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Abstract  
 

An ad hoc grid is a wireless heterogeneous computing 
environment without a fixed infrastructure. The wireless 
devices have different capabilities, have limited battery 
capacity, support dynamic voltage scaling, and are 
expected to be used for eight hours at a time and then 
recharged. To maximize the performance of the system, it 
is essential to assign resources to tasks (match) and order 
the execution of tasks on each resource (schedule) in a 
manner that exploits the heterogeneity of the resources 
and tasks while considering the energy constraints of the 
devices. In the single-hop ad hoc grid heterogeneous 
environment considered in this study, tasks arrive 
unpredictably, are independent (i.e., no precedent 
constraints for tasks), and have priorities and deadlines. 
The problem is to map (match and schedule) tasks onto 
devices such that the number of highest priority tasks 
completed by their deadlines during eight hours is 
maximized while efficiently utilizing the overall system 
energy. A model for dynamically mapping tasks onto 
wireless devices is introduced. Seven dynamic mapping 
heuristics for this environment are designed and 
compared to each other and to a mathematical bound.  

 
 
1. Introduction 

 
An ad hoc grid is a heterogeneous computing (HC) 

environment consisting of mobile battery-powered 
computing devices that communicate using wireless 
connections. Ad hoc grid environments enable users to 
communicate and share computational load and results 
with other users in the system to coordinate efforts to 
accomplish a mission. Examples of applications of ad hoc 
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grids include: wildfire fighting, disaster management, and 
military situations [25]. HC is the coordinated use of 
various resources with different capabilities to satisfy the 
requirements of varying task mixtures. When the 
resources are wireless and mobile, the limited battery 
capacity becomes a constraint and power or energy 
management becomes a critical issue. The heterogeneity 
of the resources and tasks in an HC system is exploited to 
maximize the performance or the cost-effectiveness of the 
system (e.g., [6, 11, 15, 24]). An important research 
problem is how to assign resources to the tasks (match) 
and to order the tasks for execution on the resources 
(schedule) to maximize some performance criterion of an 
HC system. This procedure is called mapping. The power 
management aspect further complicates the problem. 

There are two different types of mapping: static and 
dynamic. Static mapping is performed when the 
applications are mapped in an off-line planning phase, e.g., 
planning the schedule for a set of production jobs. 
Dynamic mapping is performed when the applications are 
mapped in an on-line fashion, e.g., when tasks arrive at 
unpredictable intervals and are mapped as they arrive (the 
workload is not known a priori). In both cases, the 
mapping problem has been shown, in general, to be NP-
complete (e.g., [9, 12, 18]). Thus, the development of 
heuristic techniques to find near-optimal solutions for the 
problem is an active area of research (e.g., [4, 5, 6, 7, 11, 
13, 14, 20, 23, 27, 33, 37]). 

In this research, the dynamic mapping of tasks onto 
machines is studied. Simulation is used for the evaluation 
and comparison of the dynamic heuristics developed in 
this research. As described in [23], dynamic mapping 
heuristics can be grouped into two categories, immediate 
and batch mode. Each time a mapping is performed 
(mapping event), immediate mode heuristics only consider 
the new task for mapping, whereas batch mode considers 
a subset of tasks for mapping, thus having more 
information about the task mixture before mapping the 
tasks. In this paper, we attempted both approaches. 
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The power management is accomplished by using 
dynamic voltage scaling (DVS) [32]. DVS is based on 
exploiting the relationship between the CPU supply 
voltage of a device and the power usage (e.g., Crusoe [8] 
and ARM7D [2]). The relationship between power and 
energy is that energy consumed is power multiplied by the 
amount of time that power is used. The relationship of 
power to voltage is a strictly increasing convex function, 
represented by a polynomial of at least second degree [17]. 
Most processors that support DVS use discrete levels. The 
DVS technique allows the reduction of a CPU’s energy 
usage (through CPU voltage (clock frequency) reduction) 
at the expense of increasing the task execution time. 

In the environment for this research, the devices are 
wireless and can communicate with each other (in a 
single-hop ad hoc network). The batteries for these 
devices are assumed to be recharged after a certain 
amount of time (e.g., recharged after an eight hour shift or 
an eight hour work day). Using a device, a user can 
execute a program (task) to obtain results, receive data, 
and send data. For the efficient use of the overall system 
energy available, it may be best for certain tasks to be 
executed on a remote, rather than the local, device. An 
RMS makes this decision of locating a “suitable” device. 
A device performing a computation may receive input 
data from other devices or external sources. The resulting 
output data will be sent back to the requester device. 
Tasks can have different priority levels (i.e., high, medium, 
or low) and a deadline. The primary goal of this research 
is to complete as many high priority tasks by their 
deadlines as possible during a given interval of time (i.e., 
eight hours). The secondary performance goal is to 
maximize the sum of the weighted priorities of medium 
and low priority tasks completed by their deadlines during 
that interval of time, building on the FISC measure in [19].  

This research introduces a model for dynamically 
mapping tasks onto wireless devices while managing 
power using the DVS method. Seven dynamic resource 
allocation heuristics for this environment are designed and 
compared. Mathematical bounds on the performance of 
the heuristics are derived. 

The next section discusses the heterogeneous ad hoc 
environment followed by a summary of the literature 
related to this work. In Section 4, the heuristics studied in 
this research are presented. Section 5 describes the 
simulation setup. The results are examined in Section 6, 
and the last section gives a brief summary of this research. 

 
2. Energy Constrained Environment 
 

The ad hoc grid environment is controlled by an RMS. 
The RMS performs matching, scheduling, and power 
management to maximize the goal stated earlier. In this 
environment, the wireless devices have limited battery 

capacity (energy). The users are allowed one battery for 
the operation of a given device for an interval of time. The 
batteries are recharged after eight hours. All devices 
employ DVS for power management but use different 
discrete voltage levels. 

We make the simplifying assumption that the RMS is 
located on a dedicated machine that has unlimited power 
and that the devices are within transmission range of the 
RMS and each other. The users send task requests to the 
RMS. Once a task request is received, the RMS locates a 
“suitable” device and sends a task execution command 
(Figure 1). If input data is required, the data is 
communicated directly to the executing device from the 
source. A source could be other wireless devices or 
outside sources (e.g., from a weather station). The result 
of the task execution (e.g., a wind direction estimate) is 
sent back to the task requester device, if the task was not 
executed on that device. The tasks discussed here have a 
priority level (e.g., high, medium, or low and a deadline. 
If the task cannot complete by its deadline, it has no value. 

 

 
 

Figure 1: The ad hoc grid heterogeneous 
computing environment considered in this study. 

  
The communication of inputs and results is assumed to 

be done directly from device to device (i.e., single-hop ad 
hoc network) using the IEEE 802.11b standard, which is a 
popular wireless standard. In this research, only one task 
receives or sends data at any instant in time (i.e., the 
communication link is saved for one task for the duration 
of its communication). This communication scheme is 
desirable when a certain quality of service must be met for 
the tasks. For example, if task a arrives at time t and the 
deadline is at t + d, the communication of inputs to this 
task, the execution of the task, and the communication of 
the results must be done in time d. If other 
communications are allowed while task a is still 
communicating, then the communication time of task a is 
no longer guaranteed. As more and more communications 
are allowed, the finish time of the communication for task 
a will be delayed. 

In this environment, it is assumed that the types of 
devices that may connect to the system are known. In 
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addition, there is pre-determined set of tasks that a user 
can request. However, it is not known a priori exactly 
which tasks will be requested and when they will be 
requested. In an example military scenario, there are pre-
determined types of wireless devices allowed to connect 
to the military system. In this environment, there is a set 
of tasks that may be requested for execution (e.g., target 
determination and weather prediction). A requested task is 
executed on a “suitable” device and the information is sent 
back to the task requester. Because the devices and the 
tasks are known, the task execution times on those devices 
are known to the RMS (this assumption is typically made 
when studying mapping heuristics for heterogeneous 
computing environments (e.g., [21, 34, 35])) and are 
determined by running the tasks on the devices. It is 
assumed that all devices are equipped with all programs 
required and only input data is needed to execute a task 
and send back results. Thus, the time to communicate the 
task request to the RMS and to send a task execution 
command to the device is assumed to be negligible.  

 
3. Related Work 
 

There has been much research on power constrained 
(power-aware) resource management in uni-processors 
(e.g., [3, 16, 26, 36]). The research in [3] presents a static 
scheduling solution of periodic tasks on a processor 
assuming the worst-case scenario, a dynamic reclaiming 
algorithm for tasks that complete before their worst-case 
scenario, and an adaptive speed adjustment mechanism to 
anticipate the probable early completion of future task 
executions. A power minimizing approach for variable-
voltage systems is developed in [16], where tasks are 
periodic and independent. The method described in [26] 
assumes a dynamic preemptive environment where 
periodic independent tasks arrive and leave a system. In 
[36], a formal analysis of the minimum energy scheduling 
problem is provided for a single processor and a model 
that assumes a task with an arrival time and deadline. The 
difference between these studies and our research is that 
our energy constrained ad hoc grid environment considers 
multiple heterogeneous devices and non-periodic 
independent tasks with priorities and deadlines that need 
input and/or output communicated. The fact that our 
environment has heterogeneous multiple devices adds new 
issues to the resource management problem. 

Some research projects have explored a multi-
processor environment with static resource management 
(e.g., [10, 28, 38, 39]). In [10], a genetic algorithm is used 
to synthesize distributed heterogeneous embedded systems. 
Using a static schedule derived from a list scheduling 
scheme, the study in [28] does static and dynamic power 
management. The work in [38] describes a linear 
programming method that statically schedules periodic 

tasks on heterogeneous processing elements. The research 
in [39] assumes homogeneous processors and frame-based 
tasks. In static mapping, information of all tasks is known 
and the heuristic execution time is not a constraint. The 
difference is that our research explores a dynamic 
environment where the arrival time of a task is not known 
prior to its arrival and the task mapping time must be fast. 
In addition, the devices are heterogeneous in our studies. 

The research in [22] statically schedules periodic tasks 
onto homogeneous processing elements first using the tool 
in [10] and then slots are created in this static schedule to 
accommodate aperiodic tasks with hard deadlines. They 
assume that the minimum interval between two hard 
aperiodic tasks is larger than the lowest common multiple 
period of all periodic tasks. Then an online scheduler 
modifies the system to minimize the response times for 
aperiodic tasks with soft deadlines. The static schedule is 
unchanged and the soft aperiodic tasks are run when there 
is unused time. In our research, all of the devices are 
heterogeneous and all tasks are aperiodic with hard 
deadlines. Because all tasks are aperiodic, slots are not 
created among task periods, i.e., the RMS approaches are 
quite different. Furthermore our research considers the 
case where not all tasks with hard deadlines can complete 
and does not assume a minimum interval between the 
arrivals of two tasks. 

The research in [31] is similar to our work in that it 
tries to send tasks to another device to be computed. It 
uses a distributed economic-based subcontracting protocol 
to determine which device to use. The goal of the devices 
in [31] is to find a suitable device that can execute tasks to 
save energy. A cost is associated with devices that are 
willing to execute a task for other devices. The device that 
wants to move one of its tasks to another device bargains 
with those willing devices. The underlying model of our 
work differs from this in that the environment in our 
research assumes that all devices are capable of DVS and 
tasks have deadlines and priorities. 

The research in [29] and [30] studies static RMSs for 
minimizing energy consumption for a heterogeneous ad 
hoc grid. The differences are that in our research, the 
heuristics operate dynamically, each device supports DVS, 
tasks have priorities, and it is assumed that not all tasks 
are completed before their hard deadlines. 

 
4. Heuristic Description 
 
4.1. Mapping Event 

A dynamic mapping approach is designed to assign 
resources to new tasks faster than the anticipated average 
arrival rate of the tasks. Therefore, the heuristics that are 
developed have a limit on the maximum time each 
computation of a new mapping can take. A mapping event 
occurs when a new task arrives. When a task arrives while 
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a mapping event is in progress, the current mapping event 
is not disturbed. As soon as the current mapping event is 
completed, the next mapping event starts and includes any 
tasks that have arrived. At any mapping event, the first 
task in each machine’s wait queue is not considered for 
remapping in any of the heuristics. The reason is that 
while a mapping event occurs the current executing task 
can finish, leaving the device idle. Therefore, to help 
ensure that a device will not be idle for the duration of a 
mapping event, the first task in the queue is not considered 
for mapping. While it is still possible that a device may 
become idle, it is highly unlikely for the assumptions in 
this research (the mean execution time of a task is 60 or 
600 seconds while the mean execution time of a mapping 
event is less than 0.5 seconds). The mappable tasks are 
defined as the tasks that are waiting to be executed in the 
machine queue (except the first task) and the new task(s). 
 
4.2. Opportunistic Load Balancing  

and Fast Greedy 
The immediate mode opportunistic load balancing 

(OLB) heuristic is a common method for scheduling tasks. 
The heuristic assigns a task to the device that is expected 
to be the first to be ready to execute a task. This is a 
simplistic method that ignores the relationship between 
the execution of a task and the capability of the devices in 
the ad hoc grid. At a mapping event, among the devices 
that can map the new task without violating its deadline 
and have enough energy to complete the task, the heuristic 
selects the device that will be ready (i.e., executes all the 
tasks already in its queue) first to map the new task. The 
immediate mode fast greedy (FG) heuristic assigns tasks 
onto the device that completes them consuming the 
minimum amount of energy. This is a scheme that ignores 
other tasks already in the system. At a mapping event, the 
device that can complete the task by its deadline and 
executes the task using the minimum amount of energy is 
selected for mapping. 

The following are same for both approaches. All 
communications are scheduled as early as possible. If 
there are previous communications scheduled, then 
current communications are inserted in the gaps between 
the communications already scheduled if possible, or else 
they are put at the end of the communication scheduling 
queue. If all devices cannot complete the task by its 
deadline, the task is deleted from the system. The energy 
consumed status is updated at every mapping event. The 
scheme of running the high priority tasks using the fastest 
speed level and the slowest speed level for the rest of the 
tasks was the best. 

 
4.3. Switching Algorithm 

The immediate mode Switching Algorithm heuristic 
builds on the switching algorithm in [23]. The basic idea 

behind this heuristic is to first try to map tasks onto their 
“best” machine according to some metric. But, when the 
load on the system becomes unbalanced, the strategy is 
changed to balance the load. When the load becomes 
balanced then the mapping method is changed back to the 
original method. For this heuristic, a load balance ratio is 
used to determine whether the system is load balanced. 

 In this study, two different load balance ratios are 
calculated. One is for the high priority tasks and other is 
for the medium and low priority tasks. The high load 
balance ratio is the ratio of the earliest device availability 
time over all the devices in the suite to the latest device 
availability time. For this ratio, the device availability 
times are determined using the last high priority task in 
each queue. If there are no high priority tasks in a device 
queue, then the device available time is the completion 
time of the task that is running if it is the only task on the 
device. If there are other tasks on the device, then the 
device available time is the completion time of the first 
waiting task. The low load balance ratio is same as the 
high load balance ratio except that it is calculated with all 
tasks. For both load balance ratios, a common high 
threshold and low threshold are established by 
experimentation (high threshold > low threshold).  

Initially, the system maps new tasks onto their 
minimum energy consumption device using the slowest 
speed level. If the task that arrived is a high priority task 
and there are no devices that can complete the high 
priority task by its deadline, then the speed level of the 
devices is increased starting from device 0 using the 
method described below to test if there are devices that 
can complete the high priority task with a level increase. 
When increasing a device’s speed level, the total number 
of speed levels of a device is taken into consideration. For 
example, assume there is a device 1 that has sixteen speed 
levels and another device 2 that has four speed levels. If 
device 1 increased its speed levels at least four times, only 
then device 2 is considered for speed level increase. Only 
the speed level for the device selected for mapping is 
increased. Once the speed level of a device is increased to 
a faster level, the level will not be decreased to a slower 
level. This is to guarantee that tasks mapped earlier 
complete by their deadline. At any mapping event, the 
speed level is changed at most two times. This is to avoid 
increasing the speed level to accommodate the current 
task while not leaving enough energy for future use.  

The Switching Algorithm heuristic can be summarized 
by the following procedure. The total energy consumed is 
equal to the total CPU energy used plus the energy used 
for communication.  
(1) 
(2) 
(3) 

Determine the priority level of the new task. 
Calculate the high (or low) load balance ratio. 
If the high (or low) load balance ratio > high 
threshold, then current method is to use the minimum 
energy consumption device to map the new task.  
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If the high (or low) load balance ratio < low threshold, 
then current method is to use the minimum 
completion time device to map the new task.  

 If low threshold ≤ high (or low) load balance ratio ≤ 
high threshold, then current method is the one used at 
the previous mapping event to map the new task. 

(4) 

(5) 

(6) 

(7) 

(8) 

Initialize “iteration” to the number of speed level 
changes on the device where the speed level was 
changed the most. 
If the task is a medium or low priority task, assuming 
that it will be mapped at the end of a device queue, 
determine all devices that can complete the task by its 
deadline 

if the task cannot be completed on any device, it is 
deleted from the system  
else,  select a device using the current method, map 
the task to this device, and all communications are 
scheduled using the method in Subsection 4.2. 

If the task is a high priority task, assuming that it will 
be mapped after the last high priority task in a device 
queue, determine all devices that can complete the 
task by its deadline. 

 do until a device is selected for mapping or iteration 
is increased twice. 

if the task cannot be completed on any device, 
increase the speed level 

for each device, change the increase one speed 
level if the (maximum number of speed levels 
among all devices)/(total number of levels on 
the device) ≤ iteration and test if the device can 
complete the task. 
iteration = iteration + 1 

 else, select a device using the current method, map 
the task to this device 

if the task cannot be completed on any device, return 
all device’s speed level to the level before this task 
arrived and drop the task. 
else, return all unselected devices’ speed level to the 
level before this task arrived. 
If there is enough energy on a device to execute tasks 
at the highest speed level and transmit data for the 
rest of the remaining time (until the end of the eight 
hour period), then the speed level for that device is 
increased to the highest speed level. Check all devices.  
Update device availability and energy consumed 
status.  

 
4.4. Min-Min 

The batch mode Min-Min heuristic builds on the Min-
Min (greedy) concept in [18]. The Min-Min type heuristic 
performed very well in previous studies of different 
environments (e.g., [7, 23]). The Min-Min finds the “best” 
device for all tasks that are considered and then among 
these task/device pairs it selects the “best” pair to map 
first. To determine which device or which task/device pair 

is the best, a fitness value is used. The fitness value of a 
task on a given device for this study is (a) the energy 
consumed for high priority tasks, and (b) the energy 
consumed multiplied by the weighted priority divided by 
the execution time of the task for medium and low priority 
tasks. The energy consumed is equal to the energy used by 
the CPU plus the energy used for communication. This 
method also starts the simulation by using the slowest 
speed level of devices to map tasks. 

The Min-Min procedure starts at a mapping event and 
it is assumed that none of the mappable tasks are mapped, 
i.e., they are not in any device queue. 
(1) All high priority tasks are considered first then the 

other tasks are considered. 
(2) All high priority tasks in the mappable task list are 

checked to see if they can be completed by their 
deadline. 

(3) If there are some tasks that cannot be completed on 
any device then the speed level is increased or the 
task is dropped according to the method used in 
Subsection 4.3. 

(4) For each high priority task in the mappable task list, 
find the device that gives the task its minimum fitness 
value (the first “Min”) among the devices that can 
complete the task by its deadline using the current 
speed level and ignoring other tasks in the mappable 
task list. 

(5) Among all the task/device pairs found from above, 
find the pair that gives the minimum fitness value (the 
second “Min”), map the task to the device and 
remove the task from the mappable task list.  
Input or results communication is scheduled using the 
method in Subsection 4.2. 

(6) Update the device availability and energy consumed 
status. 

(7) Do steps (2) to (6) until all high priority tasks are 
mapped, and then do the same for medium and low 
priority tasks except the speed level is not increased. 

(8) If there is enough energy on a device to execute tasks 
at the highest speed level and transmit data for the 
rest of the remaining time (until the end of the eight 
hour period), then the speed level for that device is 
increased to the highest speed level. Check all devices. 

 
4.5. Sufferage 

The Sufferage heuristic builds on the sufferage concept 
in [23]. The Sufferage heuristic applies the same fitness 
value calculation used in the Min-Min heuristic 
(Subsection 4.4) but when deciding which task to map, the 
task that “suffers” most if not mapped to its “first choice 
machine” is selected.  

The Sufferage procedure starts at a mapping event. 
When the mapping event begins, it is assumed that none 
of the mappable tasks are mapped, i.e., they are not in any 
device queue. 
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(1) All high priority tasks are considered first then the 
other tasks are considered. 

(2) All high priority tasks in the mappable task list are 
checked if they can be completed by their deadline. 

(3) If there are some tasks that cannot be completed on 
any device then the speed level is increased or the 
task is dropped according to the method used in 
Subsection 4.3. 

(4) For each task in the mappable task list, find the 
device that gives the task its minimum fitness value 
among the devices that can complete the task by its 
deadline using the current speed level, ignoring other 
tasks in the mappable task list. 

(5) If there is contention among any of the high priority 
tasks, select the task that will suffer the most (the task 
with the largest difference of fitness value between 
the best and the second best devices) to map onto the 
device selected. 
else, map all the high priority tasks. 
all communications are scheduled using the method 
in Subsection 4.2. 

(6) Remove the above task(s) from the mappable task list. 
(7) Update the device availability and energy consumed 

status. 
(8) Repeat steps (2) to (7) until all high priority tasks are 

mapped, and do the same for the medium or low 
priority tasks except the speed level is not increased. 

(9) If there is enough energy on a device to execute tasks 
at the highest speed level and transmit data for the 
rest of the remaining time (until the end of the eight 
hour period), then the speed level for that device is 
increased to the highest speed level. Check all devices. 

 
4.6. Originator and Random 

The immediate mode originator heuristic executes the 
task on the device that originated the task. This heuristic is 
run to compare to the performance of heuristics that 
utilizes other devices in the system. The immediate mode 
random heuristic maps the new task on a randomly 
selected device when the new task arrives. This heuristic 
is run as a pseudo lower bound on the performance and to 
compare to the performance of other heuristics. The 
following is for both heuristics. The method in Subsection 
4.2 is used for communication scheduling. If the selected 
device cannot complete the task by its deadline or there is 
not enough energy to complete the task, the task is deleted 
from the system. The energy consumed status is updated 
at every mapping event. The scheme of always running 
the high priority tasks using the fastest speed level and the 
slowest speed level for the rest of the tasks was the best. 

 
4.7. Upper Bound 

Two upper bound methods are presented in this section. 
Each time the environment is simulated, the overall upper 

bound (UB) is determined by selecting the tighter bound 
of the two methods. 

The first upper bound (UB1) uses the arrival time of 
tasks, priority of tasks, the deadline of the tasks, and the 
time interval between the arrivals of tasks. The bound 
ignores the communication and the energy consumed. The 
tasks that have arrived before or at the mapping event are 
called selectable tasks. At any mapping event, only the 
selectable tasks are considered for the calculation of the 
upper bound. Let ET(i, j) be the execution time of task i 
on device j and let Qi be equal to the priority weighting of 
task i divided by the minimum ET(i, j) over all machines. 

The scheme starts by initializing all tasks’ remaining 
ET values, rET(i, j), to the minimum ET(i, j) over all 
devices. The UB1 follows the procedure described below. 
(1) At a mapping event, determine the total aggregate 

computation time (TACT) until the next task arrives. 
That is, TACT = time interval between arrival times 
of the new task and the next task multiplied by the 
number of machines. 

(2) Selectable tasks with rET(i, j) > 0 are put in a task list. 
(3) Sort high priority tasks in the task list using minimum 

ET values and then the medium and low priority tasks 
with Qi 

(4) If there are high priority tasks in the task list, select 
the high priority task a that has the minimum ET 
value 
else, select the medium/low priority task a with the 
highest Qa from the task list. 

(5) If TACT ≤ rET(a, j) 
if the selected task is high priority,  
 subtract TACT from rET(a, j) 
if the selected task is medium or low priority 

add (Qa × TACT) to the secondary metric 
subtract TACT from rET(a, j) 
done (i.e., TACT = 0) 

if TACT > rET(i, j) 
if the selected task is high priority 
subtract rET(a, j) from TACT (this becomes the 
new TACT), rET(a, j) = 0  
if the selected task is medium or low priority 

add (Qa × TACT) to the secondary metric 
subtract rET(a, j) from TACT (this becomes the 
new TACT), rET(a, j) = 0  

(6) Repeat steps (4) and (5) until TACT is equal to 0 or 
there are no selectable tasks with rET(a, j) > 0. 

(7) Repeat steps (1) to (6) until the end of the simulation. 
 
The second upper bound (UB2) uses the energy 

consumed information of tasks. The total energy available 
is the sum of all devices’ maximum energy available. The 
energy consumed is equal to the energy used by the CPU 
plus the energy used for communication.  The UB2 starts 
by determining the minimum energy consumed over all 
devices for each task. Then the high priority tasks are 
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ordered in the task list using minimum energy consumed 
and then the medium and low priority tasks are ordered 
using the minimum energy consumed divided by the 
weighted priority Using this order, the number of tasks 
completed is computed by adding the energy consumed by 
the tasks until the sum exceeds the total energy available. 

While two methods were attempted, UB1 was always 
tighter than UB2 despite the fact that, in general, UB1 is 
an unreachable loose bound for this environment.  

 
5. Simulation Setup 
 

Ten types of wireless computing devices and 50 task 
types are used in the simulated system. Because the 
devices and the tasks are known, the execution times (ET) 
of tasks on these different devices are known. In each 
simulation of a system, eight devices are picked with 
equal probability. The arrival of tasks is simulated by 
mean inter-task arrival times using a (memoryless) 
Poisson distribution. The system is simulated for 480 
minutes (i.e., eight hour work time), with eight bursty 
periods of ten minutes that do not overlap with each other. 
The bursty periods have faster arrival rates (mean is twice 
as fast as the rate of the normal period). 

A ten by 50 ET matrix of the 50 types of tasks on ten 
types of devices taking heterogeneity into consideration is 
generated using the gamma distribution method described 
in [1], with COV of 0.9 for task heterogeneity and COV of 
0.6 for device heterogeneity. When a task is determined to 
arrive, one of the 50 task types is selected with equal 
probability. A trial is defined as one such simulation of the 
HC system (one ten by 50 ET matrix). For each mean 
inter-task arrival time, 50 trials are run for all heuristics.  

Each task is assigned a priority level of high, medium, 
or low, with equal likelihood. The priority levels of 
medium and low are given a weighting of four and one. 
This weighting is to calculate the performance of the value 
of medium and low priority tasks completed by their 
deadlines (secondary goal) if the number of high priority 
tasks completed by their deadlines (primary goal) is the 
same for some heuristics.  

For each device, the maximum battery capacity, the 
maximum CPU energy consumption rate, and the number 
of discrete levels for DVS are given. The discrete levels 
for DVS correspond to the speed at which the CPU is run 
and defined as speed levels. The environment assumes the 
IEEE 802.11b standard for wireless communication. It is 
assumed that the data communication and the task 
computation/execution can be done simultaneously. Based 
on two types of wireless devices (a laptop and a handheld), 
the energy consumption rates are determined. These two 
devices can be selected with equal probability. The 
maximum CPU energy consumption rates are determined 
using a uniform distribution with a range of 0.1 to 0.3 for 

laptops or 0.01 to 0.03 for handheld devices. The reason 
for the two ranges is that the CPU energy consumption 
rate of a laptop is about ten times higher than that of a 
handheld device (based on sample devices from the Dell 
website). Based on sample communication adapters (e.g., 
Linksys) for the two types of devices, the transmission 
energy consumption rate is 0.6 (about three times the CPU 
energy consumption rate of a laptop) or 0.2 (about one 
third of transmission energy consumption rate of a laptop) 
for the first range or the second range, respectively. The 
reception energy consumption rate and the idle energy 
consumption rate are assumed to be 65% and 25% of the 
transmission power consumption rate respectively. For the 
simulation study, the maximum battery capacity (energy) 
of device j, BC(j), is set to the maximum CPU energy 
consumption rate plus the transmission energy 
consumption rate, multiplied by the maximum operation 
time. The maximum operation time is determined using a 
uniform distribution with a range of 1 to 2 hrs. This means 
that if the CPU is used at the maximum speed level and 
the device is always transmitting then the battery capacity 
is only enough to operate the device for 1 to 2 hrs.  

To simplify DVS, this research assumes that each 
voltage level of a processor corresponds to a clock speed 
level for the processor. Each device can have 2, 4, 8, or 16 
discrete speed levels with equal probability. After the 
number of levels is decided, the relative speed of each 
level is determined. The lowest speed level of a device is 
assumed to be one third of the maximum speed level (e.g., 
if the maximum speed level is 1.2GHz, then the lowest 
speed level will be 400MHz). We make the simplifying 
assumption that task execution time varies linearly with 
the discrete speed level. It is assumed that the voltage 
switching is done dynamically and that the overhead 
associated with the switching is negligible (20µ ~ 150µ 
seconds). The power consumption as a function of speed 
(voltage) levels is assumed to be a quadratic function. For 
the example with four speed levels, assume that the 
maximum energy consumption rate is 0.16. Using a 
simple equation of maximum energy consumption rate = 
α × (relative speed of a speed level to the maximum speed 
level)2, α is 0.16. The relative speed of the slowest speed 
level is 1/3 of the maximum speed level, next will be 5/9 
and 7/9 of the maximum speed level (linear). Using these 
fractions, the energy consumption rates for each speed 
level are calculated. In this example, the energy 
consumption rates would be 0.16 × 1/9, 0.16 × 25/81, 0.16 
× 49/81, and 0.16 from the slowest speed level to the 
fastest (maximum) speed level respectively. When the 
device is idle, the energy consumption rate is assumed to 
be 1/12 of the maximum energy consumption rate. 

The eight devices are assumed to transmit and receive 
at the speed of 1Mbps. When tasks need to communicate 
input or output, it is assumed that only one 
communication is allowed at a time. If multiple tasks need 
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input data at this moment in time, only one task at a time 
may receive its input data. For simulation purposes, the 
size of the input data was calculated using 1K bits as the 
mean and a COV of 0.7 with the maximum size of 1M bits. 
The size of the result (output) was calculated using 10K 
bits as the mean and a COV of 0.7 with the maximum size 
being 10M bits. A task may receive input from other 
devices and from one outside source (e.g., a weather 
station for forecast reports). The maximum total number 
of inputs a task may need would be nine. The average 
number of input sources was 2.5. 

In a real system, the deadline of a task may be set by 
the user that requested the task or the system operator. 
This research assumes that when the task arrives, the 
deadline of the task is given. For our simulation studies, 
the deadline of task i was equal to its the arrival time plus 
the overall mean execution time of all tasks plus two times 
the median execution time of task i on all devices plus the 
communication time (input and result) plus 
communication wait time (= the mean number of input 
receptions multiplied by seven multiplied by the mean 
input communication time plus seven multiplied by the 
mean result communication time). 

 
6. Results 
 

The simulation results for the different mean execution 
times and mean inter-task arrival times are shown. Figures 
2(a) and 2(b) show the performance of the heuristics as a 
function of the mean task arrival rates when the mean task 
execution is 60 seconds. The results show that the 
Switching Algorithm, Min-Min, and Sufferage heuristics 
are the best and they performed comparably. The 
Switching Algorithm, Min-Min, and Sufferage heuristics 
explicitly consider the high priority tasks first. Other 
heuristics run the high priority tasks using the fastest 
speed level, giving the high priority tasks a low 
probability of getting dropped. The average running times, 
in seconds per mapping event, of random, originator, OLB, 
Fast Greedy, Switching Algorithm, Min-Min, and 
Sufferage are 0.00001, 0.00001, 0.00004, 0.00005, 0.0015, 
0.28, and 0.34, respectively. As the mean task arrival rates 
increase, the number of tasks in the system increases and 
the percentage of high priority tasks completed decreases. 
The average number of tasks per trial was 3373, 4185, and 
5688 for mean inter-task arrival time of 10, 8, and 6 
seconds.  

Figures 2(c) and 2(d) show the results when the mean 
task execution time is increased to 600 seconds. As 
expected, the performance degraded from the results 
shown in Figures 2(a) and 2(b). Tasks are more likely to 
be dropped because of the longer mean execution time. 
The results show that the Min-Min and Sufferage 
heuristics are the best and they performed comparably.  

As the mean task arrival rate increases, the number of 
tasks in the system also increases and the percentage of 
high priority tasks completed decreases. As it gets more 
difficult to complete high priority tasks (as there are more 
tasks in the system), the batch mode heuristics Min-Min 
and Sufferage perform better than the rest of the heuristics. 
While remapping, the batch mode heuristics consider all 
mappable tasks in the system and the order in which the 
tasks are mapped can be different from the previous 
mapping event. Therefore the tasks can be assigned to 
another machine that is better suited or they can be 
rescheduled. The Switching Algorithm only considers the 
new task that arrived and once the task is mapped, it is not 
moved to another device nor rescheduled. It also can only 
increase the speed level for one device per mapping event. 

 
7. Summary 

 
An ad hoc grid heterogeneous computing environment 

was modeled and simulated. Seven dynamic heuristics 
were designed, developed, and tested using the HC 
environment. The environment includes randomly arriving 
tasks with priorities and a deadline, and devices with 
limited battery capacity that use DVS for power 
management. In this scenario, a resource manager needs 
to exploit the heterogeneity of the tasks and resources 
while managing the energy. The primary goal of this study 
was to complete as many high priority tasks as possible 
under the constraint of available system energy. A 
mathematical upper bound was derived.  

Min-Min and Sufferage were the best heuristic and 
they performed comparably. However they required 
significantly more time than the other heuristics. In cases 
where the mean task execution times are short the 
Switching Algorithm may be preferable because it is very 
fast and can perform comparably to the two best heuristics. 
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Figure 2: The simulation results using mean inter-task arrival times of 10, 8, and 6 seconds.  Graphs (a) 
and (b) are for amean task execution time of 60 seconds with graphs (c) and (d) for a mean task 
execution time of 600 seconds.   For each mean inter-task arrival time, the value plotted is the average 
of 50 trials that were run for all heuristics.  Note that because energy usage is a constraint and not the 
optimization criterion, the heuristics will strive to use up all the energy to complete more tasks. 
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