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Abstract-A new neural network-based approach is introduced
for recursive computation of the principal components of a
stationary vector stochastic process. The neurons of a single
layer network are sequentially trained using a recursive least
squares squares (RLS) type algorithm to extract the principal
components of the input process. The optimality criterion is based
on retaining the maximum information contained in the input
sequence so as to be able to reconstruct the network inputs from
the corresponding outputs with minimum mean squared error.
The proof of the convergence of the weight vectors to the principal
eigenvectors is also established. A simulation example is given to
show the accuracy and speed advantages of this algorithm in
comparison with the existing methods. Finally, the application
of this learning algorithm to image data reduction and filtering
of images degraded by additive and/or multiplicative noise is
considered.

I. INTRODUCTION

THE problem of optimal data reduction has been the focus
of extensive research in the fields of digital signal/image

processing. It is encountered in a wide range of applications
including image data compression, feature extraction for pat­
tern classification, as well as input dimensionality reduction
for neural network training. All of these applications require
an efficient representation of the input data.

Different techniques for data reduction, which exploit redun­
dancies within the original images, have been developed. The
salient features of the data set are extracted through a mapping
from a higher dimensional input space to a lower dimensional
representation space. Such a mapping can be achieved through
a transform operation such as Fourier transform, discrete­
cosine transform (DCT), and Karhunen-Loeve (KL) transform
[1]. The efficiency of the approaches is judged based on
the degree of data compaction subject to the constraint that
the original data can be linearly reconstructed with minimal
distortion. Based on this criterion the KL transform is optimal
for stochastic processes since it packs most of the signal
energy in the first few samples and, at the same time, achieves
complete decorrelation of the data. The latter property not
only leads to efficient data compression and reconstruction but
also facilitates detection and classification tasks using neural
networks.

The conventional approach for evaluating the KL transform
requires the computation of the input data covariance matrix
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and then the application of a numerical procedure to ex­
tract the eigenvalues and the corresponding eigenvectors. The
eigenvectors associated with the most significant eigenvalues
are subsequently used to extract the principal components
of the data. However, for large data sets, the dimensions
of the covariance matrix grow significantly large making
its computation and manipulation practically inefficient and
inaccurate. In addition, all the eigenvalues and eigenvectors
have to be evaluated even though only the eigenvectors
which correspond to the most significant eigenvalues are used
in the transformation process. These deficiencies make the
conventional schemes inefficient for real time applications. As
a result, to perform principal component extraction efficiently,
a method which evaluates the most significant eigenvectors
of the data covariance matrix without the need to form this
matrix is required.

Several neural network-based approaches were introduced
for extracting the principal components of a stationary vector
stochastic process directly from the input data set. Oja [2]
introduced a simple linear neuron model with constrained
Hebbian type updating and proved the convergence of the
weight vector to the principal component of the stationary
input vector sequence. Sanger [3] extended the procedure
to the multi-neuron case to compute the first m principal
components of a stationary process simultaneously. Foldiak
[4] developed a similar procedure which uses anti-Hebbian
weights between the network output to orthogonalize the
weight vectors. Recently, Kung [5] proposed a procedure for
recursive computation of the principal components based on
a sequential training scheme which uses anti-Hebbian weights
from the already trained neurons to the neuron that is currently
being trained. Using this scheme, one can adaptively increase
the number of neurons needed for principal component ex­
traction.

In this paper a new neural network based approach for
principal component extraction is proposed using the recursive
least squares (RLS) learning algorithm. Owing to the inherent
characteristics of the RLS learning [6], the proposed scheme
offers faster convergence without sacrificing the accuracy
i.e. it does not have the accuracy-convergence speed trade­
off problems [6], [7] of all the least mean squares (LMS)
based schemes. The improved performance of this RLS based
scheme is due to the use of an adaptable step size or gain
factor in the updating equation as opposed to a fixed step size
in the LMS-based algorithms [6], [7]. Moreover, the estimate
of the variance associated with each component, which is a
deterministic factor in deciding the number of components
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Fig. 1. A two-layer network for auto-association. Fig. 2. Auto-association structure for extracting the first principal compo­
nent.

and

needed for an accurate representation, is directly available
through the adaptation equations.

The organization of this paper is as follows: Section II gives
an overview on data reduction using auto-associative networks
and presents the development of the RLS principal component
extraction algorithm. The convergence analysis is provided
in Section III. The accuracy and speed advantages of this
new learning rule are demonstrated in a numerical example
in Section IV. Simulation results on image data reduction and
image restoration are also presented. Finally, Section V gives
the conclusions and discussions.

(3)

which implies invertible mapping, would yield a unitary
scaling matrix T i.e. T- 1 = T t

. This would result in an
orthonormal weight set which spans the space defined by the
p principal eigenvectors of the input covariance matrix. The
problem, however, remains on how to couple this network
structure with an appropriate fast and accurate training scheme
in order to extract the principal eigenvectors. In the following
section, we show that the auto-associative structure when
used in conjunction with an RLS type learning algorithm can
sequentially compute the principal components of the input
pattern at the output of the hidden layer neurons.

Closer examination of (1) and (2) reveals that imposing the
constraint that

A. RLS Learning

In this section, a new procedure for principal component
extraction using the RLS learning rule will be introduced. An
algorithm which extracts the most significant eigenvector of
the input covariance matrix is first developed [9], [10]. This
would form the basis for a sequential training scheme that uses
an orthogonalization method, similar to that described for the
Generalized Hebbian Algorithm (GHA) [3], to extract lower
order components.

1) Extracting the First Principal Component: The neural
network structure shown in Fig. 2 consists of a linear auto­
associative structure with just a single neuron in the hidden
layer. The input is assumed to be a zero-mean stationary vector
process with N positive eigenvalues, >'1 2': A2 2': ... 2': AN,
for its covariance matrix. The aim is to develop an RLS
based training rule that would drive the first layer weight
vector towards the normalized eigenvector associated with
the largest eigenvalue i.e. AI, and to provide optimal data
reconstruction at the outputs of the second layer.

Let the input vector at time n be

(1)

(2)

II. AUTO-ASSOCIATION AND OPTIMAL DATA REDUCTION

Auto-association, also referred to as auto-encoding or iden­
tity mapping, is a network structure such as that shown in
Fig. I, in which the desired pattern at the output layer is set
to the network input. In this mode, the network is trained to
duplicate the input pattern at the output layer, which might not
seem too interesting at first. However, if the inputs are mapped
through a narrower layer of hidden neurons, then the network
is expected to seek an efficient way to compress different input
patterns at the hidden layer and to reconstruct them back at
the output layer. For a linear' auto-associative network with
N inputs, N outputs, and p hidden layer neurons, p < N,
it was shown [8] that the solution of the least squares (LS)
normal equations for the optimal weights leads to the linear
combinations of p principal eigenvectors of the covariance
matrix of the input data. That is, if we denote the optimal
weight matrices of the input and output layers by WI and W2

respectively, then

where Up is a matrix with rows consisting of the p principal
eigenvectors of the input covariance matrix, and T is a
nonsingular p x p matrix. From these two equations, it can
be seen that the global map of the network would consist of
the orthogonal projection of the input onto the space spanned
by the p principal eigenvectors of its covariance matrix.

I For this network the nonlinearity at the hidden layer is omitted.

(4)

and the weight vector of the first layer which performs
principal component extraction be

w1(n - 1) = [wll(n -1)w12(n -1)··· w1N(n - lW (5)

Note that as previously explained the weight vector of the
second layer which performs the reconstruction is wi (n - 1).
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This also ensures that the optimal weight vectors will have
unit norm. Then, the output of the linear hidden neuron at
time n can be written as

the normal (10) can alternatively be written as

hi(n) (X(n) - h1(n)wi(n)) = O. (15)

h1(n) = wi(n - l)x(n) (6)
This can be solved for wi (n) to give the least-square solution
for the optimal weight set of the second layer at time n as

and the corresponding network output is given by (16)

y(n) =wl(n - 1) h1(n)

= WI (n - 1)wi (n - 1)x( n). (7)
or

(17)

(22)

where according to the standard RLS definitions [6], PI (n) is
the inverse of the covariance of the output of the first neuron
in the first layer, i.e.,

and K 1 (n) is the data dependent Kalman gain [6] or the
updating step size. The process starts with a set of initial values
for PI (0) and WI(0). A common initialization procedure is
to use PI (0) = 8- 1 with 8 being smaller than fractions of
the variance of input process and choose WI (0) = 0 [6]. In
this paper, we have used random initialization for the weights
and PI (0) = 0.5. The reason for random initialization for
the weights will be explained later in Section III. It must
be pointed out that for long sequences the choices of initial
conditions do not impact the performance of the learning.

The driving error Cl (n) = x(n) - hI (n) WI(n - 1) tends to
move the weight vector in the weight space so that the LS solu­
tion is reached and optimal auto-association is accomplished.
It will be shown, in the next section, that upon completion
of the training process, the optimal weight vector WI(n) will
converge to the most significant eigenvector of the network
input covariance matrix.

The updating (20) is similar in form to the Constrained
Hebbian Algorithm (CHA) equation, introduced by Oja [2],
with the exception that the updating step size K 1 (n) is now
data dependent. Note that the CHA can alternatively be derived
by employing the same auto-associative structure and using the
LMS learning algorithm for weight updating instead. As will
be shown in the next sections, the data dependent step size in
the RLS algorithm offers significant advantages over the LMS
based methods in which the step size is kept fixed at a rather
arbitrarily chosen value for a particular application. This gain
adaptation makes the updating process self-regulatory leading
to improved convergence characteristics in both speed and
accuracy.

for the first layer.
This normal equation can be solved recursively at each new

training sample using the standard RLS method [6]. The RLS
equations for updating the weight vector WI(n) are

h1(n) =wi(n -l)x(n) (18)

K (n) _ P1(n - 1)h1(n)

1 - [1+ hi(n) P1(n _ 1)] (19)

wl(n) =wl(n -1) + K 1(n) [x(n) - h1(n)wl(n -1)] (20)

P1(n) = [1 - K 1(n) h1(n)] P1(n - 1) (21)

(9)

(11)

L h1(k)cl(k) = 0
k=1

or equivalently

L h1(k) (x(k) - wl(n) h1(k)) = 0 (10)
k=1

where" A" represents the estimate of the relevant quantity and
" 0 " denotes the null vector. This normal equation can be
written in a vector form as

where E 1 (n) is a n x N error matrix consisting of all error
vectors accumulated up to time n

and hI (n) is a vector of accumulated hidden neuron outputs
given by

D(n) = X(n) = [x(1)x(2)·· ·x(n)]t (14)

J1(n) = L ci(k)cl(k)
k=1

= L (x(k) - y(k))t (x(k) - y(k))
k=1

Defining the desired output matrix

= L (x(k) - wl(k - 1) h1(k))t

k=1

. (x(k) - wl(k - 1) h1(k)). (8)

Note that this function assumes infinite memory due to the
stationarity of the input process. Minimizing this index of
performance W.r.t the weight vector wl(n) would ensure
optimal auto-association in the sum squared sense.

Assuming that the current weight estimate WI(n) is used in
place of old weight WI (k), k E [0, n - 1], the performance
index can be minimized for WI(n) by taking the partial
derivative of J1 (n) w.r.t WI(n) and setting it equal to zero
[6]. This gives the following normal equation

Owing to the recursive nature of the RLS learning rule, the
updating should take place at every training sample. Let us
consider the performance index J1 at time n given by
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Fig. 3. Linear perceptron for sequential principal component extraction.

= L [x(k) - L hi(k)Wi - hm(k)wm(nW
k=l i < m

. [x(k) - L hi(k)Wi - hm(k)wm(n)] (29)
i c rn

where it is assumed that ui.; (n) is used in place of all
W m (k), \f k E [1,n - 1], If we define the deflated desired
output matrix as

where,

(35)

(36)

- hm(n) wm(n - 1)]

Pm(n) = [1 - Km(n) hm(n)] Pm(n - 1)

i<m

Km(n) = [1+ h;'(n) Pm(n _ 1)] (34)

wm(n) =wm(n - 1) + Km(n) [dm(n)

- hm(n)wm(n - 1)]

=wm(n - 1) + Km(n) [x(n)

- L hi(n)wi

Now, the RLS algorithm can be applied to compute the optimal
weight vector wm (n) at each training sample. This gives the
"extended RLS learning rule" for the mth neuron, i.e.,

hm(n) =w~(n - l)x(n) (33)

Pm(n - 1) hm(n)

then, the optimal weight vector wm (n) that minimizes the
error function Jm(n) can be obtained, in a manner similar to
(17), as

wm(n) = (h~ (n) hm(n))-l D~n(n) hm(n) (31)

(23)

and the weight vector corresponding to the mth neuron be

wm(n) = [wm1(n)wm2(n)··· wmN(nW

m=I,···,p. (24)

Then, the output of this neuron hm (n) can be written as

The following subsection deals with the extention of this
procedure to the multi-neuron case to extract multiple compo­
nents. The RLS learning algorithm will be used in conjunction
with Gram-Schmidt orthogonalization [11] procedure in order
to extract lower order components.

2) Extracting Lower Order Components: The aim of this
section is to develop an extended RLS learning rule so that
individual weight vectors sequentially converge to the first
p < N orthonormal eigenvectors corresponding to the p most
significant eigenvalues of the input covariance matrix arranged
in descending order.

Consider the linear network configuration of Fig. 3. Again,
the input is assumed to be a stationary vector process with
zero-mean and N positive eigenvalues )'1 2:: A2 2:: ... 2:: AN
for its covariance matrix. The neurons are trained sequentially
i.e. the training of the mth neuron is started only after the
weight vector of the (m - 1)th neuron has converged.

Let the input vector at time n be

Jm(n) = L (dm(k) - hm(k) wm(n))t
k=l

dm(n) := x(n) - L hi(n)wi. (27)
i<m

In other words, the neuron must model an auto-association that
seeks to generate the original input x( n) less all the previously
computed m - 1 components. This process is equivalent to the
"deflation" [11] of the desired output instead of the original
input. The following performance criterion is then used for
minimization.

(37)Pm(n) := [t h;'(l)]-l
1=1

and K m (n) is the gain for the updating equation of this neuron.
Thus, the extended RLS learning rule combines the ba­

sic RLS algorithm with the Gram-Schmidt orthogonalization
procedure in a manner similar to that of the GHA [3].
This orthogonalization is achieved by subtracting the already
determined m - 1 higher order components from the original
input and using the resultant process as a mapping target for
the mth neuron. This deflation procedure [11] would implicitly
make the effective input to the mth neuron equal to the sum
of the lower order components associated with eigenvalues
Am ... AN. By applying the RLS rule to this effective input, the
neuron is then able to extract the most significant component
associated with eigenvalue Am. This component would be
orthogonal to the m - 1 previous higher order components.

As with some other algorithms [4], [5], one can adaptively
increase the number of neurons needed for principal compo­
nent extraction in a fashion that is practically similar to order
updating process in lattice filters. According to the standard

where, again, Pm(n) is the inverse of the covariance of the
output of the mth neuron in the first layer, i.e.,

(28)

(25)hm(n) = w~ (n - 1)x( n).

Assume that all the m - 1 previous neurons have already been
trained and that their weights have converged to the optimal
weight vectors Wi, i E [1, m - 1]. Then, the corresponding
extracted principal components are given by

hi (n) = w~ x( n) i = 1, ... , m - 1. (26)

To extract the mth principal component in the output of the
mth neuron, the updating model for this neuron should be
constructed so that the desired output at iteration n is
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Proof: See Appendix A.
Theorem 3.2: Assume that convergence is achieved for

the weight vectors of the first m - 1 neurons and that the
converged weights WlO ... W(m-l)O are the principal eigen­
vectors el ... em-I, respectively. If we define the following
deflated desired output for neuron m

1 1 (t+l)M

M[Pm((t+1)M)-1 - Pm(tM)-l]= M L h;'.(k)=)..m.
k=tM

(38)
Then, as the training progresses, hm (n) would approach the
mth principal component and the estimate )..m would tend
to Am, i.e. the true variance of the corresponding principal
component. This permits evaluation of a sufficient number of
principal components needed during the training process.

definition of Pm(n) in (37), the variance of the transform co­
efficient can be estimated directly from this learning parameter
and using (36) without requiring to compute this variance from
the neuron outputs. This is done by considering the difference
in Pm(n)-l,s over consecutive epochs of the training data.
Now if t denotes the epoch number i.e. the number of times
the set of M available training samples has been presented
to the mth neuron, then using (37) we can show that this
difference would provide an estimate of the variance, i.e.,

III. CONVERGENCE ANALYSIS

In this section, the convergence properties of the proposed
learning algorithm are analyzed. It will be shown that by using
the RLS learning rule for principal component extraction,
individual weight vectors will sequentially converge to the
most significant eigenvectors of the input covariance matrix.

Assume that the network input is an N-dimensional
zero-mean stationary random vector process x( n) and let
el, e2,"', eNdenote the orthonormal eigenvectors of its
covariance matrix ex = E[x(n)xt(n)] corresponding to
the eigenvalues Al 2: A2 2: ... 2: AN, respectively. Then the
following results hold.

Theorem 3.1: The following results hold for the weight
vector WI of the first neuron

1) The necessary condition for the estimate WI to be a
saddle point of Jl(n) is that wi WI = 1, i.e., unit norm
property.

2) The necessary and sufficient condition for WI to be
a critical point of J l (n) is that WI = ei for some
i E [l,N].

3) The absolute minimum error is obtained when WlO =
el, i.e., the first principal eigenvector of the input
covariance matrix.

4) The RLS learning algorithm guarantees the minimum of
the error surface at each iteration, i.e., WI(n) ---+ el as
n ---+ x.

2This is true provided that the input process is ergodic [12].

3 Note that the null vector is also a critical point of the error function since
it satisfies (8.6).

IV. SIMULATION RESULTS

In this section three different simulation examples are
considered. The first example serves to show the transient
behavior of the learning in the mean-squared error and the
eigenvalues. The results are compared with those obtained
using the GHA method. In the second example, the application
of the proposed algorithm for dimensionality reduction and
feature extraction of images is investigated. The results are
compared with those obtained using both the standard KL
transform and the GHA.It will be shown that the proposed
RLS learning rule matches the performance of the standard KL
transform both in the rate of data reduction and decorrelation
property while the LMS-based schemes such as GHA have
an inferior performance to both schemes. The generalization
capability of the new training rule is also tested on a new image
that was not included in the training set. The application of the
new RLS training algorithm in restoration of images degraded
by additive noise as well as multiplicative speckle noise has
been considered in the third example.

then similar results as in Theorem 3.1 hold for the weight
vector W m of the mth neuron.

Proof: See Appendix B.
Remarks:

1) The shape of the error function for the RLS learning
is initially dependent on the iteration number n and the
algorithm finds the eigenvector of the sample covariance
matrix at each iteration. However, as the training pro­
gresses and n approaches infinity, the sample averaged
input covariance matrix approches the true ensemble
averaged/ input covariance matrix. Therefore, the error
vector can eventually be defined as a fixed function of
the weight vector with fixed parameters. These parame­
ters are the input covariance matrix and its lower order
eigenvalues Aj, j = m··· N, as seen in (B.5). This
function is convex in the weights and it is shown (see
Appendix B) to have a unique global minimum that is
achieved when the weight vector corresponds to the mth
principal eigenvector of the input covariance matrix. All
other critical points corresponding to the weight vector
being equal to eigenvector ei, i = m + 1··· N, or the
null vector' are saddle points [13].

2) Hebbian type algorithms which use some form of gra­
dient descent to get to the bottom of the surface, would
inherently produce misadjustments due to gradient noise.
This can be reduced only at the expense of reduced
convergence speed [6]. This problem is even more com­
pounded for lower order components as the inaccuracies
in evaluating the first few components would propagate
through the orthogonalizing term. The RLS learning rule
does not have this problem as it does not rely on the
gradient estimates. These points as well as the transient
behavior of both types of algorithms are studied in the
simulation example of next section.

(39)=x(k) - L ejejx(k)
j<m

dm(k) =x(k) - L Wj w~ x(k)
j<m
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Fig. 4. Comparison of transient behavior of MSE for the first principal
component.

Fig. 5. Comparison of transient behavior of MSE for the third principal
component.

A. Transient Behavior

To get an insight into the accuracy and speed of this new
approach to principal component extraction, both the RLS
learning rule and the GHA were used to extract the first
three principal components of a random process. The data
was generated by a scalar autoregressive process of order one,
AR(l), given by

where ¢ = .9 and e(n) is a white zero-mean random sequence
with unit variance which drives the AR process. The autoco­
variance function of the AR( I) process can easily be derived
from (40) [14] as

(T2¢l hl
Cov(x(n + h),x(n)) = 1- ¢2 (41)

where (T2 = E[e2(n)]. Since ¢ is less than one, this auto­
covariance function would exponentially decay with distance.
Thus, the AR(1) process belongs to the class of first order
Markov processes with exponentially decaying autocovariance
function.

The data points were arranged in blocks of size six. Twenty
training samples were chosen randomly to train a network
with six inputs and three outputs. We used P(O) = 0.5
and A = 1. The mean-squared error between the original
data and the reconstructed data was evaluated at each epoch
until convergence was achieved. Figs. 4 and 5 show the
transient behavior of the MSE for the first and third principal
components for both the RLS learning rule and the GHA. As
can be seen, the RLS learning rule provides faster convergence
as well as less misadjustment. In addition, for the RLS learning
rule the speed and accuracy characteristics are consistent even
for lower order components as can be seen from the plot for the
third component. This is obviously not the case for the GHA
as the algorithm not only takes longer to converge but also
produces a larger steady-state error when used to extract the
third principal component. This problem is primarily caused
by the propagation of the residual error associated with the
higher order components to the lower order ones.

The variances of the transform coefficients corresponding
to the first and third components (or the first and third
eigenvalues) were evaluated at each training epcoh t using

Fig. 6. Comparison of the estimated eigenvalue with the two eigenvalue for
the first principal component.

B. Image Data Reduction and Feature Extraction

This example serves to show the potential of the proposed
RLS algorithm in image data reduction and feature extraction
areas, and to provide a benchmark with the standard KL
transform and the sequential GHA approach. Although the KL
transform approach does not have any practical application
in image coding areas owing to the high channel capacity
requirements, the extracted features which are decorrelated can
be used for detection/classification applications [15].

The test image (Lena) in Fig. 8 has a resolution of 512 x
512 pixels with 256 grey levels. The image was partitioned

RLS

OHA
sVi>

Epoch
40.0020.00

I'
,

l-:

Ir r

25.20

25.00

0.00

25.40

25.60

26.00

25.80

26.40

26.20

Eigenvalue

(38) and the resulting plots are shown in Figs. 6 and 7.
These figures also show the plots of the same quantities
for the GHA, obtained by computing the average, at each
iteration, of the squared of outputs for the first and third
neurons. The true eigenvalues of the covariance matrix of
the network vector sequence were also determined using
the standard KL transform. These are represented by the
flat curves in these figures. Comparing these values with
the estimated eigenvalues for the case of the RLS principal
component extraction algorithm shows that as the number of
epochs increases, the estimated eigenvalues would converge
to the true eigenvalues determined using the standard KL
transform. In addition, unlike the GHA, which exhibits some
inaccuracies in the estimates, the RLS learning rule achieves
principal component extraction with a high level of accuracy
as determined by the variance of individual components.

(40)x(n) = ¢x(n - 1) + e(n)
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Fig. 7. Comparison of the estimated eigenvalue with the tree eigenvalue for
the third principal component.

Fig. 8. Original Lena image.

into a set of non-overlapping blocks of size 8 x 8 which were
then arranged into series of one-dimensional input vectors
of size 64 using row or column ordering to give a total
of 4096 training samples. Note that the choice of the block
size is a trade-off between the accuracy in estimating the
principal components and the computational and architectural
complexity of the algorithm. However, in most of the real­
world images the neighboring pixels are highly correlated and
as the spatial distances between the pixels increase the amount
of correlation decays substantially. As a result, increasing the
block size after a certain stage would not necessarily improve
the mean squared accuracy. The block size of 8 x 8 was found
empirically to provide the best results. Blocks of smaller size
than 8 x 8 would not capture enough spatial correlations to
generate accurate estimates of the principal components. This
can result in processed images which exhibit some visible
blocking effects.

The mean of the training data was subtracted from each
individual data vector to obtain zero mean training input
vectors. The weights of the network with sixty four inputs and
sixteen outputs were initialized randomly. The initial Pm(0)

Fig. 9. Reconstructed Lena image from the first sixteen components obtained
using the RLS algorithm.

was chosen to be 0.5. The first sixteen principal components
of the input image were then determined through sequential
training of individual neurons using the RLS algorithm. For
each component, convergence is achieved after just one epoch
over the training data. The distribution of the eigenvalues of
the input covariance matrix, obtained using the standard KL
transform, indicates that they decay very fast for the lower
order components. The percentage of the energy of the original
image contained in the first k components is measured by

k

2:)i
1 i-I

Energy% = k ~2

where Ai represents the variance of the ith component or the
ith eigenvalue of the input covariance matrix and u 2 is the
variance of the original image. The variance of the original
image was computed to be u 2 = 2209 and the percentage
energy calculated, for the first sixteen components, using (42)
was found to be 99%.

Once the training process is completed, the first sixteen
principal eigenvectors corresponding to the converged weights
of the sixteen neurons were used to reduce each 8 x 8
block to just sixteen components. The reconstructed image,
obtained using the second layer, is shown in Fig. 9. As
shown in this figure, three quarters of the components can
be discarded with no visible degradation in the quality of
the reconstructed image. This result was expected since the
first sixteen components contain almost all of the energy of
the original image. The signal to noise ratio (SNR) for the
reconstructed image was measured to be 21 dB which shows
that still a small amount of mean squared error is incurred due
to the rejection of the lower order components.

The same procedure was repeated using the OHA which
incorporates data deflation. The step size 'Y was held fixed at
a small value of 10-5 . The algorithm required two epochs
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Fig. 10. Reconstructed Lena image from the first sixteen components ob­
tained using the GHA.

over the training data for convergence. The sixteen extracted
principal eigenvectors were used to reduce the image data. The
resultant reconstructed image is shown in Fig. 10. Close exam­
ination of this image shows some blocking effects especially
around the edges. The SNR for this image was measured to be
17 dB. The blocking phenomenon can mainly be attributed to
inaccuracies of the GHA which in tum lead to intensity dis­
crepancies between the original and the reconstructed images.
These inaccuracies, which are caused by the misadjustment
[7] inherently produced by a fixed step size [6], are even
more significant for the low order components. As a result,
the GHA would not yield the maximum variance possible for
the sixteen extracted components since it distributes part of
the signal energy that is normally associated with the first
sixteen components to the lower order components which are
rejected in the reduction process. To reduce this effect, the
step size 'Y could be reduced or a variable step size 1/n
could be used. However, this would considerably reduce the
convergence speed which is already inferior to that of the RLS
algorithm [6]. Note that both RLS based and GHA algorithms
require O(N) operations with slightly more multiplications
for RLS in order to perform scalar operations for computing
Pm(n) and Km(n).

To compare the performances of these two neural network­
based approaches with that of the standard KL transform, the
64 x 64 covariance matrix of the zero-meaned blocks of the
Lena image was computed. An SVD algorithm was used to
e~tract all 64 orthonormal eigenvectors and the corresponding
eigenvalues of this covariance matrix. The reduced transforma­
tion matrix was formed from the first sixteen eigenvectors and
was used to transform individual 8 x 8 blocks of the image
to sixteen components. The reconstructed image is shown in
Fig. II. The image shows no visual distortion and the SNR
was measured to be 21 dB as well. Comparing the SNR's
and the visual quality of the images in Figs. 9-11 reveal the
fact that both the RLS learning rule and the conventional
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Fig. II. Reconstructed Lena image from the first sixteen components ob­
tained using the standard KL transform.

TABLE I
COVARIANCE MATRIX OF THE FIRST SIX COMPONENTS FOR THE RLS ALGORITHM

r 1 2 3 4 5 6

1 129243.00 -12.43 -1.71 0.40 -1.16 -0.07

2 -12.43 7549.40 70.84 0.46 -1.53 -0.71

3 -1.71 70.84 2826.30 -57.69 32.59 -3.41

4 0.40 0.46 -57.69 1714.82 142.15 -6.38

5 -1.16 -1.53 32.59 142.15 1313.59 -1.14

6 -0.07 -0.71 -3.41 -6.38 -1.14 632.16

KL transform give equal but negligible degree of distortion
in the reconstructed image. The results of the GHA, on the
other hand, are less impressive as the algorithm is faced with
accuracy constraints as well as slow convergence compared to
the RLS learning rule.

These points can further be demonstrated by considering
the covariance matrix of the first six components for these
three methods. These covariance matrices, shown in Tables
I-III, are obtained by diagonalizing the input covariance matrix
using the first six eigenvectors." Examination of these results
shows that the variances of the components generated by the
RLS algorithm approach to those obtained using the standard
KL transform. In addition, the RLS algorithm is shown to
achieve a good level of data decorrelation. The variances of
the components produced by the GHA, however, differ from
those of the previous two methods and as it can be seen from
the magnitude of off-diagonal elements that the individual
components are still correlated. This explains the relatively
high distortion in the reconstructed image for this algorithm.

To test the generalization capability of the RLS algorithm,
the network trained with the Lena image as described before,
was used to repeat the same reduction and reconstruction

4In this case, the eigenvectors were obtained after four epochs of the image
data for both the RLS and GHA.
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TABLE II
COVARIANCE MATRIX OF THE FIRST SIX COMPONENTS FOR THE GHA

r 1 2 3 4 5 6
1 129194.0 797.25 2630.18 1880.91 2190.11 287.76
2 797.25 7328.52 1158.81 468.81 313.66 137.30
3 2630.18 1158.81 3155.75 313.71 76.94 52.17
4 1880.91 468.81 313.71 1800.54 226.18 55.35
5 2190.11 313.66 76.94 226.18 1394.20 17.01
6 287.76 137.30 52.17 55.35 17.01 634.39

TABLE III
COVARIANCE MATRIX OF THE FIRST SIX

COMPONENTS FOR THE STANDARD KL TRANSFORM

r 1 2 3 4 5 6
1 12942.00 -0.84 0.75 0.36 0.53 -0.46
2 -0.84 7548.38 0.004 0.03 0.01 0.002
3 0.75 0.004 2827.15 -0.02 -0.008 0.003
4 0.36 0.03 -0.02 1757.00 -0.01 -0.004
5 0.53 0.Ql -0.008 -0.01 1266.00 0.001
6 -0.46 0.002 0.003 -0.004 0.001 647.00 Fig. 12. Original boat image.

Fig. 13. Reconstructed boat image.

where I', is a diagonal matrix consisting of speckle noise
samples 'Y(m, n) within one block of data; v(i) represents
a vector of additive white noise; and y( i) and x( i) are
vectors obtained from row (or column)-ordered arrangements

where in this case 'Y(m, n) is a scalar white sequence with
nonzero mean J.1'Y and variance 0'; which represents the speckle
noise; v(m, n) is a scalar white noise sequence with zero
mean and variance O'~ which represents additive thermal noise;
x(m, n) is the uncorrupted image assumed to have zero mean;
and y(m, n) is the corrupted recorded image. By dividing the
image into a set of non-overlapping blocks of size k x k and
arranging individual blocks in vector form, using either row or
column ordering, the image model (43) in vector form becomes

(44)y(i) = rix(i) + v(i)

C. Image Filtering

In the previous section, we considered the application of
the new RLS principal component extraction algorithm to the
problem of image data reduction and feature extraction. It was
assumed that a good quality image set is available. However,
any image acquired by optical, electro-optical or electronic
means is likely to be degraded by the sensing environment.
The degradation may be in the form of additive sensor noise,
background clutter as in radar or infrared (lR) imaging and
blurring caused by defocusing, relative object-camera motion,
and atmospheric turbulence. In addition to these forms of
degradation, a different multiplicative type noise, known as
speckle noise, occurs in coherent imaging systems such as
synthetic aperture radar (SAR), laser and ultrasonic systems
[16].

The recorded image in presence of both multiplicative
speckle noise and additive thermal noise can be modeled as
[17]

y(m, n) = b(m, n) . x(m, n)] + v(m, n) (43)

procedures on the Boat image of Fig. 12. Fig. 13 shows the
reconstructed Boat image which has a SNR of 18 dB. The fact
that the same weights can be used to compress two different
images is an example of "generalization" of the algorithm.
Although the images are different, their second order statistics
may present enough similarities for their respective principal
components to be similar. Training the network on either
image will compute a set of principal eigenvectors that can
be used to compress the other one. This property can be
extremely useful for applications which involve sets of images
with similar statistics such as in radar and satellite imaging.
The network can be trained based upon an already available
set of images and the converged weights can subsequently be
used for on-line reduction of the blocks of a newly received
image as they become available.



466 IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 6. NO.2. MARCH 1995

of blocks of the received and the original images, respectively.
It can be shown that the covariance matrix Cx corresponding
to the original image has exactly the same eigenvectors as
covariance matrix Cy determined from the available corrupted
image. Moreover, it can easily be shown that the eigenvalues
of C y are related to those of C x by

V. CONCLUSION

A new neural network-based approach for principal com­
ponent extraction which uses the RLS learning rule was
introduced. The LS solution for the optimal weights of a
general auto-associative network structure was shown to con­
sist of linear combinations of the principal eigenvectors of
the input process covariance matrix. This important result
formed the basis for the development of a new sequential
scheme to individually extract these principal eigenvectors
using an RLS-based algorithm. To extract the lower order
components the sequential RLS training scheme was used in

Fig. 15. Processed farm image using the first sixteen components.

conjunction with the deflation procedure. The RLS based rule
inherently provides better convergence speed and accuracy
when compared with the Hebbian type learning rules which
are principally based on the LMS approach.

The convergence proof for this RLS PC extraction algo­
rithm was also established. It was shown that training a p

neuron single layer network using the RLS algorithm would
sequentially drive the weight vectors to the p orthonormal
principal eigenvectors of the input covariance matrix. The
error function landscape will have a unique global minimum
together with a number of critical points [13]. The RLS
learning solves this problem by including a data dependent step
size and solving a minimization problem on an error surface
with only one absolute minimum. A simulation example was
given to demonstrate the validity of these properties and the

Fig. 14. Original SAR image of farm.

(45)j = 1.... , /,;2.

Since the eigenvalues of the original image decrease in magni­
tude with increasing j index. it can be concluded that although
the portion of the energy of corrupted image corresponding
to the original image :r( m, n) is mainly concentrated along
the principal eigenvectors, the noise part would have evenly
distributed components along all the eigenvectors. It follows
that the noise energy in the corrupted image can be signifi­
cantly reduced without losing much useful information by only
retaining the principal components of the image, which mostly
contain the useful signal energy. and rejecting the lower order
components, which incorporate more noise than useful signal.
This procedure, known as eigen-filtering, has previously been
used [18] for the additive noise case.

Now, we consider the application of the RLS PC extrac­
tion algorithm in the filtering of a SAR image degraded
by multiplicative speckle noise. Fig. 14 shows a portion of
the original SAR image obtained from the Jet Propulsion
Laboratory (JPL). This farm image has a resolution of 512
x 512 and 256 grey levels. It must be noted that the image is
a one look image and consequently the mean and the variance
of the multiplicative speckle noise are unity [16]. A network
with 64 inputs and 16 outputs was trained using the RLS
algorithm. The training input vectors consisted of the pixel
values of individual 8 x 8 non-overlapping blocks of the
test image of Fig. 14. The network weights converged after
just one epoch over the training data and the resulting sixteen
vectors were then used to transform the image of Fig. 14 to
its first sixteen components. The reconstructed image is shown
in Fig. 15. Visual evaluation of this image clearly shows
the speckle reduction capability of the new RLS algorithm.
Additional speckle reduction can be achieved by reducing the
image to just eight principal components using the first eight
converged weight vectors. However, this would yield an image
with visible smearing artifacts. That is, although discarding
more components would definitely reduce the effects of the
speckle. it would eventually result in loss of some valid image
information and consequently considerable smearing effects.
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which gives

(A9)

(A.7)

(A8)

(AI3)

(AI4)

(All)

which implies that for WI to be critical point of J1 (n) we
must have WI = ci' i.e. the ith eigenvector corresponding to
eigenvalue x..

3) Thus far, we have shown that the critical points of the
error function J 1(n) are defined by the individual eigenvectors
of the input data covariance matrix Cx. The value of the error
function at the ith critical point is given by

J1i (n ) = JlO(n)lwl=t~i
N

= L Aj - Ai i = 1, ... , N.
j=l

N

JlO(n) = L Aj - wi CXW1'
j=l

Since wi WI = 1, we can write

N

JlO(n) = L Aj - wi CXW1+ Ai (1- wi wd (AI2)
j=l

or equivalently

Equation (A.7) gives the necessary condition for WI to be a
critical point of J1 (n). Now, under this condition, the value
of the error function in (A3) is given by

JlO(n) := J1(n)lwl=Wl'W~Wl=1
= tr [Cx] - wi Cx WI (A 10)

for any i E [1, N]. Now, the critical points of JlO(n)
are identical to those of J 1(n) and can be obtained by
differentiating JlO(n) with respect to WI. This gives

where A is an orthogonal matrix containing eigenvectors of
Cx as its columns and A is the diagonal matrix containing the
corresponding non-increasing eigenvalues. Now, we proceed
by showing that if WI = ci for some i E [1, N], then WI
satisfies (A4), i.e.,

Cx ci - Cie'iCxci = AAAt ci - cie'i AAAt ci

= Ai ci - cie'i Ai ci

= Ai ci - AiCi

=0.

which implies that

This proves the first part of Theorem 3.1. Thus, imposing the
condition defined by (3), the optimal weight vector would have
unit norm.

2) To continue with the rest of the proof, we need to show
that (A.4) is satisfied for some nonzero WI" i.e., a nonzero
WI defines a critical point of J1 (n), if and only if WI = ci
for some i E [1, N], where ci is the ith eigenvector of Cx.
Notice that since Cx is a real symmetric matrix, it can always
be written [1] as

(A.5)

(A6)

(A.4)

(A.1)

L x(k) xt(k) ~ nCx (A.2)
k=l

and in this case J 1 (n) can be written as

J1(n ) = tr[CxJ - 2wicxw1 +wiw1wicxw1. (A.3)

The critical points WI of J 1(n ) can be found by taking its
derivative with respect to WI and setting it equal to zero, i.e.,

aJ1 (n) I = 0
aWl W,=W,

ApPENDIX A:

PROOF OF THEOREM 3.1

1) To prove the first step of the induction, the expression for
the error function associated with the first neuron at iteration
n (8) is rewritten as

1 n

J1(n ) = - Z)x(k) - h1(k)w d (x (k ) - h1(k)W1)
n

k=l

1 n

= - ~)x(k) - w1wix(k))t
n

k=l

. (x(k) - WI wi x(k))

accuracy and speed advantages of this new RLS PC extraction
algorithm. The accuracy of the new algorithm was confirmed
by showing that the variances of the extracted components
approach to the true eigenvalues of the covariance matrix of
the input process.

Finally, the RLS learning rule was applied to dimensionality
reduction/feature extraction and image restoration problems.
It was found that this algorithm matches the performance
of the standard KL transform in both the reduction capa­
bility and data decorrelation. The GHA, on the other hand,
gives an inferior performance to both techniques. The ad­
vantages of the RLS PC extraction algorithm over standard
KL transform, however, include its recursive nature which
allows on-line computation of the principal eigenvectors as
well as a reduction in computation time through parallel
implementation. Furthermore, this learning rule was shown
to be an efficient and simple tool for filtering of images de­
graded by additive and/or multiplicative noise. Combined with
its excellent generalization capability, these properties make
the algorithm suitable for applications where dimensionality
reduction/feature extraction and filtering of large sets of images
with similar statistics, such as in the case of satellite or radar
images, is needed.

where it is assumed that a fixed weight set WI is used for all
w1(k), k E [1, n - 1]. For large n we can write

This equation defines the necessary and sufficient condition
for WI to be a critical point of J 1 (n) for large n. Multiplying
both sides of (45) by wi, gives
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Since the eigenvalues of C x are arranged in decreasing order,
it can be seen that the absolute minimum is obtained when
Ai = Al i.e. the most significant eigenvalue. This yields

N

J 1 min = L x, - Al

j=l

N

= L x;
j=2

(A IS)

by the corresponding time averages. Using (39) the first
summation term in (B.1) can be written as

1 n- L etm(k)dm(k) = tr [Cx]
n

k=l

- tr [A~_lCx Am-I] (B.2)

where Am- 1 has columns consisting of eigenvectors of ei' i E

[1, m - 1]. Consequently, (B.2) simplifies to

This absolute mimmum is obtained for the optimal weight
vector given by

1 n N

- L d~(k) dm(k) = L Aj.

n k=l j=m

(B.3)

(AI6) The second summation term in (B.I) can be reduced to

(B.5)

, i.e., the principal eigenvector of the input covariance matrix,
4) Using the first version of J1(n) in (A,I) for the second

layer, this error function can be rewritten as

J1(n) =tr [Cx] - L1i(n)Wl(n) - wi(n)L11(n)
- wi(n)Ch1(n)Wl(n) (A.17)

where

~ t dm(k)xt(k) = (/ - Am-1A~_l) oe. (B.4)
n k=l

As a result, for large n, the error function can be rewritten as

N

Jm(n) = L Aj - 2w~ (/ - Am-1A~_l) CXwm
j=m

+w~ Wmw~ CXwm.

and

which is a quadratic error function with a unique absolute
minimum. Minimizing J1 (n) W.r.tWI (n) gives the LS solution

Conversely, for wm defining a critical point, we have from
(B.6)

wm = (/ - Am- 1A~_l) CXwm (w~ CXwm)-l. (B.8)

Multiplying both sides by A~_l and using the orthonormality
property gives

A~_l wm = (A~_l - A~_l)CXWm (w~ CXwm)-l

= O. (B.9)

Having established the necessary and sufficient condition on
the critical points of Jm(n), the aim is to prove that this
condition, defined by (B.6), is satisfied for some nonzero wm

if and only if there exists an integer i E [m, N] such that
wm = ei' We proceed by substituting ei' i E [m, N], for wm
in the left hand side of (B.6). This yields

(/ - Am- 1A~_l) Cx ei - ei ei Cxei

= (/ - Am-1A~-l)ei Ai - ei ei Ai ei
= Ai ei - Ai ei
= O. (B.7)

Equation (B.9) states that the critical points of Jm (n) must
be orthogonal to the space spanned by the columns of Am-I'
Another necessary condition on the critical points of Jm(n)
can be derived by multiplying both sides of (B.6) by w~.

This implies that

w~ wm = w~(/ - Am-1A~_l) CXwm (w~ CXwm)-l
(B.IO)

To determine the critical point, Wm, of Jm(n), we take the
derivative of Jm(n) with respect to Wm and set it equal to
zero. This gives

(/ - Am-lA~_l)CXWm - wmw~ CXwm = O. (B.6)

(A.20)

(AI9)

(AI8)

Note that it is assumed that Wm is used for all wm(k), k E

[1, n - 1].For large n, the input statistics can be approximated

ApPENDIX B:
PROOF OF THEOREM 3.2

The error function at iteration n for the mth neuron is
written as

which corresponds to the global minimum solution of (AS).
Intuitively, the fourth order error function in (A.3) with multi­
ple critical points is reduced to a quadratic function (AI7) with
only one minimum which can be reached recursively using the
RLS algorithm. This is achieved by using the property that the
weight vector of the first layer is the transpose of the weight
vector of the second layer. Thus, at each new iteration, a more
accurate estimate of hI (n) is calculated at the first layer and
then provided as input to the second layer. This completes the
proof.
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(8.17)

(8.16)

(8.15)

(8.11)

(8.14)

(B.12)

which gives the minimum mean-squared error as

N

i; min = L

From (8.11), this can be rewritten as

N

JmO(n) = L Aj - w~ CXwm - Adl - w~Wm) (8.13)
j=m

which by applying (8.9) gives

j=m

From (B.15) it can be seen that the absolute minimum is
obtained for

where i E [m, N]. Now, JmO(n) and Jm(n) have the same
critical points which can be obtained by taking the derivative
of JmO(n) with respect to wm. This yields

for i E [m, N] which implies that the critical points of
Jm(n) are defined by the lower order eigenvectors ci with
i E [m, N]. The value of the error function at each of these
critical points is given by

Jmi(n) = Jmo(n)\w==ei

N

= L Aj - Ai i = m, .. " N.

Again, it can be see~e constraint given by (3) would
guarantee unit norm optimal weight vectors even for the lower
order components. With these necessary conditions on the
Wm, Jm(n) can be evaluated at wm as

JmO(n) := Jm(n)IW==W=,W:"W==l
N

= L x, - w~ CXwm .

j=m+l

To show that the extended RLS rule guarantees this minimum,
a similar approach as for Theorem 3.1 can be used. This
completes the proof.
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