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ABSTRACT

STABILITY IN THE WEIGHTED ENSEMBLE METHOD

In molecular dynamics, a quantity of interest is the mean first passage time, or average transi-

tion time, for a molecule to transition from a region A to a different region B. Often, significant

potential barriers exist between A and B making the transition from A to B a rare event, which

is an event that is highly improbable to occur. Correspondingly, the mean first passage time for a

molecule to transition from A to B will be immense. So, using direct Markov chain Monte Carlo

techniques to effectively estimate the mean first passage time is computationally infeasible due to

the protracted simulations required. Instead, the Markov chain modeling the underlying molecular

dynamics is simulated to steady-state and the steady-state flux from A into B is estimated. Then

through the Hill relation, the mean first passage time is obtained as the reciprocal of the estimated

steady-state flux. Estimating the steady-state flux into B is still a rare event but the difficulty has

shifted from lengthy simulation times to a substantial variance on the desired estimate. Therefore,

an importance sampling or importance splitting technique that emphasizes reaching B and reduces

estimator variance must be used.

Weighted ensemble is one importance sampling Markov chain Monte Carlo method often used

to estimate mean first passage times in molecular dynamics. Broadly, weighted ensemble simulates

a collection of Markov chain trajectories that are assigned a weight. Periodically, certain trajecto-

ries are copied while others are removed, to encourage a transition from A to B, and the trajectory

weights are adjusted accordingly. By time-averaging the weighted average of these Markov chain

trajectories, weighted ensemble estimates averages with respect to the Markov chain steady-state

distribution. We focus on the use of weighted ensemble for estimating the mean first passage time

from A to B, through estimating the steady-state flux from A into B, of a Markov chain where

upon reaching B is restarted in A according to an initial, or recycle, distribution. First, we give
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a mathematical detailing of the weighted ensemble algorithm and provide an unbiased property,

ergodic property, and variance formula. The unbiased property gives that the weighted ensem-

ble average of many Markov chain trajectories produces an unbiased estimate for the underlying

Markov chain law. Next, the ergodic property states that the weighted ensemble estimator con-

verges almost surely to the desired steady-state average. Lastly, the variance formula provides

exact variance of the weighted ensemble estimator.

Next, we analyze the impact of the initial or recycle distribution, in A, on bias and variance

of the weighted ensemble estimate and compare against adaptive multilevel splitting. Adaptive

multilevel splitting is an importance splitting Markov chain Monte Carlo method also used in

molecular dynamics for estimating mean first passage times. It has been studied that adaptive

multilevel splitting requires a precise importance sampling of the initial, or recycle, distribution

to maintain reasonable variance bounds on the adaptive multilevel splitting estimator. We show

that the weighted ensemble estimator is less sensitive to the initial distribution since importance

sampling the initial distribution frequently does not reduce the variance of the weighted ensemble

estimator significantly. For a generic three state Markov chain and one dimensional overdamped

Langevin dynamics, we develop specific conditions which must be satisfied for initial distribution

importance sampling to provide a significant variance reduction on the weighted ensemble estima-

tor. Finally, for bias, we develop conditions on A, such that the mean first passage time from A to

B is stable with respect to changes in the initial distribution. That is, under a perturbation of the

initial distribution the resulting change in the mean first passage time is insignificant. The condi-

tions on A are verified with one dimensional overdamped Langevin dynamics and an example is

provided. Furthermore, when the mean first passage time is unstable, we develop bounds, for one

dimensional overdamped Langevin dynamics, on the change in the mean first passage time and

show the tightness of the bounds with numerical examples.
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Chapter 1

Introduction

Many real world problems of physics, chemistry, biology, finance, and engineering require

techniques for sampling from a high dimensional distribution, optimization, or numerical integra-

tion. These three techniques are examples where Monte Carlo methods have valuable use [1].

A Monte Carlo method, in general, involves drawing random samples from some domain and

performing a deterministic calculation on the random samples to achieve a desired result. For

complex and high dimensional optimization problems, such as the traveling salesman problem

for optimal delivery route design, Monte Carlo methods artificially inject randomness to more ef-

ficiently search the objective domain [2]. High dimensional integrals can be estimated through

Monte Carlo methods by simulating a random variable or process whose expected value is the

integral of interest [3, 4]. Finally, in Bayesian statistics problems, Markov Chain Monte Carlo

methods, in particular the Metropolis-Hastings algorithm, are often used to sample from a poste-

rior distribution that may have unknown normalization [5, 6].

Here, we focus on the use of Markov Chain Monte Carlo for numerical integration in bio-

chemical and molecular dynamics systems. Markov chain Monte Carlo samples trajectories of

a Markov chain, which has an underlying steady-state distribution of interest. Once the Markov

chain has converged to steady-state, drawing samples of the Markov chain is equivalent to draw-

ing samples from the steady-state distribution. Hence, when samples or averages with respect

to a certain probability distribution are desired, Markov chain Monte Carlo can be applied by

constructing a Markov chain with steady-state distribution equal to the probability distribution of

interest. For instance, say we desire samples of a high dimensional probability distribution p(x)

but only know f(x) ∝ p(x). Then the Metropolis-Hastings algorithm, a Markov Chain Monte

Carlo method, constructs a Markov chain with steady-state distribution p(x) by using the ratio

p(x)/p(y) = f(x)/f(y) for determining the transition probability between points x and y [5]. In

molecular dynamics, we desire an estimate of
∫
fdµ, where µ is the steady-state distribution of
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a Markov chain and f is a bounded function, as certain Markov chains, for example Langevin

dynamics, can closely model molecular dynamics [7, 8]. By averaging f applied to samples of a

Markov chain, which has converged to steady-state, the integral
∫
fdµ can be numerically approx-

imated.

Consider a molecule moving in state space S from A ⊂ S to B ⊂ S where A and B are

disjoint. We will model the molecular dynamics with a Markov chain (Xt)t≥0, on state space S,

which has an initial distribution, ρ, such that supp(ρ) = A, and upon reaching B the Markov chain

is immediately recycled in A according to ρ. We refer to ρ as both the initial distribution and recycle

distribution. Important quantities of interest include: the mean first passage time for a molecule

to transition from A to B and the probability that a molecule transitions from A to B [9, 10]. We

focus on estimating the mean first passage time from A to B given by E
ρ(τB) = E(τB |X0 ∼ ρ)

where τB = inf{t ≥: Xt ∈ B} is the first passage time of (Xt)t≥0 in state B. A naive Markov

chain Monte Carlo approach to estimating the mean first passage time involves simulating (Xt)t≥0

from A to B multiple times and averaging the time to reach B from each trial.

Often, in molecular dynamics, the transition from A to B is a rare event due to the presence of

significant potential energy barriers between A and B [10,11]. A rare event is a highly improbable

event, for example a probability on the order of 10−8, to occur. So, the mean first passage time of

interest is substantial and applying naive Markov chain Monte Carlo is computationally infeasible

due to the simulation time required. Often a Markov chain will converge to steady-state in a faster

time than is necessary for multiple passages from A to B, which is required to estimate the mean

first passage time directly [12]. Typically then, the mean first passage time is not estimated directly

but instead estimated through the Hill relation which states that the steady-state flux from A into

B is equal to 1/Eρ(τB) [13]. That is, a Markov chain can be simulated to steady-state where an

estimate of the steady-state flux from A into B is determined. Then the mean first passage time is

obtained as the reciprocal of the estimated steady-state flux.

Using the Hill relation assists in reducing required computational times but introduces a large

variance problem in estimating the steady-state flux. For example, consider estimating p = P(X ∈
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B) for random variable X . A naive Monte Carlo technique draws samples X1, X2, . . . , XN , which

are i.i.d to X , and estimates p by averaging the number in B given by p̂ = 1
N

∑N
i=1 ✶B(Xi), where

✶B(x) = 1 if x ∈ B and ✶B(x) = 0 otherwise. Since ✶B(X1),✶B(X2), . . . ,✶B(XN) are Bernoulli

random variables the estimate is unbiased E(p̂) = p with variance Var(p̂) = p(1− p)/N. Note, the

relative standard deviation, or coefficient of variation, is
√

V ar(p̂)/E(p̂) =
√

(1− p)/Np which

for small p scales as O((Np)−1/2). Implying that the variance of the estimator will be far larger

than actual estimate when sampling in B is a rare event. In order to keep the variance within

reasonable bounds the number of samples, N , will need to scale as 1/p, which is computationally

infeasible for small p. Intuitively, we expect to require roughly 1/p samples of X to sample

in B once and have a nonzero estimate for p̂. Since the transition from A to B is a rare event

then the steady-state flux from A into B will be on the same order as estimating a rare event

probability. Thus, applying naive Markov chain Monte Carlo to estimate the steady-state flux

requires a computationally infeasible number of independent Markov chain trajectories to keep

variance within reasonable bounds and obtain a meaningful, nonzero estimate. Still, using the Hill

relation is beneficial as variation reduction techniques exist, such as importance sampling, which

make estimating the steady-state flux feasible.

Importance sampling is a variance reduction technique in estimating rare events by allowing

for an increased sampling of rare regions while leaving underlying probabilities unchanged [4,14].

Consider sampling a random variable X , with distribution f , to estimate E
f (h(X)) for a measur-

able function h. For example, estimating P(X ∈ B) = E(✶B(X)) where where the probability to

sample from B,
∫
B
f(x)dx, may be very small. Instead of directly sampling f , importance sam-

pling draw samples of a different random variable Y , with distribution g having the same support

as f , and each sample is assigned a weight w(Y ) = f(Y )/g(Y ) where the function w satisfies

w(y) = 0 when f(y) = 0. Then

E
f (h(X)) =

∫
f(x)h(x)dx =

∫
g(y)w(y)h(y)dy = E

g (w(Y )h(Y )) .
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So, importance sampling estimates Ef (h(X)) by estimating E
g(w(Y )h(Y )), which can be benefi-

cial when w(Y )h(Y ) has less variance than h(X). By taking g(x) ∝ f(x)|h(x)|, which requires

supp(h) = supp(f), then

Varf (h(X))− Varg(w(Y )h(Y )) = E
f (h2(X))− E

g((w(Y )h(Y ))2) = Varf (|h(X)|) ≥ 0 (1.1)

so the variance of w(Y )h(Y ) is less than or equal to the variance of h(X). A particularly used

instance of importance sampling is when h is a non-negative function, then w(Y )h(Y ) is a constant

and hence has zero variance.

One method combining Markov chain Monte Carlo and importance sampling is the weighted

ensemble algorithm [12,15]. Weighted ensemble, detailed in Section 2.3, simulates generic Markov

chains through an interacting particle scheme that splits, merges, and updates weights of many

Markov chain trajectories. This scheme allows for certain regions, such as the rare region of in-

terest B, to be emphasized by splitting Markov chain trajectories near B into many unique copies,

known as importance splitting, while merging those further away. A weight is assigned to each tra-

jectory and a simple method of updating weights, by dividing the current weight by the expected

number of new copies, provides the desired importance sampling weight. In general, weighted

ensemble estimates
∫
fdµ which is the average of a measurable function f with respect to the

Markov chain steady-state distribution µ. For instance, by taking f = ✶B then
∫
fdµ gives the

steady-state flux from A into B. The weighted ensemble estimator is produced by time averaging

a weighted average of f evaluated at the simulated Markov chain trajectories.

Another common rare event variance reduction method, for Markov chain Monte Carlo in

molecular dynamics, is the adaptive multilevel splitting algorithm [11]. Adaptive multilevel split-

ting estimates the probability of reaching B before A, that is P(τB < τA), by using importance

splitting to estimate a sequence of conditional event probabilities. Each conditional event is no

longer a rare event and the product of these conditional event probabilities gives the quantity of

interest P(τB < τA). Once an estimate of the probability of reaching B before A is obtained it can

then be used to estimate the mean first passage time from A to B.
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Here, we explore the impact of the Markov chain initial and recycle distribution, ρ, on bias

and variance of the weighted ensemble steady-state average estimator and compare against adap-

tive multilevel splitting. First, we provide a detailed, mathematical description of the weighted

ensemble algorithm and further details on the adaptive multilevel splitting algorithm. Second, for

bias, we develop conditions on A such that the mean first passage time from A to B is stable with

respect to changes in the initial distribution. That is, under a perturbation of the initial distribution

the resulting change in the mean first passage time is insignificant. The conditions on A are verified

with one dimensional overdamped Langevin dynamics. Furthermore, when the mean first passage

time is unstable we develop bounds, for one dimensional overdamped Langevin dynamics, on the

change in the mean first passage time and show the tightness of the bounds with numerical exam-

ples. Next, an explanation for how adaptive multilevel splitting estimates the mean first passage

time from A to B along with a discussion on anticipated bias stability is given. Finally, for vari-

ance, it has been studied that adaptive multilevel splitting requires a precise importance sampling

of the initial, or recycle, distribution to maintain reasonable variance bounds on the adaptive mul-

tilevel splitting estimator [16]. We show that the weighted ensemble estimator is less sensitive to

the initial distribution since importance sampling the initial distribution frequently does not reduce

the variance of the weighted ensemble estimator significantly. For a generic three state Markov

chain and one dimensional overdamped Langevin dynamics, we develop conditions that must be

satisfied for initial distribution importance sampling to provide a significant variance reduction

on the weighted ensemble estimator. In cases where initial distribution importance sampling has

an insignificant impact on the variance, we say the weighted ensemble has variance stability and

importance sampling of the initial distribution is not required.
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Chapter 2

Weighted Ensemble

Weighted ensemble is an importance sampling Markov chain Monte Carlo method, which uses

an interacting particle scheme to simulate generic Markov chains [17]. The original design of

weighted ensemble was for solving problems in computational chemistry; in particular, weighted

ensemble was originally used in simulating protein folding and association times through Brownian

motion [12, 15]. One application of particular importance is the calculation of mean first passage

times for a molecule to transition from a source region A to a sink region B. Mean first passage

times have been used in a variety of biochemical studies including protein folding times, metastatic

cancer progression, and polymer translocation [18].

An example mean first passage time problem is shown in Figure 2.1 where we desire the mean

first passage time for a molecule to transition between two metastable potential wells, regions

where the molecule remains for a significant time, by surpassing a potential barrier. A naive

Figure 2.1: Example mean first passage time setup where we desire to know the average time for a molecule

to transition from the left region A over the potential barrier to the right region B.

Markov chain Monte Carlo approach to estimating the mean first passage time involves simulating
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a Markov chain (Xt)t≥0, which has dynamics similar to the molecule of interest, from A to B many

times and averaging the time to reach B from each trial. Often, the molecular transition of interest

involves surpassing a significant potential energy barrier, which is a rare event [10]. So, estimating

the mean first passage time by naive Markov chain Monte Carlo is infeasible in the simulation time

required. Instead, the steady-state flux from A into B is calculated, which by the Hill relation is the

reciprocal of the mean first passage time [13]. Estimating the steady-state flux poses challenges

in the amount of variance of the estimator. So, an importance sampling method, such as weighted

ensemble, is required to reduce variance and provide computationally feasible estimates of the

steady-state flux and thus mean first passage time. Another importance sampling method for mean

first passage time problems in molecular dynamics is adaptive multilevel splitting.

2.1 Weighted Ensemble Description

Here we provide a short, non-technical description of the weighted ensemble algorithm. Initial-

izing weighted ensemble involves generating a predetermined number of Markov chain trajectory

starting points in state space and assigning each a non-negative weight such that the total weight

is unity. Subsequently, each step in the weighted ensemble algorithm consists of two procedures:

a selection process and a mutation. First, the selection process broadly involves the merging, re-

moval, and weighting of many Markov chain trajectories to encourage an overall transition to the

desired state space region B. Second, mutation is the transition of each Markov chain trajectory

according to the underlying Markov kernel.

Now we provide further details on each selection process. We call each trajectory of the Markov

chain a particle and by genealogical analogy, we call the particles before selection parents and after

selection children. Each selection process is broken into the following four steps:

(i) Parents are separated into groups, which we call bins and the total weight of the parents in

each bin is calculated. Figure 2.2a shows an example where eight particles, all with equal

weight, are separated into three bins. Note that the bins are user chosen parameters that are

allowed to vary between different selections.
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(ii) Each bin is assigned a positive whole number of children, which we call the particle allo-

cation. The total number of children assigned across all bins must be equal to the number

of parents. Figure 2.2b shows an example particle allocation where the first bin has a single

child, the second bin has two children, and the third bin has five children. Note that the

particle allocation is a user chosen parameter which can vary for different selections.

(a) Step (i) in the weighted ensemble selection process.

Eight particles, with equal weights, are grouped into

three bins and the total bin weight is determined.

(b) Step (ii) in the weighted ensemble selection process.

One child is assigned to bin one, two are assigned to bin

two, and five children assigned to bin three.

(c) Step (iii) in the weighted ensemble selection process.

One sample is drawn from the three particles in bin one,

two samples are drawn from bin two, and five samples

are drawn from the particles in bin three.

(d) Step (iv) in the weighted ensemble selection pro-

cess where, in each bin, all particles are assigned a new

weight given by the original total bin weight over the

number of children assigned to the bin.

Figure 2.2: An example of the weighted ensemble selection process in 1d. The plot on each figure is the

potential in which the molecule traverses through. The points on each figure are the x positions of the

particles and the number near each point is the particle weight.

(iii) Within each bin, the parents are sampled, proportionally to their weights, a number of times

equal to the assigned number of children to the bin. Each child is, initially, an identical copy

8



of its parent. Figure 2.2c shows an example where in the first bin one sample is drawn, two

samples are drawn in the second bin, and five samples are drawn in the third bin.

(iv) After sampling, all children in a given bin are assigned a new, and equivalent, weight calcu-

lated by the total bin weight divided by the number of created children. Figure 2.2d shows

an example where the eight sampled children are reweighted.

Note that the selection process keeps the total number of particles constant and the total weight at

unity. By assigning more children to bins that are closer to the desired state space region B, the

weighted ensemble selection process effectively importance samples these regions.

An estimate of the steady-state flux from A into B is given by the time average, over a suf-

ficiently long time, of the weight of the particles entering B. The reciprocal of the time average

of weight entering B is the mean first passage time from A to B. Once a particle reaches B it is

recycled, or restarted, in A according to a source distribution, which we call the initial distribution

while maintaining the same weight.

2.2 Adaptive Multilevel Splitting Description

Next, we provide a description of the adaptive multilevel splitting algorithm to highlight key

differences between it and the weighted ensemble algorithm. As with weighted ensemble, adap-

tive multilevel splitting can be used to estimate mean first passage times in molecular dynamics.

Foundationally though, the adaptive multilevel splitting estimator is the probability to transition to

B before transitioning to A, given by P(τB < τA). Once P(τB < τA) is estimated through adaptive

multilevel splitting it can then be used to calculate the mean first passage time from A to B as

discussed further in Section 3.1.

To initialize adaptive multilevel splitting, a predetermined number, N , of Markov chain trajec-

tory starting points, X1
0 , X

2
0 , . . . , X

N
0 , are sampled from an initial distribution. Similar to weighted

ensemble, adaptive multilevel splitting consists of a selection process and a mutation. First, muta-

tion is the transition of each Markov chain trajectory, according to the underlying Markov kernel,

until A or B is reached. As the transition from A to B is a rare event, it is highly probable a
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mutation will end with all trajectories reaching A. An example of adaptive multilevel splitting

mutation is shown in Figure 2.3a where three 1d trajectories are initialized at 2
10

and simulated

until A = {0} or B = {1} is reached. Second, the selection process determines which trajectories

to keep and copy based on a user chosen reaction coordinate, Φ, and a minimum number of tra-

jectories to discard, K, which are the same across all selections. The reaction coordinate is a real

valued function defined on the Markov chain state space, which provides a metric of distance that

the input trajectory is from the desired state space region B. Note, the optimal reaction coordinate

is the committor function given by Φ(x) = P(τB < τA |X0 = x). Now the selection process can

be summarized in the following steps:

(i) Determine the maximum reaction coordinate value, Mi, of each trajectory, X i
t , across its

simulation time. That is, for set S, if we define τ iS = inf{t ≥ 0 : X i
t ∈ S} and τ i =

min{τ iA, τ iB} then Mi = max
0≤s≤τ i

Φ(X i
s). Next, the maximum reaction coordinate values are

sorted, in increasing order, forming the order statistics M(1),M(2), . . . ,M(N). An example

is given in Figure 2.3b with reaction coordinate Φ(x) = x where the plotted points are the

maximum reaction coordinate values.

(ii) Discard all D trajectories, X i
t , satisfying Mi ≤ M(K). Randomly sample, with replacement,

the N −D stored trajectories D times and copy the sampled trajectory until the first time it

enters {x : Φ(x) > M(K)}. An example is given in Figure 2.3c with D = K = 1 where the

second trajectory was sampled once.

We can note that the number of discarded trajectories D will be at least as large as K and may be

larger if multiple trajectories have a maximum reaction coordinate value equal to M(K). Following

a selection process, the next mutation simulates only the D samples starting from the time each

trajectory first surpassed M(K) as shown in Figure 2.3d.

Let M t
(K) and Dt be the Kth order statistic of the maximum reaction coordinate values and the

number of discarded trajectories on the tth selection process, respectively. Upon M t
(K) surpassing

a user specified parameter Mmax, one final mutation is performed and then the adaptive multilevel

10



(a) Adaptive multilevel splitting mutation of three tra-

jectories initialized at X1
0 = X2

0 = X3
0 = 2/10. Each

trajectory is simulated until A = {0} or B = {1} is

reached.

(b) Step (i) in the adaptive multilevel splitting selection

process. The maximum reaction coordinate values, the

three points on the plot, are identified and sorted to give

M(1),M(2), and M(3).

(c) Step (ii) in the selection process with K = 1.

The trajectory with maximum reaction coordinate value

equal to M(1) is discarded. The trajectory on the right

was sampled and the point shows where it first surpasses

M(1).

(d) The next mutation in the adaptive multilevel split-

ting algorithm. The sampled trajectory from step (ii) of

the selection process is evolved starting from the point

where it first surpassed M(1). Each trajectory is simu-

lated until A = {0} or B = {1} is reached.

Figure 2.3: An example of the adaptive multilevel splitting process in 1d using N = 3 trajectories, discard-

ing at least K = 1 trajectories in each selection, and using reaction coordinate Φ(x) = x. The two target

sets of state space are A = {0} and B = {1}. Each trajectory is initialized at 2/10. All trajectories are

moving in a potential V (x), which for clarity has not been plotted.

splitting algorithm returns an estimate of P(τB < τA). Assume M t
(K) first surpasses Mmax at step

t = T and denote X1
τ1 , X

2
τ2 , . . . , X

N
τN as the trajectories at the end of the final mutation. Then the

adaptive multilevel splitting estimator is given by

p̂ =
1

N

N∑

i=1

✶B(X
i
τ i)

(
T∏

t=1

N −Dt

N

)

11



which provides an estimate of P(τB < τA). To understand why p̂ estimates P(τB < τA), define

level Lt = {x : Φ(x) = M t
(K)}, which is the contour of Φ(x) at M t

(K). Then, iteratively applying

the definition of conditional probability

P(τB < τA) = P(τB < τA | τLT
< τA)P(τL1

< τA)
T∏

i=2

P(τLi
< τA | τLi−1

< τA).

Now, adaptive multilevel splitting implements the approximations

P(τL1
< τA) ≈

N −D1

N
, P(τLi

< τA | τLi−1
< τA) ≈

N −Di

N
,

and

P(τB < τA | τLT
< τA) ≈

1

N

N∑

i=1

✶B(X
i
τ i),

which are asymptotically equal as N → ∞. Thus, P(τB < τA) is approximated by the adaptive

multilevel splitting estimator p̂. Therefore, adaptive multilevel splitting estimates rare event prob-

abilities, by estimating a sequence conditional event probabilities where each conditional event is

no longer a rare event.

Lastly, we discuss a few key differences between adaptive multilevel splitting and weighted

ensemble. First, adaptive multilevel splitting has only five user chosen parameters: the initial dis-

tribution, the number of trajectories, the minimum number of trajectories to discard, the reaction

coordinate, and the final level Mmax. On the other hand, weighted ensemble has far more user cho-

sen parameters as each selection step requires both user chosen bins and particle allocation. More

user chosen parameters can be disadvantageous as poor choices of these parameters can lead to

poor performance of the algorithm. For instance, the reaction coordinate provides the main source

of variance in adaptive multilevel splitting estimator [19]. An advantage of the weighted ensemble

parameters is that the bins and particle allocations can easily be chosen for higher dimensional

Markov chains as they simply require partitioning the trajectories and assigning a positive num-

ber to each set in the partition. Whereas a satisfactory choice for the adaptive multilevel splitting

12



reaction coordinate is more challenging in higher dimensions. Although, asymptotically in the

large number of trajectories limit, adaptive multilevel splitting estimates the committor function,

the optimal reaction coordinate given by Φ(x) = P(τB < τA |X0 = x), which could be used to

adaptively update the reaction coordinate across multiple trials [10].

A second difference is that adaptive multilevel splitting has greater storage requirements than

weighted ensemble. In weighted ensemble, only the current weights and current trajectory posi-

tions need to be stored. On the other hand, adaptive multilevel splitting requires the storage of,

potentially large, paths for each trajectory which could be costly for a large number of trajecto-

ries or a high dimensional state space. Although, a benefit to storing the trajectory paths is that

adaptive multilevel splitting produces both an estimate of a rare event probability and a collection

of empirical trajectories reaching it, which can be used to estimate any observable given the rare

event [19].

Thirdly, the weighted ensemble estimator relies upon the convergence of the underlying Markov

chain to steady-state and the ergodicity of time averaging a weighted average of Markov chains.

Instead, the adaptive multilevel splitting estimator relies on the decomposition of a probability into

the product of conditional probabilities which are each individually estimated. Fourthly, weighted

ensemble is robust in handling intermediate barriers and metastable regions between A and B [20].

As metastable regions and intermediate barriers are often present in practical problems such ro-

bustness is desirable. Finally, as we highlight further in Chapter 3 weighted ensemble is at least as

stable in bias and variance, with respect to changes in the initial distribution, compared to adaptive

multilevel splitting. Adaptive multilevel splitting requires a precise importance sampling on the

initial distribution to maintain reasonable estimate variance [16], which is typically not required

in weighted ensemble. For bias, adaptive multilevel splitting and weighted ensemble can both

produce significantly different estimates under perturbations of the initial distribution.
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2.3 Weighted Ensemble Mathematical Foundations

We now provide a mathematical detailing of the weighted ensemble algorithm which is sum-

marized in Algorithm 1. Let (Xt)t≥0 be a Markov chain, on state space S, governed by Markov

kernel K with initial distribution ρ. Assume that K is uniformly, geometrically ergodic with re-

spect to its stationary, or steady-state, distribution µ. Using weighted ensemble we are interested

in estimating ∫
fdµ

the steady-state average of a bounded, real-valued function f on state space, which is called an

observable. When estimating the steady-state flux into B ⊂ S, to obtain a mean first passage time

estimate through the Hill relation, we take f = ✶B.

Let N be the total number of particles used in the algorithm and T − 1 denote the total number

of weighted ensemble steps, that is T−1 selection processes and T−1 mutations, in the algorithm.

The time t denotes the number of weighted ensemble steps which have occurred. We denote the N

parent particles, and the corresponding weight of each particle, at time t, by the sequence of tuples

(
ξ1t , w

1
t

)
,
(
ξ2t , w

2
t

)
, . . . ,

(
ξNt , wN

t

)
,

which are initialized by sampling ξ10 , ξ
2
0 , . . . , ξ

N
0 from state space, S, and assigned each a posi-

tive weight w1
0, w

2
0, . . . , w

N
0 such that w1

0 + w2
0 + · · ·wN

0 = 1. For example, we could sample

ξ10 , ξ
2
0 , . . . , ξ

N
0 i.i.d from the initial distribution, ρ, or steady-state distribution, µ, and take uniform

weights w1
0 = · · · = wN

0 = 1
N
. Now the weighted ensemble average of f at time t is given by

⟨f⟩t :=
N∑

i=1

wi
tf(ξ

i
t). (2.1)

Then, we define the weighted ensemble estimate, θT , by

θT :=
1

T

T−1∑

t=0

⟨f⟩t =
1

T

T−1∑

t=0

N∑

i=1

wi
tf(ξ

i
t). (2.2)
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That is θT is the time average of the weighted ensemble average of f and provides an estimate

of the steady-state average of f for large T . Note, for any initialization except sampling from

the steady-state distribution, θT is a biased estimate of
∫
fdµ, for finite T , as the Markov chain

must converge to steady-state. So, the steady-state distribution, µ, although typically not known in

practice is an optimal initialization.

Each step of the weighted ensemble algorithm evolves every particle through a selection pro-

cesses and a mutation. That is for each time, t ≥ 0, and every parent particle and weight, (ξit, w
i
t),

we have

{
(ξit, w

i
t)
}N
i=1

selection−−−−−−−→
{(

ξ̂it, ŵ
i
t

)}N

i=1

mutation−−−−−−−→
{
(ξit+1, w

i
t+1)

}N
i=1

where
(
ξ̂1t , ŵ

1
t

)
,
(
ξ̂2t , ŵ

2
t

)
, . . . ,

(
ξ̂Nt , ŵN

t

)

denote the children particles and their corresponding weights after the selection process.

First is the weighted ensemble selection process where each time t ≥ 0 requires user chosen

bins, Bt, and particle allocation, Nt. The bins, Bt, are a partition of the particles {ξ1t , ξ2t , . . . , ξNt }.

Now the particle allocation is a function Nt : Bt → N where Nt(u) gives the number of children

assigned to bin u ∈ Bt and satisfies
∑

u∈Bt
Nt(u) = N for all t ≥ 0. Note that the bins, Bt,

and particle allocation, Nt, may be informed by current system information such as the particle

positions and are unknown random variables for time s < t. For each bin u ∈ Bt we define the

total bin weight by

wt(u) =
N∑

i=1

wi
t✶u(ξ

i
t) where ✶u(x) =

{
1 x ∈ u
0 else.

Then we can define a bin conditional particle weight distribution by

p(ξit | u) =
wi

t

wt(u)
✶u(ξ

i
t)
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which gives the probability to draw ξit , when sampling from bin u, in a single random sample. After

the bins and particle allocation have been assigned, the selection process uses the bin conditional

particle weight distribution and, for each bin u, draws Nt(u) samples, with replacement, from the

parent particles in u to create the children particles. That is if we define N i
t to be the number of

children of the parent ξit then for each bin u ∈ Bt

{N i
t : ξit ∈ u} ∼ Multinomial

(
Nt(u),

{
p(ξit | u) : ξit ∈ u

})

where sampling is independent in distinct bins.

Define par
(
ξ̂it

)
to be the parent of ξ̂it where par

(
ξ̂it

)
= ξjt for some j ∈ {1, 2, . . . , N}. Then

each child, ξ̂it , is an exact copy of its parent, par
(
ξ̂it

)
, and ξ̂it ∈ u if and only if par

(
ξ̂it

)
∈ u. After

the children have been created, they are reweighted by assigning all children in bin u the same

weight

ŵj
t =

wt(u)

Nt(u)
if ξ̂jt ∈ u

thereby creating children ξ̂1t , ξ̂
2
t , . . . , ξ̂

N
t with weights ŵ1

t , ŵ
2
t , . . . , ŵ

N
t and completing the selec-

tion process for weighted ensemble. Note that the reweighted process leaves the total weight in

each bin wt(u) fixed so after selection ŵ1
t + ŵ2

t + · · ·+ ŵN
t = 1.

Second is the weighted ensemble mutation where each child, ξ̂jt , is evolved independently

according to the Markov kernel K creating a new parent ξjt+1. That is the distribution of ξjt+1 is

K
(
ξ̂jt , ·
)

for each j ∈ {1, 2, . . . , N}. Particle weights are unchanged during the mutation step

so wj
t+1 = ŵj

t for each j ∈ {1, 2, . . . , N}. Hence, after mutation, a new collection of parents

and weights
(
ξ1t+1, w

1
t+1

)
,
(
ξ2t+1, w

2
t+1

)
, . . . ,

(
ξNt+1, w

N
t+1

)
have been created for the next weighted

ensemble selection process.

Finally, once the maximum number of weighted ensemble steps, T −1, is reached the weighted

ensemble estimator, θT , provides an approximation for the desired steady-state quantity
∫
fdµ.

Note that the weighted ensemble estimator can be continually updated with each step, t, of the
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weighted ensemble algorithm and so there is no requirement to store particle trajectories or previ-

ous weights throughout the algorithm.

Algorithm 1 Weighted Ensemble Algorithm

Require: Number of particles N > 0. Number of iterations T − 1 ≥ 0. Markov kernel K.

Initialize: Choose initial particles ξ10 , . . . , ξ
N
0 and positive weights w1

0, . . . , w
N
0 which sum to 1.

while t ≤ T − 1 do

Group parents ξ1t , . . . , ξ
N
t in to bins Bt.

Assign each bin u ∈ Bt a number of children Nt(u) ≥ 1 such that
∑

u∈Bt
Nt(u) = N .

for bin u ∈ Bt do

Sample the parents Nt(u) times with replacement according to

P(sample ξit from bin u) = p(ξit | u) =
wi

t

wt(u)
✶u(ξ

i
t), where wt(u) =

N∑

i=1

wi
t✶u(ξ

i
t).

Assign all Nt(u) children the same weight ŵi
t = wt(u)/Nt(u) if ξ̂it ∈ u.

end for

Evolve all children ξ̂1t , . . . , ξ̂
N
t independently according to the Markov kernel K creating

new parents ξ1t+1, . . . , ξ
N
t+1 while keeping the weights fixed wj

t+1 = ŵj
t for j = 1, 2, . . . , N.

end while

Return: Steady-state estimate θT =
1

T

T−1∑

t=0

N∑

i=1

wi
tf(ξ

i
t)

Next, we discuss two formulations for mutation. First, when the Markov kernel K is an n× n

stochastic matrix on state space S = {1, 2, . . . , n} then the mutation of each child ξ̂jt is performed

by sampling

ξjt+1 ∼ Multinomial
(
1,
{
K
(
ξ̂jt , 1

)
, K
(
ξ̂jt , 2

)
, . . . , K

(
ξ̂jt , n

)})
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where K(i, j) is the ijth entry of matrix K. Second, when the Markov chain (Xt)t≥0 satisfies

a stochastic differential equation then we take the Markov kernel, K, to be a ∆t skeleton of the

underlying dynamics by evaluating the Markov process at resampling times ∆t [21]. An example

stochastic differential equation for (Xt)t≥0, on state space S = R
d, is

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

where Wt is standard Brownian motion and µ : Rd×R
+ → R

d and σ : Rd×R
+ → R

+ are problem

specific functions for R+ = {x ∈ R : x ≥ 0}. Now we can approximate the Markov process by

taking an Euler-Maryuama discretization, over time step δt, of the stochastic differential equation

giving

Xt+δt = Xt + µ(Xt, t)δt+ σ(Xt, t)
√
δtZt

where Zt is a standard normal random vector in R
d. Then the mutation for each child, ξ̂jt , consists

of a user chosen number k > 0 discretization update steps

ξjt+1 = m ◦m ◦ · · · ◦m︸ ︷︷ ︸
k times

(
ξ̂jt

)
= mk

(
ξ̂jt

)

where m(Xt) = Xt + µ(Xt, t)δt + σ(Xt, t)
√
δtZt. Such a discretization produces an approxima-

tion of both the underlying dynamics and the Markov kernel K with resampling time ∆t = kδt.

Note that another discretization scheme, such as Milstein or Runge-Kutta, could also be used for

approximating the mutation of each child particle.

2.3.1 Weighted Ensemble Properties

Here we give an unbiased property of weighted ensemble, ergodic property of weighted en-

semble, and an exact variance formula for the weighted ensemble estimate, θT . First, the unbiased

property gives that the weighted ensemble average of f , equation (2.1), produces, for each t ≥ 0,
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an unbiased estimate of the law of the underlying Markov chain. That is, if Markov chain (Xt)t≥0

with kernel K has the weighted ensemble initial distribution ν0(g) = E

(∑N
i=1 w

i
0g(ξ

i
0)
)

, for mea-

surable function g, then E(⟨f⟩s) = E(f(Xs)) for all s ≥ 0. Note that Ksg(ξ) gives the expectation

of g(Xt) when evolved s steps, by kernel K, from X0 = ξ, so E(f(Xt)) = E

(∑N
i=1 w

i
0K

tf(ξi0)
)

.

Thus, the following proposition gives the unbiased property of weighted ensemble.

Proposition 2.3.1. For all bounded, measurable functions f and each t ≥ 0

E(⟨f⟩t) = E

(
N∑

i=1

wi
0K

tf(ξi0)

)
.

Proof. Consider two filtrations

Ft = σ

({(
ξis, w

i
s

)}1≤i≤N

0≤s≤t
, {Bs, Ns}0≤s≤t ,

{(
ξ̂is, ŵ

i
s

)}1≤i≤N

0≤s≤t−1
,
{
N i

s

}1≤i≤N

0≤s≤t−1

)
(2.3)

F̂t = σ

({(
ξis, w

i
s

)}1≤i≤N

0≤s≤t
, {Bs, Ns}0≤s≤t ,

{(
ξ̂is, ŵ

i
s

)}1≤i≤N

0≤s≤t
,
{
N i

s

}1≤i≤N

0≤s≤t

)
(2.4)

which are the σ-algebras generated by the weighted ensemble algorithm before and after the tth

selection processes, respectively. Note that Fs ⊂ F̂s for all s ≥ 0. We now calculate the expected

weighted ensemble average of f over each selection and mutation step conditional on the infor-

mation up to each step. First, for mutation, note that for each t ≥ 0 and i ∈ {1, 2, . . . , N} we

have wi
t+1 = ŵi

t, which is F̂t measurable, and since ξit+1 is distributed according to K
(
ξ̂it, ·
)

then

E

(
f(ξit+1)

∣∣∣ F̂t

)
= Kf

(
ξ̂it

)
. Thus, the expected weighted ensemble average from mutation is

E

(
⟨f⟩t+1

∣∣∣F̂t

)
=

N∑

i=1

E

(
wi

t+1f(ξ
i
t+1)

∣∣∣F̂t

)
=

N∑

i=1

ŵi
tE

(
f(ξit+1)

∣∣∣F̂t

)
=

N∑

i=1

ŵi
tKf

(
ξ̂it

)
. (2.5)

Second, for selection, at each t ≥ 0 we consider each bin u ∈ Bt of particles. Since the children

ξ̂it ∈ u are samples, and exact copies, of the parents ξjt ∈ u where each parent ξjt ∈ u is sampled N j
t

times we can write
∑N

i=1 f
(
ξ̂it

)
✶u

(
ξ̂it

)
=
∑N

j=1 N
j
t f(ξ

j
t )✶u(ξ

j
t ). By definition of the reweighting

we have, in bin u, ŵi
t = wt(u)/Nt(u), which is Ft measurable. The number of children N j

t of
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parent ξjt is multinomial distributed so E(N j
t | Ft) = Nt(u)w

j
t/wt(u) for 1 ≤ j ≤ N . Thus, since

ξjt and Bt are Ft measurable, the expected weighted ensemble average from selection is

E

(
N∑

i=1

ŵi
tf
(
ξ̂it

) ∣∣∣∣∣ Ft

)
=
∑

u∈Bt

wt(u)

Nt(u)

N∑

j=1

f(ξjt )✶u(ξ
j
t )E

(
N j

t

∣∣ Ft

)
=

N∑

j=1

wj
tf(ξ

j
t ). (2.6)

Now, using the tower property, equation (2.5), and equation (2.6)

E (⟨f⟩t+1 | Ft) = E

[
E

(
⟨f⟩t+1 | F̂t

)∣∣∣ Ft

]
= E

(
N∑

i=1

ŵi
tKf

(
ξ̂it

)∣∣∣∣∣ Ft

)
=

N∑

i=1

wi
tKf(ξit). (2.7)

Hence, continuing to iterate the tower property by alternatively conditioning on F̂s then Fs, for s

decreasing from t − 1 to 0, we have E (⟨f⟩t+1 | F0) =
∑N

i=1 w
i
0K

t+1f(ξi0). Therefore, by the law

of total expectation

E (⟨f⟩t+1) = E

(
N∑

i=1

wi
0K

t+1f(ξi0)

)
. ⊠

Second, the ergodic property gives that the weighted ensemble estimate converges to the steady-

state estimate as given in the following proposition.

Proposition 2.3.2. As T → ∞ the estimate θT converges almost surely to
∫
fdµ.

A formal proof of Proposition 2.3.2 can be found in [22] and follows from the unbiased property,

the fact that the weighted ensemble variance, Proposition 2.3.3, scales as O(1/T ), and the Borel-

Cantelli lemma.

Finally, to give the variance formula of the weighted ensemble steady-state estimate, θT , we

define some necessary notation. First, a bin distribution

ηut (x) =
N∑

i=1

p(ξit | u)δ(x− ξtt)

20



where δ(x) is Dirac delta function. Second, an evolution function

ht,T (ξ) =
T−t−1∑

s=0

Ksf(ξ). (2.8)

Finally, variance with respect to probability measure η

Varη(g) = η(g2)− η(g)2 where η(g) =

∫
gdη

where g is a bounded, measurable function. Since K(ξ, ·) is the distribution of a particle evolved

from ξ then we can define

VarK(ξ,·)g = Kg2(ξ)− (Kg)2(ξ).

The next theorem gives the exact variance for the weighted ensemble steady-state estimator

(2.2).

Proposition 2.3.3. The weighted ensemble stead-state estimator variance, for T > 0, is given by

Var (θT ) =
1

T 2
V0 +

1

T 2

T−2∑

t=0

V S
t +

1

T 2

T−2∑

t=0

V M
t

where

V0 = Var

(
N∑

i=1

wi
0h0,T (ξ

i
0)

)

is the variance from the initialization, and

V S
t = E

[∑

u

wt(u)
2

Nt(u)
Varηut (Kht+1,T )

]
and V M

t = E

[∑

u

wt(u)
2

Nt(u)
ηut (VarK(ht+1,T ))

]

are the selection and mutation variances on time t, respectively.
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The proof of Proposition 2.3.3 is involved so we simply provide an outline here and leave the

intricate details to [22]. First, we define two Doob martingales

Mt = E (θT | Ft) and M̂t = E

(
θT | F̂t

)

using the filtrations in equations (2.3) and (2.4), respectively. Then the variance of the weighted

ensemble estimate can be decomposed as

Var (θT ) = Var(M0) +
T−2∑

t=0

E

[(
M̂t −Mt

)2]
+

T−2∑

t=0

E

[(
Mt+1 − M̂t

)2]
(2.9)

where the three terms on the right hand side correspond to the initialization variance, selection

variance, and mutation variance, respectively. This variance decomposition results from showing

the martingale differences are all uncorrelated and then writing MT−1 as a telescoping sum of the

martingale differences. Note, for m ∈ N, using equation (2.7) and iteratively applying the tower

property by conditioning on Fs, for s decreasing from t+m− 1 to t, we have

E (⟨f⟩t+m | Ft) = E (· · · (E (⟨f⟩t+m | Ft+m−1) | Ft+m−2) | · · · ) | Ft) =
N∑

i=1

wi
tK

mf(ξit). (2.10)

Since wi
s and ξis are Ft measurable for s ≤ t and i = 1, 2, . . . , N , then using equation (2.10) write

TMt =
t∑

s=0

N∑

i=1

wi
sf(ξ

t
s) +

T−t−1∑

s=1

N∑

i=1

wi
tK

sf(ξit) =
t∑

s=0

N∑

i=1

wi
sf(ξ

t
s) +

N∑

i=1

wi
tKht+1,T (ξ

i
t).

(2.11)

Similarly, using equation (2.5) and (2.6) with iterative application of the tower property and alter-

natively conditioning on F̂s then Fs we have

TM̂t =
t∑

s=0

N∑

i=1

wi
sf(ξ

t
s) +

N∑

i=1

ŵi
tKht+1,T

(
ξ̂it

)
. (2.12)
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Finally, by substituting equations (2.11) and (2.12) into (2.9) and simplifying gives the desired

variance formula.

2.3.2 Exact Calculations for 1d Overdamped Langevin Dynamics

We now consider a particular Markov chain (Xt)t≥0, on S ⊆ R, which is governed by over-

damped Langevin dynamics through the stochastic differential equation

dXt = −V ′(Xt)dt+
√

2β−1dWt (2.13)

where V : R → R is a smooth function and β ∈ R is a positive parameter. Overdamped Langevin

dynamics is often used as a process for simulating certain molecular dynamics. The function

V represents a potential that the molecule is moving through and β is an inverse temperature

parameter of the molecule. We are interested in the Markov chain (Xt)t≥0 transitioning from

region A to disjoint region B where, upon reaching B, we restart Xt in A according to an initial or

recycle distribution ρ.

Recall that we assume the Markov kernel K is a ∆t skeleton of the continuous time over-

damped Langevin dynamics by evaluating the Markov process at resampling times ∆t [21]. Con-

sequently, when Xt reaches B we enforce that it remains there until the end of the current ∆t

resampling time interval at which point it is recycled according to ρ. By recycling only at the end

of a ∆t resampling time, we ensure that no trajectories reaching B are missed as in practice the

weighted ensemble estimator (2.2) is updated at the end of each ∆t interval. Now we assume, for

analysis, the resampling time limit of ∆t → 0. That is, we observe the Markov chain, Xt, at all

time t ≥ 0. Although, in practice, a positive resampling time is required and we must use some

time discretization to approximate the stochastic differential equation and thus approximate the

Markov kernel K.

In the resampling time limit, ∆t → 0, we are interested in the infinitesimal generator, L, of

the Markov process instead of a ∆t skeleton kernel K. The infinitesimal generator is defined, for
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general Markov chain (Yt)t≥0, by

Lg(x) = lim
∆t→0+

E(g(Y∆t)|Y0 = x)− g(x)

∆t
(2.14)

where g is a function such that the limit exists and is finite [23] . For 1d overdamped Langevin

dynamics the infinitesimal generator is

Lg(x) = −V ′(x)g′(x) + β−1g′′(x) (2.15)

for twice continuously differentiable functions g : R → R [23]. Another useful operator is the

Fokker-Planck operator, L∗, which is the adjoint of the infinitesimal generator [24]. For 1d over-

damped Langevin dynamics, the Fokker-Planck operator is

L∗g = (V ′g)′ + β−1g′′ (2.16)

for twice continuously differentiable functions g : R → R [24].

Now recall τB = inf{t ≥ 0 : Xt ∈ B} is the first time Xt is in the target set B. Define

u(x) := E(τB |X0 = x) = E
x(τB) to be the mean first passage time for Xt to reach B starting at

x ∈ S. We are interested in the mean first passage time when Xt starts in A according to the initial

distribution ρ given by

E(τB |X0 ∼ ρ) = E
ρ(τB) =

∫

A

u(x)ρ(x)dx.

We now derive the mean first passage time u(x) when Xt has state space S = (a, b) where a is a

reflecting boundary and define B = {b}. The mean first passage time u(x) satisfies [23]

{
Lu = −1 on (a, b)

u(b) = 0 u′(a) = 0.
(2.17)
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Using equation (2.15) and integrating factor e−βV (x) then equation (2.17) gives

u′(x) = −βeβV (x)

∫ x

a

e−βV (y)dy + CeβV (x).

The boundary condition u′(a) = 0 implies C = 0. Hence, integrating u′(x) and applying the

second boundary condition u(b) = 0 gives

u(x) = β

∫ b

x

(
eβV (z)

∫ z

a

e−βV (y)dy

)
dz. (2.18)

Next, we derive the steady-state distribution µ(x) for (Xt)t≥0 on state space S = (a, b) where

a is a reflecting boundary, B = {b}, and when Xt reaches B it is immediately recycled according

to ρ. The steady-state distribution can be readily calculated using the Fokker-Planck operator, L∗,

as it satisfies [25]

{
L∗µ = −ρ/Eρ(τB) on (a, b)

µ(b) = 0
∫ b

a
µ(x)dx = 1.

(2.19)

Applying equation (2.16) to equation (2.19) and integrating gives

V ′µ(x) + β−1µ′(x) = − 1

Eρ(τB)

∫ x

a

ρ(y)dy + C.

The boundary condition µ(b) = 0 and Hill relation 1/Eρ(τB) = −β−1µ′(b) imply that C = 0.

Then using integrating factor eβV (x), the condition µ(b) = 0, and
∫ b

a
µ(x) = 1 gives

µ(x) =

∫ b

x
eβ(V (z)−V (x))

(∫ z

a
ρ(y)dy

)
dz

∫ b

a

(∫ b

x
eβ(V (z)−V (x))

(∫ z

a
ρ(y)dy

)
dz
)
dx

. (2.20)

Finally, we derive explicit and computable formulas for a flux discrepancy function h and vari-

ance function v2 which are useful in understanding the weighted ensemble variance of continuous

time Markov chains. First, for positive resampling time ∆t and K a ∆t skeleton of the underlying
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Markov process, we use ht,T given in (2.8) to define function h∆t : S → R by

h∆t(ξ) := lim
T→∞

[
ht,T (ξ)− (T − t)

∫
fdµ

]
=

∞∑

s=0

[
E

ξ(f(Xs∆t))− E
µ(f(Xs∆t))

]

Note, h∆t(ξ) exists by the assumed geometric ergodicity of K and can be understood as the mean

discrepancy between f(Xt) starting from X0 = ξ versus starting from steady-state X0 ∼ µ [26].

Now the flux discrepancy function is given in the resampling time limit, ∆t → 0, by

h(ξ) = lim
∆t→0

(∆t)h∆t(ξ) =

∫ ∞

0

[
E

ξ(f(Xt))− E
µ(f(Xt))

]
dt.

The flux discrepancy function, h, can be interpreted in the same manner as h∆t, but we now have

observed the Markov chain, Xt, at all time t ≥ 0 instead of at discrete ∆t intervals.

When f = ✶B, as used for estimating the steady-state flux into B, then h(ξ) produces the

discrepancy between the steady-state flux into B and the flux into B starting from ξ. Also, for

f = ✶B, we can write

h(ξ) = lim
T→∞

(Eξ(CT )− E
µ(CT )) (2.21)

where Cs is a random variable giving the number of times the Markov chain, Xt, crosses into

B over the interval [0, s). Hence, h(ξ) can alternatively be understood as the discrepancy in the

number of crossing into B starting from ξ versus starting from µ. Applying the infinitesimal

generator (2.14) to h in (2.21), and using the fact that Ex(Ct+∆t) = E
x(C∆t + E

X∆t(Ct)) along

with the Hill relation, shows that h satisfies Lh = 1/Eρ(τB) outside of B. Since, upon reaching

B, the Markov chain Xt is recycled according to ρ then starting in B and starting at ρ should

be equivalent except we have one more crossing to count when starting in B. Thus, the flux

discrepancy function satisfies h(x) = ρ(h) + 1 in B. Lastly, note that h is invariant under µ since

µ(h) = lim
T→∞

(∫
E
ξ(CT )dµ− E

µ(CT )

)
= lim

T→∞
(Eµ(CT )− E

µ(CT )) = 0.
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Hence, when estimating the steady-state flux into B from ρ the flux discrepancy function satisfies

{
Lh = 1/Eρ(τB) on (a, b)

h(b) = ρ(h) + 1 µ(h) = 0

which has the solution h(x) = (Eµ(τB) − E
x(τB))/E

ρ(τB) [27]. For 1d overdamped Langevin

dynamics we can use equations (2.18) and (2.20) to write

h(x) =
1

Eρ(τB)

(
β

∫ x

a

∫ z

a

eβ(V (z)−V (y))dydz + E
µ(τB)− u(a)

)
. (2.22)

Now for the variance function v2 we again start by assuming a positive resampling time ∆t and

letting K be a ∆t skeleton of the underlying Markov process. We define function v2∆t : S → R by

v2∆t(ξ) := VarK(ξ,·)(h) = Kh2(ξ)− (Kh(ξ))2 = E
ξ(h2(X∆t))− [Eξ(h(X∆t))]

2.

Then the variance function, v2, is given in the resampling time limit, ∆t → 0, by

v2(ξ) := lim
∆t→0

v2∆t(ξ)

∆t
= lim

∆t→0

(
E

ξ(h2(X∆t))− h2(ξ)

∆t
−
(
E

ξ(h(X∆t)) + h(ξ)
) Eξ(h(X∆t))− h(ξ)

∆t

)

= Lh2(ξ)− 2h(ξ)Lh(ξ)

where we used the definition of the infinitesimal generator (2.14). Hence, using equations (2.15)

and (2.22) the variance function for 1d overdamped Langevin dynamics is

v2(ξ) = 2β−1

∣∣∣∣
d

dξ
h(ξ)

∣∣∣∣
2

=
2β

(Eρ(τB))
2

(∫ ξ

a

eβ(V (ξ)−V (y))dy

)2

. (2.23)

We can note that the variance function is also given by v2 = lim
∆t→0

∆t
(
lim
T→∞

VarK(ht+1,T )
)

and so

under certain assumptions, discussed further in Section 3.2.2, we will approximate the mutation

variance, in Proposition 2.3.3, using the flux discrepancy function, h, and variance function, v2.
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Chapter 3

Stability

In this chapter we discuss two types of stability: mean first passage time bias, or simply bias,

stability and estimator variance, or simply variance, stability. By bias stability, we mean that

perturbing the Markov chain initial distribution does not significantly change the resulting mean

first passage time. Instead for variance stability, we mean that importance sampling the Markov

chain initial distribution does not drastically decrease the variance of the desired estimator.

Here we analyze the bias and variance stability, with respect to the Markov chain initial dis-

tribution, for the weighted ensemble algorithm. In particular, we develop conditions such that the

mean first passage time, from weighted ensemble, is stable and unstable with respect to pertur-

bations in the initial distribution. Furthermore, we develop conditions such that initial condition

importance sampling appreciably reduces the variance of the weighted ensemble estimator. These

weighted ensemble stability results are contrasted against similar stability results for adaptive mul-

tilevel splitting, which is another rare event simulation technique used in molecular dynamics to

estimate mean first passage times. It has been studied that adaptive multilevel splitting is often

unstable with respect to the Markov chain initial distribution [16, 28, 29]. One example is that a

certain importance sampling on the initial distribution is required for adaptive multilevel splitting

to maintain useful variance bounds on the desired estimator [16].

Throughout the following sections we will make use of Laplace’s Method, which provides

an, asymptotically equal, approximation to integrals of functions of the form h(x)eβg(x) for large

β [30]. We motivate Laplace’s Method by deriving the approximation of
∫ b

a
eβg(x) for large β when

g(x) obtains a global maximum at xmax ∈ (a, b). As xmax is an interior point on the interval (a, b)

it must be a critical point of g(x) and g′′(x) < 0. Then the Taylor series of g(x) about xmax is given

by

g(x) = g(xmax)−
1

2
|g′′(xmax)| (x− xmax)

2 +O((x− xmax)
3).
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So we can approximate

∫ b

a

eβg(x)dx ≈ eβg(xmax)

∫ b

a

exp

(
−1

2
β|g′′(xmax)|(x− xmax)

2

)
dx.

Now, exp
(
−1

2
β|g′′(xmax)|(x− xmax)

2
)

is a Gaussian function which, for large β, decays rapidly

away from xmax. Therefore

∫ b

a

eβg(x)dx ≈ eβg(xmax)

∫ ∞

−∞

exp

(
−1

2
β|g′′(xmax)|(x− xmax)

2

)
dx =

√
2π

β|g′′(xmax)|
eβg(xmax)

where the final equality holds from the normalization of a Gaussian distribution. Note the above

approximations are exact in the limit of β → ∞.

Next, we give the general form for Laplace’s Method. On interval (a, b) let h(x) be a positive

function and g(x) be a twice differentiable function which obtains a global max at xmax. We

consider three cases depending on the location of xmax and properties of g(x) at xmax. First, let

xmax ∈ (a, b) then xmax is a critical point of g(x) and g′′(xmax) < 0. Then

∫ b

a

h(x)eβg(x)dx =

√
2π

β|g′′(xmax)|
h(xmax)e

βg(xmax)(1 +O(β−1)) (3.1)

in the large β limit [30]. So, for large β, we can approximate

∫ b

a

h(x)eβg(x)dx ∼
√

2π

β|g′′(xmax)|
h(xmax)e

βg(xmax). (3.2)

Second, let xmax be a limit of integration and a critical point of g(x). Then, in the Gaussian

approximation of eβg(x) we will only integrate over half of a Gaussian. So, the resulting Laplace’s

Method approximations are simply 1
2

of (3.1) and (3.2). Third, let xmax be a limit of integration

but not a critical point of g(x). Now we Taylor expand g(x) to first order instead of second order
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and approximate, for large β,

∫ b

a

h(x)eβg(x)dx ∼ h(xmax)

β|g′(xmax)|
eβg(xmax). (3.3)

3.1 Bias Stability in the Mean First Passage Time

We now analyze the mean first passage time, from an initial distribution, of a Markov chain

governed by overdamped Langevin dynamics. Overdamped Langevin dynamics (2.13) models a

molecule with constant temperature, β−1, moving in a potential energy field, V (x). We aim to

understand the stability of the mean first passage time from A to B, with respect to perturbations

of the Markov chain initial distribution, in the large β, or equivalently small temperature, limit. We

find that if A does not contain significant internal potential energy barriers, at least as large as the

largest forward barrier between A and B, then the mean first passage time is stable to changes in

the initial distribution. On the other hand, if A contains a significant internal barrier then the mean

first passage time can become unstable to changes in the initial distribution. These two ideas are

formulated and verified by analyzing a one dimensional Markov chain.

Assume Markov chain (Xt)t≥0 is governed by overdamped Langevin dynamics (2.13) on state

space S = (a, b) where a is a reflecting boundary and b is an absorbing boundary. Let the initial

distribution X0 ∼ ρ where supp(ρ) = A ⊆ (a, b) and when Xt reaches B = {b} it is immediately

recycled, or restarted, in A according to ρ. Define a related process (X̃t)t≥0 which obeys the same

dynamics as (Xt)t≥0 except the initial and recycle distribution are given by ρ̃, with supp(ρ̃) =

supp(ρ), which satisfies

|ρ(x)− ρ̃(x)| ≤ ϵ

for ϵ > 0 a perturbation. Now define

∆V := sup
x∈(a,b)

inf
y∈(a,x)

(V (x)− V (y)) (3.4)

30



which is the largest forward potential energy barrier of V (x) on (a, b) and let ∆V = V (x∗)−V (y∗)

for x∗ ∈ (a, b] and y∗ ∈ [a, x∗).

The following proposition shows that the mean first passage time is stable so long as ∆V is not

in the interior of A; that is, supp(ρ) ⊆ (a, x∗).

Proposition 3.1.1. If supp(ρ) = supp(ρ̃) ⊆ (a, x∗) then |Eρ(τB) − E
ρ̃(τB)| ∼ 0 in the large β

limit.

Proof. For x∗ ∈ (a, b] and y∗ ∈ [a, x∗) assume ∆V = V (x∗) − V (y∗) is the largest forward

potential energy barrier. Let ρ and ρ̃ be any two densities satisfying supp(ρ) = supp(ρ̃) ⊆ (a, x∗).

Note, for x ∈ (a, x∗) and large β, using Laplace’s Method and equation (2.18)

u(x) = β

∫ b

x

∫ z

a

eβ(V (z)−V (y))dydz ∼ Cy∗Cx∗eβ(V (x∗)−V (y∗)) = Cy∗Cx∗eβ∆V

where Cy∗ and Cx∗ are two constants from Laplace’s Method dependent on y∗ and x∗, respectively.

Therefore, in the large β limit

∣∣Eρ(τB)− E
ρ̃(τB)

∣∣ =
∣∣∣∣
∫ x∗

a

u(x) (ρ(x)− ρ̃(x)) dx

∣∣∣∣ ∼ Cy∗Cx∗eβ∆V

∣∣∣∣
∫ x∗

a

(ρ(x)− ρ̃(x))dx

∣∣∣∣ = 0

since
∫ xmax

a
ρ(x)dx =

∫ xmax

a
ρ̃(x)dx = 1. ⊠

Proposition 3.1.1 gives that the mean first passage time from A to B is stable so long as the

largest forward barrier ∆V is not in the interior of A. As A = supp(ρ) ⊆ (a, x∗) then the largest

forward barrier may be on the boundary of A but is not completely contained within A. In fact, the

requirement that |ρ(x)− ρ̃(x)| < ϵ is not necessary nor assumed for Proposition 3.1.1 and we only

require that the initial density has support left of x∗, the maximum in the largest forward potential

barrier. Proposition 3.1.1 is supported by, and follows from, Eyring-Kramers Law which states

that the mean first passage time over a potential barrier scales as a constant time eβ∆V where ∆V

is the size of the barrier to be surpassed [31–33]. That is u(x) scales as a constant for all starting

31



points left of x∗ since the main potential barrier still must be surpassed. Hence, the choice of initial

distribution, ρ, with support left x∗, is inconsequential.

Consider the following example where S = (0, 1), ρ = ϵ✶(0, 14)
(x) + (4− ϵ)✶[ 14 ,

1

2)
,

ρ̃(x) = 2ϵ✶(0, 14)
(x) + (4− 2ϵ)✶[ 14 ,

1

2)
(x),

and we have a single well, single barrier sinusoidal potential V (x) = − sin(2πx) which is shown

in Figure 3.1. Note that the maximum forward potential barrier to be surpassed is ∆V = 2. Nu-

merical calculations for the relative difference in the mean first passage times, at various values of

β, are given in Table 3.1. We note that for large β the relative difference is zero as the mean first

passage times are equal, which is as expected from Proposition 3.1.1. Note that we use the relative

Figure 3.1: Sinusoidal potential with two initial distributions.

difference in the mean first passage since, for small β, it is possible for there to be a seemingly

significant absolute difference in the mean first passage times especially when A contains an in-

ternal barrier. Such a difference is actually inconsequential compared to the order of magnitude of
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Table 3.1: Numerical calculations for the relative difference in the mean first passage times, for various β,

when using a sinusoidal potential and the maximum difference in the recycle distributions is ϵ = 10−2.

ϵ 10−2 10−2 10−2 10−2 10−2

β 1 5 15 100 150

|Eρ(τB)−E
ρ̃(τB)|

Eρ(τB)
1.2× 10−4 4.6× 10−7 3.4× 10−12 1.2× 10−16 0

each mean first passage time. Define ∆V to be the largest potential barrier between A and B and

∆VA to be the largest potential barrier in A. Then
∣∣Eρ(τB)− E

ρ̃(τB)
∣∣ will, at a maximum, scale as

eβ∆VA where as Eρ(τB) and E
ρ̃(τB) both will scale as eβ∆V . Since ∆VA < ∆V then E

ρ(τB) and

E
ρ̃(τB) will grow to exponential order faster than

∣∣Eρ(τB)− E
ρ̃(τB)

∣∣.

Now consider when the support initial distribution includes the maximum of the largest forward

barrier. That is the initial set A contains a significant internal barrier. In such a case, the mean first

passage time can be unstable with respect to the initial distribution. This is reasonable as the mean

first passage time u(x) can be significantly larger for x < x∗ than for x ≥ x∗ as x ≥ x∗ skips

the necessity to overcome the largest potential barrier. Applying Eyring-Kramers we expect that

|Eρ(τB) − E
ρ̃(τB)| will, at a maximum, scale as a constant times ϵeβ∆V when |ρ̃(x) − ρ(x)| ≤ ϵ.

We develop a bound on the absolute difference |Eρ(τB) − E
ρ̃(τB)|, which show consistency with

Eyring-Kramers Law, and provide examples to display the tightness of each bound.

Recall the largest forward potential energy barrier is ∆V = V (x∗)− V (y∗) for x∗ ∈ (a, b] and

y∗ ∈ [a, x∗). Assume that x∗ does not occur on the boundary b and supp(ρ) = (x1, x2) ⊆ (a, b)

such that x∗ ∈ (x1, x2). Then, for x ∈ (x1, x
∗) and large β, using equation (2.18) and Laplace’s

Method

u(x) = β

∫ b

x

∫ z

a

eβ(V (z)−V (y))dydz ∼ Cy∗

√
2πβ

|V ′′(x∗)|e
β(V (x∗)−V (y∗)) = Cy∗

√
2πβ

|V ′′(x∗)|e
β∆V
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where

Cy∗ =





√
2π

β|V ′′(y∗)|
y∗ ∈ (a, b)

√
π

2β|V ′′(y∗)|
y∗ = a and V ′(y∗) = 0

1
β|V ′(y∗)|

y∗ = a and V ′(y∗) ̸= 0.

Therefore

∣∣Eρ(τB)− E
ρ̃(τB)

∣∣ =
∣∣∣∣
∫ x2

x1

u(x)ρ(x)dx−
∫ x2

x1

u(x)ρ̃(x)dx

∣∣∣∣

∼ Cy∗

√
2πβ

|V ′′(x∗)|e
β∆V

∣∣∣∣
∫ x∗

x1

(ρ(x)− ρ̃(x))dx

∣∣∣∣

≤ ϵ(x∗ − x1)Cy∗

√
2πβ

|V ′′(x∗)|e
β∆V . (3.5)

As expected from Eyring-Kramers Law, the bound on the difference in the mean first passage times

scales as a constant times ϵeβ∆V .

Consider the following example where S = (0, 1),

ρ = ϵ✶(0, 14)
(x) + (4− ϵ)✶[ 14 ,

1

2)
, ρ̃(x) = 2ϵ✶(0, 14)

(x) + (4− 2ϵ)✶[ 14 ,
1

2)
(x),

and we have a single barrier Gaussian potential, which is shown in Figure 3.2,

V (x) = 4 exp

(
−1

2

(
x− 1

4
1
8

)2
)
.

Note, the maximum potential barrier to be surpassed is ∆V = 4(1 − e−2) ≈ 3.46, Cy∗ =

1/β|V ′(0)|, and x∗ = 1/4. Thus the difference in the mean first passage times (3.5) is bounded by

∣∣Eρ(τB)− E
ρ̃(τB)

∣∣ ≲ ϵ

4|V ′(0)|

√
2π

β
∣∣V ′′

(
1
4

)∣∣e
β∆V .
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Figure 3.2: Gaussian potential with two recycle distributions.

A numerical calculation for the difference in the mean first passage times, at various values of β,

along with the bound (3.5) and Eyring-Kramers Law bound ϵeβ∆V is given in Table 3.2.

Table 3.2: Numerical calculations, for various β, of the relative difference in the mean first passage time,

the absolute difference in the mean first passage time, Eyring-Kramers Law bound, and bound (3.5) when

using a Gaussian potential and the maximum difference in the recycle distributions is ϵ = 10−2.

ϵ 10−2 10−2 10−2 10−2

β 5 15 100 150

|Eρ(τB)−E
ρ̃(τB)|

Eρ(τB)
× 100% 4.7% 8.3% 19.7% 23.2%

∣∣Eρ(τB)− E
ρ̃(τB)

∣∣ 5.0× 102 3.5× 1017 7.1× 10144 7.4× 10219

ϵeβ∆V 3.2× 105 3.4× 1020 1.6× 10148 2.0× 10223

ϵ
4|V ′(0)|

√
2π

β|V ′′( 1

4)|
eβ∆V 6.55× 102 3.97× 1017 7.29× 10144 7.56× 10219
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Table 3.2 shows that for large β we have a significant discrepancy in the mean first passage

times even though the initial conditions differ by a perturbation. The relative differences show that

the absolute differences
∣∣Eρ(τB)− E

ρ̃(τB)
∣∣ are significant in comparison to the original mean first

passage E
ρ(τB). So, when A contains the largest forward potential barrier there can be instability

in the mean first passage time when changing the initial distribution. We also see from Table 3.2

that the bound (3.5) is reasonable as it differs from the actual absolute difference in the mean first

passage times by less than a factor of 1.14 for each case of β.

Consider a second example using the same state space, S, the same recycle densities, ρ and ρ̃,

and we have a single barrier, single well double Gaussian potential

V (x) = 3 exp

(
−1

2

(
x− 1

5
1
11

)2
)

− 3 exp

(
−1

2

(
x− 1

9
1
11

)2
)
.

Note that the maximum barrier to be surpassed is ∆V ≈ 3.29, y∗ ≈ 0.061, Cy∗ =
√

2π
β|V ′′(y∗)|

, and

Figure 3.3: Single barrier, single well double Gaussian potential with two recycle distributions.
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x∗ ≈ 1
4
. Thus, the bound on the absolute difference in the mean first passage times (3.5) is

∣∣Eρ(τB)− E
ρ̃(τB)

∣∣ ≲ ϵ

2

π√
|V ′′(y∗)V ′′(x∗)|

eβ∆V .

A numerical calculation for the difference in the mean first passage times, at various values of β,

along with the bound (3.5) and Eyring-Kramers Law bound ϵeβ∆V is given in Table 3.3.

Table 3.3: Numerical calculations, for various β, of the relative difference in the mean first passage time,

absolute difference in the mean first passage time, Eyring-Kramers Law bound, and bound (3.5) when

using a single barrier, single well double Gaussian potential and the maximum difference in the recycle

distributions is ϵ = 10−2.

ϵ 10−2 10−2 10−2 10−2

β 5 15 100 150

|Eρ(τB)−E
ρ̃(τB)|

Eρ(τB)
× 100% 4.3% 8.9% 21.2% 24.7%

∣∣Eρ(τB)− E
ρ̃(τB)

∣∣ 5.82× 102 1.13× 1017 3.26× 10138 9.08× 10209

ϵeβ∆V 1.4× 105 2.7× 1019 7.7× 10140 2.2× 10212

ϵ
2

π√
|V ′′(y∗)V ′′(x∗)|

eβ∆V 5.95× 102 1.16× 1017 3.29× 10138 9.14× 10209

From Table 3.3 we again have a significant absolute difference and relative difference in the

mean first passage times, for large β, when the initial distributions differ by only a perturbation.

This implies that A containing a significant potential barrier can cause instability in the mean first

passage time even when A also contains a potential well. Lastly, from Table 3.3, we can note that

the bound (3.5) differs, for each β, by less than a factor of 1.03 to the actual absolute difference in

the mean first passage times.

Even though Table 3.2 and Table 3.3 highlight examples where the mean first passage time

is unstable with respect to the initial distribution, instability is not guaranteed. For instance, so

long as
∫ x∗

a
ρ(x)dx =

∫ x∗

a
ρ̃(x)dx then we can still apply Proposition 3.1.1 and approximate
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∣∣Eρ(τ)− E
ρ̃(τ)

∣∣ ∼ 0 in the large β limit. Also, when A contains the largest forward barrier,

then by Laplace’s Method the relative error in the mean first passage time is

|Eρ(τB)− E
ρ̃(τB)|

Eρ(τB)
∼

∣∣∣
∫ x∗

x1
(ρ(x)− ρ̃(x))dx

∣∣∣
∫ x∗

x1
ρ(x)dx

=

∣∣∣∣∣1−
∫ x∗

x1
ρ̃(x)dx

∫ x∗

x1
ρ(x)dx

∣∣∣∣∣ . (3.6)

Thus, to have a significant relative difference in the mean first passage times we require that ρ and

ρ̃ have a sufficient relative integral difference over (x1, x
∗). For an example where we can bound

the relative mean first passage time, take ρ ∼ U
(
0, 1

2

)
, ρ̃(x) = (2−ϵ)✶(0, 14)

(x)+(2+ϵ)✶[ 14 ,
1

2)
(x),

and V (x) any potential such that x∗ = 1
4

such as the potential in Figure 3.3. Then

|Eρ(τB)− E
ρ̃(τB)|

Eρ(τB)
≈
∣∣∣∣∣1−

∫ x∗

x1
ρ̃(x)dx

∫ x∗

x1
ρ(x)dx

∣∣∣∣∣ =

∣∣∣
∫ 1/4

0
ϵdx
∣∣∣

∫ 1/4

0
2dx

=
ϵ

2
< ϵ.

Hence, when A contains a significant internal barrier it is possible, but not guaranteed, for the

mean first passage time to be unstable to perturbations in the initial distribution.

Even though the bias stability analysis was for 1d overdamped Langevin dynamics we expect

the general stability conditions on A to hold in higher dimensions. That is, when A does or does

not contain a significant internal barrier then the mean first passage time is unstable or stable to

changes in the initial distribution, respectively. While explicit formulas may not exist for higher

dimensions, throughout our analysis we have shown that our results are consistent with and a con-

sequence of Eyring-Kramers Law, which does generalize to higher dimensions. Hence, we expect

the developed bias stability requirements on A to generalize to higher dimensions by applying

Eyring-Kramers Law.

Recall adaptive multilevel splitting, Section 2.2, is another algorithm commonly used in molec-

ular dynamics to estimate mean first passage times. In the calculation of mean first passage times,

adaptive multilevel splitting relies on the committor function p(x) = P(τB < τA |X0 = x), which

is the probability a Markov chain Xt reaches B before A from starting at x [29]. It is known that
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the committor function, p(x), satisfies [23]

{
Lp(x) = 0 x ∈ S \ (A ∪B)

p(x) = 0 x ∈ ∂A p(x) = 1 x ∈ ∂B,

which for 1d overdamped Langevin dynamics on (a, b) produces

p(x) =

∫ x

a
eβV (y)dy

∫ b

a

∫ z

a
eβV (y)dydz

.

Next, we explain how adaptive multilevel splitting estimates a mean first passage time using

the committor function. Recall from Section 2.2 that adaptive multilevel splitting relies on the

contours of the reaction coordinate, Lz = {x : Φ(x) = z}, which we call the level at z. To

compute the mean first passage time, E(τB), we consider the point zmin, typically chosen so that

Lzmin
is close to A, and slice trajectories which end in B into components. Starting from A, a

trajectory will touch Lzmin
within time T 1

1 then two events can happen:

1. From Lzmin
the trajectory goes to A before reaching B, which occurs with a probability 1−p

and with time T 1
2

2. From Lzmin
the trajectory goes to B before reaching A, which occurs with probability p and

with time T3.

As the transition from A to B is a rare event it is far more likely that the first case, the trajectory

goes to A before reaching B, will happen. Define M to be a random variable giving the number

of trials that a trajectory must be started in A until the second case, the trajectory goes to B before

reaching A, occurs. For each trial define T 1
1 , T

2
1 , . . . , T

M
1 and T 1

2 , T
2
2 , . . . , T

M−1
2 to be the first

passage times from A to Lzmin
and from Lzmin

back to A before reaching B, respectively. Then by

the Markov property

τB = TM
1 + T3 +

M−1∑

i=1

(T i
1 + T i

2).

We can note that T 1
1 , T

2
1 , . . . , T

M
1 and T 1

2 , T
2
2 , . . . , T

M−1
2 are two collections of identically dis-

tributed random variables and M is a geometric random variable, with success probability p, which
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is independent from each T i
1, T

i
2, and T3. Since E(M) = 1/p then

E(τB) = E

(
TM
1 + T3 +

M−1∑

i=1

(T i
1 + T i

2)

)

= E(T 1
1 + T3) + (E(M)− 1)E(T 1

1 + T 1
2 )

= E(T 1
1 + T3) +

(
1

p
− 1

)
E(T 1

1 + T 1
2 ).

Now to estimate the mean first passage time, E(τB), we require estimates for three quantities of

interest. First, E(T 1
1 +T3) which is the mean time for a trajectory starting from A to reach Lzmin

and

then go to B before A. Estimating E(T 1
1 + T3), which is generally still the mean first passage time

corresponding to a rare event transition, can be done through a slight modification of the adaptive

multilevel splitting algorithm to where the total transition time is calculated by accounting for all

the recrossing into A [29]. Second, we require E(T 1
1 + T 1

2 ) which is the mean time for a trajectory

starting from A to reach Lzmin
then return to A before reaching B. As Lzmin

is typically chosen to

be close to A, estimating E(T 1
1 + T 1

2 ) can reliable be done with naive Markov chain Monte Carlo

simulations. Finally, we require p which is the probability a trajectory starting from Lzmin
reaches

B before A. The probability p, given as p(zmin) for 1d overdamped Langevin dynamics, can be

directly estimated from the adaptive multilevel splitting algorithm where the initial distribution is

chosen to have support in Lzmin
.

So, adaptive multilevel splitting has multiple sources of initialization that can affect the mean

first passage time. First, is the initial distribution in A which affects the quantity T 1
1 . Second,

the choice of zmin and the choice of initial distribution in Lzmin
, which affects T 1

2 , T3, and p.

Similar to weighted ensemble, if A contains significant internal barriers then we could expect

large changes in E(T 1
1 ) under small changes in the initial distribution. Large changes in the mean

first passage time could be expected as the first passage time to Lzmin
of a trajectory needing to

cross the large forward barrier in A will be significantly higher than the first passage time to Lzmin

of a trajectory which was initialized past the barrier. Thus, altering the chance of initializing

past a significant barrier can produce large changes in the mean first passage time. Likewise, if
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Lzmin
contains a significant potential barrier then slight changes in the initial distribution, which

increase or decrease the chance of sampling before or after the barrier, could produce impactful

changes in the mean first passage times E(T 1
2 ) and E(T3) or produce an impactful change on the

probability p. Accordingly, a minor adjustment to zmin may result in Lzmin
containing significant

potential barriers where it did not before although this also depends on the choice for reaction

coordinate. Even when A does not contain significant internal barriers the choice of zmin and

initial distribution in Lzmin
may affect the stability of the mean first passage time estimate. Thus,

we anticipate that weighted ensemble should have greater mean first passage time bias stability

than adaptive multilevel splitting as adaptive multilevel splitting has more factors affecting the

mean first passage time, which could make it unstable in cases where weighted ensemble is stable.

3.2 Variance Stability

As stated in Section 2.3 the weighted ensemble estimate, θT , converges almost surely to
∫
fdµ

at T → ∞. So, a main point of open work is in reducing the variance of the weighted ensemble

estimate θT . Note, for a sufficient number of particles we can optimally choose the particle alloca-

tion Nt(u), based on chosen bins Bt, to minimize the mutation variance. Recall that the mutation

variance, Proposition 2.3.3, at time t is given by

E

[∑

u

wt(u)
2

Nt(u)
ηut (VarK(ht+1,T ))

]
.

We want to minimize
∑

u
wt(u)2

Nt(u)
ηut (VarK(ht+1,T )) subject to the constraint

∑
u Nt(u) = N. Define

C2
u = wt(u)

2ηut (VarK(ht+1,T )) and N = [Nt(u)]u∈Bt
where Bt are the bins at time t. Then we can

form a Lagrange multiplier function

L(N ) =
∑

u

C2
u

Nt(u)
+ λ

(∑

u

Nt(u)−N

)
with gradient ∇L(N ) =

[
λ− C2

u

Nt(u)2

]

u∈Bt

.
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Solving were the gradient is zero gives Nt(u) = Cu/
√
λ for each u ∈ Bt. Applying constraint

∑
u = Nt(u) = N produces λ = (

∑
u Cu)

2 /N2. So the optimal particle allocation is Nt =

NCu/(
∑

u Cu) which produces an optimal mutation variance of

E

[∑

u

C2
u (
∑

u Cu)

NCu

]
=

1

N
E



(∑

u

Cu

)2

 =

1

N
E



(∑

u

wt(u)
√

ηut (VarK(ht+1,T ))

)2

. (3.7)

It is also known how to optimally choose the bins, Bt, to minimize the selection variance with a

sufficient number of bins [26].

Here we consider a Markov chain (Xt)t≥0 on state space S which is initialized in A ⊆ S ac-

cording to a source distribution ρ and upon reaching B ⊂ S the Markov chain Xt immediately

restarts in A according to ρ. The source, ρ, will be termed as both the initial distribution and

recycle distribution. We explore the impact, on the weighted ensemble variance, of importance

sampling the initial and recycle distribution, ρ, which we refer to as initial condition importance

sampling. In particular, during the weighted ensemble selection process we define all particles in

B to be a bin uB. In the subsequent mutation step, each particle in B will be recycled according to

ρ and we can reduce the mutation variance from uB, which we call the recycle variance, by initial

condition importance sampling. When the reduction in the recycle variance, from initial condition

importance sampling, is impactful on the total variance from the mutation step then we say that

weighted ensemble has variance instability. Instead, we say that weighted ensemble has variance

stability when initial condition importance sampling is not impactful on the total mutation step

variance. Similar to bias stability, Section 3.1, we find that if A does not contain a significant inter-

nal potential energy barrier, at least as large as the largest forward potential barrier, then weighted

ensemble has variance stability. On the other hand, when A does contain a significant internal bar-

rier then variance instability is possible and we develop conditions where an impactful reduction

in variance is gained by initial condition importance sampling.

Intuitively, for variance instability, we expect that if R ⊂ A is rare, with respect to ρ, and the

steady-state flux of particles from R to B is significant then importance sampling ρ to emphasize
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R should help reduce variance in the weighted ensemble estimate. That is placing more particles

in a region R which contributes significantly to the number of particles that reach B then the total

number of particles reaching B should increase. Thereby increasing the number of samples that

contribute to the weighted ensemble estimate and thus decreasing the weighted ensemble variance.

By analyzing a three state Markov chain and 1d overdamped Langevin dynamics we find this is not

the case. Even when A contains a significant internal potential barrier, initial condition importance

sampling is often not useful for variance reduction. Counter intuitively, we need a set R ⊂ A

which is not only rare with respect to ρ but also rare with respect to K and the steady-state flux

from R to B must be insignificant; in particular, there should exist at least one other region of the

initial region, A, which is more probable to transition to B from than transitioning from R to B

is. By rare with respect to K we signify that is it highly improbable that the Markov chain (Xt)

transitions to R.

A reason that initial condition importance sampling is ineffective is that reaching B from A is a

rare event. Otherwise, standard Monte Carlo could simply be used instead of weighted ensemble.

Thus, the total particle weight reaching B, wt(uB), is diminutive. Since the mutation variance

from each bin depends on the square of the total bin weight, wt(u)
2, then the recycle variance from

uB is also diminutive. Hence, we could expect initial condition importance sampling to produce

no impactful reduction in variance as a majority of the mutation variance is not from recycling.

Variance stability in the weighted ensemble algorithm is a benefit of this algorithm over adap-

tive multilevel splitting. Through each selection process in adaptive multilevel splitting, only a

few samples are kept while all other trajectories become copies of the few. So, only a few sam-

ples, which are often improbable to sample, from the initial distribution end up contributing a lot

to the committor probability or the adaptive multilevel splitting estimator [16]. This phenomenon

leads to high variance of the adaptive multilevel splitting estimator and importance sampling on the

initial condition is required to manage the estimator variance. This is not desirable as importance

sampling the initial condition for adaptive multilevel splitting is computationally expensive [28] re-

sulting in slower simulations and a requirement for more computational resources. Even for simple

43



problems when the initialization occurs over a metastable region that does not include a signifi-

cant internal barrier, such as the example in Figure 2.1, importance sampling is still necessary to

maintain reasonable adaptive multilevel splitting estimator variances [16].

3.2.1 Three State Markov Model

Consider a Markov chain (Xt)t∈N on discrete state space S = {1, 2, 3} with transition matrix

K =



1− ϵp − ϵq ϵp ϵq

ϵr 1− ϵr − ϵs ϵs

1− ϵt ϵt 0




where ϵ is a small positive real number and p, q, r, s, and t are all non-negative real numbers.

The initial and recycle distribution is ρ = K(3, ·) = [1− ϵt ϵt 0]. We develop conditions

on the powers p, q, r, s, and t such that initial condition importance sampling provides a sig-

nificant variance reduction for the weighted ensemble estimator. Let µ be the steady-state dis-

tribution of K and define f = [0 0 1]T since we are interested in state B = {3}. Define

v2 := lim
T→∞

VarK(ht+1,T ) = VarK(h) where h = [h1 h2 h3]
T is the solution to the Poisson equation

(I −K)h = f − µ(f) satisfying µ(h) = 0 [34].

Now assume for all time, t ≥ 0, that all particles in state i ∈ S form a bin denoted by ui. Since

the initialization variance, 1
T 2V0, scales as O(1/T 2) and we are concerned with long time horizons,

T , then we can approximate 1
T 2V0 ≈ 0. Also, the selection variance, V S

t , is zero for all t ≥ 0 as

Kht+1,T is a constant since all particles in a given bin ui are at the exact same state i. Hence, the

only variance is from the mutation step which we can approximate, for each bin and time t, by

σ2
t =

[
σ2
1(t) σ

2
2(t) σ

2
3(t)
]T

:=

[
µ2
1

Nt(1)
VarK(1,·)(h)

µ2
2

Nt(2)
VarK(2,·)(h)

µ2
3

Nt(3)
Varρ(h)

]T

where N = [Nt(1) Nt(2) Nt(3)]
T is the particle allocation at time t. The approximations used

replaces wt(ui) with µi and VarK (ht+1,T ) with VarK(h), which are valid for large T and a large

number of particles. Since we are interested in long time horizons and are not concerned with lim-
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iting the number of particles the approximations are reasonable. Also, ηut (VarK(h)) = VarK(h)

was used, which holds since all particles in a given bin are at the exact same state.

Now, when we importance sample from the distribution ν the variance from bin u3 is given by

µ2
3

Nt(3)
Varν

((
ρT ⊙ h

)
⊘ ν

)

where ⊙ and ⊘ are componentwise multiplication and division respectively. Note that we require

that
[(
ρT ⊙ h

)
⊘ ν

]
j
= 0 when

[
ρT ⊙ h

]
j
= 0. To see a gain from initial condition importance

sampling we require the conditions

Varν
((
ρT ⊙ h

)
⊘ ν

)
< Varρ(h) (3.8)

and

µ2
1VarK(1,·)(h) + µ2

2VarK(2,·)(h) ≤ µ2
3Varρ(h). (3.9)

The first condition, equation (3.8), states that importance sampling does reduce the recycle variance

from bin u3. If we take ν = (ρT ⊙ |h|)/(ρ|h|), where |h| is the elementwise absolute value of h,

then by (1.1)

Varρ(h)− Varν
((
ρT ⊙ h

)
⊘ ν

)
= Varρ(|h|)

which is positive since variance is non-negative and |h| will not be a constant. Hence, condition

(3.8) is guaranteed to hold.

Next, the second condition, equation (3.9), states that the recycle variance from bin u3 must

be at least as large as the mutation variance from all other bins when we have a uniform particle

allocation Nt(1) = Nt(2) = Nt(3). Note, assuming a uniform particle allocation is reasonable

as often such an allocation is used in practice. We require the second condition since when the

variance from bin u3 is small, relative to all the other mutation variances, then reducing the variance

through initial condition importance sampling may not produce a significant impact on the total

variance. For example, if σ2
1 = 1, σ2

2 = 2 × 10−4, and σ2
3 = 10−6 then even if by importance
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sampling we make the variance from u3 equal to 0 the impact on the total variance σ2
1 + σ2

2 + σ2
3

is negligible. We can further highlight the necessity of equation (3.9) by bounding the optimal

variance improvement factor (VIF) given by

Optimal VIF =

1
N

(
µ1

√
VarK(1,·)(h) + µ2

√
VarK(2,·)(h) + µ3

√
Varρ(h)

)2

1
N

(
µ1

√
VarK(1,·)(h) + µ2

√
VarK(2,·)(h) + µ3

√
Varν((ρT ⊙ h)⊘ ν)

)2 , (3.10)

which, from equation (3.7), is the optimal weighted ensemble variance over the optimal weighted

ensemble plus initial condition importance sampling variance. When (3.9) does not hold then

Optimal VIF ≤
(
µ1

√
VarK(1,·)(h) + µ2

√
VarK(2,·)(h) + µ3

√
Varρ(h)

µ1

√
VarK(1,·)(h) + µ2

√
VarK(2,·)(h)

)2

≤ 4.

This implies a maximum standard deviation improvement of 2, which in general is not significant

especially for the computational cost of implementing the initial condition importance sampling.

Now we establish conditions on powers p, q, r, s, and t such that the requirement (3.9) holds.

These conditions are established by finding cases of powers p, q, r, s, and t where

µ2
1VarK(1,·)(h)

µ2
3Varρ(h)

= O(ϵk1) and
µ2
2VarK(2,·)(h)

µ2
3Varρ(h)

= O(ϵk2) (3.11)

for k1, k2 > 0. When (3.11) holds then

µ2
1VarK(1,·)(h) + µ2

2VarK(2,·)(h)

µ2
3Varρ(h)

= O(ϵmin{k1,k2}) ≤ 1

for small enough ϵ. Hence, the powers p, q, r, s, and t which satisfy (3.11) will also satisfy (3.9),

for small enough ϵ, and are captured in the four cases below





p > t+ 2q, t > s | r ≥ s, q < s, p+ q ≤ 2s, and 2q ≤ r + s

2s > t+ 3q, t > s | r ≥ s, q < s, s ≤ p, 2s ≤ p+ q, p ≥ q + t, and 2q ≤ r + s

p > t+ 2q, t > r | r ≤ s, q < s, p+ q ≤ 2r, and 2q ≤ r + s

2r > t+ 3q, t > r | r ≤ s, q < s, r ≤ p, 2r ≤ p+ q, and p ≥ q + t.

(3.12)
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Further details establishing the conditions in (3.12) are lengthy and mundane so they are omitted

here and instead provided in Appendix A. Note, the first two inequalities in each case of equation

(3.12) determine the scaling powers k1 and k2 on ϵ in (3.11). For instance, p > t + 2q and t > s

are the first two inequalities of case one of equation (3.12) so k1 = p− t− 2q and k2 = t− s.

Table 3.4 lists all natural number powers of p, q, r, s, and t which are less than ten and satisfy at

least one of the four cases in equation (3.12). We note that the nine combinations of powers listed

in Table 3.4 represents less than a tenth of a percent of the total number of possible natural number

choices of powers. That is cases where initial condition importance sampling provides a significant

variance reduction are uncommon or fringe cases. So, stability of the weighted ensemble variance

can typically be expected for a three state Markov model.

Table 3.4: Natural number powers less than ten on small parameter ϵ such that initial condition importance

sampling in a three state Markov model provides a significant reduction in the weighted ensemble estimator

variance.

p 9 9 9 9 9 9 9 9 9

q 1 1 1 1 1 1 1 1 1

r 5 6 7 8 9 5 5 5 5

s 5 5 5 5 5 6 7 8 9

t 6 6 6 6 6 6 6 6 6

We consider, as an example, the powers in first column of Table 3.4, that is (p, q, r, s, t) =

(9, 1, 5, 5, 6), which satisfies case one of equation (3.12). From the transition matrix, K, we can

see that state 1 will almost never transition to state 2, leaving state 2 is highly improbable, and

recycling to state 2 is highly improbable. Also, we have µ2
1VarK(1,·)(h)/µ

2
3Varρ(h) = O(ϵ) and

µ2
2VarK(2,·)(h)/µ

2
3Varρ(h) = O(ϵ) so the variance reduction from initial condition importance

sampling is expected to scale as O(ϵ−1). For various ϵ, Table 3.5 lists the variance improvement

factor (VIF) from initial condition importance sampling given by

VIF =
µ2
1VarK(1,·)(h) + µ2

2VarK(2,·)(h) + µ2
3Varρ(h)

µ2
1VarK(1,·)(h) + µ2

2VarK(2,·)(h) + µ2
3Varν((ρT ⊙ h)⊘ ν)

. (3.13)
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Table 3.5 also lists the optimal VIF (3.10), along with the mean first passage time to B = {3}

from ρ, from state 1, and from state 2. As expected, the mean first passage time from state 2 to

B = {3} is large as leaving state 2 is highly improbable, and consequently reaching B from state

2 will be highly improbable. Also, the mean first passage time from state 1 to B is approximately

1/ϵ, which is expected as transitioning from state 1 to B occurs with probability ϵ. Finally, as ϵ

decreases we see both the VIF and optimal VIF increase approximately as O(ϵ−1).

Table 3.5: Variance improvement factor (VIF), optimal VIF, and mean first passage times for powers

(p, q, r, s, t) = (9, 1, 5, 5, 6) on ϵ in a three state Markov transition matrix.

ϵ VIF Optimal VIF E
1(τB) E

2(τB) E
ρ(τB)

10−1 2.86 3.36 10.0 5.0× 104 10.05
10−2 19.25 17.69 100 5.0× 109 100.005
10−3 182.88 133.91 1.0× 103 5.0× 1014 1.0× 103

10−4 1.82× 103 1.21× 103 1.0× 104 5.0× 1019 1.0× 104

One explanation for why initial condition importance sampling significantly reduces variance

in the cases listed in equation (3.12) is: Excluding the sink there exists a region of state space,

R, that is very rare (potentially even impossible) for a particle to transition to, but it is possible

to recycle into. The probability of recycling to R is also rare but more probable than a particle

transitioning there. Region R is also sufficiently difficult to escape from, at least as difficult as it to

recycle to R, implying a large mean first passage time from R to B. Furthermore, there must exist

another region of state space that is far more probable to transition to B from than it is to transition

from R to B. In such a case, importance sampling to this rare region R reduces the variance in

the weighted ensemble steady-state estimator by reducing the impact, on variance, that a Markov

chain trajectory has when it escapes R and reaches B. A three state transition matrix, K, which

satisfies one of the four cases of inequalities in equation (3.12) has rare region R = {2} as shown

in Table 3.5.

We can further support this idea by considering the transition matrix identical to K except the

recycling density is K(3, ·) = ρ = [ϵt 1 − ϵt 0]. Now it is rare to recycle to state 1 instead of

state 2. Again by comparing cases on how the mutation variance from bins u1, u2, and u3 scale as
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powers of ϵ we get the following four cases of inequalities for which (3.9) holds





r > t+ 2s, t > q | p ≥ q, s < q, r + s ≤ 2q, and 2s ≤ p+ q

2q > t+ 3s, t > q | p ≥ q, s < q, q ≤ r, 2q ≤ r + s, r ≥ s+ t, and 2s ≤ p+ q

r > t+ 2s, t > p | p ≤ q, s < q, r + s ≤ 2p, and 2s ≤ p+ q

2p > t+ 3s, t > p | p ≤ q, s < q, p ≤ r, 2p ≤ r + s, and r ≥ s+ t.

Comparing to the original cases of inequality (3.12) we have exchanged p and r and exchanged q

and s, which makes R = {1} the rare region.

3.2.2 1D Overdamped Langevin Dynamics

Consider a Markov chain (Xt)t≥0 which is governed by overdamped Langevin dynamics (2.13)

on state space S = (a, b) where a is a reflecting boundary and b is an absorbing boundary. Let

the initial distribution X0 ∼ ρ where supp(ρ) = A ⊆ (a, b) and when Xt reaches B = {b} it is

immediately recycled in A according to ρ.

In steady-state, T → ∞, and with a sufficiently large number of particles and bins, we can

approximate a bin ux over every point x in state space and wt(ux) ≈ µ(x). Further including the

resampling time limit, ∆t → 0, we can approximate ηut (VarK (ht+1,T )) ≈ v2(x) where v2(x) is

the variance function given in equation (2.23). Since all particles in a bin ux are considered to be at

the same point x the selection variance, V S
t , is zero. The initialization variance contributes only at

time t = 0 so for large T we can approximate 1
T 2V0 ≈ 0. Hence, we only have mutation variance,

which includes the recycle variance and can be approximated, at time t, by

V M
t = E

[∑

u

wt(u)
2

Nt(u)
ηut (VarK(ht+1,T ))

]
≈
∫ b

a

µ(x)2

Nt(x)
v(x)2dx+

(J µ(b))2

Nt(b)
Varρ(h) (3.14)

where Nt(x) = Nt(ux) is the particle allocation at time t and J µ(b) is the steady-state flux into

B = {b}. Note, J is a flux operator which for 1d overdamped Langevin dynamics given by

J g = −V ′g − β−1g′
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for continuously differentiable functions g : R → R [23]. The second term on the right hand

side of equation (3.14) is the initial condition, or recycle, variance which results from the fact that

wt(ub) ≈ J µ(b). Note we do not approximate wt(ub) with µ(b) since Xt recycles immediately

upon reaching B = {b}. Thus, µ(b) is zero whereas wt(ub) is not and will be equal to the flux

of weight into b at time t, which we approximate with the steady-state flux into b, J µ(b). When

importance sampling from distribution ν, the recycle variance is given by

(J µ(b))2

Nt(b)
Varν

(
ρh

ν

)

where we require ρh/ν = 0 when ν = 0.

As in the three state model, Section 3.2.1, we require two conditions

Varν

(
ρh

ν

)
< Varρ(h) (3.15)

and
∫ b

a

µ(x)2v(x)2dx ≤ (J µ(b))2Varρ(h) (3.16)

to have a significant variance reduction from initial condition importance sampling. Require-

ment (3.15) states that importance sampling does reduce the recycle variance. By choosing ν =

ρ|h|/
∫ b

a
ρ(x)|h(x)|dx then using (1.1)

Varρ(h)− Varν

(
ρh

ν

)
= Varρ(|h|)

which is positive since variance is non-negative and |h| will not a constant outside of trivial choices

for V (x). Hence, the first requirement (3.15) is guaranteed to hold when the optimal importance

sampling distribution, ν ∝ ρ|h|, is chosen. Now the second requirement (3.16) states the recycle

variance is at least as large as all other mutation variances when assuming a uniform particle

allocation. Again, as in Section 3.2.1, assuming a uniform particle allocation is reasonable as often

such an allocation is used in practice and requirement (3.16) ensures the recycle variance is large
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enough to have an impact on the total mutation variance. Furthermore, when (3.16) does not hold

we can bound the optimal variance improvement factor (VIF)

Optimal VIF =

1
N

(∫ b

a
µ(x)2v(x)2dx+ (J µ(b))2Varρ(h)

)2

1
N

(∫ b

a
µ(x)2v(x)2dx+ (J µ(b))2Varν

(
ρh
ν

))2 ≤
(
1 +

(J µ(b))2Varρ(h)∫ b

a
µ(x)2v(x)2dx

)2

≤ 4.

Now, let ∆V = V (x∗) − V (y∗) be the largest forward barrier (3.4) of V (x) on (a, b). The

following proposition shows that weighted ensemble has variance stability so long as ∆V is not in

the interior of A; that is supp(ρ) ⊆ (a, x∗).

Proposition 3.2.1. If supp(ρ) ⊆ (a, x∗) then Varρ(h) ∼ 0 in the large β limit.

Proof. For x∗ ∈ (a, b] and y∗ ∈ [a, x∗) assume ∆V = V (x∗) − V (y∗) is the largest forward

potential energy barrier and let ρ be any density satisfying supp(ρ) ⊆ (a, x∗). From Proposition

3.1.1, when x ∈ (a, x∗) then for large β, by Laplace’s Method, the mean first passage time can be

approximated by u(x) ∼ Cy∗Cx∗eβ∆V , where Cy∗ and Cx∗ are constants dependent on y∗ and x∗,

respectively. Therefore

Varρ(h) =
Varρ(u)

(Eρ(τB))
2 ∼

(
Cy∗Cx∗

Eρ(τB)

)2

e2β∆V

[∫ x∗

a

ρ(x)dx−
(∫ x∗

a

ρ(x)dx

)2
]
= 0

as
∫ x∗

a
ρ(x) = 1. ⊠

Proposition 3.2.1 gives that initial condition importance sampling will not be beneficial, in the

large β limit, when A does not contain significant internal barriers as condition (3.15) will not

hold. Furthermore, when A does not contain significant internal barriers, Proposition 3.2.1 shows

that the variance from recycling is zero in the large β limit and thus could not be reduced further

from initial condition importance sampling.

Now, when A contains a significant internal potential barrier, we will develop a condition using

(3.16) such that initial condition importance sampling has an impactful reduction on the variance

of the weighted ensemble estimator. Let C be the normalization of the steady-state distribution µ
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(2.20). Then from equations (2.20) and (2.23) we have

∫ b

a

µ(x)2v(x)2dx =
2β

C2(Eρ(τB))2

∫ b

a

(∫ b

x

eβV (z)

(∫ z

a

ρ(y)dy

)
dz

)2(∫ x

a

e−βV (z)dz

)2

dx.

Since µ(b) = 0 then J µ(b) = −β−1µ′(b) = β−1C−1 = 1/Eρ(τB) where the final equality results

from the Hill relation. Using properties of variance if κ2 = Varη(g) then Varη(sg + c) = s2κ2 for

η a probability measure, g a measurable function, and s and c real constants. Thus, using equation

(2.22) we have

(J µ(b))2Varρ(h) =
1

β2C2(Eρ(τB))2
Varρ(u)

where u is the mean first passage time given in (2.18). Hence, inequality (3.16) is equivalent to

Varρ(u) ≥ 2β3

∫ b

a

(∫ b

x

eβV (z)

(∫ z

a

ρ(y)dy

)
dz

)2(∫ x

a

e−βV (z)dz

)2

dx := 2β3I (3.17)

where we define I =
∫ b

a

(∫ b

x
eβV (z)

(∫ z

a
ρ(y)dy

)
dz
)2 (∫ x

a
e−βV (z)dz

)2
dx.

Next, we further simplify (3.17), for particular potential V , using Laplace’s Method. Assume

that the potential V (x) obtains two local minimums at y1, y2 and two local maximums at x1, x2

such that a < y1 < x1 < y2 < x2 < b. Define ρ as the mixture of δ-functions

ρ(x) = λδ(x− y1) + (1− λ)δ(x− y2).

That is, upon reaching B the Markov chain recycles at one of two points y1 and y2 with probability

λ and 1−λ, respectively. We further assume that λ = e−βd for some positive constant d. The choice

of potential, V , and initial density, ρ, are specific to draw an analogy to the three state Markov

model where we consider (a, x1), [x1, x2), and [x2, b) as the three states from the 1d model. Then

transition probabilities between bins, for large β, is then determined by the size of the barriers

between the bins, namely ∆V1 = V (x1) − V (y1) and ∆V2 = V (x2) − V (y2), and the recycle
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density ρ. Hence, we desire a condition from (3.17) which is dependent on the barrier sizes as well

as ρ.

Define points

χ1 := inf{x ∈ (x1, y2) : V (x) < V (x2)}, χ2 := inf{x ∈ (x1, y2) : V (x) < V (y1)},

and define Laplace function

L(x, y) :=
eβ(V (x)−V (y))

√
|V ′′(x)| |V ′′(y)|

.

Note, when V (x1) < V (x2) then {x ∈ (x1, y2) : V (x) < V (x2)} = ∅ and so we take χ1 = x1 in

such a case. Similarly, when V (y1) < V (y2) then {x ∈ (x1, y2) : V (x) < V (y1)} = ∅ and thus

we will take χ2 = y2.

Now, in the large β limit, using Laplace’s Method

I ∼
(
2π

β

)2 (
λ2(y1 − x1)(L(x1, y1) + L(x2, y1))

2 + (χ2 − χ1)L
2(x2, y1)✶χ1<χ2

)

+

(
2π

β

)2

(x2 − y2) (L(x2, y1) + L(x2, y2))
2

(3.18)

and

Varρ(u) ∼ λ [2πL(x1, y1) + 2π (L(x2, y1) + L(x2, y2))]
2 + (1− λ) [2π (L(x2, y1) + L(x2, y2))]

2

− (λ [2πL(x1, y1) + 2π (L(x2, y1) + L(x2, y2))] + (1− λ) [2π (L(x2, y1) + L(x2, y2))])
2

= (2π)2λ(1− λ)L2(x1, y1). (3.19)

Using (3.18) and (3.19), then (3.17) gives

λ(1− λ)L2(x1, y1) ≥ 2β
(
λ2(y1 − x1)(L(x1, y1) + L(x2, y1))

2 + (χ2 − χ1)L
2(x2, y1)✶χ1<χ2

)

+ 2β(x2 − y2) (L(x2, y1) + L(x2, y2))
2 . (3.20)
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From (3.20) we can note that ∆V1 = V (x1) − V (y1) must be the largest forward barrier. That is

∆V1 must be a larger barrier than ∆V2 = V (x2) − V (y2) and ∆V12 = V (x2) − V (y1). This is

required as the left hand side of (3.20) scales no greater than O(e2β∆V1) where as the right hand

side of (3.20) scales no less than O(e2βmax{∆V2,∆V12}). Thus, if ∆V2 > ∆V1 or ∆V12 > ∆V1 then

(3.20) cannot hold. Consequently, as we desire that (3.20) depends on both potential barriers then

d ≥ ∆V1 −max{∆V2,∆V12} since λ2L2(x1, y1) = O(e2β(∆V1−d)) and (L(x2, y1 +L2(x2, y2))
2 =

O(e2βmax{∆V2,∆V12}). Similarly, we require that d ≤ 2(∆V1 − max{∆V2,∆V12}) otherwise the

left hand side of (3.20) will be a lower exponential order than the right hand side of (3.20). Also,

as ∆V12 > ∆V1 then x1 must be the global maximizer of V (x) on (a, b).

Consider an example potential, V (x), shown in Figure 3.4 which is a linear combination of

a sinusoidal and multiple Gaussian functions. Here y1 ≈ .876, V (y1) ≈ 1, |V ′′(y1)| ≈ 2.94,

Figure 3.4: Two barrier potential formed as a linear combination of sinusoidal and multiple Gaussian func-

tions.

x1 ≈ 1.858, V (x1) ≈ 2, |V ′′(x1)| ≈ 8, y2 ≈ 3.084, V (y2) ≈ .2, |V ′′(y2)| ≈ 2.67, x2 ≈

3.713, V (x2) ≈ .4, and |V ′′(x2)| ≈ 3.5. For the recycle density we choose d = 6/5. Then the
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left hand side of (3.20) scales as λ(1 − λ)L2(x1, y1) = O(e4β/5) whereas the right hand side

of (3.20) scales as 2β (λ2(y1 − x1)L
2(x1, y1) + (x2 − y2)L

2(x2, y2)) = O(βe2β/5). Hence, (3.20)

and consequently (3.16) holds for large β. We now map the 1d continuous overdamped Langevin

dynamics onto a three state Markov model on states (0, x1), [x1, x2), and [x2, 4). Let ∆t be a time

step then, in the large β limit, we get the following three state transition matrix [35]

P =




1− ∆t
πL(x1,y1)

∆t
2πL(x1,y1)

∆t
2πL(x1,y1)

∆t
2πL(x1,y2)

1− ∆t
2π

(
1

L(x1,y2)
+ 1

L(x2,y2)

)
∆t

2πL(x2,y2)

e−βd 1− e−βd 0




.

Table 3.6 gives a numerically calculated variance improvement factor (VIF) (3.13) and optimal VIF

(3.10), for various β, of the three state Markov model generated by P . We can see that both the VIF

Table 3.6: Variance improvement factor (VIF) and optimal VIF for the three state representation of 1d

overdamped Langevin on potential in Figure 3.4 with different choices for β.

β 5 10 15 20 25 30 35

VIF 1.47 2.37 4.70 10.99 28.05 74.41 200.97

Optimal VIF 1.65 2.80 5.30 10.96 24.53 58.46 148.07

and optimal VIF increase exponentially in β as further highlighted in Figure 3.5. An exponential

relationship is anticipated as the ratio of left hand side and right hand side of (3.20) will grow

exponentially in β. Thus, for a sufficiently large β, we have multiple orders of magnitude reduction

in the weighted ensemble estimator variance by importance sampling the initial distribution, ρ.

First, We note that the choice of recycle density, ρ, as a mixture of δ-functions is not strictly

necessary. Instead, if we assume supp(ρ) = (a, x2) and define λ =
∫ x1

a
ρ(x)dx the same analysis

and resulting condition (3.20) should hold. Although, care would need to be taken in handling

cases where the all mass of ρ in (a, x1) approaches x1 as this may slightly alter some of the under-

lying Laplace’s Method approximations used. Second, we note that for 1d overdamped Langevin

dynamics the required rare region R is (a, x1) since recycling in (a, x1) must be sufficiently dif-

ficult and transitioning to (x2, b) is far more likely from (x1, x2) than from (a, x1), for large β,
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Figure 3.5: Variance improvement factor (left) and optimal variance improvement factor (right) versus β.

Both improvement factors are exponentially dependent on β.

as ∆V1 > max{∆V2,∆V12}. Furthermore, define µ1 =
∫ x1

a
µ(x)dx and µ2 =

∫ x2

x1
µ(x)dx to

be the mass of the steady-steady distribution in (a, x1) and (x1, x2), respectively. Then, applying

Laplace’s Method to the recycle variance when importance sampling, Varν(ρh/ν), using optimal

importance sampling distribution, ν ∝ ρ|h|, we get that Varν(ρh/ν) is proportional µ1. Hence, to

obtain near zero recycle variance with importance sampling we desire µ1 to be near zero. Note that

applying Laplace’s Method, for large β, we have µ1 ∝ λL(x1, y1)+L(x2, y1) and µ2 ∝ L(x2, y2).

Thus, we require that y2 is the global minimizer of V (x) on (a, b) so that in the large β limit

µ1 ∼ 0, µ2 ∼ 1, and Varν(ρh/ν) ∼ 0. Therefore, transitioning to (a, x1) is also incredibly rare as

it involves overcoming the largest potential barrier V (x1)− V (y1).

In conclusion, when A does not contain a significant internal barrier then weighted ensem-

ble has variance stability. Alternatively, when A does contain a significant internal barrier then

a condition on the barrier sizes and recycle density must be satisfied for there to be instability

in the weighted ensemble variance. As in the three state model, variance instability in the 1d

overdamped Langevin model requires a region R ⊂ A which is rare to recycle and transition to

and has an insignificant contribution to the steady-state flux into B compared to another region
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of A. Therefore, weighted ensemble often has variance stability in initial condition importance

sampling whereas adaptive multilevel splitting does not, which is a benefit of weighted ensemble

over adaptive multilevel splitting.
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Appendix A

Provided in this appendix is more details for Section 3.2.1 on the development of conditions

for powers p, q, r, s, and t such that initial condition importance sampling requirement (3.9) holds.

First, recall the transition matrix of interest is

K =



1− ϵp − ϵq ϵp ϵq

ϵr 1− ϵr − ϵs ϵs

1− ϵt ϵt 0




which has steady-state distribution, µ = [µ1 µ2 µ3], given by

µ1 =
ϵr + ϵs − ϵs+t

C
, µ2 =

ϵp + ϵq+t

C
, and µ3 =

ϵq+r + ϵp+s + ϵq+s

C
(A.1)

where C = ϵq+r+ ϵq+s+ ϵq+t+ ϵp+s− ϵs+t+ ϵp+ ϵr+ ϵs. We are interested in state B = {3} so let

f = [0 0 1]T . Define v2 := lim
T→∞

VarK(ht+1,T ) = VarK(h) where h = [h1 h2 h3]
T is the solution

to the Poisson equation (I −K)h = f − µ(f) satisfying µ(h) = 0 [34].

Under certain assumption, given in Section 3.2.1, the only variance is from the mutation step

which we can approximate, for each bin at step t, by

σ2
t =

[
σ2
1(t) σ

2
2(t) σ

2
3(t)
]T

:=

[
µ2
1

Nt(1)
VarK(1,·)(h)

µ2
2

Nt(2)
VarK(2,·)(h)

µ2
3

Nt(3)
Varρ(h)

]T
.

As discussed in Section 3.2.1, for initial condition importance sampling to have significant benefit

we want (3.9), which is

µ2
1VarK(1,·)(h) + µ2

2VarK(2,·)(h) ≤ µ2
3Varρ(h),

to hold. So, we will assume a uniform allocation Nt(1) = Nt(2) = Nt(3) and consequently drop

the dependence of σ2
1(t), σ

2
2(t), and σ2

3(t) on the particle allocation and time. We write σ2
1, σ

2
2 , and

σ2
3 for the mutation variance terms which are independent of the particle allocation and time. Now

62



we aim to find conditions on the powers p, q, r, s, and t such that for k1, k2 > 0

σ2
1

σ2
3

=
µ2
1VarK(1,·)(h)

µ2
3Varρ(h)

= O(ϵk1) and
σ2
2

σ2
3

=
µ2
2VarK(2,·)(h)

µ2
3Varρ(h)

= O(ϵk2).

Note, using basic linear algebra the mutation variances from bins u1, u2, and u3 are

σ2
1 =

1

C4
(ϵr + ϵs − ϵt+s)2(ϵp+2q + ϵ2p+q + ϵp+2s + ϵq+2r + ϵq+2s + 2ϵp+q+r + 2ϵq+r+s)

− 1

C4
(ϵr + ϵs − ϵt+s)2(ϵ2p+2s + ϵ2q+2r + ϵ2q+2s + 2ϵp+q+2s + 2ϵ2q+r+s + 2ϵp+q+r+s),

σ2
2 =

1

C4
(ϵq+t + ϵp)2(ϵ2p+s + ϵ2q+r + ϵ2q+s + ϵr+2s + ϵ2r+s + 2ϵp+q+s + 2ϵp+r+s)

− 1

C4
(ϵq+t + ϵp)2(ϵ2p+2s + ϵ2q+2r + ϵ2q+2s + 2ϵp+q+2s + 2ϵ2q+r+s + 2ϵp+q+r+s),

and

σ2
3 =

1

C4
ϵt(1− ϵt)(ϵq − ϵs)2(ϵp+s + ϵq+r + ϵq+s)2,

respectively. Recall C is the normalization of the steady-state distribution, µ. Since ϵ is a small

parameter, we can approximate C4σ2
1, C

4σ2
2 , and C4σ2

3 by considering only the smallest powers on

ϵ, which gives

C4σ2
1 ≈ (xr + xs)2(xp+2q + x2p+q + xp+2s + xq+2r + xq+2s)

C4σ2
2 ≈ (xq+t + xp)2(x2p+s + x2q+r + x2q+s + xr+2s + x2r+s)

and

C4σ2
3 ≈ xt(xq − xs)2(xp+s + xq+r + xq+s)2.

Now, we split each of the variance terms C4σ2
1, C

4σ2
2 , and C4σ2

3 into specific cases of the

lowest power ϵ term when the powers p, q, r, s, and t satisfy certain inequalities. Through simple
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comparisons of inequalities for C4σ2
1 this gives the following cases

C4σ2
1 =





O(ϵ2s+p+2q) r ≥ s, q ≤ p, q ≤ s, p+ q ≤ 2r, and p+ q ≤ 2s

O(ϵ2s+2p+q) r ≥ s, p ≤ q, p+ q ≤ 2s, and p ≤ s

O(ϵ4s+p) r ≥ s, s ≤ q, 2s ≤ p+ q, p+ 2s ≤ q + 2r, and p ≤ q

O(ϵ4s+q) r ≥ s, s ≤ p, 2s ≤ p+ q, and q ≤ p

O(ϵ2r+p+2q) r ≤ s, q ≤ p, q ≤ s, p+ q ≤ 2r, and p+ q ≤ 2s

O(ϵ2r+2p+q) r ≤ s, p ≤ q, p+ q ≤ 2s, p ≤ r, and p ≤ s

O(ϵ2r+p+2s) r ≤ s, s ≤ q, 2s ≤ p+ q, p+ 2s ≤ q + 2r, and p ≤ q

O(ϵ4r+q) r ≤ s, r ≤ p, 2r ≤ p+ q, and q + 2r ≤ p+ 2s.

For C4σ2
2 we get the following cases

C4σ2
2 =





O(ϵ2q+2t+2q+r) p ≥ q + t, 2q + r ≤ 2p+ s, r ≤ s, q ≤ s, and 2q ≤ r + s

O(ϵ2q+2t+2q+s) p ≥ q + t, s ≤ r, and 2q ≤ r + s

O(ϵ2q+2t+r+2s) p ≥ q + t, r + s ≤ 2p, s ≤ q, r + s ≤ 2q, and s ≤ r

O(ϵ2q+2t+2r+s) p ≥ q + t, r ≤ p, r ≤ q, r + s ≤ 2q, and r ≤ s

O(ϵ2p+2p+s) 2p+ s ≤ 2q + r, p ≤ q, 2p ≤ r + s, and p ≤ r

O(ϵ2p+2q+r) p ≤ q + t, 2q + r ≤ 2p+ s, r ≤ s, q ≤ s, and 2q ≤ r + s

O(ϵ2p+2q+s) p ≤ q + t, q ≤ p, s ≤ r, and 2q ≤ r + s

O(ϵ2p+r+2s) p ≤ q + t, r + s ≤ 2p, s ≤ q, r + s ≤ 2q, and s ≤ r

O(ϵ2p+2r+s) p ≤ q + t, r ≤ p, r ≤ q, r + s ≤ 2q, and r ≤ s.
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Finally, for C4σ2
3 we get the following cases

C4σ2
3 =





O(ϵt+2q+2p+2s) q < s, p+ s ≤ q + r, and p ≤ q

O(ϵt+4q+2r) q < s, q + r ≤ p+ s, and r ≤ s

O(ϵt+4q+2s) q < s, q ≤ p, and s ≤ r

O(ϵt+2p+4s) s < q, p+ s ≤ q + r, and p ≤ q

O(ϵt+2q+2r+2s) s < q, q + r ≤ p+ s, and r ≤ s

O(ϵt+2q+4s) s < q, q ≤ p, and s ≤ r.

Next, combining cases of C4σ2
1 and C4σ2

3 with comparisons of inequalities and removing cases

with contradicting inequalities we have

σ2
1

σ2
3

=





O(ϵp−t−2q) r ≥ s, q < s, q ≤ p, and p+ q ≤ 2s

O(ϵ2s−t−3q) r ≥ s, q < s, q ≤ p, s ≤ p, and 2s ≤ p+ q

O(ϵp−t−2q) r ≤ s, q < s, q ≤ p, and p+ q ≤ 2r

O(ϵ2r−t−3q) r ≤ s, q < s, r ≤ p, and 2r ≤ p+ q.

Note that cases where σ2
1 > σ2

3 is enforced through the inequalities on powers p, q, r, s, and t are

not considered as then (3.9) cannot hold.
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Similarly, by combining cases of C4σ2
2 and C4σ2

3 and removing cases with contradicting in-

equalities we have

σ2
2

σ2
3

=





O(ϵt−r) p ≥ q + t, q < s, r ≤ s, 2q + r ≤ 2p+ s, 2q ≤ r + s, and q + r ≤ p+ s

O(ϵt−s) p ≥ q + t, q < s, s ≤ r, 2q ≤ r + s, and q ≤ p

O(ϵt+2q−3s) p ≥ q + t, s < q, s ≤ r, 2q ≤ r + s, and q ≤ p

O(ϵt+r−2s) p ≥ q + t, s < q, s ≤ r, r + s ≤ 2p, and r + s ≤ 2q

O(ϵt+s−2q) p ≥ q + t, q < s, r ≤ s, r ≤ q, r ≤ p, and r + s ≤ 2q

O(ϵt−s) p ≥ q + t, s < q, r ≤ s, r ≤ p, and r ≤ q

O(ϵ2p−t−3s) p ≤ q, s < q, p ≤ r, 2p+ s ≤ 2q + r and 2p ≤ r + s

O(ϵ2p−t−2q−r) p ≤ q + t, q < s, r ≤ s, 2q + r ≤ 2p+ s, 2q ≤ r + s, and q + r ≤ p+ s

O(ϵ2p−t−2q−s) p ≤ q + t, q < s, s ≤ r, q ≤ p, and 2q ≤ r + s

O(ϵ2p−t−3s) p ≤ q + t, s < q, s ≤ r, q ≤ p, and 2q ≤ r + s

O(ϵ2p+r−t−2q−2s) p ≤ q + t, s < q, s ≤ r, r + s ≤ 2p, r + s ≤ 2q, and q ≤ p

O(ϵ2p+s−t−4q) p ≤ q + t, q < s, r ≤ s, r ≤ p, r ≤ q, and r + s ≤ 2q

O(ϵ2p−t−2q−s) p ≤ q + t, s < q, r ≤ s, r ≤ p, r ≤ q, and q + r ≤ p+ s.

Again that cases where σ2
2 > σ2

3 is enforced through the inequalities on powers p, q, r, s, and t are

not considered as then (3.9) will not hold. Finally, we compare cases of σ2
1/σ

2
3 and σ2

2/σ
2
3 to ensure,

with the corresponding inequality requirements on powers p, q, r, s, and t, that σ2
1/σ

2
3 = O(ϵk1) and

σ2
2/σ

2
3 = O(ϵk2) for k1, k2 ≥ 0. These final comparisons produces the four cases of inequalities on

powers p, q, r, s, and t given in equation (3.12)
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