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ABSTRACT 
 
 
 

PHYSICAL-SOCIO-ECONOMIC SYSTEMS INTEGRATION FOR COMMUNITY 

RESILIENCE-INFORMED DECISION-MAKING AND POLICY SELECTION 

 
 
 
Natural hazards are damaging communities with cascading catastrophic economic and social 

consequences at an increasing rate due to climate change and land use policies. Comprehensive 

community resilience assessment and improvement requires the analyst to develop a model of 

interacting physical infrastructure systems with socio-economic systems to measure outcomes that 

result from specific decisions (policies) made. There is limited research in this area currently 

because of the complexity associated with combining physics-based and data-driven socio-

economic models. This dissertation proposes a series of multi-disciplinary community resilience 

assessment models (e.g., multi-disciplinary disruption assessment and multi-disciplinary recovery 

assessment) subjected to an illustrative natural hazard across physical infrastructure and socio-

economic systems. As illustrative examples, all the proposed methodologies were applied to the 

Joplin, Missouri, testbed subjected to tornado hazard but are generalizable. The goal is to enable 

community leaders and stakeholders to better understand the community-wide impacts of a 

scenario beyond physical damage and further empower them to develop and support short-term 

and long-term policies and strategies that improve community resilience prior to events. 

Advancements in multi-disciplinary community resilience modeling can help accelerate the 

development of building codes and standards to meet the requirements of community-wide 

resilience goals of the broader built environment, consistent with the performance objectives of 

individual buildings throughout their service lives. 
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CHAPTER 1 INTRODUCTION 

 
 
 

1.1 Background and Motivation 

The performance of civil infrastructure systems supports community resilience but has been 

primarily controlled by probability-based limit states design over the last several decades (e.g., 

ASCE 7-16). In 2015, the U.S. NIST proposed a general framework to help communities develop 

resilience plans for building clusters (a group of buildings that support a community function such 

as education) and infrastructure associated with social and economic systems (NIST 2015). Since 

then, an increasing number of researchers have focused on physical infrastructure systems and 

related distributed networks to quantitatively assess community-level resilience with multi-

disciplinary measurements (e.g., Doorn et al. 2019, Wei et al. 2020, Wang et al. 2021b, Roohi et 

al. 2020). According to McAllister (2016), engineering outcomes can be quantitatively coupled 

with socio-economic performance, providing more flexible and informative support for risk-

informed decision-making with the public interest in mind. Advancements in multi-disciplinary 

community resilience modeling can help accelerate the development of building codes and 

standards to meet the requirements of community-wide resilience goals of the broader built 

environment at a higher level, consistent with performance objectives of individual buildings 

throughout their service lives (e.g., Ellingwood et al. 2017, Masoomi and van de Lindt 2019), 

which is also the focus and contribution of this dissertation. Many more multi-disciplinary 

community resilience approaches will be introduced below from disruption assessment and 

recovery assessment perspectives. 
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1.1.1 Multi-Disciplinary Disruption in Community Resilience 

1.1.1.1 Multi-Disciplinary Disruption Assessment  

The concept of community resilience refers to the cycle of a community and its capability of 

resisting, absorbing, adapting to, and rapidly recovering from disruptive events (NIST 2015, PPD 

21). The definition of resilience was initially proposed by Holling in the 1970s, and community 

resilience-related research emerged over the last decade (e.g., Holling 1973; Alexander 2013; 

Koliou et al. 2017; McAllister 2016; Ellingwood et al. 2017). Over the last several decades, an 

increasing number of researchers have focused on physical infrastructure systems and their 

networks to assess community-level resilience and mitigate risk and resulting impacts. Researchers 

have performed risk assessment of physical infrastructure including buildings (e.g. McAllister 

2013; Wang et al. 2018; Pilkington 2019), water systems (Guidotti et al, 2016; Masoomi and van 

de Lindt 2018), electric power systems (Ouyang and Duenas-Osorio 2014; Ma et al. 2020), oil and 

gas networks (Ouyang and Wang 2015; Ameri and van de Lindt 2019), transportation networks 

(Bocchini and Frangopol 2011; Yanweerasak et al. 2018; Wang and Jia 2019; Dong and Frangopol 

2015; Capacci et al. 2016; Sun et al. 2020), as well as their interdependencies (Guidotti et al. 2016; 

Dong and Frangopol 2017; Attary et al. 2019; Zou and Chen 2019; Zou and Chen 2020; Zhang et 

al. 2016). Moreover, limited studies have also addressed the integration of physical infrastructure 

systems and socio-economic systems throughout the community (Bocchini et al. 2014; Massomi 

and van de Lindt 2019, Roohi et al. 2020). Ellingwood et al. (2016) developed the Centerville 

virtual community as a community resilience testbed and proposed a fully integrated decision 

framework for interacting physical, economic, and social infrastructure systems. As part of that 

effort, Cutler et al. (2016) integrated physical resilience metrics from natural hazard models into a 

dynamic CGE model using economic  fundamentals. Rosenheim et al. (2019) coupled engineering-
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social science modeling by allocating household socio-demographic data to housing units in 

residential structures that were linked to critical infrastructure systems. 

1.1.1.2 Multi-Disciplinary Resilience Goals  

In the United States, building codes and standards (e.g., ASCE 2017) have focused on life safety 

goals, but the role of the individual building performance in fulfilling community resilience goals 

is unknown (Ellingwood et al. 2017). In order to address this grand challenge over the next decade, 

there is a need to link resilience design objectives with individual building performance levels 

(Wang et al. 2018). Physical performance of buildings has been quantitatively linked to 

community-wide social and economic outcomes in only one study by Roohi et al. (2020), without 

focusing on achieving community-level goals. Therefore, a systematic community-level analysis 

of linked physical, social, and economic systems is needed to de-aggregate performance targets of 

buildings to enable the community to achieve pre-defined socio-economic community-wide 

resilience goals. The performance targets can be expressed in terms of individual building 

fragilities to further guide the performance-based engineering design of structural components 

given specific design features.  

Community resilience goals mainly focus on robustness and rapidity (NIST 2015). The 

robustness goals emphasize improvements in the performance of building components, and the 

rapidity goals are devoted to allocating limited resources and creating organizational guidelines to 

ensure community recovery is implemented effectively and efficiently (Wang et al. 2018, Wang 

and van de Lindt 2021). The NIST Community Resilience Planning Guide, the San Francisco 

Planning and Urban Research Association, and the Oregon Resilience Plan provided examples of 

specifying the desired time-to-recovery as performance goals for building clusters at different 

functional levels (NIST 2015, NIST 2020, OSSPAC 2013, Poland 2009). Schultz and Smith (2016) 
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developed rapidity resilience objectives for housing, utility systems, and transportation 

individually when the community is exposed to flood events at different return periods. However, 

only a few studies focused on examining the achievement of robustness goals. Chang and 

Shinozuka (2004) set a reliability goal of 95% likelihood of being able to meet the objectives for 

water systems (e.g., major pump station loses function) in given seismic events. Kameshwar et al. 

(2019) estimated the likelihood of achieving robustness performance goals (i.e., the performance 

of infrastructure systems from 0% to 100%) for the coastal town of Seaside, Oregon, subjected to 

combined seismic and tsunami hazards. Wang et al. (2018) used the Direct Loss Ratio (DLR) and 

Un-Inhabitable Ratio (UIR) as the resilience goals for measuring the robustness of a residential 

building cluster under tornado hazards, with the damage values linked to direct loss and un-

inhabitability as defined from the HAZUS-MH MR4 technical manual for consistency.  

In order to measure socio-economic aspects of community resilience, researchers have 

proposed metrics that can be potentially considered as indicators of community resilience. 

Potential indicators of economic resilience include the unemployment rate, income equality (e.g., 

based on gender, race/ethnicity), and business diversity (e.g., ratio of large to small businesses). 

Social resilience metrics reflect individual human and social needs, which can be represented in 

population changes and the distribution of socio-demographic characteristics (e.g., age, race, 

education levels) over time (Burton 2015, Cutter et al. 2014), access to social services and 

networks, and quality of life assessments. Some metrics can reflect the multifaceted socio-

economic indicators of resilience. For example, temporary and permanent population dislocation 

following a disaster is a complex social and economic process jointly impacted by the functionality 

loss of physical systems and the socio-demographic characteristics (Wang et al. 2018). The effects 

of population dislocation can ripple through the local economy, social institutions, and building 
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inventory. For example, local businesses may lose both employees and customers, and therefore, 

decide to close permanently and relocate. As residents and businesses leave and relocate, tax 

revenue for local government shrinks, forcing layoffs that can induce more residents to leave 

(Mieler et al. 2015) as well as shrinking resources for restoring and maintaining physical 

infrastructure. 

1.1.2 Multi-Disciplinary Recovery in Community Resilience 

1.1.2.1 Building Infrastructure Recovery 

Community resilience is the ability of a community to prepare for natural or human-made hazards, 

adapt to changing conditions, and withstand and recover rapidly from disruptions (PPD-8, PPD-

21, NIST 2015). Resilience modeling and analysis can support risk-informed decisions including 

assisting stakeholders and decision-makers in understanding the different dimensions of the 

challenge, establishing short-term and long-term community goals and objectives, and executing 

their community planning. Community resilience assessment addresses the quantitative measures 

of robustness, rapidity, resourcefulness, and redundancy from a multi-dimensional perspective 

(Bruneau et al. 2003, Koliou et al. 2017). However, numerous studies have focused on assessing 

the residual functional capacity of the built environment and, in particular, lifeline systems 

following a disaster. Limited studies have been performed to explore the continuous recovery of 

building infrastructure and most model trajectories, making it difficult to model interventions at 

different points in time during the recovery process. 

The Federal Emergency Management Agency (FEMA), which is an agency within the U.S. 

Department of Homeland Security, first proposed the National Disaster Recovery Framework 

(NDRF) in 2011 as guidance, in which they explained how government agencies,  

nongovernmental organizations (NGO), and the private sector could (should) organize and utilize 
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existing resources to promote effective recovery by phase and support disaster-impacted states 

(FEMA 2011). In more recent years, researchers have developed comprehensive restoration 

models to explore the restoration process specific to critical infrastructure systems like buildings 

(e.g., Koliou and van de Lindt 2020, Bonstrom and Corotis 2016), electric power networks (e.g., 

Ouyang and Duenas-Osorio 2014), water and wastewater (e.g., Tomar et al. 2020), oil and gas 

(e.g., Ameri and van de Lindt 2019), and the interaction between networks of infrastructure 

systems (e.g., He and Cha 2018, Smith et al. 2019). When assessing the restoration time or 

sequences of the community involved with an interdependent network, the community topology 

associated with graph theory and critical paths is one of the most straightforward and efficient 

approaches to solve the problem (He and Cha 2018, Ramachandran et al. 2015, Masoomi and van 

de Lindt 2018). Moreover, some research efforts have focused on modeling housing recovery and 

re-occupancy of displaced households in the aftermath of a disastrous event (Zhang and Peacock 

2009, Hamideh et al. 2018, Lin et al. 2019). Others were devoted to examining the effects of 

household dislocation on business recovery reflected in resilience metrics such as revenue 

recovery and customer retention (Watson et al. 2020a, Aghababaei et al. 2020). 

Data-driven models have played an important role in quantifying certain aspects of community 

recovery. For example, some researchers have measured building recovery progress after hazard 

events via longitudinal field investigations (van de Lindt et al. 2020) and aerial imagery techniques 

(Kikitsu and Sarkar 2015, Crawford et al. 2019, Aghababaei et al. 2020). Hamideh et al. (2018) 

investigated the effect of damage, tenure, minority population, and income on the housing recovery 

trajectory using a regression model. Burton et al. (2019) considered integrating household 

decision-making into recovery models with real-world data collected from Los Angeles 

households combined with multinomial logistic regression. The results showed that the household 
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decisions were significantly impacted by physical damage to the residential community as well as 

other household socio-economic characteristics such as neighborhood evacuation level, household 

income, and insurance coverage. 

Simulation-based modeling is another process that helps researchers, engineers, and decision-

makers better understand community recovery under different conditions.  Such model simulation 

results can further help leaders and their stakeholders develop community plans to mitigate the 

adverse effects of hazard events and accelerate the restoration process. Solving an optimization 

problem for repair priority sequences or community resource allocation is one of the most common 

research topics examining recovery (Sun et al. 2020, Zhang et al. 2017, Nozhati et al. 2020). 

Hassan and Mahmoud (2020) used a Markov chain process coupled with a success tree to perform 

a dynamic optimization to estimate the recovery of healthcare facilities considering the availability 

of repair crews. González et al. (2016) developed the minimum-cost reconstruction strategy of a 

partially destroyed infrastructure network system with the limitation of budget, resources, and 

operationality. 

1.1.2.2 Business Recovery 

Community resilience modeling requires the analyst to model the physical infrastructure, social 

institutions, households, and the economy. Key to the resilience modeling process and related 

planning for decision support is the ability to model interdependent recovery, which includes the 

recovery of commercial businesses. The number of operational or recovered businesses in a 

hazard-affected area is one of the most important metrics towards this end (e.g., Marshall and 

Schrank 2014, Stevenson et al. 2018, Xiao and Van Zandt, 2012). However, business recovery 

following natural hazard events is a complex process (e.g., Aghababaei et al. 2021) which depends 

on many factors (Zhang et al.2009), such as physical property damage (Yang et al., 2016), loss of 
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utility services (e.g., Dahlhamer and Tierney 1998), supplier disruption (e.g., Lee 2019), mitigation 

strategies employed by business owners such as the existence of an emergency plan (e.g., Xiao 

and Peacock 2014) and the use of backup technologies and resources (e.g., Cremen et al. 2020), 

as well as ecological and socio-economic factors (e.g., Dietch and Corey 2011, Dahlhamer and 

Tierney 1998).  

Some businesses are highly vulnerable to physical damage to the building itself and interior 

contents/inventory, including retail stores, service businesses, and hotels, due to their reliance on 

physical premises for walk-in customers, product storage, and specialized equipment (Lee 2019). 

In addition, physical property damage affects the approach a business utilizes to finance its 

building recovery (Watson 2022, Lee 2019). Property damage can lead to a vicious cycle in 

business recovery (Watson, 2022), where the resulting downtime leads to lost revenue, which 

reduces resources needed for repair, and can also make incurring debt from recovery loans more 

hazardous as time increases post-disaster (Dahlhamer and Tierney 1998). Prolonged business 

closure is then interdependent with overall community recovery (Watson et al. 2020b, Xiao and 

Van Zandt, 2012). Employees lose work and dislocate due to damage to their homes, and 

customers go elsewhere for goods and services and may not return when the business does finally 

reopen (Alesch et al. 2001). 

Over the past several decades, quantitative analysis of impeding factors impacting business 

recovery have mainly focused on empirical analysis and regression analysis (e.g., Corey and 

Deitch 2011), such as logistic regression (e.g., Dahlhamer and Tierney 1998, Khan and Sayem 

2013, Orhan 2016, Wasileski et al. 2011) and probit regression (e.g., Lee 2019, Torres et al. 2019, 

McDonald et al. 2014). The data for these analyses are often based on surveys, which collect 

business population information on company/industry type, franchise status, and number of 
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employees, and post-event information on business operational status, property damage dollars, 

financing arrangements, and government aid (e.g., Cremen et al. 2020, Lee 2019, Corey and Deitch 

2011). However, despite long-term recovery of businesses after disaster events depending on both 

the recovery of commercial buildings as well as the recovery of households as customers and 

employees (Watson et al. 2020a, Xiao and Van Zandt 2012), limited previous studies performed a 

probabilistic quantitative analysis of commercial buildings recovery as an essential input for 

business recovery. 

Furthermore, planning for and implementing recovery activities requires funding resources 

from public, private, and semi-private entities. Understanding the types and amounts of resources 

available to business owners is critical to identifying how alternative funding sources impact the 

post-event business recovery process. Given the multi-scale and the multi-agency nature of 

different management systems, there are many challenges associated with tracking resilience 

resources. Therefore, real-world funding resource data used for community resilience-related 

research in previous studies are relatively scarce (e.g., Karamouz et al. 2018, Salignac et al. 2019). 

In order to more accurately track resilience resources, an iterative combination of approaches is 

appropriate.  A top-down analysis of federal budgets and domestic assistance acts as a scoping 

review of types of disaster programs, their funding mechanisms, and their eligible recipients 

(Watson et al., 2020b). From there, content analysis of all documents related to the identified 

funding streams can track the management, amount, and timing of funds from their appropriation 

to final disbursement (Berd and Watson 2020). Individual case studies and survey data can then 

illustrate how programs are translated in real-world events, which businesses receive assistance, 

the types of local programs implemented, and how recovery is financed at the individual business 

level. The collected resilience resources for case communities can be integrated as a resilience 
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resource portfolio, including different financing resources available to business owners, and then 

integrated into the probabilistic recovery modeling. 

1.1.2.3 Physical-Social Interdependent Recovery 

Climate change and other environmental variables increasingly lead to more intense and frequent 

hazard events, resulting in more risk and potential demands on physical infrastructure systems 

(e.g., Chester et al. 2020, Ghanbari et al. 2021, Feng et al. 2022).  A loss of functionality and 

serviceability for physical infrastructure systems can result in families becoming houseless, 

businesses closing, and education interruption. Multi-disciplinary and multi-dimensional 

community resilience assessment has emerged over the last decade, which focuses on modeling 

the complex interactions over physical infrastructure and other social systems (e.g., housing, 

business, education, and healthcare) to support planning effort and related decisions (e.g., Berkes 

and Ross 2013, Aldrich and Meyer 2015, Fereshtehnejad et al. 2021, Koliou et al. 2020, 

Aghababaei and Koliou 2022, Wang et al. 2021, Wang and van de Lindt 2022). A number of multi-

disciplinary community resilience models were developed to examine the physical performance 

of buildings and lifeline network systems (e.g., Burton et al. 2016, Sharma and Gardoni 2021, 

Sanderson et al. 2022), and some included propagation to economic losses and social disruption 

(e.g., Sanderson et al. 2021, Kim and Marcouiller 2016). However, most community recovery 

models thus far were designed to examine the recovery of a single system or multiple systems 

either from the perspective of physical stability, such as buildings and electric power systems (e.g., 

Aghababaei et al. 2020, He and Cha 2018, Capacci et al. 2022, Huang et al. 2022), or from the 

perspective of social stability such as housing, business, and social institutions (e.g., Binder et al. 

2019, Xiao and Van Zandt 2012, Hassan and Mahmoud 2021). The available literature for 

modeling interdependent community recovery linking physical infrastructure and social systems, 
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is scarce due to its complexity of combining physics-based and data-driven models, but is urgently 

needed. 

More than 90% of the total building stock in the United States is residential, with more than 

124 million occupied housing units, and more than 90% of residential buildings are wood frame 

construction (Potter 2020, Masoomi et al. 2018, American Housing Survey 2019). Therefore, 

exploring the interdependent recovery across physical infrastructure and other social systems 

clearly starts with this building type. Understanding recovery of the most prevalent building type 

and their inhabitants in the U.S. will have the most significant impact to help communities guide 

their planning process, and maintain population stability following the hazard event. Social factors 

impact the ability of communities and their populations to resist and recover from disasters. 

Recently, social vulnerability factors or social equity metrics have been increasingly incorporated 

into community resilience assessment and planning (e.g., Van Zandt et al. 2012, Merrow et al. 

2019, Kim and Sutley 2021,  Enderami et al. 2022). For residential structures damaged by hazard 

events, households having different social vulnerability levels impacts their ability to efficiently 

access funding resources, such as insurance and loans, for financing their building repairs (e.g., 

Wang and van de Lindt 2021, Lin and Wang 2017). These vast disparities also inevitably occur in 

housing recovery trajectories for socially vulnerable populations and other households (e.g., Sutley 

and Hamideh 2020, Griego et al. 2020). 

1.2 Research Objectives and Dissertation Outline 

As the title of this dissertation indicates, the objective of this dissertation is to comprehensively 

combine physical infrastructure systems with socio-economic systems and model them over time 

to enable resilience-informed policy making and community planning. The key community 
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resilience metrics can further inform the design guidelines of building codes and standards. 

Additionally, this dissertation proposes a set of policies that impact community resilience 

quantitatively. The goal is to enable community leaders and stakeholders to better understand the 

community-wide impacts of a scenario beyond physical damage and further help them develop 

short-term and long-term policies and strategies and therefore improve the community resilience. 

As an illustrative example, the proposed methodology in each of the following chapters will be 

applied to the Joplin testbed subjected to tornado events. The objective will be accomplished 

following the integrated conceptual framework shown in Figure 1-1 and the following chapters. 

Each chapter corresponds to the specific steps shown in the framework.  

Each chapter closes with a summary of the novelty and contribution to community resilience 

research. However, the overarching novelty of this dissertation is as follows: (1) for the first time, 

validated physical infrastructure, field-study driven social science models, and data-driven 

economic models have been fully linked/chained to investigate pre- and post-even policies; (2) 

real-world validation using data over the years following a hazard event has been used to validate 

a system-wide recovery model for residential structure recovery; (3) the ability to investigate 

policies both pre- and post-event has been demonstrated at the community level; (4) the ability to 

calibrate a policy decision recommendation as a function of the predictive effect on core physical, 

social, and economic metrics has been demonstrated; and finally, (5) a new computational 

environment, IN-CORE, was used to complete all analyses. The NIST-funded Center for Risk-

Based Community Resilience Planning, headquartered at Colorado State University in Fort 

Collins, Colorado, USA, developed a multi-disciplinary computational environment, the 

Interdependent Networked Community Resilience (IN-CORE) Modeling Environment. This 

open-source computational environment continuously releases a series of community-level 
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resilience assessment modules that integrate physical infrastructure with socio-economic systems 

and simulate the effect of different natural hazards on communities (e.g., Wang et al. 2021b, 

Sanderson et al. 2021, Nofal et al. 2021, Nofal and van de Lindt 2020). All the proposed 

methodologies in this dissertation will be integrated into the IN-CORE computational environment 

and enhance the resilience assessment of the IN-CORE computational environment for public use 

and therefore support risk-informed, or resilience-informed, decision-making. 
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Figure 1-1. A conceptual description of the framework 
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Chapter 2: Multi-disciplinary disruption assessment (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 3d, 3e, 8b 

in Figure 1-1) 

This chapter examines the effect of a tornado damaging physical infrastructure (buildings and 

electrical power network) and the effects on the population and the local economy for a real 

community (Wang et al. 2021b). In addition, this chapter proposes three residential building 

retrofit strategies as alternatives to improve community resilience and explores the effects of 

mitigation strategies on multi-disciplinary resilience metrics (Wang et al. 2021b). 

Chapter 3: Multi-disciplinary resilience goals de-aggregation (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 3d, 

3e, 5a, 6a in Figure 1-1) 

This chapter develops multi-disciplinary community resilience goals targeted for routine levels, 

design levels, and extreme levels of tornado events (Wang et al. 2022c). In addition, this chapter 

de-aggregates performance targets for individual residential buildings and determines the 

percentage of buildings that should be retrofitted to achieve community-level resilience goals in 

terms of physical, social, and economic metrics (Wang et al. 2022c). 

Chapter 4: Improved school designs and social service stability (2a, 2b, 2c, 3a, 3b, 3d, 3e in Figure 

1-1) 

This chapter proposes different design combinations for a reinforced masonry high school 

building (from each primary structural/nonstructural component to the entire building) specified 

for different performance levels (Wang and van de Lindt 2022). In addition, this chapter integrates 

the developed fragilities into a community level model with school attendance zones to investigate 

the effect of improving school building designs would have on maintaining school continuity (and 

more rapid return) for school children (Wang and van de Lindt 2022). 

Chapter 5: Residential building recovery (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 4a in Figure 1-1)  
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This chapter develops a methodology based on a multi-layer Monte Carlo simulation to model 

a two-stage recovery process for residential buildings: functional downtime due to delays and 

functional downtime due to repairs (Wang and van de Lindt 2021). In addition, this chapter 

quantifies the disaster recovery of residential buildings impacted by pre- and post-event policies, 

such as building retrofits and relaxed building permits (Wang and van de Lindt 2021). 

Chapter 6: Commercial building recovery (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 4a in Figure 1-1) 

This chapter develops a resilience resource portfolio (e.g., personal savings, insurance, loans, 

and government grants) to support the commercial recovery and quantifies the financing delay 

referenced from personal surveys and the REDi framework (Wang et al. 2023). In addition, this 

chapter performs the commercial building recovery assessment, determines the time-stepping 

building recovery trajectory, and calculates recovery resilience metrics for building clusters 

following the tornado events (Wang et al. 2023). 

Chapter 7: Physical-social interdependent recovery (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 3d, 3e, 4a in 

Figure 1-1) 

This chapter develops a methodology to examine the interdependent community recovery 

process across physical infrastructure and social systems. In addition, this chapter examines the 

integrated recovery process of residential buildings and their households over the community 

impacted by social vulnerability factors. 

Chapter 8: Summary, conclusions, and recommendations 
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CHAPTER 2 MULTI-DISCIPLINARY DISRUPTION ASSESSMENT  

 
 
 

2.1 Introduction 

Tornadoes occur at a high frequency in the United States compared with other natural hazards but 

have a relatively small footprint. A single high-intensity tornado can result in high casualty rates 

and catastrophic economic and social consequences, particularly for small to medium size 

communities. Comprehensive community resilience assessment and improvement requires the 

analyst to develop a model of interacting physical, social, and economic systems and to measure 

outcomes that result from specific decisions made.  These outcomes often are in the form of metrics 

such as the number of people injured or the number of households and/or businesses without water, 

but it has been recognized that most community resilience metrics have socio-economic 

characteristics. In this chapter, for the first time, a fully quantitative interacting methodology is 

developed to examine the effect of a tornado damaging physical infrastructure (buildings and 

electrical power network) and the effects on the population and the local economy for a real 

community, as depicted in the flowchart shown in Figure 2-1. Then, three residential building 

retrofit strategies are considered as alternatives to improve community resilience and the metrics 

for the physical, economic, and social sectors are computed. An illustrative example is presented 

for the 2011 Joplin tornado in a new open-source Interdependent Networked Community 

Resilience Modeling Environment (IN-CORE), with a computable general equilibrium (CGE) 

economics model that computes household income, employment, and domestic supply before and 

after the tornado. Detailed demographic data was allocated to each structure to enable the 

calculation of resilience metrics related to population dislocation impacts from the tornado. The 



 

18 
 

results of these analyses stemming from building damage estimation have a logical trend, but the 

substantial contribution of this chapter is that, for the first time, the effect of retrofit strategies for 

tornado loading can be quantified in terms of their effects on both social science and economic 

community-level metrics. This chapter presents the methodology and concept first published in 

Wang et al. (2021b).  

 

Figure 2-1. Resilience assessment methodology 

2.2 Resilience Assessment Methodology  

2.2.1 Damage Modeling 

In order to perform a probabilistic analysis of structural components and systems subjected to 

natural hazards, a set of limit states must be first identified that describes specified levels of 

performance for the components. For fragility assessment, the limit state function, g(x) for a 

component is written as: 
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                                                              𝑔(𝑥) = 𝑅 − (𝑊 − 𝐷)                                                        (2.1) 

where W is the load effect, e.g. wind or acceleration for a tornado or earthquake, respectively; R is 

the resistance of structural components; D is dead loads of structural components. Therefore, 

component failure can be defined as g(X) < 0. The probability of each component exceeding a 

specified limit state (lsi), namely slight, moderate, extensive, and complete levels, for a given 

intensity measure (IM) of the hazard can be calculated as follows (e.g. Memari et al. 2018; 

Masoomi et al. 2018): 

                                                         𝐹𝑟(𝑥) = 𝑃[𝐿𝑆 ≥ 𝑙𝑠𝑖|𝐼𝑀 = 𝑥]                                                (2.2) 

The fragility of components can then be assembled to the fragility at the building level, which 

is defined as the conditional probability of occurrence of any defined damage states of j 

components (i.e., the most unfavorable case). 

                                                     𝐹𝑟(𝑥) = 𝑃[⋃ (𝐿𝑆 ≥ 𝑙𝑠𝑖𝑗)|𝐼𝑀 = 𝑥𝑗 ]                                                (2.3) 

The resulting building-level fragility within Monte Carlo simulation (MCS) is commonly 

expressed as  a lognormal cumulative distribution function (CDF) via curve fitting and controlled 

by two parameters: median and standard deviation, as shown in Equation (2.4) (Amini and van de 

Lindt 2014). 

                                                               𝐹𝑟(𝑥) = 𝛷[𝑙𝑛(𝑥)−𝜆𝜉 ]                                                          (2.4) 

where x is specified intensity measure expressed as, for example, a 3-s gust wind speed (m/s or 

mph) for wind fragility analysis; λ and ξ are logarithmic means and standard deviations of 

lognormal functions at a specified damage state. 

2.2.2 Functionality Assessment Model 

A community is a complex system that includes assorted utility networks with a high degree of 

interaction. Any disruption in the networks, especially for lifeline system networks, can result in a 
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cascading failure within the network or a loss of functionality to other dependent networks in the 

community. Therefore, community resilience assessment requires that the community topology be 

simulated with necessary dependencies and interdependencies included among networks 

(Masoomi and van de Lindt 2018). Referring back to Figure 2-1, the section of Infrastructure 

Functionality Analysis which will introduce later depicts a probabilistic analysis of interdependent 

networks that is required, and the relationship among intrinsic, extrinsic, and functionality failure 

probabilities of the infrastructure for a wind event needs to be determined. The intrinsic failure of 

a component is defined as the failure due to the estimated physical damage of the component under 

a specific hazard intensity. The extrinsic failure of a component is defined as the failure of a 

component based on either its own system failure or due to it interacting with other components 

in other networks in the community. The union of intrinsic and extrinsic failures of a component 

result in the functionality failure of the component (Masoomi and van de Lindt 2018), which can 

be written as: 

                                        𝑃(𝐹𝑓𝑛𝑐) = 𝑃(𝐹𝑖𝑛𝑡⋃𝐹𝑒𝑥𝑡) = 𝑃(𝐹𝑏𝑑𝑔⋃(𝐹𝑠𝑢𝑏⋃𝐹𝑝𝑜𝑙𝑒))                         (2.5) 

where Ffnc, Fint, and Fext are functionality, intrinsic, and extrinsic failure events for a single 

component, respectively.  Fbdg, Fsub, Fpole are building, substation, pole failure events involved with 

this chapter as an example.   

2.2.3 CGE Model 

For many years, Input-Output (I-O) economic models were the most widely used approach to 

determine the regional economic activity impacted by natural hazards (e.g., Rose and Liao 2005). 

However, I-O models adequately modeled demand-side shocks but were limited in their ability to 

model impacts to the supply-side such as the loss of buildings and lifeline systems (Koliou et al. 

2017). In recent years, the advanced CGE model, which can address this limitation of I-O models, 
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was extensively used to address this subject. CGE models are based on fundamental 

microeconomic principles and are a widely used tool in the evaluation of government policy and 

external societal shifts such as those arising from technological innovation (Lofgren et al. 2002; 

Burfisher 2017). The models are particularly useful for investigation of the dynamic behavior of 

an economy’s private agents, public sector, and the external sector that the local economy trades 

with (Cutler et al. 2016). CGE models are an effective approach for regional impact analysis when 

the expected impacts of an external shock are complex or the external shock is assimilated from 

many other fields (e.g., Rose and Guha 2004; Rose and Liao 2005; Attary et al. 2020). Financial 

shocks, health consequences of pollution, climate change, and, as this chapter conveys, hazard 

events, are all capable of being integrated into a CGE model to simulate economic outcomes.  

The CGE model is based on (1) utility-maximizing households that supply labor and capital, 

using the proceeds to pay for goods and services (both locally produced and imported) and taxes; 

(2) the production sector, with perfectly competitive, profit-maximizing firms using intermediate 

inputs, capital, land, and labor to produce goods and services for both domestic consumption and 

export; (3) the government sector that collects taxes and uses tax revenues in order to finance the 

provision of public services; and (4) exchanges between the local economy and the rest of the 

world. A CGE model relies on extensive data from relevant private and public sources such as the 

Bureau of Economic Analysis and from the U.S. Census Bureau representing the interaction of 

households, firms, and the relevant governmental entity into a social accounting matrix (SAM). 

The CGE model consists of a series of equations and is calibrated when those equations exactly 

reproduce that data in the SAM. The CGE model can then be used to simulate the outcomes from 

a wide range of exogenous shocks. See Attary et al. (2020) for a complete description of the CGE 

model used in this chapter. 
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CGE models have been used extensively at the country, state (subregion), city and small-town 

level to examine a myriad of issues. Robinson (1991) examines a series of closure assumptions 

used for a large number of country level CGE models. Ballard et al. (1985) use a CGE model for 

the U.S. to examine alternative tax policies. At the state level, Turner et al. (2012) construct a CGE 

model for Illinois to estimate Armington elasticities. Using a CGE model for Colorado, Hannum 

et al. (2017) examine the implied cost of carbon and Cutler et al. (2018) examine the economic 

impact of changes in tax policies. At the town or small city level there are numerous examples. 

Taylor et al. (1999) construct a small village CGE model in Mexico to examine agricultural policy. 

Using a CGE model for Fort Collins CO, Schwarm and Cutler (2003) examine various growth 

issues and Cutler and Davies (2010) examine the consequences of productivity changes. Thomson 

and Psaltopoulos (2007) construct a small town CGE model to examine rural economic policy. 

More recently, Dorosh and Thurlow (2014) examine the role of cities and towns in driving 

economic growth for Ethiopia and Uganda and Attary et al. (2020) used a CGE model for Joplin 

MO to examine the impact of recovery trajectories from the 2011 tornado. This chapter maintains 

that CGE models at the small city or town level have access to richer data that results in more data 

intensive CGE models to be created. As an example, county assessor’s data can be used at the 

parcel level to obtain good estimates of the capital stock for commercial and residential buildings 

which is typically not available at the country level. Better production functions can be modeled 

which can allow the researcher to estimate more accurate substitutions between capital and labor. 

Alternative zoning regulations can be examined as well as varying property tax rates for existing 

buildings and new construction. 
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2.2.3.1 Data Collection and SAM Assembly 

Figure 2-2 provides a visualization of the Joplin social accounting matrix (SAM) with short 

descriptions of its major components (Wang et al, 2021b). The “Input-Output” matrix comes from 

U.S. Bureau of Economic Analysis (BEA) national input-output coefficients that are scaled based 

upon the employment statistics of Jasper County, Missouri. These IO coefficients are then applied 

to estimates of sector spending. A limitation of the use of these input-output coefficients is that 

they are generalized for the Jasper County and so are not specific to the city of Joplin. The “Wage 

Payments by Firms” matrix is made up of worker incomes taken from Census Public Use 

Microdata Sample (PUMS) which are then aggregated by sector. “Wage Transfers to Households” 

is the process by which wage payments to labor groups are assigned to their respective household 

group. Household consumption of that household group is then estimated by weighting the PUMS 

data with American Community Survey (ACS) data on consumer spending patterns and adjusted 

by population. “Imports” and “Export” Matrices describe the payments made by sectors and 

households within Joplin to sectors from regions outside Joplin and vice versa. Within the CGE 

model these values are impacted by relative prices between Joplin and the Rest of World (ROW). 

Capital stock values are collected from the Jasper County Assessor’s Office which provides market 

values of residential and commercial properties. These properties are assigned to Joplin spatially 

using a geographic information system (GIS) algorithm. 
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Figure 2-2. Simplified Joplin SAM Example 

Capital stock shocks from tornado damage flow through the CGE models as reductions in the 

Capital row of the SAM. In this way, retrofit strategies that mitigate damage to homes will also 

then attenuate capital stock destruction of homes through the “Capital Payments” matrix (Capital 

row, Housing Services columns). 

Within the SAM, household groups and labor groups are categorized by income. Table 2-1 

describes this grouping method. Grouping labor and households this way allows for an analysis of 

the effects of disaster on income distributions. For example, it enables relevant insights into which 

economic actors are benefiting from retrofit strategies.  

Table 2-1. Household and Labor Group Categorization 

Household Groups Labor Groups 

HH1 Less than $15,000 L1 Less than $15,000 

HH2 $15,000 to $35,000 L2 $15,000 to $40,000 
HH3 $35,000 to $70,000 L3 More than $40,000 
HH4 $70,000 to $120,000 - - 
HH5 More than $120,000 - - 

 

The Census Longitudinal Employer-Household Dynamics (LEHD) supplies information on 

where people live and work at the census block level. These data permit the analyst to spatially 

anchor residential homes and commercial buildings in the SAM and CGE model so that a specific 

path of a tornado can accurately damage the infrastructure in our modeling approach for Joplin. 
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This data set is critical if one wants to use a CGE model to examine location specific hazard events. 

The limitation of the LEHD data is that the sectors workers are employed in are groups into the 

Goods, Trade, and Other sectors. These three sectors are aggregations of NAICS (North American 

Industry Classification System) sectors. Since Joplin is a relatively small community, aggregating 

sectors into the Goods, Trade and Other is not that critical but for larger communities there are 

workarounds where the two and three-digit NACIS sectors can be approximated using the LEHD 

data.     

Combined within the SAM, the data sources described above provide a detailed picture of the 

Joplin economy that is comparable to privately owned economic data sources such as IMPLAN. 

Additionally, the data collected is free and open source except for county assessor’s data. These 

data are frequently free but, in some cases, the data is available for a nominal fee. In this way, the 

methods used to organize the data can be extended to any city or county in the nation and therefore 

provide a consistent source of economic data.  

2.2.4 Population Dislocation Algorithm 

Population dislocation is defined as a household leaving their housing unit immediately after a 

hazard event for any period of time. Population dislocation models provide a means to study 

population stability within a community or region. The population dislocation model, which is 

integrated with hazard and building damage analysis, predicts dislocation using a logistic 

regression model based on household-level surveys from Hurricane Andrew in 1992, which was a 

significant wind event (Girard and Peacock, 1997; Peacock et al. 1997). The logistic regression 

equation provides a probability of dislocation based on value loss caused by building damage and 

the other factors, including structural types (single-family or multi-family), and neighborhood 

characteristics (percent minority populations). After dislocation probabilities are estimated for 
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each damage state using the logistic regression model, the sum of the four probabilities multiplied 

by the four probabilities of damage states is estimated as the dislocation probability of each 

structure. For more details on the population dislocation algorithm and the logistic regression 

model, please see Rosenheim et al. (2019).  

The population dislocation model depends first on the allocation of a particular housing unit 

and household characteristic data associated with each residential building within the community. 

The allocation of detailed household characteristic data provides an estimate of household 

characteristics such as the number of people, vacancy, and tenure within each structure. For a more 

detailed summary of the housing unit allocation process, please refer to Rosenheim et al. (2019).  

2.3 Illustrative Example 

The Enhanced Fujita 5 (EF5) tornado that struck the city of Joplin, Missouri, on May 22, 2011, 

was the deadliest, costliest, and most intense single tornado in US history in 60 years (FEMA 

2011; Roueche and Prevatt 2013). The National Institute of Standards and Technology (NIST) 

conducted a comprehensive technical investigation of this devastating event which was completed 

in 2014 (Kuligowski et al. 2014). The structural damage of Joplin tornado was widely studied by 

researchers using empirical approaches and/or numerical simulation since 2011 (e.g., Prevatt et al. 

2012; Roueche et al. 2015). Understanding how to conduct a community-level resilience 

assessment is crucial for researchers and public decision-makers to enable them to explore 

strategies for risk mitigation and resilience enhancement. The remainder of this chapter uses the 

Joplin testbed as an example to explore the effect of wind-retrofit strategies on the selected typical 

multi-disciplinary community resilience metrics.  
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In summary, the tornado was simulated to have the same wind speeds spatially as the Joplin 

tornado adapted from the wind field model grouped by EF Scale, which was estimated by NIST 

(Kuligowski et al. 2014), and resilience metrics for physical, social, and economic sectors were 

computed. The initial damage prediction utilized the tornado path (Kuligowski et al. 2014), 

tornado fragility curves representative of a 19-archetype building dataset (Memari et al. 2018), and 

electric power network (EPN) datasets. The functionality of the infrastructure was linked with the 

CGE model described above which computes household income, employment, and domestic 

supply. Detailed demographic data was allocated to each structure to provide resilience metrics 

related to population impacts such as population dislocation as a function of tenure status of 

households. These physical, social, and economic metrics were compared to quantify the effect of 

each retrofit strategy on resilience metrics at the community level. It is worth noting that studies 

have been performed that look at the effect of retrofitting on damage and direct losses (e.g., Prevatt 

et al. 2014), but no studies have looked at the effect of retrofits on both social science and economic 

metrics at the community level.   

2.3.1 Computational Environment 

In order to enhance community resilience and integrate physical, economic, and sociological 

sectors into a robust computational platform, the Center for Risk-Based Community Resilience 

Planning developed the Interdependent Networked Community Resilience Modeling Environment 

(IN-CORE) (van de Lindt et al. 2019). IN-CORE integrates a broad range of scientific, 

engineering, and socio-economic algorithms and data to enable analysts the ability to simulate the 

effects of different natural hazards on a community and provides a detailed assessment of the 

impact. IN-CORE was used in the analysis, and this example demonstrates how users can interact 

with the IN-CORE computational environment by conducting a multi-disciplinary resilience 
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assessment and determine the effect of retrofit strategies for residential buildings in a tornado. All 

analyses and data were developed and are available on the IN-CORE web services and IN-CORE 

Python library (pyIncore) for researchers worldwide to expand the analysis beyond the work 

presented herein. In addition, this chapter is available online in a Jupyter Notebook, which allows 

users to reproduce this research with Python codes, data, and visualization. The interested reader 

is referred to 

https://incore.ncsa.illinois.edu/doc/incore/notebooks/Joplin_testbed/Joplin_testbed.html. 

2.3.2 Community and Hazard Modeling 

2.3.2.1 Community Topology 

A total of 19 archetype buildings were used in this chapter to represent the Joplin community with 

a total of 28,152 buildings, as shown in Figure 2-3. Five typical woodframe residential buildings 

with different footprint areas, roof structures, and the number of stories, were used to represent all 

the residential buildings in the city of Joplin. More than 85% of Joplin buildings are typical 

woodframe residential buildings, which is typical for small to mid-size North American 

communities (Masoomi et al. 2018). Other building types, such as commercial buildings, school 

buildings, and hospitals, were also included in the spatial description of the community using the 

suite developed by Memari et al. (2018). The electric power network (EPN) for Joplin was 

included in the community model beginning with the raw data for the EPN, including substations, 

poles, transmission lines, and distribution lines from the Empire District Electric Company just 

prior to the tornado (Attary et al. 2019). The EPN damage was combined with building damage to 

perform building functionality analysis immediately following the tornado.  

Since woodframe residential buildings account for most buildings in the city of Joplin and are 

the most susceptible building type for tornadoes, this chapter focuses on woodframe buildings.  
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The retrofit of residential structures is an essential tool to mitigate risk, thereby enhancing 

resilience. Table 2-2 presents three retrofit strategies used in this chapter based on different 

combinations of roof covering, roof sheathing nailing pattern, and roof-to-wall connection. The 

material for roof covering used for retrofit was planned to be either asphalt shingles or clay tiles. 

The shingles used were regular shingles with the upgraded shingles then being hurricane rated 

shingles. The roof sheathing nailing pattern was assumed to use hand-driven 8d common nails 

attaching roof deck sheathing panels to rafters spaced at either 150/300 mm (6/12 inch) or 150/150 

mm (6/6 inch). Two different selections of roof-to-wall connections refer that the roof rafters could 

be connected to the top plates over the vertical studs using two H2.5 hurricane clips or two 16d 

toenails. The retrofit strategies and related fragilities for these woodframe residential buildings 

were developed by Masoomi et al. (2018) and first used in a simplified virtual community example 

that looked at functionality but stopped short of investigating socio-economic metrics for 

community resilience (Farokhnia et al. 2019). The original design combination for residential 

buildings in areas typically susceptible to tornadoes is the same combination as retrofit strategy 1, 

except wood shingles, are in place rather than asphalt shingles (Niemiec and Brown 1988). 
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Figure 2-3. 19 archetype buildings in the city of Joplin 

 

Table 2-2. Different types of retrofit strategy schemes for residential buildings 

 

2.3.2.2 Socio-Economic Systems 

Joplin, Missouri spans part of both Jasper and Newton County, with the majority being located in 

Jasper County. Based on the 2010 Decennial Census (U.S. Census Bureau 2010a, 2010b, 2010c), 

the city of Joplin had 23,322 housing units (11,389 owner-occupied, 9,471 renter-occupied, and 

2,462 vacant). The household size was distributed from 1-person to 7-or-more persons, and the 

Structural elements 
Selections Retrofit 

strategy 1 
 Retrofit 

strategy 2 
Retrofit 

strategy 3 

Roof covering 
Asphalt shingles X X   

Clay tiles     X 
Roof sheathing nailing 

pattern 
8d C6/12 X     
8d C6/6   X X 

Roof-to-wall connection 
type 

Two 16d toenails X     
Two H2.5 clips   X X 
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total population count of the community was 50,150, with 27,076 people living in owner-occupied 

housing units and 21,086 people living in renter-occupied housing units. Table 2-3 provides a 

summary of the allocated housing units and population characteristics. Notice that the estimated 

housing units was 23,261 in the building inventory, compared to 23,322 based on the 2010 Census 

data, an error of 0.26% (U.S. Census Bureau 2010a; 2010b; 2010c). The average household size 

in Joplin was estimated to be 2.31 people (lower than the state average of 2.45), with owner-

occupied households being slightly larger than renter-occupied households (2.38 vs. 2.23) (U.S. 

Census Bureau 2010d). The average allocated household size was 2.30; 2.37 for owner-occupied 

housing units and 2.22 for renter-occupied housing units, an error of 0.47%. Table 2.3 verifies that 

the population data in the model accurately reflects Joplin’s estimated household size distribution 

by tenure status. These allocated data are important parameters to estimate population dislocation 

and the residents who were served by electric power following the tornado hazard, discussed in 

the section of Electrical Power Network Damage later. Household size and type did not impact the 

CGE model which reflects the local economy. 

Table 2-3. Allocated housing unit characteristics for Joplin, MO in 2010 

 Owner-occupied Renter-occupied Housing unit count 

1-person household 3,135 3,788 6,923 
2-person household 4,398 2,564 6,963 
3-person household 1,658 1,414 3,072 
4-person household 1,255 944 2,199 
5-person household 566 433 1,000 
6-person household 206 194 403 
7-person household 126 98 224 

Group Quarters - - 22 
Vacant - - 2,455 

Total number 11,344 9,435 23,261 
Total population  26,873 20,949 49,810 
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2.3.2.3 Tornado Hazard Modeling 

Figure 2-4 shows the 2011 Joplin tornado path with EF zones provided in the legend (after Wang 

et al. 2021a). The tornado path represents the wind speed within the vortex (multi-vortex in the 

case of Joplin) that was estimated to have EF5 wind speeds of more than 321.9 kph (200 mph), 

reducing to EF4 wind speeds as the areas move outwardly perpendicular from the centerline, and 

eventually reaching EF1 zone (Attary et al. 2018). Obviously, this concept is not perfect, as seen 

clearly through inspection of Figure 2-4. It should be noted that generic tornado paths with 

idealized rectangular EF regions can also be used, and users can define their tornado path for the 

simulation (Standohar-Alfano and van de Lindt 2014). For communities that have not experienced 

a tornado, this idealized representation allows users to perform “what if” scenarios. Besides, 

different wind field models to estimate near-surface wind speed exist for the Joplin tornado, some 

of which are independent of the field damage assessment to the buildings and are based on tree 

fall patterns (Lombardo et at. 2015). 
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Figure 2-4. Joplin tornado path with EF zones 

2.3.3 Fragility Functions 

The damage fragility curves for a suite of 19 building types for four damage states are available to 

cover the entire range of wind speeds associated with tornadoes (Attary et al. 2018; Memari et al. 

2018; Koliou et al. 2017; Masoomi et al. 2016). For details on all building fragilities, the interested 

reader is referred to Memari et al. (2018). Table 2-4 provides tornado fragilities for the five 

residential building archetypes when the three different retrofit strategies were applied which were 

extracted from Masoomi and van de Lindt (2018). Referring back to Equation (2.4), λ and ξ shown 

in Table 2-4 are two parameters that control tornado fragility curves. These parameters could 

determine the vulnerability of buildings subjected to a tornado. Generally, the higher λ is, and the 

buildings are more robust to resist the hazard, and ξ shows the dispersion of the distribution 

considering uncertainties to obtain the fragilities. Note that the numbers with and without 
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parentheses of each cell shown in Table 2-4 are the logarithmic mean and standard deviation of 

the tornado fragilities in U.S. customary units (mph) and metric units (m/s), respectively. For each 

residential building archetype, this required a full structural analysis at each wind speed to 

calculate the resistance when implementing different retrofit strategies. A reduction is damage 

occurs, but each retrofit has other implications such as cost and disruption to households.  

Table 2-4. Lognormal tornado fragilities of residential buildings with three retrofit strategies 

 

2.3.4 Infrastructure Functionality Analysis 

2.3.4.1 Functionality Due to Building Damage 

Using the tornado fragilities described earlier, and wind speed at the location of each structure, the 

probability of exceeding each damage state can be computed using MCS.  Recall that the damage 

states are slight, moderate, extensive, and complete, and were calculated for each building in the 

Damage 
state 
(DS) 

Retrofit 
strategies 

# 

Archetype 1 Archetype 2 Archetype 3 Archetype 4 Archetype 5 

λ ξ λ ξ λ ξ λ ξ λ ξ 

DS1 
 

1 
3.68 

(4.49) 
0.13 

(0.13) 
3.60 

(4.41) 
0.13 

(0.13) 
3.61 

(4.42) 
0.13 

(0.13) 
3.73 

(4.54) 
0.13 

(0.13) 
3.75 

(4.56) 
0.13 

(0.13) 

2 
3.68 

(4.49) 
0.14 

(0.14) 
3.60 

(4.41) 
0.13 

(0.13) 
3.61 

(4.42) 
0.13 

(0.13) 
3.73 

(4.54) 
0.13 

(0.13) 
3.75 

(4.56) 
0.13 

(0.13) 

3 
3.93 

(4.74) 
0.12 

(0.12) 
3.87 

(4.68) 
0.12 

(0.12) 
3.89 

(4.70) 
0.12 

(0.12) 
3.95 

(4.76) 
0.12 

(0.12) 
3.95 

(4.76) 
0.12 

(0.12) 

DS2 
 

1 
3.56 

(4.37) 
0.14 

(0.14) 
3.53 

(4.34) 
0.13 

(0.13) 
3.51 

(4.32) 
0.13 

(0.13) 
3.65 

(4.46) 
0.13 

(0.13) 
3.65 

(4.46) 
0.13 

(0.13) 

2 
3.85 

(4.66) 
0.12 

(0.12) 
3.76 

(4.57) 
0.12 

(0.12) 
3.77 

(4.58) 
0.12 

(0.12) 
3.87 

(4.68) 
0.12 

(0.12) 
3.88 

(4.69) 
0.12 

(0.12) 

3 
3.99 

(4.80) 
0.11 

(0.11) 
3.96 

(4.77) 
0.11 

(0.11) 
3.96 

(4.77) 
0.11 

(0.11) 
4.03 

(4.84) 
0.10 

(0.10) 
4.02 

(4.83) 
0.11 

(0.11) 

DS3 
 

1 
3.63 

(4.44) 
0.13 

(0.13) 
3.59 

(4.40) 
0.13 

(0.13) 
3.57 

(4.38) 
0.13 

(0.13) 
3.71 

(4.52) 
0.13 

(0.13) 
3.70 

(4.51) 
0.13 

(0.13) 

2 
3.98 

(4.79) 
0.11 

(0.11) 
3.91 

(4.72) 
0.11 

(0.11) 
3.92 

(4.73) 
0.11 

(0.11) 
4.00 

(4.81) 
0.11 

(0.11) 
3.98 

(4.79) 
0.11 

(0.11) 

3 
4.08 

(4.88) 
0.10 

(0.10) 
4.04 

(4.85) 
0.10 

(0.10) 
4.04 

(4.85) 
0.11 

(0.11) 
4.12 

(4.93) 
0.10 

(0.10) 
4.11 

(4.92) 
0.10 

(0.10) 

DS4 
 

1 
3.68 

(4.49) 
0.14 

(0.14) 
3.68 

(4.49) 
0.13 

(0.13) 
3.74 

(4.55) 
0.12 

(0.12) 
3.76 

(4.57) 
0.13 

(0.13) 
3.64 

(4.45) 
0.15 

(0.15) 

2 
4.16 

(4.97) 
0.13 

(0.13) 
4.17 

(4.98) 
0.12 

(0.12) 
4.23 

(5.04) 
0.12 

(0.12) 
4.28 

(5.09) 
0.12 

(0.12) 
4.06 

(4.87) 
0.14 

(0.14) 

3 
4.29 

(5.10) 
0.12 

(0.12) 
4.26 

(5.07) 
0.11 

(0.11) 
4.31 

(5.12) 
0.12 

(0.12) 
4.36 

(5.17) 
0.12 

(0.12) 
4.24 

(5.05) 
0.13 

(0.13) 
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community to estimate the structural damage spatially. It is important to mention that the damage 

states for residential, commercial, school buildings and others were defined based on the 

component-based approach also used in “HAZUS MH 2.1” (FEMA 2012; Masoomi et al. 2018; 

Koliou et al. 2017; Masoomi and van de Lindt 2016), but are not HAZUS fragilities. In this chapter, 

the criterion for loss of building functionality as a result of damage within a single MCS iteration 

was defined as exceeding DS2. If more than 50% of the simulations exceeded DS2, the building 

was deemed not to be functional for interfacing to the CGE model.  Figure 2-5 shows the criterion 

as mentioned for a typical residential building (archetype 4), as an example. It was assumed 

buildings were still safe and operational when buildings were in damage state 1 following the 

tornado, and there was only minor damage to building components such as the roof covering, 

which could be covered with a tarp to prevent excessive rainwater intrusion. The functionality 

criterion could be different in terms of a particular structural failure (or other) in buildings 

whenever the damage exceeds DS1. 

The 2011 Joplin tornado path estimate with specified EF zones is deterministic in this chapter, 

the number of buildings falling within the tornado path by building archetypes can be determined, 

as illustrated in Table 2-5. For example, there are 2,626, 1,387, 1,703, 807, 556 T1 woodframe 

residential buildings with one story, gable roof, and small rectangular plan, falling in EF1, EF2, 

EF3, EF4, EF5 zones, respectively. It is well known that tornadoes impact a relatively small 

geographical area within a community. As a result, buildings outside the tornado path are 

structurally safe, and the failure probabilities of these buildings are assigned to be approximately 

zero. Buildings located within the tornado path were damaged at different levels with the failure 

probability between 0 and 1. In general, the closer to the tornado centerline with higher wind 

speeds, the higher the probability of buildings in damage. For example, there is a T1 woodframe 
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residential building whose failure probability is 0.999, 0.856, and 0.579 for retrofit strategy #1, #2, 

and #3, respectively. The results revealed that the building was the most vulnerable if using retrofit 

strategy #1, and the most robust if using retrofit strategy #3. Other economic factors, such as 

limited budget, were beyond the scope of this chapter. 

 
Figure 2-5. The criterion for loss of building functionality because of damage 
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Table 2-5. Buildings located in the simulated tornado path 

Archetypes Building description 
Joplin 

buildings 
EF1 EF2 EF3 EF4 EF5 

T1 
Residential wood building, 
small rectangular plan, gable 
roof, 1 story 

24,757 2,626 1,387 1,703 807 556 

T5 
Residential wood building, 
large rectangular plan, gable 
roof, 2 stories 

146 4 21 31 5 15 

T6 
Business and retail building 
(strip small) 

736 45 32 37 37 35 

T7 Light industrial building 963 46 39 27 21 13 

T8 Heavy industrial building 155 14 2 2 0 2 

T9 
Elementary/middle school 
(unreinforced masonry) 

39 6 0 1 2 3 

T10 
High school (reinforced 
masonry) 

50 0 0 2 1 2 

T11 Fire/police station 8 0 1 0 0 0 

T12 Hospital 41 5 2 5 7 3 

T13 Community center/church 88 7 5 4 3 2 

T14 Government building 28 3 3 1 0 0 

T15 Large big-box 21 1 1 0 2 1 

T16 Small big-box 30 1 2 1 0 1 

T17 Mobile home 379 12 0 0 0 0 

T18 Shopping center 10 0 0 0 0 1 

T19 Office building 701 84 16 21 74 41 

Total 
number 

 28,152 2,854 1,511 1,835 959 675 

 

2.3.4.2 Electrical Power Network Damage 

Attary et al. (2019) applied a cellular automata (CA) algorithm, together with transmission and 

distribution line locations within an electrical power network, to determine service areas for the 

substations. Based on that work and combining it with raw 2010 data collected from the Empire 

District Electric Company, the authors included four more substations to cover all the buildings 

shown in the Joplin map, beyond the immediately impacted tornado path. This was necessary to 

model the building functionality, described later, which includes a loss of electrical power. There 

are 18 substations (transmission substations and distribution substations) and 23,857 distribution 
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poles modeled in this chapter. Fragility parameters for the community electric power network used 

in this chapter were based on the work performed by Masoomi et al. (2018) and Unnikrishnan and 

van de Lindt (2016). The number of distribution poles in each EF region of the tornado was 

determined as 1,470, 800, 685, 436, and 369 in the EF1 through EF5 regions, respectively.  

The failure probabilities of the substations (SS9, SS10, SS11) located in EF-5, EF-3, and EF-1 

were (near) 1, 0.997, and 0.758, respectively. The EPN damage was also identified whenever the 

state of the electric power facility within MCS exceeded the moderate level (see Figure 2-5). In 

this chapter, there is no retrofit being analyzed for the electric power network. An interdependency 

table between all buildings and their electrical substation dependency was created to identify 

buildings located in each of the service areas for the substations (see Figure 2-6). Another 

dependency was modeled by setting up an interdependency table between each building and poles, 

with the closest poles to the building being linked using what is called the nearest neighbor 

relationship geographically. The closest poles to buildings were considered to be utility poles in 

the front of the house or the backyard. 
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Figure 2-6. Buildings situated in the service areas of substations 

2.3.4.3 Functionality Due to Building Damage and/or Loss of Electric Power 

After finding the damage level for each community component (buildings, electrical substations, 

and distribution poles) based on their fragility curves, their intrinsic failure status was expressed 

in a binary format as either failed (0) or not failed (1) estimated by whether or not it exceeds DS2 

for each run of the MCS. Then the functionality status of all the buildings was updated by 

considering their dependencies with the corresponding electric power facilities. Buildings were 

only considered functional when the building itself, the substation transmitting the electric power, 

and the closest pole were all functional (accounting for network connectivity). Each component 

generated enough MCS samples randomly with their functionality status determined. Both the 

functionality probability of each building and the percentage of building functional and 

nonfunctional could be calculated using the updated functionality status of all the buildings within 
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the MCS. More detailed results determined from infrastructure functionality analysis will be 

summarized and introduced later in the section of physical service resilience metrics results. 

2.3.5 Physical Service Metrics Results 

In this chapter, the functionality of the electric power network plays an essential role in the 

functionality of buildings. The equation to determine the loss of physical service metrics (Pps) after 

the tornado hazard is shown below: 

                                   𝑃𝑝𝑠 = ∬𝐿(𝐹𝑓𝑛𝑐(𝐷𝑆)) ∙ 𝑝[𝐷𝑆|𝐼𝑀] ∙ 𝑝[𝐼𝑀]𝑑𝐷𝑆 ∙ 𝑑𝐼𝑀                               (2.6) 

where DS indicates the damage state, p[٠|٠] denotes the probability of a random variable 

conditioned on the other random variable, L(٠) represents the loss of physical service metrics based 

on the functionality events, and IM is the intensity measure which is wind speed for tornadoes.  

 
(a) 



 

41 
 

 
(b) 

 
(c) 
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(d) 

Figure 2-7. Physical service resilience metrics: (a) percent of buildings within the tornado path 
functional as a result of damage (%); (b) percent of buildings within the tornado pathway 

functional due to damage and/or loss of electrical power (%); (c) percent of buildings functional 
due to damage and/or loss of electric power; (d) percent of buildings receiving electric power 

and percent of residents served electric power 
 

Figure 2-7 presents four representative physical service resilience metric results determined 

from infrastructure functionality analysis: (1) the percentage of buildings falling within the tornado 

path that are not functional as a result of building damage, (2) the percentage of buildings falling 

within the tornado path that are not functional due to building damage and/or loss of electrical 

power, (3) the percentage of buildings receiving electric power, and (4) percentage of residents 

being served electric power. The percentages in the horizontal bars of Figure 2-7(a) were the 

averages for the number of buildings within the tornado path that are functional divided by the 

total number of buildings (7,834) considered to be in the tornado path. The improvement in retrofit 

strategies had a significant positive effect on improving the performance of residential buildings 

in this Joplin tornado simulation. The difference in remaining functionality from 3.26% to 41.02% 

comparing retrofit strategies 1 and 3 is stark. The reason that such a large change occurs is that the 
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edges of the tornado where EF0 and EF1 damage would normally occur and no longer an issue, 

and even a large portion of the EF2 damage becomes EF1 damage making it still function, e.g. 

often tarped and the household remains. Loss of functionality is defined as more than a 50% chance 

of exceeding damage state 2. Damage state 2 occurs in these lower EF regions so the effect of 

basic retrofits is significant. For more details on the concept of narrowing the damage path of a 

tornado through retrofit, the reader is referred to van de Lindt et al (2013). 

The number of buildings in the path linked to SS9, SS10, and SS11 was 3,634, 2,453, and 274, 

which means more than 81% buildings in the path had the possibility of losing electric power 

regardless of whether the buildings themselves were physically damaged or not (see Figure 2-6). 

As a result, there was a minor difference in the percentage of buildings deemed functional due to 

physical damage and/or loss of electrical power with the utility of different retrofit strategies as 

shown in Figure 2-7(b) and 2-7(c). Despite this, there were still some changes in the probability 

of buildings remaining functional, which were mostly located in the EF1 region of the tornado.  If 

considering the loss of electric power as well as building damage as the functionality criterion, the 

functionality of buildings does not have an evident difference between the different retrofit 

strategies. This is primarily because the EPN losses in wind events are often total or near total for 

a community. 

It is noticeable that only 48.2% of buildings and 44.3% of residents could receive electric power, 

which means more than half of buildings and residents experienced power outage following the 

tornado event due to downed power poles or damage to substations. The housing unit allocation 

process (Rosenheim et al. 2019) was applied, and the number of people per household as a typical 

household characteristic was predicted. As a result, the percent of residents served electric power 

can be determined by the number of people residing in the residential buildings that experienced 
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electric power loss divided by the total population of 49,810 (see Table 2-3). It should be 

emphasized that the buildings illustrated in Figure 2-7(d) include all archetypes such as residential, 

commercial, and industrial buildings within Joplin, but residents served electric power focuses on 

the housing units living in the residential buildings and does not include other building types.  

Based on the field investigation after the 2011 Joplin tornado, Kuligowski et al. (2014) 

determined that over 7,400 residential buildings and 500 non-residential buildings were damaged 

to some degree and approximately 43% of residential buildings were considered destroyed (i.e., 

structures with damage classification of heavy or demolished). The devastating tornado also 

battered the electric power network and resulted in approximately 20,000 Empire District Electric 

(EDE) customers losing power during or immediately after the storm. Specific tornado impacts 

included two step–down substations damaged but repairable, one substation completely destroyed, 

and approximately 4,000 distribution poles and transmission towers damaged. In summary, all the 

simulations described above quantitatively estimate the physical service resilience metrics related 

to building damage, EPN damage, and electric loss after the tornado, and the analytical results are 

close to the actual field investigation data collected after 2011 Joplin tornado. 

2.3.6 Economic Stability Metrics Results 

In this chapter, the CGE model discussed earlier was developed for Joplin and served as the 

economic impact model. The model was used to quantitatively evaluate how the community 

economy responded to damages created by the tornado hazard. Capital stock reductions were 

accounted for through the connection between the engineering outputs (lack of building 

functionality) and the CGE model. The outputs calculated from infrastructure functionality 

analysis were building functionality probabilities. It is important to note that building functionality 

probability herein represents the probability of each building in the community being functional 



 

45 
 

only due to building damage without considering electric power loss, which is consistent as the 

case shown in Figure 2-7(a). Building level capital stock impacts were weighted based upon the 

building functionality probabilities multiplied by the value of the buildings. Next, the building-

level impacts were aggregated to the corresponding sectors and implemented as external shocks to 

these sectors within the model. The shocks took the form of percentage reductions in the capital 

stock of the associated residential, commercial, or industrial sectors and then were applied to the 

CGE model. Incorporating the output from the engineering models into external shocks enabled 

the CGE model to estimate employment effects, domestic supply by sectors, as well as the level 

and distribution of household incomes in order to explore the varying impacts of natural disasters 

on a regional economy (Cutler et al. 2016; Attary et al. 2020).  

Table 2-6 indicates the direct and indirect economic loss following the tornado described in the 

chapter with the three different retrofit strategies implemented. For each retrofit strategy, which 

applies modified fragility curves, the building functionality analysis was performed, and the 

economic impacts were simulated. Recall that retrofit strategy 3 has the design combination of 

clay tiles as roof covering, roof sheathing nailing pattern scheduled for 8d C6/6, and two H2.5 

clips used for the roof-to-wall connection. The loss of total household income was reduced from 

$60.5 million to $38.3 million when using retrofit strategy 3. Although it is important to consider 

the budget of each retrofit strategy, the methodology in this chapter presents the approach to 

quantify the effect of these physical modifications to residential buildings on economic losses for 

employment, domestic supply, and household income. Costing and optimization is beyond the 

scope of this chapter, but it is important should eventually be pursued. Additionally, it is 

acknowledged that government agencies, nongovernmental organizations (NGOs) like the 

American Red Cross and local churches, businesses, and individual contributors provide resources 
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after disasters, which will contribute to the stability of the local economy. However, all aids and 

funds are commonly provided during the recovery over time rather than immediately after the 

hazard event. The significant impact of the funds or donations on the community economy is not 

considered in this chapter, but will need to be considered when recovery is modeled (see Chapter 

5 and Chapter 6). 

The key results of the CGE analysis largely concern the impact of the event on the distribution 

of household income. Middle-income households (HH4) were the hardest hit by the tornado and 

were the largest benefactors from retrofits in terms of their incomes. This is due to the location of 

these homes from the LEHD data relative to the path of the simulated tornado. Low-income 

households (HH1 to HH2) were not as negatively impacted by the disaster but saw virtually no 

benefit from retrofit strategies as these households are heavily comprised of renters. This result is 

consistent with the impact to rental property domestic supply (HS3), which experienced only 

minor disruption relative to homeowner residential property domestic supply (HS1 to HS2). 

A particularly interesting result is that across all three cases, household income increases for 

HH5. Wage income falls for this group, but capital income increased by enough to more than offset 

the wage income losses. This occurs because HH5 households own most of the physical capital 

for commercial properties. When the tornado hit, many commercial buildings became 

nonfunctional, but it increased the rate of return on the commercial properties that were not 

damaged. The resulting increase in capital income for HH5 was larger than the wage losses for 

HH5 so total household income increased for this group. For household groups HH2, HH3 and 

HH4, these groups own a much smaller share of commercial property, so their wage income losses 

were larger in absolute value than their capital income increases. For HH1, this group was mostly 
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dependent on government transfers, so even though their wage income fell, the government 

transfers dominated for this group, albeit by a small amount.    

Although commercial sectors (Goods, Trade, and Other) do not directly benefit from retrofit 

strategies as the retrofits were only applied to residential homes, the indirect effects led to 

substantial negation of unemployment. This reduction in unemployment appears to be consistently 

applied as we increase the retrofit strategy from left to right. However, the magnitude of the 

employment loss to the Trade sector is far greater than Goods and Other relative to their total 

employment sizes. For instance, the Trade and Goods sector each respectively hold approximately 

one-quarter of total employment and yet twice the number of workers in the Trade sector went 

unemployed following the tornado (at every level of retrofit strategy). 
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Table 2-6. Economic resilience metrics difference 

 Retrofit strategy 1 Retrofit strategy 2 Retrofit strategy 3 

Employment (unit: person) 
Goods -358.074 -270.761 -212.817 
Trade -742.131 -562.955 -443.312 
Other -1765.100 -1332.170 -1042.180 

Federal -4.710 -3.586 -2.818 
State -13.392 -10.193 -8.046 
City -58.505 -44.546 -35.144 
Total  -2941.9 -2224.2 -1744.3 

Domestic Supply Residential (unit: millions of $) 
HS1 -61.095 -45.638 -35.469 
HS2 -67.325 -49.572 -36.768 
HS3 -7.713 -6.623 -6.059 
Total -136.1 -101.8 -78.3 

Domestic Supply Commercial (unit: millions of $) 
Goods -49.254 -41.540 -36.411 
Trade -42.299 -33.169 -26.923 
Other -111.074 -85.447 -68.200 
Total -202.6 -160.2 -131.5 

Household Income (unit: millions of $) 
HH1  0.072 0.046 0.018 
HH2  -0.991 -0.760 -0.805 
HH3  -24.430 -18.240 -14.643 
HH4  -100.042 -76.532 -59.645 
HH5  64.934 47.926 36.741 
Total -60.5 -47.6 -38.3 

 

2.3.7 Population Stability Metrics Results 

The population dislocation model was implemented to predict the population dislocation metrics 

under different natural hazards. It is noteworthy that this chapter modifies the population 

dislocation model to reflect the unique nature of tornado paths. Since the building damage 

fragilities have four categories, a building with no damage has a ~100% chance of insignificant 

damage and a ~0% chance of other damage levels. These structures were located across the 

community away from the tornado path. The authors assumed that these households would not be 

dislocated due to damage to their structure. 
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In order to determine if a household dislocates, a random value was uniformly sampled between 

0 and 1: if this value was lower than the probability of dislocation, then the household was set to 

dislocate. Tables 2-7 and 2-8 indicate the housing units and population predicted to dislocate as a 

function of housing unit characteristics. The numbers of housing units predicted to dislocate were 

5,567, 4,249, and 3,814 if residential buildings employ retrofit strategy #1, #2, and #3, 

respectively. The total population dislocated decreases by 2,701 people (11,698 to 8,997) for 

retrofit strategy 2 and by 944 people (8,997 to 8,053) for retrofit strategy 3. Disaggregating the 

dislocation statistics by housing unit characteristics reveals that the retrofit strategies reduce 

dislocation by 25.4% for renter-occupied households and 23.2% for owner-occupied households. 

Additionally, the data is disaggregated by group quarters and vacancy types, and the retrofit 

strategies have no impact on nursing facilities. 

Table 2-7. Housing unit dislocation within tornado path by housing unit characteristics and 
retrofit strategy 

Housing Unit 
Characteristics 

Retrofit 
strategy 1 

Retrofit 
strategy 2 

Retrofit 
strategy 3 

Total housing 
units 

Owner-occupied 2,737 (78.5%) 2,145 (61.5%) 1,929 (55.3%) 3,487 (100%) 
Renter-occupied 2,326 (76.2%) 1,732 (56.8%) 1,550 (50.8%) 3,052 (100%) 

Nursing Facilities 2 (40.0%) 2 (40.0%) 2 (40.0%) 5 (100%) 
Other Group Quarters 1 (100.0%) 0 (0.0%) 0 (0.0%) 1 (100%) 

Vacant for Rent 184 (75.4%) 144 (59.0%) 131 (53.7%) 244 (100%) 
Vacant for Sale 129 (75.9%) 100 (58.8%) 86 (50.6%) 170 (100%) 
Vacant Other 188 (77.7%) 126 (52.1%) 116 (47.9%) 242 (100%) 

In total 5,567 (77.3%) 4,249 (59.0%) 3,814 (53.0%) 7,201 (100%) 

 

Table 2-8. Population dislocation within tornado path by housing unit characteristics and retrofit 
strategy 

Housing Unit 
Characteristics 

Retrofit 
strategy 1 

Retrofit 
strategy 2 

Retrofit 
strategy 3 

Total 
population 

Owner-occupied 6,349 (78.5%) 4,992 (61.7%) 4,468 (55.2%) 8,093 (100%) 
Renter-occupied 5,204 (76.1%) 3,878 (56.7%) 3,458 (50.6%) 6,837 (100%) 

Nursing Facilities 127 (34.1%) 127 (34.1%) 127 (34.1%) 372 (100%) 
Other Group Quarters 18 (100.0%) 0 (0.0%) 0 (0.0%) 18 (100%) 

In total 11,698 (76.4%) 8,997 (58.7%) 8,053 (52.6%) 15,320 (100%) 
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2.4 Summary and Conclusions 

The use of risk-informed decision-making tools, which can be used by community decision and 

policy-makers, is vital to planning and improving the resilience of a community at risk to natural 

hazards. In this chapter, the results of an analyses procedure to propagate damage to buildings and 

the electrical power network models from a simulated tornado to the impact on physical, social, 

and economic metrics at the community level was presented. A new open-source computational 

environment, IN-CORE, was used to develop and link all models in this chapter. Initially, the 

building and EPN spatial damage results were computed with the use of the tornado hazard model, 

fragility functions, and the datasets for the physical infrastructure. With the help of the 

geographical dependency model developed in this chapter between buildings and the electric 

power network, building functionality results, and the corresponding physical stability metrics 

were determined. Second, the authors linked the functionality of the infrastructure with a CGE  

model via the shock of the capital stock reduction and computed typical economic metrics for the 

post-disaster community. Finally, a population dislocation model driven by building damage 

provides resilience metrics related to social science and explores population dislocation as a 

function of household tenure status.  

While the method provides benefits there are clearly limitations in accuracy of the physical and 

economic models, uncertainty in the population dislocation models resulting from real-world data 

and regressions.  The authors recognize these challenges and thus as much uncertainty through the 

use of fragility functions is included by using MCS.  However, the mean values are then used to 

propagate into the CGE and population dislocation models for this chapter.  In future work it may 

be possible to embed the CGE and population dislocation models within the MCS loop to better 

reflect the uncertainty in those models also. 
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The following can be concluded based on the analyses presented in the chapter:  

1) The percentage of buildings in the path estimated functional as a result of physical damage 

was 3.26%, 25.78%, and 41.02% when using retrofit strategy #1, #2, and #3 for residential 

buildings. More than 81% of buildings in the tornado path had a strong possibility of losing electric 

power. There was a negligible difference in the percentage of buildings deemed functional if 

combined physical damage with loss of electrical power in different retrofit strategies. Only 

48.16% of buildings and 44.29% of residents could receive electric power following the simulated 

tornado due to the breakdown of the electric power network.  It should be noted that these 

simulated values are in line with past estimates of the 2011 event.   

2) The CGE model was used to quantitatively evaluate how the community economy changed 

due to external shocks resulting from tornado hazards. Capital stock reductions were the 

connection linking the building damage with the CGE model. For example, the total annual 

household income for HH3 was estimated  decrease by $24.43 million, $18.24 million, and $14.64 

million for the community after the tornado if using retrofit strategy #1, #2, and #3, respectively. 

The more advanced retrofit strategy could enable structures to become more robust to the hazard, 

which lead to lower economic losses. Future work may also consider the potential budget 

estimation for different retrofit strategies and determine their cascade effects on the local economy. 

3) The population dislocation model, also driven by the building damage results, was used to 

predict the probability of dislocation immediately following the event. The numbers of housing 

units predicted to dislocate were 5,567, 4,249, and 3,814 when residential buildings were 

retrofitted by the approaches of #1, #2, and #3, respectively. Retrofit strategy #3 most significantly 

improved the performance of residential buildings, and then reduced the population dislocated.  
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The results of these analyses stemming from building damage estimation have a logical trend, 

but the substantial contribution of this chapter is that, for the first time, the effect of retrofit 

strategies for tornado loading can be quantified in terms of their effect on socio-economic metrics. 

The ability to quantify these effects to examine different retrofits (or policies) at the community 

level can help support community resilience planning. 
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CHAPTER 3 MULTI-DISCIPLINARY RESILIENCE GOALS DEAGGREGATION  

 
 
 

3.1 Introduction 

The retrofit of woodframe residential buildings is a relatively effective strategy to mitigate damage 

caused by windstorms. However, little is known about the effect of modifying building 

performance for intense events such as a tornado, and the subsequent social and economic impacts 

that result at the community level following an event. This chapter presents a methodology that 

enables a community to select residential building performance levels representative of either 

retrofitting or adopting a new design code that computes target community metrics for the effects 

on the economy and population. Although not a full risk analysis, a series of generic tornado 

scenarios for different Enhanced Fujita (EF) ratings are simulated. Building functionality, 

employment, domestic supply, household income, and housing unit and population dislocation are 

used as physical and socio-economic resilience metrics in the context of a disaster. This is the first 

study in the literature where structural performance goals selected for buildings (or any physical 

system) are based on the ability to achieve both social and economic goals at the community scale. 

This is accomplished by chaining the performance of the built environment to a CGE model for 

economic metrics (i.e., household income, employment, domestic supply) and an existing 

population dislocation algorithm for sociological metrics (i.e., household/population dislocation) 

as a function of building damage and detailed socio-demographic U.S. census-based data, and 

ultimately determining the de-aggregated performance targets for individual buildings to meet a 

specified goal. The proposed methodology provides a structured but flexible approach to support 

resilience decision-making by helping stakeholders develop integrative implementation strategies 
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to improve their resilience. Note that the proposed multi-disciplinary methodology builds on and 

integrates previous work (see Chapter 2). The method is demonstrated for Joplin, MO. All analyses 

and data have been developed and made available on the open-source IN-CORE modeling 

environment. This chapter presents the methodology and concept first published in Wang et al. 

(2022c). 

3.2 De-aggregation of Community Resilience Goals 

Figure 3-1 summarizes the methodology used in this chapter to develop individual residential 

building performance targets to achieve community-level resilience goals in terms of physical, 

social, and economic metrics. The approach starts by articulating community resilience goals such 

as less than an x% increase in unemployment immediately after an EF-3 tornado occurring 

anywhere in the community. The preliminary design for individual residential buildings shown in 

Figure 3-1 refers to structural combinations such as roof covering and is controlled by fragility 

functions. Please refer to the section on Wind Design to Achieve Community Resilience for more 

details about the design. Figure 3-2 depicts the sequencing of analyses for a given community and 

its physical, social, and economic attributes), damage and functionality models, CGE model, and 

the population dislocation algorithm, which is introduced in later subsections of this chapter, to 

evaluate the hazard impacts and support community resilience planning. The percentage of 

residential buildings that were assigned the specified retrofit were analyzed using values ranging 

from 0% to 100%, in intervals of 10%, for the community. The objective is to determine the 

percentage of buildings that should be retrofitted such that the community-wide building 

performance metrics and socio-economic metrics calculated in the resilience analysis meet the 

community resilience goals. Note that community resilience goals would typically be community 
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defined and could be adjusted based on community-specific needs, but illustrative values are 

utilized in this chapter. 

 
Figure 3-1. The methodology of the de-aggregation of community-level resilience goals 

 



 

56 
 

 
Figure 3-2. The sequence of analyses for community resilience assessment and metrics excepted 

from Figure 1-1  

3.2.1 Damage and Functionality Model 

Equation (3.1) determines the building damage probability (Pdamage) using fragility functions for 

each building, which can be grouped by each building archetype, and have been fit to lognormal 

cumulative distribution functions (CDF) controlled by two parameters (median, λ, and standard 

deviation, ξ). The fragility functions (FrDS) represent the probability of exceeding damage state i 

(i.e., slight, moderate, extensive, complete) for each building as a function of the intensity measure 

(e.g., 3-s gust wind speed, spectral acceleration). For each MCS realization of a tornado event, a 

uniformly distributed random variable, Rj, between 0 and 1, is generated and compared to the 

building damage probabilities corresponding to the four damage states. As shown in Equation 

(3.2), if the realization experiences a moderate damage state or greater, the building is assumed to 

lose functionality in this chapter, consistent throughout the dissertation. The moderate damage 

state in tornado damage assessment means the building has moderate damage to window/doors 

and roof covering, but the building itself can be occupied and repaired (Memari et al. 2018).  For 
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business, it would not be possible to have an operational business in the moderate damage state, 

thus the building would be deemed nonfunctional in the CGE analysis.  The building functionality 

status (𝐼𝑓𝑢𝑛,𝑗𝑘 ) of Equation (3.2) is either functional (1) or non-functional (0) for each realization. 

The index j is representative of each realization of the MCS (j = 1 to N) for each building k. 

Subsequently, the building functionality probability (Pfun) can be approximated using Equation 

(3.3).  

                                                     𝑃𝐷𝑎𝑚𝑎𝑔𝑒,𝑖𝑘 = 𝐹𝑟𝐷𝑆𝑖𝑘 (𝐼𝑀 = 𝑥)                                                         (3.1) 

                                                        𝐼𝑓𝑢𝑛,𝑗𝑘 = {1    𝑅𝑗 > 𝐹𝑟𝐷𝑆20    𝑅𝑗 ≤ 𝐹𝑟𝐷𝑆2                                                        (3.2) 

                                                     𝑃𝑓𝑢𝑛𝑘 ≈ 𝑁𝑓𝑢𝑛𝑘𝑁 = ∑ (𝐼𝑓𝑢𝑛,𝑗𝑘 =1)𝑁𝑗=1 𝑁                                                       (3.3) 

After the MCS building damage analysis, the results are passed to the CGE economic analysis, 

where the building is considered nonfunctional if the probability of being in or exceeding DS2 

(moderate damage) is greater than 0.5. The CGE is only run once after the structural analysis and 

this full sequence shown in Figure 3-1 is completed for each tornado scenario to develop a suite 

of scenarios.  

3.2.2 CGE Model 

The design or retrofit of infrastructure systems can be quantitively related to community-level 

economic resilience metrics through a dynamic economic impact model. In this chapter, the CGE 

model served as the economic impact model to quantitatively evaluate the varying impacts of 

natural disasters on the local economy. The implementation of the CGE model in this chapter is 

consistent with Chapter 2.   



 

58 
 

3.2.2.1 Linking the Building Functionality Model and the CGE Model 

Capital stock within a community is the key variable of interest linking the functionality model to 

the CGE model. The market values of commercial and residential buildings were aggregated into 

a Goods, Trade, and Other commercial sectors, and three housing services sectors (HS1, HS2, 

HS3). The Goods, Trade, and Other are themselves aggregations of the NAICS (North American 

Industry Classification System) sectors. Goods represent large manufacturing industries, Trade is 

mostly retail, and Other is a combination of industries including services, health and finance. This 

chapter focuses on residential buildings, where HS1 is lower-value homes, HS2 is higher-value 

homes, and HS3 is rented residential buildings.  

Tornado damage to buildings, and their reduced functionality, is modeled as negative “shocks” 

in the CGE model. These shocks are the connection point between engineering outputs and the 

CGE model. Equation (3.4) calculates the sector shocks (γs) as a percentage of capital stock 

remaining, where C represents the capital stock of each building k attributed to each sector s. 

                                                                𝛾𝑠 = ∑ 𝐶𝑠𝑘×𝑃𝑓𝑢𝑛,𝑠𝑘𝑛𝑘=1∑ 𝐶𝑠𝑘𝑛𝑘=1                                                             (3.4) 

Incorporating the output from the engineering models into external shocks enables the CGE 

model to estimate a range of post-hazard economic losses such as employment effects and 

domestic supply by sectors (Cutler et al. 2016). Furthermore, retrofit strategies that mitigate 

damage to residential properties will attenuate the shock to capital stock in the housing services 

sector and thus tend to reduce overall economic loss. 

3.3.3 Population Dislocation Algorithm 

The population dislocation algorithm in this chapter is consistent with Chapter 2 but introduces 

more about the theoretical explanation. Equation (3.5) uses a logistic regression model with five 
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constants, c1 to c5, to estimate population dislocation probabilities (Pdis) for each damage state i 

based on property value loss (ploss) and building types (single-family or multi-family, dsf) for 

each building, k, and neighborhood characteristics (percent of black, pblack, and Hispanic 

populations, phisp) by each census group, m. The variable dsf is set to 1 if the number of estimated 

housing units was 1. The variable is 0 if the number of estimated housing units is greater than 1. 

The logistic regression constants were not changed for this specific community, but the variables 

such as the percent of the black and Hispanic population were updated based on the Census 

Bureau’s data. Equation (3.6) sums the dislocation probabilities for each damage state (𝑃𝑑𝑖𝑠,𝑖,𝑚𝑘 ). 

Damage state 1 (slight or no damage) is evaluated separately from damage states 2 to 4, consistent 

with the building functionality evaluations, to determine the dislocation probability of each 

building k in each census group m (𝑃𝑑𝑖𝑠,m𝑘 ). For each MCS realization, the population dislocation 

algorithm can help predict whether the households leave their housing unit immediately after a 

hazard event.. 

                                        𝑃𝑑𝑖𝑠,𝑖,𝑚𝑘 = 11+𝑒−(𝑐1+𝑐2𝑝𝑙𝑜𝑠𝑠𝑖,𝑚𝑘 +𝑐3𝑑𝑠𝑓𝑚𝑘 +𝑐4𝑝𝑏𝑙𝑎𝑐𝑘𝑚+𝑐5𝑝ℎ𝑖𝑠𝑝𝑚)                          (3.5)             

                   𝑃𝑑𝑖𝑠,𝑚𝑘 = 𝑃𝑑𝑖𝑠,1,𝑚𝑘 × 𝑃𝑑𝑎𝑚𝑎𝑔𝑒,1𝑘 + ∑ 𝑃𝑑𝑖𝑠,𝑖,𝑚𝑘 × (4𝑖=2 𝑃𝑑𝑎𝑚𝑎𝑔𝑒,𝑖𝑘 − 𝑃𝑑𝑎𝑚𝑎𝑔𝑒,𝑖−1𝑘 )            (3.6) 

3.3 Illustrative Example  

In this chapter simulated tornado wind fields defined as a peak three-second gust were used. Joplin 

was selected as the testbed to perform resilience assessments for tornado-induced events due to its 

history with a large double vortex EF5 tornado in May of 2011. The purpose of the illustrative 

example was to determine the minimum percentage of woodframe residential buildings that need 

to be retrofitted for the community to meet their resilience goals. These community-level resilience 

goals were defined in terms of building functionality, social, and economic metrics, using the 
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proposed methodology. All analyses and data were performed and are available in the open-source 

IN-CORE modeling environment. Please refer to Wang et al. (2021a) for more details regarding 

the manual, datasets, and example notebooks for the IN-CORE modeling environment and visit 

http://resilience.colostate.edu/in_core/. Note that this example focuses on the resilience assessment 

at the community level specific to tornado events since tornadoes only strike a small footprint area 

within a community. The resilience model and the retrofit can be applied to a large urban area for 

other natural hazards such as earthquake events (e.g., Roohi et al. 2020). 

3.3.1 Community Description 

Joplin is a typical small to medium size community, located in southwest Missouri in the United 

States and spanning Jasper and Newton counties. In this illustrative example, a total of 19 

archetype buildings (e.g., residential, business, healthcare, education) were used to represent the 

buildings within the community, consistent throughout the dissertation. The electric power 

network is generally regarded as the most impacted infrastructure system by tornado (and most 

wind) events and was therefore also included herein to examine the dependency between the 

building infrastructure and electric power network. Transmission/distribution substations and 

wood poles are the two types of vulnerable components included in the electric power network. 

Other networks such as water, transportation, and telecommunication networks were not 

considered in this chapter, but could be modeled in future work as needed. It is acknowledged that 

the functionality of other network systems depends on the reliability of the electric power network 

(e.g., Unnikrishnan and van de Lindt 2016, Zou and Chen 2019). For example, water towers are 

vulnerable in that they need to be supplied with electric power (Masoomi and van de Lindt 2018), 

so may only last several days following a tornado if backup generators for pumps are not 

available/supplied. Additionally, damaged and/or fallen trees/poles can block the roads following 

http://resilience.colostate.edu/in_core/
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tornadoes and cause adverse impacts on the transportation networks (e.g., Hou and Chen 2020, 

Hou et al. 2019).   

Table 3-1 provides a summary of the built environment and social systems for the testbed and 

example in this chapter. The number of buildings and the number of housing units in Joplin is 

28,152 and 23,261 (Note: multi-family will have multiple households in one building), 

respectively, and the building dataset was developed circa 2010 before the 2011 Joplin tornado. 

Note that non-residential buildings include 13 building types herein such as commercial buildings 

and social institutions, e.g., schools. The housing unit estimation was determined based on the 

2010 Decennial Census data and an existing housing unit allocation algorithm (see Rosenheim et 

al. 2019 for details). The allocated housing units are also designated by race/ethnicity and 

household income, in addition to tenure status, as shown in Table 3-1. The number of workers 

employed in Joplin in 2010 was 39,831, and the total domestic supply was US$3.04 billion. Please 

refer to Chapter 2 for more details on the building inventory, electric power network, housing unit 

characteristics, and economy in Joplin. 

 Table 3-1. Built environment and human social system for Joplin testbed  

Building environment Human social system 
Buildings Electric power 

network 
Housing units Population 

Residential 24,903 Substations 18 Owner-
occupied 

11,344 Owner-
occupied 

26,873 

Non-
residential 

3,249 Poles 23,857 Renter-
occupied 

9,435 Renter-
occupied 

20,949 

Total 28,152   Vacant 2,455 In total 49,810 
    Group 

quarters 
22   

    In total 23,261   

 

Initial capital stock values come from the Newton and Jasper County Assessor’s offices that 

encompass Joplin. It is important to note that the building level county assessor’s data and the 
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building level archetype data used in the functionality model are from different sources. 

Fortunately, both datasets had detailed geographic coordinate location information for every 

building. Therefore, in order to connect individual building level archetypes and functionality to 

economic sectors, the building level sector information from the county assessor’s office was 

merged with the archetype datasets using a GIS spatial join algorithm. Building level data are then 

aggregated to the sector level. 

3.3.2 Generic Tornado Models 

A series of generic tornadoes based on the gradient technique (Standohar-Alfano and van de Lindt 

2015) were used as the hazard models impacting the community, resulting in physical damage to 

buildings and the electric power network, and propagating economic losses, household disruption, 

and population dislocation. Tornados with different EF ratings (EF0 - EF5) are associated with 

different ranges of wind speeds. Figure 3-3 shows the geometry of the gradient model for an EF2, 

EF3, and EF4 single tornado, respectively, where the width of the applied tornadoes is equal to the 

average of the historical tornado data for the EF rating (Attary et al. 2018). The start points, end 

points, and the directions of all tornado scenarios were assigned randomly within the community 

boundaries. The NIST Community Resilience Planning Guide (NCRPG) encourages communities 

to use routine levels (i.e., hazard events that are more frequent with less consequential events that 

should not cause significant damage), design levels (i.e., hazard events used to design structures), 

and extreme levels (i.e., beyond design levels and likely to cause extensive damage) to address a 

range of potential damage and consequences (NIST 2020, Wang et al. 2022c). This chapter 

examines the community resilience impacted by 100 random tornadoes for each different intensity 

level (i.e., EF2, EF3, EF4) individually in line with the concept encouraged in the NCRPG. It is 

worth noting that most tornadoes travel in paths from the southwest towards the northeast 
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(Suckling and Ashley 2006). Additionally, it is important to mention that the building inventory 

was developed for Joplin exclusive of other nearby homes outside of the Joplin boundaries. Thus, 

some of the tornado scenarios might damage buildings outside of Joplin in the simulation but they 

are not included in the determination of physical damage and the associated socio-economic losses 

in this chapter.  

The methodology presented herein is felt to be general and can be implemented for any hazard 

type. The socio-economic goals defined for the community, partially or wholly, do rely on a 

hazard-specific analysis. For example, earthquake events commonly impact the entire community, 

whereas a tornado directly impacts a relatively small geographic footprint within a community, 

but the impact can extend to the entire community in terms of social and economic impacts. 

Additionally, building functionality is highly related to tornado intensity, tornado path/width, and 

housing density (urban or rural).  
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(c) 

Figure 3-3. The geometry of generic tornado models for different EF ratings: (a) EF2; (b) EF3; 
(c) EF4 

3.3.3 Multi-Disciplinary Community Resilience Goals  

In this chapter, core resilience metrics inform three community stability areas, namely physical 

services stability, economic stability, and population stability. Physical services stability was 

estimated by determining building functionality two different ways: with and without the impact 

of the reliability of the electric power network. Percent changes in employment, domestic supply 

(e.g., food, care, security), and household income were used to jointly reflect the activity of the 

local economy. Population stability was calculated as the percent change in households being 

dislocated by housing unit (or population) following a disruptive event. Three community 

resilience goals (Goal A, Goal B, and Goal C) were targeted as routine level (EF2), design level 

(EF3), and extreme level (EF4) tornado events, respectively, as indicated in Table 3-2. The 

community resilience goals may be viewed as being modest, but reasonable because tornadoes 

typically strike a portion of the entire community, sometimes 5% to 10%. All residential and 

commercial buildings outside the tornado path were not physically damaged but may still lose 

electric power. Therefore, two types of physical service metrics related to building functionality 

were proposed herein: considering the dependency between buildings and the electric power 

network or neglecting the dependency of buildings on electric power.  
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It is important to mention that each community is unique with its own characteristics, and each 

will have its own specific resilience goals and potential solutions. In this chapter, having clearly 

defined resilience goals in terms of core metrics is intended to demonstrate how a community can 

change a physical design of a component within their infrastructure (buildings in this case) to affect 

change in their physical service, population, and economic stability areas if a natural hazard was 

to strike. For example, keeping the percentage of households dislocated below 5% is one of the 

social resilience goals identified for tornados at the extreme hazard level. 
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Table 3-2. Community resilience goals based on core metrics 

Community 
goals 

Tornado 
intensity 
(NCRPG 
hazard 
level) 

Physical service metrics 
Population stability 

metrics 
Economic stability metrics 

% buildings 
remaining 
functional 

(due to 
damage)  

% buildings 
remaining 
functional 

(due to 
damage + 
electrical 
power) 

% 
households 
dislocated 

(unit: 
households) 

% 
population 
dislocated 

(unit: 
people) 

% change in 
employment 

% change 
in 

domestic 
supply 

% change in 
mean 

household 
income 

Goal A 
EF2 

(Routine) 
98% 95% 1% 1% 0.2 0.5 0.2 

Goal B 
EF3 

(Design) 
96% 89% 3% 3% 0.5 1.0 0.5 

Goal C 
EF4 

(Extreme) 
94% 83% 5% 5% 0.8 1.5 0.8 
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3.3.4 Building Design to Achieve Community Resilience  

Tornadoes are low-probability high-consequence events that often result in significant physical 

damage and socio-economic impacts but have not been considered in the structural design codes 

and standards (e.g., ASCE 7-16) so far. That will change soon since tornadoes are planned to be 

included for Risk Category 3 and 4 buildings (e.g., hospitals, emergency operations centers, etc.) 

beginning in 2022. Some challenges such as pressure deficit, vertical components of the tornadic 

winds, and windborne debris in tornadoes made it difficult to rationalize a design process for most 

buildings (e.g., Haan et al. 2010, van de Lindt et al. 2013, Masoomi and van de Lindt 2017). In 

this chapter, basic construction improvements were modeled using modified fragilities for 

individual building performance. Table 3-3 presents building fragility functions for typical and 

retrofitted residential buildings with a different structural combination of roof coverings, roof 

sheathing nailing patterns, and roof-to-wall connection types (Wang et al. 2021b). The typical 

design would have regular asphalt shingles, 8d common nails spaced at 150/300 mm (6/12 inch) 

attaching roof sheathing panels to trusses, and two 16d toenails to connect the roof rafters over the 

vertical studs. The retrofit design used regular asphalt shingles, roof sheathing nails spaced at 

150/150 mm (6/6 inch) and two H2.5 hurricane clips as roof-to-wall connections. A series of cases 

was examined, ranging from 10% of residential buildings in a community being retrofitted to 

100%, to select how many residential buildings would need to be retrofitted to achieve the desired 

community resilience goals. Several of these scenarios are illustrated in Figure 3-4. The damage 

fragility curves for a suite of 19 building archetypes incorporating 13 non-residential building 

types, each having four damage states (i.e., slight, moderate, extensive, and complete), are 

available to cover the entire range of wind speeds. 
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Table 3-3. Lognormal parameters for residential woodframe building fragilities  

Building 
type 

Building description 
Damage 

states 

Original fragility 
functions (m/s) 

Retrofit design in 
terms of fragilities 

(m/s) 

λ ξ λ ξ 

T1 
Residential wood building, 
small rectangular plan, gable 
roof, 1 story 

DS1 3.68 0.13 3.68 0.14 
DS2 3.56 0.14 3.85 0.12 
DS3 3.63 0.13 3.98 0.11 
DS4 3.68 0.14 4.16 0.13 

T2 
Residential wood building, 
small square plan, gable 
roof, 2 stories 

DS1 3.60 0.13 3.60 0.13 
DS2 3.53 0.13 3.76 0.12 
DS3 3.59 0.13 3.91 0.11 
DS4 3.68 0.13 4.17 0.12 

T3 
Residential wood building, 
medium rectangular plan, 
gable roof, 1 story 

DS1 3.61 0.13 3.61 0.13 
DS2 3.51 0.13 3.77 0.12 
DS3 3.57 0.13 3.92 0.11 
DS4 3.74 0.12 4.23 0.12 

T4 
Residential wood building, 
medium rectangular plan, 
hip roof, 2 stories 

DS1 3.73 0.13 3.73 0.13 
DS2 3.65 0.13 3.87 0.12 
DS3 3.71 0.13 4.00 0.11 
DS4 3.76 0.13 4.28 0.12 

T5 
Residential wood building, 
large rectangular plan, gable 
roof, 2 stories 

DS1 3.75 0.13 3.75 0.13 

DS2 3.65 0.13 3.88 0.12 

DS3 3.70 0.13 3.98 0.11 

DS4 3.64 0.15 4.06 0.14 
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Figure 3-4. Generic tornado models of 100 EF2 scenarios overlapped with the built environment 

3.3.5 Community Resilience Metrics 

After combining the fragility functions for retrofitted residential buildings and the original fragility 

functions for other buildings in the community model, the community assessment was performed 

by chaining the algorithms as described earlier. Resilience metrics in terms of physical services, 

economic activity, and population stability were examined to explore the effect of wind mitigation 

retrofits on community resilience enhancement, i.e., to link resilience goals at the community level 

with the selection of a mitigation policy for building retrofit. Table 3-4 and Table 3-5 indicate 

some key findings for these core community resilience metrics in terms of the physical, economic, 

and social stability areas. The full suite of results for buildings retrofitted at each of the different 

percentages for the building stock under different scenarios are not shown herein for brevity. As 

an example, when the community was impacted by the idealized EF4 tornados, the number of non-
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functional buildings and the number of housing units dislocated can be reduced by 11.7% (1,187 

to 1,048) and 11.0% (847 to 754), respectively, when 40% of residential buildings are retrofitted. 

The percentages shown in Table 3-4 are defined as the change in the metrics being measured (e.g., 

household dislocation) out of the total value that can be measured for that metric (e.g., households) 

for the community. Figure 3-5 illustrates the histograms of typical metrics in terms of physical 

services stability and population stability from one hundred (100) EF2 tornado scenarios as an 

example. The reason for a few extreme values at the left end in the histograms is that the socio-

economic losses caused by the tornado event are also highly related to the attributes of the area hit 

by the tornado, such as population density. In more rural areas, both population and building 

density is lower, and tornadoes striking these areas impact the local economy and cause household 

dislocation at a smaller scale compared to dense urban areas. 

Workers employed at damaged or non-functional commercial buildings may face work 

interruption or job loss, leading to reduced household income and consumption expenditures. As 

part of the CGE simulation of this event, these values are calculated and represented in Table 3-5. 

Table 3-5 conveys that retrofitting played a significant role in mitigating economic impacts to 

domestic supply, especially employment and household income. From the lowest to highest retrofit 

application (from 0% to 100%) for EF2 and EF3, a more than 36% reduction (from $3.9 million 

to $2.5 million) in household income loss, and a 53.8% reduction (from 78 to 36) in employment 

loss, is observed. 
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Table 3-4. Community resilience metrics for physical and social systems that benefit from 
residential building retrofits (Mean values) 

Residential 
building 
retrofits 

Physical service metrics Population stability metrics 

The number of 
buildings non-

functional (due to 
damage) 

The number of 
buildings non-

functional (due to 
damage + electrical 

power) 

Housing unit 
dislocation 

(unit: 
housing 
units) 

Population 
dislocation 

(unit: 
people) 

EF2     
0% 315 (1.1%) 981 (3.5%) 231 (1.0%) 478 (1.0%) 
40% 251 (0.9%) 971 (3.5%) 197 (0.9%) 409 (0.8%) 
70% 200 (0.7%) 963 (3.4%) 169 (0.7%) 350 (0.7%) 

100% 150 (0.5%) 955 (3.4%) 142 (0.6%) 295 (0.6%) 

EF3     
0% 703 (2.5%) 1,387 (4.9%) 501 (2.2%) 1,021 (2.1%) 
40% 601 (2.1%) 1,377 (4.9%) 436 (1.9%) 894 (1.8%) 
70% 523 (1.9%) 1,368 (4.9%) 388 (1.7%) 796 (1.6%) 

100% 443 (1.6%) 1,360 (4.8%) 339 (1.5%) 692 (1.4%) 

EF4     
0% 1,187 (4.2%) 2,583 (9.2%) 847 (3.6%)  1,711 (3.4%)   
40% 1,048 (3.7%) 2,570 (9.1%) 754 (3.2%)   1,532 (3.1%)   
70% 939 (3.3%) 2,558 (9.1%) 685 (2.9%)   1,392 (2.8%)   

100% 828 (2.9%) 2,547 (9.1%) 613 (2.7%)   1,231 (2.5%)   

 

 
(a)  
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(b) 

 
(c) 

 
(d) 

Figure 3-5. Statistics of resilience metrics in terms of physical service and population stability: 
(a) building functionality without retrofit; (b) building functionality with 100% residential 

retrofit; (c) housing unit dislocation without retrofit; (d) housing unit dislocation with 100% 
residential retrofit 
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Table 3-5. Economic stability metrics given different levels of residential building retrofits and 
tornado scenarios (Mean values) 

Residential building 
retrofits 

Economic stability metrics 

Employment 
loss 

(unit: person)  

Domestic supply 
loss 

(unit: millions of $) 

Household income 
loss 

(unit: millions of $) 

EF2    
0% 78 (0.2%) 10.4 (0.3%) 2.0 (0.2%) 
40% 62 (0.2%) 8.4 (0.3%) 1.6 (0.1%) 
70% 49 (0.1%) 6.9 (0.2%) 1.3 (0.1%) 
100% 36 (0.1%) 5.3 (0.2%) 0.9 (0.1%) 

EF3    
0% 160 (0.4%) 22.0 (0.7%) 3.9 (0.3%) 
40% 136 (0.4%) 19.2 (0.6%) 3.3 (0.3%) 
70% 118 (0.3%) 17.0 (0.6%) 2.9 (0.3%) 
100% 99 (0.3%) 14.7 (0.5%) 2.5 (0.2%) 

EF4    
0% 270 (0.7%) 36.8 (1.2%) 6.7 (0.6%) 
40% 236 (0.6%) 32.7 (1.1%) 5.9 (0.5%) 
70% 211 (0.5%) 29.6 (1.0%) 5.3 (0.5%) 
100% 182 (0.5%) 26.2 (0.9%) 4.6 (0.4%) 

 

The minimum percentage of residential buildings retrofitted to achieve the community-level 

resilience goals can be determined for each tornado scenario (e.g., average of EF rating tornado 

striking anywhere in the community), as illustrated in Table 3-6 and Table 3-7. Note that the 

column fields shown in Table 3-6 and Table 3-7 are consistent with those representing each metric 

in Table 3-3. In order to meet all the multi-disciplinary community resilience goals for EF2 

tornadoes (see Goal A in Table 3-3), the metrics for household dislocation controlled the retrofit 

level and at least 34.2% of residential buildings would need to be retrofitted. However, the 

employment metrics control the retrofit level for the EF3 and EF4 tornado scenarios. The 

fundamental contribution of this analysis methodology is the ability to essentially de-aggregate the 

community-level resilience goals in terms of physical, social, and economic metrics into building 

retrofit requirements. The goals themselves are flexible and can be adjusted by the analyst on 

a case-by-case basis. Additionally, it would also be possible to quantify the impact of a change in 
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building code for new construction following a tornado or with some modification to the 

methodology and examine the effect of implementing new building code requirements over time 

as a community grows.  

Table 3-6. Percentage of residential buildings requiring retrofit to achieve community resilience 
goals 

Communit
y goals 

Physical service metrics Population stability metrics 

% buildings 
remaining 

functional (due 
to damage)  

% buildings remaining 
functional (due to 

damage + electrical 
power) 

% households 
dislocated 

(unit: households) 

% population 
dislocated 

(unit: people) 

Goal A 3.4% 12.0% 34.2% 33.3% 
Goal B 8.0% 6.0% 17.5% 14.0% 
Goal C 15.1% 16.0% 19.8% 15.4% 

 

 Table 3-7. Percentage of residential buildings requiring retrofit to achieve community 
resilience goals 

Community goals 
Economic stability metrics 

% change in 
employment  

% change in domestic 
supply 

% change in mean household 
income  

Goal A 28.7% 13.1% 19.4% 
Goal B 21.5% 18.7% 11.6% 
Goal C 29.0% 29.0% 18.0% 

 

3.4 Summary and Conclusions 

Community resilience assessments help the community determine what is needed to improve their 

performance, and long-term benefits relative to the ‘do nothing’ case. This chapter presents a 

methodology to determine building retrofit targets to achieve community-level physical, social, 

and economic resilience goals, in support of community resilience decision-making. A series of 

tornado scenarios at different intensity levels were simulated and applied to an illustrative 

community testbed. A set of core resilience metrics includes the percent of buildings that are 

analytically predicted to remain functional, the percent of households/population dislocated, and 
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the percent change in the local economy (i.e., employment, domestic supply, household income). 

The mitigation focuses on residential buildings, and the objective is to determine the minimum 

percentage of residential buildings across a community that need to be retrofitted in order to 

achieve the multi-disciplinary community resilience goals. Based on the work presented herein, 

and recognizing that uncertainty in the results is not addressed, the following preliminary 

conclusions can be drawn: 

• The percent of loss of functionality to buildings and the percent of household dislocation, 

as the key resilience metric in the chapter, may be reduced by approximately 11% when 

40% of residential buildings are randomly retrofitted throughout the community for the 

assigned EF4 tornado scenario. For the EF2 and EF3 tornado scenarios, 40% of residential 

building retrofit may help mitigate the housing unit dislocation by approximately 14%. 

• Building retrofits can play a significant role in reducing capital stock damage and further 

mitigating economic loss to domestic supply, employment, and household income. From 

the lowest (0%) to highest (100%) retrofit application for residential buildings for the EF2 

and EF3 tornado scenarios, there would be more than a 35% reduction in unemployment, 

and more than a 50% reduction in household income loss.  

• To meet all the multi-disciplinary resilience goals for tornadoes in the routine level 

intensity (EF2) defined in this chapter, the household dislocation metric controlled the 

retrofit level and at least 34.2% of residential buildings would need to be retrofitted. For 

the tornadoes at the design level hazard intensity (EF3) and extreme level hazard intensity 

(EF4), the employment metric controlled the retrofit level. The resilience goals are flexible 

and can be quantitively adjusted for different levels based on community input and the 

unique needs of a community. Clearly different multi-disciplinary metrics may control the 
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retrofit requirements for different hazard intensities but are also specific to the resilience 

goals selected.  This further underscores the need to consider goals across different 

community stability areas.  

The chapter did not address budget constraints of the community and costs to retrofit, which 

would further limit selections of different retrofit strategies for different households. Note that 

communities have access to many funding sources outside of their own tax dollars for mitigation 

programs. The Federal Emergency Management Agency (FEMA) Building Resilient 

Infrastructure and Communities (BRIC) and Department of Housing and Urban Development 

(HUD) Community Development Block Grant–Disaster Recovery (CDBG-DR) programs are two 

examples. The residential buildings were assumed to be retrofitted randomly without the 

consideration of the community retrofit priorities for residential buildings or individual capacity 

(e.g., high-income owners versus low-income renters). Addressing the limitations above is beyond 

the scope of this chapter but future studies may include a risk-based cost-benefit analysis for the 

wind mitigation retrofits and the impact of insurance incentives and other policies, such as 

insurance companies offering a discount in annual insurance premiums for homeowners to 

encourage them to retrofit their houses. 

In summary, the ability to de-aggregate community resilience goals to individual building 

performance targets can help accelerate the development of resilience-based building codes and 

standards that satisfy community-wide resilience goals of the broader built environment. The 

ability to achieve community-level resilience goals in terms of socio-economic metrics can provide 

community decision-making support for stakeholders and planners. 
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CHAPTER 4 IMPROVED SCHOOL DESIGNS AND SOCIAL SERVICE STABILITY  

 
 
 

4.1 Introduction 

Tornadoes are low-probability, high-consequence events that significantly threaten life safety and 

cause adverse impacts to communities including the local economy (e.g., van de Lindt et al. 2013, 

Roueche and Prevatt 2013, Wang et al. 2021b, Wang et al. 2022c). Over the last several decades, 

an average of more than 1,000 tornadoes were reported annually in the United States and have 

averaged almost 100 tornado-related deaths and $1.5 billion in direct property damage losses per 

year (e.g., Masoomi and van de Lindt 2018, Wang and van de Lindt 2021, Haan et al. 2008, Jain 

et al. 2020). Despite causing significant direct losses, as well as social disruption, building codes 

and standards have not previously included tornado hazards in their scope until the release of 

American Society of Civil Engineers (ASCE) Standard 7-22 with some limited exceptions such as 

storm shelters and nuclear facilities (Wang et al. 2022c, ASCE 2017, ASCE 2021). Tornado-

resilient design has been considered economically unfeasible for most buildings in the United 

States (e.g., Haan et al. 2008, Jain et al. 2020, Roueche et al. 2017). Further, some challenges such 

as atmospheric pressure drop (APD) and a vertical uplift component make tornado wind fields 

different from straight-line wind (e.g., van de Lindt et al. 2013, Haan et al. 2010, Masoomi and 

van de Lindt 2017), both of which are challenging to address numerically in design. In recent years, 

fundamental differences between tornado wind and straight-line wind led researchers to explore 

tornado physical characteristics and to simulate tornado effects on buildings more accurately. Van 

de Lindt et al. (2013) and later Masoomi and van de Lindt (2016) used tornado pressure 

adjustments following Haan et al. (2010) to adjust straight-line wind loads to account for tornado 
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effects. Researchers performed extensive experimental studies and examined the relationship 

between the APD and tornado-induced internal pressure responses (e.g., Sabareesh et al. 2019, 

Wang et al. 2018). Incorporating comprehensive research on tornado characteristics introduced in 

the past literature, ASCE 7-22 now includes a separate chapter focusing on tornado loads and 

provides the determination of tornado loads on Risk Category III and IV buildings (e.g., schools, 

hospitals, emergency operations centers) and incorporation of those loads into the design process 

for these types of buildings. Furthermore, when considering the effect of tornado hazard events on 

the community resilience rather than single buildings to support decision making, stakeholders and 

policymakers can identify hazard levels that target the performance of infrastructure systems over 

the community domain..  

Overall, school buildings/educational facilities incorporate classroom buildings, athletic 

facilities, and related facilities to provide educational services to students. Schools are typically 

designed as Risk Category III buildings (ASCE 2017), and the importance of education systems 

has been recognized to maintain social services stability in community resilience (e.g., Hassan and 

Mahmoud 2020). Many school buildings in the United States were built before the 1970s and 

constructed of loadbearing masonry walls and steel joists (FEMA 2009). Tornadoes have 

destroyed or severely damaged a significant number of schools, causing millions of dollars in 

damage per event over the past decades, but perhaps more importantly the disruption to small and 

medium cities and communities. For example, when a tornado struck in Oologah, Oklahoma, U.S., 

in April 1991, significant tornado damage occurred at the Oologah School Complex. The new 

athletic building was heavily damaged, including the entire roof and the north side was destroyed 

entirely. Total damage, including contents due to the Oologah tornado, eventually totaled U.S. 

$10.6 million (Ballard 1993). In the 2011 Joplin tornado, two primary schools with over 2700 

https://www.lawinsider.com/clause/athletic-facilities
https://www.lawinsider.com/clause/athletic-facilities
https://www.lawinsider.com/clause/related-facilities
https://www.lawinsider.com/dictionary/operated
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students were significantly damaged. The high school was built in 1968, and the damage to the 

high school was extensive, particularly in high bay areas like the gymnasium and the auditorium. 

Exterior walls collapsed in the courtyard facing single-story classrooms, and the exterior walls of 

the center section of the school were shredded with wind-borne debris. The performance of the 

other middle school from the tornadic winds has been similar (Coulbourne and Miller 2012). While 

the economic loss due to damage may be significant, it is overshadowed by the impact on education 

and the need to maintain social stability, a key stability area in community resilience (Ellingwood 

et al. 2019). There is no limitation for communities interested in improving the design of their 

critical facilities, including social institutions such as schools, to perform better in a tornado event. 

This chapter develops new school building archetypes and presents an illustrative examination 

of the effect of improved designs to allow more children to maintain continuous education 

following tornado events. The novelty of this work is (1) the development of new fragility 

functions for school building archetypes that can be used in community resilience studies, and (2) 

the illustration of the direct dependency of a core resilience metric used in community resilience 

planning, i.e., number of children remaining in schools. The design of the school for different 

design wind speed levels were conducted for each primary structural/non-structural component 

(e.g., roof structures, load-bearing walls) to the entire building. The improved designs and resulting 

fragilities used statistics provided by the original collaborator of ASCE 7-22 for the new tornado 

chapter. These are intended to support community resilience decision-making with K12 

educational continuity and inform design guidelines for new/existing school buildings in 

communities. This chapter presents the methodology and concept first published in Wang and van 

de Lindt (2022). 
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Figure 4-1 shows the methodology proposed in this chapter to examine the effect of improved 

residential designs and school designs on maintaining educational continuity and avoiding 

dislocation for K12 school children. The combination of fragility functions, hazard models, and 

building damage models is designed to determine the probability of exceeding each damage state 

(i.e., slight, moderate, extensive, complete) for residential and school buildings. Then, MCS was 

used to generate sufficient randomized samples (N = 100 in this chapter) and determine the 

building-level residential and school functionality status within the hazard-impacted areas due to 

building damage in each MCS realization. If the realization experiences a moderate damage state 

or greater, the building is assumed to lose functionality. In tornado damage assessment, the 

moderate damage state refers to the building having moderate damage to window/doors and roof 

covering, but the building itself can (potentially) be occupied and repaired (Memari et al. 2018). 

The household allocation algorithm developed by Rosenheim et al. (2019) was implemented to 

allocate household information (e.g., household size, household income) to the residential 

buildings (Rosenheim 2021) surrounding the schools in the city/community model. The published 

records of school attendance zones provided by the U.S. National Center for Education Statistics 

(NCES) and School Attendance Boundary Survey (SABS) help determine the spatial dependency 

between residential buildings and their dependent K12 schools. After synthesizing the algorithms 

and the associated data inputs, the proposed methodology aims to explore the total number of 

children in households located within tornado paths in the four different cases: case 1: having both 

functional housing and schools; case 2: having functional schools but without housing; case 3: 

having functional housing but without schools; case 4: having neither housing nor schools.  
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Figure 4-1. The methodology to examine the effect of improved building designs on maintaining 

educational continuity and avoiding dislocation for K12 school children 
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4.2 Improved School Building Archetype 

In order to quantify the impact of improved school building designs on the measurement of social 

resilience metrics related to K12 school children in community resilience assessment, a suite of 

improved fragilities for a reinforced masonry school building archetype based on ASCE 7-22 

tornado loading are described herein. 

4.2.1 Fragility Methodology 

ASCE 7-22 wind loads require that velocity pressure (qz), as a function of basic wind speed (V) 

associated with velocity pressure exposure coefficient (Kz), topographic factor (Kzt), wind 

directionality factor (Kd), and ground elevation factor (Ke), can be determined by Equation (4.1). 

If following the directional procedure introduced in Chapter 27, Equation (4.2) shows the 

methodology to calculate design wind pressures involved with external pressure coefficient (GCp) 

and internal pressure coefficient (GCpi) for the main wind force resisting system (MWFRS) for 

buildings of all heights. Equation (4.3) illustrates design wind pressures for component and 

cladding (C&C) elements constructed in low-rise buildings with a height less than 18.3 m (60 ft). 

Please refer to Masoomi and van de Lindt (2016) for a more detailed explanations regarding wind 

load parameters. 

                                         {𝑞𝑧 = 0.00256𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝐾𝑒𝑉2  (𝑙𝑏/𝑓𝑡2);   𝑉 𝑖𝑛 𝑚𝑝ℎ𝑞𝑧 = 0.613𝐾𝑧𝐾𝑧𝑡𝐾𝑑𝐾𝑒𝑉2  (𝑁/𝑚2);           𝑉 𝑖𝑛 𝑚/𝑠                              (4.1) 

                                                  𝑝 = 𝑞𝐺𝐶𝑝 − 𝑞𝑖(𝐺𝐶𝑝𝑖)  (𝑙𝑏/𝑓𝑡2)  (𝑁/𝑚2)                                      (4.2) 

                                             𝑝 = 𝑞ℎ(𝐺𝐶𝑝 − 𝐺𝐶𝑝𝑖)  (𝑙𝑏/𝑓𝑡2)  (𝑁/𝑚2)                                        (4.3) 

Tornadoes are a type of windstorm, but they have significantly different characteristics than 

other windstorms. For example, tornadic winds have significant vertical components, and the 
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atmospheric pressure changes rapidly to induce loads. Therefore, tornado loads are treated 

separately from straight-line wind loads in the latest loading standard in the U.S.; ASCE 7-22. 

Equation (4.4) to Equation (4.6) present the approach in ASCE 7-22 to determine tornado velocity 

pressures at height z above ground (qzT), design tornado pressures for the MWFRS buildings within 

different exposure of all heights, and design tornado pressures on C&C elements in low-rise 

buildings individually. 

                                        {𝑞𝑧𝑇 = 0.00256𝐾𝑧𝑇𝑜𝑟𝐾𝑒𝑉𝑇2  (𝑙𝑏/𝑓𝑡2);  𝑉𝑇 𝑖𝑛 𝑚𝑝ℎ𝑞𝑧𝑇 = 0.613𝐾𝑧𝑇𝑜𝑟𝐾𝑒𝑉𝑇2  (𝑁/𝑚2);          𝑉𝑇 𝑖𝑛 𝑚/𝑠                                  (4.4) 

                                                         𝑝𝑇 = 𝑞𝐺𝑇𝐾𝑑𝑇𝐾𝑣𝑇𝐶𝑝 − 𝑞𝑖(𝐺𝐶𝑝𝑖𝑇)                                              (4.5) 

                                                       𝑝𝑇 = 𝑞ℎ𝑇[𝐺𝑇𝐾𝑑𝑇𝐾𝑣𝑇𝐶𝑝 − (𝐺𝐶𝑝𝑖𝑇)]                                            (4.6) 

where KzTor is the tornado velocity pressure exposure coefficient, q is external pressure evaluation, 

qi is internal pressure evaluation, and qhT is tornado velocity pressure evaluated at mean roof height 

h. GT is the tornado gust-effect factor, KdT is the tornado directionality factor, KvT is the tornado 

pressure coefficient adjustment factor, Cp is the external pressure coefficient, and GCpiT is the 

tornado internal pressure coefficient.  

Tornado speeds acting over the building can change very rapidly, particularly for large 

buildings. The variations in tornado speed as a function of building size are used in the 

determination of KdT. Unlike straight-line winds along the horizontal direction, the vertical 

component of the wind changes the aerodynamics of wind flow around the building, resulting in 

increased uplift on the building, particularly for the roof. Therefore, KvT is used to simulate this 

effect. Effects of exposure on tornado characteristics are challenging to measure near the surface 

with observational techniques such as radar. The latest design code does not define tornado 

exposure due to the complexity of tornadoes and the challenge of creating realistic terrain 
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environments in scaled experiments. For non-tornadic winds, internal pressures are caused solely 

by external wind-induced pressures through openings in the building envelope. In tornadoes, a 

second mechanism also affects internal pressures, namely the atmospheric pressure change (APC). 

The atmospheric pressure at the center of the tornado is much lower than ambient values. As the 

core of the tornado moves near or over a building, the atmospheric pressure outside the building 

drops rapidly, resulting in a differential static pressure between the exterior and interior of the 

building, which effectively behaves as positive internal pressure. For enclosed buildings, the 

internal pressure coefficient is GCpiT = +0.55 and -0.18 for tornado pressures compared to GCpi = 

+0.18 for straight-line wind pressures driven by the contribution of APC (ASCE 2021). For both 

the MWFRS and C&C load cases, the direct wind-induced pressures are computed assuming the 

Cp derived from boundary layer wind tunnel tests are also valid for tornadic winds (e.g., Kopp and 

Wu 2020, Roueche et al. 2020). Table 4-1 summarizes the nominal values of tornado load 

parameters for ASCE 7-22 loading, and their statistics referenced from past literature. 
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Table 4-1. Statistics of tornado load parameters 

Parameters Descriptions Nominal Mean CoV Distribution References 

Tornado load parameters 
KzTor 0-61.0 m (0-200 ft) 1.00 1.00 0.20 Normal Levitan et al. 

2021 GT - 0.85 0.80 0.10 Normal 

KdT MWFRS 0.80 0.66 0.28 Beta (0,1) 

C&C 0.75 

KvT MWFRS 1.10 1.04 0.08 Normal 

Wall 1.00 

All other cases 1.00 

GCpiT Enclosed buildings 0.55 0.17 1.00 Exponential 

Partially enclosed 
buildings 

0.55 0.46 0.33 Normal 

Cp Wall 0.80 0.69 0.15 Normal Masoomi 
and van de 
Lindt 2016 

Roof -0.90 -0.81 

GCp Parapet 1.50 1.43 0.18 

Window -0.81 -0.77 0.12 

Door -0.86 -0.81 0.12 

Roof cover zone 1’ -0.90 -0.86 0.12 Normal Masoomi 
and van de 
Lindt 2016, 
FM Global 
2002a 

Roof cover zone 1 -1.70 -1.62 0.12 

Roof cover zone 2 -2.30 -2.19 0.12 

Roof cover zone 3 -3.20 -3.04 0.12 

 
Fragility models provide the probability of exceeding damage states for each building or 

structural component as a function of an intensity measure (e.g., 3-sec gust wind speed). The 

fragility model is commonly fit to a lognormal cumulative distribution function (CDF) controlled 

by logarithmic mean (λ) and standard deviation (ξ). Please refer to Ellingwood et al. (2004) and 

Wang et al. (2021b) for details on the development of fragility curves for structural components 

and systems subjected to natural hazards such as wind and earthquake. However, if considering 

the development of tornado fragility curves using the latest loading standard, some adjustments 

are needed to the past approach by Memari et al. (2018), who had developed a suite of tornado 

archetypes for use in community and urban resilience modeling. Tornado pressures can be 

determined using Equations (4.3) and (4.4). But if tornado speeds are less than 26.8 m/s (60 mph) 

or satisfy other conditions to make tornado design inapplicable (ASCE 2021), basic wind pressures 
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following Equations (4.1) and (4.2) are utilized. As mentioned earlier, MCS was applied in this 

chapter to determine the exceedance probability at each intensity measure (i.e., 3-sec gust wind 

speeds). The failure of windows or doors during a realization accounted for the building condition, 

which was then varied from enclosed to partially enclosed and coefficients adjusted for each MCS 

realization.  

4.2.2 Details of the Archetype Design: a Reinforced Masonry School Building 

Three new variations of the school building archetype were designed for use in this chapter based 

on a design peak 3-sec gust wind speeds of 51.4 m/s (115 mph), 55.9 m/s (125 mph), and 62.6 m/s 

(140 mph) to control the tornado design for use in community resilience modeling. Thus, three 

different improved designs are produced using different components (i.e., windows and doors, roof 

covers, roof structures, and masonry walls) for the reinforced masonry school building with each 

intended to achieve a different performance level in a simulated tornado. In this chapter, design 

level 1 represents the benchmark for typical school buildings in a community designed for a 

tornado in the Midwest. Design level 2 is the advanced design level compared with Design level 

1. Design level 3 is the highest design level used to improve school building performance in 

community resilience modeling and, therefore, maximize school continuity for school children 

following tornado events. Please refer to Section 4.3 for more details about the illustrative example 

of community resilience when applying different school designs. 

The archetype was based on a real building. Xenia Senior High School was a two-story 

reinforced masonry building located in north Xenia, Ohio in the U.S. The school consisted of the 

original main building and three additions (i.e., the addition A, B, and C). The addition A had 

hollow-core precast concrete roof planks and loadbearing masonry walls. The addition B was 

constructed of open-web steel joists, 50 mm (2-in) gypsum roof decks, and lightweight steel 
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frames. The addition C included the structural system of concrete double-tee roof beams and 

precast concrete frames. In addition to regular classrooms, Xenia Senior High School had a girls’ 

gymnasium, a boys’ gymnasium, and an auditorium (FEMA 2009). In the past, Xenia Senior High 

School was used to represent a typical school archetype in resilience assessment by the authors 

and others and was assumed to be a single-story reinforced masonry building as well as three long-

span rooms, i.e., two gymnasiums and one auditorium, with a total footprint area of about 23,226 

m2 (250,000 ft2) (Masoomi and van de Lindt 2016, Memari et al. 2018). Please refer to Figure 3 in 

Masoomi and van de Lindt (2016) about the detailed layout of the Xenia Senior High School and 

a simplified sketch is provided in Figure 4-2. Table 4-2 provides the assumed high school building 

construction details, including structural and non-structural components for each room. 
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Figure 4-2. A simplified sketch of the school building 
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Table 4-2. High school building construction details 

Buildings  Dimensions 
Windows/D

oors 
Roof 
cover 

Precast concrete roof 
system 

Walls 
Beams 

Strand 
pattern 

Main  Walls height = 4.3 m 
(14 ft) 
Parapets height = 0.9 
m (3 ft) 
152 m × 152 m × 4 m  

(500 ft × 500 ft × 14 ft) 

Annealed 
glass, 4.7 
mm (3/16 
in.), 1.9 sq 
m (20 sq ft) 

/ Glass 
entry doors 

Built-
up 

roof 
cover

s 

Hollow-
Core 4HC8 

58-S 8’ CMU 

Classroom (14 m × 11 m × 4 m) 

45 ft × 35 ft × 14 ft 

Girls’ gym 39 m × 24.5 m × 8 m  

(128 ft × 80 ft × 26 ft) 

Single Tee 
8ST36 

128-
D1 

12’ CMU 

Boys’ gym 43 m × 30.5 m × 9 m  

(140 ft × 100 ft × 30 ft) 

Single Tee 
10ST48 

188-
D1 

12’ CMU 

Auditorium 44 m × 27.5 m × 9 m  

(144 ft × 90 ft × 30 ft) 

Single Tee 
10ST48 

148-
D1 

12’ CMU 

 

Xenia Senior High School, which had a student population of 1450, was struck by an F5 tornado 

on April 3, 1974. The tornado touched down southwest of Xenia and destroyed the entire school 

building. The exterior walls collapsed, and all windows were shattered on the west and south sides. 

This extreme tornado tore off the lightweight roof on top of the main building, and the roofs 

collapsed over the three long spans rooms (FEMA 2009). In order to develop fragilities for the 

three different designs of the school building in improved designs, damage states for a typical 

school building are defined as shown in Table 4-3, consistent with Masoomi and van de Lindt 

(2016). The damage states are controlled by the performance of windows and doors, roof covers, 

roof structures, parapets, and load-bearing/non-load bearing walls. If any of the damage indicators 

in each damage state occur, the school building is considered in that damage state.  
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Table 4-3. Damage states for school buildings 

Damage 
state 
(DS) 

Window/door 
failures 

Roof cover 
failure 

Parapet 
failure 

Non-load 
bearing 

wall failure 

Roof 
structural 

failure 

Load-
bearing 

wall failure 

0 No ≤2% No No No No 

1 1 or 2 
>2% and 

≤15%  No No No No 

2 >2 and ≤25% 
>15% and 

≤50% 
No No No No 

3 >25% >50% Yes Yes No No 

4 
Typically > 

25% 
Typically > 

50% 
Typically 

Yes 
Typically 

Yes 
Yes Yes 

 
Table 4-4 presents the resistance statistics and the failure modes of the school building 

components for the original design, which represented the design of a 1970s school (Masoomi and 

van de Lindt 2016). The subsequent subsections will introduce the original design and the proposed 

improved resilient designs for each structural/non-structural component. Dead load statistics for 

structural components such as roof beams and masonry walls must be included in the numerical 

model, as illustrated in Table 4-5. The weight of other light non-structural components such as 

windows and doors were felt to be negligible and not included. Both the resistance statistics and 

dead load statistics are then used and combined within the model with the calculated load pressure 

statistics to perform reliability analysis and determine the fragility functions for the components 

and for the entire building. 
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Table 4-4. Resistance statistics of structural/non-structural components 

Element type Description Mean CoV 
Failure 
mode 

Referenc
es 

Windows Annealed glass 1.92 kPa (40 psf) 0.20 
 

Pressure FEMA 
2021 Doors Entry doors 2.39 kPa (50 psf) 

BUR roof 
cover 

Flashing resistance 328.36 N/m (22.5 
plf) 

0.30 Pressure FEMA 
2021 
 Peeling resistance 2.39 kPa (50 psf) 0.15 

Bubbling resistance 7.18 kPa (150 psf) 0.15 

Beams Hollow-core, 4HC8 19.66 kN/m (174 
plf) 

0.10 Negative 
bending 

Masoomi 
and van 
de Lindt 
2016 

Single-tee, 8ST36 221.56 kN/m (1961 
plf) 

Single-tee, 10ST48 275.23 kN/m (2436 
plf) 

Bolts #5 8’’ CMU, fully grouted 49.73 kN (11.18 
kip) 

0.10 Break out Cui 2007 

8’’ CMU, partially 
grouted 

32.65 kN (7.34 kip) 0.12 

12’’ CMU, fully 
grouted 

51.38 kN (11.55 
kip) 

0.15 

12’’ CMU, partially 
grouted 

40.52 kN (9.11 kip) 0.10 

CMU Walls Fully grouted, M/S, 
PCL 

2.0 MPa (289.6 psi) 0.11 Flexure-
unreinforc

ed 

Kim and 
Bennett 
2002 
 

Partially grouted, M/S, 
PCL 

1.47 MPa (213.0 
psi) 

0.31 

Ungrouted, M/S, PCL 1.29 MPa (186.5 
psi) 

0.48 

Ungrouted, N, PCL 0.69 MPa (100.5 
psi) 

0.45 

Ungrouted, N, MC 0.36 MPa (52.7 psi) 0.45 
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Table 4-5. Dead load statistics of typical structural components 

Element type Description Mean CoV CDF References 

Original design 
Beams Hollow-

core 
4HC8+2 4.73 kN/m (324 

plf) 
0.1 Normal Ellingwood 

et al. 2004, 
PCI 1971 Single-

tee  
8ST36+2 11.59 kN/m (794 

plf) 
10ST48+2 11.54 kN/m 

(1065 plf) 
Walls 8’ CMU - 2.30 kPa (48 psf) 0.1 Normal Masoomi 

and van de 
Lindt 2016 

12’ 
CMU 

- 3.54 kPa (74 psf) 

Improved resilient design 
Beams Double-

tee  
8DT24+2 

9.02 kN/m (618 
plf) 

0.1 Normal Ellingwood 
et al. 2004, 
PCI 2017 

10DT24+2 
10.48 kN/m (718 
plf) 

8DT32+2 
11.54 kN/m (791 
plf) 

Walls 8’ CMU  Solid grouted, normal 
weight 

4.02 kPa (84 psf) 
0.1 Normal Taly 2010 

12’ 
CMU 

Solid grouted, normal 
weight 

6.37 kPa (133 
psf) 

 

4.2.2.1 Doors and windows 

The original design of windows was assumed to use standard annealed glass without any special 

treatment processes such as heat strengthened glass and laminated glass. The thickness of 4.76 mm 

(3/16 in) met the minimum glass thicknesses coded in ASTM E1300 (ASTM 2003). Table 4-6 

illustrates the window designs specifically for different performance levels, corresponding to the 

“Design level” in column 1 and wind speed in column 2 (Minor and Norville 1998, Li and 

Ellingwood 2006, Hawley 2020). For glass breakage due to tornado pressure, the nominal 

resistance value for annealed glass was assumed to have the same resistance under uniform wind 

pressure, which can be determined by the glass strengths in terms of a 60 second duration uniform 

load multiplied by a factor of 1.2 (Minor and Norville 1998), and the coefficient of variation in 

resistance was assumed to be 0.25 (Li and van de Lindt 2006). A Weibull distribution 
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conventionally measures the statistical failure (e.g., the pressure strength) of brittle materials such 

as glass (Li and Ellingwood 2006, Abiassi 1981, Dalgliesh and Taylor 1990, Gavanski and Kopp 

2011) and was used in this chapter for consistency.  

The number of doors and windows for the high school was assumed to be 20 and 120, 

respectively, consistent with Masoomi and van de Lindt (2016). Figure 4-3 shows the resulting 

fragility curves for the windows and doors designed with the combination of impact glass windows 

and entry doors using ASCE 7-22 tornado loads. As shown in Figure 4-3, it can be observed that 

in order to keep an enclosed building condition (Enc), windows and doors can resist tornado loads 

of 49.0 m/s (109.5 mph), 57.0 m/s (127.4 mph), and 75.7 mph (169.3 mph) with a 50% probability 

to reach the three damage states (i.e., DS1, DS2, DS3). The other fragility curves shown as dashed 

lines in Figure 4-3 were developed for impact glass windows and entry doors, maintaining a 

partially (Par) enclosed building condition. Projectiles/debris is neglected which is common during 

tornadoes. Unlike straight-line winds, wind speeds acting on a building during a tornado can vary 

significantly over the building (presented as the tornado directionality factor, KdT, recall the 

description and load statistics of KdT in section 2.1), and the generated tornado pressures 

significantly differ for each realization within the MCS, resulting in fragility curves significantly 

flatter than the hurricane fragilities presented in Masoomi and van de Lindt (2016).  
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Table 4-6. Window design for different performance levels 

Design 
Level 

Design Wind speed  

Window design 

Description 
Resistance  

Mean CoV CDF 

Level 1 
51.4 m/s (115 mph) 

Annealed glass, 
3/16 in. 

1.7 kPa (36 psf) 0.25 

Weibull Level 2 
55.9 m/s (125 mph) 

Annealed glass, 
1/4 in. 

2.2 kPa (45 psf) 0.25 

Level 3 62.6 m/s (140 mph) Impact glass 2.9 kPa (60 psf) 0.25 

 

  

Figure 4-3. Windows and doors fragility curves using Design level 3 

4.2.2.2 Roof cover 

The perimeters, especially the corners of the roof cover, are exposed to higher uplift wind pressures 

in design codes and during field studies (Hawley 2020). The higher pressures in these areas are 

because the wind speed increases at the building edge as the wind flows over the structure (FM 

Global 2002a). For low-slope roofs such as flat roofs and gable roofs, the roof can be divided into 

four zones (i.e., zone 1, zone 1’, zone 2, zone 3) as a function of the mean roof height roof, as 

shown in Figure 4-4(a) (ASCE 2021). Built-up roof (BUR) covers and single-ply membrane 
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(SPM) covers are two standard roof cover systems used for flat roofs. For both roof cover systems, 

the failure of the perimeter flashing initiates the wind-induced failure. A typical 0.3 m (1 ft) wide 

flashing was identified in the simulation. When the flashing fails due to wind uplift pressures, the 

wind can peel the roof cover membrane at the newly exposed edge, and the peeling failure can 

expand towards the internal area of the roof field, as illustrated in Figure 4-4(b). Another failure 

mode after the initiation of the flashing is bubbling, where the roof cover is separated from the 

structural roof due to wind suctions (FEMA 2021). Table 4-7 presents the roof cover designs 

proposed in this chapter (Masoomi and van de Lindt 2016, FEMA 2021, FM Global 2022b). The 

roof cover resistances for the different materials and designs are based on engineering judgment 

and survey data (FEMA 2021, FM Global 2002b). Figure 4-5 presents the resulting roof cover 

component fragilities for Design level 3. 
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(b) 

Figure 4-4. Roof cover failure: (a) different zones to determine wind pressures; (b) roof cover 
areas for different failure modes 

 

Table 4-7. Roof cover design for different performance levels 

Design 
Level 

Roof cover design 

Description 
Flashing 
resistance  

Peeling 
resistance  

Bubbling 
resistance  CDF 

Mean CoV Mean CoV Mean CoV 

Level 1 SPM cover 
(adhesive) 

2.2 kPa 
(45 psf) 

0.30 1.9 kPa 
(40 psf) 

0.15 4.3 kPa 
(90 psf) 

0.15 

Normal 
Level 2 SPM cover 

(fasteners) 
2.2 kPa 
(45 psf) 

0.30 1.9 kPa 
(40 psf) 

0.15 5.7 kPa 
(120 psf) 

0.15 

Level 3 BUR cover 2.2 kPa 
(45 psf) 

0.30 2.4 kPa 
(50 psf) 

0.15 7.2 kPa 
(150 psf) 

0.15 

 

Roof Cover
Flashing Areas

Roof Cover Peeling
or Bubbling Areas
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Figure 4-5. Fragility curves of roof covers in the main building using Design level 3 

4.2.2.3 Structural roof system 

Precast concrete hollow-core beams and precast concrete single tee beams were used for the roof 

systems in the original design of the main building and the other three long-span rooms, 

respectively. The section properties of the concrete beams and the design of the strand patterns 

bonded inside followed the requirements coded in the PCI 1st edition design handbook published 

in the 1970s (PCI 1971), and all the beams were simply supported in the original design. Overall, 

precast concrete beams were conventionally designed for positive bending failure due to gravity 

loads and other loads such as rain loads. In addition, uplift loads due to wind suction can be 

completely, at least largely, offset by gravity loads except for extreme wind events (e.g., 

Kuligowski et al. 2014). In this chapter, negative bending at the mid-span was used to control the 

failure of the roof beams to examine the structural performance of the roof beams impacted by 

uplift tornado loads. The negative moment resistance was determined by traditional design 

procedures of prestressed concrete beams designed with minimum reinforcement at the negative 
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moment section. The tensile breakout of roof-to-wall connections is another failure of the roof 

beams considered in this chapter. If bolts were not reasonably designed to connect the roof beams 

and masonry walls, the roof beams could move laterally or collapse in the tornado before the 

negative bending failure occurred. Thus, the union of the roof beam failure and the connection 

failure was regarded as the structural roof failure.  

Over the past few decades, single tee beams have been gradually replaced by double tee beams 

due to their heavy self-weight dead loads. Table 4-8 indicates the three design levels proposed 

using double tee roof beams designed for three long-span rooms and roof-to-wall connections 

spaced differently based on structural calculation and PCI (2017), ACI (2019). In this chapter, all 

structural roof designs proposed are adequate to resist the tornado in routine levels (50-60 m/s, 

111-135 mph) and design levels (61-74 m/s, 135-165 mph). Structural failure for this type of roof 

is only likely to occur under tornadoes at in extreme levels (75-89 m/s, 166-200 mph), which is 

when uplift loads are at least greater than gravity loads for roof beams. Figure 4-6 illustrates 

structural roof fragility curves using the highest design level for roof beams and connections. When 

the 3-sec gust wind speed equals 89 m/s (200 mph), in order to ensure an enclosed building 

condition, the failure probabilities of the structural roof and the roof-to-wall connections under 

tornado loads are 12.9% and 8.6%, respectively. It can be implied that the connection failure is the 

most likely failure mode for the roof structure.  
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Table 4-8. Structural roof design for different performance levels 

Design 
Level 

Roof design 

Beams 
Negative moment resistance  Failure 

modes 
Roof-to-wall 
connections Mean CoV CDF 

Level 1 8DT24+2 131.4 kN m 
(1163.0 kip in) 

0.06 

Normal 
Negative 
moment 

#5 60 in o.c. 

Level 2 10DT24+2 146.6 kN m 
(1297.9 kip in) 

0.07 #5 48 in o.c. 

Level 3 8DT32+2 248.7 kN m 
(2201.5 kip in) 

0.07 #5 36 in o.c. 

 

 

Figure 4-6. Structural roof fragility curves using Design level 3 

4.2.2.4 Reinforced masonry walls 

Flexure failures were commonly associated with masonry walls subject to out-of-plane loading 

during severe winds. Lack of horizontal and vertical reinforcement makes these walls susceptible 

to excessive in-plane load, where shear failures may occur (Al-Menyawi 2001). This chapter does 

not consider shear failures associated with in-plane loading of masonry shear walls because the 

new designs consist of reinforcement. The building was assumed to have unreinforced masonry 
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walls of 0.2 m (8 in) CMU for the main building and 0.3 m (12 in) CMU for the other three long-

span rooms. Traditional structural analysis of a 0.3 m (1 ft) strip of wall in terms of flexure-

unreinforced failure was performed to examine the performance of unreinforced masonry walls 

within different masonry and mortar types to resist wind loads. The improved designs utilized 

reinforced masonry walls and defined three design levels that meet the standards coded in TMS 

402 (TMS 2016), as illustrated in Table 4-9 (TMS 2016, Bournonville et al. 2004, Aryana 2006). 

The yielding of vertical reinforced bars controls the failure of reinforced masonry walls such that 

inspectors can identify structural defects in a timely manner when performing regular inspections. 

When designing the load-bearing wall, the bending moment generated from lateral wind loads and 

eccentric loads transferred from roof beams were determined. 

Figure 4-7 shows fragility curves for the load-bearing walls of the boy’s gym for all three design 

levels. From the dash lines shown in Figure 4-7, it can be observed that in order to keep a partially 

enclosed condition for the tornado hazard, the 3-sec gust wind speeds lead to the load-bearing wall 

failure with a 50% probability within Design level 1, Design level 2, and Design level 3 are 57.2 

m/s (128.0 mph), 59.2 m/s (132.5 mph), and 68.8 m/s (154.0 mph), respectively. Based on the 

results, it can provide an approximate verification that three design levels of load-bearing masonry 

walls were proposed within a peak 3-sec gust wind speeds of 51.4 m/s (115 mph), 55.9 m/s (125 

mph), and 62.6 m/s (140 mph) as design inputs to control the wind design.   
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Table 4-9. Wall design for different performance levels 

Design 

Wall design 

Grade 
60 

rebars 

Yield strength Mortar 
types 

Concrete masonry unit 
compressive strength  

Mean CoV CDF Mean CoV CDF 

Level 1 
#6 48 
in o.c. 

475.0 MPa 
(68.9 ksi) 

0.07 

Normal 

M or S 34.1 MPa 
(4,950 psi) 

0.15 

Normal Level 2 
#5 32 
in o.c. 

475.0 MPa 
(68.9 ksi) 

0.07 
M or S 34.1 MPa 

(4,950 psi) 
0.15 

Level 3 
#4 16 
in o.c. 

480.6 MPa 
(69.7 ksi) 

0.08 
N 42.7 MPa 

(6,200 psi) 
0.15 

 

 

Figure 4-7. Fragility curves of load-bearing wall in the boys’ gym 

4.2.2.5 School building fragilities (full system) 

After determining the individual component fragilities, the damage of each structural and non-

structural component can be assembled to assess the damage of the entire high school building in 

each MCS realization, and fragility curves for the entire school building can be determined. It 

should be emphasized that only failure of either load-bearing walls or structural roofs leads to the 

building being in damage state 4. Figure 4-8 and Figure 4-9 show the fragility curves of the entire 
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high school building using Design level 2 and Design level 3, respectively. It is worth reiterating 

that windows or doors may be damaged or undamaged in each MCS realization, which then 

determines whether the entire building has pressures consistent with an enclosed or partially 

enclosed building condition. Therefore, the fragility curves for the school building do not have two 

sets of curves (i.e., enclosed and partially enclosed) like those for components presented earlier. 

Overall, as shown in Figure 4-8 and Figure 4-9, the fragility curves for all damage states move to 

the right to a certain extent due to the advanced design application of higher-strength components. 

Table 4-10 presents the tornado fragility parameters for the school building using three different 

design levels. Note that λ and ξ summarized in Table 4-10 are logarithmic mean and standard 

deviation of lognormal cumulative distribution functions (as mentioned earlier) within the dual 

units of mph and m/s (shown in the parenthesis) individually.  

 
Figure 4-8. School fragility curves using Design level 2 
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Figure 4-9. School fragility curves using Design level 3  

Table 4-10. Tornado fragility parameters for the school building in different design levels 

Damage states 
Design level 1 

Units: mph (m/s) 
Design level 2 

Units: mph (m/s) 
Design level 3 

Units: mph (m/s) 

λ  ξ λ ξ λ ξ 

DS1 4.41 (3.60) 0.17 (0.17) 4.47 (3.66) 0.16 (0.16) 4.59 (3.78) 0.16 (0.16) 
DS2 4.51 (3.70) 0.19 (0.19) 4.61 (3.80) 0.18 (0.18) 4.74 (3.93) 0.18 (0.18) 
DS3 4.72 (3.91) 0.14 (0.14) 4.79 (3.98) 0.13 (0.13) 4.92 (4.11) 0.13 (0.13) 
DS4 4.92 (4.11) 0.15 (0.15) 4.94 (4.13) 0.15 (0.15) 5.07 (4.26) 0.14 (0.14) 

4.3 Illustrative Example  

A multidisciplinary perspective applied to the built environment, social, and economic systems on 

community resilience studies to natural hazards such as hurricanes, tornadoes, earthquakes, and 

floods is prevalent in recent years (e.g., Wang et al. 2021b, Koliou et al. 2020, Nofal and van de 

Lindt 2020, Nofal et al. 2021, Roohi et al. 2020, Bocchini et al. 2014, Li et al. 2020, Sediek et al. 

2022). In order to apply the tornado-induced school building designs mentioned earlier and 

examine a core community resilience metric, this chapter demonstrates the use of the improved 
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school fragilities and (subsequently developed) improved residential fragilities to examine key 

metrics such as dislocation of households, inability to attend school, and the combination of these 

two conditions for residents of a community. This illustrative example specifically examines 

households with children in the U.S. city of Joplin, Missouri, incorporating interdependency 

between residential buildings, households, and availability of school services when subjected to 

tornado hazards. 

The retrofitted residential buildings used in this example have different design combinations in 

structural configurations, including roof covers, roof sheathing nailing patterns, and roof-to-wall 

connections (see Wang et al. 2021b for details). Table 4-11 and Table 4-12 present the details of 

the retrofitted designs and their fragilities for residential buildings surrounding the school 

buildings throughout Joplin. The building dataset in the Joplin testbed has 23,605 residential 

buildings with archetypes assigned based on their footprint areas and the number of stories. The 

NCES and SABS provides school attendance zones for more than 70,000 schools in over 12,000 

school districts throughout the U.S. Based on the records for the 2015-2016 school year, the Joplin 

community has 11 elementary schools, three middle schools, and one high school, as illustrated in 

Table 4-13. The overlay of the Joplin testbed building datasets and the Joplin school attendance 

zones provides information on the spatial dependency between Joplin residential buildings and 

their dependent schools, as shown in Figure 4-10, with almost 95% of residential buildings in the 

Joplin testbed are covered in the Joplin school attendance zones. After allocating the household 

information to the residential buildings, the housing units tracked by Housing Unique Identifiers 

(HUIDs) can link to the residential buildings tracked by Globally Unique Identifiers (GUIDs), 

where the data format of the interdependency among housing units, residential buildings, and their 

school attendance zones is shown in Table 4-14. This chapter uses the predicted household size 
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multiplied by 19%, an approximate percentage of children from 5 to 19 years in the total population 

(US Census Bureau 2019), to estimate the number of children per household and distributes them 

throughout the residential buildings based on the allocation methodology (Rosenheim et al. 2019, 

Rosenheim 2021).  

Because 90% of historical tornadoes recorded are EF2 ratings or less (e.g., Haan et al. 2008, 

Roueche et al. 2017), this illustrative example applies 100 EF2 idealized generic tornado scenarios 

using the gradient technique (Standohar-Alfano and van de Lindt 2015) developed geographically 

in the random length and direction (Wang et al. 2022c) which strike the Joplin testbed. For each 

tornado scenario, both school buildings and residential buildings were designed in three different 

levels separately. Since school buildings in any community are relatively scattered and scarce 

compared with residential buildings, there are a number of tornado scenarios that may not even 

strike a school building. Only eighteen tornado scenarios hit the elementary schools, five tornado 

scenarios struck the middle schools, and none of the tornado scenarios impacted the high school 

in the simulation. In reality, Joplin was impacted by an EF5 tornado which destroyed the high 

school in 2011. The analytical results of tornado scenarios were averaged and classified into two 

categories for all tornado scenarios and only tornado scenarios striking school buildings separately 

to better discern the results, and presented in Table 4-15 and Table 4-16. 

Table 4-11. Retrofit strategies of residential buildings in different design levels  

Structural elements Description  Design level 
1 

Design level 
2 

Design level 
3 

Roof covering Asphalt shingles X X - 
Clay tiles - - X 

Roof sheathing nailing 
pattern 

8d C6/12 X - - 
8d C6/6 - X X 

Roof-to-wall connection 
type 

Two 16d 
toenails 

X - - 

Two H2.5 clips - X X 
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Table 4-12. Tornado fragility parameters for residential buildings in different design levels  

Damage states 
Design level 1 

Units: mph (m/s) 
Design level 2 

Units: mph (m/s) 
Design level 3 

Units: mph (m/s) 

λ ξ λ ξ λ ξ 

Archetype 1 
DS1 4.49 (3.68) 0.13 (0.13) 4.49 (3.68) 0.14 (0.14) 4.74 (3.93) 0.12 (0.12) 
DS2 4.37 (3.56) 0.14 (0.14) 4.66 (3.85) 0.12 (0.12) 4.80 (3.99) 0.11 (0.11) 
DS3 4.44 (3.63) 0.13 (0.13) 4.79 (3.98) 0.11 (0.11) 4.88 (4.08) 0.10 (0.10) 
DS4 4.49 (3.68) 0.14 (0.14) 4.97 (4.16) 0.13 (0.13) 5.10 (4.29) 0.12 (0.12) 

Archetype 5 
DS1 4.56 (3.75) 0.13 (0.13) 4.56 (3.75) 0.13 (0.13) 4.76 (3.95) 0.12 (0.12) 
DS2 4.46 (3.65) 0.13 (0.13) 4.69 (3.88) 0.12 (0.12) 4.83 (4.02) 0.11 (0.11) 
DS3 4.51 (3.70) 0.13 (0.13) 4.79 (3.98) 0.11 (0.11) 4.92 (4.11) 0.10 (0.10) 
DS4 4.45 (3.64) 0.15 (0.15) 4.87 (4.06) 0.14 (0.14) 5.05 (4.24) 0.13 (0.13) 

 

Table 4-13. K-12 schools in Joplin 

School types Joplin Schools NCES school identification code 

Elementary school Cecil Floyd Elementary School 291635002432 

Columbia Elementary School 291635000772 

Eastmorland Elementary School 291635000775 

Irving Elementary School 291635003240 

Jefferson Elementary School 291635000779 

Kelsey Norman Elementary School 291635000780 

McKinley Elementary School 291635000783 

Royal Heights Elementary School 291635000788 

Soaring Heights Elementary School 291635000773 

Stapleton Elementary School 291635000791 

West Central Elementary School 291635000793 

Middle school East Middle School 291635002431 

North Middle School 291635002430 

South Middle School 291635002429 

High school Joplin High School 291635000787 
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(a) 

 
(b) 
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(c) 

Figure 4-10. Joplin buildings associated with school attendance zones: (a) elementary schools; 
(b) middle schools; (c) high schools 

 

Table 4-14. Data format example of interdependency among households, residential, and school 
attendance zones 

GUID HUID Household size 
NCES school identification code 

Elementary school Middle school High school 

GUID1 HUID1 4 291635000788 291635002431 291635000787 
GUID2 HUID2 5 291635000787 291635002430 291635000787 
GUID3 HUID3 2 291635000783 291635002431 291635000787 
GUID4 HUID4 1 291635002432 291635002430 291635000787 
GUID5 HUID5 3 291635003240 291635002429 291635000787 

… … … … … … 
 

Since each household has its dependent elementary school and middle school, Table 4-15 and 

Table 4-16 present the impact of the functionality of residential buildings along with elementary 

schools and middle schools, respectively, on school children. Overall, if averaging the analytical 
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results over all tornado scenarios, the number of children in all four cases are close no matter 

whether considering their dependent elementary school or middle school. The percentage of 

children who resided in residential buildings within tornado paths having both functional housing 

and a functional school building (Case 1) can be improved from around 25% to 85% when using 

Design level 3. The percentage of children losing both facilities (Case 4) are reduced from less 

than 5% to less than 1%.  The low values and high values for coefficients of variation (CoV) for 

Case 3 and Case 4 when averaging the analytical results of all tornado scenarios occur because 

most tornado scenarios do not strike the school buildings, and therefore the number of non-

functional schools in these scenarios are zero.  It is important to keep in mind that an EF2 tornado, 

while much more common than EF4 or EF5 tornadoes, are also significantly narrower, e.g., several 

hundred meters rather than more than a kilometer wide.  

However, if only averaging the analytical results of tornado scenarios striking elementary 

schools and middle schools, respectively, the number of children affected in the four cases have a 

relatively large difference. When combining the analytical results of Case 1 and Case 2 without 

considering the functionality of residential buildings, it can be observed that due to the improved 

school building design, the percentage of children having a functional elementary school is 

improved from 80.1% (20.6%+59.5%) to 92.2% (79.3%+12.9%) as shown in Table 4-15. The 

percentage of children having middle schools is increased from 60.7% (14.3% + 46.4%) to 80.9% 

(68.4%+12.5%) shown in Table 4-16. Similarly, combing the analytical results of Case 1 and Case 

3 without considering the functionality of school buildings can conclude that the retrofitted 

residential buildings in higher design levels help more children maintain their housing after 

tornado events. 
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Table 4-15. The impact of functionality of residential and elementary schools in different 
improved designs on school children 

Cases Residential 
Elementary 

Schools 

Households with children residing in residential 
buildings 

within tornado paths  

All tornado scenarios 
included (100 scenarios) 

Tornado scenarios striking 
elementary school 

buildings  
(18 scenarios) 

Mean CoV Mean CoV 

Design level 1 
Case 1 X X 34.3 (24.2%) 0.74 43.1 (20.6%) 0.42 
Case 2 - X 99.9 (70.6%) 0.65 124.2 (59.5%) 0.47 
Case 3 X - 1.5 (1.1%) 3.28 8.3 (4.0%) 1.06 
Case 4 - - 6.0 (4.2%) 3.33 33.2 (15.9%) 1.08 
In total   141.6 (100.0%) 0.63 208.8 (100.0%) 0.32 

Design level 2 
Case 1 X X 92.4 (65.3%) 0.64 119.4 (57.2%) 0.42 
Case 2 - X 43.3 (30.6%) 0.74 56.4 (27.0%) 0.55 
Case 3 X - 3.5 (2.5%) 3.62 19.6 (9.4%) 1.24 
Case 4 - - 2.4 (1.7%) 3.97 13.5 (6.5%) 1.42 
In total   141.6 (100.0%) 0.63 208.8 (100.0%) 0.32 

Design level 3 
Case 1 X X 119.5 (84.4%) 0.63 165.6 (79.3%) 0.37 
Case 2 - X 19.1 (13.5%) 0.83 26.9 (12.9%) 0.57 
Case 3 X - 2.3 (1.6%) 5.35 13.0 (6.2%) 2.08 
Case 4 - - 0.6 (0.4%) 6.30 3.3 (1.6%) 2.52 
In total   141.6 (100.0%) 0.63 208.8 (100.0%) 0.32 
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Table 4-16. The impact of functionality of residential and middle schools in different improved 
designs on school children 

Cases Residential 
Middle 
Schools 

Households with children residing in residential buildings 
within tornado paths  

All tornado scenarios 
included 

(100 scenarios) 

Tornado scenarios striking 
middle school buildings (5 

scenarios) 

Mean CoV Mean CoV 

Design level 1 
Case 1 X X 34.9 (24.6%) 0.75 28.4 (14.3%) 0.69 
Case 2 - X 102.8 (72.6%) 0.67 92.2 (46.4%) 0.67 
Case 3 X - 0.9 (0.6%) 5.89 17.0 (8.6%) 0.89 
Case 4 - - 3.1 (2.2%) 5.78 61.2 (30.8%) 0.85 
In total   141.6 (100.0%) 0.63 198.8 (100.0%) 0.17 

Design level 2 
Case 1 X X 94.0 (66.4%) 0.65 88.6 (44.6%) 0.59 
Case 2 - X 44.3 (31.3%) 0.75 45.0 (22.6%) 0.76 
Case 3 X - 1.9 (1.3%) 6.31 38.9 (19.6%) 1.02 
Case 4 - - 1.3 (0.9%) 6.49 26.3 (13.2%) 1.08 
In total   141.6 (100.0%)  0.63 198.8 (100.0%) 0.17 

Design level 3 
Case 1 X X 120.4 (85.0%) 0.64 136.0 (68.4%) 0.43 
Case 2 - X 19.3 (13.6%) 0.85 24.8 (12.5%) 0.74 
Case 3 X - 1.5 (1.1%) 8.29 30.2 (15.2%) 1.58 
Case 4 - - 0.6 (0.4%) 8.58 7.7 (3.9%) 1.65 
In total   141.6 (100.0%)  0.63 198.8 (100.0%) 0.17 

 

4.4 Summary and Conclusions 

The resilience of communities/cities relies heavily on social institutions such as schools to 

maintain population stability.  This chapter investigated the effect a building retrofit program 

would have on maintaining school continuity, avoiding dislocation for school children, or the 

combination thereof. To do this, several improved design levels of a reinforced masonry school 

building were designed, and fragilities representative of archetypes for use in community resilience 

modeling were developed. This was done using the new tornado methodology in ASCE 7-22 

(ASCE 2021). The ability to quantify the impact of improved design of buildings critical to the 
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functionality and recovery of a community is necessary for planning and measuring resilience. 

Based on the work presented herein, the following conclusions can be drawn: 

• Tornadic winds vary in both direction and speed over the building, resulting in the 

generated tornadic wind pressures having a significant difference in each MCS realization, 

making the fragility curves relatively flat compared to straight line winds.  

• Similar wind speeds result in a likely decrease of approximately one to two damage state 

levels when comparing Design level 1 (representing code level) versus Design level 3 

(representing an improved design). The improvement of the building performance could 

help significantly mitigate the damage of school buildings following moderate tornado 

events. 

• The improved school building design and improved residential building design enable 

buildings to be less damaged as expected, but the impact on reducing dislocation in 

moderate tornadoes (EF2) and maintaining educational continuity is significant. 

The tornado fragility analysis via MCS can determine the probability of exceeding the 

specified damage states for the school building using 3-sec gust wind speed as an intensity 

measure. However, the process cannot incorporate the effect of footprint areas of the buildings on 

the tornado speed as introduced in ASCE 7-22. Addressing the above limitation is beyond the 

scope of this chapter.  

In summary, use of these new archetypes within community/city resilience modeling can 

provide communities the impetus to strengthen their school design for new/existing buildings. The 

fragility curves representing new archetypes provide the response of school buildings, which play 

an essential role in providing the social services, in resilience assessment subjected to tornado 

loads.  This was done following the methodology in the latest U.S. standard which is the first in 
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the world to include tornado loads.  Although schools are critical, additional archetypes need to be 

investigated for improvement in the community resilience tornado literature for modeling. 
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CHAPTER 5 RESIDENTIAL BUILDING RECOVERY  

 
 
 

5.1 Introduction 

Understanding the process of community recovery impacted by various post-disaster decisions 

such as dynamic policies that can effectively guide the recovery process and expedite recovery, 

thereby establishing a more resilient community if a hazard event were to occur. This chapter 

proposes a methodology based on a multi-layer MCS to model a two-stage recovery process for 

residential buildings: functional downtime due to delay and functional downtime due to repair. 

The delay portion of the model was modified based on the REDi framework and models 

the impeding factors that delay repairs such as post-disaster inspection, insurance claims, and 

building permits. Household income was examined to estimate the financing delay depending on 

different funding resources such as insurance and loans available to households at different income 

levels. The repair portion of the model followed the FEMA P-58 approach (which was originally 

for post-earthquake analysis) and was controlled by fragility functions. This chapter also 

investigates a series of policies to examine an illustrative example, namely the 2011 Joplin tornado. 

The ability to model hypothetical policy scenarios for residential recovery of a community will 

enable decision-makers to better understand collective community-wide impacts of their actions 

and policies, thereby improving community resilience planning. 

A few studies have estimated residential and business downtime due to a variety of delays 

before the initiation of building repairs. Lin and Wang (2017) utilized a discrete/continuous-time 

Markov Chain and transition probability matrix to predict the recovery trajectory involved with 

delay across the domain of a community for earthquake hazards using a building portfolio 
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approach that clustered buildings by type. Iuliis et al. (2019) applied a fuzzy logic hierarchical 

scheme to evaluate the delay time considering repair sequences and repair crews for a residential 

building. Aghababaei et al. (2020) adjusted the REDi framework and used real-world Small 

Business Administration (SBA) loans and permitting time data to determine the delay time, filling 

the gap between the analytical and empirical fragilities.  

Moreover, policies are essential to effectively influence the speed and quality of the recovery 

process when they are developed related to public resources with potential causes of delays 

considered (Ingram et al. 2006, Joshi and Aoki 2014, Sutley and Hamideh 2018, Richmond 2019). 

For example, recovery fund policies from the Federal Emergency Management Agency (FEMA) 

restricted any money used to repair damages caused by deferred maintenance (Sapat and Esnard 

2016). Hirayama (2000) examined the temporary and permanent housing recovery policy 

implemented in Kobe, a city heavily damaged by the Great Hanshin Earthquake in 1995 and 

identified a significant gap in housing recovery for the urban area after the earthquake due to socio-

economic and spatial polarization. Drennan et al. (2016) confirmed the effectiveness of 

intergovernmental policy and funding arrangements on reinforcing the management of natural 

disasters through case studies of two of the most expensive and deadly natural disasters in 

Australia.  

The work presented in this chapter differs from past studies in that no studies to date have 

performed a quantitative probabilistic analysis to determine the community recovery when 

impacted by policy changes implemented by either federal, state, or local governments. Another 

significant contribution of the work is, for the first time, a methodology that provides recovery 

modeling as a time-stepping algorithm (e.g., monthly, quarterly, yearly) is presented with full 

propagation of uncertainties, thereby allowing investigation of changes in policies at different 
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points in time during the recovery process. Finally, the methodology presented herein applies an 

existing housing unit allocation algorithm (Rosenheim 2020) that allows the analyst to include 

detailed household characteristics and to track how the recovery of housing impacts the people 

living in each building. This last feature allows the prediction of delays based on the household 

income allocated to each housing unit based on race, ethnicity, and household size at the census 

block level as well as census tract level income distributions. Figure 5-1 shows the schematic 

description of community resilience following a disruptive hazard event in terms of robustness 

(system-level residual functional capacity to withstand an extreme event) and rapidity (the time 

required to recover the desired functionality). Where Q(t) is the functionality performance, which 

is measured as a dimensionless function of time, tr is the recovery time for the system to be fully 

restored, and to is the time of occurrence of disasters (Bruneau et al. 2003, Koliou et al. 2017). 

Resilience (R) was defined mathematically by Bruneau et al. (2003), illustrated in Equation (5.1), 

and can also be shown as the area under the curve between to and tr in Figure 5-1. This chapter 

presents the methodology and concept first published in Wang and van de Lindt (2021). 

                                                                   𝑅 =  ∫ 𝑄(𝑡)𝑑𝑡𝑡𝑜+𝑡𝑟𝑡0                                                            (5.1) 

 
Figure 5-1. The schematic description of community resilience 
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5.2 Probabilistic Residential Recovery Modeling 

Figure 5-2 shows a schematic of the residential recovery modeling methodology proposed in this 

chapter. Total recovery time for a damaged building induced by a hazard event is not limited to 

the time required to simply repair a building. Recovery modeling in this chapter is considered a 

two-step recovery: downtime due to delays and downtime due to repairs. The recovery modeling 

overall was a probabilistic quantitative analysis which uses multi-layer MCS. The first layer of 

MCS included N1 scenarios to probabilistically estimate the delay time, which is directly related 

to building damage from the hazard. For each realization of delay time within the MCS, N2 

realizations of repair time were generated and then combined with this delay time realization to 

form the multi-layer MCS. The delay assessment methodology was developed based on the 

approach in the REDi framework (Almufti and Willford 2013). It should be mentioned that the 

REDi framework was initially designed for loss assessment of post-earthquake events, but the 

methodology developed in this chapter modified the framework to generalize it for all events, with 

an illustrative example for wind-induced events presented later in this chapter. The functions 

comprehensively incorporate the delay variables resulting from typical impeding factors, which 

include issues such as post-disaster inspection, securing engineer/contractor, financial assistance, 

and a building permit. The financing delay is assumed to be directly related to the financial 

resources available to a household. Thus the methodology proposes to use annual household 

income as a socio-demographic characteristic indicator to predict the funding options for 

households to finance their residential building repairs. Repair time was estimated by fragility 

functions, and recovery time was the combination of delay time plus repair time. Weibull 

distributions can be used to fit the MCS results for delay time and recovery time for each building. 

It was assumed that no households would out-migrate but rather stay in the community to complete 
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the repairs following a hazard event. Relaxing and addressing this assumption is beyond the scope 

of the current paper, but its importance is duly noted and will be addressed in future work. 

 
Figure 5-2. Flowchart of the residential recovery modeling following a hazard event 

5.2.1 Delay Time Assessment 

Several delays inevitably occur before the initiation of building repairs, which will increase the 

time needed for damaged buildings to reach the next (and eventually complete) recovery state. 

Equation (5.2) shows the delay variables considered in this chapter, where i is an index for each 

realization within the MCS, j is a specific building in the community; TDelay is the modeled delay 

time, and TINSP, TENGM, TFINA, TCONM, TPERM are the times for the post-event inspection, to contact 
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engineers, to secure funding, to secure contractors, and procure construction permitting, 

respectively. 

                           TDelay, ij= TINSP, ij + max {TENGM, ij, TFINA, ij, TCONM, ij} + TPERM, ij                             (5.2) 

This chapter assumes the following sequence of events associated with modeled delay time. 

First, a building inspector performs a thorough visual inspection of the damaged buildings in order 

to assess the extent of the damage and protect the safety of the building occupants. The building 

owner is then told to obtain a structural building inspection if the structural integrity of the building 

is in question. In addition, the jurisdiction, tenants, or insurance companies have a right to request 

an inspection if they deem the event may have caused damage to a building. Upon receiving the 

inspection report, the homeowner will typically approach a professional contractor to prepare for 

the repair and, if applicable by jurisdiction, identify an engineer or equivalent to review/redesign 

and provide drawings for the building. Simultaneously, the financial loss estimate for the building 

may be provided by the insurance inspection report and/or the contractor, and the owner must 

proceed to secure any funding resources needed. Delays during this period need to be combined, 

and the time required for each component cannot simply be added since some tasks are usually 

performed in parallel. The duration used for the engineer to review/redesign may depend on the 

structural damage level and may also be related to the height and footprint area of the building. 

Finally, if the building exhibits structural damage and then structural repairs are needed, a permit 

needs to be approved by the local building jurisdiction. 

The duration of most of the delay variables is correlated well with the extent of the damage. 

Unlike most of the delay variables, financing delays rely on the household’s capability to access 

government funding, the bank, insurance payments, and charitable organizations. Note that 

Federal, other state governments, and nongovernmental organizations (NGOs) like the American 
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Red Cross and local churches are not considered in this chapter due to the uncertainty of their 

assistance for each event. Instead, financial resources, including insurance, loans, and savings, are 

considered herein. More than 85% of homeowners have homeowner insurance in the United States, 

which typically covers wind damage (Croll 2021). The Small Business Administration (SBA), 

which is a United States government agency that provides support and loans to entrepreneurs and 

small businesses,  has invested a large sum of money in disaster loans to repair or replace damaged 

components. In theory, businesses and homeowners can borrow within limits, which depends on 

their qualifications. Additionally, owners may qualify for private loans from banks if they meet 

specific minimum requirements. The personal loan amount is related to financial impact factors 

such as property value, credit report, and market conditions. However, specific populations, such 

as homeowners with low incomes and minorities, historically have less access to such public 

assistance (Peacock et al. 1997). For these households, any savings or family assistance may 

become the only option for financing repair.  

The impeding factor functions are quantitatively described in the format of lognormal 

cumulative distribution functions with a high degree of uncertainty, as illustrated in Table 5-1 and 

Equation (5.3) (Almufti and Willford 2013). Note that β is the standard deviation of the lognormal 

function, and the columns of the median (θ1) and coefficient of variation (CoV) shown in Table 5-

1 were referenced from the REDi framework, while the modified median (θ2) values are defined 

in this chapter to represent shortened delay time impacted by different policies, which will be 

expanded on later in the policy lever section. It is assumed that the coefficients of variation for the 

delay time remain the same with or without the impact of post-disaster policies. The variable of 

Tn, ij shown in Equation (5.3), is consistent with the delay variables such as post-event inspection 

defined in Equation (5.2). It is worth noting that these delay time estimates may be merely 
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applicable to the buildings located in the United States since other countries may have different 

emergency response plans. Lin and Wang (2017) combined delay time components with specific 

conditions of buildings damaged at different levels (see Table 5-1). The estimated delay time is 

directly related to the initial building damage level in this chapter, which is modeled using 

fragilities for each building, as illustrated conceptually in Figure 5-3.  

                                                         𝐹𝑅(𝑇𝑛,𝑖𝑗) = Ф [𝑙𝑛(𝑇𝑛,𝑖𝑗)−𝑙𝑛 (𝜃)𝛽 ]                                                   (5.3) 

 

Table 5-1. Statistics of delay time associated with building damage (unit: weeks) 

Sequence 
Delay time impeding 

factor 
Building damage 

conditions 
Median 

(θ1) 

Modified 
median 

(θ2) 

Coefficient 
of 

variation 
(CoV) 

Delay 
Phase 1 

Inspection (TINSP, ij) 
Slight 0  0 - 

Above slight 0.5 0.1 1.08 

Delay 
Phase 2 

Engineering 
mobilization & 

review/redesign (TENGM, 

ij) 

Slight 6 - 0.07 

Moderate/extensive 12 - 0.03 

Complete 50 - 0.01 

Financing (TFINA, ij) 

Insurance 6 3 0.19 

Private loans 15 7.5 0.05 

SBA-backed loans 48 24 0.01 

Savings/others 48 24 0.01 

Contractor mobilization 
(TCONM, ij) 

Slight 7 1 0.09 

Above slight 19 11 0.02 

Delay 
Phase 3 

Permitting (TPERM, ij) 
Slight 1 0 0.86 

Above slight 8 0 0.04 



 

122 
 

 
Figure 5-3. Fragility curve of a woodframe residential building subjected to a hazard (tornado) 

 

For residential buildings, a household’s income has been considered a socio-demographic 

indicator that can describe how households can access different financial resources (Carvalho et 

al. 2016). Equation (5.4) presents an estimation of the time used for financing delays, where n 

refers to four specific funding options considered herein, including homeowners insurance, SBA-

backed loans, private loans, and savings/others. The indices i and j are still representative of each 

realization in the MCS and building identification itself, respectively; 𝑃[𝑇𝑛,𝑖𝑗] is the probability of 

the households to access one of the financial options as discussed, and 𝑇𝑛,𝑖𝑗 is the estimated time 

derived from cumulative lognormal functions. It is assumed in the model that each household does 

not assess two or more financial resources, and the probability of different household groups to 

approach a single financial resource is different. 

                                                                           𝑇𝐹𝐼𝑁𝐴,𝑖𝑗 = ∑ 𝑃[𝑇𝑛,𝑖𝑗] ∙ 𝑇𝑛,𝑖𝑗4𝑛=1                                               (5.4) 

The income distributions at the census tract level can be derived from the dataset developed by 

the American Community Survey (ACS), which is a continuous survey led by the U.S. Census 
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Bureau. However, issues such as missing data are unavoidable due to a lack of response by 

households or incomplete reports provided by the household. Therefore, when the household 

income information cannot be fully measured/estimated by household surveys or the specific 

algorithm, it is necessary to predict (extrapolate) the missing data in order to estimate financing 

delay times for all housing units affected by the hazard exposure. This chapter proposes what is 

believed to be a feasible and relatively straightforward predictive approach to use a Gaussian 

model to predict missing data combined with the existing procured income data. The approach 

incorporated housing unit de-aggregation from the census block level, as shown in Equation (5.5), 

where 𝐼𝑝ℎℎ,𝑖𝑚𝑘 is the predicted household income and 𝐼ℎℎ,𝑚𝑘 is the known household income of 

the kth housing unit in the mth census block for the ith realization of the MCS. The first level of the 

Gaussian function is used to obtain the statistics of the household income distribution at the census 

block level using all the known U.S. Census household income data. The second level of the 

Gaussian function is then used to predict the missing household income for specific households 

using the determined Gaussian distribution census block in which the household with missing 

census data is located. This step uses MCS to make the prediction probabilistic. The motivation 

for this process is that, currently, census block level is the minimum geographic unit publicly 

reported by U.S. Census Bureau in order to maintain individual privacy.  

                                                                       𝐼𝑝ℎℎ,𝑖𝑚𝑘 = {𝐼ℎℎ,𝑚𝑘                         𝐼 ∈ 𝐼ℎℎ,𝑚𝑘𝛷 (𝛷−1(𝐼ℎℎ,𝑚𝑘))    𝐼 ∉ 𝐼ℎℎ,𝑚𝑘                                                               (5.5) 

5.2.2 Repair Time Assessment 

To this point in the , the methodology has been presented in a general sense for any hazard event. 

Although any repair fragilities could be implemented in the step described in this section, the 

authors move to a hazard-specific explanation, namely tornado hazard, to enable clarity for the 
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example presented later. In this chapter, repair time was developed following the steps of 

combining isolated component damage fragility and consequence functions (i.e., repair estimates) 

introduced in the FEMA P-58 (FEMA 2012) methodology and then assembling the repair fragility 

functions from building component levels to system levels (Koliou and van de Lindt 2020). Table 

5-2 presents tornado repair fragility functions of residential buildings for different damage states 

to reach full functionality (Q=100%), and Table 5-3 demonstrates the defined damage combination 

and functionality level for woodframe residential buildings. Please refer to Koliou and van de 

Lindt (2020) for details on the definitions of performance level and operational status for all 

building archetypes in detail. Figure 5-4 depicts the approach estimating the repair time for each 

building within MCS. For each realization of the MCS, a random number between 0 and 1 was 

generated and then combined with the initial damage state for the building to assess the required 

repair time. Note that the fragilities only refer to the building repair time due to damage without 

considering external parameters such as crew availability, which means the time used for delay 

and repair in this chapter does not overlap. 

Table 5-2. Repair fragilities for woodframe residential buildings (days)  

Damage states Mean of the natural logarithm (μ) Standard deviation (σ) 
DS1 3.09 0.51 
DS2 3.52 0.55 
DS3 4.62 0.55 
DS4 5.19 0.52 
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Table 5-3. Damage combination and functionality level for woodframe residential buildings 

Functionality 
Q (%) 

Damage 
combination 

Description of damage combination 

Roof cover 
failure 

Window/door 
failures 

Roof 
sheathing 

failure 

Roof 
truss 

failure 

100 - - - - - 
75 DS1 >2% and ≤15% 1 No No 

50 DS2 >15% and 
≤50% 

2 or 3 1-3 panels No 

25 DS3 >50% >3 >3 panels 
and ≤35% by 

area 

No 

<25 DS4 Typically>50% Typically>3 >35% by 
area 

Yes 

 

 
Figure 5-4. Repair fragility curves within a single MCS scenario 

5.2.3 Recovery Time Assessment 

Following the immediate damage, the total time required for each building to be fully restored can 

be determined by combining delay time and repair time. It is assumed that the two stages of 

building recovery (delay and repair) are statistically independent, but it is noted that correlation 

could be included using a copula approach if evidence of correlation becomes known. The 
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recovery results can be presented as histograms for a single building, a single sector (i.e., 

household, business, healthcare, education), and even the entire community. A three-parameter 

Weibull distribution was used to fit the recovery time statistics for each building for modeling 

efficiency.  

In order to track the community recovery performance, a building recovery over time, the model 

steps through time by quarter, as shown in Equation (5.6) and Equation (5.7), where 𝐵𝑟𝑗𝑖 (𝑡) is the 

building recovery performance indicator of the jth building at the rth quarter in the ith 

realization. 𝑅𝑟(𝑡) is the time by quarter (90 days, 180 days, etc.)  and 𝑅𝑗,𝑡ℎ𝑖  is the calculated 

recovery time of buildings as thresholds. 𝑅𝑃𝑟𝑗(𝑡)  is the quarterly recovery probability 

continuously increasing over the analysis period based on MCS. For each time step, the probability 

that each building is fully recovered and therefore the percentage of residential buildings that are 

fully restored can be calculated. 

                                                            𝐵𝑟𝑗𝑖 (𝑡) = {1 𝑅𝑟(𝑡) ≥ 𝑅𝑗,𝑡ℎ𝑖0 𝑅𝑟(𝑡) < 𝑅𝑗,𝑡ℎ𝑖 , 𝑖 ∈ 1,2, … , 𝑛                                        (5.6)   

                                                                      𝑅𝑃𝑟𝑗(𝑡) = ∑  𝐵𝑟𝑗𝑖 (𝑡)𝑛𝑖=1 𝑛 , 𝑖 ∈ 1,2, … , 𝑛                                                      (5.7) 

5.3 Policy Levers 

Post-disaster policies (policies that take effect in the event of a disaster) aim to create strategic 

plans to help expertly guide the completion of repair across the community. These policies can be 

related to delay time variables for completing building restoration or refer to the assessment of 

available resources available to a household (Sutley and Hamideh 2018). In general, flexibility in 

existing policies and programs is more critical than implementing rigid policies to effect recovery 

following a natural or human-induced disaster (Richmond 2019). Excessive government 

https://en.wikipedia.org/wiki/Natural_disaster
https://en.wikipedia.org/wiki/Man-made_hazards
https://en.wikipedia.org/wiki/Disaster


 

127 
 

involvement might result in increased costs and interruption in the recovery process. After the 

2011 Joplin tornado occurred, city and state officials published a series of policies. The policies, 

which included decisions such as relaxing regulations and avoiding micromanagement, were 

implemented to facilitate the recovery. Regulatory relief allowed local businesses to maintain 

operations, and quickly recovered the Joplin Public Schools and let them re-open on time for the 

next academic year (Smith and Sutter 2013) with some relocation. This chapter proposed a series 

of policies referring to the real environment after the 2011 Joplin tornado, expanded the proposed 

methodology, and quantitively measured how the community recovery was impacted by these 

policies. Table 5-4 provides selected policies that positively impact community recovery and 

shows examples of their combinations as potential policy cases for a community.  

Recall the relationship between delay time and building damage conditions shown in Table 5-

1.  Building retrofits improve the performance of buildings and reduce damage for buildings within 

the tornado path (Amini and van de Lindt 2014), and therefore delay times such as for inspection, 

and contractor mobilization will be shorter since damage is less significant. In general, where 

damage is reduced for some portion of the buildings, both delay time and repair time are shortened 

accordingly. In this chapter, woodframe residential building retrofits are reflected in the different 

construction product combinations such as roof covering, roof sheathing nailing patterns, and roof-

to-wall connections. See Wang et al. (2021b) for a description of wind retrofit strategies on 

residential buildings. In this chapter, the construction product combination of asphalt shingles, 8d 

nails with 150mm (6 in) edge nail spacing and 300mm (12 in) field nail spacing for roof sheathing, 

and two 16d toenails for the wall to roof truss connection was considered to be the base case 

without any retrofits. The retrofit case consisted of clay tiles, 8d nails with 150mm (6 in) edge and 

field spacing for the roof sheathing, and two H2.5 hurricane clips connecting the roof truss and 
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wall. Additionally, if the city or county can relax building permit requirements for wood frame 

residential buildings, the recovery process can be moderately expedited. It is assumed that the city 

can choose to relax certain regulations and allow homeowners to schedule repairs without 

obtaining a permit. Another approach is to hire extra building inspectors, which allows time 

reduction for home inspectors when there is a demand surge after a hazard event. A typical 

inspection of a house under 95 sq. meters (1000 sq. ft) takes 2 to 3 hours, so one inspector can 

perform three to five per day. For contractor mobilization, the bidding process for procurement 

takes typically 30 days for heavily damaged buildings since the losses are significant and 

competitive bids need to be sought. Provided that the bidding is waived by the insurance company 

(or other) for procurement, only the procurement and management of items (e.g., labor, equipment, 

material) and their delivery to the site is needed. This is felt to be a relatively practical approach 

that may help reduce recovery time. Upon receiving claims from homeowners following a tornado 

(or any event), an insurer decides whether to accept or deny the claim. Having financing in place 

shortens the time needed to begin the next delay phase, thus the duration to obtain financial 

assistance was assumed to be cut in half to model when financing is in place in this chapter. 

Currently, the cost of different policy combinations and the budget limits for government 

investments are not considered and are beyond the scope of this chapter. Some other useful policies 

which cannot be directly related to the delay variables introduced in the REDi framework, such as 

the use of social media, were not considered herein, since quantitative effects for these are not yet 

available. 
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Table 5-4. Policies and their combinations as policy cases that can facilitate community recovery 
progress 

Index Policy 
Case 

1 
Case 

2 
Case 

3 
Case 

4 
Case 

5 
Case 

6 
Reference 

1 Building retrofits  X    X Sutley and 
Hamideh (2018) 

2 Relax building 
permits issuance 

  X  X X Sutley and 
Hamideh (2018) 

3 Hire extra building 
inspectors 

  X  X X Smith and 
Sutter (2013) 

4 Waive bidding rules 
for procurement 

  X  X X Smith and 
Sutter (2013) 

5 Have financing in 
place 

   X X X Lindell and 
Prater (2003) 

5.4 Illustrative Example and Validation  

Tornadoes, which are low-probability high-consequence natural hazard events, result in numerous 

damage and casualties associated with high socio-economic and environmental costs through an 

entire community (Simmons et al. 2013, Standohar-Alfano and van de Lindt 2015, Masoomi and 

van de Lindt 2018, Changnon 2009). Over the last two decades, tornadoes have caused almost 

1,500 fatalities, 20,000 injuries, and $30.3 billion property damage loss in the U.S. according to 

the National Weather Service (NOAA 2020). The 2011 Joplin tornado was a devastating EF5 

multiple-vortex tornado and ranked as the deadliest and costliest single tornado in U.S. history. A 

comprehensive field investigation was performed to make recommendations for other 

communities related to tornadoes (Kuligowski et al. 2014), and a number of researchers performed 

analyses related to this event (e.g., Attary et al. 2018, Prevatt et al. 2012, Roueche and Prevatt 

2013). 

As a small to medium size community in the United States, Joplin in the Midwest state of 

Missouri, was selected to illustrate and validate the proposed approach for a two-step recovery 

model for residential buildings that is able to step through time thereby allowing the analyst to 
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explore the impact of policy levers on community recovery with the goal of eventually providing 

the results to support decision making for stakeholders and community planners. Wang et al. 

(2021b) performed a functionality analysis using the Joplin testbed to consider the 

interdependency between buildings and electric power networks and examined the effect of wind 

events on a basic set of physical and socio-economic resilience metrics. The detailed building 

dataset and the simulated EF5 tornado hazard used herein were not illustrated again, and the 

interested reader, is referred to Wang et al. (2021b). Note that a reproduceable Jupyter Notebook, 

including all the data, analyses, and visualization described in Wang et al. (2021a) is available 

online at https://incore.ncsa.illinois.edu. It is known that tornadoes have small footprints and, 

although a very large tornado, the Joplin tornado only hit a small geographical area of Joplin and 

many buildings fell outside the path of the tornado remaining undamaged. Woodframe residential 

buildings are the most vulnerable building sector to wind events and therefore, the recovery 

modeling of residential buildings located within the tornado path is the focus herein.  

5.4.1 Probabilistic Initial Building Damage 

Tornado fragilities together with the simulated wind speeds at each location, were combined to 

estimate the building damage for each building across the community (see Figure 5-3). Please refer 

to Masoomi et al. (2018) regarding tornado fragilities for five residential building archetypes and 

their descriptions (e.g., the number of stories, building sizes/area). Figure 5-3 shows the fragility 

functions of a typical woodframe residential building (archetype 4) as an example. Table 5-5 

indicates building spatial damage results in a typical single realization within MCS. Note that of 

damage levels, as indicated in Table 5-5 are, 1 is slight, 2 is moderate, 3 is extensive, and 4 is 

complete. It can be observed from Table 5-5 that more than 85% of residential buildings within 

the tornado path were initially damaged at the complete level in this single realization. For each 

https://incore.ncsa.illinois.edu/
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realization, probabilistic initial building damage results were then used to estimate the delay time 

and repair time. 

Table 5-5. A typical scenario of initial building damage 

Building specific conditions Building count 

Slight 174 (3.3%) 
Moderate 181 (3.4%) 
Extensive 234 (4.4%) 
Complete 4,738 (88.9%) 

Grand total 5,327 (100%) 

 

5.4.2 Financial Resources for Repair 

Low-income and ethnic minority families are more vulnerable to the risks of disasters and struggle 

most to recover. One of the reasons is that low-income households are more likely to reside in 

neighborhoods that are more susceptible to environmental shocks, and they do not have many 

choices to relocate to safer areas (Krause and Reeves 2007). However, this is less true for tornadoes 

than many hazards.  For particular socio-economic groups described above that have a lower 

probability of being able to access some funding sources such as insurance and loans, savings and 

other community-level resources may be options to perform repairs/reconstruction. In this chapter, 

five household groups are differentiated by annual household income as shown in Table 5-6 to 

span the wealth distribution across the community. It is assumed that households belonging to 

income groups over HH3 are homeowners. HH1 is mostly a group for renters, and HH2 has a 

balance of low-income homeowners and renters. In Missouri, about 90% of homeowners are 

insured (Insurance Agency Plano 2014), and the number of people with renter’s insurance is far 

less 27 percent (Joplin Globe 2011). In general, for homeowners with an annual income of over 

US$30,000, an increase in household income of US$11,000 increases the likelihood of insurance 

purchases by approximately one percent (Landry et al. 2021). Overall, insurance is the dominant 

resource for households impacted by wind damage, while SBA-backed loans and private loans are 
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also important resources for low-income households to consider. The reason is that homeowners 

(and renters) insurance can be quite a burden for low-income families if not required, and the 

premiums may account for too significant percentage of their monthly household income. In 

theory, SBA-backed loans are preferable compared to private loans since they have lower interest 

even though the processing time might be longer. Unfortunately, SBA loans go to those who would 

have qualified for commercial loans, not the households in the greatest need because the ability to 

repay is always a crucial issue. Therefore, the probability of low-income households receiving 

SBA loans is limited as well (Lindell and Prater 2003). 

Table 5-6 shows the deterministic household restoration financial resource distribution based 

on information from the literature described above. The percentages shown in Table 5-6 are the 

probabilities of households funding their repairs through the different financial resources. For 

example, households with an annual income below $15,000 will only have a low probability of 

obtaining funding supported by insurance and SBA-backed loans. In order to survive and recover 

from the disaster, this group of households more likely depends on their savings or other means 

such as family/friends. Conversely, households with an annual income of over $100,000 will have 

homeowner’s insurance.  

Table 5-6. Household restoration financial resource distribution  

Household income group Insurance SBA-backed loans Private loan Savings/others 

HH1 (less than $15,000) 30% 5% 0% 65% 
HH2 ($15,000 to $24,999) 50% 5% 5% 40% 
HH3 ($25,000 to $74,999) 80% 10% 10% 0% 
HH4 ($75,000 to $99,999) 85% 15% 0% 0% 
HH5 (more than $100,000) 100% 0% 0% 0% 

 

5.4.3 Housing Unit De-aggregation at the Census Block Level 

In order to employ annual household income as an indicator to determine household financial 

resources during the recovery process, household income group information needs to be collected 



 

133 
 

or determined first. This information was determined through data merging at the housing unit 

level based on the ACS (2012) 5-year survey. The household income came from a combination of 

tables B19001 and B19101. This variable was designed to provide income comparable to income 

distributions by race/ethnicity associated. The allocation of income to a physical location does not 

represent the actual income for the household. Please refer to Rosenheim (2020) for the detailed 

household income dataset created by the housing unit allocation algorithm. The building dataset 

was developed for Joplin circa 2010 prior to the tornado, thus allowing some level of validation 

ten years later. There are 7,201 housing units contained in 5,327 buildings in the path of the Joplin 

tornado for Joplin based on the 2010 Decennial Census. 

After completing the household income prediction by applying the housing unit allocation 

algorithm, there are still 10.5% of housing units with missing household income information (see 

Table 5-7). The reason for missing values for household income might be that the household has 

income, but the characteristics (race/ethnicity) did not match between the 2010 Census and the 

2012 ACS at the census tract scale. Future research is required to reduce the number of missing 

values, especially for minority households. It is important to mention that 656 housing units are 

vacant, and 6 housing units are group quarters such as nursing homes, but the household income 

prediction from the housing unit allocation algorithm does not consider such cases, introducing 

error into the approach. 
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Table 5-7. Housing unit inventory within the tornado path 

 
Owner-

occupied 
Renter-

occupied 
Housing unit 

count 
Household 

income missing 

1-person household 1,035 1,177 2,212 147 (6.6%) 
2-person household 1,135 842 2,177 293 (13.5%) 
3-person household 483 487 970 146 (15.1%) 
4-person household 371 325 696 97 (13.9%) 
5-person household 160 138 298 43 (14.4%) 
6-person household 66 56 122 22 (18.0%) 
7-person household 37 27 64 9 (14.1%) 

Group Quarters - - 6 - 
Vacant - - 656 - 

Total housing units 3,487 3,052 7,201 757 (10.5%) 

 
Census geographic entities cover the entire United States, with the smallest being census blocks 

(e.g., 15-digit ID 290970108003013), which aggregate into census block groups (e.g., 12-digit ID 

290970108003) and then census tracts (e.g., 11-digit ID 29097010800). Figure 5-5 shows 

geographic maps for Jasper County and Newton County in Missouri at different census levels. 

Residential buildings located in the tornado path were distributed across 10 census tracts, 28 census 

block groups, and 437 census blocks, respectively. Thus far, the census block is the smallest 

geographic unit published by the U.S. Census Bureau in order to maintain data confidentiality. 

Therefore, housing units were de-aggregated to the census block level in order to predict the 

missing income data accurately. Housing unit details and buildings with single or multiple 

dwellings were tracked by unique identifiers (Housing unit ID and Globally Unique Identifier 

(GUID) respectively) (e.g., B290970108003013H001 and 146afdcb-271f-4b7d-85ad-

66b9296aefc3).
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    (a)                                                                                                                             (b) 

                  
                                                     (c)                                                                                                                               (d) 

Figure 5-5. Geographic maps for Jasper County and Newton County in MO at different census levels: (a) census tracts; (b) census 
block groups; (c) census blocks as well as Joplin buildings and tornado pathway; (d) census blocks   

Census tract ID: 29097010800 

Census block group ID: 

290970108003 

Census block ID: 290970108003013 
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Table 5-8 illustrates an example of the socio-demographic data for housing units in a typical 

census block, as highlighted in Figure 5-5(d). The information on ownership and the number of 

people predicted by the household allocation algorithm illustrates that all the 16 housing units 

resided in this census block were allocated as neither vacant nor as group quarters. Still, two of 

them are missing income group data. Therefore, it is necessary to predict the missing data at the 

minimum geographic unit by assuming that housing units in a census block can be sampled from 

the statistics of the block (recall Equation (5.5)). For each realization of the MCS, known income 

groups assigned to each house remained the same to ensure recovery was tracked for each allocated 

household. The recovery modeling performed in this chapter conducted the analysis at the building 

level, while the allocation of income groups described their income distribution at the household 

level. For multi-family buildings, the income groups were aggregated from household levels to 

building levels by selecting the housing unit having the highest annual income group. It is assumed 

that housing units with the highest estimated income group had the best restoration financial 

resources, which could be used to recover the multiple dwelling unit.  
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Table 5-8. The socio-demographic data of housing units in a typical census block 

Housing unit 
IDs 

Globally unique 
identifiers 

Number 
of 

people 

Owner
ship 

Household 
income 
group 

Census 
block 

ID 

Census 
block 
group 

ID 

B290970108
003013H001 

146afdcb-271f-4b7d-
85ad-66b9296aefc3 

3 2 HH3 

290970
108003

013  

290970
108003 

B290970108
003013H002 

d88d7424-ee89-4788-
9e05-df4c119f3ad0 

2 2 HH3 

B290970108
003013H003 

aad8e322-f2c8-4d9a-
94ca-c301f93f20a3 

7 1 HH3 

B290970108
003013H004 

6d492f9a-0f48-437c-
b00a-2e7866a86a68 

3 1 HH5 

B290970108
003013H005 

1db6a71e-8480-458b-
aafd-1c9bb5a31fd1 

1 2 HH1 

B290970108
003013H006 

d88d7424-ee89-4788-
9e05-df4c119f3ad0 

3 2 HH3 

B290970108
003013H007 

00205cab-e68f-42c9-
a89a-4a47889795c1 

2 2 - 

B290970108
003013H008 

75236b8e-56a2-49be-
bfc9-b499aa5dd446 

5 2 HH3 

B290970108
003013H009 

75236b8e-56a2-49be-
bfc9-b499aa5dd446 

6 2 HH3 

B290970108
003013H010 

1db6a71e-8480-458b-
aafd-1c9bb5a31fd1 

1 2 HH3 

B290970108
003013H011 

683cf9a0-fe39-4376-
abe2-380101b98327 

2 2 HH3 

B290970108
003013H012 

53c0bb86-8444-456f-
94a0-587ad04287d9 

1 2 HH1 

B290970108
003013H013 

a55bce1a-e0e1-4ce1-
ba7b-4b4a0afb8dfb 

4 1 HH2 

B290970108
003013H014 

6d492f9a-0f48-437c-
b00a-2e7866a86a68 

3 1 - 

B290970108
003013H015 

aad8e322-f2c8-4d9a-
94ca-c301f93f20a3 

3 2 HH3 

B290970108
003013H016 

cc60e8bf-a4f3-4e4f-
bb46-b5a1ca340365 

4 2 HH3 

Note: 1 is owner-occupied and 2 is renter-occupied in the column of ownership. The household 
income group column corresponds to the wealth distribution shown in Table 5-6. 
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5.4.4 Recovery Modeling Results 

The probabilistic residential recovery modeling described throughout this chapter was 

implemented for each of the policy cases described earlier. Figure 5-6 and Figure 5-7 show delay 

time results and recovery time results for two typical residential buildings at different damage 

levels under Case 1, respectively. The results of MCS realizations are shown in histograms as well 

as the fitted Weibull distribution curves and parameters. Recall that recovery time, which means 

the total time needed for buildings to be fully restored, consists of two independent steps: delay 

time and repair time. It is evident that delay time dominated throughout the recovery process for 

residential structures, but this is likely not the case for other types of buildings where repairs take 

much longer, e.g., hospitals, schools, office buildings. For example, the mean recovery time for a 

typical building shown in Figure 5-6 was 97.2 weeks and the mean delay time accounted for 62.6 

weeks. Households need at least several months to as much as two years before initiating the repair 

process to schedule inspection, contact engineers and contractors, and so forth. Additionally, since 

both delay time and repair time are directly related to initial building damage levels, buildings 

damaged at a higher level will, on average, take more time to achieve full recovery (see Figure 5-

6 and Figure 5-7). Note that the recovery time of each building was calculated and tracked, and 

that only two typical residential building recovery distributions were shown herein for brevity. It 

is worth noting that the ability to utilize MCS and produce statistical distributions for each building 

within a community enables full uncertainty propagation into the broader community models. 



 

139 
 

 
(a) 

 
(b) 

Figure 5-6. A typical residential building in the mean damage level of 3.998: (a) delay time 
results; (b) recovery time results 

 
(a) 

 
(b) 

Figure 5-7. A typical residential building in the mean damage level of 2.744: (a) delay time 
results; (b) recovery time results 

Statistics Values

Scale parameter 47.51

Shape parameter 2.60

Location parameter 20.19

Statistics Values

Scale parameter 41.01

Shape parameter 2.32

Location parameter 52.98

Mean delay time: 

62.61 weeks

Statistics Values

Scale parameter 45.45

Shape parameter 1.91

Location parameter 10.09

Statistics Values

Scale parameter 42.30

Shape parameter 1.72

Location parameter 27.53

Mean delay time: 

50.41 weeks
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Figure 5-8 shows the building recovery when different policy cases (combinations) are 

implemented community wide. The time shown in Figure 5-8 is the mean recovery time, mean 

delay time, and mean repair time of all the in-path residential buildings in a single realization. All 

the other realizations within the MCS have similar results for these parameters. Since Case 2 and 

Case 6 considered the policy of building retrofits, the repair time in these cases was shortened from 

27 weeks to approximately 14 weeks, on average. Note that building retrofits were assumed to be 

implemented to all buildings right now, which not realistic for a community. Additionally, all the 

policy cases decreased recovery time. Overall, Case 6, incorporating all the proposed policies, 

enabled recovery 2.4 times faster (i.e., 88.4 weeks reduced to 36.6 weeks) than the base case of no 

new policies or mitigations/retrofitting. If only examining the impact of a single policy, mandatory 

retrofits requested by Case 2 facilitated the recovery by 1.7 times than the base case. Other cases 

related to the relaxation of regulations (e.g., bidding, inspection) and having financing in place are 

also shown slightly to speed up the recovery. However, the resulting decrease in the time resulting 

from delay variables did not offset the time required for engineers to review and redesign due to 

the damage. Thus, Case 3, Case 4, and Case 5 also shortened the recovery time, but the effects 

were not noticeable. 
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Figure 5-8. Building recovery performance impacted by different policy cases 

Quarterly building recovery at a community level under the six policy cases was calculated and 

compared. Figure 5-9 illustrates the building post-disaster recovery probability at a community 

level for Case 6 as an example. After 90 days following the tornado, almost all the residential 

buildings that were within the EF 2 and higher wind regions still had a probability of less than 0.2 

for completion of recovery, and only a few buildings in the EF1 region had a possibility of getting 

back to normal. For Case 6, which included all the proposed policies and mitigation strategies, the 

percentage of buildings 100% recovered was 51.5%, 85.4%, and 98.6% after 1.5 years, 3 years, 

and 4 years, respectively. However, if only Case 1 is considered, the percentage of buildings 

achieving recovery in these same time periods was only 0.3%, 29.47%, and 88.49%.  
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(a) 

  
(b) 
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(c) 

Figure 5-9. Time-stepping building recovery performance probability under Case 6: (a) time = 1 
quarter; (b) time = 2 quarters; (c) time = 6 quarters 

In addition to the community-level recovery presented in Figure 5-9, the probability of the mean 

building recovery  times, defined as the average of the percentage of buildings fully recovered, as 

shown in Equation (5.8). Figure 5-10 illustrates the probability for the mean building recovery 

times for several of the cases explored in this chapter. The significant difference among cases was 

the probability at the short-term and intermediate recovery stages. The probabilities of mean 

building recovery times were 0.09, 0.58, 0.16, and 0.74 in the first year after the tornado and were 

increased to 0.73, 0.91, 0.84, and 0.95 in the second year under Case 1, Case 2, Case 5, and Case 

6, respectively. It is worth mentioning that the restoration curves for Case 3 and Case 4 were close 

that of Case 1 and were not included in the plot to provide clarity.  

                                                          𝑅𝑃𝑟_𝑚𝑒𝑎𝑛(𝑡) = ∑ 𝑅𝑃𝑟𝑗(𝑡)𝑁𝑗=1 𝑁                                                   (5.8) 
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Figure 5-10. Time-stepping building recovery trajectory impacted by different policy cases 

 

5.4.5 Validation and Discussions 

As described in the paper developed by Pilkington et al. (2020), researchers used spatial videos 

along with a Global Positioning System (GPS) receiver to perform a longitudinal field study in the 

city of Joplin after the 2011 tornado. The damaged buildings were scored based on their recovery 

states following the defined description in detail, and then Aghababaei et al. (2020) converted the 

scores to the corresponding functionality levels (i.e., DM1, DM2, DM3, DM4) introduced in 

Koliou and van de Lindt (2020). Figure 5-11(a) overlays the simulated dataset of 5,327 residential 

buildings from the Joplin testbed example and the field investigation dataset of 1,874 residential 

buildings. The red dots shown in Figure 5-11(a) are the overlapping points on top of the green 

dots, which were tracked by GPS coordinate. This chapter used the longitudinal field study results 

of these 1,874 residential buildings, which are presented in the bar chart in Figure 5-11(b), in order 

to validate the analytical results determined from the proposed probabilistic residential recovery 

modeling. Note that more buildings were included in the longitudinal study over five years, with 
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some of them being commercial, industrial, schools, and hospitals rather than residential buildings 

involved in this chapter.  

 

 
(a) 
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(b) 

Figure 5-11. Field investigation data: (a) the overlay between field investigation dataset and the 
simulated residential building dataset; (b) functionality levels of residential buildings over the 

time from the field investigation 

The analytical results of the same 1,874 residential buildings were extracted and compared with 

the empirical results for validation. After the Joplin tornado, city and state officials organized and 

facilitated the recovery process by temporarily relaxing regulations, hiring extra building 

inspectors, waiving procurement and bidding rules, and resisting the temptation to micromanage. 

Many different organizations, including the Red Cross, businesses such as Home Depot and 

Walmart, and individual contributors provided relief and supplies as needed and raised donations 

in the recovery after disasters (Smith and Sutter 2013). Therefore, this chapter used the time-

stepping results under Case 5 for comparison to (approximately help) validate the methodology. 

Figure 5-12 shows the analytical and empirical results on the same plot. The green line (squares) 

and yellow line (diamonds) refer to the average of the percentage of residential buildings that are 

fully recovered, which is the same metric shown in Figure 5-10 using analytical results of partial 

buildings after the MCS. The difference is that the results for the yellow line assumed that all 
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vacant units (see Table 5-7) were not repaired after the tornado, but the green line assumed all 

buildings would recover regardless of vacancy status. The pink line (triangles) shows the 

percentage of residential buildings that were fully recovered from any damage state at the specified 

time based on empirical results. It is evident that the analytical results and empirical results in the 

second year were close enough. As to the percentage in the first year, the empirical results were 

found to be higher than the analysis. Since the empirical results were derived from the analysis 

based on spatial videos, the damage or failure of some components like drywall inside the 

structures may not have been identified, so it is clear some level of uncertainty exists in the 

empirical analysis also. Recall that the analytical results shown in Figure 5-8, the mean delay time 

under Case 5 was 48.6 weeks, which was almost one year and the mean recovery time was 76.6 

weeks. The residential buildings used for validation were mostly located in the higher-speed wind 

regions such as EF3, EF4, and EF5 regions (see Figure 5-11(a)). The modeling (analytical) results 

in the third year and fourth year were higher than observed (empirical) because population 

dislocation and/or outmigration was not considered in this chapter, and thus all the households 

were assumed to stay in the city and proceed to repair their damaged homes. However, this 

assumption is not accurate and would require inclusion of data-driven modeling methods to 

resolve.  Specifically, some households will choose to outmigrate, or rebuild elsewhere, or simply 

abandon their property. 
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Figure 5-12. The difference between analytical results and empirical (observed) results 

5.5 Summary and Conclusions 

Post-disaster recovery planning can help decision-makers mitigate risk and facilitate the recovery 

process for their communities, and thus enhance community resilience. However, limited studies 

have performed an only qualitative analysis to evaluate the rapidity of community recovery 

impacted by dynamic policies. This chapter considered typical delay variables as well as repair 

fragilities for residential buildings for wind events. A time-stepping methodology to model 

residential building recovery was proposed and approximately validated based on existing 

longitudinal field investigation data. The recovery statistics were tracked for each building through 

the entire process from initial damage to full restoration. Based on the work described herein, the 

following conclusions can be reached: 

• Delay time dominated throughout the recovery modeling process. For a typical building 

located in the EF5 region of the simulated Joplin tornado, the mean delay time was 62.6 
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weeks, which accounted for 64.4% of the mean recovery time totaling 97.2 weeks. This 

ratio of times may differ for other types of buildings.  

• All the proposed policy cases affected the delay process to different extents. Based on the 

typical results of MCS in a single realization as an example, when considering the effect 

of building retrofits, the repair time was shortened from 27 weeks to 14 weeks, and the 

overall recovery process was expedited by 1.7 times. Case 6 involved all the proposed 

policies and mitigation strategies, enabled the recovery process to occur 2.4 times faster 

than the base case. Other cases related to the relaxation of regulations and financial support 

assessment were also shown slightly to speed up the recovery, but the results were not as 

significant. 

• The percentage of buildings in the study area achieving full recovery after one and a half 

years, three years, and four years was 0.3%, 29.47%, and 88.49% accordingly under Case 

1, which was improved to 51.49%, 85.41%, and 98.61% with the implementation of Case 

6.  

It is also important to point out the limitations of the methodology proposed in this chapter.  

First, the changes in the median for each component of the delay time for the policies were assumed 

and could be further improved upon with data. Second, no cost constraints or costing was assumed, 

which would lead to optimization as a logical approach to determine which policies provide more 

benefits for their cost. Third, for the retrofit, only some small or moderate portion of the 

community would likely adopt retrofits, so assuming all residential buildings retrofit represents an 

upper bound for that policy. Additionally, the methodology focused on the recovery of residential 

buildings themselves and did not examine the effect of the restoration of utilities such as electric 

power networks on the post-disaster recovery process. This will influence the delay and other 
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timing, but the percent change in the recovery would be minor. For example, following the Joplin 

tornado, electrical power was restored for buildings capable of receiving power in less than a 

month. Nevertheless, the utility restoration delays can coincide with the delay variables considered 

in this chapter and will impede the implementation of policies. The methodology proposed in this 

chapter is based on the assumptions that residents do not out-migrate after the hazard, and the 

recovery of multiple dwelling units rely on the housing unit with the highest household income 

within the units. Addressing the limitations and assumptions described above is beyond the scope 

of this chapter. The methodology can be used as a basis for estimating downtime in 

countries/regions outside the United States, but the users should be cautioned and ensure that 

FEMA P-58 and the impeding factors which delay for repairs are applicable in that country/region 

or adjust these accordingly. 

In summary, short-term post-disaster activities, like the proposed policies, can effectively guide 

and facilitate the recovery process. The resilience-based analysis methodology presented in this 

chapter can support decision making and community planning for stakeholders by being included 

in a broader community-level model for decision-making. The methodology, while demonstrated 

for tornado hazard, should be extensible to most hazards provided household income has an effect 

of delay time for that hazard. 
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CHAPTER 6 COMMERCIAL BUILDING RECOVERY  

 
 
 

6.1 Introduction 

Commercial businesses in an area affected by a natural hazard can have significant interruption 

and disruption because of damage and impeding factors including financing delays. The recovery 

of commercial buildings is a necessary but not solely sufficient condition for owners to re-open 

their businesses. At the community-level modeling scale for planning, the ability to model 

commercial recovery across the entire community, including short-term business operation 

disruption, is critical to understanding the interdependent recovery across engineering, economics, 

and social science. This chapter proposes a probabilistic commercial building recovery model to 

predict the recovery of commercial buildings over time following a hazard event and considers 

two critical types of downtime: impeding factors such as financing delays and the repair process.  

A typical resilience resource portfolio for business owners was developed using survey data from 

Galveston Texas following Hurricane Ike in 2008 for a case community and quantitatively 

incorporated into the proposed probabilistic commercial building recovery model. The expected 

financing methodologies for business owners to repair their commercial buildings were identified 

based on the resilience resource portfolio and the estimated financial loss for damaged commercial 

buildings. The proposed financing methodologies enabled the probabilistic commercial building 

recovery model to directly link one of the significant delay impeding factors, financing delay, to 

commercial building damage states with other impeding factors resulting in delay, as explained 

later. 
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The methodology presented in this chapter develops a probabilistic commercial building 

recovery model to enable business recovery modeling to be integrated into a broader community 

resilience model and follows the methodology presented in Wang et al. (2023). The novelty of this 

work is (1) the development of a commercial building recovery model with the ability to fully 

propagate uncertainty for business recovery modeling; (2) the integration of post-disaster funding 

resources into a quantitative probabilistic analysis for community resilience assessment to track 

commercial building recovery. The ability to model commercial building recovery will inform 

decision-makers of the entire recovery process for upcoming business recovery and community 

resilience metrics related to physical services stability, thereby improving community resilience 

planning. 

6.2 Commercial Building Recovery Model 

Table 6-1 shows the building portfolio developed for wind-induced events (Memari et al. 2018), 

and buildings can be grouped by residential, commercial, etc, according to their occupancy 

classifications. This chapter focuses on the recovery of commercial buildings. Figure 6-1 shows 

the conceptual framework of the commercial building recovery model proposed in this chapter. 

The preliminary step to implementing the commercial building recovery model is to first produce 

the building damage results determined from fragility-driven damage models and MCS (Wang et 

al. 2021b, Wang et al. 2022c, Pang and Wang 2021). The methodology uses idealized tornado 

models (Standohar-Alfano and van de Lindt 2015, Attary et al. 2018) developed based on the 

gradient technique from historical tornado reports as hazard models but is not provided herein for 

brevity. However, it should be noted that the hazard models can be expanded to a general sense 

for any hazard events (Wang and van de Lindt 2021, Lin and Wang 2017).  
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Table 6-1. Building portfolio designed for wind-induced events 

Archetypes Building description 
Occupancy 

classification 

T1 Residential wood building, small rectangular plan, gable 
roof, 1 story 

Residential 

T2 Residential wood building, small square plan, gable roof, 
2 stories 

Residential 

T3 Residential wood building, medium rectangular plan, 
gable roof, 1 story 

Residential 

T4 Residential wood building, medium rectangular plan, hip 
roof, 2 stories 

Residential 

T5 Residential wood building, large rectangular plan, gable 
roof, 2 stories 

Residential 

T6 Business and retail building (strip mall) Commercial 
T7 Light industrial building Commercial 
T8 Heavy industrial building Commercial 
T9 Elementary/middle school (unreinforced masonry) Social Institutions  
T10 High school (reinforced masonry) Social Institutions  
T11 Fire/police station Social Institutions  
T12 Hospital Social Institutions  
T13 Community center/church Social Institutions  
T14 Government building Social Institutions 

T15 Large big-box Commercial 
T16 Small big-box Commercial 
T17 Mobile home Residential 
T18 Shopping center Commercial 
T19 Office building Commercial 



 

154 
 

 
Figure 6-1. A conceptual framework of the commercial building recovery model 

6.2.1 Delay Module 

Several delays can occur and impede the ability to initiate repairs. This commercial building 

recovery model considered typical impeding factors, which include inspection, engineering 

mobilization, financing, contractor mobilization, and permitting following the methodology of the 

REDi framework (Almufti and Willford 2013), consistent with Chapter 5. The impeding factors 

calculated based on earthquake events and then expanded to any hazard events are presented in the 

form of lognormal cumulative distribution functions and have a relatively high degree of 

uncertainty, as illustrated in Table 6-2. Note that delay impeding factors were assumed to follow 

the delay phases introduced by Lin and Wang (2017). Please refer to Wang and van de Lindt (2021) 
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to see more details about the description of each impeding factor and the approach to assembling 

all impeding factors and determining the modeled delay time. Unlike other impeding factors such 

as inspection and permitting, which are directly related to building-specific conditions after an 

event (Lin and Wang 2017), financing delay depends on the funding resource that the owners of 

each building can procure. For residential structures damaged by hazard events, households can 

claim the insurance depending on the hazard and their homeowner’s policy/coverage, apply for all 

public/private loans, or even spend their savings for building repairs (see Chapter 5). Funding 

resources for the repair of commercial buildings such as strip malls and shopping centers fall in 

broadly similar categories: personal savings, insurance, Small Business Administration (SBA) 

loans and other recovery programs play an essential role that cannot be neglected.  

Commercial property insurance is a crucial coverage for business owners, which can pay repair 

or replacement costs for buildings as well as for damage to the contents inside, such as furnishings, 

equipment, and machinery, if business properties are damaged or destroyed due to fire, wind, 

hailstorm, and other covered events (e.g., Vaughan and Vaughan 2007). Shopping centers, strip 

malls, office buildings, and manufacturing properties are typical business properties requiring 

commercial property insurance to protect the buildings and contents (General liability 2021a, 

General liability 2021b, General liability 2021c). Entrepreneurs may choose to finance recovery 

activities from personal savings before receiving the approval of insurance claims (Morrish and 

Jones 2020) or when the losses from damage do not meet the insurance deductible.  

Several Federal programs can support business recovery, as well. The Small Business 

Association (SBA), a United States government agency and the largest Federal provider of 

business disaster assistance, provides debt financing to small businesses and private nonprofit 

organizations to 1) repair or replace damaged components via the physical disaster loan program 
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or 2) cover working capital or normal expenses through the economic injury disaster loan (EIDL) 

program (e.g., Lindsay 2010, SBA 2021a, Wang and van de Lindt 2021, Lee 2019,  Ravid et al. 

2021, SBA 2021b).  The U.S. Department of Housing and Urban Development (HUD) Community 

Development Block Grant–Disaster Recovery (CDBG-DR) funds, supported by the U.S. Congress, 

have been another way for businesses to recover from major disasters, such as floods and tornadoes 

over the past decades. Congress has typically allocated CDBG funds specifically for long-term 

business recovery, such as business-recovery loans, infrastructure improvements, and small-firm 

attraction/retention grants, to encourage renters/owners to stay in a particular area (e.g., Gotham 

2014). The U.S. Economic Development Administration (EDA) revolving loan funds (RLFs) can 

also be established after disasters through the Economic Adjustment Assistance programs to 

provide businesses with gap financing (e.g., Chell 1992, Revolving Loan Fund Program 2021). 

From the private side, local community banks may also provide gap financing or bridge loans, 

commonly structured as a short-term interest-free loan and designed to service loans to affected 

credit-worthy small businesses essentially providing them the necessary cash flow for repair and 

re-investment expenses (e.g., Weaver and Vozikis 2010). Local government grant programs 

through chambers of commerce and economic development organizations also exist to help small 

businesses and nonprofits as needed (Ferrier 2020). Hundreds of thousands of dollars are often 

donated through the American Red Cross and local churches to help local businesses affected by 

disaster events (Farrow 2012). Note that donations and other approaches such as corporate 

assistance and borrowing money from family/friends were aggregated into “other funding 

resources” in the commercial building recovery modeling and not proposed separately due to their 

relative uncertainty for each affected business. 

 

 

http://www.redcross.org/
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Table 6-2. Statistics of delay time associated with building damage (unit: weeks) 

Sequence 
Delay time 

impeding factor 
Building specific 

conditions 
Median  

Standard 
deviation 

Distribution 

Delay 
Phase 1 

Inspection  
Slight 0  0 Lognormal 

Above slight 0.5 0.54 Lognormal 

Delay 
Phase 2 

Engineering 
mobilization & 
review/redesign 

Slight 6 0.40 Lognormal 

Moderate/extensive 12 0.40 Lognormal 

Complete 50 0.32 Lognormal 

Financing  

Personal 
savings/business 
revenue 

1 0.54 Lognormal 

Commercial property 
insurance 

6 1.11 Lognormal 

U.S. SBA Physical 
Disaster Loans 

28.1 20.9 Normal 

U.S. SBA EIDL 19.3 9.7 Normal 

U.S. EDA Revolving 
Loan Fund 

163.6 34.4 Normal 

U.S. HUD CDBG-
DR Loan 

146.9 2.7 within 
2 months 

Normal 

Local recovery 
program 

33.7 8.0 within 
6 months 

Normal 

Bank bridge loans 7.7 4.0 within 
3 months 

Normal 

Other 48 0.65 Lognormal 

Contractor 
mobilization  

Slight 7 0.60 Lognormal 

Above slight 19 0.38 Lognormal 

Delay 
Phase 3 

Permitting 
Slight 1 0.86 Lognormal 
Above slight 8 0.32 Lognormal 

 

In order to quantitatively simulate financing resources and financing delays following hazard 

events, this chapter developed a resilience resource portfolio based on real-world data collected in 

Galveston after Hurricane Ike. Surveys to disaster-affected businesses were performed to 

document the business recovery process and the resources available (Watson, 2014). Owners and 

managers of individual businesses were asked to put percentages by resources categories to show 

how they funded their recovery expenses (each survey response should add up to 100%). These 

responses were summarized across the sample to show how businesses financed their recovery 
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overall across the community (see Table 6-3). Interviews with public officials and business 

organizations were conducted in Galveston as well as text analysis of program documents, 

including the Catalog of Federal Domestic Assistance, two Galveston newspapers, documents 

disseminated by the aid programs including loan application materials and marketing notices, and 

reports from the Government Accountability Office, the Congressional Research Service, and the 

Office of the Inspector General. This data was synthesized to determine the number of businesses 

supported by each program, the average days to fund disbursement, and the total funding size for 

each program, as illustrated in Table 6-4. The average days of financing delay that was determined 

for all programs in Table 6-4 then replaced the original values shown in the REDi framework (see 

Table 6-2). The standard deviations of the financial delay time for government grants from Watson 

et al. (2019) was applied in the present analysis. All the other financial delay statistics (i.e., 

personal savings/business revenue, commercial property insurance, and others) were jointly 

referenced by Almufti and Willford (2013), Lin and Wang (2017), and Wang and van de Lindt 

(2021).  

This chapter assumed the statistical distributions could generalize actual conditions for 

financing delays during the commercial building recovery process in a typical community 

impacted by a natural hazard.  It should be noted that these funding distributions were averaged 

and applied to the business population as a whole, rather than broken into subgroups by sector or 

size of the business. However, research has shown that businesses are more likely to apply for, be 

approved for, and use funds in their recovery across these characteristics (Dahlhamer 1994; 

Josephson and Marshall 2016; Watson, 2021). Though these differences are in part captured 

through the different commercial building types, there is an opportunity for future research to more 
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directly integrate differences in funding composition with commercial building types and 

characteristics of the businesses occupying those structures. 

Table 6-3. Recovery financing for all business after Hurricane Ike (Watson, 2014) 

Index Funding resources 

Percentage of 
surveyed businesses 

utilizing resource 

Percentage of overall recovery financed 

Mean 
Standard 
deviation 

min max 

1 Business revenue 47% 24.9% 37% 0% 100% 
2 Personal savings 44% 23.3% 37% 0% 100% 
3 Commercial property 

insurance 
29% 20.2% 35% 0% 100% 

4 SBA loans 18% 9.1% 23% 0% 100% 
5 Credit card 24% 6.2% 14% 0% 60% 
6 Donations 11% 3.0% 15% 0% 100% 
7 Other 9% 2.4% 9% 0% 40% 
8 Local recovery 

program 
13% 1.9% 5% 0% 20% 

9 Local bank bridge 
loan program 

4% 1.8% 9% 0% 60% 

10 Grants 4% 1.8% 11% 0% 70% 
11 Commercial bank 

loans 
9% 1.7% 8% 0% 50% 

12 Friends or family 7% 1.6% 6% 0% 30% 
13 Corporate Assistance 2% 0.7% 5% 0% 31% 
14 U.S. HUD CDBG-

DR Loan 
2% 0.2% 1% 0% 10% 

15 Crowdfunding 0% 0.0% 0% 0% 0% 
16 U.S. EDA Revolving 

Loan Fund  
0% 0.0% 0% 0% 0% 

 

 

 

 

 

 

 

 



 

160 
 

Table 6-4. Surveys of business recovery programs after Hurricane Ike (Watson et al., 2019) 

Index 
Business recovery 

programs 
Average days to 

funding  
Size of fund Loan Amount N 

1 U.S. SBA Physical 
Disaster Loans 

216 $72.35 million Max $2 
million 

499 

2 U.S. SBA EIDL 135 $1.7 million Max $2 
million 

20 

3 U.S. EDA Revolving 
Loan Fund 

1,145 $10 million $30,000-
$150,000  

(Max 
$350,000) 

10 

4 U.S. HUD CDBG-DR 
Loan 

1,028 $2.5 million Average 
$35,000  

(Max 
$50,000) 

63 

5 Local Recovery 
Program 

236 $300,000-
$400,000 

$10,000-
40,000 

7 

6 Bank Bridge Loans 54 $40 million Varied 100+ 

 
It is important to mention that the methodology developed in this chapter considers that each 

business/firm can accept funding from more than one financial resource. Table 6-5 displays the 

resilience resources portfolio used in the commercial building recovery model, which can inform 

how businesses fund their recovery from all available approaches (e.g., personal savings, insurance, 

government grants) when they suffer damage/disruption from a hazard event. The percentage of 

recovery financed by personal savings/business revenue, reimbursed by commercial property 

insurance, and funded by commercial bank/bridge loans, are consistent with the values 

summarized from the Galveston survey (see Table 6-3). The percentage of financing support paid 

by credit cards, accepted from donations, support from friends/family/corporate assistance, and 

other approaches shown in Table 6-3 were aggregated to “other approaches” illustrated in Table 

6-5. The percentage of recovery financed by each government program for business recovery was 

developed based on the proportion of the total fund size that businesses/firms received from 

different resources, as shown in Table 6-4. It was assumed that the uncertainty of the percentage 
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of restoration financial resources fit a normal distribution. It was also assumed that all the types of 

commercial buildings have the same opportunity to access different financial resources. 

Table 6-5. Resilience resource portfolio for commercial building recovery 

Index Business Recovery Programs 
Percentage of restoration financial resources 

Mean Standard deviation Distribution 

1 Personal savings/Business revenue 48.2% 37% 

Normal 

2 Commercial property Insurance 20.2% 35% 

3 U.S. SBA Physical Disaster Loans 11.8% 23% 

4 U.S. SBA EIDL 0.3% 23% 

5 U.S. EDA Revolving Loan Fund 1.6% 0% 

6 U.S. HUD CDBG-DR Loan 0.4% 1% 

7 Local Recovery Program 0.1% 5% 

8 Bank Loan 3.5% 9% 

9 Other 13.9% 15% 

 

The time to access financing is considered the most uncertain impeding factor (Almufti and 

Willford 2013). Based on the REDi framework, the time associated with the longest delay should 

be the impeding factor if multiple funding sources are used. For example, if the regular operating 

budget of the facility is sufficient to cover the financial costs, and the estimated financial costs are 

less than the insurance deductible, then the impeding factor for personal savings is used. If 

available funds are sufficient to cover the insurance deductible, then the impeding factor for 

insurance can be used. If the insurance cannot solely cover the financial losses, and funding needs 

to be sought from other approaches such as bank loans and SBA-backed loans, then the impeding 

factor for other approaches should be used. Additionally, the REDi framework did not consider 

government grants as possible funding sources. Based on the statistical results determined from 

personal surveys (see Table 6-5), the percentage of recovery financed through government grants  

accounts for 2% of the total, which, though small, cannot be neglected since this may vary 

depending on event. If considering the longest delay time following the REDi framework, the 

estimated delay time to obtain approval of the U.S. EDA Revolving Loan Fund is 163.6 weeks, 
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but this program's fund size only accounts for 1.5%. Thus, the authors felt it to be unreasonable to 

consider the longest delay time as the unique criterion to control the impeding factor if 

incorporating various government grants as funding resources for businesses. Defining the 

estimated financial costs and then choosing the expected method of financing for businesses after 

natural hazard events is a more appropriate, though challenging, approach. 

This methodology in this chapter proposes to select the expected method of financing for 

commercial buildings based on their building-specific conditions (i.e., damage states in slight, 

moderate, extensive, and complete levels) following damage from a natural hazard, as illustrated 

in Table 6-6. Please refer to Memari et al. (2018) for the description of different damage states 

corresponding to different types of commercial buildings. The financial costs under different 

damage states were estimated by the building replacement cost multiplied by the loss ratio affected 

by tornado hazards (in this chapter). The building replacement cost considers both the cost of 

structural component damage and the value of interior damaged components, including 

nonstructural components and building contents (Koliou and van de Lindt 2020, Pilkington et al. 

2020). The loss ratio is defined as the value of the loss divided by the insured value of the building. 

The definition of loss ratio has been comprehensively applied to visualize and compare the 

building losses (e.g., single-family residential buildings) under different natural hazards such as 

hurricanes, tornadoes, floods, and rainfall from the last several decades (e.g., Pant and Cha 2019, 

FEMA 2012, Vickery et al. 2006, Friedland and Levitan 2011, Li et al. 2012, Wang et al. 2018). 

The loss ratio associated with tornado-induced damage states for commercial buildings used in 

this chapter follows the work by Pilkington et al. (2020). Note that if this estimated loss ratio was 

greater than 50%, the building was considered a total loss that needed to be rebuilt entirely, 

consistent with the insurance industry. 

 



 

163 
 

Table 6-6. Available method of financing for commercial buildings based on damage state 

Damage 
states 

Funding resources 

Personal savings/ 
Business revenue 

Commercial property 
Insurance 

Government 
grants/Others 

Slight Yes - - 
Moderate Yes Yes - 
Extensive Yes Yes Yes 
Complete Yes Yes Yes 

 
In reality, for financial costs at different damage levels, building owners may choose the 

expected method of financing differently. Table 6-7 presents the damage state description of a 

typical commercial building, light industrial building (T7 presented in Table 6-1), as an example 

(Memari et al. 2018). Most insurance policies for commercial buildings typically require a 

deductible of 5% to 10% of the building value at a minimum (Almufti and Willford 2013), which 

is significantly greater than the financial costs for the slight damage. Therefore, building owners 

would likely spend their savings to perform slight repairs to, for example, their roof covering or 

other construction materials and/or replacing broken windows. Building owners may claim 

insurance and be reimburse from their insurance companies if their commercial buildings have 

roof covering failures over a relatively large area and/or the exterior walls are damaged from flying 

debris which is the description of moderate damage. In such cases, building owners may still need 

to use their savings to pay for the insurance deductible and coinsurance depending on the 

deductible requirements and/or coinsurance clauses written in their commercial property insurance 

policy. When extreme damage occurs, such as exterior wall collapse, termed extensive or complete 

damage, the loss ratio exceeds 0.5. Although building owners may have property insurance 

coverage based on the value of their buildings and contents inside, they still need to access 

financial resources such as government grants (e.g., SBA-backed loans, but they are limited to 

$2M for business) to finance their post-disaster events. For example, if the loss analysis reveals 

significant structural damage to many components, this may require an engineer to completely re-
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design the building, which may not be paid by the insurance reimbursement. At this level of 

damage, the financing delay time is calculated by combining the percentage of all types of 

government grants, bridge loans, and other approaches and their specified delay time considering 

uncertainty. 

Table 6-7. Damage state description for light industrial buildings 

Damage 
states 

Roof covering Window/door Exterior wall 
Garage 

door 
Roof 

structure 

Slight >2% and ≤15% 1 or 2 >2% and ≤
25% 

No No 

Moderate >15% and ≤
50% 

>1 or 2 and ≤
25% 

>25% and ≤
50% 

Yes No 

Extensive >50% >25% >50% and ≤
75% 

Typically 
yes 

No 

Complete Typically >50% Typically >25% >75% Typically 
yes 

Yes 

 

6.2.2 Repair and Recovery Module 

The repair time was developed based on the repair estimates following isolated component damage 

introduced in the FEMA P-58 methodology, presented as the repair fragility functions assembling 

from building component levels to system levels. Table 6-8 presents tornado repair fragility 

functions of commercial buildings damaged at different damage states (i.e., slight to complete, 

presented as DS1-DS4) as mentioned earlier to reach full functionality (Koliou and van de Lindt 

2020). 

 

 

 

 

 



 

165 
 

Table 6-8. Repair fragility function parameters for commercial buildings  

Archetypes Building description 
DS1 DS2 DS3 DS4 

λ ξ λ ξ λ ξ λ ξ 

T6 
Business and retail building 

(strip mall) 
2.18 0.66 3.78 0.61 4.51 0.55 5.05 0.6 

T7 Light industrial building 2.15 0.58 3.28 0.54 4.69 0.51 5.55 0.53 

T8 Heavy industrial building 2.11 0.53 3.25 0.51 4.52 0.55 5.55 0.53 

T15 Large big-box 2.28 0.51 3.62 0.51 4.49 0.55 5.23 0.52 

T16 Small big-box 2.28 0.51 3.62 0.51 4.49 0.55 5.23 0.52 

T18 Shopping center 2.15 0.49 3.83 0.55 4.57 0.55 5.18 0.55 

T19 Office building 1.45 0.55 3.74 0.52 4.8 0.52 5.32 0.55 

Units: ln (days) (eλ = days). 

The recovery module can be combined to represent the two stages, namely delay and repair, 

and was consistent with the methodology for residential structures explained in Chapter 5. Figure 

6-2 explains the integration of the delay and repair modules through the multi-layer MCS 

implemented in the model. Boxes on the right side shown in Figure 6-2 shows an example of 

analytical results after running the commercial building recovery model impacted by an EF5 

tornado event. The first layer of the MCS within N1 realizations is associated with the delay module. 

In each MCS realization of this layer, the delay time of assembling all impeding factors needed 

for each commercial building can be determined. Then, the repair time of each commercial 

building damaged from any estimated damage states to fully restored can be computed within N2 

realizations, which is the second layer of MCS. Therefore, the methodology proposed in this 

chapter can predict the recovery time for each commercial building and then commercial building 

recovery performance probability over the entire community N1×N2 times in the simulation. 
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6.3 Illustrative Example  

As low-probability, high-consequence events, tornado hazards can result 

in catastrophic physical damage to buildings and distributed infrastructure and with subsequent 

socio-economic losses over (e.g., Lombardo et al. 2015, Prevatt et al. 2012, Wang et al. 2018). 

Previous studies have focused on the infrastructure damage (e.g., buildings and lifeline systems), 

economic losses, and household disruption impacted by tornado hazards (e.g., Roueche and Prevatt 

2013, Pilkington et al. 2020, Wang et al. 2021b, Wang et al. 2022a, Wang et al. 2022b, Wang et 

al. 2022c). Businesses located in commercial properties within a community are also severely 

impacted by tornadoes, resulting in significant business interruption and disruption (e.g., Masoomi 

and van de Lindt 2018, Smith and Sutter 2013). For example, following the 2011 Joplin tornado, 

more than 500 businesses were destroyed and had to close their doors, at least temporarily, 

resulting in loss of sales, loss of customers, and lost employee income. Less than four months after 

the tornado, it was reported that 69% of the damaged businesses reopened or were open at a 

temporary location or were rebuilding. Some large corporations such as Walgreens, Home Depot, 

Walmart, and Chick-fil-A were rebuilding within eight months (Smith and Sutter 2013). 

Therefore, it is critical to be able to model the business recovery process in a broader 

community-level resilience model to enable community planning for resilience including decision-

support for policy makers. Commercial building recovery is the key factor for business owners to 

re-open their businesses following a hazard event, which in turn will influence decision-makers 

during recovery. This illustrative example is provided to demonstrate implementation of the 

commercial building recovery model for a community impacted by a simulated tornado scenario. 

This illustrative example aims to determine the statistics of the recovery time needed for each 

commercial building to be fully restored and the mean recovery time with uncertainties for 

https://www.youdao.com/w/catastrophic/#keyfrom=E2Ctranslation


 

167 
 

commercial buildings tracked through a time-stepping community-level recovery algorithm. The 

city of Joplin, located in southwest Missouri, was selected based on past work with this community 

as a testbed. Joplin is a typical small to medium size community in the Midwest of the United 

States, and used in this illustrative example. 
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Figure 6-2. A detailed illustration of the multi-layer MCS implemented to integrate the delay 

module and repair module for commercial buildings 

An idealized EF5 tornado (McDonald and Mehta 2004) was used in this chapter to directly 

impact the built environment in Joplin. The simulated direction and length of the tornado were 

designed to impact as many community buildings as possible for illustrative purposes. The width 

of the idealized tornado was the mean EF5 width of historical tornados reported from 1973 to 2011 
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(Standohar-Alfano and van de Lindt 2015). Figure 6-3 shows the overlay of the built environment 

of commercial buildings and the tornado simulation. As expected, most commercial buildings are 

located along several main streets in the community. Table 6-9 illustrates the different types of 

commercial buildings and the number of commercial buildings falling within the simulated 

tornado path. Building damage results need to be determined preliminary to then apply the new 

commercial building recovery model as mentioned earlier. Combining the building damage model, 

fragility functions, and hazard model, the probability of buildings exceeding each damage states 

is then determined (Wang and van de Lindt 2022). MCS generated sufficient randomized samples 

and determined the damage states for each commercial building within each MCS realization. 

Table 6-10 presents typical building-level hazard exposure and damage results, where each 

building is tracked using a globally unique identifier (GUID). The limit state (LS) probability at 

different levels (i.e., LS1-LS3) presented in Table 6-10 are the probabilities shown in the fragility 

curves at different damage levels at a specified intensity measure in terms of a 3-sec gust wind 

speed. 
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Figure 6-3. The overlay of the built environment for commercial buildings and simulated EF5 

tornado  

 

Table 6-9. Commercial buildings falling within the simulated tornado path 

Archetypes Building description 
Joplin 

builidngs 
Buildings fallen within the tornado path 

EF0 EF1 EF2 EF3 EF4 EF5 Total 

T6 Business and retail 
building (strip mall) 

736 15 21 20 21 29 4 110 

T7 Light industrial 
building 

963 26 36 20 34 42 20 178 

T8 Heavy industrial 
building 

155 3 5 5 3 13 7 36 

T15 Large big-box 21 0 0 1 0 0 0 1 
T16 Small big-box 30 0 0 1 1 0 0 2 
T18 Shopping center 10 1 1 2 0 0 0 4 
T19 Office building 701 8 17 19 16 28 23 111 

In total  2,616 53 80 68 75 112 54 442 
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Table 6-10. Typical building-level hazard exposure and damage results 

Index GUIDs Archetypes 
Hazard 

exposure 
Wind speed 

(m/s) 

Limit states MCS 
samples 

LS1 LS2 LS3 Sample1 … 

1 GUID1 T7 EF0 36.95 0.20 0.04 0.01 DS1 … 
2 GUID2 T18 EF1 39.50 0.63 0.02 0.01 DS1 … 
3 GUID3 T15 EF2 59.21 0.99 0.69 0.08 DS3 … 
4 GUID4 T16 EF3 61.24 1.00 0.58 0.15 DS2 … 
5 GUID5 T6 EF4 85.38 1.00 1.00 0.96 DS4 … 
6 GUID6 T19 EF5 102.81 1.00 1.00 0.99 DS4 … 
… … … … … … … … … … 
 

After applying the commercial building recovery model described in this chapter, Figure 6-4 

shows the histograms of delay time (N1=100) and recovery time (N= N1× N2=100×100=10000) 

from MCS for a typical commercial building in this chapter, which appears to fit a lognormal 

distribution well. For a typical building within the EF3 region of the EF5 path, the mean delay 

time and mean recovery time is 69 weeks and 92 weeks, respectively. Figure 6-5 illustrates the 

average delay and recovery time with uncertainties for all commercial buildings within the tornado 

path, grouped by different tornado intensity regions. Overall, the average recovery time for 

commercial buildings within the regions from EF0 to EF5 is 16.2 weeks, 50.1 weeks, 82.0 weeks, 

100.3 weeks, 104.5 weeks, and 106.8 weeks. It can be observed that only commercial buildings 

within the EF0 and EF1 regions can realistically recover in approximately one year. Since the 

delay time for all the impeding factors presented in this chapter directly rely on building-specific 

conditions impacted by tornado hazard, buildings within the EF0 region have a high possibility of 

slight damage, but buildings within the EF3 region or higher are commonly damaged to a complete 

level. Therefore, the uncertainties of delay time for buildings within EF1 and EF2 regions are 

relatively higher than those within other regions. Building recovery time has a full uncertainty 

propagation throughout the multi-layer MCS realizations, aggregated by the combination of delay 

time and repair time. Therefore, as expected, building recovery time has a higher uncertainty than 
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building delay time. The average delay and recovery time for buildings in the EF3 region or higher 

do not significantly differ, while the uncertainties of delay and recovery time for buildings in the 

EF3 region are slightly higher than those in the EF4 and EF5 regions. The delay time and recovery 

time of buildings presented in Figure 6-4 are color-coded by EF region. The recovery process can 

be shortened through mitigation strategies applied to buildings, such as the component-level 

improvement (e.g., connections) for buildings in EF0 and EF1 regions, the system-level 

improvement (e.g., shear walls) for buildings in EF2 and EF3 regions, and providing alternate 

approaches (e.g., safe rooms) for buildings in EF4 and EF5 regions (van de Lindt et al. 2013). 

 
(a) 



 

173 
 

 
(b) 

Figure 6-4. A typical building in the EF3 region over MCS realizations: (a) delay time; (b) 
recovery time 

 
(a) 
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(b) 

Figure 6-5. Commercial buildings within the tornado pathway: (a) average of delay time; (b) 
average of recovery time 

In order to track the time-stepping commercial building trajectory over the entire community, 

This chapter still uses the concept of the binary commercial building recovery performance 

indicator, the time by quarters, and the calculated recovery time of buildings as thresholds, recall 

Equation (5.6). The time-stepping commercial building performance recovery probability and the 

average of the percentage of buildings fully recovered are determined, respectively, recall 

Equation (5.7) and Equation (5.8). Figure 6-6 shows the building post-disaster recovery 

performance probability at a community level over time. As expected, the recovery performance 

probability for most commercial buildings in the EF0 and EF1 regions varies from 0.8 to 1.0 one 

year after the tornado, and those in the EF3 region or higher are still in the recovery process at two 

years, which generally match the analytical results of recovery time needed for buildings in each 

EF region shown in Figure 6-4. Table 6-11 presents the average percentage for different buildings 

fully recovered  at the short-term, intermediate, and long-term phases (NIST 2020) after the 

tornado, as an essential resilience recovery metric from the perspective of physical service stability. 

The recovery process of different buildings depends on building damage states based on their 
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locations with tornado intensities, financial resources available to business owners, and other 

impeding factors resulting in delay before repair initiation. Overall, in this illustrative example, 

the community begins to have a small number of buildings fully recovered at the intermediate 

phase, and more than half of buildings complete the recovery process around two years in the long-

term phase. 

 
(a) 
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(b) 

  
(c) 
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Figure 6-6. Time-stepping recovery probability for buildings in the tornado pathway: (a) time = 1 
year; (b) time = 2 years; (c) time = 3 years 

 

Table 6-11. The percentage of buildings fully recovered in the tornado pathway (mean values) 

Buildings 

Design hazard performance 

Phase 1: Short-
term 

Phase 2: 
Intermediate 

Phase 3: Long-term 

Days Weeks Months 

0 1-3 3-7 1-4 4-8 8-12 3-12 12-24 24+ 

Business and retail 
building (strip mall) 

0% 0% 0% 0% 2.2% 8.3% 34.9% 80.6% 100% 

Light industrial building 0% 0% 0% 0% 2.8% 10.4% 25.8% 61.6% 100% 
Heavy industrial building 0% 0% 0% 0% 1.2% 4.4% 27.5% 64.1% 100% 
Large big-box 0% 0% 0% 0% 0% 0% 42.8% 89.1% 100% 
Small big-box 0% 0% 0% 0% 0% 0% 38.9% 80.3% 100% 
Shopping center 0% 0% 0% 0% 2.8% 14.7% 53.9% 87.8% 100% 
Office building 0% 0% 0% 0% 1.7% 5.7% 25.7% 71.9% 100% 

 

6.4 Summary and Conclusions 

Commercial properties/businesses in a hazard-affected area can have a substantial impact on the 

overall community recovery. Therefore, business recovery is one of the more critical requirements 

serving as a necessary (although not sufficient) condition to improve resilience. In this chapter, a 

probabilistic commercial building recovery model was proposed to track the recovery trajectory 

for commercial buildings over time following a hazard event and measure typical recovery 

resilience metrics. Based on the work presented herein, the following conclusions can be drawn: 

• A resilience resource portfolio available to business owners was developed based on real-

world available project survey data collected following Hurricane Ike in 2008 from the 

associated statistical analysis. The three significant funding resources are personal 

savings/business revenue, commercial property insurance, and government grants/others. 

Business owners must choose a single or multiple financial methodologies above to support 
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their post-disaster events depending on the specific conditions of their commercial 

buildings. 

• The average recovery time for commercial buildings in the tornado example in this chapter 

varies from as little as averaging 16 weeks in very lightly damaged regions (DS0 and DS1) 

to as much as an average of 107 weeks at the centerline of the tornado path. The 

uncertainties in recovery time for buildings in the EF1 and EF2 wind regions are higher 

than those in other tornado regions. 

• The recovery process for different commercial building types depends on building damage 

affected by hazard events, financial resources available to business owners, and other 

impeding factors. Overall, very few commercial buildings are fully recovered within a year  

of the hazard event, and, in general, more than 50% are fully restored after approximately 

two years. 

It is worth noting that the methodology proposed in this chapter has several limitations and 

assumptions, which need to be addressed in future studies. First, the methodology assumed 

business owners would not select a new location to rebuild their commercial buildings but schedule 

repair of the original buildings no matter how damaged they were. Second, this chapter mainly 

considers the recovery of physical buildings without considering the complex personal decision-

making processes of business owners, managers, and commercial landlords. For example, business 

owners are also often residents of the community, homeowners, heads-of-household. If their 

residential buildings were damaged, they may have dislocated or even outmigrated from the 

community, which would impede or eliminate their commercial building recovery plan. Lastly, 

the proposed methodology incorporating real-world funding resource data to estimate the financial 
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delay is based on past statistics but needs empirical field study data related to commercial building 

recovery and business re-opening for validation. 

In summary, the resilience-based methodology presented in this chapter can quantitatively 

incorporate a resilience resource portfolio into the probabilistic community resilience model and 

help the community understand and guide the recovery process for commercial buildings.  Such a 

methodology, even with some assumptions and limitations, will be beneficial for business recovery 

modeling since no model at the building-level currently exists. 
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CHAPTER 7 PHYSICAL-SOCIAL INTERDEPENDENT RECOVERY  

 
 
 

7.1 Introduction 

Comprehensive multi-disciplinary community resilience assessment has emerged over the last 

decade and requires modeling complex interactions over physical infrastructure and social systems 

to support planning and decisions. Comprehensive community resilience models that fuse 

disciplines have examined the natural hazard-induced damage to physical infrastructure with 

propagation to economic losses and population instability. However, most community recovery 

models thus far were designed to examine the recovery of a single system or rely on a host of 

assumptions due to a dearth of available data. In this chapter, a methodology to examine physical-

social interdependent community recovery is proposed; specifically the process of modeling 

dislocated households and the damaged residential buildings needing repair. The methodology 

integrates building damage approach, household allocation, population dislocation, and residential 

building recovery with an existing household recovery approach developed in previous studies. 

This chapter aims to comprehensively examine household recovery processes for four cases: Case 

1: the household1 has permanent housing2 and the residential buildings3; Case 2: has permanent 

housing but without residential buildings; Case 3: has residential buildings but without permanent 

housing; Case 4: has neither permanent housing nor residential buildings.  

 
1 A household refers to one person or a group of people who dwell under the same roof and compose a family in this 
chapter. 
2
 Permanent housing means housing without a designated length of stay, and includes both permanent supportive 

housing and rapid rehousing in this chapter. 
3 A residential building refers to a building containing one or more residential dwellings used or occupied, or intended 
to be used or occupied, for residential purposes in this chapter.  
 

https://www.lawinsider.com/dictionary/residential-building
https://www.lawinsider.com/dictionary/residential-building
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The novelty of this chapter is (1) to develop a methodology, for the first time, to examine the 

interdependent community recovery process across physical infrastructure and social systems; (2) 

to examine the integrated recovery process of residential buildings and the household in that 

building for the community impacted by. The methodology is demonstrated for the city of Joplin, 

Missouri, impacted by the 2011 Joplin tornado. This chapter specifically focuses on a multi-

disciplinary community resilience assessment but with an emphasis on the recovery process, 

expanding the scope of comprehensive community assessment models to potentially provide 

decision-support to community leaders, stakeholders, and researchers. The ability to quantify 

interdependent community recovery across physical and social science models can help 

communities plan more realistically for their recovery, and maintain social stability following 

natural hazard events. This chapter follows the methodology presented in Wang and van de Lindt 

(2023). 

7.2 Physical-Social Interdependent Recovery Model 

Figure 7-1 shows a simplified flowchart representing an overview of the physical-social 

interdependent recovery proposed in this chapter. Specifically, social recovery refers to dislocated 

households re-accessing their permanent housing/dwelling, and physical recovery refers to their 

residential buildings being fully recovered after the damage and becoming fully operational and 

functional. The entire process starts from the building damage prediction. Buildings can be 

damaged immediately after a hazard, particularly tornadoes. Subsequently, many households must 

temporarily move out of their dwelling, often staying in the emergency shelters for approximately 

two weeks or more depending on the intensity of the hazard. Over time following a disaster, 

residential buildings are repaired or new buildings are constructed and ultimately households move 
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to their permanent housing. MCS is a technique that enables the analyst to generate sufficient 

randomized samples and predict the probability of different outcomes. Within each of the chained 

analyses mentioned earlier, MCS is widely applied to ensure propagation of uncertainty. 

7.2.1 Building Damage Prediction 

Fragility functions (D_Fr) are developed which represent the probability of physical infrastructure 

exceeding a damage state under a given intensity measure from a natural hazard.  Readers are 

referred to Chapter 3 for more details about developing wind-induced fragility functions using 

structural reliability analysis. Equation (7.1) below presents the probability of  (Pdamage) each 

building (k) exceeding a prescribed damage state (i) at a specific intensity measure (e.g., 3-second 

gust wind speed, peak ground acceleration, and flood depth) from a natural hazard (e.g., wind, 

earthquake, and flood) (Wang et al. 2022). For woodframe residential buildings subject to tornado 

hazards as an example, four damage states (i.e., slight, moderate, extensive, complete) are defined 

with each represented by different damage descriptions made up of specified conditions for 

structural components such as roof-to-wall connections and non-structural components such as 

windows and doors (Masoomi et al. 2018). For example, when residential buildings have a roof 

covering failure exceeding 15% and less than 50% by area, this represents a particular damage 

state defined generally as 

                                                     𝑃𝐷𝑎𝑚𝑎𝑔𝑒,𝑖𝑘 = 𝐷_𝐹𝑟𝐷𝑆𝑖𝑘 (𝐼𝑀 = 𝑥)                                                         (7.1) 

7.2.2 Household Dislocation Prediction 

The approach to predicting household dislocation in this chapter is consistent with those explained 

in sections 2.2.4 in Chapter 2 and 3.3.3 in Chapter 3. For each MCS realization, each household 

(h) allocated to each building (k) is predicted to dislocate (𝐼𝑑𝑖𝑠𝑘,ℎ = 1) if a random value, R, between 
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0 and 1, is less than the calculated dislocation probability, as illustrated in Equation (7.2). The 

dislocated households will be used as an input for being integrated into the household recovery 

prediction, which will be introduced later to estimate whether they will return or find a new place 

to live permanently after the damage from a natural hazard. 

                                                                𝐼𝑑𝑖𝑠𝑘,ℎ = {0    𝑅 > 𝑃𝑑𝑖𝑠,𝑚𝑘,ℎ1    𝑅 ≤ 𝑃𝑑𝑖𝑠,𝑚𝑘,ℎ                                                    (7.2) 

7.2.3 Residential Building Recovery Prediction 

The residential building recovery approach predicts the time required for residential buildings 

damaged in any damage state to fully recovered due to natural hazard events. Wang and van de 

Lindt (2021) defined the residential building recovery process as a two-stage process: Stage 1 is 

downtime due to delays including impeding factors and stage 2 is repair (see Equation (7.3)). 

Several impeding factors, including post-event inspection (TINSP), engineering mobilization 

(TENGM), procuring funding (TFINA), contractor mobilization (TCONM), and construction permitting 

(TPERM) jointly result in the phase 1, the delay time, which occurs for residential buildings before 

initiating the repair scheduled by building owners, as suggested by the REDi framework (Almufti 

and Willford 2013). The delay time was estimated for earthquake events based on the REDi 

framework and then expanded to other hazard events (Wang and van de Lindt 2021). Equation 

(7.4) presents the approach to assembling all the impeding factors that occur in different delay 

phases, which is consistent with the equation in Chapter 5. The repair model was developed based 

on the repair estimates explained in the FEMA P-58 methodology and assembled from component 

levels to building levels (Koliou and van de Lindt (2020). The repair time is determined by fragility 

functions (R_Fr) for damaged residential buildings in different damage states, as illustrated in 

Equation (7.5). Please refer to Wang et al. (2023) for a detailed illustration of integrating delay 
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time (TDelay) and repair time (TRepair) to recovery time (TB_Recovery) using the concept of multi-layer 

MCS.  

                                                       𝑇𝐵_𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑘 = 𝑇𝐷𝑒𝑙𝑎𝑦𝑘 + 𝑇𝑅𝑒𝑝𝑎𝑖𝑟𝑘                                                   (7.3) 

                                   𝑇𝐷𝑒𝑙𝑎𝑦𝑘 = 𝑇𝐼𝑁𝑆𝑃𝑘 +𝑚𝑎𝑥{𝑇𝐸𝑁𝐺𝑀𝑘 +𝑇𝐹𝐼𝑁𝐴𝑘 + 𝑇𝐶𝑂𝑁𝑀𝑘 } + 𝑇𝑃𝐸𝑅𝑀𝑘                          (7.4) 

                                                         𝑇𝑅𝑒𝑝𝑎𝑖𝑟𝑘 = 𝑅_𝐹𝑟𝑘(𝐷𝑆 = 𝑖)                                                         (7.5) 

7.2.4 Household Recovery Prediction 

The household recovery prediction in this chapter describes a long-term complex process for 

households after being disrupted by a natural hazard and consists of four stages: emergency shelter, 

temporary shelter, temporary housing, and permanent housing (Bolin and Stanford 1998, Badeaux 

2018). Sutley and Hamideh (2020) comprehensively detailed the four stages above to model 

household recovery as stages 1 to 4 and proposed a household recovery failure as a fifth possible 

stage. They used a Markov chain model to predict the sequence and timing of a household going 

through recovery to reach either permanent housing or household recovery failure, i.e. resulting in 

houselessness. This chapter modified this model slightly and implemented it to predict the 

household recovery process. 

The Sutley and Hamideh model (2020) starts with the determination of the social vulnerability 

scores of each household. Social vulnerability scores are modeled in a nonnegative number varying 

from 0 to 1, where 0 and 1 represent the lowest and highest possible social vulnerability, 

respectively. Rosenheim (2021) allocated the household income to each housing unit based on 

race, ethnicity, and household size at the census block level and income distributions at the census 

tract level. The household income information is then predicted, which is felt to represent typical 

sociodemographic characteristics in real-world communities, to group the social vulnerability 
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zones (z), for each household (h). For each social vulnerability zone, a threshold (Rthreshold) is 

defined to represent the percentage of most households living in this zone with a lower bound 

(Rb,lower) and an upper bound (Rb,upper). The lower and upper bounds are used to calculate a range 

of social vulnerability scores (SV), when a random number (R) between 0 and 1 is less than this 

threshold. Another lower bound (Ra,lower) and upper bound (Ra,upper) are also defined to represent 

the remaining households assigned to a broader range of social vulnerability scores to reflect a 

small number of exceptional cases that exist in reality. The social vulnerability score of each 

household can be determined using Equation (7.6) below, which is estimated to fit a uniform 

distribution. 

              𝑆𝑉𝑧ℎ = {𝐹𝑧ℎ(𝑠; 𝑅𝑏,𝑙𝑜𝑤𝑒𝑟𝑧 , 𝑅𝑏,𝑢𝑝𝑝𝑒𝑟𝑧 )    𝑅 < 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ℎ,𝑧 , 𝑠𝜖[𝑅𝑏,𝑙𝑜𝑤𝑒𝑟𝑧 , 𝑅𝑏,𝑢𝑝𝑝𝑒𝑟𝑧 ]𝐹𝑧ℎ(𝑠; 𝑅𝑎,𝑙𝑜𝑤𝑒𝑟𝑧 , 𝑅𝑎,𝑢𝑝𝑝𝑒𝑟𝑧 )    𝑅 ≥ 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ℎ,𝑧 , 𝑠𝜖[𝑅𝑎,𝑙𝑜𝑤𝑒𝑟𝑧 , 𝑅𝑎,𝑢𝑝𝑝𝑒𝑟𝑧 ]                 (7.6) 

The transition probability matrix (TRM), as illustrated in Equation (7.7), is the core of predicting 

the social vulnerability-driven household recovery process, 𝑆(𝑡). Sutley and Hamideh (2020) 

proposed the relationships between stage transition probability and social vulnerability based on 

extensive interviews, household surveys, and past literature (van de Lindt et al. 2020). The 

nonnegative elements in the transition probability matrix, 𝑝𝑖,𝑗(𝑡) , defined in Equation (7.8), 

describe the probability of a household transitioning to state Sq given its current state is Sp.  

𝑇𝑅𝑀( 𝑆𝑉𝑧ℎ) = [   
 𝑝1,1( SV = 𝑆𝑉𝑧ℎ) 𝑝1,2(𝑆𝑉 =  𝑆𝑉𝑧ℎ)𝑝2,1(SV =  𝑆𝑉𝑧ℎ) 𝑝2,2( SV = 𝑆𝑉𝑧ℎ) 𝑝1,3( SV = 𝑆𝑉𝑧ℎ) 𝑝1,4( SV = 𝑆𝑉𝑧ℎ)𝑝2,3( SV = 𝑆𝑉𝑧ℎ) 𝑝2,4( SV = 𝑆𝑉𝑧ℎ)𝑝3,1( SV = 𝑆𝑉𝑧ℎ) 𝑝3,2(SV =  𝑆𝑉𝑧ℎ)0 0 𝑝3,3(SV =  𝑆𝑉𝑧ℎ) 𝑝3,4(SV =  𝑆𝑉𝑧ℎ)0 1 ]   

 
 (7.7)   

                                            𝑝𝑝,𝑞(𝑡 + 1) = 𝑃[𝑆(𝑡 + 1) = 𝑆𝑞|𝑆(𝑡) = 𝑆𝑝]                                       (7.8) 
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The initial ( 𝑡 = 𝑡0 ) stage probability vector, 𝜋(𝑡0) = [𝜋1(𝑡0); 𝜋2(𝑡0); 𝜋3(𝑡0)] , where ∑ 𝜋𝑗(𝑡0) = 13𝑗=1 , is defined due to the joint effect of building damage, utility disruption, and social 

vulnerability to help determine the initial stage, 𝑆(𝑡0), for each household following the hazard 

event (Lin and Wang 2017, Sutley and Hamideh 2020). It is worth noting that only the predicted 

household dislocation is required to estimate their initial stage to track each household recovery 

process using the Markov chain, as shown in Equation (7.9). For other households still residing in 

their original residence, this prediction assumes these households have their permanent housing 

already and do not enter the analysis. At any given time throughout the recovery process, the 

household can remain in its current state or transition to a higher/lower state in each time step (a 

time step equates to one month) until permanent housing or failure is reached, depending on its 

current state and its social vulnerability score, as shown in Equation (7.10). For more details about 

the cases resulting in household recovery failure (Stage 5), please refer to Sutley and Hamideh 

(2020). 

                                𝑆ℎ(𝑡0) = {  
  1                                  𝐼𝑑𝑖𝑠𝑘,ℎ = 1 𝑎𝑛𝑑 𝑅 < 𝜋1(𝑡0)2     𝐼𝑑𝑖𝑠𝑘,ℎ = 1 𝑎𝑛𝑑 𝜋1(𝑡0) ≤ 𝑅 < ∑ 𝜋𝑛(𝑡0)2𝑛=13              𝐼𝑑𝑖𝑠𝑘,ℎ = 1 𝑎𝑛𝑑 ∑ 𝜋𝑛(𝑡0)2𝑛=1 ≤ 𝑅 < 14                                                                 𝐼𝑑𝑖𝑠𝑘,ℎ = 0}  

  
                      (7.9)    

                𝑆ℎ(𝑡 + 1) =
{   
   1                                                                   𝑅 < 𝑝𝑆ℎ(𝑡),1(SV = 𝑆𝑉𝑧ℎ)2               𝑝𝑆ℎ(𝑡),1(SV = 𝑆𝑉𝑧ℎ) ≤ 𝑅 < ∑ 𝑝𝑆ℎ(𝑡),𝑛(SV = 𝑆𝑉𝑧ℎ)2𝑛=13    ∑ 𝑝𝑆ℎ(𝑡),𝑛(SV = 𝑆𝑉𝑧ℎ)2𝑛=1 ≤ 𝑅 < ∑ 𝑝𝑆ℎ(𝑡),𝑛(SV = 𝑆𝑉𝑧ℎ)3𝑛=14                                                ∑ 𝑝𝑆ℎ(𝑡),𝑛(SV = 𝑆𝑉𝑧ℎ)3𝑛=1 ≤ 𝑅 < 15                          𝐴𝑛𝑦 𝑀𝑎𝑟𝑘𝑜𝑣 𝑐ℎ𝑎𝑖𝑛 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑠𝑡𝑒𝑝𝑠 𝑜𝑐𝑐𝑢𝑟 

      (7.10)                    

The time needed for the entire household recovery process (TH_Recovery) is defined whenever the 

Markov stage of each household moves to permanent housing (Stage 4) for the first time, as 

illustrated in Equation (7.11). Afterward, this household's stage is stable and equal to 4 in each 
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following time step. The time required for household recovery of each household is compared with 

that for their residential building recovery, recall Equation (7.5), to explore the physical-social 

interdependent recovery relationship.  

                                                         𝑇𝐻_𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦ℎ = 𝑇(𝑆ℎ(𝑡) = 4)                                              (7.11) 
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Figure 7-1. A simplified flowchart of the proposed physical-household interdependent recovery 

methodology 
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7.3 Illustrative Example 

Joplin is a small to medium size community in the United States located in Southwest Missouri, 

spanning across Jasper county and Newton County. Joplin has a total population size of 50,150 

and a land area of 92.09 square kilometers (35.56 square miles), as estimated in 2010 (U.S. Census 

Bureau. 2010). The 2011 Joplin tornado was a devastating Enhanced Fujita 5 (EF5) multiple-

vortex tornado that struck on Sunday, May 22, 2011. This single tornado event resulted in 158 

deaths and 1,150 injuries and caused damages amounting to US$2.8 billion (2011 dollars), ranked 

as the deadliest and costliest single tornado in U.S. history. Additionally, the tornado damaged 

over 7,400 residential buildings, more than 500 businesses, one of the two major hospitals (i.e., St. 

John's Regional Medical Center), ten public schools, two fire stations, and twenty-eight churches 

(Kuligowski et al. 2014). After the tornado, between 5,000 and 7,000 households lost their homes 

and had to dislocate to temporary housing. Some dislocated families rented or bought available 

apartments or homes in the area, and others stayed with family or friends. FEMA provided 

approximately 600 temporary housing units, and the Joplin area's private sectors (e.g., national 

charities, the business community, and volunteers) accommodated about 90 percent of dislocated 

households (Smith and Sutter 2013). After two years following the tornado, approximately 80% 

of residential buildings were fully recovered based on spatial video data (Pilkington et al. 2021). 

As of June 2013, all households had moved out of FEMA temporary housing and into longer-term 

or permanent housing (Fact Sheet 2021). 

Due to the significant housing/infrastructure damage and long-term recovery in Joplin, this was 

selected as a testbed for this chapter to explore the preparedness, response, and recovery of the 

community (e.g., Houston et al. 2017, Ellingwood et al. 2017, Veil and Bishop 2014, Pilkington 

and Mahmoud 2020, Attary et al. 2018, Stone et al. 2021, Wang and van de Lindt 2021, Wang and 
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van de Lindt 2022, Wang et al. 2021). This chapter also used the Joplin testbed as an illustrative 

example to implement the proposed methodology and explore the physical-social interdependent 

recovery relationship across coupled engineering and social science disciplines. 

The building dataset was developed for Joplin circa 2010 prior to the 2011 tornado, which 

included building information such as building archetypes, year of construction, footprint areas, 

as well as demographic information. The synthetic household allocation algorithm allocates 

household characteristics such as household size, tenure status, race/ethnicity, and household 

income to each household in each building by de-aggregating from the census block level. Table 

7-1 presents the data format of building information and the allocated household characteristics. 

The hazard for this illustrative example was the 2011 Joplin tornado. The tornado wind speed 

contour map was determined by estimating the damage indicators (DI) and degree of damage 

(DOD) for all the damaged buildings in the tornado path (Kuligowski et al. 2014, Wang et al. 

2021). 

Table 7-1. Data format of the integrated building information and household characteristics  

GUID 

Building information 

HUID 

Household characteristics 

Archetypes 
Year of 
construc

tion 

Footprint 
areas (ft2) 

Tenure 
status 

Race/ 
Ethnicity 

Household 
Income 

GUID1 T1 1895 908 HUID1 Owner Other race HH1 
GUID2 T1 1930 1069 HUID2 Renter Hispanic HH2 
GUID3 T1 1993 2229 HUID3 Owner Black alone HH3 
GUID4 T5 1955 4820 HUID4 Renter White alone HH4 
GUID5 T5 1977 3515 HUID5 Owner White alone  HH5 

… … … … … … … … 

 

The analytical results of building damage prediction and household dislocation prediction are 

two key inputs for the subsequent physical-social interdependent recovery process, which is the 

objective of this chapter. Functionality of physical infrastructure (e.g., buildings, lifeline systems) 

due to natural hazard events is widely used by researchers to quantify the resilience index (e.g., 
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Castillo et al. 2022, Ganin et al. 2016, Davis 2021, Koliou and van de Lindt 2020, Enderami et al. 

2021), but researchers have not reached a consensus in defining the concept of functionality in 

multi-disciplinary community resilience studies. In this chapter, a building is defined as non-

functional whenever the state of the building exceeds the moderate damage level within each MCS 

realization (Wang et al. 2022) which is, arguably simplified, but can be modified as more is learned 

about how to operationalize functional recovery and its definition. The number of buildings in this 

dataset within the simulated tornado path was 7,834, which generally matches the damaged 

buildings recorded in Kuligowski et al. (2014), with an error of less than 5%. This example focuses 

on the allocated Joplin households residing in residential buildings within the tornado path to 

examine the previously described interdependent recovery methodology. 

Figure 7-2 shows the heat maps depicting physical-social disruption immediately following the 

tornado. Figure 7-2(a) illustrates the spatial probability of buildings being non-functional, where 

the heatmap uses the Viridis as the color ramp, and bright colors such as green refer to the buildings 

having a higher probability of being non-functional. Figure 7-2(b) presents the variation of 

household dislocation probability where the red colors in the spectrum refer to the buildings with 

a higher dislocation probability. It can be observed that the trend for the brighter color areas in the 

two figures is almost consistent, which verifies that household dislocation is driven by building 

damage for the Joplin testbed, but not an exact correlation. All other housing characteristics do not 

immensely impact the household dislocation decisions (recall Equation (7.3)). Figure 7-3 shows 

the maps of the dislocated households for a typical MCS realization grouped by the household 

characteristics of tenure status, race/ethnicity, and household income. It is felt that more social-

vulnerable groups such as renters and Hispanics are not shown as more likely to dislocate for 
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Joplin, or the impact of social vulnerability to household dislocation following the tornado is 

relatively slight. 

 
(a) 
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(b) 

Figure 7-2. Physical-social disruption immediately following the tornado: (a) building 
functionality probability; (b) household dislocation probability 
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(a) 

 
(b) 
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(c) 

Figure 7-3. Dislocated households within a typical MCS realization by household characteristics: 
(a) tenure status; (b) race/ethnicity; (c) household income 

Within the tornado path of this illustrative example, there are 7,201 Joplin households residing 

in 5,327 residential buildings within the community level model that have the possibility of their 

homes being damaged at different levels (DS’s) and potentially dislocate. Table 7-2 indicates the 

physical damage to buildings and the impacted homes for a typical MCS realization. Around 90% 

of residential buildings were damaged at a complete level (DS4), and only 3% of residential 

buildings can keep functional following the tornado. The damageable components for the 

woodframe residential buildings in this example consists of an asphalt shingle, wood roof 

sheathing panels nailed every 12 inches (30.5 cm) at the center (field nailing) and every 6 inches 

(15.2 cm) at the edge (edge nailing), and two toenails used to connect wooden trusses to wall top 

plates/studs (Wang et al. 2021). Approximately 90% of households experienced the building 

damage at a complete level. Table 7-3 indicates the household dislocation decisions within a 
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typical MCS realization. Overall, the predicted dislocated households are within the range of the 

actual number of dislocated households mentioned at the beginning of this section. However, the 

percentage of dislocated households in different categories grouped by household characteristics 

(i.e., tenure status, race/ethnicity, and household income herein) does not show a large difference. 

More specifically, the percentage of dislocated households for more socially-vulnerable groups, 

including renters, Hispanic, and low-income groups, is relatively higher but not that apparent.  

Table 7-2. Physical damage within the tornado path for a typical MCS realization 

Building specific conditions Total buildings Total households Dislocated households 

Slight 164 (3.0%) 220 (3.1%) 153 (2.7%) 
Moderate 183 (3.4%) 228 (3.2%) 144 (2.6%) 
Extensive 231 (4.3%) 300 (4.2%) 215 (3.8%) 
Complete 4,749 (89.1%) 6,453 (89.6%) 5,087 (90.9%) 

In total 5,327 (100%) 7,201 (100%) 5,599 (100%) 
 

Table 7-3. Social disruption within the tornado path for a typical MCS realization 

Household characteristics Dislocated households Total households 

Tenure status   
Owner-occupied 2,645 (75.9%) 3,487 (100%) 
Renter-occupied 2,429 (79.6%) 3,052 (100%) 
No tenure data 525 (79.3%) 662 (100%) 
In total 5,599 (77.8%) 7,201 (100%) 

Race/ethnicity   
White alone, not Hispanic 4,572 (77.5%) 5,899 (100%) 
Black alone, not Hispanic 113 (76.9%) 147 (100%) 
Other race, not Hispanic 253 (77.4%) 327 (100%) 
Any race, Hispanic 136 (81.9%) 166 (100%) 
No race/ethnicity data 525 (79.3%) 662 (100%) 
In total 5,599 (77.8%) 7,201 (100%) 

Household income group   
HH1 (less than $15,000) 764 (79.6%) 960 (100%) 
HH2 ($15,000-$25,000) 722 (76.7%) 941 (100%) 
HH3 ($25,000-$75,000) 2,338 (77.6%) 3,014 (100%) 
HH4 ($75,000-$100,000) 343 (77.6%) 442 (100%) 
HH5 (more than $100,000) 317 (74.6%) 425 (100%) 
No income data 1,115 (78.6%) 1,419 (100%) 
In total 5,599 (77.8%) 7,201 (100%) 
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Following the 2011 Joplin tornado, the local government launched a series of policies to 

facilitate recovery, including relaxing regulations, hiring extra building inspectors, waiving 

bidding rules, and resisting the temptation to micromanage (Smith and Sutter 2013). In addition, 

financial assistance was comprehensively provided from government grants and business 

donations to help residents overcome the difficulties in finding temporary housing and repairing 

their buildings, and therefore shorten the recovery process. This example implemented the 

residential building recovery prediction with these policy decisions incorporated, which have been 

validated using assessable longitudinal recovery video capture data (Wang and van de Lindt 2021, 

Pilkington et al. 2021). Figure 7-4 presents the histograms of a typical residential building recovery 

time in an EF1 and EF2 tornado region over sufficient MCS realizations, where the histograms are 

normalized and plotted versus a lognormal distribution. The mean recovery time of the two 

buildings shown is 74 weeks and 83 weeks.  

The residential building recovery methodology applied incorporated household income as a 

socio-demographic indicator to predict the funding options available to households to finance their 

residential building repairs (Wang and van de Lindt 2021). The recovery time of all residential 

buildings explored in this example within a typical MCS realization can also fit for a lognormal 

distribution, as illustrated in Figure 7-5(a). In order to minimize the effect of building damage 

brought to the community recovery and examine the residential building recovery impacted by 

household income characteristics, Figure 7-5(b) presents the determined lognormal distributions 

of all residential building recovery times in the EF2 region grouped by the household income 

levels. It can be observed that higher household income levels slightly shorten the residential 

building recovery process, but the effect is not significant. Figure 7-6 shows the mean residential 

building recovery time over the community. The analytical results indicate that around 82% of 
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residential buildings can be fully recovered two years after the tornado, consistent with the video 

data (Pilkington et al 2021). More specifically, delay time dominates the residential building 

recovery process based on the analytical results and accounts for more than 60% of the total time 

needed for the entire process of residential building recovery.  

 
(a) 

 
(b) 

Figure 7-4. Recovery time of a typical residential building: (a) in the EF1 tornado region; (b) in 
the EF2 tornado region 
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(a) 

 
(b) 

Figure 7-5. Residential recovery time over the community within a typical MCS realization: (a) 
histogram and lognormal distribution; (b) grouped by household income for all residential 

buildings in the EF2 region 
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Figure 7-6. Mean building recovery time over the community 

The household recovery approach implemented in this example is a social vulnerability-driven 

approach, and this example modified the social vulnerability assignment approach based on 

neighborhood zones explained in Sutley and Hamideh (2020). More social-vulnerable groups, such 

as renters, Hispanics, and lower household income groups, correspond to higher social 

vulnerability groups. Joplin has a relatively even population distribution, and household 

characteristics in different neighborhood zones are not significantly different. This example used 

the allocated household income at a household level to group the social vulnerability zones, 

building on social vulnerability assignments shown in Table V in Sutley and Hamideh (2020), as 

indicated in Table 7-4. Two different ranges (percent of households I and percent of households II 

shown in Table 7-4) were assigned to different proportions of households in each social 

vulnerability zone. The purpose of this allocation is that a small number of households might be 

assigned social vulnerability scores in a broader range reflecting the socio-demographic features 
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in real-world communities, recall Equation (7.8). For example, for the highest household income 

group, HH5, 95% of households were assigned a lower social vulnerability range uniformly 

distributed from 0.01 to 0.15, and the remaining 5% of households were assigned a more 

comprehensive social vulnerability range uniformly distributed from 0.1 to 0.9 to represent a small 

number of exceptional household cases. Figure 7-7 shows the predicted household social 

vulnerability scores for a typical MCS realization over the community.  

Table 7-4. Social vulnerability assignments to Joplin households  

Household income 
group 

Percent of 
households I 

Social 
vulnerability 

range I 

Percent of 
households II 

Social 
vulnerability 

range II 

HH5 95% 0.01-0.15 5% 0.10-0.90 
HH4 85% 0.10-0.50 15% 0.10-0.90 
HH3 80% 0.30-0.70 20% 0.10-0.90 
HH2 85% 0.50-0.90 15% 0.10-0.90 
HH1 95% 0.85-0.99 5% 0.10-0.90 

 

 
Figure 7-7. Household social vulnerability scores over the community 
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Figure 7-8 illustrates the predicted household recovery sequences of several households within 

a typical MCS realization as an example. More specifically, two households shown in Figure 7-

8(a) were allocated to the building in the EF1 region shown in Figure 7-4(a), and another two 

shown in Figure 7-8(b) to the building in the EF2 region shown in Figure 7-4(b). The housing 

recovery sequences of two example households in the EF1-impacted building differ within MCS 

realizations, but the mean household recovery time for the two is relatively close, and no recovery 

failure occurred. One of the households in the EF2-impacted building shown in Figure 7-8(b) was 

predicted to stay and not dislocate; therefore, the household recovery sequences can be shown as 

a straight line over time, maintaining the permanent housing status (Stage 4). The other household 

shown in Figure 7-8(b) reached a household recovery failure in this realization. In this example, 

the household recovery approach applied predicts the recovery process for 90 months, which can 

be designed differently for other uses. The household recovery time for the cases reaching a 

recovery failure was considered 360 weeks to increase the average recovery time of this household 

significantly to show there is a higher possibility for this household to experience the recovery 

failure.  

In some cases, even though a household was predicted to have permanent housing in the end, 

the process is relatively challenging, resulting in the household recovery time being relatively more 

prolonged than in others. The mean household recovery time of two example households in Figure 

7-8(a) and the dislocated household in Figure 7-8(b) within MCS realizations is 35, 26, and 214 

weeks. Figure 7-9(a) shows the histogram of all household recovery time within a typical MCS 

realization, which can fit an exponential distribution if exempt from the household recovery failure 

cases. Figure 7-9(b) presents the exponential distributions of all household recovery time grouped 

by household income levels in a particular MCS realization. As expected, households in higher 
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income groups reach permanent housing faster than those in lower income groups. The distribution 

curve for the HH5 group is too sharp, which is not shown in the Figure 7-9(b). Figure 7-10 shows 

the household recovery time over the community for a typical MCS realization. Most households 

can assess permanent housing within 70 weeks if generally compared with the mean building 

recovery time recalling Figure 7-6. More than 10% of households reached recovery failure in this 

illustrative realization. In addition, it can be observed that the building damage and the tornado 

regions in different EF scales did not significantly impact the household recovery time.  

 
(a) 
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(b) 

Figure 7-8. Household recovery sequences for two illustrative example households allocated to a 
typical residential building: (a) in the EF1 tornado region; and (b) in the EF2 tornado region 

 

(a) 
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(b) 

Figure 7-9. Household recovery time over the community within a typical MCS realization: (a) 
histogram and exponential distribution; (b) grouped by household income 

 

Figure 7-10. Household recovery time over the community domain of a typical MCS realization 
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Household income information is the key input to group the social vulnerability zones in this 

example, as mentioned earlier. Due to a small number of data missing related to race and ethnicity 

of minorities, only around 80% of household income information has been allocated to households. 

In order to maintain their privacy and keep the income information estimation more accurate, this 

example did not predict the missing income information for the remaining households. However, 

it should be noted that the authors can de-aggregate the housing units at the census block level and 

predict the missing income information based on a Gaussian model (Wang and van de Lindt 2021). 

Therefore, only dislocated households with the predicted income information have been included 

in the estimated household recovery process. This example assumes households who decide not to 

dislocate following the tornado can access their permanent housing directly, no matter whether 

their residential buildings are damaged. 

Around 85% of the households were predicted to experience household recovery, summarized 

in the following tables to integrate the residential building recovery with the household recovery 

and explore the physical-social interdependent recovery. Figure 7-11 shows the resulting 

exponential distribution representative of household recovery and the lognormal distribution 

representative of residential building recovery within a typical MCS realization. In order to track 

the building and household recovery performance throughout the community, the average 

percentage of residential buildings fully recovered and the average percentage of dislocated 

households moving to permanent housing over time can be determined, where the approach is 

consistent with that explained in Chapter 5.  

Table 7-5 presents the average percentage of fully recovered residential buildings predicted and 

the average percentage of dislocated households moving to permanent housing over time from the 

perspective of the community recovery process. The average percentage of residential buildings 
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fully recovered matches the analytical results shown in Figure 5-12 in Chapter 5, which have been 

validated. Around 80% of households moving into permanent housing after one month following 

the tornado are because they are not predicted to dislocate. Note that the residential building 

recovery prediction assumed that no households would out-migrate but rather stay in the 

community to complete the repairs following a hazard event, which means the actual average 

percentages of residential buildings fully recovered would be fewer than the percentages shown in 

Table 7-5. Overall, during the two years after the tornado damage, the housing recovery is faster 

than the residential building recovery (recall Figure 7-11) and should be further faster if 

considering the assumption above. After two years, the average percentage of dislocated 

households moving to permanent housing cannot reach more than 80% because many households 

experience a recovery failure or are still looking for permanent housing, but the process is 

struggling. 

 
Figure 7-11. Household recovery and residential recovery time over the community for a typical 

MCS realization 
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Table 7-5. Physical-social interdependent recovery results emphasizing the community recovery 
process 

Time 
(months) 

Average percentage of 
residential buildings 

fully recovered 

Average percentage of 
dislocated households 

moving into permanent 
housing 

Average percentage of all 
households moving into 

permanent housing 

1 0 (0%) 418 (9.3%) 2,020 (33.2%) 
3 41 (0.1%) 1,337 (29.8%) 2,939 (48.3%) 
6 245 (4.6%) 2,168 (48.4%) 3,770 (62.0%) 
12 744 (14.0%) 2,808 (62.5%) 4,410 (72.5%) 
15 1,527 (28.7%) 2,973 (66.3%) 4,575 (75.2%) 
18 2,642 (49.6%) 3,087 (68.9%) 4,689 (77.1%) 
21 3,661 (68.7%) 3,180 (71.0%) 4,782 (78.6%) 
24 4,387 (82.4%) 3,256 (72.6%) 4,858 (79.8%) 
36 5,251 (98.6%) 3,467 (77.4%) 5,069 (83.3%) 

In total 5,327 (100%) 4,482 (100%) 6,084 (100%) 
 

Table 7-6 focuses on the recovery process of each household over time using the mean recovery 

time for each building within MCS realizations. Recall that four cases were proposed to explore 

the physical-social interdependent recovery relationship in the simplified flowchart shown in 

Figure 7-1; Figure 7-12 shows the event tree of household options during recovery for different 

cases. If following all the assumptions involved in the integrated predictions, households are 

assumed to want/work to return their original residential buildings fully recovered for Case 1. Case 

2 refers to households achieving permanent housing, but their residential buildings are still in the 

repair process, where households have multiple options. For example, the household may dislocate 

and then return but plan to rebuild/buy another residential building in other areas in the same town. 

Case 3 occurs relatively low frequency to have their original residential buildings fully recovered 

but still not access to their permanent housing. It may be because the surrounding business district 

and K-12 schools need more time to recover, and households feel it is not a perfect time to return. 

It is assumed that lifeline systems such as electric power, water, and transportation are usually 

recovered promptly and become operational following the tornado. Households and their 



 

209 
 

residential buildings are still in the recovery process for Case 4, which will typically take more 

time to reach full recovery. 

 
Figure 7-12. The event tree of household options during recovery for different cases 

 

Table 7-6. Physical-social interdependent recovery results emphasizing the recovery process of 
each household 

Time 
(months) 

Case 1 Case 2 Case 3 Case 4 

Build
ing 

Permanent 
housing 

Build
ing 

Permanent 
housing 

Build
ing 

Permanent 
housing 

Buil
ding 

Permanent 
housing 

X X  X X    

1 0 (0%) 1,633 (26.8%) 0 (0%) 4,451 (73.2%) 
3 0 (0%) 2,430 (39.9%) 0 (0%) 3,654 (60.1%) 
6 7 (0.1%) 3,379 (55.5%) 1 (0%)  2,697 (44.3%) 
12 59 (1.0%) 4,033 (66.3%) 9 (0.1%) 1,983 (32.6%) 
15 385 (6.3%) 3,883 (63.8%) 68 (1.1%) 1,748 (28.7%) 
18 887 (14.6%) 3,516 (57.8%) 217 (3.6%) 1,464 (24.1%) 
     

21 3,543 (58.2%) 979 (16.1%) 909 (14.9%) 653 (10.7%) 
24 4,622 (76.0%) 3 (0%) 1,453 (23.9%) 6 (0.1%) 
36 4,925 (81.0%) 0 (0%) 1,159 (19.0%) 0 (0%) 
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7.4 Summary and Conclusions 

Hazard events are occurring at higher intensities and frequency due to climate change and other 

environmental variables stimulate researchers and analysts to expedite the progress to achieve the 

multi-disciplinary community resilience assessments for decision-making support. With the 

development and improvement of multi-disciplinary community resilience modeling, the ability 

to model interdependent recovery across physical infrastructure and social systems is novel and 

urgently needed. The proposed methodology in this chapter chains the building damage 

methodology, household allocation prediction, population dislocation prediction, residential 

building recovery prediction, and household recovery prediction developed in previous studies to 

explore the physical-social interdependent recovery process, especially for the recovery process of 

dislocated households and the interdependence with their damaged residential buildings. The 

illustrative example in this chapter uses the 2011 Joplin tornado as the hazard model, but the 

proposed methodology can be expanded and widely applied to any communities with different 

hazard events. The following conclusions can be drawn based on the work presented in this 

chapter: 

• For the illustrative example herein, household dislocation occurs more likely due to 

damage because households do not have accessible and functional residential buildings. 

The Joplin population is relatively evenly demographically distributed, and socially 

vulnerable populations such as renters, Hispanics, and low household income groups are 

predicted to be slightly more likely to dislocate, but the impacts of household 

characteristics on household dislocation are slight. This situation may not apply to other 

communities with different population sizes and household characteristics under different 

natural hazards. 
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• Overall, household recovery for households re-accessing their permanent housing is much 

faster than residential building recovery for repair/rebuild. However, the average 

percentage of dislocated households moving to permanent housing does not reach more 

than 80% over a long-time horizon because many households experience a household 

recovery failure. This chapter also provides reasonable explanations for different cases 

households experience during the recovery process. 

• The allocated household income information, representing typical sociodemographic 

characteristics in real-world communities, is used to group the households in different 

social vulnerability levels in this chapter. Households with higher incomes reach 

permanent housing much faster than those with lower incomes. However, households in 

higher household income groups slightly shorten the residential building recovery process, 

but the effect is insignificant even when evaluating households located in the same tornado 

intensity (EF) region. 

It is important to note that all households who received temporary housing assistance provided 

by FEMA were validated to have moved into permanent housing after more than two years 

following the tornado, but the number of households in this case only accounts for 10% of all 

dislocated households. The remaining 90% of dislocated households were accommodated by the 

private sectors and cannot be as easily tracked. Some of them, especially socially vulnerable 

populations, may experience household recovery failure, as predicted in the illustrative example. 

The number/percentage of household recovery failures estimated from the household recovery 

prediction in this chapter cannot be fully validated using real-world data at this stage. In addition, 

future studies may improve the residential building recovery prediction by incorporating 

exceptional cases such as household outmigration, recovery plan terminations, and rebuilding 
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decisions. Addressing the above limitations is not within the scope of this chapter. In summary, 

quantifying the interdependent community recovery across physical infrastructure and social 

systems can help the community develop resilience planning, guide community recovery, and 

maintain population stability following hazard events.  
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CHAPTER 8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS  

 
 
 

8.1 Summary, Conclusions, and Contributions 

This dissertation proposes a series of multi-disciplinary community resilience assessment models 

across physical infrastructure systems and socio-economic systems across temporal and spatial 

scales. This dissertation intends to provide a methodology which can provide key technical 

information to community leaders and stakeholders of the community-wide impacts of natural 

hazards from a multi-disciplinary and multi-dimensional perspective to help further develop short-

term and long-term policies and strategies to improve community resilience.  

The most significant anticipated contribution of this dissertation to the research community is 

developing and demonstrating methodologies to enable resilience-informed decision-making and 

policy selection by quantifying the effects of hazard events on building performance and socio-

economic resilience metrics over time, i.e. recovery modeling for buildings. The core community 

resilience metrics defined within different community stability areas, namely population stability, 

economic stability, physical services stability, and social services stability, are impacted by 

different designs (either retrofits or design codes) and policies that can further inform design 

guidelines of building codes and standards and inform decision-making and community resilience 

planning. The de-aggregation of community resilience goals to individual building performance 

targets can help accelerate the development of resilience-based building codes and standards that 

satisfy community-wide resilience goals for the built environment. Summarize below are  the more 

specified contributions and findings from chapters following the dissertation outline presented in 

Chapter 1. 
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In Chapter 2, a fully quantitative interacting methodology was developed to examine the effect 

of a tornado damaging physical infrastructure and the effects on a real community's population 

and the local economy. The effect of retrofit strategies for tornado loading was examined 

quantitively in terms of their effects on social science and economic community-level metrics. The 

more robust retrofit strategy most significantly improved the performance of residential buildings 

and then reduced the economic losses and population dislocation. Less than 50% of buildings and 

households were able to receive electric power following the simulated 2011 Joplin tornado, which 

aligns with real-world data. 

In Chapter 3, structural performance goals selected for buildings (or any physical system) was 

developed based on the ability to achieve social and economic goals at the community scale. 

Performance targets for individual residential buildings were de-aggregated to determine the 

percentage of buildings that should be retrofitted. The percent loss of functionality to buildings 

and the percent of economic loss and household dislocation can be reduced at different levels when 

different percentages of residential buildings are randomly retrofitted throughout the community. 

The resilience goals are flexible and can be quantitively adjusted for different levels based on 

community input and a community's unique needs.  

In Chapter 4, new fragility functions for school building archetypes were developed using the 

latest ASCE structural loading standard, including tornado loads that can be used in community 

resilience studies. The direct dependency of a core resilience metric were illustrated between social 

service stability (i.e., the number of children remaining in schools) to be used in community 

resilience planning and the proposed improving school building designs/building 

codes. Improving the building performance can help significantly mitigate the damage to school 

buildings following moderate tornado events and provide communities the evidence to strengthen 
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school designs for new/existing buildings. More importantly, building performance improvement 

further reduces dislocation and maintains educational continuity, which is essential in providing 

social service stability. 

In Chapter 5, quantitative probabilistic analysis was performed to determine the residential 

building recovery over the community domain when impacted by policy changes implemented by 

either federal, state, or local governments. The recovery modeling as a time-stepping algorithm 

(e.g., monthly, quarterly, yearly) with full propagation of uncertainties was provided, thereby 

allowing investigation of policy changes at different points during the recovery process. Delay 

time dominated throughout the recovery modeling process. All the proposed policy cases affected 

the delay process and shortened the recovery process to different extents. The case involved all the 

proposed policies and mitigation strategies, enabling the recovery process to occur 2.4 times faster 

than the base case. 

In Chapter 6, a commercial building recovery model was developed with the ability to fully 

propagate uncertainty for business recovery modeling. Post-disaster funding resources were 

integrated into quantitative probabilistic analysis for community resilience assessment to track 

commercial building recovery. The recovery process for different commercial building types 

depends on building damage affected by hazard events, financial resources available to business 

owners, and other impeding factors. Overall, very few commercial buildings are fully recovered 

within a year of the hazard event, and, in general, more than 50% are fully restored after 

approximately two years. 

In Chapter 7, a methodology was developed to examine the interdependent community recovery 

process across physical infrastructure and social systems. The integrated recovery process of 

residential buildings and the household in that building for the community was examined. 
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Household recovery for households re-accessing their permanent housing is much faster than 

residential building recovery for repair. Households with higher incomes reach permanent housing 

relatively faster than those with lower incomes. However, many households experience a 

household recovery failure.  

8.2 Recommendations 

Each chapter, from Chapter 2 to Chapter 7, proposes some limitations at the end of each chapter 

that can be addressed to respond to the specific research questions and improve the related 

community resilience models. These limitations are not reiterated herein for brevity, and this 

chapter mainly emphasizes the recommendations of proposed major new directions based on the 

completed work and the entire framework shown in Figure 1-1. Recall Figure 1-1 presented at the 

beginning of the dissertation, the conceptual description of the framework, and many more cross-

cutting and cutting-edge studies can be performed to perfect and complete the proposed framework 

to improve multi-disciplinary and multi-dimensional community resilience and support decision-

support. Below are some of the recommendations for future studies. Each task below corresponds 

to the specific steps shown in the framework in Figure 1-1. 

Task 1: Cost-optimal retrofit analysis (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 3d, 3e, 8a, 8b, 8c): 

• Calculate retrofit costs of three residential building retrofit strategies and develop multiple 

objective functions to reduce indirect socio-economic losses and improve building 

performance. 

• Allocate optimal residential building retrofits (e.g., retrofit level, retrofit spatial 

distribution) based on the economic, social, and physical infrastructure constraints and 

multiple community objectives. Multiple solution details under varying assumptions and 
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resources support in-depth analysis. For example, optimal allocation of limited resources 

will vary with the change of the defined multiple objectives.  

Task 2: Physical-economic interdependent recovery (1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 3e, 4a) 

• Chain the building recovery model with the dynamic CGE model (Attary et al. 2020), and 

record economic community stability metrics with new capital, labor and government 

investments incorporated over time. 

• Explore the business recovery model based on the presented commercial building recovery 

model and the considerations of the recovery of labor, customer, and the market.  

Task 3: Illustrate decision-support using the resilience-informed approach developed  

• Integrate the resilience-informed methodologies into the IN-CORE computational 

environment and demonstrate how decision support can be provided to our community 

engagement partners, stakeholders, and policymakers via the IN-CORE visualization 

dashboard.  
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