
Dynamic Mapping in Energy Constrained Heterogeneous Computing Systems

Jong-Kook Kim1, H. J. Siegel2,3, Anthony A. Maciejewski2, and Rudolf Eigenmann1

1Purdue University
Electrical and Computer Engineering School

West Lafayette, IN 47907-1285, USA
jongkook@ieee.org

eigenman@ecn.purdue.edu

Colorado State University
2Electrical and Computer Engineering Dept.

3Computer Science Dept.
Fort Collins, CO 80523-1373, USA

{hj, aam}@colostate.edu

Abstract

An ad hoc grid is a wireless heterogeneous computing
environment without a fixed infrastructure. The wireless
devices have different capabilities, have limited battery
capacity, support dynamic voltage scaling, and are
expected to be used for eight hours at a time and then
recharged. To maximize the performance of the system, it
is essential to assign resources to tasks (match) and order
the execution of tasks on each resource (schedule) in a
manner that exploits the heterogeneity of the resources
and tasks while considering the energy constraints of the
devices. In the single-hop ad hoc grid heterogeneous
environment considered in this study, tasks arrive
unpredictably, are independent (i.e., no precedent
constraints for tasks), and have priorities and deadlines.
The problem is to map (match and schedule) tasks onto
devices such that the number of highest priority tasks
completed by their deadlines during eight hours is
maximized while efficiently utilizing the overall system
energy. A model for dynamically mapping tasks onto
wireless devices is introduced. Seven dynamic mapping
heuristics for this environment are designed and
compared to each other and to a mathematical bound.

1. Introduction

An ad hoc grid is a heterogeneous computing (HC)

environment consisting of mobile battery-powered
computing devices that communicate using wireless
connections. Ad hoc grid environments enable users to
communicate and share computational load and results
with other users in the system to coordinate efforts to
accomplish a mission. Examples of applications of ad hoc

This research was supported in part by the Colorado State University
George T. Abell Endowment.

grids include: wildfire fighting, disaster management, and
military situations [25]. HC is the coordinated use of
various resources with different capabilities to satisfy the
requirements of varying task mixtures. When the
resources are wireless and mobile, the limited battery
capacity becomes a constraint and power or energy
management becomes a critical issue. The heterogeneity
of the resources and tasks in an HC system is exploited to
maximize the performance or the cost-effectiveness of the
system (e.g., [6, 11, 15, 24]). An important research
problem is how to assign resources to the tasks (match)
and to order the tasks for execution on the resources
(schedule) to maximize some performance criterion of an
HC system. This procedure is called mapping. The power
management aspect further complicates the problem.

There are two different types of mapping: static and
dynamic. Static mapping is performed when the
applications are mapped in an off-line planning phase, e.g.,
planning the schedule for a set of production jobs.
Dynamic mapping is performed when the applications are
mapped in an on-line fashion, e.g., when tasks arrive at
unpredictable intervals and are mapped as they arrive (the
workload is not known a priori). In both cases, the
mapping problem has been shown, in general, to be NP-
complete (e.g., [9, 12, 18]). Thus, the development of
heuristic techniques to find near-optimal solutions for the
problem is an active area of research (e.g., [4, 5, 6, 7, 11,
13, 14, 20, 23, 27, 33, 37]).

In this research, the dynamic mapping of tasks onto
machines is studied. Simulation is used for the evaluation
and comparison of the dynamic heuristics developed in
this research. As described in [23], dynamic mapping
heuristics can be grouped into two categories, immediate
and batch mode. Each time a mapping is performed
(mapping event), immediate mode heuristics only consider
the new task for mapping, whereas batch mode considers
a subset of tasks for mapping, thus having more
information about the task mixture before mapping the
tasks. In this paper, we attempted both approaches.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

The power management is accomplished by using
dynamic voltage scaling (DVS) [32]. DVS is based on
exploiting the relationship between the CPU supply
voltage of a device and the power usage (e.g., Crusoe [8]
and ARM7D [2]). The relationship between power and
energy is that energy consumed is power multiplied by the
amount of time that power is used. The relationship of
power to voltage is a strictly increasing convex function,
represented by a polynomial of at least second degree [17].
Most processors that support DVS use discrete levels. The
DVS technique allows the reduction of a CPU’s energy
usage (through CPU voltage (clock frequency) reduction)
at the expense of increasing the task execution time.

In the environment for this research, the devices are
wireless and can communicate with each other (in a
single-hop ad hoc network). The batteries for these
devices are assumed to be recharged after a certain
amount of time (e.g., recharged after an eight hour shift or
an eight hour work day). Using a device, a user can
execute a program (task) to obtain results, receive data,
and send data. For the efficient use of the overall system
energy available, it may be best for certain tasks to be
executed on a remote, rather than the local, device. An
RMS makes this decision of locating a “suitable” device.
A device performing a computation may receive input
data from other devices or external sources. The resulting
output data will be sent back to the requester device.
Tasks can have different priority levels (i.e., high, medium,
or low) and a deadline. The primary goal of this research
is to complete as many high priority tasks by their
deadlines as possible during a given interval of time (i.e.,
eight hours). The secondary performance goal is to
maximize the sum of the weighted priorities of medium
and low priority tasks completed by their deadlines during
that interval of time, building on the FISC measure in [19].

This research introduces a model for dynamically
mapping tasks onto wireless devices while managing
power using the DVS method. Seven dynamic resource
allocation heuristics for this environment are designed and
compared. Mathematical bounds on the performance of
the heuristics are derived.

The next section discusses the heterogeneous ad hoc
environment followed by a summary of the literature
related to this work. In Section 4, the heuristics studied in
this research are presented. Section 5 describes the
simulation setup. The results are examined in Section 6,
and the last section gives a brief summary of this research.

2. Energy Constrained Environment

The ad hoc grid environment is controlled by an RMS.
The RMS performs matching, scheduling, and power
management to maximize the goal stated earlier. In this
environment, the wireless devices have limited battery

capacity (energy). The users are allowed one battery for
the operation of a given device for an interval of time. The
batteries are recharged after eight hours. All devices
employ DVS for power management but use different
discrete voltage levels.

We make the simplifying assumption that the RMS is
located on a dedicated machine that has unlimited power
and that the devices are within transmission range of the
RMS and each other. The users send task requests to the
RMS. Once a task request is received, the RMS locates a
“suitable” device and sends a task execution command
(Figure 1). If input data is required, the data is
communicated directly to the executing device from the
source. A source could be other wireless devices or
outside sources (e.g., from a weather station). The result
of the task execution (e.g., a wind direction estimate) is
sent back to the task requester device, if the task was not
executed on that device. The tasks discussed here have a
priority level (e.g., high, medium, or low and a deadline.
If the task cannot complete by its deadline, it has no value.

Figure 1: The ad hoc grid heterogeneous
computing environment considered in this study.

The communication of inputs and results is assumed to

be done directly from device to device (i.e., single-hop ad
hoc network) using the IEEE 802.11b standard, which is a
popular wireless standard. In this research, only one task
receives or sends data at any instant in time (i.e., the
communication link is saved for one task for the duration
of its communication). This communication scheme is
desirable when a certain quality of service must be met for
the tasks. For example, if task a arrives at time t and the
deadline is at t + d, the communication of inputs to this
task, the execution of the task, and the communication of
the results must be done in time d. If other
communications are allowed while task a is still
communicating, then the communication time of task a is
no longer guaranteed. As more and more communications
are allowed, the finish time of the communication for task
a will be delayed.

In this environment, it is assumed that the types of
devices that may connect to the system are known. In

M0

M1

Mn-1

• ••

task
execution
command

resource
management

system

(RMS)

task request

send
inputs

send
results

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

addition, there is pre-determined set of tasks that a user
can request. However, it is not known a priori exactly
which tasks will be requested and when they will be
requested. In an example military scenario, there are pre-
determined types of wireless devices allowed to connect
to the military system. In this environment, there is a set
of tasks that may be requested for execution (e.g., target
determination and weather prediction). A requested task is
executed on a “suitable” device and the information is sent
back to the task requester. Because the devices and the
tasks are known, the task execution times on those devices
are known to the RMS (this assumption is typically made
when studying mapping heuristics for heterogeneous
computing environments (e.g., [21, 34, 35])) and are
determined by running the tasks on the devices. It is
assumed that all devices are equipped with all programs
required and only input data is needed to execute a task
and send back results. Thus, the time to communicate the
task request to the RMS and to send a task execution
command to the device is assumed to be negligible.

3. Related Work

There has been much research on power constrained
(power-aware) resource management in uni-processors
(e.g., [3, 16, 26, 36]). The research in [3] presents a static
scheduling solution of periodic tasks on a processor
assuming the worst-case scenario, a dynamic reclaiming
algorithm for tasks that complete before their worst-case
scenario, and an adaptive speed adjustment mechanism to
anticipate the probable early completion of future task
executions. A power minimizing approach for variable-
voltage systems is developed in [16], where tasks are
periodic and independent. The method described in [26]
assumes a dynamic preemptive environment where
periodic independent tasks arrive and leave a system. In
[36], a formal analysis of the minimum energy scheduling
problem is provided for a single processor and a model
that assumes a task with an arrival time and deadline. The
difference between these studies and our research is that
our energy constrained ad hoc grid environment considers
multiple heterogeneous devices and non-periodic
independent tasks with priorities and deadlines that need
input and/or output communicated. The fact that our
environment has heterogeneous multiple devices adds new
issues to the resource management problem.

Some research projects have explored a multi-
processor environment with static resource management
(e.g., [10, 28, 38, 39]). In [10], a genetic algorithm is used
to synthesize distributed heterogeneous embedded systems.
Using a static schedule derived from a list scheduling
scheme, the study in [28] does static and dynamic power
management. The work in [38] describes a linear
programming method that statically schedules periodic

tasks on heterogeneous processing elements. The research
in [39] assumes homogeneous processors and frame-based
tasks. In static mapping, information of all tasks is known
and the heuristic execution time is not a constraint. The
difference is that our research explores a dynamic
environment where the arrival time of a task is not known
prior to its arrival and the task mapping time must be fast.
In addition, the devices are heterogeneous in our studies.

The research in [22] statically schedules periodic tasks
onto homogeneous processing elements first using the tool
in [10] and then slots are created in this static schedule to
accommodate aperiodic tasks with hard deadlines. They
assume that the minimum interval between two hard
aperiodic tasks is larger than the lowest common multiple
period of all periodic tasks. Then an online scheduler
modifies the system to minimize the response times for
aperiodic tasks with soft deadlines. The static schedule is
unchanged and the soft aperiodic tasks are run when there
is unused time. In our research, all of the devices are
heterogeneous and all tasks are aperiodic with hard
deadlines. Because all tasks are aperiodic, slots are not
created among task periods, i.e., the RMS approaches are
quite different. Furthermore our research considers the
case where not all tasks with hard deadlines can complete
and does not assume a minimum interval between the
arrivals of two tasks.

The research in [31] is similar to our work in that it
tries to send tasks to another device to be computed. It
uses a distributed economic-based subcontracting protocol
to determine which device to use. The goal of the devices
in [31] is to find a suitable device that can execute tasks to
save energy. A cost is associated with devices that are
willing to execute a task for other devices. The device that
wants to move one of its tasks to another device bargains
with those willing devices. The underlying model of our
work differs from this in that the environment in our
research assumes that all devices are capable of DVS and
tasks have deadlines and priorities.

The research in [29] and [30] studies static RMSs for
minimizing energy consumption for a heterogeneous ad
hoc grid. The differences are that in our research, the
heuristics operate dynamically, each device supports DVS,
tasks have priorities, and it is assumed that not all tasks
are completed before their hard deadlines.

4. Heuristic Description

4.1. Mapping Event

A dynamic mapping approach is designed to assign
resources to new tasks faster than the anticipated average
arrival rate of the tasks. Therefore, the heuristics that are
developed have a limit on the maximum time each
computation of a new mapping can take. A mapping event
occurs when a new task arrives. When a task arrives while

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

a mapping event is in progress, the current mapping event
is not disturbed. As soon as the current mapping event is
completed, the next mapping event starts and includes any
tasks that have arrived. At any mapping event, the first
task in each machine’s wait queue is not considered for
remapping in any of the heuristics. The reason is that
while a mapping event occurs the current executing task
can finish, leaving the device idle. Therefore, to help
ensure that a device will not be idle for the duration of a
mapping event, the first task in the queue is not considered
for mapping. While it is still possible that a device may
become idle, it is highly unlikely for the assumptions in
this research (the mean execution time of a task is 60 or
600 seconds while the mean execution time of a mapping
event is less than 0.5 seconds). The mappable tasks are
defined as the tasks that are waiting to be executed in the
machine queue (except the first task) and the new task(s).

4.2. Opportunistic Load Balancing

and Fast Greedy
The immediate mode opportunistic load balancing

(OLB) heuristic is a common method for scheduling tasks.
The heuristic assigns a task to the device that is expected
to be the first to be ready to execute a task. This is a
simplistic method that ignores the relationship between
the execution of a task and the capability of the devices in
the ad hoc grid. At a mapping event, among the devices
that can map the new task without violating its deadline
and have enough energy to complete the task, the heuristic
selects the device that will be ready (i.e., executes all the
tasks already in its queue) first to map the new task. The
immediate mode fast greedy (FG) heuristic assigns tasks
onto the device that completes them consuming the
minimum amount of energy. This is a scheme that ignores
other tasks already in the system. At a mapping event, the
device that can complete the task by its deadline and
executes the task using the minimum amount of energy is
selected for mapping.

The following are same for both approaches. All
communications are scheduled as early as possible. If
there are previous communications scheduled, then
current communications are inserted in the gaps between
the communications already scheduled if possible, or else
they are put at the end of the communication scheduling
queue. If all devices cannot complete the task by its
deadline, the task is deleted from the system. The energy
consumed status is updated at every mapping event. The
scheme of running the high priority tasks using the fastest
speed level and the slowest speed level for the rest of the
tasks was the best.

4.3. Switching Algorithm

The immediate mode Switching Algorithm heuristic
builds on the switching algorithm in [23]. The basic idea

behind this heuristic is to first try to map tasks onto their
“best” machine according to some metric. But, when the
load on the system becomes unbalanced, the strategy is
changed to balance the load. When the load becomes
balanced then the mapping method is changed back to the
original method. For this heuristic, a load balance ratio is
used to determine whether the system is load balanced.

 In this study, two different load balance ratios are
calculated. One is for the high priority tasks and other is
for the medium and low priority tasks. The high load
balance ratio is the ratio of the earliest device availability
time over all the devices in the suite to the latest device
availability time. For this ratio, the device availability
times are determined using the last high priority task in
each queue. If there are no high priority tasks in a device
queue, then the device available time is the completion
time of the task that is running if it is the only task on the
device. If there are other tasks on the device, then the
device available time is the completion time of the first
waiting task. The low load balance ratio is same as the
high load balance ratio except that it is calculated with all
tasks. For both load balance ratios, a common high
threshold and low threshold are established by
experimentation (high threshold > low threshold).

Initially, the system maps new tasks onto their
minimum energy consumption device using the slowest
speed level. If the task that arrived is a high priority task
and there are no devices that can complete the high
priority task by its deadline, then the speed level of the
devices is increased starting from device 0 using the
method described below to test if there are devices that
can complete the high priority task with a level increase.
When increasing a device’s speed level, the total number
of speed levels of a device is taken into consideration. For
example, assume there is a device 1 that has sixteen speed
levels and another device 2 that has four speed levels. If
device 1 increased its speed levels at least four times, only
then device 2 is considered for speed level increase. Only
the speed level for the device selected for mapping is
increased. Once the speed level of a device is increased to
a faster level, the level will not be decreased to a slower
level. This is to guarantee that tasks mapped earlier
complete by their deadline. At any mapping event, the
speed level is changed at most two times. This is to avoid
increasing the speed level to accommodate the current
task while not leaving enough energy for future use.

The Switching Algorithm heuristic can be summarized
by the following procedure. The total energy consumed is
equal to the total CPU energy used plus the energy used
for communication.
(1)
(2)
(3)

Determine the priority level of the new task.
Calculate the high (or low) load balance ratio.
If the high (or low) load balance ratio > high
threshold, then current method is to use the minimum
energy consumption device to map the new task.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

If the high (or low) load balance ratio < low threshold,
then current method is to use the minimum
completion time device to map the new task.

 If low threshold ≤ high (or low) load balance ratio ≤
high threshold, then current method is the one used at
the previous mapping event to map the new task.

(4)

(5)

(6)

(7)

(8)

Initialize “iteration” to the number of speed level
changes on the device where the speed level was
changed the most.
If the task is a medium or low priority task, assuming
that it will be mapped at the end of a device queue,
determine all devices that can complete the task by its
deadline

if the task cannot be completed on any device, it is
deleted from the system
else, select a device using the current method, map
the task to this device, and all communications are
scheduled using the method in Subsection 4.2.

If the task is a high priority task, assuming that it will
be mapped after the last high priority task in a device
queue, determine all devices that can complete the
task by its deadline.

 do until a device is selected for mapping or iteration
is increased twice.

if the task cannot be completed on any device,
increase the speed level

for each device, change the increase one speed
level if the (maximum number of speed levels
among all devices)/(total number of levels on
the device) ≤ iteration and test if the device can
complete the task.
iteration = iteration + 1

 else, select a device using the current method, map
the task to this device

if the task cannot be completed on any device, return
all device’s speed level to the level before this task
arrived and drop the task.
else, return all unselected devices’ speed level to the
level before this task arrived.
If there is enough energy on a device to execute tasks
at the highest speed level and transmit data for the
rest of the remaining time (until the end of the eight
hour period), then the speed level for that device is
increased to the highest speed level. Check all devices.
Update device availability and energy consumed
status.

4.4. Min-Min

The batch mode Min-Min heuristic builds on the Min-
Min (greedy) concept in [18]. The Min-Min type heuristic
performed very well in previous studies of different
environments (e.g., [7, 23]). The Min-Min finds the “best”
device for all tasks that are considered and then among
these task/device pairs it selects the “best” pair to map
first. To determine which device or which task/device pair

is the best, a fitness value is used. The fitness value of a
task on a given device for this study is (a) the energy
consumed for high priority tasks, and (b) the energy
consumed multiplied by the weighted priority divided by
the execution time of the task for medium and low priority
tasks. The energy consumed is equal to the energy used by
the CPU plus the energy used for communication. This
method also starts the simulation by using the slowest
speed level of devices to map tasks.

The Min-Min procedure starts at a mapping event and
it is assumed that none of the mappable tasks are mapped,
i.e., they are not in any device queue.
(1) All high priority tasks are considered first then the

other tasks are considered.
(2) All high priority tasks in the mappable task list are

checked to see if they can be completed by their
deadline.

(3) If there are some tasks that cannot be completed on
any device then the speed level is increased or the
task is dropped according to the method used in
Subsection 4.3.

(4) For each high priority task in the mappable task list,
find the device that gives the task its minimum fitness
value (the first “Min”) among the devices that can
complete the task by its deadline using the current
speed level and ignoring other tasks in the mappable
task list.

(5) Among all the task/device pairs found from above,
find the pair that gives the minimum fitness value (the
second “Min”), map the task to the device and
remove the task from the mappable task list.
Input or results communication is scheduled using the
method in Subsection 4.2.

(6) Update the device availability and energy consumed
status.

(7) Do steps (2) to (6) until all high priority tasks are
mapped, and then do the same for medium and low
priority tasks except the speed level is not increased.

(8) If there is enough energy on a device to execute tasks
at the highest speed level and transmit data for the
rest of the remaining time (until the end of the eight
hour period), then the speed level for that device is
increased to the highest speed level. Check all devices.

4.5. Sufferage

The Sufferage heuristic builds on the sufferage concept
in [23]. The Sufferage heuristic applies the same fitness
value calculation used in the Min-Min heuristic
(Subsection 4.4) but when deciding which task to map, the
task that “suffers” most if not mapped to its “first choice
machine” is selected.

The Sufferage procedure starts at a mapping event.
When the mapping event begins, it is assumed that none
of the mappable tasks are mapped, i.e., they are not in any
device queue.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

(1) All high priority tasks are considered first then the
other tasks are considered.

(2) All high priority tasks in the mappable task list are
checked if they can be completed by their deadline.

(3) If there are some tasks that cannot be completed on
any device then the speed level is increased or the
task is dropped according to the method used in
Subsection 4.3.

(4) For each task in the mappable task list, find the
device that gives the task its minimum fitness value
among the devices that can complete the task by its
deadline using the current speed level, ignoring other
tasks in the mappable task list.

(5) If there is contention among any of the high priority
tasks, select the task that will suffer the most (the task
with the largest difference of fitness value between
the best and the second best devices) to map onto the
device selected.
else, map all the high priority tasks.
all communications are scheduled using the method
in Subsection 4.2.

(6) Remove the above task(s) from the mappable task list.
(7) Update the device availability and energy consumed

status.
(8) Repeat steps (2) to (7) until all high priority tasks are

mapped, and do the same for the medium or low
priority tasks except the speed level is not increased.

(9) If there is enough energy on a device to execute tasks
at the highest speed level and transmit data for the
rest of the remaining time (until the end of the eight
hour period), then the speed level for that device is
increased to the highest speed level. Check all devices.

4.6. Originator and Random

The immediate mode originator heuristic executes the
task on the device that originated the task. This heuristic is
run to compare to the performance of heuristics that
utilizes other devices in the system. The immediate mode
random heuristic maps the new task on a randomly
selected device when the new task arrives. This heuristic
is run as a pseudo lower bound on the performance and to
compare to the performance of other heuristics. The
following is for both heuristics. The method in Subsection
4.2 is used for communication scheduling. If the selected
device cannot complete the task by its deadline or there is
not enough energy to complete the task, the task is deleted
from the system. The energy consumed status is updated
at every mapping event. The scheme of always running
the high priority tasks using the fastest speed level and the
slowest speed level for the rest of the tasks was the best.

4.7. Upper Bound

Two upper bound methods are presented in this section.
Each time the environment is simulated, the overall upper

bound (UB) is determined by selecting the tighter bound
of the two methods.

The first upper bound (UB1) uses the arrival time of
tasks, priority of tasks, the deadline of the tasks, and the
time interval between the arrivals of tasks. The bound
ignores the communication and the energy consumed. The
tasks that have arrived before or at the mapping event are
called selectable tasks. At any mapping event, only the
selectable tasks are considered for the calculation of the
upper bound. Let ET(i, j) be the execution time of task i
on device j and let Qi be equal to the priority weighting of
task i divided by the minimum ET(i, j) over all machines.

The scheme starts by initializing all tasks’ remaining
ET values, rET(i, j), to the minimum ET(i, j) over all
devices. The UB1 follows the procedure described below.
(1) At a mapping event, determine the total aggregate

computation time (TACT) until the next task arrives.
That is, TACT = time interval between arrival times
of the new task and the next task multiplied by the
number of machines.

(2) Selectable tasks with rET(i, j) > 0 are put in a task list.
(3) Sort high priority tasks in the task list using minimum

ET values and then the medium and low priority tasks
with Qi

(4) If there are high priority tasks in the task list, select
the high priority task a that has the minimum ET
value
else, select the medium/low priority task a with the
highest Qa from the task list.

(5) If TACT ≤ rET(a, j)
if the selected task is high priority,
 subtract TACT from rET(a, j)
if the selected task is medium or low priority

add (Qa × TACT) to the secondary metric
subtract TACT from rET(a, j)
done (i.e., TACT = 0)

if TACT > rET(i, j)
if the selected task is high priority
subtract rET(a, j) from TACT (this becomes the
new TACT), rET(a, j) = 0
if the selected task is medium or low priority

add (Qa × TACT) to the secondary metric
subtract rET(a, j) from TACT (this becomes the
new TACT), rET(a, j) = 0

(6) Repeat steps (4) and (5) until TACT is equal to 0 or
there are no selectable tasks with rET(a, j) > 0.

(7) Repeat steps (1) to (6) until the end of the simulation.

The second upper bound (UB2) uses the energy

consumed information of tasks. The total energy available
is the sum of all devices’ maximum energy available. The
energy consumed is equal to the energy used by the CPU
plus the energy used for communication. The UB2 starts
by determining the minimum energy consumed over all
devices for each task. Then the high priority tasks are

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

ordered in the task list using minimum energy consumed
and then the medium and low priority tasks are ordered
using the minimum energy consumed divided by the
weighted priority Using this order, the number of tasks
completed is computed by adding the energy consumed by
the tasks until the sum exceeds the total energy available.

While two methods were attempted, UB1 was always
tighter than UB2 despite the fact that, in general, UB1 is
an unreachable loose bound for this environment.

5. Simulation Setup

Ten types of wireless computing devices and 50 task
types are used in the simulated system. Because the
devices and the tasks are known, the execution times (ET)
of tasks on these different devices are known. In each
simulation of a system, eight devices are picked with
equal probability. The arrival of tasks is simulated by
mean inter-task arrival times using a (memoryless)
Poisson distribution. The system is simulated for 480
minutes (i.e., eight hour work time), with eight bursty
periods of ten minutes that do not overlap with each other.
The bursty periods have faster arrival rates (mean is twice
as fast as the rate of the normal period).

A ten by 50 ET matrix of the 50 types of tasks on ten
types of devices taking heterogeneity into consideration is
generated using the gamma distribution method described
in [1], with COV of 0.9 for task heterogeneity and COV of
0.6 for device heterogeneity. When a task is determined to
arrive, one of the 50 task types is selected with equal
probability. A trial is defined as one such simulation of the
HC system (one ten by 50 ET matrix). For each mean
inter-task arrival time, 50 trials are run for all heuristics.

Each task is assigned a priority level of high, medium,
or low, with equal likelihood. The priority levels of
medium and low are given a weighting of four and one.
This weighting is to calculate the performance of the value
of medium and low priority tasks completed by their
deadlines (secondary goal) if the number of high priority
tasks completed by their deadlines (primary goal) is the
same for some heuristics.

For each device, the maximum battery capacity, the
maximum CPU energy consumption rate, and the number
of discrete levels for DVS are given. The discrete levels
for DVS correspond to the speed at which the CPU is run
and defined as speed levels. The environment assumes the
IEEE 802.11b standard for wireless communication. It is
assumed that the data communication and the task
computation/execution can be done simultaneously. Based
on two types of wireless devices (a laptop and a handheld),
the energy consumption rates are determined. These two
devices can be selected with equal probability. The
maximum CPU energy consumption rates are determined
using a uniform distribution with a range of 0.1 to 0.3 for

laptops or 0.01 to 0.03 for handheld devices. The reason
for the two ranges is that the CPU energy consumption
rate of a laptop is about ten times higher than that of a
handheld device (based on sample devices from the Dell
website). Based on sample communication adapters (e.g.,
Linksys) for the two types of devices, the transmission
energy consumption rate is 0.6 (about three times the CPU
energy consumption rate of a laptop) or 0.2 (about one
third of transmission energy consumption rate of a laptop)
for the first range or the second range, respectively. The
reception energy consumption rate and the idle energy
consumption rate are assumed to be 65% and 25% of the
transmission power consumption rate respectively. For the
simulation study, the maximum battery capacity (energy)
of device j, BC(j), is set to the maximum CPU energy
consumption rate plus the transmission energy
consumption rate, multiplied by the maximum operation
time. The maximum operation time is determined using a
uniform distribution with a range of 1 to 2 hrs. This means
that if the CPU is used at the maximum speed level and
the device is always transmitting then the battery capacity
is only enough to operate the device for 1 to 2 hrs.

To simplify DVS, this research assumes that each
voltage level of a processor corresponds to a clock speed
level for the processor. Each device can have 2, 4, 8, or 16
discrete speed levels with equal probability. After the
number of levels is decided, the relative speed of each
level is determined. The lowest speed level of a device is
assumed to be one third of the maximum speed level (e.g.,
if the maximum speed level is 1.2GHz, then the lowest
speed level will be 400MHz). We make the simplifying
assumption that task execution time varies linearly with
the discrete speed level. It is assumed that the voltage
switching is done dynamically and that the overhead
associated with the switching is negligible (20µ ~ 150µ
seconds). The power consumption as a function of speed
(voltage) levels is assumed to be a quadratic function. For
the example with four speed levels, assume that the
maximum energy consumption rate is 0.16. Using a
simple equation of maximum energy consumption rate =
α × (relative speed of a speed level to the maximum speed
level)2, α is 0.16. The relative speed of the slowest speed
level is 1/3 of the maximum speed level, next will be 5/9
and 7/9 of the maximum speed level (linear). Using these
fractions, the energy consumption rates for each speed
level are calculated. In this example, the energy
consumption rates would be 0.16 × 1/9, 0.16 × 25/81, 0.16
× 49/81, and 0.16 from the slowest speed level to the
fastest (maximum) speed level respectively. When the
device is idle, the energy consumption rate is assumed to
be 1/12 of the maximum energy consumption rate.

The eight devices are assumed to transmit and receive
at the speed of 1Mbps. When tasks need to communicate
input or output, it is assumed that only one
communication is allowed at a time. If multiple tasks need

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

input data at this moment in time, only one task at a time
may receive its input data. For simulation purposes, the
size of the input data was calculated using 1K bits as the
mean and a COV of 0.7 with the maximum size of 1M bits.
The size of the result (output) was calculated using 10K
bits as the mean and a COV of 0.7 with the maximum size
being 10M bits. A task may receive input from other
devices and from one outside source (e.g., a weather
station for forecast reports). The maximum total number
of inputs a task may need would be nine. The average
number of input sources was 2.5.

In a real system, the deadline of a task may be set by
the user that requested the task or the system operator.
This research assumes that when the task arrives, the
deadline of the task is given. For our simulation studies,
the deadline of task i was equal to its the arrival time plus
the overall mean execution time of all tasks plus two times
the median execution time of task i on all devices plus the
communication time (input and result) plus
communication wait time (= the mean number of input
receptions multiplied by seven multiplied by the mean
input communication time plus seven multiplied by the
mean result communication time).

6. Results

The simulation results for the different mean execution
times and mean inter-task arrival times are shown. Figures
2(a) and 2(b) show the performance of the heuristics as a
function of the mean task arrival rates when the mean task
execution is 60 seconds. The results show that the
Switching Algorithm, Min-Min, and Sufferage heuristics
are the best and they performed comparably. The
Switching Algorithm, Min-Min, and Sufferage heuristics
explicitly consider the high priority tasks first. Other
heuristics run the high priority tasks using the fastest
speed level, giving the high priority tasks a low
probability of getting dropped. The average running times,
in seconds per mapping event, of random, originator, OLB,
Fast Greedy, Switching Algorithm, Min-Min, and
Sufferage are 0.00001, 0.00001, 0.00004, 0.00005, 0.0015,
0.28, and 0.34, respectively. As the mean task arrival rates
increase, the number of tasks in the system increases and
the percentage of high priority tasks completed decreases.
The average number of tasks per trial was 3373, 4185, and
5688 for mean inter-task arrival time of 10, 8, and 6
seconds.

Figures 2(c) and 2(d) show the results when the mean
task execution time is increased to 600 seconds. As
expected, the performance degraded from the results
shown in Figures 2(a) and 2(b). Tasks are more likely to
be dropped because of the longer mean execution time.
The results show that the Min-Min and Sufferage
heuristics are the best and they performed comparably.

As the mean task arrival rate increases, the number of
tasks in the system also increases and the percentage of
high priority tasks completed decreases. As it gets more
difficult to complete high priority tasks (as there are more
tasks in the system), the batch mode heuristics Min-Min
and Sufferage perform better than the rest of the heuristics.
While remapping, the batch mode heuristics consider all
mappable tasks in the system and the order in which the
tasks are mapped can be different from the previous
mapping event. Therefore the tasks can be assigned to
another machine that is better suited or they can be
rescheduled. The Switching Algorithm only considers the
new task that arrived and once the task is mapped, it is not
moved to another device nor rescheduled. It also can only
increase the speed level for one device per mapping event.

7. Summary

An ad hoc grid heterogeneous computing environment

was modeled and simulated. Seven dynamic heuristics
were designed, developed, and tested using the HC
environment. The environment includes randomly arriving
tasks with priorities and a deadline, and devices with
limited battery capacity that use DVS for power
management. In this scenario, a resource manager needs
to exploit the heterogeneity of the tasks and resources
while managing the energy. The primary goal of this study
was to complete as many high priority tasks as possible
under the constraint of available system energy. A
mathematical upper bound was derived.

Min-Min and Sufferage were the best heuristic and
they performed comparably. However they required
significantly more time than the other heuristics. In cases
where the mean task execution times are short the
Switching Algorithm may be preferable because it is very
fast and can perform comparably to the two best heuristics.

Acknowledgements: The authors thank Sameer Shivle,

Prasanna Sugavanam, and T. N. Vijaykumar for their
valuable comments.

References

[1] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali,

“Representing task and machine heterogeneities for heterogeneous
computing systems,” Tamkang Journal of Science and Engineering,
Special 50th Anniversary Issue, Vol. 3, No. 3, Nov. 2000, pp. 195-
207 (invited).

[2] ARM processor, accessed Mar. 2004, http://www.arm.com.
[3] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-

aware scheduling for periodic real-time tasks,” IEEE Trans. on
Computers, Vol. 53, No. 5, May 2004, pp. 584-600.

[4] H. Barada, S. M. Sait, and N. Baig, “Task matching and scheduling
in heterogeneous systems using simulated evolution,” 10th IEEE
Heterogeneous Computing Workshop (HCW 2001), 15th Int’l
Parallel and Distributed Processing Symposium (IPDPS 2001),
paper HCW 15, Apr. 2001.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

[5] I. Banicescu and V. Velusamy, “Performance of scheduling
scientific applications with adaptive weighted factoring,” 10th
IEEE Heterogeneous Computing Workshop (HCW 2001), 15th
Int’l Parallel and Distributed Processing Symposium (IPDPS
2001), paper HCW 06, Apr. 2001.

[6] T. D. Braun, H. J. Siegel, and A. A. Maciejewski, “Heterogeneous
computing: Goals, methods, and open problems,” 2001 Int’l Conf.
on Parallel and Distributed Processing Techniques and
Applications (PDPTA’01), June 2001, pp. 1–12 (invited keynote
paper).

[7] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund, D.
Hensgen, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.
Theys, and Bin Yao, “A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous
distributed computing systems,” J. of Parallel and Distributed
Computing, Vol. 61, No. 6, June 2001, pp. 810-837.

[8] Crusoe Processor, accessed Mar. 2004, http://www.transmeta.com.
[9] E. G. Coffman, Jr. ed., Computer and Job-Shop Scheduling Theory,

John Wiley & Sons, New York, NY, 1976.
[10] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective core-based

single-chip system synthesis,” Design Automation & Test in
Europe Conference, Mar. 1999, pp. 263-270.

[11] M. M. Eshaghian, ed., Heterogeneous Computing. Norwood, MA,
Artech House, 1996.

[12] D. Fernandez-Baca, “Allocating modules to processors in a
distributed system,” IEEE Trans. on Software Engineering, Vol.
SE-15, No. 11, Nov. 1989, pp. 1427–1436.

[13] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New
Computing Infrastructure, San Fransisco, CA, Morgan Kaufmann,
1999.

[14] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M.
Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima,
F. Mirabile, L. Moore, B. Rust, and H. J. Siegel, “Scheduling
resources in multiuser, heterogeneous, computing environments
with SmartNet,” 7th IEEE Heterogeneous Computing Workshop
(HCW 1998), Mar. 1998, pp. 184–199.

[15] R. F. Freund and H. J. Siegel, “Heterogeneous processing,” IEEE
Computer, Vol. 26, No. 6, June 1993, pp. 13–17.

[16] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava,
“Power optimization of variable-voltage core-based systems,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 18, No. 12, Dec. 1999, pp. 1702-1714.

[17] I. Hong, G. Qu, M. Potkonjak, and M. Srivastava, “Synthesis
techniques for low-power hard real-time systems on variable
voltage processors,” 19th IEEE Real-Time Systems Symposium
(RTSS ’98), Dec. 1998, pp. 95-105.

[18] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on non-identical processors,” J. of the ACM, Vol.
24, No. 2, Apr. 1977, pp. 280-289.

[19] J.-K. Kim, D. A. Hensgen, T. Kidd, H. J. Siegel, D. St. John, C.
Irvine, T. Levin, N. W. Porter, V. K. Prasanna, and R. F. Freund,
“A flexible multi-dimensional QoS performance measure
framework for distributed heterogeneous systems,” Cluster
Computing, accepted in 2004, to appear.

[20] J.-K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. D. Braun,
M. Schneider, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi, A.
Kaul, A. Sharma, S. Sripada, P. Vangari, and S. S. Yellampalli,
“Dynamic mapping in a heterogeneous environment with tasks
having priorities and multiple deadlines,” 12th Heterogeneous
Computing Workshop (HCW 2003), 17th Int’l Parallel and
Distributed Processing Symposium (IPDPS 2003)), April 2003.

[21] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task mapping
algorithms for a distributed heterogeneous computing
environment,” 4th IEEE Heterogeneous Computing Workshop
(HCW ’95), Apr. 1995, pp. 30–34.

[22] J. Luo and N. K. Jha, “Power-conscious joint scheduling of
periodic task graphs and aperiodic tasks in distributed real-time
embedded systems,” Computer-Aided Design, Nov. 2000, pp. 357-
364.

[23] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund,
“Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems,” J. of Parallel and Distributed
Computing, Vol. 59, No. 2, Nov. 1999, pp. 107-121.

[24] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous
distributed computing,” Encyclopedia of Electrical and Electronics
Engineering, Vol. 8, J. G. Webster, ed., pp. 679-690, John Wiley,
New York, NY, 1999.

[25] D. Marinescu, G. Marinescu, Y. Ji, L. Boloni, and H. J. Siegel, “Ad
hoc grids: Communication and computing in a power constrained
environment,” Workshop on Energy-Efficient Wireless
Communications and Networks 2003 (EWCN 2003), 22nd Int’l
Performance, Computing, and Communications Conf. (IPCCC),
Apr. 2003.

[26] P. Mejia-Alvarez, E. Levner, and D. Mosse, “Power-optimized
scheduling server for real-time tasks,” IEEE Real-Time and
Embedded Technology and Applications Symposium, Sep. 2002, pp.
239-250.

[27] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern
Heuristics, New York, NY, Springer-Verlag, 2000.

[28] R. Mishra, N. Rastogi, Z. Dakai, D. Mosse, and R. Melhem,
“Energy aware scheduling for distributed real-time systems,” Int’l
Parallel and Distributed Processing Symposium 2003 (IPDPS
2003), Apr. 2003.

[29] S. Shivle, R. Castain, H. J. Siegel, A. A. Maciejewski, T. Banka, K.
Chindam, S. Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor,
D. Sendek, J. Sousa, J. Sridharan, P. Sugavanam, and J. Velazco,
“Static mapping of subtasks in a heterogeneous ad hoc grid
environment," 13th IEEE Heterogeneous Computing Workshop
(HCW 2004), 18th Int’l Parallel and Distributed Processing
Symposium (IPDPS 2004), Apr. 2004.

[30] S. Shivle, H. J. Siegel, A. A. Maciejewski, T. Banka, K. Chindam,
S. Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor, D. Sendek,
J. Sousa, J. Sridharan, P. Sugavanam, and J. Velazco, “Mapping of
subtasks with multiple versions in a heterogeneous ad hoc grid
environment,” 3rd Int’l Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Networks
(HeteroPar ’04), July 2004.

[31] L. Shang, R. P. Dick, and N. K. Jha, “DESP: A distributed
economics-based subcontracting protocol for computation
distribution in power-aware mobile ad hoc networks,” IEEE Trans.
on Mobile Computing, Vol. 3, No. 1, pp. 33-45.

[32] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced CPU energy,” USENIX Symposium on Operating Systems
Design and Implementation, Nov. 1994, pp. 13-23.

[33] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-min: A static
mapping algorithm for meta-tasks on heterogeneous computing
systems,” 9th IEEE Heterogeneous Computing Workshop (HCW
2000), May 2000, pp. 375-385.

[34] D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and
contentionaware multi-resource reservation,” Cluster Computing,
Vol. 4, No. 2, Apr.2001, pp. 95-107.

[35] J. Yang, I. Ahmad, and A. Ghafoor, “Estimation of execution times
on heterogeneous supercomputer architectures,” Int’l Conf. on
Parallel Processing, Aug. 1993, pp. I-219-I-226.

[36] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced CPU energy,” IEEE Annual Foundations of Computer
Science, 1995, pp. 374-382.

[37] V. Yarmolenko, J. Duato, D. K. Panda, and P. Sadayappan,
“Characterization and enhancement of dynamic mapping heuristics
for heterogeneous systems,” Int’l Workshop on Parallel Processing,
Aug. 2000, pp. 437-444.

[38] Y. Yu and V. K. Prasanna, “Power-aware resource allocation for
independent tasks in heterogeneous real-time systems,” 9th Int’l
Conf. on Parallel and Distributed Systems, Dec. 2002, pp.341-348.

[39] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multiprocessor
real-time systems,” IEEE Trans. on Parallel and Distributed
Systems, Vol. 14, No. 7, July 2003, pp. 686-700.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

0

20

40

60

80

100

120

10 8 6

mean inter-task arrival time

pe
rc

en
ta

ge
 o

f h
ig

h
pr

io
ri

ty
 ta

sk
s

co
m

pl
et

ed
random originator OLB
FG Switching Min-Min
Sufferage UB

0

500

1000

1500

2000

2500

3000

3500

4000

10 8 6

mean inter-task arrival time
va

lu
e

of
 m

ed
iu

m
/lo

w
 ta

sk
s

co
m

pl
et

ed

random originator OLB
FG Switching Min-Min
Sufferage

 (a) (b)

0

10

20

30

40

50

60

70

80

10 8 6

mean inter-task arrival time

pe
rc

en
ta

ge
 o

f h
ig

h
pr

io
rit

y
ta

sk
s

co
m

pl
et

ed

random originator OLB
FG Switching Min-Min
Sufferage UB

0
20
40
60
80

100
120
140
160
180
200

10 8 6
mean inter-task arrival time

va
lu

e
of

 m
ed

iu
m

/lo
w

 ta
sk

s
co

m
pl

et
ed

random originator OLB
FG Switching Min-Min
Sufferage

 (c) (d)

Figure 2: The simulation results using mean inter-task arrival times of 10, 8, and 6 seconds. Graphs (a)
and (b) are for amean task execution time of 60 seconds with graphs (c) and (d) for a mean task
execution time of 600 seconds. For each mean inter-task arrival time, the value plotted is the average
of 50 trials that were run for all heuristics. Note that because energy usage is a constraint and not the
optimization criterion, the heuristics will strive to use up all the energy to complete more tasks.

0-7695-2312-9/05/$20.00 (c) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

