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ABSTRACT 
 

 

 

EXPLORATION OF ANAMMOX-BASED DEAMMONIFICATION AND PHOSPHORUS 

RECOVERY SYSTEMS USING BIOMOLECULAR TOOLS 

 
 
 

Biomolecular tools have been used for numerous applications in a wide range of industries 

including healthcare, pharmaceuticals, and material science. However, the use of biomolecular 

tools has more recently been used to advance wastewater treatment (WWT) processes, specifically 

the use of DNA extraction techniques and quantitative polymerase chain reaction (qPCR). DNA 

extraction and qPCR techniques can be useful indicators of reactor performance due to their ability 

to quantify the relative abundance of target genes, and thus determine the microbial ecology of a 

system. Coupling biomolecular tools with two advanced technologies for nutrient removal such as 

phosphorus (P) recovery, in the form of struvite precipitation, and nitrogen (N) removal, through 

deammonification using anaerobic ammonia oxidizing bacteria, Anammox (AMX), can further 

advance WWT processes. Since the struvite formation process only removes a small molar fraction 

of the NH4
+-N from the wastewater, and AMX bacteria consume NH4

+-N, integration of P recovery 

and Anammox-based deammonification technologies is attractive for nutrient removal in 

wastewater treatment plants (WWTPs). However, due to the relatively recent use of biomolecular 

tools in WWT, biomass extraction methods, from fixed biofilm media, and DNA extraction 

processes would benefit from further advancements to minimize biases, with the goal of improving 

data accuracy. Furthermore, no research has been found where a mass balance has been developed 

for total alkalinity contributing species in wastewaters and understanding the effects of P recovery 

on the species contributing to total alkalinity as well as their downstream effects on an Anammox-
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based deammonification. Therefore, to investigate the use of biomolecular tools in WWT systems, 

with advanced nutrient removal processes, and determine the effects of P recovery on an 

Anammox-based downstream deammonification process, two independent research studies were 

conducted.  

In the first research study, a lab-scale P recovery process, in the form of struvite 

crystallization, was coupled with a bench-scale moving bed biofilm reactor (MBBR), inoculated 

with fixed biofilm AMX bacteria. The research objectives for the first study were to: 1) advance 

published Anammox fixed biofilm sample preparation and DNA extraction methods, 2) determine 

if correlations could be made from steady-state microbial ecology data and MBBR performance 

data, 3) evaluate the impacts of a P recovery process on the fate of inorganic carbon (especially 

carbonates), phosphate, sulfides, and volatile fatty acids, 4) assess the effects of a P recovery 

process on the downstream deammonification process, and 5) analyze the effects of dissolved 

oxygen, surface area loading rates, and alkalinity/ammonia ratio on MBBR performance.  

The following advancements were made to existing methods for biomass extraction from 

fixed biofilm media and DNA extraction protocols, which aided in minimizing biases: 1) enhanced 

biomass extraction from fixed biofilm media and mechanical cell lysis using liquid nitrogen and 

striking of the media carrier with a pestle, 2) increased mechanical and chemical cell lysis through 

use of a DNA isolation kit optimized for biofilms, and 3) increased inhibitor removal. 

Biomolecular tools were used to determine steady-state microbial ecology, targeting AMX 

bacteria, ammonia oxidizing bacteria (AOB), and nitrite oxidizing bacteria (NOB). The maximum 

AMX, AOB, and NOB concentrations achieved from fixed biofilm media during MBBR steady-

state were 9.43x108 ± 1.62x108 copies/mL, 3.43x107 ± 1.03x107 copies/mL, and 4.96x105 ± 

1.51x105 copies/mL, respectively. Calculation of the average AMX, AOB, and NOB relative 
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abundances during steady-state were 4.1x108 copies/mL, 1.3x107 copies/mL, and 1.7x106 

copies/mL, respectively. Comparative analysis of the averaged AMX, AOB, and NOB relative 

abundances observed during steady-state to approximated, averaged relative abundances in a 

published study indicate that the AMX concentrations were greater, while the AOB and NOB 

concenters were less, 7.7x107 copies/mL, 2.3x108 copies/mL, and 7.7x107 copies/mL,  8.2x106 

copies/mL, respectively (Park et al., 2010). The findings from this study are also consistent with 

published studies, which indicate a greater relative abundance of AMX to AOB (Persson et al., 

2017; Laureni et al., 2015). 

Additionally, the effects of P recovery on the downstream deammonification process were 

analyzed during the first research study. The average ratio of bicarbonate alkalinity consumed 

within the reactor based on ammonia removal rate was estimated to be 3.33:1. The digested sludge 

and centrate at Denver Metro Wastewater Reclamation District (MWRD) were already limited by 

the ratio of available bicarbonate alkalinity to ammonia concentration, 2.83:1 and 2.91:1, 

respectively. A lab-scale simulation of the P recovery process on centrate resulted in a further 

decrease of said ratio by 15% (2.48:1). This bicarbonate alkalinity limitation was clearly observed 

through its direct correlation with reactor performance. Comparative analysis was conducted using 

a constant surface area loading rate (2.7 g NH3/m2-day) on centrate with and without P recovery. 

When using centrate with P recovery, the MBBR performed the poorest at 59.9% efficiency, due 

to a decrease in bicarbonate alkalinity, and subsequently a loss of inorganic carbon (IC). Since the 

deammonification process is driven by AMX bacteria, which are dependent on AOB for their 

ability to oxidize NH4
+ to NO2

-, and IC is the main carbon source of both AMX bacteria and AOB, 

these findings showed that IC is a more accurate indicator of reactor performance, compared to 

total alkalinity. The reactor displayed an immediate improvement when fed with centrate without 
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P recovery by performing at 67.8% efficiency. Extrapolation of measured data indicates that if the 

observed consumption ratio of 3.33:1 was achieved, the projected reactor efficiency would be 

75.5% TIN removal at a loading rate of 2.7 g NH3/m2-day.  

The second independent research study conducted was a case study. During the case study, 

biomolecular tools were applied on a full-scale suspended Anammox granules reactor to aid in 

explaining operational upsets. The main objectives of this study were to: 1) develop a sampling 

method that minimized biases of the microbial ecology results, and 2) determine the microbial 

ecology of the Anammox system to help troubleshoot operational issues observed in the on-site 

processes. Microbial ecology results from the full-scale suspended Anammox granule reactor 

indicated that the reactor either had no AMX bacteria or concentrations were below the detection 

limit. The operators of the full-scale Anammox reactor had communicated that operational issues 

with the pumps had occurred, and they hypothesized that the pump issues led to decreased 

concentrations of AMX bacteria in the reactor. Therefore, these findings helped explain the 

observations made by on-site operators of the full-scale Anammox reactor. 

In summary, findings confirmed the hypothesis that P recovery impacted a downstream 

Anammox-based deammonification process. Originally it was hypothesized that total alkalinity 

would be an accurate predictor of reactor performance; however, the results determined that IC is 

a more accurate indicator for reactor performance. Advancements to published biomass extraction 

methods from fixed biofilm media and DNA extraction methods aided in reducing biases. 

Application of biomolecular tools to samples from a full-scale WWTP demonstrated the 

effectiveness of these technologies in helping explain operation upsets. Overall, findings from both 

independent research studies could help guide optimization of WWT systems, which integrate 

biomolecular tools, P recovery processes, and Anammox-based deammonification, since these 
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technologies are gaining popularity for their abilities to determine optimal reactor performance, 

enhance resource recovery, and reduce energy consumption in WWTPs 
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CHAPTER 1: INTRODUCTION 
 

 

 

Projections estimate that the global human population is growing at a rate of 0.94% per 

year (United Nations, 2015). As the number of people increase worldwide, existing challenges 

continue to become more severe, including limited power resources, excess nutrient (nitrogen and 

phosphorus) pollution, and the desperate need to optimize wastewater treatment (WWT) processes 

to treat increased volumes of wastewater safely and efficiently. 

According to the United States Environmental Protection Agency (US EPA), wastewater 

treatment plants (WWTPs) in the U.S. process over 128,700 m3 of wastewater every day. To move 

and treat the large volumes of wastewater generated and water required daily requires nearly 4% 

of the U.S.’s electricity usage (Electric Power Research Institute, 2002). A report by the Electric 

Power Research Institute estimates that daily WTTPs in the U.S. using activated sludge and 

advanced WWT without and with nitrification consume approximately 0.349 kWh/m3, 0.407 

kWh/m3, and 0.505 kWh/m3, respectively (Electric Power Research Institute, 2002). Figure 1 

below illustrates a process flow diagram of a conventional activated sludge WWT process that 

uses traditional biological nitrogen removal (BNR) processes. 
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Figure 1- Process flow diagram of conventional activated sludge wastewater treatment process (Water 
and Sustainability, 2002) 

While effluent from conventional activated sludge WWTPs have been treated for harmful 

pathogens, high concentrations of nutrients, specifically nitrogen and phosphorus, remain. When 

nitrogen and phosphorus concentrations exceed the nutrient loading rates needed to maintain 

healthy aquatic ecosystems in the receiving water body, nutrient pollution occurs. Among the most 

significant occurrences of nutrient pollution, from excess nitrogen, is eutrophication. During 

eutrophication, large algal blooms form, decreasing water quality, and negatively affecting humans 

and animals. As the algae decay, dissolved oxygen (DO) is consumed, creating hypoxic zones. 

Figure 2 below illustrates the global eutrophic and hypoxic areas.  
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Figure 2- Global hypoxic and eutrophic coastal areas due to nutrient pollution (World Resources 
Institute, 2008) 

Any plant or animal life existing in these hypoxic and eutrophic zones then die due to the lack of 

available DO. Eutrophication creates a ripple effect, negatively impacting aquatic life and humans 

because of decreased biodiversity which also results in a depletion of marine food sources. People 

living in coastal and freshwater recreational areas experience economic losses due to a decrease in 

resources. In the U.S. alone, approximately $2.2 billion are lost annually due to eutrophication of 

freshwater sources, which impact recreational waters, waterfront real estate, spending on recovery 

of threatened and endangered species, and drinking water (Dodds et al., 2009). While in the 

European Union, economic losses due to eutrophication account for approximately €75k – €485k 

annually and monetary losses are valued at £29k – £118k annually in the United Kingdom 

(Sanseverino et al., 2016). Additionally, excess nitrogen compounds in the air can produce 

pollutants such as ammonia and ozone, which can impair a living organism’s ability to breathe, 

limit visibility, and alter plant growth (Environmental Protection Agency, 2017). 
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The Clean Water Act section 402 and Code of Federal Regulations 122.1(b) establishes the 

framework for the National Pollutant Discharge Elimination System (NPDES), by requiring 

permits for any pollutants discharged from a point source to U.S. water bodies. These efforts, set 

by the US EPA, are meant to develop and enforce more stringent state and federal regulations to 

help alleviate and prevent the impact of nutrient pollution on existing and potentially impaired 

water bodies. Therefore, as nutrient discharge limits become increasingly stringent, and resources 

such as energy, land, and money become limited, efforts towards developing innovative 

approaches and designs as well as optimizing existing WWT systems to meet corresponding 

challenges is crucial. 

One advancement within WWTPs is the addition of phosphorus (P) removal and recovery 

processes.  Studies on P removal and recovery from wastewater in the form of struvite, a white 

crystalline compound (MgNH4PO4
.6H2O), have successfully been shown to remove and recover 

more than 90% P from centrate (Adnan et al., 2004; Fattah et al., 2008a; Fattah et al., 2008b). 

Struvite from P recovery is a beneficial product in the agriculture industry as a fertilizer, because 

of its composition and struvite production from wastewater can help alleviate dependence on 

global P reserves, which are becoming depleted (Suszyński, 2016). One limitation with the struvite 

recovery process is that a significant amount of NH4
+-N remains in the treated effluent, since 

struvite chemistry requires equimolar N to P molar ratios, while the N:P molar ratio in centrate is 

around 20:1. However, this limitation can be beneficial for systems that couple P recovery 

processes with deammonification using anaerobic ammonia oxidizing bacteria, Anammox 

(AMX), since AMX consume NH4
+-N and NO2

--N to treat wastewater (van der Star et al., 2007).  

Anammox-based deammonification systems are advanced technologies within the WWT 

industry for optimally removing nitrogen. Unlike conventional nitrification-denitrification 
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processes, Anammox-based deammonification processes require less resources, including DO, 

energy, external carbon sources, and equipment, and if maintained then can be a very lucrative 

alternative to conventional WWT processes. While the Anammox-based deammonification 

process was discovered in the early 1990s, only 100 full-scale systems existed in 2014 (Lackner 

et al., 2014; Marie et al., 2014). The first full-scale granular anammox system was implemented 

in 2007, after 3.5 years of start-up work (Ni et al., 2013). 

The most challenging limitation of an Anammox-based deammonification system is 

maintaining a balanced microbial ecology between AMX, ammonia oxidizing bacteria (AOB), and 

nitrite oxidizing bacteria (NOB). Literature suggests methods for determining the microbial 

ecology by quantifying target genes for AMX, AOB, and NOB populations of fixed biofilm and 

suspended granules (Park et al., 2015; Marie et al., 2014; Li et al., 2011). However, additional 

research was conducted to optimize sample prep and DNA extraction processes to minimize biases 

with the goal of improving data accuracy. The results from the advancements made to existing 

biomolecular tool techniques were compared with reactor performance to observe their effects and 

the effects of P recovery, in the form of struvite crystallization, on downstream deammonification 

processes.  

1.1 Research objectives 

This work involved conducting two independent research studies: 1) analyses of fixed 

biofilm microbial ecology and performance data of an Anammox-based deammonification moving 

bed biofilm reactor (MBBR) using centrate with and without phosphorus (P) recovery and 2) 

analyses of the microbial ecology in a full-scale, operational reactor inoculated with suspended 

Anammox granules. The research objectives for the first study were to: 



6 

• Advance published Anammox fixed biofilm sample preparation and DNA 

extraction methods 

• Determine if correlations could be made from steady-state microbial ecology data 

and MBBR performance data 

• Evaluate the impacts of a P recovery process on the fate of inorganic carbon 

(especially carbonates), phosphate, sulfides, and volatile fatty acids   

•  Assess the effects of a P recovery process on the downstream deammonification 

process 

• Analyze the effects of dissolved oxygen, surface area loading rates, and 

alkalinity/ammonia ratio on MBBR performance 

The research objectives for the second study were to: 

• Develop a sampling method that minimized biases of the microbial ecology results  

• Determine the microbial ecology of the reactor and overflow and underflow process 

streams to help troubleshoot operational issues observed in the on-site processes  

1.2 Thesis overview 

Chapter 2 describes the background for this study by presenting a literature review on 

biomolecular tools (DNA extractions and qPCR), Anammox bacteria, Anammox-based 

deammonification reactors, and the phosphorus recovery/struvite formation process.  Chapter 3 is 

segmented into two parts: quantification of target genes to determine the AMX, AOB, and NOB 

concentrations in fixed biofilm seeded media in a MBBR and quantification of target genes to 

determine the AMX, AOB, and NOB concentrations of suspended granules in a full-scale, 

operational reactor. Detailed in chapter 3 are advancements made to published fixed biofilm DNA 
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extraction protocols, analyses conducted between the microbial ecology data and the reactor 

performance data of a MBBR, and analyses conducted on the microbial ecology data obtained 

from a full-scale, operational reactor containing suspended granules. Chapter 4 presents aqueous 

chemistry concepts, experiments, and analyses conducted on centrate with and without phosphorus 

recovery to determine performance of MBBR. Chapter 5 provides a summary and conclusion 

along with recommendations for advancing the use of biomolecular tools to optimize the 

Anammox-based deammonification processes in wastewater treatment.  
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 
 

 

 

2.1 Biomolecular tools 

Biomolecular tools have been used for numerous applications in a wide range of industries 

including healthcare, pharmaceuticals, and material science. However, biomolecular tools have 

more recently been used to help advance wastewater treatment (WWT) processes, specifically the 

use of DNA extraction techniques and qPCR. DNA extraction techniques allow for DNA to be 

extracted from a sample, which is then used in downstream qPCR analysis. qPCR techniques use 

forward and reverse primers to target specific genes from the extracted DNA, which can be 

quantified to determine the relative abundance of species of interest to determine the microbial 

ecology of the WWT system.   

2.1.1 DNA extraction techniques 

There are three types of general techniques used for DNA extraction: solid phase, inorganic 

and organic DNA extraction. The DNA extraction technique used in this study was solid phase 

DNA extraction, wherein a solid support, such as microbeads, were used to immobilize DNA. The 

general steps used for DNA extraction in this study were: 

1. Cell lysis: the cell membrane and/or cell walls are broken open 

a. Mechanical lysis: bead beating 

b. Chemical lysis: addition of a dry chemical reagent in the bead tube to help break 

down the extracellular polymer substances present in biofilms   

c. Heat lysis: sample was incubated at 65°C for 5 minutes 

2. Cellular debris (non-DNA organic and inorganic) removal  

3. Precipitate nucleic acids with ethanol 



9 

4. Remove residual contaminating nucleic acids 

a. Remove DNA by DNase treatment 

The exact DNA extraction procedure used in this study was followed based on the PowerBiofilm 

DNA Isolation Kit protocol (MoBio Laboratories, Carlsbad, CA). 

2.1.2 Quantitative Polymerase Chain Reaction (qPCR) 

Quantitative Polymerase Chain Reaction (qPCR) is a primer-directed in vitro enzymatic 

reaction for the production/amplification of a target DNA fragment (Blair et al., 1992). There are 

three main PCR steps: denaturation, annealing, and elongation. The temperature and duration of 

each step varies, depending on the primers used. In general, during the denaturation step, DNA 

strands are separated at 94°C. Next primers bind to the DNA target in the annealing step, which 

occurs in the temperature range from 45°C – 60°C. Finally, new DNA is synthesized from the 3’ 

end during elongation. The elongation temperature varies depending on the polymerase used. The 

three PCR steps undergo 20 – 30 cycles, on average, before the qPCR process is finalized, 

producing the PCR product, or amplicon. Figure 3 below presents a visualization of the sequence 

of steps during a PCR.  

 

Figure 3- PCR process (modified from White, 2016) 

Denaturation 

Annealing 
Elongation 
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2.2 Anaerobic ammonia oxidizing (Anammox) bacteria 

Anaerobic ammonium oxidizing, Anammox (AMX), bacteria are obligate anaerobic 

autotrophs that utilize carbon dioxide as their sole carbon source and use nitrite as an electron 

donor to produce cell material, as shown in Eq – 1 below (Madigan et al., 2011): 

Eq – 1: CO2 + 2NO2
- + H2O  CH2O + 2NO3

- 

AMX bacteria were first discovered in wastewater sludge in the early 1990s (Kuenen, 

2008). The applications of AMX bacteria in WWT processes became apparent when it was 

discovered that ammonia (NH3) or ammonium (NH4
+) can be oxidized by AMX bacteria with 

nitrite (NO2
-) as the electron acceptor to produce nitrogen gas (N2 (g)), as indicated in Eq – 2 below 

(Strous et al., 1998): 

Eq – 2: 1NH4
+ + 1.32NO2

- + 0.066HCO3
- + 0.13H+  1.02N2 + 0.26NO3

-
 + 

0.066CH2O0.5N0.15 + 2.03H2O  

While Eq – 2 above provides the chemical stoichiometry behind the Anammox reaction, the 

bioenergetics more specifically explain the Anammox reaction.  

First, NO2
--N is reduced to nitric oxide (NO) by nitrite reductase (NiR). Then NO reacts 

with ammonium (NH4
+) to form hydrazine (N2H4) by activity of the enzyme hydrazine hydrolase 

(HH). N2H4 is then oxidized to N2 via a two-electron oxidation by the enzyme hydrazine 

dehydrogenase (HZO). Some of the electrons generated at this step enter the anammoxosome 

electron transport chain which produces a proton motive force and ATP by ATPase, while others 

feed back into the system to drive the electron-consuming earlier steps (Madigan et al., 2011). The 

bioenergetics of the Anammox reaction are illustrated in Figure 4 below.  
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Figure 4- Bioenergetics of the anammox reactions (modified from Madigan et al., 2011) 

These Anammox reactions occur within a membrane bound structure called the 

anammoxosome. As illustrated in Figure 5 below, the anammoxosome accounts for approximately 

half of the cell’s volume and is designed to protect the cell from the toxic intermediates produced 

during the anammox reaction, specifically N2H4, a very strong reductant (Madigan et al., 2011).  

 

Figure 5- Schematic of Candidatus Kuenenia stuttgartiiensis cell (modified from Kuenen, 2008) 
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2.2.1 Anammox metabolic inhibition 

 Since optimal AMX bacterial growth occurs in anaerobic conditions, DO concentrations 

significantly impact the Anammox process, and excess DO can reversibly inhibit AMX growth 

(Szatkowska et al., 2014). However, AOB require aerobic conditions to oxidize NH3-N to NO2
--

N, and optimal DO concentrations results in efficient NO2
--N production, which is required for the 

Anammox process (Cema et al., 2011). In fact, the NO2
--N production rate is the rate-limiting step 

for the Anammox process and the overall reaction in a single stage system (Szatkowska et al., 

2007b). While AMX use NO2
--N as a substrate for cellular material production, literature reports 

that NO2
--N concentrations can reduce, or at greater concentrations, reversibly inhibit cellular 

metabolism (Szatkowska et al., 2014).  

Studies also indicate that specific concentrations of hydrazine, methanol, and free ammonia 

and pH and temperature inhibit Anammox metabolism. Research indicates that the addition of 

N2H4, to a biofilm reactor significantly decreased Anammox activity after 80 days (Schalk et al., 

1997). However, it was reported that inactive AMX in a culture medium may become active again 

with the addition of catalytic amounts of N2H4 or hydroxylamine (Strous et al., 1999). Experiments 

performed with AMX enrichment cultures from wastewater suggest that methanol inhibits the 

Anammox process, and at concentrations ≥0.5 mM complete and irreversible loss of AMX activity 

was observed (Güven et al., 2005). Tang et al. (2009) suggests that free ammonia concentrations 

and pH levels contributed to the destabilization of an Anammox bioreactor seeded with anaerobic 

granular sludge during the first 125 days of reactor startup. Studies indicate that Anammox-based 

deammonification processes may be limited by lower temperatures, since the optimal temperature 

for AMX is 37°C (Isaka et al., 2008; Vázquez-Padín et al., 2011). 
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2.3 Anammox-based deammonification processes 

With the discovery of AMX bacteria, researchers quickly saw the opportunity to study 

Anammox reactions to optimize WWTPs from the existing conventional nitrification-

denitrification processes. Although the Anammox process has been utilized for treatment of highly 

concentrated ammonium streams, in both bench-scale and full-scale systems, such as landfill 

leachate, swine manure, effluent from digested fish canning, and tannery wastewater, studies have 

shown that the most successful application of the Anammox process is in the side-stream treatment 

of centrate and filtrate (reject water) from dewatered anaerobically digested biosolids (Szatkowska 

et al., 2014). By 2014, 100 Anammox-based deammonification processes had been implemented 

in full-scale WWTPs (Lackner et al., 2014; Marie et al., 2014).  

As with any WWTP, Anammox-based deammonification systems have various 

configurations depending on the wastewater feed quality and the end use or discharge permit limits 

of the treated effluent. Figure 6 below illustrates the process flows for an on-site pilot test 

conducted at Blue Plains Advanced WWTP. The pilot configuration employs side-stream 

deammonification of dewatered sludge from the solids handling processes and recycles the AMX 

and AOB back to the mainstream deammonification processes. The overall process was evaluated 

to determine if a seeded media mainstream deammonification process was possible for 

implementation in the existing B-stage process (separate sludge nitrification/denitrification 

process), while meeting stringent nutrient limits of 3 mg/L total nitrogen and 0.18 mg/L total 

phosphorus (O’Shaughnessy, 2015).  
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Figure 6- Process flow diagram of mainstream and side-stream deammonification using seeded 
Anammox for on-site pilot tests conducted at Blue Plains Advanced Wastewater Treatment Plant 

(O’Shaughnessy, 2015) 

 

2.3.1 Advantages of Anammox-based deammonification processes 

A study using a bench-scale Anammox MBBR reported achieving a maximum total 

nitrogen (TN) removal rate of 1.1 g-N/L-day and studies using a bench-scale Anammox upflow 

anaerobic sludge blanket (UASB) reactor reported achieving a maximum TN removal rate of 10.7 

g-N/L-day (Yokota et al., 2018) and 18.3 g-N/L-day (Casagrande et al., 2013). Experiments 

conducted on the maximum nitrification and denitrification rates achieved in a two-sludge system, 

with a nitrifying activated sludge and a denitrifying activated sludge, were 0.37 g N-NH4+ / g 

VSS-day (at 25°C) and 0.11 g N-NOx
− / g VSS-d (using methanol) (Carrera et al., 2013). 

Additionally, BNRs can only achieve average TN concentrations of 8-10 mg/L and average total 

phosphorus concentrations of 1-3 mg/L in the treated effluent (Freed, 2007). One study reported 

that a WWTP incorporating an Anammox-based deammonification system could reduce the 

marine eutrophication potential up to 16% (Hauck et al., 2016). Therefore, Anammox-based 

deammonifcation processes are more efficient at reducing N loading into water bodies, which 
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decreases nutrient pollution and consequently mitigates eutrophication, helping WWTPs meet 

stringent discharge limits. The importance of not only meeting discharge limits but also managing 

the N cycle is recognized through implementation of an Anammox-based deammonification 

system.  

In 2008, the National Academy of Engineering (NAE) published their NAE Grand 

Challenges for Engineering report, which included 14 global challenges and goals necessary for 

sustaining life on earth. Among the 14 goals is managing the N cycle by restoring its balance 

through better fertilization technologies, increased N removal from WWT effluent, and recycling 

wastes high in N, such as food, manure, and other organic wastes (NAE, 2008). Like the NAE, 

state and federal government regulatory agencies in the U.S. and regulatory agencies in the 

European Union (EU) recognize the significant impacts an unbalanced N cycle has on all living 

organisms, which is why nutrient discharge permits are becoming increasingly stringent. In 

Colorado, the current discharge permit for total inorganic nitrogen (TIN) is 7 mg/L (Colorado 

department of public health and environment water quality control commission, 2012).  The 

European Water Framework Directive (2000/60/EC) implemented the Urban Waste Water 

Directive (92/271/EEC), which states that European WWTPs can discharge 10-15 mg-N/L to 

sensitive areas, depending on the size of the community, and that 70–80% of the initial amount of 

N present in the influent is removed (Hauck et al., 2016). Another benefit of Anammox-based 

deammonification processes is that unlike conventional WWTPs, that rely on traditional BNR 

processes, Anammox-based deammonification processes require less DO.  

Since AMX are obligatory anaerobic bacteria, they do not require dissolved oxygen (DO). 

Rather, DO requirements are for other microorganisms in the deammonification process such as 

AOBs and NOBs. Estimates indicate that Anammox-based deammonification processes consume 
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62.5% less oxygen (Park et al., 2015). Therefore, as a result of lower DO requirements, WWTPs 

implementing Anammox-based deammonification processes have reduced power consumption 

and require less aeration pumps and equipment, which in turn reduces capital and operation & 

maintenance (O&M) costs. 

Additionally, Anammox-based deammonification processes require no external carbon 

source and have lower biomass yields compared to conventional BNRs (Park et al., 2015). 

Whereas in conventional nitrification/denitrification processes 1.91 mg of methanol is required 

per mg of oxidized N removed (Water Environment Federation, 2017) and this can be a major 

contributor to operating costs.  

2.3.2 Limitations of Anammox-based deammonification processes  

 A limitation to Anammox-based deammonification processes is the growth rate of AMX 

bacteria. AMX bacteria have a very slow growth rate (μ = 0.0027 h-1) (Strous et al., 1998; van der 

Star et al., 2007), which results in delayed reactor performance observations. The inability to 

quickly observe the effects of altered process and operating conditions could easily result in 

process upsets to which the causes are not easily known.  

Another disadvantage of Anammox-based deammonification processes is the need to 

maintain a balanced microbial ecology. Studies have shown that a balanced microbial ecology 

between AMX, AOB, and NOBs is vital for successful operation of an Anammox-based 

deammonification system (Li et al., 2011; Marie et al., 2014; Park et al., 2015; Regmi et al., 2015; 

van der Star et al., 2007). Since full-scale WWTPs lack the resources to conduct analyses using 

biomolecular tools such as DNA and RNA extraction, qPCR, and sequencing, operators cannot 

analyze reactor samples on-site. Instead, the WWTPs need to ship samples to laboratories capable 

of analyzing them, which can be costly.  
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2.4 Phosphorus recovery/struvite formation  

In addition to nutrient pollution from excess nitrogen loading into water bodies, excess 

phosphorus (P) also contributes to nutrient pollution. While P is an essential element for all living 

organisms, especially plants, discharging too much P can be detrimental to ecosystems. When 

agricultural or urban lands receive more P as fertilizer than the plants can consume, excess P runs 

off during to irrigation or precipitation events, thus exacerbating eutrophication of water bodies. 

Point sources, such as WWTPs also contribute to nutrient pollution problems. 

Studies indicate that if all the P in sewage sludge from industrial and municipal wastewater 

sources in Europe were recovered then Europe’s fertilizer imports could be reduced by 22%, 

through struvite formation (Lederer et al., n.d.). (Lederer et al., n.d.) also suggests that retrofitting 

WWTPs with P recovery systems for struvite formation could decrease Europe’s dependence on 

imported fertilizers from 22% to 26%. P removal from WWTPs also directly benefits the facilities 

due to reduced operation and maintenance (O&M) costs incurred by the formation of struvite. 

Over time, struvite deposits accumulate within piping and equipment, causing reduced flows, 

equipment failures, in addition to other operational issues. Figure 7 below demonstrates excessive 

accumulation of struvite within WWT pipes.   

 

 

Figure 7- Accumulated struvite formation in WWT pipes (Suszyński, 2016) 
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  Additionally, P is being consumed at a rate of about 148 million tonnes per year. Estimates 

indicate that high-quality P reserves will be depleted within 50-100 years, where the U.S. has less 

than 30 years left of supplies (Cordell, 2008b). Furthermore, due to an uneven spatial distribution 

of P, where five countries provide approximately 90% of the global P consumed, international P 

trade markets are significantly impacted (Lederer et al., n.d.). Therefore, as nutrient pollution 

issues become exacerbated due to increased nutrient loading into water bodies and increasing 

demands for fertilizers deplete global phosphorus reserves, P recovery for struvite formation in 

WWT processes becomes a more lucrative solution to address the growing challenges (Suszyński, 

2016).  

Studies on P removal and recovery from wastewater in the form of struvite, a white 

crystalline compound (MgNH4PO4
.6H2O), have successfully been shown to remove and recover 

more than 90% P from centrate (Adnan et al., 2004; Fattah et al., 2008a; Fattah et al., 2008b). 

Struvite from P recovery is a beneficial product in the agriculture industry as a fertilizer because 

of its composition. Struvite used as fertilizer also provides an alternative source of P to depleting 

mined mineral rock sources. However, the struvite recovery process leaves a significant amount 

of NH4
+-N in the treated effluent, since struvite chemistry requires equimolar N to P molar ratios, 

while the molar ratio of N:P is around 20:1 in centrate. Therefore, since struvite formation results 

in the treated effluent containing excess NH4
+-N, combining P recovery with an Anammox-based 

deammonification treatment system could optimize WWT processes by increasing P and N 

removal, thus reducing nutrient pollution, and allowing WWTPs to meet stringent nutrient loading 

permits.  
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CHAPTER 3: BIOREACTOR MICROBIAL ECOLOGY 
 

 

 

3. 1 Methodologies for quantifying Anammox, Ammonia Monooxygenase, and Nitrobacter 

in fixed biofilm and suspended anammox granules from wastewater treatment systems  

 

3.1.1 Introduction 

Conventional wastewater treatment (WWT) processes achieve nitrogen removal by 

biological nitrification-denitrification (Grady et al., 2011). However, as nitrogen discharge limits 

become more stringent, WWT infrastructure in the U.S. reaches its design life, and energy 

conservation becomes a priority, alternatives to conventional WWT processes are becoming more 

crucial. One such alternative is the use of anaerobic ammonia oxidizing bacteria, Anammox 

(AMX), which were discovered in the late 1990s (Strous et al., 1999). Anammox-based 

deammonification processes are efficient and cost-effective alternatives to conventional processes 

in treating ammonia rich wastewater streams at mesophilic temperatures (Abma et al., 2010; 

Sliekers et al., 2002; van der Star et al., 2007; Wett, 2007), such as recycle streams from dewatered 

sludge from anaerobic digesters. Figure 8 below illustrates recycle streams from the solids 

handling processes in an overall WWT process, which would be ideal for treatment via an 

Anammox-based deammonification system. The potential for retrofitting existing WWTPs, with 

recycle side-streams from solids handling, is demonstrated in Figure 8 because a WWTP could 

install an Anammox-based deammonification process to treat the recycle side-streams, to help the 

plant meet more stringent nitrogen discharge limits.  
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Figure 8- Process flow diagram of the digestion process, including recycle streams from dewatered 
sludge, in a conventional wastewater treatment plant (Bott, 2011) 

 

Anammox-based deammonification utilizes nitritation where ammonia oxidizing bacteria 

(AOB) partially convert NH4
+ to NO2

- while AMX use NO2
- and convert the remaining NH4

+ to 

N2 gas. The remaining NO2
- is oxidized to NO3

-  during nitratation by nitrite oxidizing bacteria 

(NOB) (Fukumoto et al., 2011). 

There are several advantages to using Anammox deammonification, thus making it 

attractive for wastewater treatment plants (WWTPs). Anammox can be used to remove residual 

NH4
+ to meet discharge permits as well as residual NO2

-  to avoid high chlorine demand during 

disinfection (Regmi et al., 2016), thus potentially reducing the amount of disinfection byproducts 

formed. Since the Anammox process converts NH4
+ directly to N2(g) the process is cost-effective 

compared to conventional WWT processes since the equipment required is reduced, and therefore, 

less operation and maintenance (O&M) costs are incurred. Additionally, Anammox 

deammonification processes require no external carbon source, consume 62.5% less oxygen, and 
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have lower biomass yields compared to conventional WWT processes (Park et al., 2015; 

Innerebner et al., 2007; Kampschreur et al., 2008; Thöle et al., 2005; van der Star et al., 2007).  

As of 2014, there were approximately 100 full scale WWTP worldwide with Anammox-

based reactors (Lackner et al., 2014; Marie et al., 2014) and that number has continued to increase. 

To facilitate increased implementation and troubleshooting capabilities for Anammox technology 

in industrial sized applications this study focuses on methodology development to effectively 

determine the microbial ecology of fixed biofilm media using a pilot scale Anammox Moving Bed 

Biofilm Reactor (MBBR). Advancements to published methodologies were made in this study and 

were evaluated based on their ability to optimize DNA extraction concentrations, based on the idea 

that maximizing yield would also produce the most representative DNA samples (by minimizing 

biases) for use in gene quantification with qPCR assays as well as reduced sampling variability. 

While there are several benefits to utilizing Anammox deammonification, several 

challenges exist with the process. One challenge of the Anammox deammonification process is 

maintaining a balanced microbial ecology that promotes AMX and AOB growth while limiting 

NOB growth, to reduce NO3
- concentrations. Achieving a balanced microbial ecology is also 

necessary to reduce competition for NO2
- between AMX and NOB. Since mainstream wastewater 

flows are often dilute (total nitrogen concentrations < 100 mg/L) and have low temperatures (< 

30°C) suppressing NOB growth becomes a challenge and therefore, deammonification of these 

streams becomes more difficult (Regmi et al., 2016). Since the optimal temperature for AMX is 

37°C and AMX have relatively lower specific growth rates compared to AOB and NOB, 

deammonification may be limited by lower temperatures (Isaka et al., 2008; Vázquez-Padín et al., 

2011). The theoretical AMX stoichiometry ratios proposed by Strous et al., 1998 for NO2
- -N 

removed: NH4
+ -N removed and NO3

-  -N produced: NH4
+ -N removed are 1.32 and 0.26, 
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respectively. While more current literature (Lotti et al., 2014) suggests a stoichiometry ratio of 1.2 

for NO2
- -N removed: NH4

+ -N removed and 0.21 for NO3
-  -N produced: NH4

+ -N removed. 

Another challenge with operating an Anammox reactor is determining optimal operating 

conditions. Anammox are anaerobic bacteria and have a very slow growth rate (μ = 0.0027 h-1) 

(Strous et al., 1998; van der Star et al., 2007) which results in delayed observations when altering 

process and operating conditions.  

Due to limited resources, replicates from only one MBBR were obtained. The results 

presented in this study were used to support the goal of this part of the project which was to advance 

published sampling protocols for fixed biofilm and suspended granules and improve published 

DNA extraction methodologies to support wastewater treatment operators who work directly with 

full-scale, fixed biofilm Anammox deammonification MBBRs as well as suspended Anammox 

granule reactors. Coupling biomolecular tools with conventional analytical chemistry methods, 

can guide operators to optimize MBBR performance.  

3.1.2 Experimental / analytical methods (fixed biofilm) 

3.1.2.1 Reactor operation 

A 7L bench scale MBBR with Anammox seeded media (AnoxKaldnes™, Kruger Inc.) was 

designed and constructed specifically for this study and kept in a temperature-controlled room at 

30°C. Centrate from Denver Metro Wastewater Reclamation District was continuously fed to the 

MBBR, after phosphorus (P) recovery, and mixed at a continuous rate. The reactor mixer was 

operated at a fixed rate and the centrate feed rate was variable to account for the variable 

ammonium loading rate in the centrate. Initially, the dissolved oxygen (DO) was incrementally 

increased and the centrate was fed at a variable flow rate until steady state was achieved. The 

reactor was aerated with laboratory air, and at steady state, the bulk DO in the reactor was 
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maintained in the range of 0.40 – 0.55 mg O2/L. Random grab samples of the centrate and 

Anammox seeded media were taken to analyze reactor performance. Figure 9 below illustrates the 

bench scale reactor used for this study. 

 

 

Figure 9- Bench Scale MBBR schematic with Anammox seeded media 

3.1.2.2 Sample collection and sample preparation 

For sample collection, AnoxKaldnes™ media were randomly obtained, during steady state, 

from the MBBR twice a week using ethanol rinsed tweezers and stored in a 50 mL tube at -80°C 

(Park et al., 2015), until use for DNA extraction. Samples were prepared for DNA extraction by 

submerging the media in liquid nitrogen in a mortar. The media was then placed on a 12.7 cm x 

12.7 cm piece of aluminum foil and the edges folded to create a sealed package. A pestle was used 

to repeatedly strike the media until the media was broken into several pieces. The aluminum foil 

was carefully opened, and biomass was scraped off the aluminum foil using an ethanol rinsed 

spatula. The biomass was placed into a 2 mL microcentrifuge tube, and the plastic carrier was 

 



24 

placed in a 50 mL tube with approximately 2,500 μL of phosphate buffered saline (PBS). Figure 

10X below shows an AnoxKaldnes™ media after biomass extraction.  

 

Figure 10- AnoxKaldnes™ media after biomass extraction using liquid nitrogen  

The 50 mL tube was vortexed for 30 seconds or until the biomass was visibly loosened 

from the plastic carrier. The 50 mL tube was centrifuged at 11,180 x g for 8 minutes. Then the 

plastic carrier was visually inspected to see if any biomass remained. If biomass remained on the 

plastic media the tube was turned upside down and vortexed, to allow the PBS to loosen any 

remaining biomass. The 50 mL tube was then centrifuged again at 11,180 x g for 8 minutes. If no 

biomass remained on the plastic media, the plastic media was carefully removed with ethanol 

rinsed tweezers and the supernatant removed. The 50 mL tube was centrifuged again at the same 

settings and the supernatant was removed. The pelleted biomass was scraped with an ethanol rinsed 

spatula and placed in a microcentrifuge tube containing the scraped biomass from the aluminum 

foil. The biomass was homogenized for 10 seconds using a micromotor and pellet pestle (Fisher 

Scientific, Waltham, MA). Triplicate DNA extractions per sample were performed. Then a single 

qPCR assay was run on each DNA extraction.  
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3.1.3 Experimental / analytical methods (suspended granules) 

3.1.3.1 Reactor operation  

Experiments were conducted on samples taken from a full-scale reactor containing 

suspended Anammox granules at an operation WWTP. Feed from the overflow process stream 

was fed into a hydrocyclone (DEMON®-Biomass Separation) where biomass would separate into 

the underflow process stream, as shown in Figure 11 below. 

  

Figure 11- Schematic and operational DEMON® Hydrocyclone for biomass separation (Bott, 2011; 
Johnson, 2013) 

3.1.3.2 Sampling collection points and sample preparation 

For the first set of samples, obtained in January 2017, one-50 mL sample was obtained 

from each process stream (reactor, overflow, and underflow), for a total of three samples. Duplicate 

DNA extractions were performed per sample. Then technical qPCR replicates were performed on 

each DNA extraction, for a total of six potential data points for each sample. Depending on whether 

the data point passed quality assessment/quality control (QA/QC) determined the number of data 

points for each sample. Results from the January sampling, as shown in Figures 21-23 below, 

indicated high sampling variability; therefore, the sampling regime was modified.  
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For the second set of samples, obtained in February 2017, nine total samples were obtained, 

which comprised of three samples from each process stream (reactor, overflow, and underflow), 

in 50 mL tubes. A single DNA extraction was performed per sample. Technical duplicates were 

performed on each DNA extraction, for a total of nine potential data points for each sample. The 

actual number of data points per sample was dependent on a QA/QC screening.  

All the samples obtained in January and February were transported on ice in a cooler from 

the full-scale WWTP to the Colorado State University (CSU) laboratories. Samples that were not 

processed for DNA extraction immediately were centrifuged at 11,180 x g for 8 minutes. The 

supernatant was removed, and pelleted biomass was stored at -80°C.  

Samples that were processed the same day as sampling were centrifuged at 11,180 x g for 

8 minutes, and the biomass was scraped from the 50 mL tube using an ethanol rinsed spatula and 

placed into a 2 mL microcentrifuge tube. The biomass was homogenized for 10 seconds using a 

micromotor and pellet pestle (Fisher Scientific, Waltham, MA). Biomass homogenization 

necessary to obtain a representative sub-sample, where 1/3 of the biomass was used during DNA 

extraction.  

3.1.4 DNA extractions  

To compare DNA extraction yields to published literature, the following kits were used: 

DNeasy blood and tissue kit (Qiagen, Germantown, MD), PowerLyzer PowerSoil DNA Isolation 

kit, and the PowerBiofilm DNA Isolation kit (MoBio Laboratories, Carlsbad, CA). Based on the 

comparative results of the three kits (results presented in section 3.1.7), the PowerBiofilm DNA 

Isolation kit was used to perform DNA extractions for this study. For fixed biofilm samples, the 

weight of biomass used per DNA extraction was based on the total biomass removed from each 

plastic carrier. For suspended granule samples, biomass from a 50 mL sample was used. The 
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samples obtained generally had enough biomass such that 0.1 – 0.2 mg was used per extraction, 

which is within the mass range stated in the PowerBiofilm DNA Isolation Kit protocol.  

The protocol was carefully followed, and the only modification made to the protocol was 

during the inhibitor removal step. Since the samples were a dark color, the kit protocol 

recommended using 200 uL of the inhibitor removal solution instead of 100 uL of solution. The 

darker colored samples indicated that they contained a higher concentration of inhibitors, and; 

therefore, increasing the volume of the inhibitor removal solution used would optimize DNA 

yields. The DNA extraction results were quantified using a spectrophotometer (ThermoFisher 

Scientifitic, Waltham, MA; model NanoDrop 2000/2000c). 

3.1.5 Quantitative PCR (qPCR) standards and qPCR assays  

Standards for AMX, AOB, NOB, and eubacteria were provided courtesy of Dr. Kartik 

Chandran’s laboratory (Columbia University), at a concentration of 109 copies/μL. Standards were 

prepared in 3mL of DNA-free water. Serial dilutions were performed to obtain a range of 

concentrations from 10 copies/μL to 106 copies/μL for each standard. The standards were stored 

at -20°C and thawed on ice when used for qPCR analysis. 

Published primers were used for the Anammox, Ammonia Monooxygenase, and 

Nitrobacter assays (van der Star et al., 2007; Rotthauwe et al., 1997; Graham et al., 2007). Table 

1 below lists the primers used for each qPCR assay, read from the 5’ to the 3’ end. 
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Table 1- qPCR assay primers* 

Assay Forward Primer Reverse Primer 

Anammox 5’ – GGATTAGGCATGCAAGTC – 3’ 5’ – ACCAGAAGTTCCACTCTC– 3’ 
Ammonia 

Monooxygenase 

5’ – GGGGTTTCTACTGGTGGT – 3’ 5’ – CCCCTCKGSAAAGCCTTCTTC– 3’ 

Nitrobacter 5’ – ACCCCTAGCAAATCTCAAAAAACCG– 3’ 5’ – CTTCACCCCAGTCGCTGACC– 3’ 
 
*Anammox, Ammonia Monooxygenase, and Nitrobacter primers from van der Star et al., 2007; Rotthauwe et al., 1997; Graham et al., 2007, respectively  
 

The annealing temperature for each assay was selected based on the melting temperature (Tm) of the primers used in each qPCR 

assay. The annealing temperature was set to 5°C above the average Tm of the forward and reverse primers used for each assay. Table 2 

below details the thermocycling conditions used for each assay.  

Table 2- qPCR Thermocycling Conditions 

Assay Initialization Cycles Denaturation Annealing Elongation 

Anammox 

10 min., 95°C     40 15 sec., 95°C  

30 sec., 55.9°C 

30 sec., 60°C 
Ammonia 

Monooxygenase 

30 sec., 61.7°C 

Nitrobacter 30 sec., 64.1°C 

 

Technical duplicates were run to quantify the concentrations of AMX, AOB, and NOB using PowerUp™ SYBR® Green Master 

Mix (ThermoFisher Scientific). Assays specifically targeted AMX 16S rRNA genes (van der Star et al., 2007), ammonia 

monooxygenase subunit A (amoA) (Rotthauwe et al., 1997), and Nitrobacter 16S rRNA genes (Graham et al., 2007). Melt curve analysis 

was performed to check for assay specificity. The qPCR results were carefully analyzed in a QA/QC process, to identify any data points 

which did not pass the QA/QC screening or any samples which were classified as non-detect. Any results with multiple peaks did not 
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pass QA/QC, and results where values were too low because of no amplification or noisy signals 

or a high CT were classified as non-detectable. Results that did not pass QA/QC and non-detectable 

results were re-run in triplicate qPCR for result validation. The limits of detection for the AMX, 

AOB, and NOB assays were 104, 102, and 103, respectively.  

3.1.6 Equations (fixed biofilm and suspended granules) 

To calculate the gene quantification for fixed biofilm media, on a gene copy per reactor 

volume (copies/mL) basis, the following equation was used: 

Eq – 3:  � =  � ∗ � ∗ � ∗ ∗ ∗  

Where, 

Q = gene quantification 

F = fraction of seeded media used = 1/3 

C = average DNA concentration per media sample (ng/μL)   

Ve = elution volume = 100μL 

N = number of packing per reactor volume = 200/5.1L 

M = quantity of target gene (copies/ng) 

U = unit conversion = 1L/1000mL 

 

Eq – 3 notes: 

• 5 ng of DNA template was used  

• Variables F, Ve, and N were defined constants based on the fixed biofilm MBBR 

To calculate the gene quantification for suspended granule samples, on a gene copy per 

reactor volume (copies/mL) basis, the following equation was used: 

Eq – 4: � =  � ∗ � ∗    



30 

Where 

Q = gene quantification 

C = average DNA concentration per sample (ng/μL)   

Ve = elution volume = 6.67μL/mL 

M = quantity of target gene (copies/ng) 

Eq – 4 notes:  

• Weight of the DNA used = 5 ng 

• Variable Ve was a defined constant based on the suspended film reactor used in 

this study  

3.1.7 Results (fixed biofilm methodology advancements)  

Table 3 below presents the results of three different DNA extraction kits which were tested 

on the fixed biofilm samples. The DNeasy blood and tissue kit was tested according to published 

protocols in literature (Park et al., 2015). The results indicate that the PowerBiofilm DNA Isolation 

kit had the highest DNA concentrations and purest results (OD260/OD280 ~1.6-2.0) (Khare et al., 

2014). Therefore, it was determined from the results presented in Table 3 and specific features of 

the PowerBiofilm DNA Isolation kit (i.e. enhanced chemical and mechanical cell lysis specific to 

biofilms) that to help mitigate biases this kit was used in this study.
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Table 3-  DNA concentration and OD260/OD280 results from three different DNA isolation kits using fixed biofilm media 

Tested DNA 

extraction kit  

Biomass 

extraction 

technique 

Test 

extraction 

number 

DNA 

concentration 

results 

(ng/μL) 
OD260/OD280  

Spectrophotometry 

results 

Quantitative 

spectrophotometry 

results  

DNeasy 

blood and 

tissue DNA 

Isolation kit  

Scraping and 
vortex in PBS 

1 33.5 1.71 Appendix, Figure 36 No peak at 260 nm   

Liquid nitrogen 
and smashing 

with mortar and 
pestle 

2 781.4 1.39 Appendix, Figure 37 No peak at 260 nm 

3 1,663.9 1.37 Appendix, Figure 38 No peak at 260 nm 

4 1,086.1 1.32 Appendix, Figure 39 No peak at 260 nm   

5 1,036.7 1.3 Appendix, Figure 40 No peak at 260 nm   

PowerLyzer 

PowerSoil 

DNA 

Isolation kit 

Liquid nitrogen 
and smashing 

with mortar and 
pestle 

6 10.1 2.11 Appendix, Figure 41 Peak at 260 nm 

7 28.6 2.04 Appendix, Figure 42 Peak at 260 nm 
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8 31.4 1.86 Appendix, Figure 43 Peak at 260 nm 

PowerBiofilm 

DNA 

Isolation kit 

Liquid nitrogen 
and smashing 

with mortar and 
pestle 

9 240.9 1.73 Appendix, Figure 44 
Clear peak at 260 

nm 

10 201.3 1.71 Appendix, Figure 45 
Clear peak at 260 

nm 
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To also mitigate biases, modifications were made to existing published protocols to 

increase cell lysis. Literature suggested carefully and thoroughly scraping fixed biofilm media 

carriers with a sterile pipet tip (Park et al., 2015). However, after carefully following the published 

protocol some red biofilm was still attached to the plastic carrier media, as shown in Figure 12 

below. Additionally, the scraping technique was found to be time consuming, as compared to the 

liquid nitrogen and smashing with mortar and pestle modification used in this study. 

 

Figure 12- AnoxKaldnes™ plastic media carrier after biomass extraction using scraping and vortexing 

Therefore, enhanced cell lysis, of the fixed biofilm media, was performed through mechanical lysis 

techniques. The fixed biofilm media samples were submerged in liquid nitrogen and then struck 

with a pestle to increase cell lysis, which was expected to minimize biases in the final gene 

quantification results. Additionally, the mechanical lysis techniques used in this study increased 

the efficiency of the biomass extraction process and allowed for more biomass to be separated 

from the plastic media carrier, which allowed for more representative samples, in comparison to 

the published methods.  

Another modification to published protocols was performing increased inhibitor removal 

during the DNA extraction process. All the fixed biofilm and suspended granule samples contained 

a dark color, which suggested that the might samples contain a higher concentration of inhibitors. 
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Therefore, the volume of the inhibitor removal solution was doubled to 200 μL, optimize inhibitor 

removal efficiencies, as per PowerBiofilm DNA Isolation Kit protocol.  

3.1.8 Results (fixed biofilm)  

The data presented in Figures 13-15 are organized such that the qPCR results for each 

sampling day have the same color, but replicate samples from the same day are presented 

separately so that variability between samples can be readily observed 

Figures 13-15 below illustrate the AMX, AOB, and NOB gene copies per mass (copies/ng), 

respectively. The sample obtained on reactor operation day 156 had the greatest amount of AMX, 

5.46x106 ± 9.36x105 copies/ng, whereas the sample obtained on reactor operation day 163 had the 

least amount of AMX, 2.36x106 ± 1.67x106 copies/ng, as shown in Figure 13 below. The sample 

obtained on reactor operation day 181 had the greatest amount of AOB, 4.71x105 ± 5.38x104 

copies/ng, whereas the sample obtained on reactor operation day 163 had the least amount of AOB, 

7.81x103 ± 1.15x104 copies/ng, as shown in Figure 14 below. The sample obtained on reactor 

operation day 191 had the greatest amount of NOB, 2.28x104 ± 3.89 x103 copies/ng, whereas the 

sample obtained on reactor operation day 188 had the least amount of NOB, 7.25x103 ± 1.05x103 

copies/ng, as shown in Figure 15 below. 
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Figure 13- Quantification of Anammox gene copies per mass for each qPCR assay. The horizontal axis 
represents the reactor operation day-replicates. The error bars represent the range of qPCR technical 

duplicates. The limits of detection for the AMX, AOB, and NOB assays were 104, 102, and 103, 
respectively. 

 

 

Figure 14- Quantification of AOB gene copies per mass for each qPCR assay. The horizontal axis 
represents the reactor operation day-replicates. The error bars represent the range of qPCR technical 

duplicates. The limits of detection for the AMX, AOB, and NOB assays were 104, 102, and 103, 
respectively. 

 

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

1
3
2

 -
1

1
3
2

-2
1

3
2

-3
1

4
3

 -
1

1
4
3

-2
1

4
3

-3
1

4
9

-1
1

4
9

-2
1

4
9

-3
1

5
3

-1
1

5
3

-2
1

5
3

-3
1

5
6

-1
1

5
6

-2
1

5
6

-3
1

6
0

-1
1

6
0

-2
1

6
0

-3
1

6
3

-1
1

6
3

-2
1

6
3

-3
1

7
3

-1
1

7
3

-2
1

7
3

-3
1

7
7

-1
1

7
7

-2
1

7
7

-3
1

8
1

-1
1

8
1

-2
1

8
1

-3
1

8
8

-1
1

8
8

-2
1

8
8

-3
1

9
1

-1
1

9
1

-2
1

9
1

-3
1

9
8

-1
1

9
8

-2
1

9
8

-3

A
n
am

m
o

x
 G

en
e 

C
o

p
ie

s 
p

er
 n

g
 o

f 
D

N
A

 (
co

p
ie

s/
n
g
)

Reactor Operation Day

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

1
3
2

 -
1

1
3
2

-2
1

3
2

-3
1

4
3

 -
1

1
4
3

-2
1

4
3

-3
1

4
9

-1
1

4
9

-2
1

4
9

-3
1

5
3

-1
1

5
3

-2
1

5
3

-3
1

5
6

-1
1

5
6

-2
1

5
6

-3
1

6
0

-1
1

6
0

-2
1

6
0

-3
1

6
3

-1
1

6
3

-2
1

6
3

-3
1

7
3

-1
1

7
3

-2
1

7
3

-3
1

7
7

-1
1

7
7

-2
1

7
7

-3
1

8
1

-1
1

8
1

-2
1

8
1

-3
1

8
8

-1
1

8
8

-2
1

8
8

-3
1

9
1

-1
1

9
1

-2
1

9
1

-3
1

9
8

-1
1

9
8

-2
1

9
8

-3

A
O

B
 G

en
e 

C
o

p
ie

s 
p

er
 n

g
 o

f 
D

N
A

 
(c

o
p

ie
s/

n
g
)

Reactor Operation Day



36 

 

Figure 15- Quantification of NOB gene copies per mass for each qPCR assay. The horizontal axis 
represents the reactor operation day-replicates. The error bars represent the range of qPCR technical 

duplicates. The limits of detection for the AMX, AOB, and NOB assays were 104, 102, and 103, 
respectively. 

 

Figures 16-18 below illustrate the AMX, AOB, and NOB gene copies per reactor volume 

(copies/mL), respectively. Figure 16 below illustrates that the target AMX gene was the most 

abundant when compared to the AOB and NOB quantities over time. The sample obtained on 

reactor operation day 156 had the greatest amount of AMX, 9.43x108 ± 1.62x108 copies/mL, 

whereas the sample obtained on reactor operation day 181 had the least amount of AMX, 7.68x107 

± 2.97x107 copies/mL, as shown in Figure 16 below. The sample obtained on reactor operation 

day 198 had the greatest amount of AOB, 3.43x107 ± 1.03x107 copies/mL, whereas the sample 

obtained on reactor operation day 163 had the least amount of AOB, 4.13x105 ± 6.07x105 

copies/mL, as shown in Figure 17 below. The sample obtained on reactor operation day 177 had 

the greatest amount of NOB, 4.96x105 ± 1.51 x105 copies/mL, whereas the sample obtained on 

reactor operation day 188 had the least amount of NOB, 2.20x105 ± 3.17x104 copies/mL, as shown 

in Figure 18 below. 
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Figure 16- Quantification of Anammox gene copies per reactor volume for each qPCR assay. The 
horizontal axis represents the reactor operation day-replicates. The error bars represent the range of qPCR 
technical duplicates. The limits of detection for the AMX, AOB, and NOB assays were 104, 102, and 103, 

respectively.  

 

 

 

Figure 17- Quantification of AOB gene copies per reactor volume for each qPCR assay. The horizontal 
axis represents the reactor operation day-replicates. The error bars represent the range of qPCR technical 

duplicates. The limits of detection for the AMX, AOB, and NOB assays were 104, 102, and 103, 
respectively.    
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Figure 18- Quantification of NOB gene copies per reactor volume for each qPCR assay. The horizontal 
axis represents the reactor operation day-replicates. The error bars represent the range of qPCR technical 

duplicates. The limits of detection for the AMX, AOB, and NOB assays were 104, 102, and 103, 
respectively.    

Figure 19 below presents the AMX, AOB, and NOB concentrations with the corresponding 

feed NH4
+ concentrations. Measurements of NH4

+ concentrations in the feed were taken, as 

reported in chapter 4 of this study. The feed NH4
+ concentration was 1170 mg/L at reactor 

operation day 132. Then the feed NH4
+ concentration increased to 1360 mg/L and remained 

constant in the samples taken between reactor operation day 143-163. On reactor operation days 

181 and 188 the feed NH4
+ concentration was 1180 mg/L. The feed NH4

+ concentration then 

decreased further to 1110 mg/L on reactor operation days 188, 191, and 198. Correspondingly, the 

greatest AMX concentration was observed on reactor operation day 156, during the period when 

the feed NH4
+ concentration was greatest. While the lowest AMX concentration was observed on 

reactor operation day 181, when the feed NH4
+ concentration decreased to 1180 mg/L. 

Figure 20 below presents the AMX, AOB, and NOB concentrations with the corresponding 

% inorganic nitrogen (N) removed. Measurements of inorganic N (NH4
+, NO3

−, NO2
−) were taken, 

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

1
3
2

 -
1

1
3
2

-2
1

3
2

-3
1

4
3

 -
1

1
4
3

-2
1

4
3

-3
1

4
9

-1
1

4
9

-2
1

4
9

-3
1

5
3

-1
1

5
3

-2
1

5
3

-3
1

5
6

-1
1

5
6

-2
1

5
6

-3
1

6
0

-1
1

6
0

-2
1

6
0

-3
1

6
3

-1
1

6
3

-2
1

6
3

-3
1

7
3

-1
1

7
3

-2
1

7
3

-3
1

7
7

-1
1

7
7

-2
1

7
7

-3
1

8
1

-1
1

8
1

-2
1

8
1

-3
1

8
8

-1
1

8
8

-2
1

8
8

-3
1

9
1

-1
1

9
1

-2
1

9
1

-3
1

9
8

-1
1

9
8

-2
1

9
8

-3

N
O

B
 G

en
e 

C
o

p
ie

s 
p

er
 R

ea
ct

o
r 

V
o

lu
m

e 
(c

o
p

ie
s/

m
L

)

Reactor Operation Day



39 

as reported in chapter 4 of this study.  The sample obtained on reactor operation day 143 had the 

greatest removal of inorganic N at 74.5%, whereas the sample obtained on reactor operation day 

132 had the least amount of inorganic N removed at 60.9%. Correspondingly, the greatest AMX 

concentration was observed on reactor operation day 156, while the lowest AMX concentration 

was observed on reactor operation day 188. The greatest AOB concentration was observed on 

reactor operation day 198, while the lowest AOB concentration was observed on reactor operation 

day 163. 
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        Figure 19- AMX, AOB, and NOB concentrations vs Feed NH4
+ concentrations 
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              Figure 20- AMX, AOB, and NOB concentrations vs % nitrogen removal concentrations 
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Table 4 below presents a comparison of the average relative abundance (copies/mL) of 

AMX, AOB, and NOB and the reactor performance, as measured by the % of inorganic N 

removed) between findings from this study and a published study. A greater average relative 

abundance of AMX was observed in this study compared to that in literature, 4.1E+08 copies/mL 

and 7.7E+07 copies/mL, respectively. However, the average AOB and NOB relative abundances 

were lower compared to literature values. The average reactor performance between this study and 

literature was 68 ± 5% and 64 ± 17%, respectively.  

Table 4- Comparison of relative abundance (copies/mL) and reactor performance (% inorganic N 
removed) between study and literature 

  Study Literature1  

 AMX 4.1E+08 7.7E+07 
Average relative abundance 

(copies/mL) AOB 1.3E+07 2.3E+08 
 NOB 1.7E+06 8.2E+06 

Average reactor performance 
(% inorganic N removed)  68 ± 4 64 ± 17 

 

Table 4 notes: 
1. Approximated, average relative abundance (copies/mL) for AMX, AOB, and NOB and reactor 
performance (% inorganic N removed) results from (Park et al., 2010) 

 

3.1.9 Statistical results (fixed biofilm) 

An Anderson-Darling (AD) normality test was performed to determine if the AMX, AOB, 

and NOB data sets were normally distributed. The AD normality test results indicated that the 

AMX, AOB, and NOB data sets were normally distributed; p = 0.103, p = 0.295, and p = 0.123, 

respectively.  

Table 5 below provides the values of Pearson’s correlation coefficients, r, for tests run to 

determine if a correlation exists between selected microbial ecology data and selected reactor 

performance data. Correlation analyses conducted between AMX concentrations (copies/mL) and 

effluent NH4
+-N concentrations and AOB concentrations (copies/mL) and effluent NO2

--N 
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indicated a negative r value, -0.318 (p = 0.313) and -0.265 (p = 0.405), respectively. However, the 

Pearson’s correlation coefficients for tests run between AMX concentrations (copies/mL) % 

inorganic n removed and effluent NO2
--N concentrations were positive, 0.141 (p = 0.662) and 

0.259 (p = 0.417), respectively. The r value from correlation analyses between NOB concentrations 

and effluent NO3
--N was also positive, 0.131 (p = 0.684). All the comparative results between the 

microbial ecology on a per mass and per volume basis yielded a p-value greater than 0.05, which 

indicates that was no statistical significance between each of sets of two variables being analyzed.  

The same tests were run, but on a copies/ng basis.  Correlation analyses conducted between 

AMX concentrations (copies/ng) and effluent NH4
+-N concentrations and AOB concentrations 

(copies/mL) and effluent NO2
--N indicated a negative r value, -0.326 (p = 0.303) and -0.261 (p = 

0.412), respectively. However, the Pearson’s correlation coefficients for tests run between AMX 

concentrations (copies/mL) % inorganic N removed and effluent NO2
--N concentrations were 

positive, 0.138 (p = 0.669) and 0.263 (p = 0.409), respectively. The r value from correlation 

analyses between NOB concentrations and effluent NO3
--N was also positive, 0.203 (p = 0.526).  

Since the r value is a measurement of the strength of a linear association between variables, 

the results indicate that there were no strong correlations between selected microbial ecology on a 

per mass and per volume basis and selected reactor performance data. All the comparative results 

between the microbial ecology on a per mass and per volume basis and selected reactor 

performance data yielded a p-value greater than 0.05, which indicated that was no statistical 

significance between each of sets of the variables being analyzed. 
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Table 5- Pearson's correlation coefficient results between the microbial ecology and selected reactor 
performance  

Variable 1 Variable 2 

Pearson's 

correlation 

coefficient, r 

 

p-value 

AMX concentration (copies/mL) % Inorganic N removed 0.141 0.662 

AMX concentration (copies/mL) Effluent NH4
+-N -0.318 0.313 

AMX concentration (copies/mL) Effluent NO2
--N 0.259 0.417 

AMX concentration (copies/mL) AOB concentration (copies/mL) 0.310 0.326 

AOB concentration (copies/mL) Effluent NO2
--N -0.265 0.405 

NOB concentration (copies/mL) Effluent NO3
--N 0.131 0.684 

AMX concentration (copies/ng) % Inorganic N removed 0.138 0.669 

AMX concentration (copies/ng) Effluent NH4
+-N -0.326 0.301 

AMX concentration (copies/ng) Effluent NO2
--N 0.263 0.409 

AMX concentration (copies/ng) AOB concentration (copies/ng) -0.025 0.939 

AOB concentration (copies/ng) Effluent NO2
--N -0.261 0.412 

NOB concentration (copies/ng) Effluent NO3
--N 0.203 0.526 

 

3.1.10 Discussion (fixed biofilm) 

At first, results from Table 3 indicate that the DNeasy blood and tissue DNA Isolation kit 

outperformed the PowerBiofilm and PowerLyzer PowerSoil kits, by resulting in the greatest DNA 

concentration yields; however, the results do not satisfy the purity requirements, OD260/OD280 

~1.6-2.0. Furthermore, review of the spectrophotometry results (Figs. 36-40) reveal curves that do 

not have a distinct peak at 260 nm, the wavelength DNA and other nucleic acids absorb at 

(ThermoScientific, 2009). Reasons for the increased DNA concentrations could be explained by 

potential contamination of the samples and/or anomalies, and the low purity results could have 

been due to impurities, such as inhibitors, in the samples.  

One reason increased DNA concentration results were observed from experiments using 

the PowerBiofilm kit, as compared to the PowerLyzer PowerSoil kit, was because the 

PowerBiofilm kit has a dry chemical reagent in the in the microbeads in the bead beating tube, to 

help break down the extracellular polymer substances present in biofilms. Therefore, chemical and 
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mechanical cell lysis techniques, specific to biofilms, allowed for a more representative sample to 

be obtained, biases to be minimized, and improved increased DNA concentrations. Since 

replicated experiments using the PowerBiofilm kit resulted in the highest DNA concentrations and 

purest results this kit and the kit was specifically designed for DNA extraction from biofilms this 

kit was selected for this study.  

A comparison between the average relative abundances for AMX, AOB, and NOB 

presented in Table 4 indicate that the AMX average relative abundance from this study was an 

order of magnitude greater than published literature. However, the average relative abundances for 

AOB and NOB from this study were slightly lower than published literature. Since the test DNA 

extraction results presented in Table 3 resulted in greater and more pure DNA yields with the DNA 

PowerBiofilm isolation kit used in this study compared to the DNeasy kit used in the published 

study, it is probable that the improvements made to existing DNA extraction protocols resulted in 

increased relative abundance of AMX. While the relative abundances of AOB and NOB in this 

study were lower than the published study this could be explained by the MBBR in this study not 

having as many AOB and NOB either present in the reactor or in the samples used for DNA 

extractions.   

The relative abundances of AMX, AOB, and NOB presented on a copies/ng and copies/mL 

basis indicate different reactor operation days having the greatest and the lowest concentrations. 

For example, on a per mass basis, reactor operation day 163 had the lowest concentration of AMX 

whereas on a per volume basis, reactor operation day 181 had the lowest concentration of AMX. 

The purpose of performing calculations on both a mass and volume basis was to demonstrate the 

variance in each set of results.  
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Figures 19 and 20 both demonstrate the robustness of the MBBR. It was observed that the 

greatest AMX concentration was observed on reactor operation day 156, during the period when 

the feed NH4
+ concentration was greatest. While the lowest AMX concentration was observed on 

reactor operation day 181, when the feed NH4
+ concentration decreased from 1360 to 1180 mg/L. 

Therefore, it was observed that feed NH4
+ concentrations directly impacted AMX concentrations, 

where an increase in the feed NH4
+ concentration resulted in an increase AMX concentration. The 

sample obtained on reactor operation day 143 had the greatest removal of inorganic N at 74.5%, 

whereas the sample obtained on reactor operation day 132 had the least amount of inorganic N 

removed at 60.9%. Correspondingly, the greatest AMX concentration was observed on reactor 

operation day 156, while the lowest AMX concentration was observed on reactor operation day 

188. The greatest AOB concentration was observed on reactor operation day 198, while the lowest 

AOB concentration was observed on reactor operation day 163. 

The results from Table 4 showed that a greater average relative abundance of AMX was 

observed in this study compared to that in literature, 4.1E+08 copies/mL and 7.7E+07 copies/mL, 

respectively. However, the average AOB and NOB relative abundances were lower compared to 

literature values. The results presented in Table 4 also indicated that the relative abundance of 

AMX was greater than the relative abundance of AOB in both this study and literature. These 

findings are consistent with additional published studies, which also indicate a greater relative 

abundance of AMX to AOB (Persson et al., 2017; Laureni et al., 2015). A comparison of the 

average reactor performance between this study and literature also indicated that reactor 

performance was 4% higher in this study.   

While Figures 19 and 20 do show that, during steady state conditions, AMX concentrations 

were greater than NOB, the correlation results presented in Table 5 indicate a small (r ranging 
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from 0.1 to 0.3 or -0.1 to -0.3) (Laerd Statistics, 2013) Pearson’s correlation coefficients between 

the microbial ecology data and selected reactor performance data. These findings could be 

explained by the fact that DNA concentration yields do no indicate the activity of a target gene. 

Rather, information from extracted DNA only indicates the relative abundance of a target gene, 

which may or may not be active. To determine AMX, AOB, and NOB activity during the sample 

points RNA analysis is needed.  

3.1.11 Results (suspended granules) 

Gene quantification qPCR results for AMX, AOB, and NOB are presented in gene copies 

per reactor volume (copies/mL) in Figures 21-23 below. Measurements of AMX, AOB, and NOB 

in the reactor for January indicate gene concentrations of 3.02x109 ± 2.51x108 copies/mL, 

1.15x1010 ± 1.46x109 copies/mL, 6.81 x108 ± 1.01 x108 copies/mL, respectively. Measurements of 

AMX, AOB, and NOB in the reactor for February indicate gene concentrations of non-detectable 

concentraions, 7.20x109 ± 1.46x108 copies/mL, 3.09x108 ± 2.18x107 copies/mL, respectively. 
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Figure 21- Quantified Anammox gene copies per reactor volume (copies/mL) observed in the reactor, overflow, and underflow process streams. 
Samples 1, 2, and 3 in the reactor for the February sample set were below the limit of detection. The limits of detection for the AMX, AOB, and 

NOB assays were 104, 102, and 103, respectively. 
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Figure 22- Quantified AOB gene copies per reactor volume (copies/mL) observed in the reactor, overflow, and underflow process streams. The 
limits of detection for the AMX, AOB, and NOB assays were 104, 102, and 103, respectively. 
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Figure 23- Quantified Nitrobacter gene copies per reactor volume (copies/mL) observed in the reactor, overflow, and underflow process streams. 
The limits of detection for the AMX, AOB, and NOB assays were 104, 102, and 103, respectively. 
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3.1.12 Discussion (suspended granules) 

One reason for why there appeared to be no Anammox present in the reactor in February 

could be explained by the on-site operational issues. The QA/QC screening, as shown in Table 6 

below lists all the February reactor qPCR results which either did not pass QA/QC or were 

classified as non-detect. Since most of the results were non-detect, which indicates that the 

quantities were either low or non-existent in the reactor at the time, and the remaining results did 

not pass QA/QC, no AMX was reported to be present in the February reactor data.  

Table 6- QA/QC results for the AMX assay for February reactor data 

 
DNA extraction 1 

qPCR reaction 1 ND 
qPCR reaction 2 ND 
qPCR reaction 3 NO QA/QC 

 
DNA extraction 2 

qPCR reaction 1 NO QA/QC 
qPCR reaction 2 ND 
qPCR reaction 3 ND 

 
Table Notes: 

ND: indicates non-detect values 
NO QA/QC: indicates the data did not pass QA/QC 

 

The February reactor microbial ecology results presented in Figures 21-23 also might help 

explain the reactor performance issues observed on-site. Operators at the full-scale WWTP 

communicated that operational issues with the pumps had occurred which they suspected could be 

affecting the amount of AMX in the reactor. The operators also reported an upset between 30 

January – 2 February. Since AMX have a relatively slow growth rate (μ = 0.0027 h-1) (Strous et 

al., 1998; van der Star et al., 2007) as compared to AOB and NOB, it is likely that the effects of 

the process upsets, due to the operational issues experienced with the pumps, were not observed 

until late February, when the samples were taken. Therefore, it is possible that the results from the 

full-scale WWTP correlated to the observed reactor performance.  
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CHAPTER 4: AQUEOUS CHEMISTRY 
 
 
 

4. 1 Evaluating the impacts of a phosphorus recovery process on inorganic carbon and its 

corresponding effects on downstream deammonification 

 

4.1.1 Introduction 

Studies on phosphorus (P) removal and recovery from wastewater in the form of struvite, 

a white crystalline compound (MgNH4PO4
.6H2O), have successfully been shown to remove and 

recover more than 90% P from centrate (Adnan et al., 2004; Fattah et al., 2008a; Fattah et al., 

2008b). Struvite from P recovery is a beneficial product in the agriculture industry as a fertilizer 

because of its composition. Struvite used as fertilizer also provides an alternative source of P to 

mined mineral rock. However, the struvite recovery process leaves a significant amount of NH4
+-

N in the treated effluent, since struvite chemistry requires equimolar N to P molar ratios, while the 

molar ratio of N:P is around 20:1 in centrate. Alternatively, the Anammox (AMX) 

deammonification process is a relatively cost effective microbial process that can be effectively 

applied to centrate for removing high N concentrations (Sharp et al. 2017). In this process, half 

the ammonia is oxidized to nitrite, combined with oxidation of remaining ammonia, using nitrite 

as the electron acceptor via the anaerobic ammonium oxidation (Anammox) reaction. Since 

deammonification only requires partial nitritation, it reduces the aeration and alkalinity 

requirements significantly, leading to low energy requirements. Literature suggests a ratio of total 

alkalinity (as CaCO3) to total ammonia nitrogen (TAN) in the range of 3.57:1 to 3.68.1 (Sliekers 

et al., 2002). Also, the carbon requirement is eliminated by the Anammox bacteria, thereby 

reducing chemical and equipment costs and undesirable biological growth. This process can 

successfully remove up to 90% of NH4
+-N from centrate at an ammonium loading rate of 1.2 g 
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NH4
+-N m-3d-1 but leaves a significant amount of soluble P in the final effluent (Fux et al., 2002; 

Fux et al., 2006). The coupling of these two technologies is attractive for nutrient removal in 

WWTPs that rely on anaerobic digestion and enhanced biological phosphorus removal (EBPR).  

Alkalinity in the form of inorganic carbon (IC) is an important factor when considering the 

efficiency of an Anammox deammonification process. In the Anammox deammonification 

process, IC is consumed and AMX, AOBs, and NOBs compete for IC as a main carbon source. 

Stimulated growth of nitrifying bacteria has been observed by the addition of IC in the form of 

bicarbonate (Byong-Hee et al., 2000). A study later expanded on this by observing the Anammox 

process and its limitations with suboptimal concentrations of sodium bicarbonate (Liao et al., 

2008). It was found from this study that optimizing bicarbonate concentration in a sequencing 

batch reactor (SBR) could increase the rate of AMX up to 66.4 mg N/(L∙d) (Liao et al., 2008). 

Additionally, it was found in a study by Kimura et al. (2011) that AMX had difficulty in 

using IC when the influent IC concentrations were very low. In fact, AMX was found to be much 

more affected by IC limitations than both AOB and NOB, resulting in a reduction of biomass 

concentrations and nitrogen consumption rates (Yiwei et al., 2014). Yiwei et al., 2014 also found 

that IC limitations led to the establishment of NOB in the biofilm after recovery, resulting in long-

term stability problems. This highlights the importance of maintaining IC concentrations during 

operation.  

Given the pH range of the centrate used in this study, the species contributing to total 

alkalinity as measured using standard titration techniques were hypothesized to be: 

Eq – 5: Alk (eq/L) = HCO3
- + 2CO3

-2 + HPO4
-2 + HS- + 0.68VFAs + OH- 

 

Notes to Eq – 5:  

0 0 
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• Volatile fatty acid (VFA) concentration is multiplied by 0.68 since the pKa values for 

relevant VFAs (4.78-4.88) is sufficiently close to the titration endpoint (pH=4.5) such 

that base species remain at significant concentrations. 

• Due to the reactor operating pH, the CO3
-2 and OH- species concentrations are 

considered negligible and therefore are considered as zero. 

• Even though H3PO4 is a tri-protic acid with three potential base species, within the pH 

range of the centrate, only HPO4
-2 would contribute to alkalinity.  

• Of two base species associated with H2S only HS- was considered important for 

alkalinity since concentrations of S-2 are negligible. 

As part of this study, the species in Eq – 5 were quantitatively determined and compared 

to the alkalinity measured with acid titration. To assess this objective an alkalinity “balance” was 

conducted on centrate and digested sludge.  

It is hypothesized that the concentration of bicarbonate limits deammonification efficiency 

with respect to ammonia removal. To test this hypothesis, Anammox deammonification was 

conducted at an equivalent N loading rate but different inorganic carbon concentrations. Since the 

P removal process reduced the inorganic carbon concentration, tests were conducted with and 

without struvite precipitation to determine if there are any impacts to the downstream 

deammonification process.  

4.1.2 Materials and methods 

To study the impacts of P recovery on the downstream deammonification process, the 

following tasks were performed: 

 

 



55 

4.1.2.1 Sample collection and storage 

Digested sludge samples and centrate, collected in a 50-gallon storage tank, were collected 

from Denver’s Metro Wastewater Reclamation District (MWRD), and transported to the Colorado 

State University (CSU) laboratories in sealed containers, as shown in Figure 24 below. The 

containers were stored in temperature-controlled rooms at 4°C. 

 

Figure 24- 50-gallon storage tank containing centrate collected from MWRD 

4.1.2.2 Lab simulation of P recovery 

A lab-scale P recovery process was designed to simulate the altered centrate needed. The 

P recovery process was conducted in batches using a 20 L Nalgene tank, as illustrated in Figure 

25 below.  
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Figure 25- 20-gallon baffled Nalgene tank and standing mixer used for optimized phosphorus recovery 
process 

The hydrogen ion concentration (measured by pH) is one of the most important factors that 

influence the struvite crystallization process, because it affects saturation and solubility. A high 

pH increases the rate of struvite crystallization and a lower pH increases solubility. A pH range of 

7.5 – 9 has been found to be suitable for optimum struvite precipitation (Booker et al., 1999; 

Stratful et al., 2001). However, conditions with pH > 9 show inhibition to struvite formation, as 

NH4
+ is converted to the dissolved gas NH3. Since the pH of the centrate was in the range of 8 – 

8.2 additional NaOH was not added. 

In most wastewaters, the limiting factor for struvite formation is the magnesium 

concentration in the system. Therefore, magnesium needed to be added externally to the system to 

initiate struvite formation and P recovery. Based on influent NH3 concentrations, a known volume 

of MgCl2 was added to increase struvite precipitation. Although theory suggests a molar ratio of 

Mg:P to be 1:1, in practice an excess amount of magnesium is required in the system to achieve 

higher phosphorus recovery, with a suggested molar ratio of 3:1 (Fattah et al., 2008b; Adnan et 

al., 2003a; Jaffer et al., 2002; Münch and Barr, 2001).  
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Turbulence or mixing also increases struvite formation. In struvite crystallizers, turbulence is 

required during operation to allow particles to collide with each other, resulting in struvite 

formation. Centrate with P recovery was continuously mixed and once the reaction was complete 

the precipitate was allowed to settle to the bottom of the tank, separating from the effluent. The 

effluent was then fed to the MBBR for deammonification. 

The lab-scale P recovery protocol was optimized with the following key improvements:  

• Temperature was kept at 20 C 

• 600 rpm was used for flash mixing, followed by 300 rpm for slow mixing 

• MgCl2 was added slowly during flash mixing 

• Baffles were added to increase turbulence in the system 

Digested sludge and centrate (liquid effluent from dewatered digested sludge) samples were 

collected from Denver's MWRD. The centrate was fed into the P recovery reactor and then to the 

MBBR for deammonification. Struvite precipitated and was collected from the P recovery reactor. 

Figure 26 below provides a Process Flow Diagram (PFD) of the bench-scale lab simulation of the 

P recovery and Anammox deammonification processes.   
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Figure 26- Process flow diagram of bench-scale phosphorus recovery lab simulation 

 

4.1.3 Bench-scale tests of Kruger’s Anita™ Mox MBBR system 

A 7L MBBR was designed and constructed specifically for this study, as illustrated in 

Figure 27 below. Centrate with P recovery was fed and mixed at a continuous rate and 5.1L of 

centrate was maintained in the reactor. Anammox seeded media (AnoxKaldnes™ carriers, Kruger 

Inc., Cary NC) were used. The system was placed in a temperature-controlled room at 30C.  
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Figure 27- Bench Scale MBBR Schematic  

4.1.4 Analytical analysis 

The pH, temperature, and DO of the MBBR were continuously monitored in-situ using a 

universal controller (Hach Company, Loveland, CO; model SC200). Aeration was modulated 

using a relay controller programmed to the pH sensor with a set point. The MBBR was 

continuously mixed at a constant rate using a mechanical stirrer (Heidolph, Schwabach, Germany; 

model RZR-2021). Industry standard methods were followed to analyze grab samples (EPA). 

Industry standard test kits were used to test daily grab samples from the reactor effluent for NH4
+-

N (Hach TNT 832 kit), NO3− -N (Hach TNT 836 kit), NO2
− -N (Hach TNT 840 kit), COD (Hach 

TNT 822 kit), VFAs (Hach TNT 872 kit), HPO4
2- (Hach TNT 846 kit) (Hach Company, Loveland, 

CO). Sulfides were analyzed by EPA Method 8131 (Hach Company). All the daily effluent grab 

samples were measured using a spectrophotometer (Hach Company, Loveland, CO; model DR 
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3900). IC was quantified using a TOC analyzer (Shimadzu, Kyoto, Japan; models TOC-VCSH 

and ASI-V). Total alkalinity was tested using titrimetric analysis (American Society for Testing 

and Materials).  

4.1.5 Results  

Figure 28 below illustrates the results from tests measuring alkalinity contributing species 

in the centrate and digested sludge. Measurements of the digested sludge and centrate without and 

with P recovery indicate that the bicarbonate mole fractions were the greatest contributor to the 

total alkalinity of the system contributing 87.3%, 87.8%, and 97.6%, respectively. The mole 

fraction of VFAs contributed the least in the digested sludge and centrate without and with P 

recovery at 2.2%, 1.4%, and 1.6%, respectively. The sulfide mole fraction in the digested sludge 

was measured at 4.1% and was found to not be measurable in the centrate without and with P 

recovery. Phosphate mole fractions decreased significantly from 10.8% in the centrate without P 

recovery to 0.8% in the centrate with P recovery.  
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Figure 28- Percentage of alkalinity contributing species in the digested sludge and centrate without and 
with P recovery 

Figure 29 below shows that the total alkalinity (eq/L as CaCO3) reduced significantly 

between each process, reducing from 0.0906 ± 0.0055 eq/L in the digested sludge, to 0.0637 ± 

0.0043 eq/L in centrate before P recovery, then to 0.0514 ± 0.0029 eq/L in the centrate with P 

recovery. Significant losses in the total alkalinity were attributed to bicarbonate loss during solids 

collection of the digested sludge and by phosphate and bicarbonate loss during the P recovery 

processes. 
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Figure 29- Total alkalinity and alkalinity contributing species measured in eq/L as CaCO3 in the digested 
sludge and centrate without and with P recovery  

The effects of DO on the deammonification process were studied by measuring the % 

inorganic N eliminated. 137 samples were collected throughout the six months of MBBR 

operation. At reactor start-up, the DO concentration was set to 0.55-0.75 then gradually modified 

until steady state was achieved.  The results, as illustrated in Figure 30 below, indicate that more 

inorganic N was eliminated at lower DO concentrations (n = 137 samples).    



63 

 

Figure 30- Effects of dissolved oxygen on % inorganic N eliminated 

The MBBR was operated for six months and the N loading rate was gradually increased 

during this period. After each successive loading rate increase, the reactor was allowed to come to 

a quasi-steady state as evidenced by pH stability and at 7 days of N concentrations within 5% of 

the rolling mean. The % inorganic N elimination is plotted versus surface loading rate (g NH3/m2-

day) in Figure 31 for these quasi-steady state data points. A linear regression, including the 95% 

confidence intervals, is shown in Figure 31, and was constructed using data from 48 samples. A 

negatively sloped linear relationship was observed as the surface area loading rate increased.  
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Figure 31- Linear regression model for the surface area loading rates and % inorganic N elimination 

Figure 32 below presents a bar graph of the data presented in Figure 31 above. The graph 

quantifies the % inorganic N eliminated at five varying surface area loading rates, measured in g 

NH3/m2-day, and consists of 48 samples collected during steady state throughout the six months 

of MBBR operation. The surface area loading rates were modified to observe their effects on the 

deammonification process. The observed trend is that the % inorganic N removed decreased as the 

surface area loading rate increased.  
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Figure 32- Quantification of the % inorganic N eliminated at different ranges of surface area loading 
rates 

Table 7 and Figure 33 below present the results of a one-way ANOVA using the Tukey Pairwise 

Comparison method conducted on the data presented in Figures 31 and 32. A p-value greater than 

0.05 indicates that the surface area loading rate ranges are statistically equivalent at a 95% 

confidence level. Surface area loading rate ranges that are statistically significantly the same are 

grouped using the same letter (i.e. A, B, or C), in Figure 33.  

Table 7- Tukey simultaneous test adjusted p-values for difference of means 

Difference of Ranges Difference of Means Adjusted P-Values 

1.26 - 1.35 - 0.35 - 1.26     -2.42 0.936 

1.35 - 2.35 - 0.35 - 1.26     -6.43 0.123 

2.35 - 2.6 - 0.35 - 1.26 -12.11 0.000 

2.6 - 3.06 - 0.35 - 1.26 -14.42 0.000 
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1.35 - 2.35 - 1.26 - 1.35 -4.01 0.636 

2.35 - 2.6 - 1.26 - 1.35 -9.69 0.009 

2.6 - 3.06 - 1.26 - 1.35 -12.00 0.000 

2.35 - 2.6 - 1.35 - 2.35 -5.68 0.091 

2.6 - 3.06 - 1.35 - 2.35 -7.99 0.001 

2.6 - 3.06 - 2.35 - 2.6 -2.31 0.627 

  

Figure 33- One-way ANOVA Tukey Pairwise Comparison results on the effects of surface area loading 
rate ranges on % inorganic N elimination (The Tukey grouping results (A, B, and C) are also presented) 

 

Table 8 below presents results from statistical analyses performed on the data presented in 

Figures 30 and 31 above. Table 7 presents the grouping results using the Tukey Pairwise 

Comparison method at a 95% confidence interval from a one-way ANOVA performed on centrate 

with P recovery at varying surface area loading rates.  

A 

A 

A, B 

   B, C 

C 
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Table 8- Results from a one-way ANOVA (Tukey Pairwise Comparison method) analyzing the effects of 
varying surface area loading rates on centrate with P recovery  

Surface Area Loading Rate (g 

NH3/m2-day) 

% Inorganic N 

Eliminated 

Standard 

Deviation 

Tukey Pairwise Comparison 

Groupings 

0.35 - 1.26 73.8 5.99 A 

1.26 - 1.35 71.4 3.87 A 

1.35 - 2.35 67.4 4.30 A, B 

2.35 - 2.6 61.7 2.91 B, C 

2.6 - 3.06 59.4 4.04 C 

 

Comparative analysis was conducted on centrate with P recovery at a constant surface loading rate 

of 2.7 g NH3/m2-day, as shown in Figure 34 below. The results indicate that at least a 67.8% 

inorganic N elimination could be achieved for centrate without P recovery. 
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Figure 34- Comparison of the % inorganic N eliminated with and without P recovery at a constant 
surface area loading rate of 2.7 g NH3/m2-day 

Table 9 presents the results from a two-sample t-test conducted on data from centrate with and 

without P recovery subjected to a constant surface area loading rate of 2.7 g NH3/m2-day. The 

results indicate that, at a 95% confidence interval, there is a statistically significant difference in 

centrate with P recovery compared to centrate without P recovery (p 0.001).  

Table 9- Two sample t-test results analyzing the effect of a constant surface area loading rate (2.7 g 
NH3/m2-day) on centrate with and without P recovery 

Surface Area Loading Rate  

(g NH3/m2-day) 

% Inorganic N 

Eliminated 

Standard 

Deviation 

p-value  

(Ha: μ1 - μi-1 ≠ 0) 

Centrate with P Recovery 59.9 3.91  

Centrate without P Recovery 67.8 3.01 0.001 
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Figure 35 below plots the projected reactor performance based on measured % inorganic N 

eliminated data with P recovery, using an alkalinity/ammonia ratio of 2.48. The projected reactor 

performance indicates that as the alkalinity/ammonia ratio increased, the reactor performance 

based on the % inorganic N removed, also increased. The reactor performance was measured to 

be 59.9% based on measured data for centrate with P recovery, using an alkalinity/ammonia ratio 

of 2.48. The reactor performance for centrate without P recovery and at an averaged 

alkalinity/ammonia ratio of 2.91 was measured to be 67.8%. If the alkalinity was available at the 

ratio it is consumed, 3.33, then the data indicates that the reactor performance would be 75.5%. 

 

Figure 35- Projected % of inorganic N removed with increased alkalinity/ammonia ratios 

4.1.6 Discussion 

The primary focus of this study was to gain an understanding of how upstream P recovery 

processes affect the Anammox-based deammonification process. Measurements of the digested 

sludge and centrate without and with P recovery indicate that bicarbonate mole fractions were the 

greatest contributor to the total alkalinity of the system contributing 87.3%, 87.8%, and 97.6%, 
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respectively, as indicated in Figure 28. Comparison of bicarbonate in the digested sludge and 

centrate without P recovery indicated that dewatering the digested sludge significantly contributed 

bicarbonate alkalinity to the overall total alkalinity in the centrate. With P recovery, the percent of 

the total bicarbonate alkalinity present in the centrate further increased; therefore, dewatering the 

digested sludge enhanced the P recovery process.  

While the mole fraction of bicarbonate alkalinity increased in the overall total alkalinity of 

the centrate, the bicarbonate concentrations decreased in the digested sludge and centrate without 

and with P recovery from 0.0791 ± 0.0036 eq/L, 0.0560 ± 0.0040 eq/L, and to 0.0502 ± 0.0029 

eq/L, respectively, as illustrated in Figure 29. Since the overall total alkalinity is comprised mostly 

of bicarbonate alkalinity, the total alkalinity (CaCO3 eq/L) also reduced significantly between each 

process, reducing from 0.0906 ± 0.0055 eq/L in the digested sludge, to 0.0637 ± 0.0043 eq/L in 

centrate without P recovery, then to 0.0514 ± 0.0029 eq/L in the centrate with P recovery. The loss 

of total and bicarbonate alkalinity was observed due to an increase in H+ ion concentration 

(decrease in the pH), because of increased struvite formation. The deammonification process was 

driven by Anammox bacteria which are chemoautotrophic bacteria, that rely on NO-2 as their 

electron donor and CO2 as their main carbon source (Madigan et al., 2011). Literature also reports 

that IC concentrations affect Anammox activity (Liao et al., 2008; Tang et al, 2009. A study 

concluded that 1.2 mg-C/L is the optimal IC concentration for Anammox-based deammonification 

process; however, when IC concentrations are very low Anammox bacteria have difficulty using 

IC as a carbon source (Kimura et al., 2011). Additionally, IC is the main carbon source for AOB 

growth, and studies have shown that AOB activity is limited at IC concentrations lower than 36 

mg-C/L (Kimura et al., 2011). Therefore, a sufficient amount of IC is required for the 

deammonification process. Thus, an important finding from this study was that IC should be used 
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as an indicator for determining reactor performance (% of inorganic N removed), rather than total 

alkalinity. Initially it was hypothesized that relying solely on alkalinity would be an accurate 

representation of the factors affecting deammonification. However, alkalinity is comprised of other 

species than just bicarbonate, and because AMX bacteria and AOB rely on IC, this study concluded 

that IC should be used to measure reactor performance.  

As the P recovery process was optimized to increase struvite formation, which is beneficial 

for WWTPs by preventing equipment fouling and therefore operation and maintenance costs and 

the potential economic benefits of struvite as agricultural fertilizer, the amount of available 

ammonia needed for AMX in the deammonification process reduced. Literature suggests (Sliekers 

et al., 2002) a ratio of total alkalinity (as CaCO3) to total ammonium nitrogen (TAN) in the range 

of 3.57:1 to 3.68:1. What this study observed was that 60% of the inorganic N could be eliminated 

when the alkalinity/ammonia ratio was 2.48 and when the ratio was further increased to 2.91 70.1% 

inorganic N removal was achieved. Using the measured data, the reactor performance was 

projected to be 75.5% efficient if the alkalinity was available at the ratio it was consumed, which 

was 3.33, shown in Figure 35. The alkalinity/ammonia ratio findings from this study are outside 

of what literature suggests; however, the results support industry manufacturer process guarantees 

for TAN removal (Veolia, 2015). The industry manufacturer of the Anita™ Mox process provides 

a process guarantee of 75-85% TAN removal, without the addition of any external carbon sources 

(Veolia, 2015). These findings further support the hypothesis that bicarbonate alkalinity is an 

important design criterion for the deammonification process performance.  

DO control is crucial when maintaining an Anammox based deammonification process. 

Anammox bacteria are obligate anaerobic bacteria (Madigan et al., 2011) and during MBBR 

operation it was found that DO concentrations significantly affected Anammox growth. 
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Additionally, since Anammox are anaerobic bacteria and have a very slow growth rate (μ = 0.0027 

h-1) (Strous et al., 1998; van der Star et al., 2007) the observed effects of altering the DO 

concentration was delayed. DO concentrations also affect the AOBs and NOBs present in the 

MBBR. Unlike Anammox, AOBs, and NOBs are strict aerobes. Therefore, successful 

deammonification depends on a balanced microbial ecology between Anammox, AOBs, and 

NOBs, where Anammox and AOB growth is fostered due to the commensalism relationship 

exhibited between each other. At reactor start-up, the DO concentration was set to 0.55-0.75 mg 

O2/L. During the six-month reactor operation, the DO concentration was gradually increased then 

decreased in set concentrations until steady state was achieved. The overall DO concentration 

during the life of the reactor ranged from 0.4-1.8 mg O2/L. This study found that 66.3% of 

inorganic N could be eliminated at a DO concentration within the range of 0.4-0.55 mg O2/L, as 

demonstrated in Figure 30. Cema et al., 2011 conducted a lab simulation identical to this study by 

using centrate from dewatered sludge. Cema et al., 2011 found that optimal reactor performance 

was achieved for oxygen concentrations around 3 mg O2/L with the average nitrogen removal rates 

of 1.8 ± 0.31 g N/m2-day. The results from both studies illustrate the variance in optimal DO 

concentrations between reactors with similar lab simulations. The reason for varying oxygen 

concentrations could result from specific ammonium surface loads in the biofilm (Hao et al., 

2002a). 

The effects of varying surface area loading rates (n = 26) were assessed on centrate with P 

recovery, at steady state. The reactor performance, measured in % inorganic N eliminated, was 

correlated to ammonia addition. The trend observed in Figure 31 was that increasing the surface 

area loading rate decreased the reactor performance. Once the ammonia flux exceeded 2.6 the 

reactor achieved 50.5% inorganic N elimination, this was also the lowest operating rate without 
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any upsets in reactor operation. There was a statistically significant difference between groups as 

determined by a one-way ANOVA (F(4, 21) = 12.20, p = 0.000) (Fig. 33 , Tables 7 and 8) in 

Minitab 17 (Minitab, State College, PA). A Tukey Pairwise Comparison test revealed that, at a 

95% confidence interval, reactor performance was statistically significantly lower when subjected 

to surface area loading rate ranges of 2.35 – 2.6 (61.71 ± 2.91%, p = 0.001) and 2.6 – 3.06 (57.32 

± 4.38%, p = 0.000) compared to the surface area loading rate range of 0.35 – 1.26 (73.82 ± 5.99%). 

While reactor performance decreased from 73.82 ± 5.99% to 71.41 ± 3.87% and to 67.40 ± 4.30% 

when subjected to the surface area loading rate ranges of 0.35 – 1.26, 1.26 – 1.35, and 1.35 – 2.35, 

respectively, there was no statistically significant difference between these ranges (p = 0.940 and 

p = 0.158).  

A comparison was conducted between centrate with (n = 4) and without (n = 22) P recovery 

at a constant surface loading rate of 2.7 g NH3/m2-day (Fig. 34). The MBBR performed at 59.9% 

efficiency with centrate subjected to P recovery upstream. The reactor displayed an immediate 

improvement with centrate without P recovery by performing at 65.6% efficiency. A statistical 

comparison was conducted between these variables using a two-sample t-test (for a normally 

distributed data set (AD: p > 0.05) of equal variance) in Minitab 17. The results in Table 9 indicate 

that reactor performance is statistically different at the 95% confidence level when using centrate 

with and without P recovery (p = 0.001). Therefore, P recovery significantly impacts reactor 

performance by reducing reactor performance. 
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CHAPTER 5: SUMMARY AND CONCLUSION  
 
 
 
The findings presented in chapter 3 further advanced published sample prep and DNA 

extraction protocols for fixed biofilm Anammox media. Results comparing the DNA 

concentrations, purity, and spectrophotometry curves obtained from experiments using three 

different DNA isolation kits revealed that the PowerBiofilm kit was most efficient at minimizing 

biases. Selection of the PowerBiofilm kit also optimized DNA extraction results, because of the 

chemical in the microbeads, which allowed for the breakdown of extracellular polymer substances 

found in biofilms. Application of mechanical cell lysis techniques, including the use of liquid 

nitrogen and a pestle, resulted in a more representative sample, and further mitigated biases. 

Additionally, doubling inhibitor removal solution during DNA extraction reduced biases.  

One of the research objectives was to determine whether correlations between the 

microbial ecology data and the MBBR performance data could be determined from the use of 

DNA extraction procedures and qPCR. The results from this study indicate that microbial ecology 

data and MBBR performance data were not correlated. However, these findings only represent 

data from one MBBR and the use of DNA extraction techniques which do not indicate activity of 

the target gene. Therefore, it is recommended that future studies are conducted on multiple MBBRs 

to obtain more representative results and the use of RNA extraction techniques to quantify the 

activity of target genes.  

Results from the full-scale suspended Anammox granule system indicated that the reactor 

either had no AMX or concentrations too low to detect. These findings support the observations 

made by on-site operators at the full-scale WWTP, who communicated that operational issues with 

the pumps had occurred, which they hypothesized could be affecting the amount of AMX in the 
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reactor. Since AMX have a relatively slow growth rate of μ = 0.0027 h-1, as compared to AOB and 

NOB, it is likely that the effects of the process upsets, due to the operational issues experienced 

with the pumps, were not observed until late February, when the samples were taken.  

It is recommended that the full-scale WWTP collect more samples, to develop a baseline 

of data over time. Creating a baseline would allow for trends in the microbial ecology to be 

observed which can then be correlated to the observed performance of the reactor, overflow, and 

underflow streams. Another recommendation for the full-scale WWTP is to consider sequencing 

samples which are difficult to reproduce. While the sequencing process is expensive, relative the 

biomolecular tools used during this study, and requires approximately one month before the results 

are available, the results could be compared to qPCR results and previous sequencing results to 

help develop a more robust baseline.   

The results presented in chapter 4 confirmed the hypothesis that the P recovery process 

impacted the downstream deammonification process. The loss of total and bicarbonate alkalinity 

was observed due to a decrease in pH because of increased struvite formation. It was found that a 

lower pH increased the CO2 concentration, thus aiding the deammonification process. It was also 

hypothesized that using alkalinity would be an accurate representation of the factors affecting 

deammonification. However, alkalinity is comprised of other species than just carbonate, and 

because Anammox rely on CO2 this study concluded that IC should be used to measure reactor 

performance. This study also found that increasing the surface area loading rate (g NH3/m2-day) 

decreased reactor performance. The reactor performance was statistically significantly different 

when subjected to ranges of surface loading rates of 2.35 – 2.6 and 2.6 – 3.06 compared to the 

surface area loading rate range of 0.35 – 1.26. Comparative analysis was conducted using a 

constant surface area loading rate (2.7 g NH3/m2-day) on centrate with and without P recovery. 
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When using centrate with P recovery the MBBR performed the poorest at 59.9% efficiency. 

However, the reactor displayed an immediate improvement when subjected to centrate without P 

recovery by performing at 65.6% efficiency. Extrapolation of measured data indicates that if the 

observed consumption ratio of 3.33:1 was achieved, the projected reactor efficiency would be 

75.5% total inorganic nitrogen (TIN) removal at a loading rate of 2.7 g NH3/m2-day. It is 

hypothesized that the concentration of bicarbonate limited deammonification efficiency with 

respect to ammonia removal. To test this hypothesis, this study recommends further 

experimentation to observe the effects of increasing the carbonate alkalinity concentration by 

adding sodium bicarbonate (NaHCO3). 

The integration of biomolecular tools WWT systems can be an effective approach to 

optimize reactor performance. Use of biomolecular tools, such as DNA extraction techniques and 

qPCR, can determine the relative abundance of a system which could provide a general sense of 

the microbial ecology. Knowing the microbial ecology could allow WWTP operators to modify 

operating conditions, such as pH, temperature, DO, alkalinity, influent NH4
+-N and NH3-N flux, 

and IC requirements, to promote AMX and AOB growth, while limiting NOB growth. The use of 

biomolecular tools can also be helpful in determining correlations between modified factors that 

affect the microbial ecology and reactor performance.  
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APPENDIX 
 
 
 

 

Figure 36- DNA extraction test 1 results from using the DNeasy DNA Isolation kit with vortex and scraping 
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Figure 37- DNA extraction test 2 results from using the DNeasy DNA Isolation kit with vortex and scraping 
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Figure 38- DNA extraction test 3 results from using the DNeasy DNA Isolation kit with liquid nitrogen and smashing with a mortar and pestle 
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Figure 39- DNA extraction test 4 results from using the DNeasy DNA Isolation kit with liquid nitrogen and smashing with a mortar and pestle 
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Figure 40- DNA extraction test 5 results from using the DNeasy DNA Isolation kit with liquid nitrogen and smashing with a mortar and pestle 
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Figure 41- DNA extraction test 6 results from using the PowerLyzer PowerSoil DNA Isolation kit with liquid nitrogen and smashing with a 

mortar and pestle 
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Figure 42- DNA extraction test 7 results from using the PowerLyzer PowerSoil DNA Isolation kit with liquid nitrogen and smashing with a 
mortar and pestle 
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Figure 43- DNA extraction test 8 results from using the PowerLyzer PowerSoil DNA Isolation kit with liquid nitrogen and smashing with a 
mortar and pestle 
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Figure 44- DNA extraction test 9 results from using the PowerBiofilm DNA Isolation kit with liquid nitrogen and smashing with a mortar and 
pestle 
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Figure 45- DNA extraction test 10 results from using the PowerBiofilm DNA Isolation kit with liquid nitrogen and smashing with a mortar and 
pestle 
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LIST OF ABBREVIATIONS 
 

 

 

AMX – anaerobic ammonia oxidizing bacteria 

AD – Anderson-Darling 

AOB – ammonia oxidizing bacteria  

BNR – biological nitrogen removal  

COD – chemical oxygen demand  

CSU – Colorado State University  

DNA – deoxyribonucleic acid  

DO – dissolved oxygen 

EBPR – enhanced biological phosphorus removal 

EU – European Union  

IC – inorganic carbon  

N – nitrogen 

MBBR – moving bed biofilm reactor  

MWRD – metro wastewater reclamation district  

NAE – National Academy of Engineering 

NOB – nitrite oxidizing bacteria 

O&M – operation and maintenance 

OD – optical density  

P – phosphorus  

PBS – phosphate buffered saline 

PFD – process flow diagram  

QA/QC – quality assessment / quality control  
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qPCR – quantitative polymerase chain reaction  

RNA – ribonucleic acid  

TN – total nitrogen 

TAN – total ammonium nitrogen  

TIN – total inorganic nitrogen 

TOC – total organic carbon  

UASB – upflow anaerobic sludge blanket  

US EPA – United States Environmental Protection Agency  

VFA(s) – volatile fatty acid(s) 

WWT – wastewater treatment  

WWTP(s) – wastewater treatment plant(s) 

 


