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Abstract 

This study exammes the effects of various windshears on the perturbation growths 

within inertially unstable regions. A primary focus is determining what type of instability 

is preferred, symmetric or asymmetric, through the development of a two-dimensional model 

using the primitive equations and a jet with horizontally and vertically sheared flow. 

A necessary condition for inertial instability is when the basic state potential vorticity, 

f P < 0. The potential vorticity can be viewed as having two influences, that due to the 

horizontal wind shear and vertical shear. With this in mind, I examine the relationship 

between the shears in inertial instability. 

This study extends previous results where the basic state contained only horizontal 

shear, u(y). These results, obtained with a shallow water model, showed that asymmetric 

modes had larger growth rates than symmetric modes. By examining various jet profiles 

which contained both horizontal and vertical shear, the results in this more general case 

(i.e., u(y, z) again revealed that asymmetric in.stabilities are preferred. 
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Chapter 1 · 

INTRODUCTION 

Atmospheric science is a complex web of possibilities and probabilities. We simplify 

and analyze bits and pieces of it to produce understandings of the overall picture. One 

of these "pieces" which poses significant probabilities to the dynamics of the atmosphere 

is the study of instabilities. In instability studies, the stability of a flow configuration is 

investigated to determine whethe.r small-amplitude perturbations can spontaneously grow, 

gaining energy from the mean flow. 

Charney (1973) document.a and classifies many types of hydrodynamic instability 

with applicability to geophysical fluids. Barotropic and baroclinic instabilities are im-

portant types of non-axisymmetric (three-dimensional) instabilities while axisymmetric 

(two-dimensional) disturbances result from inertial instability of a symmetric flow. Boyd 

and Christidis (1982) and Dunkerton (1982) have discussed inertial instability as a mech-

anism for forcing nonsymmetric disturbances as well. 

Stevens and Ciesielski (1986; hereafter referred to as SC) investigated the preferred 

instabilities for horizontally sheared flow away from the equator. For their wind profiles, 

they found that inertial instability has a significantly greater growth rate than barotropic 

instability. They proposed that their result., could be applied qualitatively to more general 

flows - e.g. where the mean flow varies in the vertical and horizontal direct ions. This 

. study follows their lead in this investigation of inertial instability. 

In the case of a basic state with horizontal and/or vertical shear [u(y,p)], the basic 

state potential vorticity, P, replaces the absolute vorticity in determining the instability 

criterion; cf. Stevens (1983). A necessary condition for inertial instability is then / P < 0 

somewhere in the fluid where / P is defined as follows for geostrophic flow 
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2 

- - u ,, ( a-)2 [- ] IP = rp I a P I Ri - 1 

N2 
RiE---

(:og:;) 2 
(1.2) 

Ri is the Richardson number, / is the Coriolis parameter, ;; is the absolute vorticity and 

i and p are the basic state potential temperature and density, respectively. 

Stone (1966, 1970), found that symmetric disturbances are preferred when the inertial 

instability is derived solely from the vertical shear ( ~) in the mean flow, ( i.e. :; = 0) . 
Since Stone's work, inertial instability has often been referred to as symmetric instability. 

This label implies that the moat unstable mode of instability should occur for symmetric 

perturbations, i.e., for perturbationa that display no structure in the direction of the basic 

state flow. With this assumption, the analysis of a given problem can often be simplified 

(Emanuel, 1979; Dunkerton, 1981). 

Other studies have ignored vertical shear (f, = 0) and used the condition for inertial 

instability from the horizontal shear /fJ <0. Asymmetric modes of instability may be 

preferred, as shown by Boyd and Chriatidis (1982) and Dunkerton (1983) , in a basic state 

zonal flow near the equator with linear latitudinal shear. AB an extenaion of these works 

SC investigat.ed both symmetric and asymmetric inatabilities for horizontally sheared flow 

away from the equator. Their results show that at finite but often rather small vertical 

scale (e.g., a few hundred meters), asymmetric (a #, 0) instabilities are preferred over 

the symmetric instability. These inatabilities could be readily excited in nature when 

dissipation stabilizes the symmetric modes of smallest vertical scale. 

The results of SC's analyses contrast significantly with those of Stone. In this study, 

we hope to understand the connection between these works by developing a model which 

can accommodate both horizontal and vertical shear in the mean flow. The purpose of 

this paper is to extend these recent studies to investigate the preferred instabilities when 

a basic state zonal flow has horizontal shear, but also when the basic state zonal flow has 

only vertical shear and when it has vertical and horizontal shear together. 
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The ap;,roach we take to this problem is to first solve a relatively simple model 

and then, systematically advance to a primitive equation model which accomodates twer 

dimensional shear of a zonal flow. In Chapter 2 we develop a linearized, shallow water 

model with u(y) similar to SC. In their study, they used a finite difference discretization 

and solved their model as an eigenvalue problem to obtain the growth rates of the unstable 

modes. In our approach we use a time integration scheme and a spectral discretization 

with Chebyshev polynomials as the basis function. Time integration is used since the res-

olution needed eventually to represent twerdimensional shear makes the matrix eigenvalue 

approach impractical since the matrices would get too large. Spectral methods offer more 

accurate solutions with far fewer degrees of freedom than do finite difference methods 

(Fulton, 1984). Chapter 3 proceeds with the development of the twerdimensional model 

using the linearized primitive equations. 

In Chapter 4.1 we show results from the primitive equation model for the case where 

the basic state zonal flow has only horizontal shear, u = u(y), the results are compared with 

SC's work. :'-l'ext we show model results for the case with a zonal flow having only vertical 

shear, _(i.e., ii= u(z)), in Chapter 4.2. These results should reduce to those of Stone (1966, 

1970) and Nehrkorn (1986). Then in Chapter 4.3 we set the zonally averaged jet to have 

variable ver-tical and horizontal wind shear, using parameters from an actual physical case 

study of Ciesielski et al. (1988). Chapter 5 summarizes the principal conclusions of this 

study. 



Chapter 2 

THE SHALLOW WATER EQUATION MODEL DEVELOPMENT 

The development of the primitive equation model is an involved task . In this section 

we develop a simple model as a step towards the larger primitive equation model. This 

allows us to test the basic algorithm we want to use in the primitive equation model 

including testing of the spectral transforms and the time integration scheme. a check 

on the model, we compare our results with recent studies. 

We use the shallow water equations where the basic state zonal flow is one-

dimensional, u(y) . we will see later, this simple model will be the basis for the primitive 

equation model, since basically we need only add the vertical coordinate to the equations 

along with the hydrostatic and thermodynamic equations to get the primitive equations. 

2.1 The numerical model 

2.1.1 Basic equations 

The derivation of the model begins with the nonlinear inviscid shallow water equation 

set (Haltiner and Williams, 1980) on an / -plane. 

(2.1) 

(2.2) 

t/> (au+ 8v) = _ dt/> = _ (a4> + u Bh + v ah) 
az 8y dt at az ay (2.3) 

where</>= gh. These equations are the momentum and continuity equations, respectively. 

The dependent variables are u, v, </>, while z, y, t are the independent variables. 
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Each dependent variable x is separated into a temporally and zonally averaged part 

x(y) and a perturbation quantity x(x, y, t) . Substituting this form of the variables into 

the nonlinear equations and linearizing the equations, neglecting the nonlinear products 

of perturbation quantities, produces a linear ~quation set for the perturbations. 

au' au' du 8</>' - + u- + v'- - f v' = --at ax dy ax 

av' av' 8</>' -+u-+fu'=--at ax 8y 

8</>1 8</>' (au' av') - + u- +</>o -+- =O at ax ax ay 

the symbols have the following definitions: 

u' , v' zonal and meridional velocity perturbations 
4>' geopotential perturbation 
f Coriolis parameter, assumed /=constant (!-plane) 
u basic state zonal jet 

¢,0 geopotential basic state (= gH is constant) 

(2.4) 

(2.5) 

(2.6) 

The x-axis in our model is set to be in the direction of the basic state component of 

flow since on an /-plane it is arbitrary. We use a zonal jet for this work so the mean wind 

field is included only through the zonal component u; ti is assumed to be zero. 

2.1.2 Space discretization: Spectral method 

The coefficients within the set of equations are independent of x; therefore we fourier 

transform the equations in the x direction. Using fourier expansion, any perturbation 

quantity can be writt.en as 

x'(:,y,t) = Re (~i,(y,t)e'") (2.7) 

where k is the assumed zonal wavenumber (k = 21r/L,,, where L,,, = zonal wavelength) . 

The perturbation coefficients, Xi:, are all considered complex. 
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Applying the zonal transforms to the linearized shallow water equation set we get: 

(2.8) 

(2.9) 

8ef,~ _,k , (·k , av~) at + Ut tp}c + tpo t UJc + By = 0 (2.10) 

The model equations are applied within a limited channel, 1665 kilometers wide 

(approximately 15° latitude). We assume a strong mid-latitude westerly jet. The anti-

cyclonic side (the southern side) of the jet is the area of negative absolute vorticity and 

we expect the disturbance to grow in that region locally. 

The next step is to transform this set into spectral space in the meridional direction 

(i.e., y) using Chebyshev polynomials as the basis functions. This is where this model 

differs from models using finite differencing. Spectral methods offer more accurate solu-

tions with far fewer degrees of freedom than do finite difference methods (Fulton,1984). 

However, the use of these global basis functions does introduce additional complexity. 

The Chebyshev transform pair is: 

N 
x~(y, t) = L XJcm(t)Gm(Y) (2.11) 

m=e 

(2.12) 

where Xm is the spectral coefficient and Gm(Y) is the mth Chebyshev polynomial. The 

Chebyshev inner product, <>, is defined in Appendix A. Chebyshev is used since the 

rate of convergence of the expansions depends only on the smoothness of the function 

being expanded and not on its behavior at the boundaries. Also, Chebyshev series can be 

evaluated very efficiently. One disadvantage to using Chebyshev methods is that the time 

step is inversely proportional to the square of the number of modes where finite difference 

schemes are only inversely proportional to the number of modes. 
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Applying this meridional transform to our set of equations, we get: 

(2.13) 

(2.14) 

dJ1cm ,J. ( 'kA a A ) (- ·k,;.') + 'YO I U/cm + ay ti/cm = - UI ¥'Jc m (2.15) 

The terms on the right hand side of the prognostic set of equations look similar to nonlinear 

terms of a nonlinear set of equations since the coefficients are a function of y, [u(y)] . So 

in programming, we treat them like nonlinear terms and calculate them before entering 

spectral space. The rest of the terms are calculated in spectral space. 

See Appendix A for a more detailed look at the Chebyshev spectral transform. 

2.1.3 Time discretization: Time integration 

Another difference with this model compared to many others is in our use of time 

integration versus the use of matrix eigenvalue methods. The resolution needed eventually 

to represent two-dimensional shear would make using the matrix eigenvalue approach non-

practical since the matrices would get too large; even though eigenvalue methods are more 

computationally efficient. A disadvantage to the time integration scheme is that we only 

get the most unstable mode whereas the eigenvalue method finds all unstable modes. 

There are many different time difference schemes to utilize. For various reasons one 

may be preferred to the next: accuracy, simplicity, stability, storage, number of steps, 

efficiency. For example the leapfrog scheme uses the least computer time but has a com-

putational mode ( truncation error) that usually arises. A method often used is the leapfrog 

along with an occasional backward scheme to eliminate the computational mode and a 

trapezoidal scheme to suppress noise (Young,1968). 

We have chosen the Runge-Kutta fourth order method (Conti, 1965) which uses a 

combination of these: 
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u(n+½) = u(n) + !t:..t/(n) ; forward halfstep 
2 

• (n+l) ( ) •( +.1 ) u = u" + t:.tf " l ; forward leapfrog 

(2 .16) 

(2 .17) 

(2.18) 

(2.19) 

We originally used the Adams-Bashforth second order method with our shallow water 

model, but as the number of modes increased in spectral space, the time step needed for 

computational stability became relatively small making the model inefficient and imprac-

tical. The time step, t:..t, is inversely proportional to the square of the number of spectral 

space modes used. Also, t:.t is proportional to the number of steps in a time scheme (i.e., 

4 for fourth order, 2 for second order schemes), so we found that using the Runge-Kutta 

method allowed larger time steps when using more modes than did the Adams- Bashforth 

method. It also showed more accurate resulta (Young, 1968). In determining the optimal 

time step, we found that due to the CFL criterion that t:..t not only depends on the domain 

size, t:..y, and wave speed, c, but also upon the number of modes used, N, and the number 

of computations, A, within the time difference scheme. This CFL criterion is given as 

ct:..t N" < B 
t:.y A -

where B is the stability condition for the time difference scheme. 

2.1.4 Boundary conditions 

(2.20) 

It is assumed that there are no fluxes of any quantity across the horizontal boundaries 

of the model. Therefore, on the lateral borders the meridional wind perturbations, ti , are 

constrained to be zero. In the Chebyshev-Tau method we can apply this condition to 

the spectral coefficients of v'. The above equation for the Chebyshev transform is used 
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by setting ti = 0 at the boundaries equal to the summation of the spect ral coefficients. 

Then combining these two relationships we get an equation for both the Nth ti spectral 

coefficient and the (N - l)th one with respect to the other coefficients. So the procedure is 

to use the prognostic equations to calculate new,/ spectral coefficients and then calculate 

the N and ( N - 1) coefficients to set our boundary conditions. 

2.1.5 Basic state 

We apply our model with basic state flows consisting of jet profiles given by 

a(O) = Uosech2 (0 ;1°0
) (2.21) 

In this mean flow, known as the Bickley jet, u0 gives the magnitude of the jet, 80 is the 

central latitude of the jet, and 01 is the jet halfwidth. AJJ in SC we examine the instabilities 

of a midlatitude westerly jet centered at 45°N. 

2.1.6 Initialization 

For the purpose of testing, we have set up three possible initial conditions. One is 

an initial condition with simple sine waves for the real parts of the momentum variables, 

u' and v'. This is to test model runs with an analytical solution. The second one is with 

gaussian curves set up for the real parts of u' and v' . This corresponds to trying to match 

closely the expected solutions thereby reducing the model run time to achieve the most 

unstable mode. The third one is used to insure no biased conditions initially, we initialize 

the perturbation momentum fields as white noise (random values between O and 1 ms-1) 

and let the unstable modes grow out of that. The perturbation variables are calculated 

from the prognostic equations. 

2.1. 7 Modeling procedure 

For each value of ,t,0 in (2.10), a sufficient number of model runs of varying zonal 

wavenumber are made to define the wavenumber at which the growth rate of total energy 

is greatest. Beginning with an initially small (0.0 < lu'I, lv'I < 1.0 ms-1) perturbation, 

the model is run until the solution converges to a single normal mode. 



10 

This mode is easy to calculate with our model. Plotting ln(T E) versus time, where 

TE is a quantity related to the total energy over the whole domain, we will see in time 

the function increasing linearly when it converges to a single mode. The slope of this line 

will give 20'i (O'i = maximum growth rate). This is because the variables can be written 

as u' = LA;e-ia;t where A; is a constant coefficient for ea.ch mode and O'j is complex. 
i 

The next section, 2.2, contains the details of this procedure. 

2.2 Analysis Techniques 

In this section we describe the techniques used to analyze our model results. The 

purpose is to have these procedures ready and tested for use in our primitive equation 

model which has a basic state flow with two-dimensional wind shear. 

We want to set up the basic state so that the criteria for inertial instability is met. 

In the case where we have a basic state jet with horizontal and vertical wind shear, we 

need the potential vorticity, equation (1.1) to be negative. Our first case though is with 

the shallow water equations, the basic state jet has only horizontal wind shear. 

Therefore (1.1) may be simplified, reducing the criteria f~r inertial instability to when 

the absolute vorticity is negative. A1J seen from the equation for absolute vorticity, the 

basic state zonal flow, u, is the factor we adjust to create th.e needed absolute vorticity. 

When the condition for inertial instability is present in a region of the atmosphere 

there are modes which are stable and unstable. All these modes that exist are essentially 

competing against one another. However many modes there are though, there will be one 

that is the most unstable mode in this region. This mode will have the fastest growth 

rate of all the modes. A1J time proceeds, this mode will come to dominate over all the 

other modes. This of course depends on the region remaining inertially unstable during 

this time and depending on the time the most unstable mode overcomes the other modes, 

the question of how physically realistic that case is comes up. Any type of instability is 

its own worst enemy since the atmospheric condition it creates tends to destroy the same. 

But the time it takes our mode is not of major concern since the main phenomena we are 

looking for are the growth rates for the most unstable modes. 
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In particular, we want to look at how the growth rates, "'•• vary with the zonal 

wavenumber, s. This will allow us to study the question of symmetric versus asymmetric 

modes when the basic state jet includes horizontal and vertical wind shear. And at this 

time in our model development this will allow us to run our test comparisons for our shallow 

water equations model with the work of SC. The model they set up with the shallow water 

equations used the eigenvalue approach, this is a major difference compared to our time 

integration method. We chose time integration because the storage requirements will be 

less than the eigenvalue matrix approach when we advance to the horizontal and vertical 

zonal jet (primitive equations) . But a disadvantage is that in our approach we are only 

able to calculate the most unstable mode, while with the eigenvalue method, all the modes 

are available. So with their results , the most unstable mode can be picked out while we 

need a more involved method to find the most unstable mode. 

In a straightforward manner, we can calculate a quantity (TE) related to the total 

energy of our system using the concept that the total energy is conserved in a closed 

system, we can calculate the growth rate of the most unstable mode. Evaluating TE will 

give us a domain-integrated means of determining growth rate. 

We write the perturbation variables in the solution form (normal mode form) : 

(2.22) 

where A is a constant coefficient and O' is the complex frequency. Sigma can be written as 

(2.23) 

where <Tr is the oscillatory part and 0'1 is the growth rate. 

It follows that TE can then be written in solution form: 

(2.24) 

where B is a constant real coefficient and the factor of 2 comes from the fact that energy 

is quadratic in the predicted variables u', v', and if>'. Then 
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TE= B e217't (2.25) 

Now we take the real part of the natural log of this solution to get: 

ln(T E) = lnB + 2t1,t (2.26) 

This equation is now a linear equation with slope 2t1, and y-intercept, lnB. By 

plotting ln(T E) versus time, t, we can calculate the slope which gives us the growth rate, 

"i• They-intercept, lnB, will only shift the function, having no effect on the slope. 

Total energy is calculated by adding the kinetic energy and the available potential 

energy over the entire domain. In the shallow water equation set, the momentum fields u 

and t1 make up the kinetic energy and the geopotential, </,, makes up the available potential 

energy. 

To calculate TE we start with the linearized shallow water equation set. Multiply 

(2.4) by u', (2.5) by v' and (2.6) by f. and add all three. This gives us a relation 

(2.27) 

Integrating over y, we oba.in an expression for TE: 

(2.28) 

this gives us the time rate of change of the total energy. 

We are only interested in the relative magnitude of the total energy since the slope of 

the curve of ln(T E) versus time is what we need not its absolute magnitude. So we use 

only the term shown above in the energetics equation which is proportional to the total 

energy of our system. 

and 

Now to set this up to be programmed, we fourier transform this equation using 

J 
u = L t1t(t)eil" 

l.=-J 
(2.29) 
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J J 
u2 = u u i~(l+m) (. .m 

m=-J t.= - J 
(2.30) 

since u 2 is always real, the only time this equation is real is when!.= -m and u_111 = u:n, 
(u• is the complex conjugate) then 

(2.31) 

where m is each point in the physical domain. In our system of collocated points, we 

transform our perturbation values to evenly spaced points to get a meridional average. 

We also can calculate the value of the phase speed, c,,. By taking the real part of 

equation (2.22), we get an oscillatory part, <r,,, which is the phase of the perturbation 

variable: 

phase= -<r,,t (2.32) 

and then the phase speed is, c,, = T. 
The actual model procedure uses the above equation for total energy. At given time 

intervals we calculate and store the ~alue of TE. Then we plot the ln(T E) versus time 

and the resulting plot shows us what we expect. The many modes in our system are 

initially affecting the overall growth rate for a time as we see in Fig. 2.la, causing the TE 

plot to fluctuate. But after a given time the largest growth rates associated with the most 

unstable modes begin to cause the TE to increase exponentially as dictated from (2.25) 

until the most unstable mode finally dominates (the TE line straightens out). Also, by 

plotting the phase of u' (at a point within the area growing with the most unstable mode) 

versus time, as seen in Fig. 2.lb, the slope of that line gives us the phase speeds. 

2.3 Numercial results 

In this section we present results from our shallow water equation model. In partic-

ular, we investigate the horizontal and vertical space scales of the instabilities, as well as 

their dynamical character and structure. To reiterate the purpose of this model, it is the 
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Figure 2.1: (a) Growth of log of total energy from t = 0 to 100,000 seconds, for shallow 
water equations. Meridional average of total energy. For s = 6, h = 10 m. (b) Phase of 
u' at 42.5°N from t = 0 to 100,000 seconds. For s = 6, h = :o m. 
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core with the set of three dependent variables of what will become the primitive equation 

model. In addition it gives us a simplified equation set to test the various modeling pro-

cedures we want to use later. The algorithm to solve these three dependent variables lay 

the path equations needed to solve the three prognostic variables. And finally to verify 

that it is working properly, we compare its results to those of SC. 

In the initial runs of the shallow water model we worked out the algorithm needed 

to utilize the Chebyshev spectral transform routines, the time difference scheme and the 

size of the time step. 

To enable the use of the Chebyshev-Tau spectral transform routines, we need the 

physical perturbation variables to be designated at collocated points. To address the 

possible problem of aliasing, we need 3/ 2 more physical points than spectral coefficients. 

And for the purpose of making the output more readable and easier to plot, we transform 

the output data from spectral coefficients to evenly spaced physical points where we'll use 

60 points for the domain of 15° latitude. 

We will use N = 16 spectral coefficients, and M = 24 collocated physical points since 

we found that the results changed little when using N = 32 and the time step we can use 

for N = 16 is much larger. 

Our shallow water model is now used to study the instabilities for the basic state 

examined by SC where u0 is 75 m/s and it is centered at 45°N is the jet profile shown in 

Fig. 2.2a. The condition for inertial instability can be seen in Fig. 2.2b which shows the 

profile of the absolute vorticity (ii) associated with this jet. We assume /-plane dynamics 

so where f1 < 0 is the region that is inertially unstable. For this basic state profile, the 

computed growth rates (a-;) and phase speeds (c,.) as a function of zonal wavenumber (s) 

are shown in Figs. 2.3a and 2.3b, respectively, for several values of equivalent depth (h). 

The growth rate curves have their maximum at different values of s as h varies. These 

results both confirm SC's work shown in Fig. 2.4 and give us confidence that our model 

is working correct y. The zonally symmetric mode (s = 0) is most unstable only at the 

smallest vertical scales (h = lm) we examined; even in this case, the growth rate decreases 

relatively slowly as s increases. As the vertical scale ( h) increases, the growth rates of 
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Figure 2.2: (a) Midlatitude Bickley jet (in ms-1), u0 = 75 ms- 1, Y...t = 45°N, Ys = 3°. 
(b) Absolute vorticity times the Coriolis parameter, f fj (in s-2). For the jet case in Fig. 
2.2a. Here the condition for inertial instability is where /fl < 0. 
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Figure 2.3: (a) Nondimensional growth rates ((Ti) as a function of wavenumber (s) for 
several values of equivalent depth in meters. For jet profile in Fig. 2.2a. Using the 
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corresponding to growth rate curves in Fig. 2.3a. 
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£ = 5.96 x 10- 1) . B signifies barotropic instability. (b) Phase speeds (c,.) in ms- 1 

corresponding to growth rate curves in Fig. 2.4a. Taken from Stevens and Ciesielski , 
1986. 
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the symmetric s = 0) instability decreases rapidly. This stabilization occurs, as shown 

by Stevens (1983), because a meridional pressure gradient is established which tends to 

oppose the inertial instability. This stabilization process is rather ineffective, however, 

for asymmetric ( s # 0) modes, in which the zonal pressure gradient is nonnegligible. For 

larger s, the fractional change in growth rate with vertical scale is asymptotically small. 

.AJJ a result, for all vertical scales but the shallowest, the preferred inertial instability occurs 

in asymmetric modes. At h = 10m, the maximum growth rate occurs around s = 6, and 

~ound s = 8 for h = · 100m. These results concur with SC's. We see from Fig. 2.la 

that whether it is symmetric instability or any other most unstable mode, they do not 

dominate (exponential growth) for quite some time which brings up the statement made 

earlier that a realistic instability may have destroyed itself within this time frame. 

We can see in the plot of phase speed, c,., versus wavenumber, Fig. 2.3b, that these 

results are reiatiYely close to those of SC. 

Figures 2.Sa through 2.6c are depictions of the amplitude and phases of the pertur-

bation variables after the most unstable mode is dominate for the case h = 10m and s = 
6. They correspond quite well with the plots of SC's Fig. 2.7. The three Figs. 2.Sa, 2.Sb, 

2.Sc of the amplitude, have been normalized to the largest value of the three variables. 

We see a little background noise on the outer reaches of these figures but this can be 

ignored since their values (on the order of 'white noise') are small compared to the main 

features. These noise features also produce large, noisy phase changes in Figs. 2.6a, 2.6b, 

2.6c. Again these can be ignored and the main region we're interested in, 39° to 46° is of 

importance. 

We can see the phase differences of the three maxima on the u' amplitude Fig. 2.4a 

and the gradual phase change of the v' perturbation variable across its maximum. And we 

also see the large phase change in the trough of the geopotential. Starting from the 'white 

noise' initial values, the momentum perturbation fields as seen in Figs. 2.Sa, 2.Sb have 

grown from the inertially unstable region shown in Fig. 2.2b, this is on the anticyclonic 

side of the jet. These particular features are the results of the dominance of the most 

unstable mode due to the inertial instability. 
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1
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Chapter 3 

THE PRIMITIVE EQUATION MODEL DEVELOP1\1ENT 

Having produced and tested the necessary techniques for the shallow water equation 

model in the previous chapter, the development of the primitive equation model is now a 

relatively straightforward procedure. These techniques included the Chebyshev spectra.I 

transforms, the Runge-Kutta fourth order time difference scheme and the basic algorithm 

needed to solve the set of equations. 

The main steps involved to accomplish this adaptation include adding the hydrostatic 

and thermodynamic equations, along with the variables w' and T', that is, vertical velocity 

and temperature, respectively. In addition the routines are changed from one-dimensional 

to twerdimensional in y, z and the extra terms that come from using u(y, z ). Appendix 

B provides flow charts of the computer code needed to run the model described in this 

section. 

3.1 The numerical model 

3.1.1 Basic equations 

The primitive equation set consists of three prognostic equations (for u, v, T) and two 

diagnostic equations (for w, </>) . We begin with the nonlinear inviscid set on an /-plane 

(Holt.on, 1979) in iaobaric coordinates: 

au au au • au a<1> -+u-+v-+w --fv=--at a: ay az• a: 

-+u-+v-+w -+1tT =O aT aT aT • ( aT ) 
at ax ay az• 

(3.1) 

(3.2) 

(3.3) 



24 

Br/> = RT 
az• {3.4) 

{3.5) 

where {3.1), {3.2) are the momentum equations, {3.3) is the thermodynamic energy 

equation, {3.4) is the hydrostatic equation, and {3.5) is the continuity equation. The 

heating function, q, on the right hand side of the thermodynamic energy equation has 

been set to zero. We use the vertical 'log p' coordinate where z* = ln(p0 / p) and 

w* = dtt• = ~1 t = -Pw; z* is measured in scale heights which is nondimensional. 

To simplify this set of equations, we linearize it by assuming the dependent variables 

have the form: 

u = u(y, z*) + u'(:, y, z*, t) (3.6) 

v = v'(:,y,z* , t) (3.7) 

T - T(y, z*) + T' (::, y, z*, t) (3 .8) 

w* - w'(::,y,z*,t) (3.9) 

(3.10) 

where the barred quantities are the basic states and the primed quantities are the per-

turbations. The :-direction in our model is set to be the zonal component since on an 

/-plane it is arbitrary. We use a zonal jet for this work so the mean wind field is included 

only through the zonal component u; 0 is assumed to be zero and by continuity tD = 0. 

Neglecting the nonlinear products of perturbation quantities produces the following linear 

set of equations: 
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- · +u-+v-+w -+K.t =O aT' aT' , at , ( at ) 
at az ay az• 

au' av' aw' -+-+--w1 =0 az ay az• 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3 .15) 

The independent spatial variables z, y, z* are set within the following boundaries: 

z E [0,L1] 

y E [O, L2] 

z• E [O, D] 

(3 .16) 

For the purpose of making use of the spectral transforms the coordinate system is changed 

to: 

X E [O, 2~] zonal 

Y E [-1, + 1] meridional 

Z E [-1,+1] vertical 
using the transformation equations: 

y- la. 
Y - 2 - la. 

2 

(3.17) 

(3 .18) 
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Now we use the chain rule on the above set of equations along with the t ransformation 

equations to get: 

a4>' _!= RT' az D 

au' 2~ av' 2 aw' 2 
ax Li + aY L2 + az D - w' = O 

where the symbols in these equationa have the following definitiona: 

u', a' zonal and meridional velocity perturbationa 

T' temperature perturbation 

w' vertical velocity perturbation 

</,1 geopotential perturbation 

/ Coriolis parameter, assumed /=constant (/-plane) 

t time 

u basic state zonal jet 

'f basic state temperature 

L1 domain length in meters 

L2 domain width in meters 

D domain height in scale _heights 

K. = R/c,, conatant = universal gas conatant/specific heat 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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The coefficients within the set of equations are independent of x; therefore we fourier 

transform the equations in the x direction. Using fourier expansion, any perturbation 

quantity can be written as 

x'(X,Y,Z,t) = Re { f x~(Y,Z,t)ik~X} 
N,,,=O 

(3.24) 

where k is the assumed zonal wavenumber (k = f where Ls = zonal wavelength, /;., 

L is distance around latitud_e circle, Ns represents number of waves around a circle of 

latitude). The perturbation coefficients, x'., are all considered complex. 

By applying all of the above assumptions we derive the following linearized primitive 

equation set for the perturbation of a mean x-independent flow. 

(3.25) . 

(3.26) 

(3.27) 

a,t,~ 2 
az D =im (3.28) 

(3 .29) 

-
The above equations now show the detailed differences via a via the set of equations 

(2.8), (2.9), (2.10) used in the shallow water model. Obviously, the metric coefficients of £
2 

and /J in the primitive equations are from the transformed independent variable set, not 

produced in the shallow water set. The momentum equations are very similar except for 

the addition of(~ ff 15) in the u-momentum equation. The shallow water mass equation 

changes from a prognostic equation for <?~ to a diagnostic equation with the addition of 

the vertical direction, Z, and the vertical velocity, w~ . To fil ter out short waves like sound 
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waves, we have made the hydrostatic assumption, thus the addition of (3.28) containing 

</>1: and Tk, Finally, we have added the thermodynamic equation which contains advection 

terms such as w1A: ( g~ :b' + 11:T) and ( v~ U, f 2) . 
The model equations are applied within a limited area, 1665 kilometers wide ( ap-

proximately 15° latitude) and 3 scale heights high (approximately 24 km). We assume a 

strong mid-latitude westerly jet. The anti-cyclonic side (the southern side) of the jet is 

the area of negative absolute vorticity in the shallow water model and we expect the same 

area ( extended in the vertical) to possess negative pot~ntial vorticity; hence we expect the 

inertially unstable disturbance to grow in that region. 

3.1.2 Dissipation 

Finding the true "most unstable mode" with our model can be a problem if short 

wave features, such as computational instability, develop. Such instabilities can have large 

growth rates, making the computation of the most unstable mode of a larger wave feature 

very difficult. Therefore we need to apply damping to our prognostic equations on a scale 

able to dissipate this computational noise. 

· Normally frictional forces due to molecular viscosity and heating due to molecular 

diffusion are neg ected in the primitive equations on the basis of scale analysis. However, 

near the ground strong vertical wind shears and surface heating continually lead to the 

development of turbulent eddies, which are more effective mixing agenta than molecu-

lar diffusion. This region, called the planetary boundary layer, is typically confined to 

the lowest kilometer of the atmosphere. Therefore we parameterize this physical process 

with an internal dissipation, a, throughout the domain with largest values in the lowest 

kilometer. In ~he momentum equations we use Rayleigh friction, ctR(Z); in the thermo-

dynamic equation, Newtonian cooling, aN(Z), is assumed. With linear dissipation and 

our prognostic equations become 

(3.30) 

(3.31) 
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(3.32) 

For simplicity, we set O:R = O:N = a. The terms that involve a: are included in the 

set of spectrally nonlinear term& and are calculated within the model during the "physical 

space" stage. 

Our assumed o:(Z) is a function on the order of 10- ss-1 (~ 1 day- 1) , which is 

approximately the fastest growth rate expected from these short waves, and increases 

exponentially to an order of magnitude larger in the lowest kilometer, giving us a kind 

of "mixed layer". We also have included a "sponge layer" in the uppermost scale height. 

This also is an exponential increase by an order of magnitude larger to 10-•s- 1 at z• = D. 

We added this to achieve a stea.dy oscillation due to our boundary condition of a lid a.t 

the top, w' = 0. 

3.1.3 Space discretization: Spectral method 

Whereas the first step in transforming the equations into spectral space is the fourier 

zonal transform described earlier, the next step is to transform this set into spectral 

space in the meridional direction (Y) and then the vertical direction (Z) using Chebyshev 

polynomials as the basis functions in both directions. The procedure followed in Section 

2.1.2 for the most part applies here. The only difference is the addition of the vertical 

transform in which we are using the same steps as in the horizontal transforms. 

The variables in the Chebyshev expansion are: 

Ny Ns 
x'.(Y, Z, t) = L L XA:mn(t)Gm(Y)Gn(Z) (3.33) 

m=On=O 
where Xmn is the spectral coefficient and Gm, Gn are the mth, nth Chebyshev polyno-

mials. Refer to Appendix A and Section 2.1.2 for more details of the Chebyshev spectral 

transforms. 

Applying this transform to our set of equations, we get: 
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(3.35) 

(3.36) 

(3.37) 

( 2 8 ) A (•kA 2 8Vkffln) -- -1 Wkffi = - l Ukffin +----D8Z n 8Y (3.38) 

The terms on the right hand side of the prognostic set of equations look similar to non-

linear terms of a non-linear set of equations since the coefficients are a function of y, z. 

In programming, we treat them as spectrally non-linear terms and calculate them before 

entering Chebyshev spectral space. The rest of the terms are calculated in Chebyshev 

spectral space. 

The number of Chebyshev spectral coefficient.a presently used is N = 16 in both Y 

and Z . This enables us to have both a reasonable time step and sufficient resolution 

[the condition for resolution in spectral space is L/(N/1r) where L is the domain size; 

for N = 16 the cross-channel (meridional) resolution is approximately 326.9 km and the 

vertical resolution ia approximately 0.59 scale height.a]. Using N = 32 of course doubles 

the resolution, but sample runs with higher resolution did not significantly alter results. 

Therefore, N = 16 is a reasonable choice to use since the CFL condition (2.20) for this 

method is such that the time step is inversely proportional to the square of the number 

of spectral coefficients, increasing the computer time enormously by making the time step 

much smaller. 

Equations (3.34) through (3.38) are the primitive equations as they are implemented 

within the numerical model itself. From here on, we will refer to the physical independent 

variables z, y, z• when discussing conditions and quantities. 
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3.1.4 Time discretization: Time integration 

We will use the Runge-Kutta fourth order method (Conti, 1965) as discussed in 

Section 2.1.3 with the equations (2.16) through (2.19). The only difference is that we 

replaced the prognostic equation for rp.' (the continuity equation) with the prognostic 

equation for T' (the thermodynamic equation). In addition, we need to calculate w' and 

</>' at each step from the prognostic variables by solving the diagnostic equations (the 

hydrostatic and continuity equations). 

Along with the CFL criterion where At is necessarily proportional to the domain 

size, Ay, and inversely proportional to the speed, c, for more complicated time difference 

schemes At is also proportional to the number of steps in a time scheme and inversely 

proportional to the square of the number of modes used, as shown in equation (2.20). 

We would like to use the smallest N possible so that we can use the largest possible At 

without creating numerical instability which will be discwsaed in Section 3.2. 

3.1.5 ·Boundary conditiona 

It is assumed that there are no fluxes of any quantity across the horizontal boundaries 

of the model. Therefore, on the lateral borders the meridional wind perturbations, ,/, are 

constrained to be zero. The procedure for imposing the ,/ boundary condition is the same 

as in the shallow water equation set discussed in Section 2.1.4, with the added dimension 

of the vertical. 

The top and bottom boundary conditions are applied to the continuity and hydro-

static diagnostic equations respectively, to obtain w' and </>' . The conditions are applied 

after new values of the variables, u', 11', and T' , have been computed. 

At the upper boundary we use 

(3 .39) 

where a1 and a0 are constants set for various upper boundary conditions. One choice is 

the rigid lid (a1 = 0, a0 = 1) sow~ = 0. The above form of the boundary condition will 

also allow a radiation condition at the top. 
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At the lower boundary we use W = 0 where W is the actual vertical wind ( w' is 

vertical wind in 'log p'. coordinates) and . g W = ( ~) so 

(3.40) 

3.1.6 Basic state 

The basic state field for the zonal jet is the main focus of this whole problem we are 

studying. We need a two-dimensional jet in the meridional and vertical directions. To 

achieve this, we can use any number of functions to describe the jet. For simplicity we 

use the Bickley jet structure described in Section 2.1.5. Thia gives us a jet cross section 

similar to a bull's eye. We can vary the magnitude or the horizontal/vertical shear easily 

by alterating the constants. 

u(y, z•) = Uo8t:Ch.2 ( y ;BY.,t) • ,ech.2 ( z• ;BzA) (3.41) 

where Y..t, Z..t, Ys, Zs are respectively the center point in the horizontal and vertical di-

rections and the half-width horizontally and vertically (Y..t, Ys in meters; z,.., Zs in scale 

heighta). Figure 3.la shows us a jet using (3.41). From thia function we calculate the y 

and z• derivatives of u. 
We also need the basic states of T and tp. We can write T and ?, as 

(3.42) 

where T0 is the vertical structure and T1 is geostrophically related to u through the thermal 

wind balance. 

We calculate T1 by using the geostrophic wind balance relation (3.43} to get a relation 

between 'Pl from u. 
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Figure 3.1: (a) Midlatitude Bickley jet (in ms- 1) for u0 = 100 ms- 1. Y,t = 45°N, Ys = 
3°, Z,t = 1.5, Zs = 0.9. Contour interval of 9.0. {b} Potential vorticity times Coriolis 
par&meter, f · P, {in s-2) for jet profile in Fig 3.la. Here the condition for inertial 
instability is where/ • P < 0. Contour interval of 0.4 x 10-8 • Labels scaled by 0.1 x 1011• 

Negative values are dashed lines. 
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fu(y, z•) = (3.43) 

(3.44) 

where 

<Po(z•) = ~(Yo ,z•) and <P1(y,z•) = -11' u(y,z•)dy 
1/o 

Then using the hydrostatic relation we can get T1 from 'Pl· 

(3.45) 

Next we need Ta(z•) and tp0 (z·•). T0 (z•) is the vertical temperature profile and we 

have set up a function which gives us a profile similar to the U.S. Standard Atmospheric 

temperature profile for 45°N in July (U.S. Standard Atmospheric Supplements, 1966). We 

use an exponential decaying function from the surface (T0 = 296 K) to the tropopause 

and set T0 to be constant above that point (Fig. 3.lc). With our vertical domain of three 

scale heights (approximately 24 km), we have set z• = 1.5 (approximately 220 mb) to be 

the tropopawse. This profile gives us a static stability of r1 = 20 Kin the troposphere and 

r 2 62 K in the stratosphere. Again using the hydrostatic relation, we can now calculate 

<Po(z•). 

We therefore have set up the entire basic state fields by analytically computing · all 

the various parts. We can view the final products in Figs. 3.ld and 3.le. Also, we derive 

the vertical derivative of 'f' from 'f' while the meridional derivative of 'f' we get from the 

thermal wind relation f = - i :.a. . 
The preceding description is for the two-dimensional jet in the primitive equation 

model. Other cases, such as simplified jets u(y) and u( z•), can easily be set up with minor 

alterations to the preceding equations. 
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Now from the basic state quantities we have just set up, we can calculate the potential 

vorticity as stated in equation (1.1). To determine if the condition for negative potential 

vorticity exists it can be written approximately as two components, one with horizontal 

wind shear and the other with vertical shear. We have ignored the coefficient of potential 

vorticity, 1'{g2
, since it is positive. Therefore the quantity we are plotting, as seen in the 

example given by Fig. 3.lb, is proportional to the potential vorticity, 

(3.46) 

where 

I constant, Coriolis parameter 

;; absolute vorticity 

Ri Richardson number 

H scale height 

2 fr,r, Brunt Vaisalli frequency 

r (M.. -) aa• + ,cT ' static stability 

3.1. 7 Initiallzation 

In order to insure against biased conditions initially, we set the perturbation momen-

tum fields as 'white noise' (random values between O and 1 ms-1) and let the unstable 

modes grow from this white noise forcing. 

We initially do this for the real and imaginary parts of u' and v' and set T' = w' = 
¢,' = 0. We adjust the v' values to satisfy the north/south boundary conditions. Next we 

adjust the values of w' and ¢l to be consistent with u', v' and T'. For the results to be 

shown, we set w' = 0 at the top and ef,' = 0 at the bottom at time zero. 

Along with what we mentioned above, we have incorporated a restart feature which 

allows the model to start at a previously finished run time using the mass storage capa-

bilities included when using the facilities at NCAR. 
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3.1.8 Modeling procedure 

For each physically distinct simulation attempt, a sufficient number of model runs of 

varying zonal wavenumber are made to define the wavenumber at which the growth rate 

of total energy is greatest. Beginning with an initially small (0.0 < lu'I, It/I < 1.0 ms-1) 

perturbation, the model is run until the solution converges to a single normal mode. 

The procedure to find the maximum growth rate and phase speed is similar to that 

described in Section 2.1.7. The main difference involves the calculation of total energy. 

The kinetic energy portion is the same as before (using the momentum equation) but for 

the available potential energy we now use the thermodynamic equation. So we again use 

a quantity (TE) related to the total energy as found from the energetics of the prognostic 

equation: TE ex u; + 11
; + ½ ¥T 2 where it is averaged meridionally and vertically, r = 

:;. + K.1', and R = universal gas constant. 

3.2 Testing the Numerical Model 

In this section, we test the primitive equation model we discussed in the previous 

section. Our primary concern ts that the structural alterations we made going from the 

shallow water equations to the primitive equations function properly. The importance of 

mentioning this section, though, is due to certain features of numerical modeling that we 

came upon while completing this task. To accomplish this in a straightforward manner 

we simplify the mo<lel's parameters while keeping the primitive equation model structure. 

The plan is to put in a known or analytical forcing term, Q, then we should see a steady 

oscillating pattern in all variab es after a short period. 

The simplification consists of setting u = 0, thus all the terms containing u and 

derivatives of ii including f (due to the thermal wind relation) are zero. Therefore the 

equations (3.25) through (3 .29) (including the dissipation terms as constant in height) 

become: 

(3.47) 
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(3.48) 

(3.49) 

(3.50) 

(3.51) 

The boundary conditions are 

•{=Oat "-OL "• , - , 2 

W = 0 at z• =O 

( ,1,1,, ·) I "•' 8l "•' where gW = 7f = =jt + ul•w therefore =tf- = -w~Rt at z• = 0. 

We have included a heating (forcing) term, Q, in the thermodynamic equation and we 

also set all initial conditions to zero. We have t exponentially decaying with height 

until the tropopause (midpoint in z•), then it'• iaotherm&l to the top boundary. This 

enables ua to view the effect of the forcing term on this system. The Q is set up to 

be an analytical forcing, one that we are able to discern the results. Thus allowing us to 

check the time integration scheme, the routines of the prognostic and diagnostic equations, 

how the variables interact with each other, and the routines for the boundary conditions. 

Proceeding with this study, we came upon some of the problems associated with high 

frequency waves (i.e. Lamb waves). 

The heating was chosen to have maxinmm values at the boundaries allowing com-

patibility between the forcing on v'k and the north/south boundary conditions on v~ . The 

meridional forcing, Q(y), was chosen to excite a single horizontal mode; with v~ hav-

ing an analytic solution, oc sin (r,Y). The heating function defined below satisfies these 

conditions: 
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(3.52) 

Q0 = lK/day 

Q11 = cos8 - Asin8 

Q . (" ·) .L. .=sm Dz e2 

with A= ~i and 8 = L: y and r = = ¼ where r ia the period, <T ia the frequency 

and a is the constant dissipation. Q0 ia a constant representing an average heating rate; 

Q. is the zonal structure of the forcing, which corresponds to a single propagating wave; 

Q11 ia the meridional structure, with two cosine waves using n = 4; Q. ia the vertical 

structure, with a half sine wave; Q, ia the time scale of the forcing which causes the 

perturbations to oacillate in time and settle into a steady oscillation corresponding to the 

period, r. 

Numerical instability ia a problem that can arise when using a numerical prediction 

model. It usually ia the side effect of violating the CFL condition, c !! < 1; either the 

time step is too large or the spatial resolution ia too small. In this case using a heating 

function, as part of our simplifying measures to view the analytic solution we had set 

the meridional domain relatively small without adjusting the time step accordingly. This 

resulted in the numerical mode dominating as seen in Figs. 3.2a and 3.2b, the amplitude 

of u~ and i'• respectively. These figures were made after a very short period of integration, 

showing how volatile numerical instability can be. 
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Figure 3.2: (a) Amplitude for u' (in ms- 1) for case where U = 0 in primitive equations. 
Uses heating function, Q, described in Section 3.2. This shows numerical instability, Lamb 
waves; the time step is too large, Dot = 10 seconds. t = 100 seconds. Domain size = 200 
km (~ 2° latitude). Contour interval of 0.1 x 10-1 • (b) Same as Fig. 3.2a except for J. 
Contour interval of 1.0. 
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NJ seen in Fig. 3.2b, the characteristics of v~ seem to be that of "Lamb" waves. 

Lamb waves are horizontally propagating acoustic waves with their maximum amplitude 

at the lower boundary and decay away from the boundary (Holton, 1979). Also, we looked 

closely at the actual spectral coefficients during this run and found the largest values to 

be at the highest horizontal modes; this told us that very small (fastest) waves were 

dominating the model calculation, since higher order coefficients resolve higher frequency 

waves. Another reason why they are Lamb waves is that we are knowingly not filtering 

them out. The normal procedure t filter out Lamb waves is to set w = 0 ( equivalent to 

w'k = 0) at the lower boundary (vertically· propagating sound waves are already filtered 

out due to the hydrostatic equation). In our model, we have avoided this form of the lower 

boundary condition in order to set a. condition on the geopotential; this allows us to solve 

the diagnostic hydrostatic equation for ef>~, so we have set the actual vertical velocity, W 

= 0 at z• = 0. 

This brings us back to the fact that we need to adjust ou:r time step and domain 

resolution to meet the CFL condition. Calculation of the exte_rnal ( corresponds to short 

unstable waves) and the 1st internal mode shows the former mode to be five times faster 

than the 1st internal mode. With this in mind, by decreasing ~t by a factor of five, the 

spurious numerical external mode is removed. Now we are able to stay numerically stable 

and not worry about numerical Lamb waves interfering. 

Now we proceed with the simplified model run by making ~t smaller to work with 

the small domain, L2, we have set. Figures 3.4a through 3.4e show the results of running 

the model using ~t = 2 seconds, L2 = 200km, L,. = 600km , L, = 100 km, r = 1500 

seconds for 3000 steps to get approximately 4 heating cycles in a total time of 6000 seconds. 

Figure 3.3 shows the y - z structuze of the amplitude of the he.ating function, Q, at the 

time of 6000 seconds. It complies with equation (3.52), set up as two full wavelengths in 

the horizontal direction along with a half sine wave in the vertical (the plots are of the 

amplitudes so the values are all positive). 

Figures 3.Sa and 3.Sb show "z va time" plots of the an:plitude and phase of u~ 

respectively at a particular latitude. We see from the phase diagram, Fig. 3.Sb, a steady 
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Figure 3.3: Amplitude for the heating function, Q, for case given in Fig. 3.2a (in 
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oscillating pattern take shape after a short time with a period, r = 1500 seconds, which 

is what we originally expected. From the amplitude plot, Fig. 3.5a, we see how, in this 

case u~, starts from zero and grows from the heating function then adjusting to the other 

variables in its prognostic equation. And after the variable settles into a steady oscillation, 

the amplitude values straighten out over time as expected, happening over approximately 

1 ½ periods of heating. All the other variables have similar actions as u~. Figure 3.Sb also 

shows how u~ changes sign from the upper to lower domain. 

Figures 3.4a through 3.4e are the "y - z" plots of the five perturbation variables at 

the final time of 6000 seconds. These are made after the variables have been given time 

to settle into their steady oscillations. Now we can compare these diagrams according to 

how the variables should be interact to each other with consideration to the conditions 

we set. By comparing the magnitudes of the terms in the momentum equations, we see 

that the term involving ,p~ is the dominating term for both u~ and ti~ thus we expect 

u~ and tlAI to look the similar to ,p~, except ti~ contains the horizontal derivative of rl>t 
so we see the horizontal maximum correspond to the largest gradients in ,p~. We get 

two complete waves in y for ti~ and we get t1~(y = O, L2) = 0. The hydrostatic equation 

gives us ,p~ from temperature so we expect ,p~ to resemble the vertical derivative of the T' 

field. We see ,p~ having the same horizontal structure as TL while vertically, ,p~ maxima 

coorespond to the temperature's largest vertical gradient. Plus· we see the lower boundary 

of ,p~ to be very small as the lower boundary condition goes. The controlling term in the 

thermodynamic equation which dominates the heating term above the tropopause after 

a short time is w~r(z•) (vertical velocity and static stability). The two maxima in the 

vertical for Tk come from the relationship of w~ to r above the tropopause and from Q 

below. We see the large gradient at the tropopause coo responding to the large change 

in r there, while the horizontal structure is similar to Q. Looking at w~, we see the top 

boundary condition of w~ = 0 and the lower boundary condition, W = 0, we expect to 

cause w~ to approximate zero in time, which it does. Its vertical structure comes from 

it being a v-ertical derivative of the convergence while its horizontal structure is like the 

convergence horizontal structure. We also see the two terms of the convergence equation, 

iku~ and i:, are the same order of magnitude. 
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In this section, we observed how the variables interact to changes in the other variables 

and learned of the major problems we need to deal with to make a successful model run. 

This of course was a simplified set of primitive equations; our next cases will have more 

terms in the equations thus making similar comparisons as above more difficult. 



Chapter 4 

RESULTS 

In this section we use our model to show how perturbations to a two-dimensional 

basic state consisting of different jet configerations respond to inertially unstable condi-

tions. For these basic states, the growth rates (o-i) and phase speeds (c,.) as functions of 

zonal wavenumber ( s) are computed and compared. The first case we consider a jet with 

horizontal wind shear but no vertical shear. This case is similar to the work shown earlier 

in this paper and by SC using the shallow water equations. The second case uses a jet 

with vertical shear but no horizontal shear. This basic state is similar to those used by 

Stone (1966), Emanuel (1979), and Nehrkorn (1986), except theirs had constant vertical 

shear while ours varies with height. The third case involves a jet with variable horizontal 

and vertical wind shear. 

4.1 Horizontal Wind Shear Only 

We first consider our two-dimensional jet to have variable horizontal wind shear but 

no vertical shear, a., shown in Fig. 4.la. We use the same parameters as used in the 

shallow water model Section 2.3 and in SC, a Bickley jet profile with magnitude u0 = 75 

ms-1, a half-width Ys = 3°, and the jet centered at Y.t = 45°N. The condition for inertial 

instability is seen in Fig. 4.lb, where the potential vorticity is negative. For this case with 

u(y), the horizontal shear term (Ir;) of the potential vorticity is the only term used from 

equation (1.1). This unstable region follows exactly that of the shallow water model case 

in Chapter 2 (Fig. 2.2b). The basic state temperature field, Fig. 4.lc, is only dependent 

on z• since without vertical wind shear the thermal wind relation implies no y _dependence 

for T. 
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In order to compare these results to those of SC, we need to find a relationship between 

this set of primitive equations and the shallow water equations. We use the separation 

of variables technique on the linearized primitive equations with u(y). Assuming normal 

mode solutions, u' = u1(Y, z)i(b-ut) , we come up with the horizontal and vertical struc-

ture equations equal to a separation constant. This horizontal structure equation along 

with the momentum equations give us a direct comparison to the shallow water equations 

and we get a value for the separation constant, K = gJT , where His the equivalent depth 

of the shallow water system. From the solution to the vertical structure equation using our 

upper and lower boundary conditions along with the values for the separation constant, 

we get a relafon between the vertical scale of the primitive equation to the equivalent 

depth of the shallow water system, 

(4.1} 

where n is the number of nodes in the vertical scale for the primitive equations. 

The results for this case are very similar to those from the shallow water model runs. 

We see in Fig. 4.2, for s = 6, the time it takes for the most unstable mode to become 

dominant is on the order of 70,000 seconds which is approximately the same as in Fig. 

2.la. Figures 4.3a and 4.3b show growth rates and phase speeds respectively over a range 

of wavenumbers from s = 0 to 14. From these figures one can note a decline in the growth 

rates as the wavenumber increases, after being relatively constant over the first couple 

wavenumbers. One might expect such results in the growth rates since the vertical scale 

of this system corresponds to an equivalent depth of approximately 3.1 meters. These 

results are consistent with those of SC for similar values of H, as shown in Fig. 2.4 (SC 

figure). The phase speed diagram also follows the SC results; in looking at Fig. 4.3b, we 

note that the phase speeds increase withs and the magnitudes are similar. From Fig. 4.3a, 

the growth rates of asymmetric modes are comparable to that of the symmetric mode. 

Assuming inertial instability is symmetric is thus a poor assumption with horizontal wind 

shear in a stratified atmosphere. 
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Fig. 4.la. Meridional and vertical average of total energy. For s = 6. 
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Figure 4.3: (a) 9rowth rates (o-i) versus s, same as Fig. 2.3a except for jet profile in Fig. 
4.la. For various wavenumbers. Corresponds to shallow water equivalent depth of h = 
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profile in Fig. 4.la. For various wavenumbers. 
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The resulting perturbation variables for s = 6 at t = 200,000 seconds can be seen in 

Figs. 4.4a through 4.4e. Horizontal cross sections of u', v', </,' are similar to those for 

the shallow water system (Figs. 2.Sa - 2.Sc). We see the momentum perturbation fields 

develop within the unstable region of the jet. The u' maximum has developed at just less 

than 43°N and same for ,/ , with ,/ having a larger y scale as expected from the shallow 

water results; </,1 follows as it shows two maxima in the horizontal direction located at 

41 °N and 44°N, as in SC. We see that T' has its maxima in height at the nodes of </,' 

as the hydrostatic equation requires. Finally we note that w' is zero at the top and has 

become zero at the bottom but the upper boundary condition on w' doesn't matter since 

u/ is small there. 

4.2 Vertical Wind Shear Only 

Now we set up our two-dimensional jet to have vertical wind shear and no horizontal 

shear. We again use similar parameters as in the horizontal shear case; the magnitude 

of the jet, u0 = 75 ms-1, and the Bickley jet profile in the vertical direction. We set 

the jet center to ZA = 1.5 (~220mb). With this configuration, we alter the vertical half-

width, Zs, of the jet to set up a region of negative potential vorticity according to the 

vertical wind shear. This turns out to be a difficult taak if we require stable stratification 

throughout the domain we have been using. We find that two area.s within our domain 

are especially sensitive to the different wind shears we try, one area being near z• = 
1.2 at the left (southern) end of our domain and the second around z• = 0.7 at the 

right (northern) end of our domain. What happens is that the Brunt Vaisala frequency 

( N 2) due to the horizontally varying (T1 (y, z)) part of 1' approaches a negative value of 

the same magnitude of N 2 due to the T0 (z) part of 1'. Therefore, N 2 gets very small 

on either side of zero in these regions causing the vertical shear term of the potential 

vorticity (/2 / Ri) to become very large. This results in static in.stability which is not the 

focus of our current problem. The cause of this comes from our original assumption of 

the basic state temperature field. In many studies, (e.g. Stone, 1966, Emanuel, 1979, 

Fulton and Schubert, 1985) the static stability is considered constant in height with no 



59 

horizontal variation. Now, what we have found is that when we have static stability that 

not only depends on height but also varies horizontally, inertially unstable regions due to 

the vertical wind shear are limited by the size of the horizontal domain because of static 

instability. Using our current domain size, 1665 km (~ 15° latitude), we were not able 

to set up an inertially usntable region large enough, or strong enough to be conclusive for 

anything to develop. It is our contention that using the geostrophic balance assumption 

in computing 'f, makes the static stability variable in the horizontal direction, so that 

the vertical wind shear can never be large enough to be the dominant cause of inertial 

instability because it will go statically unstable first. We find out later in the case with 

u(y, z•) that the curvature of the jet makes the two sensitive areas mentioned above less 

sensitive as the vertical shear is greatest in a small region directly above and below the jet 

core. So in that case, the vertical shear term can have an effect on the inertial instability. 

To see if we could get a vertical shear case, we assumed t to be only a function of 

z• in the static stability term. The derivative of 1' with respect to y is derived from the 

thermal wind balance. The system is now statically stable, r(z•), and we are able to set 

up the jet parameters to achieve a region of negative potential vorticity with the domain 

1665 km. The jet, with a half-width of Zs = 0.6, is shown in Fig. 4.5a. And the region 

that is inertially unstable is shown in Fig. 4.5b aa negative potential vorticity. What 

we get with these results are very slow developing perturbations in the unstable region 

as seen in Fig. 4.6, approximately twice as long for the most unstable mode to become 

dominant (approximately 150,000 seconds) as compared with the case of horizontal shear. 

The growth rates we get are very small (approximately one fifth) compared to that due to 

the horizontal shear term showing the dominance of the horizontal part over the vertical 

part. And we get larger wave numbers to have larger growth rates affirming that for 

vertical shear, inertial instability is asymmetric, not symmetric. 

From Figs. 4.7a through 4.7e, we see the perturbation fields that have developed 

due to the vertical shear term. We see that they have grown in the inertially unstable 

region below the jet center with some overlap. We see on u.' and J, large horizontal scales 

for the disturbances and especially in v' , a tilt on the maxima. And notice that after t 
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= 200,000 seconds, the magnitudes are still very small, again telling us the difficulty the 

vertical shear term has in causing inertial instability. 

We tried a smaller domain 333 km (~ 3° latitude) using the same parameters of the 

vertical sheared jet case with the horizontal variation in r(y, z") in order to avoid the 

two sensitive regions described above. We are able to get a region of negative potential 

vorticity, seen in Fig. 4.8, that would seem to be able to excite an unstable mode but we 

found no modes developed after 85 hours in time. We also tried this size domain using 

r(z*) only and found nothing developed. Therefore the smaller scale disturbances show 

no discernable growth due to inertial instability. 

4.3 Two-Dimensional Wind Shear 

In this section we consider a jet that has variable wind shear in both the horizontal 

and vertical directions. We want to simulate the observational case studied by Ciesielski, 

et al. (1988; hereafter refered to as PC). We specify a "bull's eye" jet, Fig. 4.9a, using 

the Bickley jet profile again which simulates the average physical jet. The jet is centered 

at YA = 45°N and ZA = 1.5 (~220mb) with a magnitude of u0 = 105 ms-1 and we have 

set the half- widths to be Ya = 3°, Zs = 0.1 in order to resemble the jet observed by 

PC (horizontal shear= 10 ms-1(100km)-1, vertical shear= 40 ms-1(100mb)-1). We 

actually have more horizontal shear than PC found but that will not significantly change 

our results. The f' we use is shown in Fig. 4.9b where we use a static stability of r 1 = 25K. 

The potential vorticity associated with this case (Fig. 4.10a) shows a large region of 

negative potential vorticity on the anticyclonic side of the jet. The potential vorticity 

separated into its contributions from horizontal and vertical shear, Figs. 4.10b, 4.10c, 

respectively, seems to show that the vertical shear component does add significantly to 

the area of negative potential vorticity but the horizontal shear part still dominates. The 

vertical shear component actual y has a larger value than the horizontal shear term though 

it is directly below the jet core where the horizontal shear term has large positive values 

(namely, / 2). Comparing our region of negative potential vorticity with that of PC, Fig. 

4.10d, we see them to be qualitatively similar. Ours is slightly different as we see a tilt 
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Figure 4.10: (d) Cross-section analysis of geostrophic wind speed (ma-1, heavy dashed 
lines) at intervals of 10 ma-1 and potential temperature (K, thin solid lines) at intervals 
of 5 K for 1200 GMT, 25 February 1987. Plotted wind barbs show observed wind (ma-1) 
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et al., 1988. 
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in the maxima of the negative potential vorticity due to the vertical shear term. Even 

with our larger horizontal shear term than PC, we get more contribution from the vertical 

shear term than the PC study shows. Also our vertical shear reaches farther down than 

that of PC which deepens our nega.tive potential vorticity region below 500 mb, lower than 

that of PC. As talked about in Section 4.2, if we try to increase the vertical shear term, it 

will still go statically unstable in the two areas mentioned earlier in this chapter. So the 

vertical shear contribution cannot approach the size of the horizontal shear term as far as 

causing inertial instability. 

Initializing the model using white noise we note from Fig. 4.11 that the most unstable 

mode starts to dominate after 60,000 seconds. Once again the growth rate curve, Fig. 

4.12a resembles that of a small equivalent depth case, since the <Ti are relatively constant 

through small s and decrease with larger s. The values of the growth rates are comparable 

to SC and what we found in Section 4.1. The phase speed plot Fig. 4.12b shows a steady 

increase as s increases which follow that of SC. These growth rates give us an e-folding 

time of around 3.5 - S hours. This compares to PC where they found the wavelets grew 

and decayed in a time frame of 4 - 5 hours. 

Figures 4.13a through 4.13e show the perturbation variables at t = 100,000 seconds, 

well after the most unstable mode has taken over. We see in Fig. 4.13a, the values of 

u'. It develops within the unstable region with two main maxima, one located where the 

( - f P) has its maxima and the other located in the upper region of ( - / P). The lower 

maximum is slightly offset from the upper one, this is due to the influence of the vertical 

shear term on the unstable region. The smaller maximum above the two large maxima is 

also offset to the north probably for the same reason. The ,/ response follows a similar 

pattern except f~r its broader horizontal scale, the same as in Section 4.1. The structure 

of T' h.as two maxima in the horizontal direction corresponding to u' and v' maxima yet it 

shows more vertical structure. And w' follows suit with two large maxima, the one at 44° 

forming a diagonal maximum to the lower south. Finally, <J,' still has large values outside of 

the (- / P) region but its largest •alues are within the unstable area. The overall structure 

of the response seems to follow that shown in Section 4.1, except now the maxima have a 
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greater vertical scale yet are confined vertically, and the tilt in the lower portion due to 

the effects of vertical shear. 



Chapter 5 

SU1\1MARY AND CONCLUSIONS 

In this paper we have studied the effects of various wind shears on perturbation 

growths within inertially unstable regions. This kind of study is meant to shed some light 

on the contrasting ideas surrounding what type of instability is preferred, symmetric or 

asymmetric. A necessary condition for inertial instability is when the basic state potential 

vorticity, / P < 0. The potential vorticity can be divided into two parts, the part due to 

the horizontal shear and the part due to the vertical shear. With this in mind, we examine 

the relationships between the shears and the concept of symmetric versus asymmetric. 

We have accomplished several things in this paper. First we developed a shallow 

water equation model utilizing time integration and the spectral method. We verified the 

results of SC with this model where asymmetric modes have larger growth rates than 

symmetric modes in a 1-D jet with only horizontal wind shear. In order to study inertial 

instability for jets with variable horizontal and vertical wind shear, we built from the 

shallow water model a primitive equation model containing two-dimensions y and z• . 
After the model development, we ran a test case without the basic state jet and inserted 

an analytic heating function where we could discern the expected results. We found that 

with the lower boundary condition (the actual vertical velocity, W = 0) we considered, 

the external mode we resolved explicitly in our system; and since we are not interested in 

this mode we found we could ignore this mode by carefully choosing our time step. 

Our model has been written, using the spectral method, so we can employ different 

boundary conditions to simulate various situations such as topography or a radiation 

condition. Also with this model we have "semi-nonlinear " terms already in the model 

which allows us the ability to generalize it to a full-spectral non-linear model with wave-

mean flow interactions. 
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Three different cases with two-dimensional jets were examined. When the jet con-

tained only horizontal shear the results matched those of the shallow water results. For 

the jet case with only vertical wind shear, we found a close relationship between vertical 

shear and static instability. When the static stability function is set up to contain horizon-

tal variability along with the basic vertical stratification, an increase in the vertical shear 

causes the Brunt Vaisala frequency to become very small. This in turn causes the vertical 

shear term in the potential vorticity to become very large, statically unstable. We set the 

basic state temperature to be only a function of z• in the static stability term and found 

the growth rates to be much less than those due to horizontal shear and the horizontal 

scale of the disturbances to be quite large. Finally we looked at a jet with both horizontal 

and vertical variable wind shear. Here we found the interaction of the two shears allows 

the vertical shear term to have more influence yet the horizontal shear term is still the 

dominant part. We found the perturbation to grow in the unstable region as expected 

with a structure similar to the horizontal shear case along with some influence from the 

vertical shear, a tilt in the lower maximum and larger vertical scale of the maxima. 

Stone (1966) went about finding a range of conditions under which symmetric in-

stabities have th.e largest growth rates. But in the process, he made assumptions which 

were critical in his results. First, he had no dissipation within the model. Dissipation 

acts as a stabilizing factor for symmetric modes of smallest vertical scale. Our model 

contains a vertical dissipation so as to stablize the smallest vertical scale modes. Second, 

only a constant vertical wind shear was considered in his basic state. We have found that 

horizontal wind shear is more effective than vertical shear for causing inertially unstable 

conditions. In our cases with u(y, z•), we have found the equivalent depth to be small 

thus larger wavenumbers show a decrease in the growth rates. Yet the relatively constant 

growth rates over the smallest wavenumbers tell us that assuming inertial instability as 

strictly symmetric is not correct since asymmetric modes have as large an influence. Thus 

in all the cases we examined, we found that the preferred instability is in the asymmetric 

modes. 
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APPENDIX A 

Chebyshev Polynomials 

Spectral discretizations can provide highly accurate approximations with far fewer 

degrees of freedom then required by finite difference methods. Chebyshev polynomials are 

usually preferred basis functions since they give somewhat better approximations for the 

same number of terms compared to other polynomials. Chebyshev series converge faster 

and can be evaluated very efficiently using the Fast Fourier Transform (FFT) algorithm 

(Fulton, 1984). 

Chebyshev polynomials, Tn(:i:) are defined on the interval -1 :z: 1 by 

Tn(cos8) = cos(n8) (A.1) 

where :z: = cos8. From (A.1) we have T0 (:z:) = 1 and T1(:i:) = :i:, and the trigonometric 

identity cos(n8) = 2cos8cos[(n - 1)8] - cos[(n - 2)8] yields the recurrence relation 

(A.2) 

The extrema of Tn(:i:) all have absolute value 1. From (A.1) , the zeros of Tn(:i:) occur at 

(A.3) 

and the extreme at 

(A.4) 

with Tn(xt>) = (-l)i. In par1.icular, Tn(l) = 1 and Tn(-1) = (-1)" for n = 0, 1, 2, . .. 
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The Chebyshev polynomials are orthogonal (but not normalized) in the Chebyshev 

inner product 

(A.5) 

with 

(A.6) 

Thus the coefficients in the Chebyshev series 

00 

u(x) = L UnTn(x) (A.1a) 
n=O 

are 

(A.1b) 

Equations (A.7) constitute the continuous Chebyshev transform pair. 

For the truncated series 

N 
UN(x) = L unTn(x) (A.8) 

the transform pair (A.7) has the discrete analogue 

N 
u; = L UnTn(x;) (A.9a) 

n=O 

2 N 1 
Un= -NL - u;Tn(x;) (A.9b) 

Cn j=O c; 

Here z; = x~N)(j = 0, ... , N) are the points at which TN(x) has extrema, u; = ilN(x;), 

and en = 2 £or n = 0 and n = N and 1 otherwise. 

Many common operations on £unctions represented by Chebyshev series can be cal-

culated easily in terms of the spectral coefficients. For example, if u(x) is given by (A.7a) 

then the derivative is 



where 

Similarly, 

where 
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00 

u'(x) = L uh1lT~(x) 
n=O 

u(l) - mu m + n odd " - LJ m , 
Cn m=n+l 

00 

xu'(x) = - L[nun + u~l,zl]Tn(x) 
n=O 

, N 

u~l,z) = L mum, m + n even 
Cn m=n+2 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

For the truncated series (A.8), (A.11) and (A.13) yield the recurrence formula 

(A.14) 

and 

(A.15) 

l' 1 N 1 'th th t t' al A(l) A(l) A(l,z) A(l,z) 0 Th th 1or n = , , , . , - Wl e S ar mg V ues UN+l = UN = UN+l = UN = , us e 

spectral coefficients for uN(x) and xuN(x) may be obtained from those for uN(x). 
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APPENDIX B 

Flow Charts of the Fortran-coded Algorithms 

This appendix provides flow charts of the computer code needed to run the primitive 

equation model described in Section 3 of this paper. The flow charts shown on the following 

pages describe in respective ordet': 

1. a main program which contains the Runge-Kutta fourth order time integration 

scheme, 

2. the initialization of the model variables and parameters, 

3. the computation of w' and tp1 from the diagnostic equations, 

4. the computation of the right-hand side of the prognostic equations, 

5. the computation of u', v' and T' which involves the time integration of the prognostic 

equations. 
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Primitive Equation Model 

Note: Dependent varia.ble subscripts: 
p - physical spa.ce volumes 
s - spectral space coefficients 
u1n) = ( u1n), v1n\ rJn> , w1n), <t>1nl) 
The primes ha.ve been dropped from the perturbation variables 
!TIME = time increment counter 
ITO = time increment interval for data. 
ITMAX = total number of time increments 

- - - (n) INITIALIZE: u, T , </>, u'P 

q=l 

q=2 C&lculaie ~n+t/2) 
-aj.n+l 2) 

C&lculaie ~1n+l/2) q =3 =;.-=a;a,........,_.,.,.._ 
a(n+l 2) 

p 

C&lculaie ~n+t/2) q =4 -(n+l 
Up 

TThlE INTEGRATION 
Rung~Kutta. Fourth Order 

( q - step number) 

>---T----- Store ZTIME data. 

F 
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(Y, Z) plots 

~-T--(Z,TIME) plots 

{ln[TE],TIME) plot 

DATA OUTPUT 

STOP 
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Initialization 

Input Para.meters: 
MY, MZ, NY, NZ, IY, IB 
~t, ITSTART, ITMAX, ITO, RESTART 
L:i:, Ly, Lz , D, FLAG; , j = 1,4 . 
~'~'~'½'~'~'~'~'~ 
FLOW, FHI, FINT, Dissipation Settings 

Constants: 
AI, PI, G, F, R, CP, K 
Y1, Y2, Z, Z2 , f , To(ZT) 

Flag 3, Dissipation Settings 
ClR, ON 

Basic State Quantities 
- - - aa fill tt flt. a~Y u, T , <I>, ay , az, &y , az , av 

n=O 
·tia.lize. Perturbation Prognostic Variables 

(n) (n) r,(n) u,, v,, 1' 

Lower Boundarv Condition: initial value 
q,(n) Z = -1) = 0 

Physical to Spectral Transform 
(n) (n) T(n) u., v., ., 

Plot Basic State Quantities 
a.nd Potential Vorticity 



North/South Bounary Condition 
Vp(±L) = 0 

v~n)(NY, K), v}n)(NY - 1, K) 

Diagnostic Equations 
(n) ,,1.(n) 

Ws , '//S 

Spectral to Physical Transform 
(n) (n) r,(n) (n) ,,1.(n) 

Up , Vp , p , Wp , '//P 

OUT 
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Diagnostic Equations 

>----T----~ 

F 
Compute AA: </>~q) = T]q) and DD: w~q) = CONT/G~q) 

using LBC: lVp = 0 and UDC: wp = 0 

Ba.cksubstitution 
AA, IPIUA, XAIN, - XAOUT 

Compute Convergence 
CONVGiq) = -iku~q) - -h(Hf )~q) 

CONVGiq) with UBC - XBIN(k) 

Ba.cksubstituion 
BB, IPIUB , XBIN, - XBOUT 

</>~q) = XAOUT 
wiq) = XBOUT 

Compute Pivoting Terms using AA and BB 
IPIV A and IPIVB 

Hydrostatic Eqnation 

Continuity Equation 
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Right Hand Side of Prognostic Equation 

Physical to Spectral Transform 
/1,, /2., /3. , / 4, 
u., v., T,, w., ¢,, 

/1. = f 1, - ik</>, - f v, 
/2. = /2. - tzcf ). - Ju. 
/3, = /3. 
/4, = /4, 

Calculate: /3p = /3p + Q'P 
where Q'P is the Thermodynamic Forcing 
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Time Integration 

Initialize: 
(q=O) _ (n) 

Up - Up , where u = (u, v, Tf 
q=O 
ff.= 0 

q=q+l 
rq = (½, ½, 1, ¼) for q = (1, 2, 3, 4) 

Input: uiq-I) 
Output: f~q-l), uiq-l) 

where f. = (/1., f2., f3., f 4.) 
a.nd f4. is for the lower boundary condition 

T----'111 

F 

>-----T-----

F 
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North/South Boundary Conditions 
Vp(±L) = 0 

v}q)(NY, k), viq) (NY - 1, k) 

Input: Lower Boundary Conditions 
for Diagnostic Equations 

wiq), w~q) 

Spectral to Physical Tra.nsform 
u(q) v(q) ,,.,(q) w(q) ,1..(q) 

JI ' JI ' .LJI ' JI ' "f/JI 

>----T-<§:) 
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