonly used disease diagnostic tests are often imperfect and gold standard tests are not 

always available, practical, or economically feasible to use. Thus, methods to evaluate the 

performance of diagnostic tests in absence of a gold standard were initially introduced by Hui & 

Walter (112) and revisited by others (113). More recently, methods to evaluate the performance of 

longitudinal screening tests and estimate disease status with binary outcomes (114) and with one 

binary outcome and one continuous outcome have been proposed (106), but to the authors’ 

knowledge, no methods are available to determine multiple levels of infection and/or disease 

states from longitudinal screening tests such as those obtained from fecal culture tests for 

Mycobacterium avium subsp. paratuberculosis (MAP). 

 

The results from longitudinal diagnostic screening tests are useful to understand the 

progression (or absence) of disease in individuals and populations, for example, after disease 
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control policies have been implemented. Likewise, disease spread models (also called infectious 

disease models) are increasingly relevant tools to evaluate the effects of public health policy 

options in controlling or eradicating infectious diseases, and have been broadly applied to 

evaluate mitigation strategies of major infectious diseases affecting humans and animals (7). As 

diagnostic test results are an important source of empirical data to parameterize disease spread 

models, the uncertainty arising from the imperfect test results inevitably propagates to the 

disease model parameters. 

 

Historically, the “true” disease status of tested individuals and populations is inferred by 

adjusting test results by the test sensitivity and specificity, and fixed point estimates of the 

disease parameters are then derived from this “most likely” dataset. For example, Benedictus 

et al. (115) used a series of subjective rules to interpret infection and shedding states based or 

multiple test results from individual animals. Alternatively, the uncertainty distributions of 

disease parameters are assumed to either be uncorrelated to each other (29, 116), or their 

correlation is modeled using parametric assumptions, typically multivariate Normal 

distributions with an estimated covariance matrix (117).  

 

Several authors (118-120) have explored the estimation of joint disease parameters in presence of 

imprecise data. For example, Höhle et al. (121) described a Bayesian method to estimate disease 

parameters when the time of infection is unknown. However, the method requires an epidemic 

disease with an established ending time to make inferences about the time of infection (and 

thus, the population distribution of infection times), and makes no implicit adjustments for 
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imperfect diagnostic tests. Other methods (120) adjust for imperfect binary diagnostic tests, but 

also rely on an epidemic disease with a known end time to infer the time of infection and thus, 

derive transmission parameters. More recently, Nishiura (122) proposed a simple model that 

simultaneously estimates binary diagnostic test properties and infection dynamics parameters 

from cross-sectional Influenza tests in humans. However, to the authors’ knowledge no 

attempts have been made to quantify the joint uncertainty of test with more than two 

outcomes, and disease parameters from longitudinal screening tests of a chronic and/or 

endemic disease with no ending times.  

 

Paratuberculosis (PTB) represents an interesting example of an infectious disease where 

screening tests are applied repeatedly to individuals. PTB (also called Johne’s disease) is a 

chronic disease of cattle caused by Mycobacterium avium subsp. paratuberculosis (MAP) that 

can cause diarrhea, weight loss, milk production losses, and an increase in culling. However, 

only a fraction of infected animals may develop clinical signs of the disease, and this may often 

happen several years after the initial infection (106). Bacterial culture of feces is a commonly 

used diagnostic test for MAP, but the accuracy of this test across animals is poor (123). However, 

the test accuracy depends on the shedding level of the animals (124). For example, test 

sensitivity is intuitively higher for animals shedding large quantities of the bacteria. 

 

The objective of this study was to develop a method to estimate the confidence in the 

individual level infection progression using longitudinal screening test results, and use the 
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results to estimate the joint uncertainty of infectious disease model parameters. The estimation 

method is illustrated using a dataset of longitudinal diagnostic testing for Paratuberculosis.  

 

2 Materials and methods 

2.1 Description of dataset 

The dataset used for this study has been described elsewhere (125). The results from the 

bacterial culture of feces (fecal culture) from three herds (A, B, and C) from the Wisconsin 

Johne’s disease vaccine clinical trial funded by USDA-APHIS-VS were used to parameterize the 

models. The three herds were previously diagnosed with MAP infection. Within each herd, 

female calves were systematically assigned at birth to receive MAP vaccine (vaccinated group) 

or not (control group), until a cohort of 50 animals per group and per herd was formed. A fecal 

sample from each animal in the cohort was collected at approximately 90 days into pregnancy 

during each lactation for 6 years. Fecal samples were cultured and evaluated for presence of 

MAP at the Wisconsin Veterinary Diagnostic Lab (WVDL; Madison, Wisconsin) using a broth-

based culture media (126). The results of the five standard (0 to 4) reported fecal culture 

categories (127) were classified in three categories: Negative (culture= 0), Low (culture 1-2), and 

High (culture=3-4) (Table 4.1)  
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Table 4.1: Grouped results of 6 years of MAP fecal culture test results from three WI herds. C= 
control, v= vaccinated animals.  

Number of tests (% of group) High Low Negative 

Herd A 
   C 10 (9.6%) 10 (9.6%) 84 (80.8%) 

V 4 (3.0%) 13 (9.7%) 117 (87.3%) 
Herd B 

   C 0 (0.0%) 15 (8.7%) 157 (91.3%) 
V 2 (0.9%) 11 (5.0%) 205 (94.0%) 

Herd C 
   C 0 (0.0%) 15 (7.3%) 190 (92.7%) 

V 0 (0.0%) 4 (2.0%) 197 (98.0%) 
    

 

2.2 Modeling approach 

The purpose of the model was twofold: (1) use the results of a fecal culture diagnostic test to 

infer the longitudinal progression of MAP infection/Johne’s disease of individual animals in 

yearly intervals, and (2) to use the information from (1) to calculate the joint uncertainty 

distribution of infectious disease model parameters, to simulate disease progression at the 

herd level. Figure 4.1 summarizes the steps taken to calculate the model parameters and 

generate projections, as described in the following sections. 
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Figure 4.1: Steps to calculate the model parameters and generate projections. 
 

2.2.1 Calculate confidence in animal fecal shedding status 

Model 

Fecal culture results from the three WI herds were used to evaluate the characteristics of the 

fecal culture test and estimate herd-level prevalences of animal fecal shedding states. The 

estimates were then used to estimate the confidence in the true fecal shedding status of 

animals based on the fecal culture results (Table 4.2).  

 

Table 4.2: Terminology and notation used to differentiate test results and true fecal shedding 
status of animals 

Test result (notation) True shedding status (notation) 

High   (TH) Heavy shedder                 (SH) 

Low   (TL) Low shedder   (SL) 

Negative  (TN) Non- shedder   (SN) 

  

1. Calculate confidence in animal true fecal shedding status using test properties and prevalence 
results from Bayesian Latent-class analysis from WI herds (retrospectively) 

2. Create a “longitudinal trajectory” of disease progression for each animal (retrospectively) 

3. Combine longitudinal trajectories from each animal to know the herd state/time period 
(retrospectively) 

4. Estimate disease transition probabilities (with joint uncertainty) for a Markov Chain model 
using transition counts from step 3 (retrospectively) 

5. Project disease progression at the herd level using the transition probabilities from step 4 in 
a Markov Chain model (prospectively) 
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While shedding rate is a continuum, the three shedding categories utilized were assumed for 

consistency with the reporting of the fecal culture test (127) and with the common categorization 

of MAP shedding for infectious disease modeling purposes. Therefore, there were three 

possible test results and three corresponding shedding states (Table 4.2), yielding nine possible 

combinations of tests and shedding states.  

 

A Bayesian latent-class model was developed to estimate the conditional probability of 

correctly identifying the true shedding status of an animal given the observed test results. The 

model is a ternary extension of the model initially described by Hui & Walter (112) and revisited 

by Johnson et al. (113) for one test with a binary outcome and no gold standard. The derivation 

of the model is presented here, whereas the Markov Chain Monte Carlo (MCMC) estimation 

method is explained in the subsequent section.  

 

The model assumes that the test characteristics are equal for all the herds (conditional on 

infection status), for all cows within herds (regardless of age), and remain constant over time. 

Therefore, for each i herd, the probability that a randomly sampled animal (pre-test probability) 

is heavy, low, or non-shedder is equal to the herd-level true shedding prevalences (pH,i, pL,i, and 

pN,i respectively). The fecal test results are then conditional on the shedding status of the 

animals, yielding nine conditional probabilities, PH,H, PL,H, PN,H, PH,L, PL,L, PN,L, PH,N, PL,N, PN,N (Figure 

4.2).  
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Figure 4.2: Event tree of individual animal sampling, fecal shedding status, test outcomes, and 
related model parameters. 
 

The joint probability of any possible sample outcome is then the marginal probability of the 

animal shedding level (true shedding prevalence) multiplied by the conditional probability of 

the test outcome given the animal shedding level. For example, the joint probability that a 

randomly sampled animal from herd i is a heavy shedder and yields a high test result, P(SH∩TH) 

is pH, PH,H (or pH,i P(TH|SH) using standard probability notation). 

Sampled 
animal

Low shedder 
(SL)

H,i

Heavy shedder 
(SH)

L,i

N,i

Non-shedder 
(SN)

PH,H

Test High (TH)

PL,H

Test Low (TL)

PN,H

Test Negative (TN)

PH,L

Test High (TH)

PL,L

Test Low (TL)

PN,L
Test Negative (TN)

PH,N

Test High (TH)

PL,N

Test Low (TL)

PN,N
Test Negative (TN)
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However, the shedding status of any sampled animal is unknown so the marginal probabilities 

of obtaining TH, TL, or TN test results (grouped as pi, the apparent prevalences) in herd i are 

respectively: 

 

P(TH,i) = pH,i PH,H + pL,i PH,L + pN,i PH,N, i=1,2,3                                      (1)  

P(TL,i) = pH,i PL,H + pL,i PL,L + pN,i PL,N                                                        (2) 

P(TN,i) = pH,i PN,H + pL,i PN,L + pN,i PN,N                                                           (3) 

 

Applying Bayes’s theorem, the confidence of the shedding status of individual animals in herd i 

given the observed test results are: 

High test result 

P(SH,i|TH,i)= P(SH,i∩TH,i) / P(TH,i)                     (4) 

P(SL,i|TH,i)= P(SL,i∩TH,i) / P(TH,i)                                         (5) 

P(SN,i|TH,i)= P(SN,i∩TH,i) / P(TH,i)                     (6) 

 

Low test result 

P(SH,i|TL,i)= P(SH,i∩TL,i) / P(TL,I)                 (7) 

P(SL,i|TL,i)= P(SL,i∩TL,i) / P(TL,i)                 (8) 

P(SN,i|TL,i)= P(SN,i∩TL,i) / P(TL,i)                 (9)  

 

Negative test result 

P(SH,i|TN,i)= P(SH,i∩TN,i) / P(TN,i)              (10)  
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P(SL,i|TN,i)= P(SL,i∩TN,i) / P(TN,i)               (11) 

P(SN,i|TN,i)= P(SN,i∩TN,i) / P(TN,i)              (12)  

 

For example, if the result of the fecal culture test in an animal was high, the probability 

(confidence) that the animal was a heavy shedder at the time the sample was taken is 

P(SH,i|TH)= (pH,i PH,H)/( pH,i PH,H + pL,i PH,L+ pN,i PH,N). 

 

Parameter estimation 

The parameters were estimated using a Bayesian latent-class model implemented in OpenBUGS 

3.2.1 (128).  

 

The set Ti represents the count of individual TH, TL, and TN fecal culture results collected in the 

6-year period for each i herd, for a total of ni tests per herd (Table 4.1). Likewise, pi is a set with 

three elements representing the observed proportion of individual fecal culture results out of 

the total ni tests (the apparent prevalences for the three test results, in parentheses in Table 

4.1). Assuming that each animal represents an independent random sample from each herd, 

the distribution of the number of individual fecal culture results was modeled as: 

 

Ti~Multinomial(pi, ni)                (13) 

  

where the individual probabilities pi of obtaining High P(TH,i), Low P(TL,i), and Negative P(TN,i) 

test results in the i herd are calculated as shown in formulas 1-3. 
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The prior distributions for the true shedding level prevalences pi of heavy pH,i, light pL,i, and non-

fecal shedders pN,i for each i herd were modeled using a Dirichlet distribution (a multivariate 

generalization of the Beta distribution). The arithmetic means of the posteriors from a separate 

analysis done on dairy herds in Minnesota, Pennsylvania, and Colorado (124) were used as the α 

parameters of the Dirichlet distributions to provide informed priors for all i herds: 

 

pi~Dirichlet(H, L, N)                (14) 

 

where (H, L, N) = (4,16,80) thus, the priors were the same for all three herds.  

 

Likewise, the prior distributions of the conditional test probabilities of the three test outcomes 

PH,H, PL,H, PN,H from heavy shedders P(TH,L,N|SH), PH,L, PL,L, PN,L from low shedders P(TH,L,N|SL), and 

PH,N, PL,N, PN,N from non-shedders P(TH,L,N|SN) were modeled using Dirichlet distributions, with 

informed priors based on posteriors means from a separate analysis done in another 

population using a similar fecal culture test (124): 

P(TH,L,N|SH )~ Dirichlet(HH, LH, NH)               (15) 

P(TH,L,N|SL )~ Dirichlet(HL, LL, NL)              (16) 

P(TH,L,N|SN )~ Dirichlet(HN, LN, NN)              (17) 

where: 

(HH, LH, NH) = (59,38,3) 

(HL, LL, NL) = (1,26,73) 

(HN, LN, NN) = (.1,1.9,98) 
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The fit and convergence of the MCMC model was assessed using diagnostics methods including 

autocorrelation plots, Gelman-Rubin plots, and convergence plots. Scatter plots were used to 

evaluate correlations between estimates. Three parallel chains were simulated using two 

diverging sets of initial values to explore convergence and to perform sensitivity analyses. 

 

Also, the initial values for the three chains were changed mid-simulation to stress-test 

convergence of the estimates. The final estimates were based on a “burn-in” period of 1,000 

iterations and a total of 100,000 iterations per chain. Based on convergence tests, to avoid 

autocorrelation the results from every 3rd iteration from the last 10,000 iterations from a chain 

with strong evidence of convergence were stored in an Excel® 2007 (Microsoft Corp, Redmond, 

WA) spreadsheet to be used in the further calculation steps.  

 

The arithmetic means and 95% credible intervals (CrI) for each estimate were reported. To 

reduce the number of parameters estimated in OpenBUGS, the mean and 95% CrI of the true 

shedding confidence parameters (eqns. 4-12) were calculated in Excel® using the posteriors 

from the MCMC samples taken in OpenBUGS.  

 

2.2.2 Create a longitudinal trajectory for each animal 

The test parameters estimated in step 1 were used to reconstruct the longitudinal trajectory of 

each animal based on the repeated results of fecal culture tests, birth date, and date of 

removal. All calculations for steps 2-5 were implemented in Visual Basic for Applications (VBA) 
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for Excel 2007 and Monte Carlo simulations were performed using the SDK simulation engine in 

ModelRisk 4.0 (Vose Software, Ghent, Belgium).  

 

The states considered for the longitudinal trajectories (Figure 4.3) were: 

 Susceptible (S): uninfected calves (≤12 months of age) 

 Latent (L): calves or cows (> 12 months of age) infected but not yet infectious (not shedding) 

 Non-shedder (NS): adult animals not shedding MAP. Assumed to be uninfected and 

resistant to infection as adult. 

 Low shedder (LS): cows shedding low amounts of MAP 

 Heavy shedder (HS): cows shedding large amounts of MAP 

 Clinical (CL): cows showing clinical signs of MAP infection (Johne’s disease) 

 Culled (CU): calves or cows removed from the herd 

 

The directions of the arrows in Figure 4.3 indicate the possible transition of individuals between 

states. For example, after a month, Susceptible individuals can remain Susceptible, become 

Latently infected, or become Uninfected, whereas Latently infected individuals cannot return to 

the Susceptible state.  
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Figure 4.3: Model for the animal-level dynamics of MAP infection and Johne’s disease in dairy 
cattle. The arrows and parameters indicate the possible transition of individuals between 
states and their respective probabilities of transition on any given year. 
 

The longitudinal trajectory for each animal was calculated in two steps: the first step computes 

the health status of each animal over time based on historical fecal culture test results, and 

birth and removal months. The second step uses the results from the first step to establish the 

initial time of infection. The following pseudo-code describes the calculation steps performed 

for each animal: 

 

First step: forward calculation 

The health status of each animal over time is inferred based on historical fecal culture test 

results, and birth and removal months (or final month of data available) using the following 

rules: 

HS-LS
Susceptible (S)

Non-shedder (NS)

Latently 
infected (L)

Clinical
(CL)

S-S

Culled/Dead
(CU)

L-LS

LS-HS

Low 
shedder 

(LS)

Heavy 
shedder 

(HS)

LS-CL

Births

S-L

HS-CL

L-L

S-
S

L-HS

CL-CU

LS-CUHS-CU

L-CU

S-CUS-NI

LS-LS

HS-HS

NS-CU



 

96 
 

1. Define total time: from birth month to removal month (or final month of data available) 

2. Set to Susceptible from birth through first test 

3. When first test occurs, allocate to NS, LS, or HS based on test results as following: 

a. If NS in the prior month, the new status based on test determination (see section 

below for details): 

i. If NS, then stays NS 

ii. If LS, then new status is LS 

iii. If HS, then new status is HS 

b. If LS in the prior month, the new status based on test determination: 

i. If NS or LS, then stays LS (assumes that Low shedders always shed at 

some level) 

ii. If HS, then new status is HS 

c. If HS in the prior month, the new status based on test determination:  

i. HS, then it stays HS 

ii. NS or LS, the new status is LS 

4. Maintain status until another test, Clinical, removal or end of data 

a. If Clinical, animal becomes clinical and is consequently removed. 

b. If end of data, animal remains in current state 

5. Repeat until animal removed or end of data 

 

Calculation of shedding status based on test determination 

Every time that a test result is available for an animal n at month m, the true shedding status S 

of the animal conditional on the sample result t is sampled from a Multinomial distribution with 

probabilities equal to the posterior probabilities calculated from the test results (eqs.4-12): 

 

     

                                               

                                                 

                                               

                                (18) 

 

The uncertainty distributions from the posterior probabilities of the test results were sampled 

jointly to preserve their correlations. That is, for each iteration of the model, the posterior 
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probabilities from one iteration from the MCMC chain were sampled and used together in the 

model. 

 

Second step: backward calculation 

The results from the first step are used to establish the initial time of infection using the 

following rules: 

1. Go backward in time to determine health status in each month based on information 

calculated on first pass.  

a. Any animal that has been determined to be LS or HS is assumed to have been latent 

starting from month 6 (on average, mid-age of a calf). 

b. If an animal has been determined to be HS, it is assumed to have been LS for 12 months 

prior to the HS determination as long as it is classified as an adult (over 12 months of 

age). 

c. Animals that end as NS remain Susceptible from birth though first test, and NS for the 

remainder of the period.  

 

2.2.3 Combine individual animal trajectories to know the herd state at each time period 

The individual trajectories from each animal are combined to obtain the aggregate number of 

individuals in each of the infection/disease states per herd. That is, for any m month, the 

number of animals n in each state s for the jth iteration is summed. 

 

The number of yearly transitions between states tm occurring at each j iteration are also 

recorded. Although the trajectories are calculated in monthly steps, the transitions are counted 

on a yearly basis as the fecal culture tests are only performed once a year per animal, and thus 

the Markov Chain model described in step 4 also takes yearly steps.  
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The results of both transition counts and animal states per herd per iteration are recorded in 

Excel® spreadsheets so they can be used in step 4.  

 

2.2.4 Estimate transition probabilities for Markov Chain model 

The disease trajectories and/or transition counts from step 3 could have been used to estimate 

the parameters of a variety of disease spread models, including compartmental state-transition 

models such as extensions to the population dynamics Kermack-McKendrick SIR model (129) in 

discrete time, mechanistic models of disease spread, or more general models such as Markov 

Chains. A discrete time stochastic Markov Chain model is used here as an example application.  

 

The model followed the standard Markov Chain form, where future states X in time y are 

conditionally independent of past states, that is: 

 

P(Xy+1=x|X1=x1, X2=x2, …, Xn=xn) = P(Xy+1=x|Xn= xn)               (19) 

 

Where X are the potential infection/disease states for individual animals in the herd and y is a 

year. In other words, the probability of any given animal in the herd to be in a certain disease 

state in a future year is only dependent on the state it was in the prior year (and the transition 

probabilities). The yearly steps were chosen for consistency with the yearly testing performed 

in the herds analyzed, and based on the relatively slow progression of MAP infection and 

disease.  
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Since the states are inferred using the results from the fecal culture test, the model is 

equivalent to a Hidden Markov model (HMM) where the LS, HS, and NS states (Figure 4.3) are 

the hidden states, and the three disease diagnostic results (Table 4.1) and the clinical reporting 

of disease are the observable states. However, the duration of the Susceptible and Latent states 

cannot be directly estimated using a HMM (as this would require knowing the time of transition 

to the Latent state and/or the time of infection), thus justifying the dynamic calculation 

approach described here.  

 

Since the calculation of the test characteristics and herd prevalences was performed using 

Bayesian methods, the transition probabilities shown in Figure 4.3 were also calculated using a 

Bayesian approach. The realizations of a Markov Chain for n individuals in each s state at time 

(year) y+1 were simulated using a Multinomial distribution:  

 

                                                   (20) 

Where ns,y is a vector with the number of individuals on each s state at time y, and Ps is a matrix 

with the transition probabilities from each state. 

 

The conjugate of a Multinomial outcome with an uninformed prior probability of occurring is a 

Dirichlet(s), where s, are the observed frequencies of transitions between states. Therefore, 

the relative frequency of the number of yearly transitions between states tm was used directly 

to estimate Ps. As described for the sampling of test posteriors in step 2, the transition counts 

per iteration were sampled sequentially to preserve the joint uncertainties in Ps.  
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2.2.5 Use transition probabilities to project future disease states at the herd level  

The joint uncertainty distributions for the transition probabilities were used directly in the 

Markov Chain model (Figure 4.3) to create yearly projections of the number of animal in each 

disease states in a herd for 20 years. Although the number of animals in each state at the end 

of 20 years could be solved directly, yearly steps were simulated to provide inputs to other 

analyses that require yearly results (e.g. to perform a farm-level economic analysis).  

 

The model assumes a population with 100% replacement of culled animals to represent a herd 

with constant size; therefore, the birth and death rates were set to be equal (that is, the 

transition probability from CU to S was 1, and calf and heifers that are not kept as replacement 

animals were not considered in the model). The starting values were set to the mean number of 

animals in each state, as derived from a medium-sized dairy herd that was not used to derive 

the transition parameters (Table 4.3). However, to stress-test the model behavior, the scenario 

starts with no animals culled at year 0, which should result in a reduced number of Susceptible 

calves on year 1 The calculations assumed a replacement rate of 35% (from total cows in the 

herd) and a calving interval of 14 months, both considered to be typical management values for 

the US dairy industry. 
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Table 4.3: initial values used for the 20-year projection of MAP infection and Johne’s disease 
in an average WI herd 
Starting values  Number of animals 

Susceptible  132 
Non Shedder 271 
Latent 68 
Heavy shedder 12 
Low shedder 90 
Clinical 0 
Culled 0 
Total animals in herd 573 

 

2.3 Sensitivity analysis 

The simulation projections of the Latent animals were chosen for the sensitivity analysis, as 

they represent a direct estimate of the infection progression in the herd. The contribution of 

the total model variability due to the parameter uncertainty was explored by simulating the 

disease for 20 years using the means of the parameter posteriors and comparing the results to 

the simulation sampling from the joint uncertainty of the parameters. The yearly means and 

95%CrI of the Latent animals for both scenarios were then plotted. Similarly, to understand the 

impact of the correlation structure between the transition probabilities, the total Latents 

simulated after 20 years were compared against the results from a simulation where the 

transition parameters were assumed to be independent (i.e. Pearson’s r = 0), and also against a 

scenario using only the means from the transition probabilities.  

 

The sensitivity of the projections of cumulative Latents after 20 years to the transition 

parameters was explored via a percentile-fixed sensitivity analysis. In short, each transition 

parameter was divided in 10 tranches (from 5th to 95th percentile), and fixed to that percentile 

while all the others parameters were sampled randomly for 3,000 simulations, and the mean of 



 

102 
 

the total Latents was recorded. This was repeated for each parameter, effectively obtaining the 

mean total Latents conditional on the ith percentile from each transition parameter. The 

resulting conditional means from each simulation were graphically displayed. This method has 

the advantage of showing non-linear relationships between the uncertainty distributions of 

input parameters and the model outputs. 

 

Also, the rank order correlation between each input parameter and the total Latents after 20 

years was visualized as an horizontal bar plot.  

 

Finally, the values of the time assumptions for the backward calculations (latent from month 6 

from birth, LS for 12 months prior to HS determination, as described in step 2), where 

individually changed to 12 and 6 months respectively and the change on the mean and 95%CrI 

of the total Latents was evaluated.  

 

For reproducibility, all simulations were performed using the same seed value. Unless 

otherwise specified, simulations were run for 3,000 iterations. Figures were created in the R 

statistical language (130).  

 

3 Results 

3.1 Test characteristics and herd prevalences  

The majority of animals were non-shedders, with Non-shedding (pN) prevalences across the test 

period of 75.1% (68.2%,81.7%), 82.0% (75.1%,87.4%), 84.8% (78.5%,90.1%) for herds A, B, and 
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C respectively (Table 4.4). The prevalence of low shedders (pL) was similar across herds and 

ranged from 14.0% for herd C, to 17.0% for herd A, whereas the prevalence of heavy shedders 

(pH) was more variable, going from as little as 1.2% (0.3%,2.6%) for herd C to as high as 7.9% 

(4.7%,11.9%) for herd A.  

The overall sensitivity of the fecal culture for identification of any shedding level among Heavy 

shedders (PH,H + PL,H) was 97.0% (92.9%,99.4%), whereas the sensitivity for the identification of 

any shedding among Low shedders (PH,L + PL,L) was 26.3% (18.8%,34.1%). The specificity (PN,N) of 

the fecal culture test was 98.6% (table 4.4). 

 

The posteriors of the test characteristics (Table 4.4) were similar to the priors used, suggesting 

that several of the priors dominated over the test results data. For example, the mean of the 

prior for PH,H (the probability of a High test given that the animal is a Heavy shedder) was 59% 

and its posterior probability was 57.4%. In contrast, although the same priors were used for the 

prevalences of the three herds, the posterior estimates of pH, pL, and pN varied across herds. 

 

Sensitivity analyses show that the posteriors of test parameters for Heavy and Low shedding 

levels were most sensitive to the priors, which is expected as the majority of the test results 

were Negative. The posteriors of test parameters for Non-shedders did not vary significantly 

when the priors were modified (results not shown). 
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Table 4.4: Posterior probabilities for test characteristics and herd prevalences from fecal 
culture of feces of MAP from three WI herds with High, Low, and Negative outcomes. 
Parameter  
(test,shedding) 

Probability 
interpretation 

Posteriors 
Means (95%CrI) 

PH,H
1
 P(TH|SH) 57.4% (47.7%,66.7%) 

PL,H
1
 P(TL|SH) 39.6% (30.3%,49.0%) 

PN,H P(TN|SH) 3.0% (0.7%,6.9%) 

PH,L
2
 P(TH|SL) 0.6% (0.0%,2.2%) 

PL,L
2
 P(TL|SL) 25.7% (18.6%,33.2%) 

PN,L P(TN|SL) 73.7% (66.0%,81.0%) 

PH,N P(TH|SN) 0.0% (0.0%,0.2%) 

PL,N P(TL|SN) 1.3% (0.2%,3.2%) 

PN,N
3
 P(TN|SN) 98.6% (96.8%,99.8%) 

pH,i
4
 P(SH,i) A=7.9% (4.7%,11.9%),B=1.9% (0.7%,3.7%),C=1.2% (0.3%,2.6%) 

pL,i P(SL,i) A=17.0% (10.5%,24.2%),B=16.2% (10.7%,23.0%),C=14.0% (8.7%,20.2%) 
pN,i P(SN,i) A=75.1% (68.2%,81.7%),B=82.0% (75.1%,87.4%),C=84.8% (78.5%,90.1%) 

1Sensitivity for identification of heavy shedders = PH,H + Pl,H 
2 Sensitivity for identification of heavy shedders = PH,L + PL,L 
3 Specificity of the test = PN,N 
4i is an index for the three herds: A, B, and C. 
 

The uncertainty distributions of the test parameters (Figure 4.4) ranged from very positively 

skewed (e.g. Skew[PH,L]=2.1, Skew[PH,N]=6.7), to moderately left skewed (Skew[PN,N]=-0.7), 

while the joint uncertainties of several parameters exhibited a high level of negative correlation 

(Figure 4.4). For example, the Pearson correlation coefficient (r) of parameter pairs PH,H/PL,H , 

PL,L /PN,L , and PL,N /PN,N was -.93(,-.929, -.939), -.99(-.987, -.989), and -.99(-.996, -.997) 

respectively, whereas other pairs exhibited a moderate positive correlation or no correlation. 
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Figure 4.4: Posterior probabilities for parameters from fecal culture of feces of MAP from 
three WI herds with three outcomes: High, Low, and Negative (estimated herd prevalences 
excluded). Empirical density plots for each probability are shown in the diagonal. For example 
PH,H is the probability of a High test result, given that the animal is a heavy shedder. Figures 
above the diagonal are scatterplots of two parameters pairs, and numbers below the 
diagonal are Pearson’s correlation coefficient and corresponding 95% CI for each parameter 
pair.  
 

The probabilities of correctly identifying the shedding level of an animal given the results of the 

fecal culture test for herds A, B, and C were 97.4%, 89.7%, and 86.3% for Heavy shedders, 

51.1%, 68.8%, and 68.7% for Low shedders, and 85.2%, 87.0%, and 89.0% for Non-shedders 

(Table 4.4). 
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Table 4.4: Mean (95%CrI) posterior probabilities of correctly and incorrectly identifying the 
shedding level of an animal given the results of a fecal culture test (TREK) with High, Low, and 
Negative outcomes, for three WI herds. 
Posterior  
probability 

Herd A Herd B Herd C 

P(SH|TH)  97.4% (90.2%,99.9%) 89.7% (63.4%,99.6%) 86.3% (52.1%,99.5%) 

P(SH|TL) 36.8% (20.4%,55.3%) 12.6% (4.0%,25.2%) 9.3% (2.5%,21.0%) 

P(SH|TN) 0.3% (0.0%,0.7%) 0.1% (0.0%,0.2%) 0.0% (0.0%,0.1%) 

P(SL|TH)  2.3% (0.0%,8.9%) 8.8% (0.2%,34.3%) 11.5% (0.3%,43.6%) 

P(SL|TL) 51.1% (30.5%,71.3%) 68.8% (46.1%,87.4%) 68.7% (44.7%,89.1%) 

P(SL|TN) 14.6% (9.0%,21.7%) 12.9% (8.0%,18.9%) 11.0% (6.7%,16.4%) 

P(SN|TH)  0.3% (0.0%,3.3%) 1.4% (0.0%,14.2%) 2.2% (0.0%,20.3%) 

P(SN|TL) 12.0% (1.9%,27.2%) 18.7% (3.1%,41.2%) 22.0% (3.8%,45.5%) 

P(SN|TN) 85.2% (78.0%,90.7%) 87.0% (81.0%,92.0%) 89.0% (83.5%,93.3%) 

 

3.2 Transition probabilities from disease trajectories  

For brevity, the transition probabilities from the vaccinated individuals in only one herd are 

reported (Table 4.5, Figure 4.5). The yearly probability of transitioning from Susceptible to 

Latent was 17.4%, and provides a measure of the risk of infection. Latent individuals had a 

26.4% chance of starting to shed low level of MAP in any given year, and 46.3% chance of 

remaining Latent for a year. Low shedders had a 50.0% probability of remaining in the same 

shedding state for a year, a 10.2% of becoming Heavy shedders, and a 27.3% chance of being 

removed (culled) from the herd. Once an individual was a Heavy shedder, it had a 16.1% chance 

of remaining HS, a 20.0% probability of returning to the Low shedder state, and a 38.9% 

probability of being culled from the herd, which was almost 10% higher than the culling rate of 

Low shedders.  
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Table 4.5: Means of posterior transition probabilities for animals vaccinated against MAP in a WI herd. Culled (CU) is a terminal 
state, thus the transitions to other states are excluded. 
Transition 
probability 

S NS L LS HS CL CU-S CU-NS CU-L CU-LS CU-HS CU-CL 

S 27.6% 20.0% 17.4% 0.0% 0.0% 0.0% 35.0%
1
 0.0% 0.0% 0.0% 0.0% 0.0% 

NS 0.0% 71.4% 0.0% 0.0% 0.0% 0.0% 0.0% 28.6% 0.0% 0.0% 0.0% 0.0% 

L 0.0% 0.0% 46.3% 26.4% 0.0% 0.0% 0.0% 0.0% 27.3%
2
 0.0% 0.0% 0.0% 

LS 0.0% 0.0% 0.0% 50.0% 10.2% 12.5%
3
 0.0% 0.0% 0.0% 27.3% 0.0% 0.0% 

HS 0.0% 0.0% 0.0% 20.0% 16.1% 25.0%
3
 0.0% 0.0% 0.0% 0.0% 38.9% 0.0% 

CL 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
4
 

1 Culling of 35% of young stock (Susceptible calve states) assumed. 
2 No culling data was available for Latents so it was assumed to be the same as calculated for Low shedders  
3 Transition from Low-shedder (LS) to Clinical (CL) and HS to CL assumed to be 12.5% and 25% respectively. 
4 Transition from Clinical (CL) to Culled (CU_CL) assumed to be 100% in any given year.  
 

The joint uncertainties of several transition probabilities exhibited significant correlation (Figure 4.5). For example, there was a 

strong negative correlation r= -.92 (-.91,-.93) between the L-L and L-LS transition probabilities, as the only other possible transition 

from L was HS. The HS-HS transition probability was negatively correlated to HS-CU (-1) as Heavy shedder animals were culled from 

the herd within a year, and NS-NS was also 100% negatively correlated to CU as NS animals remained in that state until culled. 
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Figure 4.5: Posterior transition probabilities for a within-herd Markov Chain model of 
Paratuberculosis spread. Empirical density plots for each posterior are shown in the diagonal. 
Figures above the diagonal are scatterplots of two parameters pairs, and numbers below the 
diagonal are Pearson’s correlation coefficient and corresponding 95% CI for each parameter 
pair. 
 

3.3 Disease projections 

The 20-year projection of the mean (95%CrI) yearly number of Latents (Figure 4.6.a), and the 

mean yearly number of individuals in multiple states (Figure 4.6.b) shows that the number of 

Latent individuals drops in the first two years, to quickly increase and reach a steady state by 

year 6 or 7. Following the same pattern, the Low shedding animals drop until reaching an 
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average of 30 individuals/year. This initial drop is expected, as the scenario shown here 

purposely starts with no animals culled at year 0. As the replacement calves are calculated from 

the culled animals, the number of Susceptible calves on year 1 is reduced, effectively reducing 

the number of calves that can become Latent on year 1. As the Susceptible population reaches 

a stable number, the Latent individuals also reach equilibrium at year 6-7. This initial drop is not 

observed in scenarios using reasonable starting numbers of culled animals, as derived from the 

herds used (results not shown). 

Finally, the number of Latent individuals in earlier years will result in a lagged number of Heavy 

shedder and Clinical individuals, which is reflected in the increased number of HS and CL 

individuals in the first years.  
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(a)  

(b)  
Figure 4.6: Yearly projection of the mean (95%CrI) yearly number of Latents (a), and the mean 
yearly number of individuals in L, LS, HS, and CL states of Paratuberculosis (b) in a dairy herd 
from Wisconsin, USA. Non-shedders excluded to ease the interpretation of the plot (as they 
represent the large majority of the total animals predicted).  
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3.4 Sensitivity analysis 

The results from simulating only variability with the model vs. including both variability and 

uncertainty in the model results (Figure 4.7) suggest that the uncertainty in the transition 

probabilities increased the percentiles (and thus, the variance) of the model prediction of total 

Latents. Similar results were observed for the other state projected (results not shown).  

 

 

Figure 4.7: Yearly projection of the mean (95%CrI) number of individuals with latent MAP 
infection. The projections include individual variability only (var) and individual variability 
and uncertainty (unc/var) in the transition probabilities.  
 

The projection of total number of latent individuals after 20 years (Figure 4.8) shows that while 

keeping everything else constant, the distribution of Latent individuals was narrower when 

ignoring the parameter correlation (SD :188.5 and 250.3 for correlated and uncorrelated 

scenarios respectively), and further reduced when only variability was modeled (SD: 45.1).  
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Figure 4.8: Empirical density of the simulated total number of individuals with latent MAP 
infection after 20 years. The Correlated scenario assumes correlation between the transition 
probabilities, and an alternative Uncorrelated scenario assumes uncorrelated transition 
probabilities. The No uncertainty scenario uses the mean of the transition probabilities. 
 

The total number of latent individuals projected after 20 years was influenced by several of the 

transition parameters (Figure 4.9), with the most influential being the transition probability 

from S to L, S to NS, and S to S. Expectedly, S-L had a positive rank-order correlation to the 
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number of Latent individuals (.90), whereas S-NS and S-S had negative correlation (-.87 and -.84 

respectively) (Figure 4.10).  

 

Figure 4.9: Sensitivity of the mean simulated total individuals with latent MAP infection after 
20 years, in a dairy herd in Wisconsin, USA. The horizontal axis shows the percentile fixed for 
each input distribution, and the vertical axis reports the mean of the total Latent individuals 
after 20 years, conditional on the percentile of each input distribution. A horizontal line 
suggests that the input variable doesn’t affect the mean results of the output, whereas a 
sloped line indicates an influential input variable. 
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Figure 4.10: Rank order correlation of transition probabilities and the mean simulated total 
individuals with latent MAP infection after 20 years, in a dairy herd in Wisconsin, USA. The 
transition probabilities are listed on the vertical axis, and their respective rank order 
correlation values are shown as horizontal bars. 
 

No relevant changes in the total predicted Latents were observed by changing the Latent delay 

from month 6 from birth, or Low shedder time to 12 months prior to HS determination (results 

not shown). 
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4 Discussion 

The modeling approach discussed here provides a general framework to estimate disease 

transmission parameters for a chronic disease with multiple levels of shedding, while taking 

into account the uncertainties in test characteristics and their respective correlations. Although 

several methods for statistical inference for infectious disease models have been proposed (118-

122), to the authors’ knowledge this is the only work that addresses statistical inference for an 

endemic disease with multiple levels of shedding.  

 

The sensitivity analysis ignoring parameter correlation yielded a SD of the total Latent individual 

projected that was roughly 75.3% of the SD from the simulation accounting for correlated 

parameters (figure 4.8). This underestimation can have a considerable impact in the 

applicability of a disease model, as the lower SD will result in narrower estimates such as the 

95%PI typically reported from stochastic simulation models. Also, the Markov Chain model 

reported here was applied to a small population of 573 animals/year so the overall SD of the 

projection was contained. However, when modeling larger populations, the effect on the SD 

would increase8, further amplifying the effect of ignoring the parameter correlation.  

 

Given the number of test and prevalence parameters estimated it was necessary to provide 

informative priors for the parameters to be identifiable; an issue well described in diagnostic 

test evaluation as discussed elsewhere (53, 131). The stratification of results by different 

                                                      
8
 Assuming that the Central Limit Theorem applies to the simulation results, it is reasonable to assume that the 

total SD of n simulated individuals/year SDn  SD/√n 
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populations (e.g. the three herds used in this study) is also a strategy commonly used to 

estimate parameters of unidentifiable models, as this increases the degrees of freedom 

available for estimation (132). From a practical standpoint, although some of the test parameters 

estimated were sensitive to the choice of priors, the prior values used in this study were 

derived from a subset of herds from a larger study based on more herds and test results that 

used a fecal culture test together with the results of a serum ELISA tests run concurrently (124). 

Therefore, the priors were informed by relevant data under similar conditions to those used 

here.  

 

A series of simplistic assumptions were made to facilitate the derivation of this application. 

However, the framework proposed could be expanded to accommodate more realistic 

assumptions. For example, the Markov Chain model used to project the disease assumes that 

the infection probabilities remain constant (but uncertain) over time, whereas other infectious 

disease models assume that the transition probabilities may change over time. Since the model 

derives the full historical trajectories for every individual in the population, the parameters for 

other disease models could also be estimated for example, using Generalized Linear Models 

fitted iteratively to each the different disease trajectories.  

 

Paratuberculosis is a chronic disease with poorly predictive test results and a significant lag 

between infection and shedding and/or clinical signs of the disease, so several years of data 

were required to estimate the disease transition parameters and even under those 

circumstances, the scarce number of High test results presented difficulties for the estimation 
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of some of the parameters. Also, the time of infection and the duration of some of the shedding 

periods had to be assumed, as unlike for epidemic diseases, no outbreak end times could be 

used to infer some of these values.  However, the sensitivity analysis of these assumptions 

suggested that they did not have a substantial impact in the model predictions. Thus, the 

proposed model could also be applied to other chronic or slow progressing diseases for which 

there are several years of longitudinal screening data and potentially multiple disease states, 

such as Bovine tuberculosis or prostate cancer screening in humans. Likewise, the model could 

also be applied to other faster spreading diseases that may require less longitudinal data, and 

could be expanded to accommodate for algorithms to establish time of infection such as the 

ones described by Höhle et al. (121).  

 

Finally, the technique described here departs from those described in other Bayesian studies as 

it takes a two-stage approach, with the test parameter estimation performed in OpenBUGS and 

the estimation of the transition probabilities and disease model projections in Excel® (coded in 

VBA, and using the simulation engine from a commercial add-in). Although this approach is 

infrequent in the statistical literature, it can be found in the medical decision analysis literature. 

For example Dias et al. (133) argue that for decision models requiring meta-analytical parameters 

estimated in WinBUGS (an alternate version of OpenBUGS), the output chains can be imported 

in Excel® and sampled directly, yielding the exact technical properties as a one-stage Bayesian 

approach. The authors also highlight the need to sample all parameter values from the same 

MCMC iteration to ensure that the correlations in the parameter estimates are preserved, 

which was the approach taken here.  
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Conclusions 

In presence of imperfect disease diagnostic data, the uncertainty distributions of the test 

characteristics and disease prevalences may have a major impact in the uncertainty 

distributions of disease parameters estimated from the data. Furthermore, the correlation 

between the disease parameters can greatly impact the variance of relevant disease model 

outputs and therefore, this correlation should be taken into account when parameterizing 

stochastic epidemic models. The simulation method described provides a likelihood-free 

alternative to derive the joint uncertainty in the disease parameters, and can be extended to a 

variety of disease spread models.  

 

 



 

119 
 

CHAPTER 5: CONCLUDING REMARKS 

 
“I believe that no one who is familiar, either with mathematical advances in other fields, or with 
the range of special biological conditions to be considered, would ever conceive that everything 

could be summed up in a single mathematical formula, however complex.” 
- Ronald Fisher 

 
“Sufficiently simple natural structures are predictable but uncontrollable, whereas sufficiently 

complex symbolic descriptions are controllable but unpredictable.” 
- Howard Patte 

 
1. Relevance of this work 

As epidemiological models become increasingly popular to support policy, a closer examination 

of the models’ structure and assumptions is warranted. In this thesis, I focused on the subject 

of simplicity (parsimony) and complexity in epidemiological models for both epidemic and 

endemic diseases. For this, I developed several models with the goal of addressing parsimony 

and complexity both in the models structure, and in their parameterization. The application of 

such models yielded interesting findings that may have direct application in models used for 

animal health policy. 

 

Chapters 2 and 3 focused on parsimony and complexity in model structure. Probably the most 

interesting (and somehow unforeseen) finding from the scenarios evaluated in chapter 2 was 

that for fast spreading epidemics diseases such as those created by introduction of FMD in 

naïve populations, the actual locations of animal population units may not be as relevant to 

predict outbreak size and duration as more detailed information on population and contact 

heterogeneity. In contrast, in our scenarios the extra granularity provided by having the actual 

population units seems to be important when modeling slower spreading epidemic diseases, as 
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ignoring this aspect produced outbreak sizes roughly 1/5th smaller. These findings can have a 

direct implication for the modeling of contingency planning strategies for Transboundary 

diseases. For example, the United States Department of Agriculture performs a national census 

twice per decade, but only aggregate county-level data is available to the public and scientific 

community (35). This has often been seen as a limitation to parameterized disease models, and 

researchers have resourced to a variety of approximation methods to create synthetic datasets 

to model populate epidemiological models(134). Based on our findings, efforts to obtain actual 

unit locations or alternative, sophisticated methods to create synthetic population datasets 

may not be prioritized when modeling highly infectious animal diseases that are typically in the 

top list for contingency planning purposes, such as FMD, Classical Swine Fever (CSF), and 

African Swine Fever (ASF). Nonetheless, having access to actual farm locations can be of great 

value during an outbreak, for example, to perform tracing investigations, apply farm level 

intervention measures such as prophylactic vaccination, and to enforce movement restrictions, 

so our recommendations are specific to tactical epidemiological modeling for planning 

purposes. 

In contrast, our findings stress that detailed information on the contact structure between 

populations is necessary to produce accurate disease predictions. This concept has been 

discussed considerably in the literature (66-67, 73, 76) but often the models used, and the 

interpretations derived from them were biased towards explaining theoretical patterns in 

disease ecology rather than focusing directly on animal health policy, so our findings provide a 

validation of these principles using a more mechanistic model similar to those applied in 

practice. 
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The findings in chapter 3 are not directly applicable to national animal health policy, but 

nonetheless have a direct application to another important alternative to disease risk 

management; farm-level insurance against catastrophic disease events. A structurally complex 

modeling framework was necessary to make inferences about a hypothetical ED for which no 

empirical data was available, resulting in highly uncertainty fish inventory loss estimates. 

Nonetheless, the models and analysis provided a systematic framework to organize the current 

knowledge on the emerging diseases affecting the catfish industry, and this information was 

used by a US government agency (USDA-Risk Management Agency) to evaluate the feasibility of 

developing actuarially sound agricultural insurance policies and premiums in aquaculture.  

 

In chapter 4, the focus is shifted to parsimony and complexity in the parameterization of 

epidemiological models, and used a model to simulate the spread of Paratuberculosis (also 

called Johne’s disease), a cattle disease endemic to most areas in the world. To my knowledge, 

this model is the first attempt to estimate the joint uncertainty parameters of a Johne’s model 

using longitudinal data, so this represents a novel contribution to the field. Another interesting 

finding from this work was that the joint uncertainties in the diagnostic test characteristics and 

the disease parameters exhibited a significant level of correlation, and sensitivity analysis 

showed that ignoring parameter correlation considerably underestimated the variance of the 

model prediction of the total number of latent animals. The practical implication from this 

chapter is that the correlation between disease parameters can greatly impact the variance of 

relevant disease model outputs and therefore, this correlation should be taken into account 

when parameterizing stochastic epidemic models. In other words, assuming a more 
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parsimonious structure in the correlation parameters underestimated the variance of the 

results, justifying the methodology used to derive the correlated parameters. Unlike in other 

analytical fields such as risk modeling, the study of parameter correlation seems to be an area 

mostly ignored by researchers and practitioners in epidemiological modeling, perhaps because 

methods to estimate the joint uncertainty in such parameters can be complex, and were not 

computationally possible until relatively recently. Our findings warrant more research on this 

area. 

 

2. Future research 

This thesis only addressed a very small subset of an otherwise vast field that is rapidly 

expanding, so I can only make recommendations based on the specific findings from this work. 

From my evaluation of structural parsimony and complexity, it is clear that much work is 

needed not only to establish a formal framework to test for structural parsimony, but also to 

create models that can be consistently used and validated for policy support in both human and 

animal health. The model selection work recently developed in ecological modeling (22-23)should 

provide an encouraging example for epidemiological modelers. 

 

Also, the models I used in chapters 2 and 3 were very computationally intensive, limiting the 

scalability of the scenarios I tested to only individual states in the US as all my models were 

developed for a single desktop application. Although many countries are smaller than the US 

states evaluated, perhaps scenarios created at a national or continental scale may provide 

findings in disagreement with mine. Such large scenarios could be evaluated using distributed 
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computing; a platform that provides exciting possibilities to the development of large scale 

epidemiological models (27, 135). 

 

Much research is needed in the field of statistical inference from epidemiological models. The 

approach I used to model the joint uncertainties in epidemiological model parameters was 

adequate, but there are exciting developments particularly in the field of Bayesian statistics 

that should be further investigated. For example, Approximate Bayesian Computation (ABC) 

methods that don’t require the specification of a likelihood function seem particularly suitable 

for the estimation of parameters of complex epidemiological models(136-137), while still providing 

a direct estimation of parameter correlation. 
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