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ABSTRACT 
 
 
 

PHYTOHORMONE EFFECT ON PTEROCEPHALUS DEPRESSUS STOCK PLANT 

PRODUCTIVITY AND PHYTOHORMONE ACCUMULATION AND MOVEMENT 

 

Moroccan pincushion (Pterocephalus depressus) is a drought tolerant perennial that is being 

used in landscapes throughout arid areas of the western United States. Commercial producers 

have had difficulty in producing enough plants to meet demand for moroccan pincushion due to 

production and propagation stock plant problems. Producers of comparable ornamental 

perennials have increased their use of gibberellic acid 3 (GA3) in stock plant production. The use 

of GA3 has increased the yield of vegetative cuttings from perennial stock plants. The plant 

hormone GA3 is involved in many physiological processes, including plant growth and 

development. In current literature, few reports are available on the interaction between 

exogenous GA3 and other plant hormones and their effect on successful propagation of 

vegetative cuttings. However, the research clearly demonstrated that several different hormone 

interactions with GA3 could beneficially affect the cutting’s rooting physiological process. First, 

this study describes two experiments researching optimization of stock plant production. 

Moroccan pincushion stock plants received foliar applications of GA3, benzyladenine, ethephon, 

or indole-3-butyric acid (IBA) plant growth regulators (PGR). Plant growth regulators were 

applied singularly and in combination with GA3 to determine efficacy on stock plant production. 

A propagation study was conducted simultaneously to determine effects of these different PGR 

treatments on the rooting of moroccan pincushion cuttings. The stock plant study showed GA3 + 

benzyladenine increased cutting production over other treatments. Fresh weight of moroccan 
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pincushion did not differ among treatments. While dry weight showed no differences in 

experiment 1, but in experiment 2 differences were observed. The GA3 + IBA treatment had the 

greatest overall growth. Treatments that included GA3 were all greater in average growth index 

[(height + width + width)/3] and differed from those without GA3 being applied. The 

propagation experiments indicated rooting percentages did not differ among treatments. 

However, growers look for 100% rooting and GA3 + IBA was the only treatment with 100% 

rooting percentage for both experiments indicating potential benefits. The second part of this 

paper was to determine the movement and accumulation of GA3 and IBA in treated moroccan 

pincushion (Pterocephalus depressus). Plants were treated with GA3 alone and in combination 

with benzyladenine, ethephon, or IBA by either a foliar or drench application method. The 

amount of GA3 and IBA found in basal and apical sections of moroccan pincushion was 

analyzed using liquid chromatography/ mass spectrometry (LC/MS). Results shown that drench 

applications effected the movement of GA3 when GA3 was combined with IBA or 

benzyladenine. The movement of IBA was affected by drench applications the greatest when 

GA3 + IBA were applied. Both GA3 and IBA were found in the greatest abundance when plants 

were treated with GA3 + IBA in apical areas of moroccan pincushion. Nutrients in the cuttings 

were also analyzed. Only potassium had a significant difference for the amount found when 

treated with GA3 as a drench application. Other nutrients detailed in this study were not affected 

by different PGR treatments. This study highlights the beneficial effect of GA3 on production of 

vegetative cuttings without adverse effects on successful rooting of the cutting.     
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 
 
 
 

1.1 Introduction 

Ornamental herbaceous perennials are a major crop in the horticultural industry. The 

need for more landscape plants throughout the United States due to increased land development 

has amplified the demand for a larger market presence of herbaceous perennials. The United 

States Department of Agriculture’s 2014 Census of Horticultural Specialties states that sales of 

potted herbaceous perennial plants were $945 million. This market showed an increase of 12% 

from the previous census taken in 2009, or a 2.25% annual increase in sales (USDA Census, 

2014). 

Ornamental herbaceous perennials are a major contributor to the landscape industry. 

They have become popular with consumers and industry professionals because of their 

advantageous low-input cultural characteristics. Low-input cultural characteristics include their 

drought, cold, and salt tolerances. These characteristics are often prevalent in the state of 

Colorado. The USDA reported that Colorado had $16.1 million in revenue for potted herbaceous 

perennial revenue for 2014 (USDA Colorado Census, 2014). These characteristics have resulted 

in increased overall production in the state of Colorado. However, with this increase in 

production more propagation problems have arisen for many growers. 

Herbaceous perennials are highly desirable for many homeowners throughout the arid, 

intermountain region. One program administered through Colorado State University, the Denver 

Botanic Garden, and the Colorado Green Industry is the Plant Select® brand. Plant Select® is 

the country’s leading brand of plants designed to thrive in High Plains and Intermountain 

Regions, offering plants that provide more beauty with less work. Gardeners of all levels 
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utilizing these plants can achieve smart, stunning, and successful gardens using less resources 

and results in a positive environmental impact (Plant Select, 2017).  

Greenhouse and nursery operations propagating these Plant Select® plants indicated that 

there are production problems with Moroccan Pincushion (Pterocephalus depressus Archibald). 

The main problems indicated were slow growth rates of this ‘petite’ perennial and/or low 

propagation rooting percentages. These problems could have solutions by using plant growth 

regulators (PGR). Previous research performed at Colorado State University with PGR on four 

Plant Select® herbaceous perennials have shown gibberellic acid increased cutting production. 

In this study gibberellic acid alone and in combination with other PGR was applied either 

foliarly or by drench on stock plants of Pterocephalus depressus. 

1.2 Background Information on Pterocephalus depressus Moroccan Pincushion 

Pterocephalus depressus is an herbaceous perennial in the family Caprifoliaceae 

(honeysuckle family). It thrives in well-drained soil and full sun with low mat-like evergreen 

leaves, short-stemmed pincushion like pink flowers that end in attractive silvery seed heads 

(Plant Select, 2017). A native of the Moroccan Atlas Mountains, this perennial is well suited in 

high elevations of the Rocky Mountains. This species is closely related to the genus Scabiosa 

(pincushion flower) and possesses similar flowers. Not much research is reported with 

Pterocephalus depressus propagation and growing. However, medicinally important 

Pterocephalus species have been researched for their possible healing values, especially in Asia 

(Akhgar and Safavinia, 2016). 

The species Pterocephalus hookeri (C.B. Clarke) is a popular Tibetan herb that has been 

widely applied in many Tibetan prescriptions and has multiple traditional uses in the treatment of 
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illnesses such as cold, flu, rheumatoid arthritis, and enteritis in China (Gulcemal et al., 2010). 

The medicinal uses have led researchers to study specific compounds within the plant to isolate 

any beneficial compounds that could be extracted. 

1.3 Vegetative Herbaceous Perennial Propagation 

The selection and propagation of plants is one of the oldest works of mankind (Wells, 

1971). The Royal Horticultural Society Dictionary of Gardening defines a cutting as “… any 

portion of a plant, root, stem, leaf, or bud which is separated from the plant and has been induced 

to form roots of its own.” (Royal Horticultural Society, 1999). Asexual plant propagation is used 

throughout the green industry for mass production of genetically identical plant crops through 

vegetative cuttings. Reasons for vegetative over sexual propagation include the inability to 

produce viable or true to type seeds, perpetuate a certain form of the plant, modification of habit, 

adaptability to habitat, and to develop pest resistance (Mahlstede et al., 1966). Hartmann et al. 

(2002) states that commercial propagators have developed technologies that successfully 

manipulate environmental conditions to maximize rooting, but what has lagged is the knowledge 

of the biochemistry, the genetic, and molecular manipulation of rooting. 

The determination of the best time to take cuttings is critical for successful propagation 

process (Wells, 1971). One needs to know the plant nomenclature to be propagated, its specific 

biology, and cultural needs. Herbaceous perennials are very diverse, and it is difficult to 

determine many specifics for the propagation of an individual plant. The type of cutting to be 

taken is also an important determination for a propagator. Different types of cuttings are 

determined by area on the plant where cuttings are taken, apical (tip) or lateral and the specific 

plant organ, leaf, stem, and root (Wells, 1971). In this study, Pterocephalus depressus required 

an apical stem cutting based on Plant Select® propagator comments.  
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Once the specific type of cutting is determined the propagator then must decide on the 

use of PGR. Most commercial propagators use some form of auxin, either indole butyric acid 

(IBA) or 1-naphthaleneacetic acid (NAA) (Fretz et al., 1979). After speaking with Plant Select® 

propagators, it was determined that for Pterocephalus depressus a rate of 500 mg·L–1 (ppm) IBA 

is enough to aid in consistently high rooting percentage.  

Each greenhouse operation is unique in their overall propagation protocols, the soilless 

medium chosen for propagation is an area where propagators have many choices. Common 

propagation soilless medium is perlite, vermiculite, sand, sphagnum peat moss, and pine bark; or 

some combination of several of them (Raviv and Lieth, 2008). The preference of the propagator 

is usually determined through trialing different media in different combinations on various plant 

species to determine the optimal selection. Propagation media should be readily available and 

inexpensive. Also, the medium should possess certain characteristics; uniform, long-lasting, 

good drainage, disease, insect, and weed-free (Fretz et al., 1979).  

The use of additional heat in the root zone can be beneficial during the propagation 

process. Bottom heat for a propagation bench has been shown to increase rooting rates (Wells, 

1971). The exact conditions a propagator prefers are based on experience gained with their 

growing environment and production procedures. A standard bottom temperature of 22 °C is 

commonly used by propagators as a basis when new varieties are propagated (Markovic and 

Klett, 2020a). If propagation success is not achieved, then adjusting the temperature is a common 

first step in finding an improved protocol. 

Humidification and intermittent mist are important factors in the vegetative propagation 

process. The use of greenhouse systems to keep humidity levels high has shown to be of vital 
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importance for commercial propagation facilities (Wells, 1971). A critical task for the 

propagation is to determine the correct amount of moisture to be added to the propagation 

environment. Fog, direct mist, or the use of plant cloth material are humidifying aspects in 

greenhouse space. Greenhouse propagation areas can monitor and adjust the level of humidity 

within growing areas very precisely (Hartmann et al., 2002). The ability of greenhouse 

environmental monitoring allows the propagator to consistently produce high rooting 

percentages for several taxa.  

Once the specifics of the plant, process, and the propagation environment to be used are 

determined, the original source of the propagation material plays a critical role in the overall 

propagation success. Stock plants, also known as mother plants, and their proper maintenance are 

needed to produce healthy propagation material (Dirr, 2009). A motto used at some propagation 

facilities is, “Start clean, End clean.” This illustrates the desire for clean, healthy stock material 

for successful propagation results. When the preferred size, quality, and quantity of stock plants 

to be used are known to growers, positive results will occur. 

1.4 Herbaceous Perennial Stock Plant Management Research 

 Managing stock plant health is an important part of propagation, it has been studied for 

many herbaceous perennials propagated throughout the United States. The concept of treating 

stock plants to increase rooting potential before cutting collection is an old concept. This 

approach recognizes that post cutting-collection treatments and propagation environments are 

rarely optimal. Cuttings with high rooting potential suffer least from any subsequent deficiencies 

(Howard, 1994). Like in many areas of horticulture, starting with healthy, disease free plants are 

desired. Procuring healthy cuttings to be planted and grown into stock plants is a key practice 

that must not be underestimated by propagators. Grower cultural practices have an impact on 
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overall health of stock plants (Lamb et al., 1975). Introducing pests to the propagation area 

should be avoided. Proper nutrition and plant care of stock plants are also required cultural 

practices. Most growers start new stock plants from plugs then allow the plants to grow for 6 to 

12 weeks before harvesting cuttings (Gibson et al., 2005). 

 Growers have different procedures for harvesting cuttings, but they can be grouped into 

two general categories, selective or hedging harvests. Selective harvesting is when the grower 

removes only the ‘best’ available cuttings from the stock plants. While hedging is done by taking 

all the available cuttings that meet a certain standard that was predetermined (Gibson et al., 

2005). The grower harvest method is based on genus of plant and production schedule. What 

works for some growers for a specific genus, might not work for others, based on their 

production schedule and procedure. Some growers only need a small number of cuttings at one 

time of year, while others are constantly propagating. 

 It is highly desirable to keep stock plants in a juvenile or vegetative state of development. 

Wells states, “The state of development of the cutting and its condition on removal from the 

parent are of the highest importance.” He also states that the success of propagating the cutting is 

highly dependable on the judgement of the propagator (Wells, 1971). Reproductive tissue on 

cuttings can inhibit root and vegetative development (Gibson et al., 2005).  

 Plant nutrition is a cultural area that can have an impact on overall productivity of 

herbaceous perennial stock plants. Stock plant fertilizer concentrations for herbaceous perennials 

is typically between 150 to 200 mg·L–1 (ppm) Nitrogen (Gibson et al., 2005). A constant feed 

injection unit maintains nutritional levels in stock plants. Proper nutrition of stock plants helps 

maintain healthy, vigorous plants which result in superior cutting material.  
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Cultural practices growers have used to maintain a state of juvenility include lighting and 

temperature in the greenhouse space. The length of photoperiod required for herbaceous 

perennials varies based on the type of plant be they a short day, long day, or day neutral plant. 

Specific stock plant knowledge can be used to determine if additional lighting is required. Also, 

temperature manipulation can be easily programmed in most modern greenhouses. The 

knowledge of how to keep stock plants in a juvenile state will aid in developing propagation 

protocols for herbaceous perennials. Pterocephalus depressus has many unknowns about the 

required ideal conditions for maintaining juvenility. Researching the native region of this plant 

helps to determine if it is a long or short-day plant, for which Pterocephalus depressus is a long 

day flowering perennial (Denver Botanic Garden, 2020).  

1.5 Plant Growth Regulators 

 Many chemicals are found in plants have effects on functions and growth. The substances 

that influence the reactions and metabolism within plants are hormones, which are internally 

synthesized (Meyer et al.,1960). Plant hormones are involved in many plant growth and 

development processes, which allow plants to respond to introduced internal or external stimuli 

(Rademacher, 2015). Phytohormones, another term for plant hormones, are naturally occurring 

organic chemicals that are synthesized at a given site and usually translocated to the site of action 

in the plant. The five major phytohormones are auxin, cytokinin, gibberellin, abscisic acid, and 

ethylene. Plant growth regulators (PGR) are any synthetic and natural chemical that shows 

hormonal effects (Hartmann et al., 2002).  

Plant growth regulators aid in propagation, to increase yield, to improve plant quality, to 

alter plant growth habit, or to aid in harvesting or postharvest storage (Preece et al., 1993). The 

application of PGR in commercial greenhouse operations is widely used, but there are some 
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areas of the industry where increased knowledge and research into effects of PGR would be 

beneficial. Most PGR are typically applied via foliar sprays with water as the carrier. This 

application method can be easily incorporated into most commercial systems (Rademacher, 

2015). Plant growth regulators used in the study will be discussed in further detail. 

1.5.1 Gibberellic Acid 

 Gibberellins also known as Gibberellic Acid (GA) promotes growth primarily through 

cell elongation which is uniform throughout the plant tissue. Plant growth is cell division and cell 

elongation. Gibberellins and auxins are two special growth-regulating chemicals that effect cell 

elongation (Salisbury and Kriedemann, 1969). The plant stem growth resulting from GA 

treatments is due to the increased elongation of cells as well as an increase in cell division. 

Gibberellic acid also influences plant metabolism in several ways: stimulating cell division by 

the enhancement of DNA and RNA synthesis, hydrolyze starch into sugar, which in turn 

provides energy and encourages uptake of water by cells, cell wall elasticity is another activity of 

GA (Moore, 1984). Gibberellic acid utilized for PGR have been isolated from species of the 

fungus Gibberella fujikuroi and were first found in Japan in 1926 by E. Kurosawa (Salisbury et 

al., 1969).  

Gibberellins are diterpenoids, which means they contain four isoprene units. An isoprene 

unit is five carbon atoms bonded together to form a molecule shaped like a capital Y. 

Gibberellins all basically have the same four-ring molecular structure (Fig. 1.2); but they differ 

in the total number of carbons, some have 19 while others have 20 carbons. Gibberellic acids 

also can possess different side chains (Preece et al., 1993). GA is found in a wide range of plant 

parts including meristem, roots, stem, and the seed embryo. Gibberellins are transported 
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throughout the plant in the xylem and phloem and occur during numerous stages of growth. GA 

applied to one part of the plant can have effect on other plant parts (Leopold et al.1975). 

Gibberellic acid production is not done synthetically, but through the process of 

fermentation of Gibberella fungi. During the fermentation process GA are separated out and 

concentrated into different GA. Gibberellic acid number 3 (GA3) is the most popular GA used by 

members in the green industry for cell elongation and the ability to break seed dormancy (Preece 

et al.1993). For this study, GA3 was used to determine cell elongation effects on Pterocephalus 

depressus.  

 Gibberellic acids are involved in a variety of plant processes. Seed germination and 

dormancy are two areas that GA has been shown to effect plant growth and development. Barnes 

(2013) stated that GAs are found in high concentrations in immature seeds and can offset the 

need for seed stratification. Gibberellic acid terminates seed dormancy by changing the seed coat 

permeability and activating specific enzymes such as amylases, which are enzymes that catalyze 

the hydrolysis of starch into sugars. Flower bud formation has also been observed with the use 

GA. Boyle, et al, (1994) cited an inverse relationship between vegetative growth and flowering 

due to a highly significant negative correlation between the numbers of flower buds per plant and 

new apical phylloclade per plant in Easter cactus. 

The product used in this study, GibbPro produced by Valent U.S.A. Corporation (Walnut 

Creek, CA, www.valentpro.com), contains 4% GA3 which has shown to retard the aging process 

in plants (Nelson, 2003). Keeping stock plants juvenile longer was one goal of this study. 

Increased stem elongation and juvenility are areas necessary for stock plant management to meet 

the economic demands of the overall production operation.  
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Gibberellic acid 4 is less persistent than GA3, which can be better for propagation, where 

long lasting effects may be unwanted (Rademacher, 2015). Gibberellic acid 3 longevity may not 

affect the successful rooting of cuttings after 2-4 weeks in the plant. Gibberellic acids may 

inhibit adventitious root development and affect lateral root branching (Preece and Read, 1993). 

The goal of this study is to produce more cuttings, have cuttings root at a higher success rate and 

determine what effect GA3 may have. 

1.5.2 Benzyladenine  

 In the early 1900’s it was known that certain substances caused increased cell division 

(cytokinesis). In 1913 G. Haberlandt, an Austrian scientist discovered soluble substances that 

were present in the phloem that could cause cell division in potato parenchyma cells (Salisbury 

et al., 1969). In 1954, Carlos Miller found that aged or autoclaved DNA from herring sperm 

would stimulate cell division of tobacco in tissue culture, this substance was called kinetin 

(Salisbury et al., 1969). The common name cytokinin is used for any chemical substance that 

stimulate cell division, or cytokinesis.  

Cytokinins have been found to be involved in nearly all aspects of plant growth and 

development (Leopold et al., 1975). Other cytokinins have been discovered and many of them 

are isolated from plant tissues, beginning with zeatin discovered in corn (Zea mays). Zeatin is a 

modified version of adenine (Moore, 1984). Natural and synthetic cytokinins include: zeatin, 

zeatin riboside, kinetin, isopentenyladenine (2iP), and benzyladenine (BA or BAP). 

Cytokinins are usually made up of adenine with a five-carbon isoprene as a side chain. 

The isoprene unit comes from the mevalonate pathway which is also where GA come from. 

Therefore, to a certain extent, gibberellins and cytokinins share a portion of the same 
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biosynthetic pathway in the cell (Preece et al., 1993). The biosynthesis of cytokinins of the 

purine type occurs via the substitution of the side chain onto the common plant constituent 

adenine (Leopold et al., 1975). Cytokinins are known for cell enlargement, not cell elongation 

like with auxins and gibberellins. They promote cell growth in all directions (Preece et al., 1993). 

Cell division promotion may result in decreased apical dominance when cytokinin levels in the 

plant are elevated (Hartmann et al., 2002).  

The ratio of cytokinin to auxin has been studied and has been found to have a major 

effect on plant growth development (Preece et al., 1993). Higher auxin to cytokinin ratios results 

in better rooting, while higher cytokinin to auxin rations result in better vegetative growth 

(Preece et al., 1993). The increase in cytokinins in the plant through additional applications can 

have detrimental effects on the rooting percentages of herbaceous perennials (Grossman, 2012). 

Increasing branching and providing more propagation material per stock plant is important; 

however, having quality cuttings that produce roots at a high percentage is also important.  

N-6-Benzyladenine (6-BA), Figure 1.3, is a synthetic cytokinin and was used in this 

study to determine selected plant species response for lateral branching. Cytokinins are used in a 

variety of horticultural practices. In commercial greenhouse production, cytokinins are applied to 

increase branching and help decrease crop times by increasing the ability of the plant to grow in 

a container for a shorter period. In micropropagation (tissue culture), cytokinins are incorporated 

in the agar for increased branching of plantlets for division (Barnes, 2013). The wide use of 

cytokinins in micropropagation can be a possible indicator for whole plant application success.  
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1.5.3 Ethephon 

  Ethylene is a gaseous plant hormone that affects a wide range of plant growth and 

development processes (Simons, 1984). In its pure form ethylene is a gas and at normal 

temperatures dissipates into the atmosphere too quickly to be effective if it is applied to 

horticultural crops (Preece et al., 1993). A main plant response to ethylene is the enhancement of 

maturation. Depending on the plant growth stage several responses are capable of being induced 

when ethylene is applied including seed germination, root hair development, flowering, 

increased branching, growth regulation, fruit maturation, and leaf drop (Nelson, 2003). These 

desirable responses to ethylene have led to the need for a nongaseous, liquid form of ethylene.  

 Ethylene movement in plants is by diffusive processes, due to the relatively small size of 

the molecule. The small size and the solubility in water and other lipophilic systems allows for 

easy movement of ethylene throughout the plant tissues. The easy movement through cell 

membranes is due to solubility in lipophilic systems. Movement through air spaces suggests 

porosity of the tissue allows for movement similar to carbon dioxide movement in the plant 

(Leopold et al., 1975). The easy movement of ethylene in the plant is the reason that ethylene 

affects many different growth and development processes in the plant. 

 The biosynthetic pathway of ethylene was studied by Lieberman and Mapson (1964), 

they first proposed that the amino acid methionine is the precursor of ethylene. Adams and Yang 

(1979) worked to establish the exact sequence for the ethylene biosynthesis pathway in ripening 

apples. The pathway that occurs is Methionine to SAM (S-adenosylmethionine) to ACC (1 -

aminocyclopropane-1 -carboxylic acid) to ethylene. Methionine is first converted to S- 

adenosylmethionine (SAM) through reaction with available ATP. The next step in the pathway is 

the conversion of SAM to ACC and MTA (methylthioadenosine). ACC synthase, which 
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catalyzes the conversion of SAM to ACC and MTA has a key role in the regulation ethylene 

biosynthesis (Adams and Yang, 1979). Through this process ethylene is made available to the 

plant cells. 

The liquid form of ethylene, ethephon, is widely used as an alternative to the gaseous 

form which allows for better efficacy on plant crops. The chemical name for ethephon is 2-

chloroethyl phosphonic acid and is written as CEPHA in some instances. The structure of 

ethephon is a phosphonic acid compound having a 2-chloroethyl substituent attached to the 

phosphate atom, as in Figure 1.3. The 2-chloroethyl phosphonic acid compound breaks down in 

the more pH basic environment in the cell cytoplasm to release ethylene. 

Ethephon enters the plant and begins to breakdown into three molecules phosphate, 

chloride, and ethylene. These are released into the plant systems and effect plant growth and 

development (Preece et al., 1993). The production of ethylene in a plant has been observed to 

occur slightly before the ripening process of fruit (Salisbury et al., 1969). Ethephon has been 

used on food crops since the middle of the twentieth century. The release of ethylene has been 

used to promote the maturation and ripening of apples, bananas, tomatoes, and coffee. Ethylene 

aids in the loosening of certain fruit to increase production efficiency. Cherries and walnuts are 

two major food crops that are treated with ethephon prior to harvest to obtain uniformity (Preece 

et al., 1993). The fruit industry uses Florel, a commercially available PGR that contains 3.9% 

ethephon, to increase efficiency in harvests through the release of ethylene (Nelson, 2003). 

Ethephon is widely used to promote axillary shoot development and not damage the 

apical meristem (Hayashi et al., 2001). Other pinching PGR have more of a damaging effect on 

the plant growth than ethephon, which makes it a preferred chemical for many herbaceous 
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horticultural crops. The main response examined in this study, the inhibition of flowering 

initiation and abortion of young flowers has been written about in extensive detail by Dole and 

Wilkins (2005). The increase of branching and decrease of flower development can result in 

herbaceous perennial stock plants with significantly more vegetative cutting material. 

1.5.4 Auxin 

 Auxins were discovered trying to explain a correlation effect called phototropism. 

Charles Darwin (1897) found that the tip of a grass coleoptile is essential to the tropistic response 

of the whole coleoptile. The curvature was thought to be from a correlation carrier. Went (1928) 

found a substance that diffuses from coleoptile tips causing the tropism effect, auxins. Auxins 

generate many different responses from the plant such as: apical dominance, shoot elongation, 

organ differentiation, induction of cambial cell division, and root initiation (Buchanan et al., 

2000). The responses are due to the auxin shaped gene expressions that regulate growth and 

development in intact plants as well as excised stem and root cuttings (Beyl and Trigiano, 2015). 

In this study, auxin is looked at for the ability to initiate root growth. 

 The auxin present in most plants is indole-3-acetic acid (IAA) (Leopold et al., 1975). 

IAA content in plant tissues is regulated by several processes. L-tryptophan synthesis, non-

tryptophan precursors, and hydrolysis of IAA conjugates are what feeds the pool of IAA in plant 

tissues (Buchanan et al., 2000). In this study, the non-tryptophan precursor is most relevant 

because indole-3-butyric acid (IBA) is used as the applied PGR (figure 1.4) and IBA is 

synthesized from IAA (Buchanan et al., 2000).  

 The biosynthesis of IBA in Zea mays involves IAA as the direct precursor (Ludwig-

Mueller, 2000). Conversion of IBA to IAA has been demonstrated in a variety of plants (Fawcett 
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et al., 1960) and involves b-oxidation of the four-carbon carboxyl side chain of IBA to the two-

carbon side chain of IAA (Liu et al., 2012; Fawcett et al., 1960; Zolman et al., 2007). As a form 

of auxin storage, the carbon chain lengthened compound IBA, requires peroxisomal b-oxidation 

to IAA for auxin activity (Strader et al., 2010; Bartel et al., 2001; Woodward and Bartel, 2005). 

The exogenous IBA applied in this study was added for the purpose of root initiation of the 

cutting material. The extra IBA within the plant due to the exogenous application should increase 

the overall IAA concentration in the tissue and result in an increased number of initiated roots. 

1.6 Herbaceous Perennial Response to Plant Growth Regulators Research 

 Research pertaining to the application of PGR on herbaceous perennial crops increased in 

the past twenty-five years. Commercial operations are interested in any product that may allow 

them to lower their input costs or decrease the growing time required for finishing herbaceous 

perennial crops. Research specifically involving GA, benzyladenine, ethephon, and auxin on 

herbaceous perennials has been conducted on many commercial taxa. Unfortunately, no research 

on Pterocephalus has been reported with PGR. Although, parallels can be drawn between 

similarly growing herbaceous perennials and Pterocephalus.  

 Bluebird Nursery in Clarkson, Nebraska has used GA3 since the early 1990’s and found 

that applying a product named GibbPro (Abbot Laboratories, Chem & Ag Products, North 

Chicago, IL) at a rate of 25 mL per 10 L on 4-inch pots of Heuchera sanguinea ‘Snow Angel’ 

which resulted in increased cutting numbers (Ackerman et al.1994). They noticed a two to three 

times rate increase in vegetative growth as well as increased axillary bud development. This 

study was done at the nursery, but did not involve a control group, so results are not statistically 

valid. However, the continued use of GA3 on Heuchera ‘Snow Angel’ by the nursery and the 
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improved vegetative growth results are encouraging to do further research of GA on this 

herbaceous perennial. 

 Research performed on Heuchera sanguinea, Epilobum canum ssp. garrettii, Salvia 

pachyphylla, and Osteospermum x ‘Avalanche’ involving GA, benzyladenine, and ethephon 

have taken place at Colorado State University over the past four years. Results from these studies 

have been published and indicate a great potential for GA and benzyladenine in stock plant 

production (Markovic and Klett, 2020a, 2020b). Increased production of cutting material from 

all four taxa resulted from application of Fascination®, which is a commercial PGR that 

combines GA4+7 and benzyladenine (Markovic and Klett, 2020a).  

 Growth promotion by benzyladenine may result from increased concentrations of 

chlorophyll and other photosynthetic components (Song et al., 2013) and changes in leaf 

anatomy, this has been described in other species (Gandolfo et al., 2014). The exogenous 

application of benzyladenine can have similar effects. In addition, benzyladenine was shown to 

increase the cytokinin to auxin ratio in the plant and increase lateral branching by disrupting 

apical dominance (Cline, 1991). The use of benzyladenine on herbaceous perennials has proven 

to be beneficial in efficacy and improved branching. In the past two decades, benzyladenine has 

been researched thoroughly on many herbaceous perennials. In a study that involved herbaceous 

perennial liners with applications of 300, 600, 900, and 1200 mg·L–1 benzyladenine showed 

increased branching on Echinacea at rates as low as 300 m mg·L–1 (Latimer et al. 2011).  

The application of benzyladenine on Dianthus caryophyllus was researched in Poland on 

stock plant production and resulted in more cuttings, except for the highest application rate of 

800 mg·L–1 (Mynett, 1977). The application of benzyladenine on Hylotelephium ‘Autumn Joy’ 



17 
 

was shown to be very effective on treated liners resulting in four times as many lateral branches 

when compared to control (Latimer et al., 2013). Potential application schedules for stock plants 

to result longer-term production plants is an important factor. It has been shown that over time 

treated, and untreated liners eventually resulted in the same amount of lateral branching after 

only one treatment (Grossman et al., 2012). Possibly more favorable results can be achieved 

through an intensive application schedule at a shorter interval.   

 Latimer et al. (2015) found that Heuchera ‘Silver Lode’ had little response to an 

application of 600 mg·L–1 benzyladenine for plant height and width. The compactness of the 

Heuchera crown makes it difficult to accurately count lateral branching. An increase in 

branching was observed after destructive harvests. Benzyladenine applications increased in 

branching, which resulted in more propagation material on some herbaceous perennials. Martin 

and Singletary (1999) noticed an increase in lateral offshoots was accompanied by more uniform 

offshoot growth, which resulted in less production time and more uniform cuttings.  

 The PGR ethephon breaks down and releases ethylene, which influences internode 

elongation, increases branching, and aborts reproductive buds (Lopez et al., 2017). Some early 

research with ethylene was performed by Warner and Leopold in 1967. They determined that the 

Amchem Products compound 66-329 controlled the release of ethylene better than any other 

plant regulator used, which were mainly auxins (Warner et al., 1967).  The wide array of plant 

activities that ethephon influences resulted in an increase of PGR research on herbaceous 

perennials. The commercially available product Florel has been researched for its efficacy on 

herbaceous perennials. Ethephon applications increased vegetative growth and controlled the 

timing of flowering. Ethephon treatments on herbaceous perennials resulted in increased number 

of cuttings while also reducing the size of the cutting (Brown et al., 2000).  



18 
 

 Konjoian (1994) performed research with Florel and its effect on many greenhouse crops 

including both annuals and perennials. These studies were responsible for the increased desire to 

find greenhouse crops and production processes that could benefit from ethephon applications. 

Konjoian (1994) estimated an 80% reduction in labor with the application of ethephon by 

eliminating the need for hand removal of flowers and the promotion of vegetative growth. Also, 

Whipker (2015) found that using ethephon on vegetative annuals improved plant structure, 

prevented early flowering, and controlled excessive plant growth. 

Roger C. Styer (2002) reported proper application rate, timing, and crop susceptibility for 

Florel. Florel can control of plant height and promotion of branching. He stated that Florel was 

cheaper than most other PGR and more cost effective than pinching or cutting by hand. Styer 

(2002) found utilizing Florel on stock plants to increase branching instead of hand pinching or in 

coordination with can result in increased production efficiency. A study at Texas A&M 

University found that out of 27 vegetative annuals only three displayed no response to 500 and 

1000 mg·L–1 ethephon applications (Starman et al., 2004). Ethephon effect differently the growth 

and development of a wide range of herbaceous annual plants. Therefore, further research into 

ethephon should be conducted on new herbaceous perennials. 

 Environmental factors could influence the efficacy of ethephon in the plant. Air 

temperature and water alkalinity are two factors studied. It was determined that air temperature 

at the time of application should be below 26 °C and high alkalinity water should be buffered 

before tank mixing (Lopez, 2017).  The application of ethephon is usually done through foliar 

spray, but recent research has suggested drenching can result in more uniform effects on the 

greenhouse crops (Aiken et al., 2015). Reduction in stem elongation as well as a flowering delay 

was observed on research performed on a broad range of annual floriculture crops, although 
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biomass accumulation was reduced (Miller et al., 2012). When a drench is performed the 

substrate pH can have an impact of the efficacy of ethephon on herbaceous perennials. Verbena 

and Veronica both had media pH responses to an ethephon drench performed a week after 

transplanted. As the substrate pH increased the ethephon drench showed less effect on the plant 

growth (Aiken et al., 2015). The ethephon in the substrate dissociates before the plant can take 

up the compound and have the desired effects within the plant.  

 Michigan State University has researched PGR on the production of herbaceous 

perennials. Dr. Erik Runkle maintains a website dedicated to PGR information on herbaceous 

perennials and annuals (http://www.flor.hrt.msu.edu/PGRs/). One study conducted at Michigan 

State University performed by Glady et al. (2007) showed the effects of ethephon on three 

herbaceous perennials. Growers inability to control plant growth and development through 

environmental signals has led to attempts to control these processes through chemical control. It 

was found that the effect of ethephon was species dependent. Weekly and biweekly treatments of 

400, 600, and 800 mg·L–1 ethephon resulted in markedly different responses on Veronica, 

Coreopsis, and Dianthus. Other herbaceous crops have also shown the species-specific 

sensitivity to ethephon application. The timing and repetition of application also effected cutting 

quality and stock plant growth (Glady et al., 2007). Research on new herbaceous perennials is 

required before ethephon applications can be recommended for these new crops. 

1.7 Hormone Interaction Research 

 The interaction between plant hormones has been studied and basic knowledge about 

how GA, cytokinin, ethylene, and auxin effect one another is available. Part of this study is to 

determine the interaction between GA3 and benzyladenine, ethephon, and auxin. Research has 

been conducted on some of these interactions, GA3 hormonal interactions with other hormones 
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has been reported with rice (Oryza sativa), Arabidopsis thaliana, and tomato (Solanum 

lycopersicum). However, no herbaceous perennial research has been done to date.    

In Arabidopsis, the antagonistic relationship between benzyladenine and GA3 has been 

studied and it has been observed to affect the growth of the plants through decreased signaling 

for both hormones (Greenboim-Weinberg et al., 2005). The negative effects stated in this 

experiment make the findings of the positive effects with Fascination® (Valent USA Corp., 

Fresno, CA) applied on stock plants of Heuchera, Salvia, and Osteospermum more interesting 

(Markovic and Klett 2020a, 2020b). The GA4+7 and benzyladenine hormone components of 

Fascination® would be in contrast with what was found when GA3 and benzyladenine were 

applied to Arabidopsis. Also, research performed on tomato with the same interactions had 

similar findings to those of Arabidopsis (Fleishon et al., 2011). In tomato it has been found that 

GA inhibits cytokinin signaling in its response pathway. While cytokinin is also thought to affect 

the downstream branch(es)of the GA signaling pathway (Fleishon et al., 2011). The GA to 

cytokinin ratio is an important factor for this interaction, not the overall concentrations. This 

could be why the effects of Fascination® are beneficial to increased stock plant productivity, 

while other studies found antagonistic results for the hormone interaction. 

The relationship between ethylene and GA3 has been studied. Signaling between the two 

hormones during times of stress such as flooding in rice or stress induced floral initiation 

(Kuroha et al., 2018; Achard et al., 2007). In rice fields where flooding occurred, rice would 

grow taller to be above the water level. In this research, it was stated that ethylene concentrations 

increased and signaled the plant to increase GA concentrations. The greater GA concentrations 

caused the elongation of the internodes and the plant would grow taller above the water level. 

Therefore, a beneficial effect of the hormone interaction was observed (Kuroha et al., 2018). 
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Auxin and GA have been shown to promote many of the same plant responses such as 

internode elongation and apical dominance. The auxin and GA interaction has been studied and 

there is evidence that auxin promotes GA biosynthesis in pea (Pisum sativum) (Ross et al., 

2000). Auxin like GA is mainly synthesized in the apical meristem and it was found that auxin 

from the apical meristem would transport down into the stem where it directly or indirectly 

helped maintain enzymes involved in GA biosynthesis (Ross et al., 2000). While auxin was 

included in this study mainly for its positive effect on root initiation, this advantageous 

interaction with GA could have an unforeseen benefit for stock plant production. 

1.8 Study Objectives 

 The objectives of the stock plant study for Pterocephalus depressus were divided into an 

applicable component for growers and a basic component for understanding the role GA3 plays 

in propagation through movement within the stock plant and effect on nutrient concentrations 

within cuttings. The applicable component was to determine if PGR treatment(s) resulted in 

more vegetative propagation material with high propagation qualities. We hope to develop stock 

plant protocols for growers to improve their propagation rates to be more productive and 

profitable. The propagation study objective was to determine whether the stock plant protocol 

resulted in any effects on the rooting percentages for the cuttings produced. The basic science 

component was to determine the concentration and movement of GA3 within the stock plant to 

look at GA3 as a singular application and in combination with benzyladenine, ethephon, and IBA. 

Also, compare the nutrient levels of phosphorus, potassium, and magnesium in the harvested 

cuttings for each treatment and determine the effect PGR treatments have on nutrient 

concentrations. These objectives provide the basis for expanded knowledge about how PGR 
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effect the biochemistry of the stock plant and specifically what happens when they are applied to 

Pterocephalus depressus.  

 

Figure 1.1 Molecular structure of Gibberellic Acid provided by www.planthormones.info.  

 

Figure 1.2 Molecular structure of N-6-Benzyladenine provided by www.sigmaaldrich.com. 

 

Figure 1.3 Molecular Structure of Ethephon provided by www.sigmaaldrich.com. 

 

Figure 1.4 Molecular structure of indole-3-butyric provided by www.sigmaaldrich.com. 
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CHAPTER 2. MATERIALS & METHODS 
 
 
 

2.1 Herbaceous Perennial Stock Plant PGR Study 

This study was conducted at the Colorado State University Horticulture Center, which is 

located at 1707 Centre Avenue, Fort Collins, CO. The first experiment was performed starting in 

February 2019 with data collected through February 2020. The second experiment was 

performed starting in June 2019 with data collected through April 2020. 

This research was designed to examine propagation and cutting production of an 

herbaceous perennial in the Plant Select® program: Pterocephalus depressus Moroccan 

Pincushion (Archibald). Plants of uniform size (72 plug tray) were purchased from a local 

greenhouse (Gulley Greenhouse, Fort Collins, CO). A total of 135 plants were selected, so that 

four replicates of three plants (twelve total) were placed in a randomized complete design and 

placed throughout the greenhouse bench for each of the ten treatments and control group (Fig 

2.1). 

The plants were transplanted from the 72-count plug into black 10 cm containers. All 

containers were first soaked in a disinfecting anti-fungal, anti-bacterial, and anti-algae solution of 

GreenShield and water for ten minutes prior to use to prevent contamination from previous use. 

The media used for this study was a sphagnum peat substrate composed of blonde peat moss, 

dolomitic limestone, and a wetting agent (Pindstrup, Ryomgaard, Denmark). 

Groups of twelve plants were randomly selected for a specific PGR treatment. Four PGR 

were applied: ethephon [250 and 500 mg·L–1 (ppm)] (Verve, Nufarm Americas, Inc., Alsip, IL), 

benzyladenine (200 and 400 mg·L –1) (Configure; Fine Agrochemicals Limited, Worcester, 
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U.K.), Gibberellic Acid 3 (GA3) (25 mg·L–1) (GibbPro; Valent USA Corp., Fresno, CS), indole-

2-butyric acid (200 mg·L–1) (Hortus IBA Water Soluble Salts; Hortus USA Corp., Netherlands), 

and a control group was maintained. PGR were applied solo and in combination with GA3. The 

foliar treatments were applied using a 3.79-liter hand pump sprayer starting two weeks before the 

first data collection and then two weeks before each collection throughout the duration of the two 

experiments. While the drench treatments were applied as a bottom drench where the 4-inch 

containers were placed in a flat with 1-gallon PGR solution for 1 hour. The overview of the 

experiment and number of plants is detailed in appendix 2.1. 

The first experiment treatments were applied on July 1, 2019, August 8, 2019, September 

20, 2019, and November 6, 2019. The second experiment treatments were applied on August 8, 

2019, September 20, 2019, November 6, 2019, and January 24, 2020. The harvest of cuttings 

was performed approximately two weeks after the PGR treatment applications. These treatments 

were based on the recommendations on the product label and from interviews of nine Colorado 

greenhouse growers, who have previously or are currently growing these taxa.  

The experiments were placed on a single rolling greenhouse bench with dimensions 

approximately 1.54 m by 12.19 m. The four groups of 3 plants for each treatment were randomly 

assigned a location on the greenhouse bench using random number generation in Microsoft 

Excel, making the layout as a complete randomized design. Groups of three were space 

approximately 30 cm apart. The plants were individually numbered 1 to 132 and data was 

collected separately for each plant. 

The greenhouse used for this study was run by a control system. The greenhouse, number 

118, was heated by a natural gas, forced air heater, and cooled passively by automatic ridge vents 



25 
 

and automatic pulled shade cloths, and actively by a pad and fan system.  Daytime temperatures 

were maintained between 16.7 and 20 degrees Celsius during the day with a night-time range of 

between 12.8 and 16.7 degrees Celsius. No supplemental lighting was used during these 

experiments, this decision was made by the research team to suppress flowering of other genera 

in the greenhouse.  

Stock plants were watered by hand when over 75% of the plants had visibly dry soil with 

a 14-4-14 fertilizer (GreenCare; Blackmore Co., Belleville, MI ) at 200 parts per million (ppm) 

nitrogen every watering. Fertilizer was constantly injected (Dosatron® model D14MZ2 

Clearwater, FL). Some pesticide treatments were applied during these experiments. Fungicides 

and insecticides were used in rotations to control fungal and insect pests. No pest populations 

were established on the stock plants during either experiment. 

2.2 Cutting Protocols 

Protocol for Pterocephalus depressus cutting harvest: 

Superior cuttings will have a width at base (.25 to .5 cm stems) with no lateral shoots.  

Clean the cutting by removal of dead leaves and lateral buds. 

Step by Step Protocol: 

1. Start by taking most ideal cuttings, being careful not to remove more than 1/2 

of total foliage. 

2. If 1/2 of foliage is removed at this point, move to next plant; if not then 

continue by taking slightly fewer ideal cuttings until 1/2 of foliage has been 

removed or no acceptable cuttings remain. 

3. Remove any dead foliage from the stock plant at this time. 
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4. Cut meristem off any shoots that are too large to take as a cutting (increase 

lateral growth for next round of cuttings). 

5. Place all cuttings in labeled brown bag and record number of cuttings on bag. 

6. Weigh (grams) cuttings for total fresh weight and record. 

7. Place all bags in 70 °C drying oven for 48 hours. Record all total dry weights 

(grams). 

2.3 Data Collection 

 Initial measurements of height and two widths were taken before the first application of 

PGR treatments for all 132 plants. Parameters measured were plant height, width, number of 

cuttings, total fresh weight of cuttings, and total dry weight of cuttings.  Plants were measured in 

centimeters at their highest point from the base of the plant and at two perpendicular widths.  

Photographs were taken at each sampling date to help document the differences between the 

treatment groups, before cuttings were removed from the individual plants.  Figure 2.3 illustrates 

the photographs taken and the visual differences between treatments. 

The cuttings from each individual stock plant were counted, placed in a paper bag and 

weighed to determine the fresh weight, then placed in a drying oven at 70 degrees Celsius for 48 

hours. After the cuttings were completely dried, the bags were weighed again to obtain the dry 

weights. After harvest, stock plants grew for 6-8 weeks before taking another set of cuttings.  

 In the first experiment, the first cutting harvest was taken July 17, 2019, the second 

cutting harvest on August 23, 2019, the third round on October 7, 2019, and the last round on 

November 22, 2019 for a total of four harvests.  During the first round of cuttings the apical 

meristem was removed from each plant at that time to stimulate branching, this is a common 
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practice with all new Pterocephalus stock plants and a recommendation from Gulley 

Greenhouse.  

In the second experiment, the first round of cuttings was taken August 23, 2019, the 

second round of cutting harvest on October 8, 2019, the third round on November 22, 2019, and 

the last round on February 11, 2020 for a total of four harvests. Again, during the first round of 

cuttings the apical meristem was removed from each plant at that time to stimulate branching.  

 Six weeks after the last cutting harvest for each experiment stock plants from each 

treatment had all the vegetative growth removed, dried, and weighed. This was done to simulate 

the average growth of the plant between harvest events. The root balls were removed from the 

pots and based on a determined rating scale of zero to five (zero being no roots and five being a 

fibrous root system), given a visual rating. A visual reference was photographed and displayed as 

root ratings were taken for the individual plants for consistency.   

 Prior to planting, samples of the Pindstrup media used in this study were submitted to 

Colorado State University’s Soil, Water and Plant Testing Laboratory for analysis. Analysis 

included the percent lime, soluble salts, pH, Electric Conductivity (EC) and Cation Exchange 

Capacity (CEC) for the media. The analysis also determined the following: levels of nitrogen as 

ammonium, nitrate, and organic nitrogen, ratio of Ammonium: Nitrate, the Carbon: nitrogen 

ratio and total carbon in the media. Phosphorus content was measured as P and P2O5, while 

potassium content was measured as K and K2O. Analysis included percent lime, soluble salts, 

pH, Electric Conductivity (EC) and CEC. Media test results are presented in appendix 2.2. 
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2.4 Rooting Study 

 Two stock plants from each treatment combination were randomly selected and grown 

under the same conditions for a rooting study. The only variables for rooting experiment were 

the stock plant treatments. Cuttings were harvested from each treatment combination every 6-8 

weeks; August 23, 2019, October 7, 2019, and November 22, 2019 for the first experiment. 

Unfortunately, the second repetition (October 7, 2019) was a crop loss due to water drainage 

issues with the heating mats preventing water draining away from the plug flats. A replacement 

repetition was conducted on February 11, 2020 and this is the data used for analysis. For the 

second experiment, October 8, 2019, November 22, 2019, and February 11, 2020. Plug flats 

were placed on top of webbed flats to correct the drainage issue resulting from being directly on 

the heat mats where they were unable to drain.  

Cuttings were taken at the same time of day, approximately 11:00 AM in the morning, 

and stuck in trays 72 cells filled with Jiffy® Preforma media and placed under mist with bottom 

heat at a temperature of 23.9 °C (Fig. 2.4). Rooting data was then collected after the second week 

up to four weeks. The rooting data collected was rooting percentage and the number of visual 

roots (counted to 30). Ten randomly selected cuttings from the two stock plants were chosen and 

then stuck in 72 cell trays. The plug trays were placed on web flats on top of heating mats that 

maintained a soil temperature of 23.9 °C. The mist times on the bench were adjusted weekly, for 

week one, ten seconds every 15 minutes, for the second week every 30 minutes and for the third 

and fourth weeks every 60 minutes. This was active for the total 24-hour period each day, there 

were no differences between mist intervals for day or night. 
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2.5 Nutrient Tissue Analysis 

Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to 

determine cutting nutrient content and its effect on cutting rooting success. This analysis enabled 

deeper understanding of the metabolic response of the cuttings resulting from PGR treatments. 

The nitric acid digestion procedure came from work done by Zarcinas et al. (1987). The protocol 

used for this analysis started with 100 mg of dried moroccan pincushion leaf tissue weighed and 

broken apart in a glass digestion tube. Then, in the chemical hood 1 mL of nitric acid (HNO3) 

was added to the dried material and a glass funnel was place on the tube to prevent evaporation. 

A blank sample was made by dispensing 1 mL of nitric acid into an empty digestion tube. The 

tubes were set in digestion blocks and spaced out to avoid cross contamination. The digestion 

program ran at a temperature of 60 °C for two hours and then 122 °C for six hours.   

At the completion of the digestion program, labeled 15 mL tubes were used to transfer 

sample contents from the glass digestion tubes. Reverse osmosis treated water was added until 

the 10 mL level was reached in the test tube. The samples stored in racks on the lab bench until 

analyzed using ICP-OES. The process used during ICP-OES was performed as described by 

Winge et al. (1978) and is detailed in the appendix (A5.1). Results were generated into an excel 

file and calculated based on the exact initial dry weight which was recorded while weighing the 

plant material from the dried samples. Nutrients analyzed included: Ca,  

 The first set of samples were digested on October 21-23, 2019. These samples were 

analyzed with the ICP-OES machine November 19, 2019. The second set of samples were 

digested on March 5-6, 2020. These samples were analyzed with the ICP-OES machine March 

16, 2020. 
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2.6 GA3 Liquid Chromatography Mass Spectrometry 

 Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) was used 

to quantify GA3 and IBA in different parts of the plant. The hormone concentrations in the 

apical and basal regions of the plant helped determine movement and accumulation of these 

hormones within the plant and allowed for interpretation of their effects on propagation success.  

 Two sample dates for each experiment were chosen for the first PGR application and last 

PGR application. The first experiment dates were at the beginning of the experiment on July 17, 

2019 and the end of the experiment on November 22, 2019 and the second experiment dates 

were August 23, 2019 and February 11, 2020. On each sample date 110 samples were collected, 

five samples per treatment, two locations per plant, and eleven treatments. A total of 220 samples 

for experiments 1 and 2 were collected. Samples from apical and basal regions of Pterocephalus 

depressus were collected for each treatment involving GA3 (five samples per treatment). The 

samples were collected and immediately (within 30 seconds) wrapped in aluminum foil and 

frozen in liquid nitrogen. The samples were then stored in a -80 °C freezer. After all the samples 

were collected the samples were then lyophilized using a freeze dryer (HarvestRight, North Salt 

Lake, UT) with pressure pump (Alcatel ADP81; Highvac Corp, Colorado Springs, CO). The 

lyophilized material was ground into a powder using a mortar and pestle under liquid nitrogen. 

The grinding process took less than a minute to complete and more liquid nitrogen added when 

necessary to keep the sample frozen. The samples were stored in 15 mL test tubes in a -80 °C 

freezer. This procedure is detailed in appendix 2.4. 

2.6.1 Extraction 

Five analytical replicates were prepared by adding 19-21-mg portion of ground leaf tissue 

to a 2-mL glass vial. Hormone were extracted by adding 500 μL of 80 % methanol in water 
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solution and vortexing at 4 °C for 3 hours. For a period of 16-hours samples were placed in a -20 

°C freezer. After the 16-hour period, samples were centrifuged at 4 °C for 15 minutes at 3500×g. 

A 400 μL aliquot of the extraction was transferred to a fresh 2-mL glass vial, dried under 

nitrogen, re-suspended in 110 μL of methanol. Glass vials were then sonicated for 20 minutes 

and centrifuged at 4 °C for 20 minutes.  A 100 μL aliquot of the extraction was transferred to a 

fresh 2-mL glass vial 100 μL of extraction was transferred to a new 2 mL vial insert, and then 

stored at -80 °C until LC-MS/MS analysis.    

2.6.2 Ultra-High-Performance LC-MS/MS 

Five microliters of plant extract were injected onto a LX50 UHPLC System, equipped 

with a LX50 Precision Sampling Module (20-μL sample loop, partial loop injection mode) 

(PerkinElmer, Waltham, MA, USA). An ACQUITY UPLC T3 column (1 × 100 mm, 1.8 μM; 

Waters Corporation) was used for chromatographic separation. Mobile phase A consisted of LC-

MS grade water with 0.1% formic acid and mobile phase B was 100% acetonitrile. Elution 

gradient was initially 0.1% B for 1 min, which was increased to 55.0% B at 12 min and further 

increased to 97.0% B at 15 min, then decreased to 0.1% B at 15 min. The column was 

reequilibrated for 4.5 min for a total run time of 20 min. The flow rate was set to 200 μL/min and 

the column temperature was maintained at 45 °C. Samples were held at 4 °C in the autosampler. 

Detection was performed on a QSight™ 220 triple quadrupole mass spectrometer (MS) operated 

in selected reaction monitoring (SRM) mode. SRM transitions for each compound were 

optimized through analysis of authentic standards. The MS was operated with the ESI voltage 

4500 V in positive mode and -3500 V in negative mode. Nebulizer gas flow was set at 350 

arbitrary units and drying gas was set to 120 arbitrary units. The source temperature was 315 °C 

and hot-surface induced desolvation (HSID) temperature 200 °C.  
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2.7 Data Analysis 

 Data analysis was done using R version 4.0.2 with packages car, LSMeans, plyr, and 

ggplot2. A two-way ANOVA was performed separately for each response variable. Response 

variables include average number of cuttings per plant, average fresh weight per cutting, average 

dry weight per cutting, and the final dry weight of top growth, final root ratings. Terms included 

in the model were predictor variables matching to the plant growth regulator treatments (11 

levels). Pairwise comparisons and least squares means were calculated using the lsmeans 

package for each response variable. Significant differences were noted using α=0.05 and 95% 

confidence intervals.  

 Response variables for the rooting study include average rooting percentage per treatment 

and average number of visible roots per plant per treatment. These were analyzed using a one-

way ANOVA, pairwise comparisons, and least squares means were calculated using the lsmeans 

package for each response variable. Significant differences were noted using α=0.05 and 95% 

confidence intervals.  

 Response variables for nutrient tissue analysis data were the average amount of nutrients 

per treatment. These were analyzed using a One-Way ANOVA, pairwise comparisons, and least 

squares means were calculated using the lsmeans package for each response variable. Significant 

differences were noted using α=0.05 and 95% confidence intervals.  

 For UPLC-MS/MS analysis of GA3 and IBA, Simplicity 3Q software (Version 4.1 

SCN905, PerkinElmer, Waltham, MA) was used to detect and integrate peak areas and to 

calculate linear regression of analytical standards used for quantification. Each peak was 

normalized to an appropriate internal standard (IS). The corresponding linear regression equation 
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was used for quantification (ng/mL) for each analyte, which was then adjusted for precise weight 

of freeze-dried leaf tissue for each sample (ng/g). The limit of detection (LOD) was calculated as 

3 times the standard deviation of the blank divided by the slope of the calibration curve. 

Likewise, the limit of quantitation (LOQ) was calculated as 10 times the standard deviation of 

the blank divided by the slope of the calibration curve. A Wilks-Shapiro test was run for both 

GA3 and IBA, these tests indicated non-normal data for both parameters. A logarithmic 

transformation was performed to normalize the data, due to positive skewedness of the data. 

 

Figure 2.1 Photograph of herbaceous perennial plant growth regulator study design layout on a 

single greenhouse bench, November 2019. 
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Figure 2.2 Photograph of Pterocephalus depressus cutting visual protocol (inches) provided by 

Gulley Greenhouse, Fort Collins, CO.  

 

 

Figure 2.3 Photograph of treatments and control of Pterocephalus depressus stock plants 

February 2019, treatment from left to right: GA3 + ethephon drench, GA3 + benzyladenine 

drench, GA3 + auxin drench, GA3 drench, GA3 + ethephon foliar, GA3 + benzyladenine foliar, 

GA3 + auxin foliar, GA3 foliar, ethephon foliar, benzyladenine foliar, and control. 
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Figure 2.4 Propagation 72 cell trays with Pterocephalus depressus cuttings for all PGR 

treatments.   
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CHAPTER 3. RESULTS & DISCUSSION 
 
 
 

3.1. Pterocephalus depressus Moroccan Pincushion  

 This chapter examines results from experiments 1 and 2 for Pterocephalus depressus in 

the format of a peer-reviewed journal manuscript. Results that are not included in this chapter are 

presented in the appendix.  

3.2. Manuscript for Pterocephalus depressus Applicable Research 

 

Plant Growth Regulator Impacts on Vegetative Cutting Production of Moroccan Pincushion  

Sean J. Markovic and James E. Klett
 

3.2.1 Summary 

Moroccan pincushion (Pterocephalus depressus) is a drought-tolerant perennial that is 

being used in landscapes throughout arid areas of the western United States. This paper describes 

two experiments researching vegetative cutting production from stock plants. Moroccan 

pincushion stock plants received foliar applications of gibberellic acid (GA3), benzyladenine, 

ethephon, or auxin [indole-3-butyric acid (IBA)] plant growth regulators (PGR). Plant growth 

regulators were applied singularly and in combination with GA3 to determine efficacy on stock 

plant growth. A propagation study was conducted simultaneously to determine effects of these 

different PGR treatments applied to stock plants on the rooting of moroccan pincushion cuttings. 

The stock plant study showed GA3 + benzyladenine application increased cutting production 

over other PGR treatments. Fresh weight of moroccan pincushion cuttings did not differ among 

treatments. While cuttings did not differ in dry weight in experiment 1, but statistical differences 



37 
 

were observed in experiment 2. However, these differences in dry weight did not affect the 

quality of the cuttings. Cuttings from stock plants treated with GA3 + IBA treatment had the 

highest numerical growth index [(height + width + width)/3]. Cuttings from stock plants treated 

with GA3 alone or in combination with another PGR were all greater in average growth index 

and statistically differed from those without GA3 being applied. PGR treatments did not affect 

rooting percentages of the cuttings with nontreated stock plant cuttings successfully rooting at an 

average rate of 95%. However, GA3 + IBA was the only treatment where cuttings had 100% 

rooting for both experiments indicating potential rooting benefits. 

Index words: Plant growth regulator, propagation, Pterocephalus depressus, vegetative cuttings. 

Species used in this study: Moroccan Pincushion [Pterocephalus depressus (Archibald)].  

Chemicals used in this study: gibberellic acid (GA3), benzyladenine, ethephon, indole-3-butyric acid 
(IBA). 

3.2.2 Significance to the Horticulture Industry 

Moroccan pincushion (Pterocephalus depressus) is one of several perennials being 

evaluated as part of the Plant Select® landscape plants program at Colorado State University.  

As a drought-tolerant perennial ground cover, moroccan pincushion can provide a new option for 

drought affected areas in the western United States. The compact growth is ideal for use in 

smaller residential landscapes. The primary obstacle to further adoption of moroccan pincushion 

by producers thus far has been the lack of propagation success. Colorado State University 

researchers are developing production protocols for Plant Select® varieties, but these need to be 

proven successful before deployment to producers. Vegetative propagation is the most widely 

used method of propagation of moroccan pincushion. However, success with vegetative 

propagation has been variable. Stock plant quality has a large impact on the success of cuttings 

taken from moroccan pincushion. The use of gibberellic acid (GA3), benzyladenine, ethephon, or 
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indole-3-butyric acid (IBA) may improve stock plant production and cutting fresh weight an 

indicator of cutting quality. We found that 0.025 g·L-1 (25 ppm) gibberellic acid (GA3) in 

combination with 0.25 g·L-1 (250 ppm) benzyladenine was the best combination for increasing 

stock plant growth which produced a greater number of vegetative cuttings. Also, 0.25 g·L-1 (250 

ppm) indole-3-butyric acid (IBA) can have positive effects on rooting success. 

3.2.3 Introduction 

Production of cuttings from herbaceous perennial stock plants can be challenging for 

producers. Stock plants in a juvenile state are desired for their high-quality propagation material. 

Reproductive tissue which occurs on cuttings will inhibit root and vegetative development during 

propagation (Gibson and Cerveny 2005). Producers often prune stock plants manually or use 

PGR to encourage vegetative plant growth and eliminate reproductive tissue (Preece and Read 

1993). However, manually pruning perennials to encourage vegetative growth can be labor 

intensive (Banko and Stefani 1996) and thus increase production costs (Holland et al. 2007). 

Applying a PGR is generally less labor intensive than manual pruning, although there is a chance 

it can cause phytotoxicity in certain crops (Meijón et al. 2009). Research is required to determine 

PGR efficacy on new perennial species.  

This research focused on utilizing gibberellic acid (GA), which increased cutting 

production in previous research on several herbaceous perennial stock plants (Markovic and 

Klett 2020). Gibberellic acid is isolated from a species of the fungus, Gibberella fujikuroi 

(Salisbury and Ross 1969), and has become a useful PGR in the ornamental horticulture industry. 

Gibberellic acid promotes growth primarily with uniform cell elongation throughout plant tissue 
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(Moore 1984). Therefore, application of GA on herbaceous perennials could result in more 

propagation material.  

Cytokinins, specifically benzyladenine, are involved in nearly all aspects of plant growth 

and development (Leopold and Kriedemann 1975). Benzyladenine is known for cell 

enlargement, not cell elongation as with auxins and gibberellic acid, and it promotes cell growth 

in all directions (Preece and Read 1993). This results in decreased apical dominance if cytokinin 

levels in the plant are elevated (Hartmann et al. 2002). In tomato (Solanum lycopersicum L.), GA 

inhibits cytokinin signaling in its response pathway, while cytokinin is also thought to affect the 

downstream branch(es) of the GA signaling pathway (Fleishon et al. 2011). The ratio of GA to 

cytokinin is an important factor during interactions, not the overall concentrations. Positive 

interactions from applications of GA4+7 + benzyladenine on stock plants of coral bells (Heuchera 

sanguinea L.), mojave sage (Salvia pachyphylla Munz), and cape daisy (Osteospermum species 

L.) suggest a proper ratio of the PGR is important (Markovic and Klett 2020). Therefore, 

application of benzyladenine, which causes more lateral growth could produce more propagation 

material from stock plants.  

Ethephon is an ethylene inducer which enters the plant and breaks down into three 

molecules: phosphate, chloride, and ethylene. These molecules are released into plant systems, 

effecting plant growth and reproductive development (Preece and Read 1993). These molecules 

promote auxiliary shoot development without damage to the apical meristem (Hayashi et al. 

2001). The relationship between ethylene and GA has shown signaling between the two 

hormones during times of stress, such as flooding in rice (Oryza sativa. L.) or stress induced 

floral initiation (Kuroha et al. 2018, Achard et al. 2007). When applied ethylene signals the plant 
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to increase GA concentrations. Increasing the GA concentration increases internode elongation; 

therefore, a beneficial effect of this hormone interaction was observed (Kuroha et al. 2018). An 

increase in branching and decrease in flower development could lead to more vegetative growth 

on herbaceous perennials.  

Auxins generate many different responses from the plant such as: apical dominance, 

shoot elongation, organ differentiation, induction of cambial cell division, and root initiation 

(Buchanan et al. 2000). Auxin and GA have been shown to promote many of the same plant 

responses such as internode elongation and apical dominance. The auxin and GA interaction has 

been studied and there is evidence that auxin promotes GA biosynthesis in pea (Pisum sativum 

L.) (Ross et al. 2000). Auxins, like GA are mainly synthesized in the apical meristem. Auxin 

from the apical meristem can transport down into the stem where it directly or indirectly 

maintains enzymes involved in GA biosynthesis (Ross et al. 2000). Auxin was included in this 

study mainly for its positive effect on root initiation. This advantageous interaction with GA 

could have an unforeseen benefit for stock plant cutting production. 

Herbaceous perennial responses to PGRs can vary across cultural and environmental 

conditions (Cochran and Fulcher 2013). Coral bells and Orange Carpet hummingbird trumpet 

(Epilobium canum ssp. garrettii ‘PWWG01S’ L.) were found to have greater numbers of 

cuttings produced by stock plants when treated with GA4+7, but the quality of the cuttings had a 

disparity with coals bells having high quality and hummingbird trumpet having low quality 

(Markovic and Klett 2020). Low quality cuttings had low fresh weights and low rooting 

percentages when propagated. The wide range of possible plant responses indicates the 

importance of to continue research on herbaceous perennials and their response to PGRs. 
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The herbaceous perennial utilized in these experiments was moroccan pincushion. During 

meetings with greenhouse and nursery growers propagating this perennial, growers identified 

two production problems with this plant: 1) lack of quantity of vegetative propagation material 

from stock plants and 2) too long of period between cutting collection. Based on prior research, it 

was concluded that using PGR could possibly resolve these problems.  

The research objective was to evaluate moroccan pincushion stock plants response to 

GA3 applied singularly or in combination with benzyladenine, ethephon, or auxin. The 

hypothesis of this study was that applications of GA3 would increase vegetative cuttings numbers 

and quality from moroccan pincushion stock plants. A second hypothesis was that successful 

rooting of moroccan pincushion cuttings would not be affected by PGR applications to stock 

plants.  

3.2.4 Materials and Methods  

Stock plant study. Moroccan pincushion stock plants were treated with ten different plant 

growth regulator treatments to determine if they would produce more cuttings (Fig. 1). The stock 

plant experiment was repeated for moroccan pincushion, the first experiment was conducted 

during Summer and Fall 2019 and repeated in Fall and Winter 2019-20.  

All experiments were conducted at the Colorado State University Horticulture Center 

greenhouse, Fort Collins, CO (lat. 40.577953º N, long. 105.080925º W; U.S. Department of 

Agriculture hardiness zone 5b). Plants of uniform size (98-plug tray) were purchased from a 

local greenhouse (Gulley Greenhouse, Fort Collins, CO). Over 135 rooted cuttings were potted 

into black, square 10 cm (4 inch) containers on 11 Feb. 2019 and 9 June 2019. The substrate 

used was composed of blonde peat moss, wood fiber, dolomitic limestone, and a wetting agent 
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(Pindstrup, Ryomgaard, Denmark). Four replicates of three (12 total plants) were then placed in 

a complete randomized design and placed in rows of 3 plants (same treatment) with an empty 

row between in 15-count carrier flats placed on a single greenhouse bench. 

During establishment, plants were watered by hand with 14N-1.7P-11.6K water-soluble 

fertilizer (GreenCare; Blackmore Company, Belleville, MI) at a rate of 200 ppm. Fertilizer was 

applied during each watering using a handheld hose with breaker (400 PL, Dramm, Manitowoc, 

WI). Daytime temperatures were maintained with an aspirator (Model M4821, Wadsworth 

Control Systems, Arvada, CO) sensor between 18 and 23 C (65 and 73 F), while night-time 

temperatures were held between 16 and 22 C (61 and 73 F).  

The four applied PGRs with application concentrations: auxin (indole-3-butyric acid): 

250 ppm (Hortus USA Corp., New York, NY); ethephon: 400 ppm (Nufarm Americas, Inc., 

Alsip, IL); benzyladenine: 250 ppm (Fine Agrochemicals Limited, Worcester, U.K.); and GA3: 

25 ppm (gibberellic acid 3) (Valent USA Corp., Fresno, CS). Treatments in both experiments, 

were applied two weeks before each data collection over a 6-month period. In the first 

experiment, treatments were repeatedly applied on 12 June 2019, 8 Aug. 2019, 26 Sept. 2019, 

and 6 Nov. 2019. In the second experiment, treatments were repeatedly applied on 8 Aug. 2019, 

26 Sept. 2019, 6 Nov. 2019, and 3 Feb. 2020. Treatments were applied to foliar run-off, 

including those in the control group, which were sprayed with plain water. All treatments were 

applied using a 3.78 L (1 gal) hand pump sprayer.  

Initial measurements for height and width of each stock plant were taken after five weeks 

of growth after planting. Subsequently, stock plant height, stock plant width, number of cuttings, 

total cutting fresh weight (FW), and total cutting dry weight (DW) were measured during each 
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collection event. Stock plants were measured from the highest leaf to the substrate, across the 

plant, and then across at a 90-degree angle. These three values were added together and divided 

by three to determine the GI for each plant. Fresh weight was measured immediately after 

harvesting the cuttings from stock plants and this measurement was used to determine quality of 

the harvested cutting. 

When cuttings were harvested, two-thirds of the total vegetative growth of the stock plant 

was left intact to ensure continual plant growth. This was suggested by commercial growers 

during discussions about production processes. Cuttings were harvested approximately two 

weeks after each PGR treatment application. Ideal cutting size and diameter are shown in Fig. 1. 

The ideal moroccan pincushion cutting has up to a 5 cm (2 inch) height and a stem with 0.3 cm 

(0.12 inch) diameter. Cuttings from each stock plant were counted, weighed to determine FW in 

grams, then placed in a drying oven at 70 C (158 F) for 48 h to determine DW in grams. One 

month after the fourth collection of cuttings, stock plants had all the shoot growth above the soil 

line removed, dried, and weighed. This provided average top growth of the stock plants for each 

treatment.  

Propagation study. After each stock plant experiment, a propagation experiment was 

performed. Two stock plants for each treatment randomly selected from experiments 1 and 2 

were grown under the same conditions. The only variable was the different PGR applied during 

the stock plant treatments. Three repetitions of the propagation experiments 1 and 2 were 

conducted with 10 cuttings being rooted in a completely randomized design in two 72-count 

propagation flats. Cuttings from moroccan pincushion were harvested every 4 weeks: 8 Aug. 

2019, 26 Sept. 2019, 6 Nov. 2019 for the first experiment and 26 Sept. 2019, 6 Nov. 2019, and 3 

Feb. 2020 for the second experiment. Cuttings were taken in the morning before 11:00 AM and 
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dipped for 30 s in 500 ppm indole-3-butyric acid/1-naphthylacetic acid (IBA/NAA) (Dip ‘N Gro, 

Clackamas, OR) and propagated in trays of peat moss and binding agent (Preforma; Jiffy, 

Lorain, OH).  

A mist timer (NOVA, 1626ET, Phytotronics, Earth City, MO) was used to control the 

amount of moisture administered on the cuttings which were under mist nozzles (03034211-b 

pcs 25 coolpro c 4x7 head +ad20, Netafim, Fresno, CA). Bottom heat was provided by heating 

mats (Redi Heat model RHD 2110, Phytotronics) at a temperature of 24 C (75 F). During the 

experiment, cuttings were misted for 10 s throughout the 24 h day at varying time intervals each 

week. Time intervals included: week 1, every 15 min; week 2, every 30 min; and weeks 3 and 4 

every 60 min. Rooting data was collected weekly to 4 weeks after sticking. Plants were pulled 

out of the propagation tray cell to determine rooting percentage and visible roots were counted 

along the sides of the cell and returned to the tray. The data collected included rooting success 

percentage during weeks 2 to 4 on the mist bench. Also, the number of visible roots were 

determined by counting up to 30 individual roots in each of the cells. 

Experimental analysis. Data analysis was performed using R version 3.3.1, statistical 

computing software (R Foundation for Statistical Computing, Vienna, Austria) with car, 

LSMeans, and ggplot packages. A one-way analysis of variance (ANOVA) was run separately 

for the response variables. Response variables included average number of cuttings per stock 

plant, average GI per stock plant, average FW per cutting, average DW per cutting, final average 

DW of total shoot growth per stock plant, average cutting rooting percentage per treatment, and 

average number of visible roots per treatment. The data were analyzed and averaged over the 4 

collections and analyzed specific to each experiment (1 and 2). Included in the statistical models 

were predictor variables that matched the PGR treatments applied to the stock plants. Pairwise 
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comparisons and least squares means were calculated using the LSmeans package for each 

response variable. Tukey adjusted pairwise comparisons were considered and significant 

differences were noted using α=0.05. 

The propagation study had response variables with a combined sample size of 30 from 

three repetitions for each experiment. Data analyzed included successful rooting percentage and 

average number of visible roots per replicant. Data were analyzed using an initial arcsine 

transformation for the rooting percentages. Then, one-way ANOVA were run for rooting 

percentage and average number of visible roots for each experiment. Included in the statistical 

models were predictor variables matching PGR treatments. Pairwise comparisons and least 

squares means were calculated using the LSmeans package for each response variable. Tukey 

adjusted pairwise comparisons were considered and significant differences were noted using 

α=0.05.  

3.2.5 Results and Discussion 

Number of cuttings harvested. The data from these experiments were averaged across all 

4 harvest dates. There were no differences among the 4 harvest dates (data not shown). Foliar 

sprays containing GA3 + benzyladenine (25 and 250 ppm) resulted in a greater number of 

cuttings harvested compared to all other treatments in experiment 1 and 2 (Fig. 2). The results 

were not statistically different when comparing all treatments together. However, statistical 

differences were observed in comparison to only the nontreated control, plants treated with GA3 

+ benzyladenine (25 and 250 ppm) produced 2.59 (23.5%) more cuttings in experiment 1. While 

plants treated with GA3 + benzyladenine (25 and 250 ppm) produced 2.49 (30.6%) more cuttings 

in experiment 2 compared to the control (Fig. 2).  
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More vegetative cuttings were harvested from stock plants treated with GA3 + 

benzyladenine compared to all other treatments (Fig. 2). The additional lateral shoot growth of 

the stock plants combined with increased internodal elongation produced more available 

cuttings. Results for coral bells were comparable when treated with GA4+7 + benzyladenine (50 

ppm) applications (Markovic and Klett 2020). Similarly, ‘Bressingham Bronze’ coral bells 

treated with benzyladenine (1000 ppm) resulted in more lateral shoots (Martin and Singletary 

1999).  

Benzyladenine (250 ppm) application resulted in a small increase in the number of 

cuttings harvested compared to the nontreated control due to increased lateral branching (Fig. 2). 

While ethephon (400 ppm) application resulted in similar growth to the nontreated control with 

no effect on the number of cuttings collected and were not statistically different (Fig. 2). No 

flowering was observed throughout the experiments on any treatment plants. Therefore, 

ethephon application did not affect reproductive tissue compared to other PGR treatments. 

The application combination of GA3 and IBA, ethephon, or benzyladenine increased the 

average number of cuttings collected. During the first experiment, stock plants treated with GA3 

+ benzyladenine had a greater number of cuttings compared to the other treatments, while GA3, 

GA3 + IBA, and GA3 + ethephon were all similar to each other. In the second experiment, GA3 + 

IBA and GA3 + benzyladenine treated stock plants produced greater numbers of cuttings and 

were statistically different than GA3 + ethephon, which in turn differed from GA3 alone (Fig. 2). 

The addition of another PGR to GA3 showed positive interactions which increased the number of 

cuttings produced by stock plants, which follows the patterns in previous research performed on 

pea (Ross et al. 2000), rice (Kuroha et al. 2018), and coral bells (Markovic and Klett 2020). 
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Fresh and dry weight per cutting. Fresh weight has been a better indication of cutting 

quality than DW (Markovic and Klett 2020, Brown and Klett 2020). Fresh weight of moroccan 

pincushion in experiment 1 and 2 did not differ among treatments (Table 1). Dry weights showed 

no differences as with FW in the first experiment, but in experiment 2 differences were observed. 

The differences did not appear to have a significant effect on cutting quality. 

Ethephon treated cuttings had the greatest DW and statistically differed from all other 

treatments (Table 1). Stock plants treated with the combination GA3 + benzyladenine in 

experiment 2 had the least DW and statistically differed from all other treatments (Table 1). This 

did not affect the rooting percentage when compared to other PGR treatments. Low DW was 

observed in previous PGR research involving mojave sage, coral bells, and hummingbird 

trumpet when GA4+7 + benzyladenine were applied (Markovic and Klett 2020). 

Growth index. There were no statistical differences in GI between treatments in the first 

experiment, but in experiment 2 statistical differences were observed (Table 1). The GA3 + IBA 

treatment had the greatest overall growth increase, which differed from all other treatments. 

These results are comparable to those of Ackerman and Hamernik (1994) on coral bells. 

Treatments that included GA3 were all greater in average GI and statistically differed from 

treatments without GA3 applied. This could be expected due to GA3 being involved with cell 

elongation (Moore, 1984). The GA3 + ethephon treatment had the lowest average GI of all GA3 

treatments but was not statistically different (Table 1). This interaction was interesting because 

ethephon-treated stock plants had the least amount of growth during experiment 2. However, 

they had some of the greatest fresh weights, which was similar to mojave sage findings 

(Markovic and Klett 2020). Ethephon applications caused added growth through stem thickness 

of the plants, but not in height and width. These results contradict research performed on a broad 
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range of annual floriculture crops, where biomass accumulation was reduced with ethephon 

applications (Miller et al. 2012). 

Propagation experiments. Successful rooting rates ranged from 63% with cuttings from 

ethephon treatment in experiment 1 to 100% with cuttings from GA3 + IBA treatment in both 

experiments (Table 2). Although results indicated the rooting percentages did not significantly 

differ among treatments, 100% is what producers strive for in herbaceous perennials when 

propagating. The addition of IBA to stock plants suggests potential benefits for rooting success 

compared to other PGR treatments. Difficulty in propagating moroccan pincushion by growers 

was not observed during these experiments with nontreated stock plants producing cuttings with 

an overall 95% rate of successful rooting. The difference and quality of the propagation facility 

may be the underlying factor for successful propagation of moroccan pincushion.  

The number of visible roots of cuttings did not statistically differ between treatments. 

While GA3 + benzyladenine treated cuttings had the greatest average number of visible roots 

from experiment 1 (Table 2). Gibberellic acid 3 alone had the greatest average number of visible 

roots from experiment 2. Cuttings from both treatments did not repeat the same results during the 

other experiment. Therefore, no conclusions can be made on which treatment may benefit 

moroccan pincushion with a greater average number of roots.  

This study was conducted to determine whether GA3, benzyladenine, ethephon, or a 

combination of GA3 and benzyladenine, ethephon, or IBA applications can improve the number 

of cuttings and successful rooting of cuttings taken from moroccan pincushion stock plants. 

Gibberellic acid 3 + benzyladenine application appears to have the greatest potential for 

improving propagation of moroccan pincushion. This can be attributed to the increase in plant 
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growth between cutting collections by GA3, plus increased lateral growth from the addition of 

benzyladenine. The use of GA3 + benzyladenine application increased number of cuttings 

harvested but produced minimal effect on the ability to improve rooting percentage or number of 

roots on cuttings. The application of IBA could be utilized to increase the rooting percentage of 

cuttings, however further research into applications of GA3, benzyladenine, and IBA need to be 

studied to confirm potential benefits.   
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Table 3.1. Individual cutting fresh weight, individual cutting dry weight, and growth index of 

moroccan pincushion averaged over 4 harvest dates (Expt. 1 and Expt. 2) as influenced by seven 

plant growth regulator treatments: benzyladenine, ethephon, gibberellic acid 3 (GA3),  GA3 + 

auxin, GA3 + benzyladenine, GA3 + ethephon, and control. 

Treatment 
Rate 

(ppm) 

Fresh wt 

(g) 

Dry wt 

(g) 

Growth 

index 

(cm) 

Expt. 1 
    

control 0 0.44 0.057 8.9 

benzyladenine  250 0.43 0.056 8.8 

ethephon  400 0.45 0.05 8.8 

GA3  25 0.41 0.093 9.3 

GA3 + auxin  25 + 250 0.42 0.044 9.5 

GA3 + benzyladenine  25 + 250 0.42 0.049 9.5 

GA3 + ethephon  25 + 400 0.41 0.05 9.3 

P value 
 

0.894 0.694 0.095 

     
Expt. 2  

    
control 0 0.35 0.04ab 7.3ab 

benzyladenine  250 0.33 0.04ab 7.6abc 

ethephon  400 0.38 0.05b 7a 

GA3  25 0.36 0.04ab 8.1cd 

GA3 + auxin  25 + 250 0.34 0.04ab 8.6d 
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GA3 + benzyladenine  25 + 250 0.31 0.03a 8.3cd 

zTreatments were applied foliarly, control received water only. 

y1 ppm = 1 mg·L-1. 

xFresh and Dry Weights were taken as a total for each plant harvested and the average individual 

cutting weight was determined using total weight and dividing by the number of cuttings 

harvested from the single plant. 1g = 0.0353 oz. 

wGrowth Index (GI) determined from one height and two width measurements at the largest 

diameter cross-sections, equation GI = (Height + Width 1 + Width 2)/3; 1 cm = 0.3937 inch.  

vMean separation in columns with Tukey adjusted least squares means at P ≤ 0.05 (lowercase 

letters).   
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Table 3.2. Influence on moroccan pincushion stock plants by seven plant growth regulator 

treatments: benzyladenine, ethephon, gibberellic acid 3 (GA3), GA3 + auxin, GA3 + 

benzyladenine, GA3 + ethephon, and control on cutting rooting percentage and number of visible 

roots. Data were collected after four weeks under mist and averaged over harvest date within 

Expt. 1 (Aug. to Nov. 2019) and Expt. 2 (Sept. 2019 to Feb. 2020).    

Treatment 
Rate  

(ppm) 

Rooting 

Percentage 

Average 

Number of 

Visible Roots 

Expt. 1 
   

control 0 93 15.7 

benzyladenine 250 83 16.8 

ethephon 400 63 16.9 

GA3 25 90 14.4 

GA3 + auxin 25 + 250 100 14.6 

GA3 + benzyladenine 25 + 250 83 18.6 

GA3 + ethephon 25 + 400 90 15.2 

P value 
  

0.829 

    
Expt. 2 

   
control 0 97 11.7 

benzyladenine 250 100 10.3 

ethephon 400 83 11.2 

GA3 25 97 13.4 
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GA3 + auxin 25 + 250 100 13.3 

GA3 + benzyladenine 25 + 250 93 12.9 

GA3 + ethephon 25 + 400 100 13.2 

P value     0.889 

zTreatments were applied foliarly, control received water only. 

y1 ppm = 1 mg·L-1.  
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Fig. 3.1. Visual guide for moroccan pincushion (Pterocephalus depressus) cutting protocol 
provided by Gulley Greenhouse, Fort Collins, CO. Cuttings show the ideal size and preparation 
for harvest. Measurements in inches (1 inch = 2.54 cm).   
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Fig. 3.2. Mean number of cuttings harvested per plant from moroccan pincushion stock plants 

averaged over four harvest dates for Expt. 1 (A) and Expt. 2 (B) as influenced by seven plant 

growth regulator treatments: benzyladenine, ethephon, gibberellic acid 3 (GA3), GA3 + 

benzyladenine, GA3 + ethephon, GA3 + auxin, and control.z  

zPlant growth regulators were foliarly applied, with clear water on control plants until run-off 

occurred on leaves. 
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CHAPTER 4. RESULTS & DISCUSSION 
 
 
 

4.1. Pterocephalus depressus Moroccan Pincushion Phytohormone UPLC-MS/MS 

Experiment 

 This chapter examines results from UPLC-MS/MS experiment for Pterocephalus 

depressus in the format of a peer-reviewed journal manuscript. Results that are not included in 

this chapter are presented in the appendix.  

4.2. Manuscript for Pterocephalus depressus Phytohormone LC-MS Experiment 
 

Movement and Accumulation of Gibberellic Acid 3 in Response to Foliar and Drench 

Treatments in Moroccan Pincushion 

Sean J. Markovic1, Jacqueline Chaparro1, and James E. Klett1,2 

1Department of Horticulture and Landscape Architecture, Colorado State University, 1173 
Campus Delivery, Fort Collins, CO 80523-1173, USA 
 
2To whom requests should be addressed. E-mail address: jim.klett@colostate.edu 
 

Keywords. Gibberellic acid, UPLC-MS/MS, Moroccan pincushion, Phytohormone 

4.2.1 Summary  

The plant hormone gibberellic acid 3 (GA3) is involved in many physiological processes, 

including plant growth and development. Commercial producers of ornamental perennials have 

increased their use of GA3 in stock plant production. The use of GA3 has increased the yield of 

vegetative cuttings from perennial stock plants. In literature few reports are available on the 

interaction between exogenous GA3 and other plant hormones and their effect on successful 
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propagation of vegetative cuttings. However, the published works clearly demonstrated that 

several hormone interactions with GA3 could beneficially affect the physiological process of root 

development on cuttings. The aim of this research was to determine the movement and 

accumulation of GA3 and Indole-3-butyric Acid (IBA) in treated moroccan pincushion 

(Pterocephalus depressus). Plants were treated with GA3 alone and in combination with 

benzyladenine, ethephon, or IBA by either a foliar or drench application method. The amount of 

GA3 and IBA found in basal and apical sections of moroccan pincushion was analyzed. Results 

shown that drench applications effected the movement of GA3 when GA3 was combined with 

IBA or benzyladenine. The movement of IBA was affected by drench applications the greatest 

when GA3 + IBA was applied. Both GA3 and IBA were found in the greatest abundance when 

plants were treated with GA3 + IBA in apical areas of moroccan pincushion. This study 

highlights the beneficial effect of GA3 on production of vegetative cuttings without adverse 

effects on successful rooting of the cutting.     

4.2.2 Introduction 

GA3 is a plant hormone that regulates several aspects of plant growth and development. 

GA3 promotes growth primarily through cell elongation which is uniform throughout the plant 

tissue (Moore, 1984). Plant growth is cell division, which involves the promotion of cell 

elongation. GA3 is a growth-regulating chemical that effects cell elongation (Salisbury and Ross 

1969). This research continued the focus on GA3, which was previously researched on several 

herbaceous perennial stock plants resulting in increased cutting production (Markovic and Klett 

2020a). GA is isolated from a species of the fungus, Gibberella fujikuroi (Salisbury and Ross 

1969), and has become a useful plant growth regulator (PGR) in the ornamental horticulture 

industry.  
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We wanted to conduct further research into movement of GA3 in perennials and how it is 

affected by other plant hormones. It has been reported that hormones act through a web of 

interacting responses rather than through isolated linear pathways (Kuppusamy et al. 2008). This 

signal integration architecture may be one mechanism for increasing the specificity of outcomes 

in different cellular contexts. We altered the balance between GA3 and other hormones by 

exogenous applications to either the plant foliage or the root system. We then collected samples 

from apical and basal regions from the plants after the first application and fourth application. 

The purpose of these collection locations and times were to show where GA3 accumulates within 

the plant. The combination of other hormones with GA3 resulted in beneficial hormone 

interaction effects for increased GA3 levels within plant tissue. Two different application 

methods provided a useful perspective on GA3 movement throughout the plant.  

Cytokinins, specifically benzyladenine, are involved in nearly all aspects of plant growth 

and development (Leopold and Kriedemann 1975). Benzyladenine is known for cell 

enlargement, not cell elongation as with auxins and gibberellic acid, which promotes cell growth 

in all directions (Preece and Read 1993). In tomato (Solanum lycopersicum), GA inhibits 

cytokinin signaling in its response pathway. While cytokinin is also thought to affect the 

downstream branch(es) of the GA signaling pathway (Fleishon et al. 2011). The ratio of GA to 

cytokinin is an important factor during interactions, not the overall concentrations. Positive 

interactions from applications of gibberellic acid 4+7 (GA4+7) + benzyladenine on stock plants of 

coral bells, mojave sage (Salvia pachyphylla), and cape daisy (Osteospermum species) suggest a 

proper ratio of the PGR is important (Markovic and Klett 2020b).  
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Ethephon is an ethylene inducer that enters the plant and breaks down into three 

molecules: phosphate, chloride, and ethylene. These molecules are released into plant systems, 

effecting plant growth and reproductive development (Preece and Read 1993). The production of 

the gas ethylene may bring about changes within the same tissue, or within the same cell, where 

it is synthesized (Davies 2010). These molecules promote auxiliary shoot development without 

damage to the apical meristem (Hayashi et al. 2001). The relationship between ethylene and GA 

has shown signaling between the two hormones during times of stress such as flooding in rice or 

stress induced floral initiation (Kuroha et al. 2018, Achard et al. 2007). Ethylene concentrations 

increased and signaled the plant to increase GA concentrations. The increased GA concentrations 

elongated the internodes; therefore, a beneficial effect of this hormone interaction was observed 

(Kuroha et al. 2018).   

Auxins produce growth responses away from its site of synthesis which fits the depiction 

of a transported chemical messenger. While auxins are usually transported within the plant and 

signal action at a distance that is not always the case. Auxins may have their intended action near 

the site of synthesis. However, auxin synthesis has been found to occur in a wide range of tissues 

throughout the plant (Davies 2010). Auxins generate many different responses from the plant 

such as: apical dominance, shoot elongation, organ differentiation, induction of cambial cell 

division, and root initiation (Buchanan et al. 2000). Auxin and GA have been shown to promote 

many of the same plant responses such as internode elongation and apical dominance. The auxin 

and GA interaction has been studied and there is evidence that auxin promotes GA biosynthesis 

in pea (Pisum sativum) (Ross et al. 2000). Auxin, like GA, is mainly synthesized in the apical 

meristem. It was found that auxin from the apical meristem would transport down into the stem 
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where it directly or indirectly helped maintain enzymes involved in GA biosynthesis (Ross et al. 

2000).  

The research objective was to evaluate and determine GA3 and IBA levels in moroccan 

pincushion stock plants. Analyzing their response to GA3 applied singularly or in combination 

with benzyladenine, ethephon, or IBA. The hypothesis of this study was that applications of GA3 

would increase vegetative cuttings numbers and quality for moroccan pincushion stock plants. A 

second hypothesis was a successful rooting of moroccan pincushion cuttings would not be 

affected by hormone applications.  

4.2.3 Materials and Methods 

Plant material and hormone treatment 

Vegetative moroccan pincushion rooted cuttings were received from a local greenhouse 

(Gulley Greenhouse, Fort Collins, CO) and transplanted into 10 cm by 10 cm square pots 

containing peat substrate composed of blonde peat moss, wood fiber, dolomitic limestone, and a 

wetting agent (Pindstrup, Ryomgaard, Denmark). These were grown in a greenhouse with 

daytime temperatures monitored with an aspirator (Model M4821, Wadsworth Control Systems, 

Arvada, CO) sensor between 18 and 23 °C (65 and 73 °F), while night-time temperatures were 

held between 16 and 22 °C (61 and 73 °F). The effects of GA3 (Valent USA Corp., Fresno, CS), 

auxin (IBA) (Hortus USA Corp., New York, NY), ethephon (Nufarm Americas, Inc., Alsip, IL), 

and benzyladenine (Fine Agrochemicals Limited, Worcester, U.K.) on hormone accumulation 

were assessed using plants of equal size.  

Treatment applications were performed after roots were observed to strike the sides of the 

containers in most of the plants, about six weeks after transplant. A 3.78 L (1 gal) hand pump 

sprayer was used to apply GA3 (25 mg·L-1), IBA (250 mg·L-1), ethephon (400 mg·L-1), or 
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benzyladenine (250 mg·L-1) on foliage of the whole plant. Trays with no drainage holes were 

filled with 3.78 L (1 gal) of each treatment and plant containers were placed in trays with 3.78 L 

treatment solutions for one hour to provide drench application. Treatments were applied four 

times with six-week intervals in-between each application. Five replicants of each treatment 

were carried out.  

Apical and basal samples of at least one gram in weight were collected two weeks after 

the first and fourth hormone treatment applications on 22 Aug. 2019 and 20 Feb. 2020. All 

samples were rapidly frozen in liquid nitrogen and stored at -80 °C. Samples were freeze dried 

over a period of 36 hours in a freeze dryer (Harvest Right, North Salt Lake, UT), then ground to 

a fine powder with mortar and pestle in liquid nitrogen. Ground samples were stored at -80 °C 

for further phytohormone analysis. 

Phytohormone extraction from moroccan pincushion tissues 

Five analytical replicates were prepared by adding 19-21-mg portion of ground leaf tissue 

to a 2-mL glass vial. Hormones were extracted by adding 500 μL of 80 % methanol in water 

solution and 62.5 ng/mL internal standard solution, then vortexing at 4 °C for 3 hours. For a 

period of 16-hours samples were placed in a -20 °C freezer. After the 16-hour period, samples 

were centrifuged at 4 °C for 15 minutes at 3500×g. A 400 μL aliquot of the extraction was 

transferred to a fresh 2-mL glass vial, dried under nitrogen, re-suspended in 110 μL of methanol. 

Glass vials were then sonicated for 20 minutes and centrifuged at 4 °C for 20 minutes. A 100 μL 

aliquot of the extraction was transferred to a fresh 2-mL glass vial insert, and then stored at -80 

°C until UPLC-MS/MS analysis.    

Ultra-high-performance LC-MS 
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Five microliters of plant extract were injected onto a LX50 UHPLC System, equipped 

with a LX50 Precision Sampling Module (20-μL sample loop, partial loop injection mode) 

(PerkinElmer, Waltham, MA, USA). An ACQUITY UPLC T3 column (1 × 100 mm, 1.8 μM; 

Waters Corporation) was used for chromatographic separation. Mobile phase A consisted of LC-

MS grade water with 0.1% formic acid and mobile phase B was 100% acetonitrile. Elution 

gradient was initially 0.1% B for 1 min, which was increased to 55.0% B at 12 min and further 

increased to 97.0% B at 15 min, then decreased to 0.1% B at 15 min. The column was 

reequilibrated for 4.5 min for a total run time of 20 min. The flow rate was set to 200 μL/min and 

the column temperature was maintained at 45 °C. Samples were held at 4 °C in the autosampler. 

Detection was performed on a QSight™ 220 triple quadrupole mass spectrometer (MS) operated 

in selected reaction monitoring (SRM) mode. SRM transitions for each compound were 

optimized through analysis of authentic standards. SRM transitions for GA3 were 344.9 to 239.1 

for a collision energy of 22 for the quantifier and 344.9 to 200.9 for a collision energy of 36 for 

the qualifier. SRM transitions for IBA were 204.1 to 117 for a collision energy of -46 for the 

quantifier and 204.1 to 130.1 for a collision energy of -38 for the qualifier. The MS was operated 

with the ESI voltage 4500 V in positive mode for IBA and -3500 V in negative mode for GA3. 

Nebulizer gas flow was set at 350 arbitrary units and drying gas was set to 120 arbitrary units. 

The source temperature was 315 °C and hot-surface induced desolvation (HSID) temperature 

200 °C.  

Analysis of propagation of treated vegetative cuttings  

Propagation success was determined using rooting percentage and number of visible 

roots as variables. Vegetative cuttings were collected and propagated using the method reported 
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by Markovic and Klett (2020b). The experiment was repeated three times and included ten 

replicates for each treatment.  

Statistical analysis 

For UPLC-MS/MS analysis of GA3 and IBA, Simplicity 3Q software (Version 4.1 

SCN905, PerkinElmer, Waltham, MA) was used to detect and integrate peak areas and to 

calculate linear regression of analytical standards used for quantification. Each peak was 

normalized to an appropriate internal standard which was added during the extraction process. 

The corresponding linear regression equation was used for quantification (ng/mL) for each 

analyte, which was then adjusted for precise weight of freeze-dried leaf tissue for each sample 

(ng/g). The limit of detection (LOD) was calculated as 3 times the standard deviation of the 

blank divided by the slope of the calibration curve. The LOD for GA3 and IBA were 0.35 and 

0.58, respectively. Likewise, the limit of quantitation (LOQ) was calculated as 10 times the 

standard deviation of the blank divided by the slope of the calibration curve. The LOQ for GA3 

and IBA were 1.06 and 1.76, respectively.  

Data analysis was performed using R version 4.0.2, statistical computing software (R 

Foundation for Statistical Computing, Vienna, Austria) with car, LSMeans, plyr, and ggplot2 

packages. A Wilks-Shapiro test was run for both GA3 and IBA, these tests indicated non-normal 

data for both parameters. A logarithmic transformation was performed to normalize the data, due 

to positive skewedness of the data. Two-way analysis of variance (ANOVA) was performed 

separately for both response variables, GA3 and IBA. Two-way ANOVA was performed for each 

hormone treatment and area of plant sampled or application method.  
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Propagation rooting percentages were analyzed using an initial arcsine transformation. 

Then, two-way ANOVA were performed for rooting percentage and average number of visible 

roots by treatment and application or location. Pairwise comparisons and least squares means 

were calculated using the LSmeans package for each response variable. Tukey adjusted pairwise 

comparisons were considered and significant differences were noted using α=0.05. 

4.2.4 Results and Discussion 

Effect of exogenous GA3, benzyladenine, ethephon, and IBA on expression of GA3 and IBA levels 

 The exogenous application of GA3 combined with the three other hormones resulted in 

increased GA3 levels when compared to control (Table 4.1). The addition of another PGR to GA3 

showed positive interactions, which follows the patterns in previous research performed on pea 

(Ross et al. 2000) and rice (Kuroha et al. 2018). Exogenous IBA combined with GA3 resulted in 

the greatest levels of GA3 found when compared to all other treatments (Table 4.1). The GA3 

plus IBA treatment was 24 times greater than control levels of GA3. The positive interaction is 

what Ross et al. (2000) also reported with IBA, it transports down the stem where it directly or 

indirectly helped maintain enzymes involved in GA biosynthesis (Ross et al. 2000).  

Benzyladenine combined with GA3 also had increased GA3 levels that differed from 

other treatments except when compared to the GA3 and IBA treatment. It has been reported that 

cytokinin affects the downstream branch(es) of the GA signaling pathway (Fleishon et al., 2011). 

With additional GA3 applied with the benzyladenine the ratio of the hormones allowed GA3 to 

not be inhibited. We suspect application of benzyladenine without GA3 would confirm what 

Fleishon et al. (2011) reported. Ethephon did not combine with GA3 to produce levels of GA3 

that differed from GA3 applied alone (Table 4.1). The relationship between GA3 and ethylene 
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hormones has been linked to stress events such as flooding in rice (Kuroha et al. 2018). Plants in 

this study did not experience stress events that would have allowed for increased ethylene and 

GA3 interaction. The beneficial relationship between GA3 and IBA was most pronounced of all 

treatments for GA3 levels within moroccan pincushion. 

Treatments did not differ from control for increased IBA levels within the plant. Levels 

of IBA had the greatest increase when treated with GA3 plus IBA (Table 4.1). These results were 

expected, as previous research demonstrated that exogenous GA has a positive impact on auxin 

signaling and transport (Li et al. 2015). When additional IBA was applied to the plant, IBA 

levels increased greater than 20 times when compared to control and four times greater when 

compared to the next greatest treatment, GA3 plus benzyladenine (Table 4.1). The beneficial 

relationship between GA3 and IBA was the most evident when compared to other treatments for 

increased IBA levels within moroccan pincushion.      

Application method of exogenous GA3, benzyladenine, ethephon, and IBA effects on expression 

of GA3 and IBA levels 

 Exogenous foliar and drench application methods were analyzed to determine the effects 

of GA3 and IBA accumulation. Overall, drench applications resulted in higher abundance of GA3 

when compared to foliar applications of treatments, while levels of IBA had greater amounts 

when foliar applications were utilized (Table 4.1). When moroccan pincushion plants were 

treated with GA3 plus IBA by exogenous foliar applications GA3 levels significantly differed 

when compared to all other treatments (Fig. 4.2). Auxin like IBA have been shown to promote 

GA synthesis in a range of systems, including shoots of tobacco (Wolbang and Ross, 2001), 

barley (Wolbang et al. 2004), and Arabidopsis (Frigerio et al. 2006). The treatment resulted in a 

12% increase in GA3 when compared to GA3 plus benzyladenine which had the second greatest 
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level of GA3. Also, exogenous foliar application of GA3 plus IBA resulted in greatest IBA levels 

and differed from all other treatments except GA3 plus benzyladenine (Fig. 4.3). The two 

greatest treatments had a 14% increase when compared to all other treatments.  

Effect of exogenous GA3, benzyladenine, ethephon, and IBA effects on expression of GA3 and 

IBA levels in apical and basal regions 

 The apical and basal areas of the plant were sampled to determine movement of GA3 and 

IBA within the plant when exogenous hormones are applied. The apical region of the plant had 

greater levels of GA3 and smaller levels of IBA when compared to basal areas sampled (Table 

1). Ross et al. (2003) concluded that in pea, mature tissues can synthesize GA such as GA19. This 

would suggest that GA3 applied to mature areas, as in this experiment, would be able to generate 

GA3 at a similar level to apical meristem regions of the plant. However, this was not seen in the 

results (Fig. 4.1). The treatment with the greatest levels of GA3 was GA3 plus IBA (Fig 4.1). This 

combination differed from all other treatments by at least a 18% increase in GA3. Transport of 

IBA has become clearer by labelling and inhibitor studies. A significant amount of auxin was 

found in root tissue that derives from shoot sources (Ross et al. 2006). However, correlation 

exists between root development and ability of the root to synthesize auxin (Bhalerao et al. 

2002). These findings indicate IBA transport can be affected by GA3, but this depends on the 

area of the plant sampled and age of the tissue. 

Propagation percentage and visual rooting  

Propagation studies for moroccan pincushion were conducted to determine whether the 

levels of GA3 or IBA affected rooting of hormone treated vegetative cuttings. Across all 

treatments the successful rooting percentage was over 60% (Table 4.2). It has been reported that 
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exogenous GA had a positive impact on auxin signaling and transport, and thus enhances the 

response of Arabidopsis roots to exogenous auxin (Li et al. 2015). These findings combined with 

previous research on coral bells (Markovic and Klett 2020a), cape daisy, and mojave sage 

(Markovic and Klett 2020b) verify these moroccan pincushion results. Also, these results 

indicate a difference between drench and foliar application treatments. Successful rooting of 

moroccan pincushion was greater when foliar treatments were applied (Table 4.2). However, 

number of visible roots may help to determine the effects of hormone treatments on quantity of 

roots and overall quality of the rooted cutting. Number of visible roots were greatest when GA3 

alone and GA3 plus benzyladenine were applied by drench in comparison to other treatments. 

GA3 alone as a drench application had at least a 16% increase in visible roots over all other 

treatments.  

4.2.5 Conclusion 

The experiment was carried out to determine the effects of varying combinations of GA3 

with benzyladenine, ethephon, and IBA on accumulation and movement of GA3 and IBA within 

moroccan pincushion stock plants. The experiment showed that among the different 

combinations of hormones GA3 plus IBA had a synergistic effect and increased levels of both 

hormones. The application methods foliar and drench each had different results with IBA having 

greater levels with foliar applications and GA3 having greater levels with drench applications. 

The use of GA3 and IBA by foliar application has a potential benefit to moroccan pincushion 

growers due to the positive effect on propagation rate and increased IBA levels which can assist 

in root initiation.    
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Table 4.1 Mean content of GA3 (ng/g tissue) analyzed by treatment, application method, or 

location within plant. 

  IBA (ng/g) GA3 (ng/g) 

Treatment 
  

Control 0.050az 0.069a 

GA3 0.039a 0.262b 

GA3 + Auxin 1.037b 1.736c 

GA3 + BA 0.201a 1.556c 

GA3 + Ethephon 0.037a 0.551b 

P value 0.001 0.001 

   
Application 

  
Foliar 0.468b 0.382a 

Drench 0.195a 1.672a 

P value 0.015 0.582 

   
Location 

  
Apical 0.268a 0.942a 

Basal 0.331a 0.904a 

P value 0.459 0.99 

zMean separation in columns with Tukey adjusted least squares means at P ≤ 0.05 (lowercase 

letters). 
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Table 4.2 Treatment and application method effect on rooting percentage and number of visible 

roots.  

Treatment 
Rate  

(mg·L-1) 

Average 

Rooting 

Percentage 

Average 

Number of 

Visible Roots 

control 0 97az 11.7b 

GA3 Foliar 25 97a 13.4b 

GA3 + IBA Foliar 25 + 250 100a 13.3b 

GA3 + benzyladenine Foliar 25 + 250 93a 12.9b 

GA3 + ethephon Foliar 25 + 400 100a 13.2b 

GA3 Drench 25 75a 19.3d 

GA3 + IBA Drench 25 + 250 60a 12.2b 

GA3 + benzyladenine Drench 25 + 250 93a 16.6c 

GA3 + ethephon Drench 25 + 400 93a 5.4a 

P value   0.874 0.025 

zMean separation in columns with Tukey adjusted least squares means at P ≤ 0.05 (lowercase 

letters). 
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Figure 4.1 Mean content of GA3 (ng/g tissue) analyzed by hormone treatment and location 

within moroccan pincushion. Data underwent Log transformation due to right skewness.  
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Figure 4.2 Mean content of GA3 (ng/g tissue) analyzed by treatment and application method 

within moroccan pincushion. Data underwent Log transformation due to right skewness. 

 

  



76 
 

Figure 4.3 Mean content of IBA (ng/g tissue) analyzed by treatment and location within 

moroccan pincushion. Data underwent Log transformation due to right skewness.   
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Figure 4.4 Mean content of IBA (ng/g tissue) analyzed by treatment and application method 

within moroccan pincushion. Data underwent Log transformation due to right skewness. 
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CHAPTER 5. RESULTS & DISCUSSION 

 

5.1. Pterocephalus depressus Moroccan Pincushion Leaf Nutrient Content Experiment 

 This chapter examines results from ICP-OES experiment for Pterocephalus depressus in 

the format of a peer-reviewed short paper journal manuscript. Results that are not included in this 

chapter are presented in the appendix. As defined by HortScience: Short papers must be less than 

1800 words, including all titles and references. May contain two scalable images only. Images 

may be either pictures or tables or a combination of both. Must indicate that paper is submitted 

as a short paper during the submission process. 

5.2. Manuscript for Pterocephalus depressus Leaf Nutrient Content Experiment 

Plant Growth Regulator Effect on Potassium Accumulation in Stock Plant Cuttings of Moroccan 

Pincushion 

Sean J. Markovic and James E. Klett
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Disclaimer: Mention of a trademark, proprietary product, or vendor does not constitute a 

guarantee or warranty of the product by Colorado State University and does not imply its 

approval to the exclusion of other products or vendors that also may be suitable. 
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Plant Growth Regulator Effect on Potassium Accumulation in Stock Plant Cuttings of Moroccan 

Pincushion 
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cuttings 

5.2.1 Summary 

Moroccan pincushion (Pterocephalus depressus) is a drought-tolerant perennial that is 

being used in landscapes throughout arid regions of the western United States. This paper 

describes an experiment researching leaf nutrient content from cuttings taken off stock plants. 

Moroccan pincushion stock plants received applications of gibberellic acid (GA3), 

benzyladenine, ethephon, or auxin [indole-3-butyric acid (IBA)]. Plant growth regulators (PGR) 

were applied singularly and in combination with GA3 to determine efficacy on stock plant 

growth. Each PGR treatment was also applied using either a foliar or drench application method. 

Several nutrients were analyzed using a nitric acid digestion of dried leaf material and then an 

inductively coupled plasma- optical emission spectrometer (ICP-OES) machine. The results were 

insignificant overall with only potassium showing differences when comparing PGR treatments. 

Cuttings’ rooting percentage for each treatment was assessed for each nutrient accumulations in 

the leaf. GA3 applied via drench applications resulted in the greatest accumulation of potassium 
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in moroccan pincushion cuttings. GA3 drench treatments combined with benzyladenine and 

ethephon also had significant increases in cutting potassium accumulation.   

5.2.2 Introduction 

 Production of high-quality cuttings from perennial stock plants is an important part of 

commercial propagation of perennial plants. Increased propagation success for moroccan 

pincushion will help greenhouse producers meet growing demand for the perennial groundcover. 

The research described in this study involves several plant growth regulators (PGR) applied to 

moroccan pincushion stock plants. Gibberellic acid (GA) was the focus of this research because 

application to perennial stock plants increased cutting production (Markovic and Klett 2020). 

The effects of PGR applications on cutting nutrient levels may produce a link between hormone 

and nutrient levels. Adventitious root formation is a complex process and nutrient levels in the 

cutting effect the rate at which roots form (Preece and Read 1993). One nutrient in this study, 

potassium, was observed promoting adventitious root formation in plants and cuttings (Zhao et 

al. 1991). Depletion of nutrients typically occurs during propagation (Santos et al. 2011), 

therefore any positive correlation between PGR treatments and increased nutrient levels would 

be of interest to growers. The effects of hormone levels on nutrient accumulations in vegetative 

cuttings used for propagation has not been thoroughly researched. 

 In the present work we studied the effect of four PGR on the nutrient accumulations 

within moroccan pincushion vegetative cuttings. The results showed that only potassium 

accumulation was affected by different PGR treatments. 

5.2.3 Materials & Methods 

Plant material and PGR treatment 
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Vegetative moroccan pincushion rooted cuttings were received from a local greenhouse 

(Gulley Greenhouse, Fort Collins, CO) and transplanted into 10 cm by 10 cm square pots 

containing peat substrate composed of blonde peat moss, wood fiber, dolomitic limestone, and a 

wetting agent (Pindstrup, Ryomgaard, Denmark). These were grown in a greenhouse with 

daytime temperatures monitored with an aspirator (Model M4821, Wadsworth Control Systems, 

Arvada, CO) sensor between 18 and 23 °C (65 and 73 °F), while night-time temperatures were 

held between 16 and 22 °C (61 and 73 °F). The effects of GA3 (Valent USA Corp., Fresno, CS), 

auxin (IBA) (Hortus USA Corp., New York, NY), ethephon (Nufarm Americas, Inc., Alsip, IL), 

and benzyladenine (Fine Agrochemicals Limited, Worcester, U.K.) on hormone accumulation 

were assessed using plants of equal size.  

Treatment applications were performed after roots were observed to strike the sides of the 

containers in most of the plants, about six weeks after transplant. A 3.78 L (1 gal) hand pump 

sprayer was used to apply GA3 (25 mg·L-1), IBA (250 mg·L-1), ethephon (400 mg·L-1), or 

benzyladenine (250 mg·L-1) on foliage of the whole plant. Trays with no drainage holes were 

filled with 3.78 L (1 gal) of each treatment and plant containers were placed in trays with 3.78 L 

treatment solutions for one hour to provide drench applications. Treatments were applied four 

times with six-week intervals in-between each application. Five replicants of each treatment 

were carried out.  

Inductively coupled plasma optical emission spectrometry  

Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to 

determine cutting nutrient content and its effect on cutting rooting success. This analysis enabled 

deeper understanding of the metabolic response of the cuttings resulting from PGR treatments. 
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The procedure was carried out essentially as described in Reynolds et al. (2020), with the nitric 

acid digestion procedure from work done by Zarcinas et al. (1987). The protocol used for this 

analysis started with 100 mg of dried moroccan pincushion leaf tissue weighed and broken apart 

in a  25 mm diameter by 200 mm long glass digestion tube. Then, in the chemical hood 1 mL of 

trace element grade nitric acid (HNO3) was added to the dried material and a glass funnel was 

place on the tube to prevent evaporation. A blank sample was made by dispensing 1 mL of nitric 

acid into an empty digestion tube. The tubes were set in digestion blocks. The digestion program 

ran at a temperature of 60 °C for two hours and then 122 °C for six hours.   

At the completion of the digestion program, labeled acid-resistant polypropylene15 mL 

tubes were used to transfer sample contents from the glass digestion tubes. Reverse osmosis 

treated water was added to the digest, followed by vortexing and transfer to 15 mL tubes. More 

water was added until the 10 mL level was reached in the test tube. The samples were stored in 

racks on the lab bench until analyzed using ICP-OES. The process used during ICP-OES was 

performed as described by Winge et al. (1978). Results were generated into an excel file and 

calculated based on the exact initial dry weight which was recorded while weighing the plant 

material from the dried samples. Nutrients analyzed during ICP-OES included: calcium, 

potassium, magnesium, zinc, and phosphorus. 

 The first set of samples were digested on October 21-23, 2019. These samples were 

analyzed with the ICP-OES machine November 19, 2019. The second set of samples were 

digested on March 5-6, 2020. These samples were analyzed with the ICP-OES machine March 

16, 2020. 

5.2.4 Results and Discussion 
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Effects of plant growth regulator application on accumulation of calcium, magnesium, zinc, and 

phosphorus 

 No significant increases in nutrient accumulations were observed for calcium, 

magnesium, zinc, or phosphorus for all treatments during this experiment. These nutrients have 

been previously connected to plant processes involved in adventitious root formation (Steffens 

and Rasmussen, 2016). Levels of these nutrients did not affect the successful rooting of 

moroccan pincushion. No significant differences observed when comparing treatments. Rooting 

data for moroccan pincushion was reported in a previous paper (Markovic and Klett, 2021). The 

levels of these nutrients that were found in the leaf tissue samples were all in large enough 

quantities to not be a deficiency. The use of GA, auxin, benzyladenine, or ethephon did not have 

a detrimental effect on accumulations of these nutrients in cuttings taken from moroccan 

pincushion.  

Effects of plant growth regulator application on accumulation of potassium 

The levels of potassium were found to have differed significantly when comparing all 

PGR treatments (Table 5.1). GA3 drench at an application rate of 25 ppm resulted in the greatest 

accumulation of potassium in moroccan pincushion cuttings. Other significantly different 

treatments were drench applications of GA3 + benzyladenine and GA3 + ethephon (Table 5.1). 

The increase in potassium for three drench applications represents an interesting trend. Drench 

applications did not have the overall increases for other nutrients analyzed (data not shown). The 

effects of hormones in the root system and its effect on potassium are relatively unknown. These 

results are positive for helping increase rooting of moroccan pincushion through drench 

applications of GA3. In another study, increased potassium availability resulted in more 
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adventitious root formation in cucumber, mung bean, and kidney bean (Zhao et al. 1991). The 

current findings indicate positive relationship between GA3 in high concentrations in the root 

system and accumulation of potassium in moroccan pincushion vegetative cuttings. 
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Table 5.1 Pterocephalus depressus Moroccan pincushion mean average potassium (mg/kg) per 

dry leaf sample and 95% confidence intervals for each treatment. Means with different 

significance groups, identified by letter, are significantly different at the level of P < 0.05. 

Treatment 
Rate 

(ppm) 

Mean Amount 

of Potassium 

95% 

Confidence Interval 

control-a 0 26753 (21153-32353) 

benzyladenine foliar-a 250 25487 (20077-30897) 

ethephon foliar-a 400 26828 (21418-32238) 

GA3 foliar-a 25 27860 (22778-32942) 

GA3 + benzyladenine foliar-a 25 + 250 28841 (23431-34251) 

GA3 + ethephon foliar-a 25 + 400 30277 (24867-35687) 

GA3 + IBA foliar-a 25 + 250 26469 (21231-31708) 

GA3 drench-d 25 51194 (45146-57243) 

GA3 + benzyladenine drench-c 25 + 250 47520 (40894-54146) 

GA3 + ethephon drench-b 25 + 400 31209 (22655-39763) 

GA3 + IBA drench-a 25 + 250 22528 (13974-31082) 
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APPENDIX 
 
 
 

A1. Chapter 1 Appendices  

 

Figure A1.1 Configure PGR Label 
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Figure A1.2 ProGibb PGR Label 
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Figure A1.3 Verve PGR Label 
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Figure A1.4 Auxin (IBA Water Soluble Salts) PGR Label 
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A2. Chapter 2 Appendices 

A3. Chapter 3 Appendices 

 

Fig. A3.1. Mean average fresh weight per cutting from moroccan pincushion stock plants 
averaged over four harvest dates for Expt. 1 (A) and Expt. 2 (B) as influenced by seven plant 
growth regulator treatments: benzyladenine, ethephon, gibberellic acid 3 (GA3), GA3 + 
benzyladenine, GA3 + ethephon, GA3 + auxin, and control. 
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Fig. A3.2. Mean average dry weight per cutting from moroccan pincushion stock plants averaged 
over four harvest dates for Expt. 1 (A) and Expt. 2 (B) as influenced by seven plant growth 
regulator treatments: benzyladenine, ethephon, gibberellic acid 3 (GA3), GA3 + benzyladenine, 
GA3 + ethephon, GA3 + auxin, and control. 

 

Fig. A3.3. Mean average growth index per plant from moroccan pincushion stock plants 
averaged over four harvest dates for Expt. 1 (A) and Expt. 2 (B) as influenced by seven plant 
growth regulator treatments: benzyladenine, ethephon, gibberellic acid 3 (GA3), GA3 + 
benzyladenine, GA3 + ethephon, GA3 + auxin, and control. 
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Table A3.1. Pterocephalus depressus Moroccan pincushion Exp. 1 mean average number of 
cuttings per plant and 95% confidence intervals for each treatment. Means with different 
significance groups are significantly different at the level of P < 0.05. 

Treatment Average no. 
Cuttings per Plant 

Lower CI 
2.5% 

Upper CI 
97.5% 

Significance 
Group 

control 7.94 6.66 9.23 1 
benzyladenine_Foliar 9.69 8.38 10.99 12 
ethephon_Foliar 8.34 7.04 9.65 12 
GA3_Foliar 10.02 8.91 11.14 12 
GA3 + benzyladenine_Foliar 11 9.89 12.11 2 
GA3 + ethephon_Foliar 10.32 9.15 11.48 12 
GA3 + auxin_Foliar 9.88 8.76 10.99 12 

 

Table A3.2. Pterocephalus depressus Moroccan pincushion Exp. 2 mean average number of 
cuttings per plant and 95% confidence intervals for each treatment. Means with different 
significance groups are significantly different at the level of P < 0.05. 

Treatment Average no. Cuttings 
per Plant 

Lower 
CI 2.5% 

Upper CI 
97.5% 

Significance 
Group 

control 5.63 4.81 6.47 12 
benzyladenine_Foliar 7.22 6.28 8.16 123 
ethephon_Foliar 5.33 4.41 6.26 1 
GA3_Foliar 6.91 6.07 7.74 123 
GA3 + benzyladenine_Foliar 8.13 7.31 8.96 3 
GA3 + ethephon_Foliar 7.38 6.55 8.22 23 
GA3 + auxin_Foliar 7.77 6.94 8.61 3 
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Table A3.3. Pterocephalus depressus Moroccan pincushion Exp. 1 mean average final dry 
weight per plant and 95% confidence intervals for each treatment. Means with different 
significance groups are significantly different at the level of P < 0.05. 

Treatment Final Dry 
Weight (g) 

Lower CI 
2.5% 

Upper CI 
97.5% 

Significance 
Group 

control 1.424 1.234 1.613 2 
benzyladenine_Foliar 1.367 1.142 1.592 2 
ethephon_Foliar 1.352 1.125 1.575 2 
GA3_Foliar 1.241 1.052 1.431 12 
GA3 + benzyladenine_Foliar 1.324 1.111 1.489 2 
GA3 + ethephon_Foliar 1.324 1.134 1.513 2 
GA3 + auxin_Foliar 1.453 1.264 1.642 2 
GA3_Drench 0.942 0.591 1.289 12 
GA3 + benzyladenine_Drench 1.141 0.791 1.489 12 
GA3 + ethephon_Drench 1.181 0.831 1.529 12 
GA3 + auxin_Drench 0.575 0.185 0.965 1 

 

 

 

Table A3.4. Pterocephalus depressus Moroccan pincushion Exp. 2 mean average final dry 
weight per plant and 95% confidence intervals for each treatment. Means with different 
significance groups are significantly different at the level of P < 0.05. 

Treatment Final Dry 
Weight (g) 

Lower CI 
2.5% 

Upper CI 
97.5% 

Significance 
Group 

control 2.74 2.018 3.47 3 
benzyladenine_Foliar 2.79 2.068 3.52 3 
ethephon_Foliar 2.55 1.826 3.27 23 
GA3_Foliar 3.17 2.526 3.82 3 
GA3 + benzyladenine_Foliar 3.35 2.699 3.99 3 
GA3 + ethephon_Foliar 3.19 2.516 3.86 3 
GA3 + auxin_Foliar 3.11 2.466 3.76 3 
GA3_Drench 2.85 1.596 4.11 23 
GA3 + benzyladenine_Drench 0.36 -0.761 1.48 12 
GA3 + ethephon_Drench 1.11 -0.347 2.55 123 
GA3 + auxin_Drench 0 -1.121 1.12 1 
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Table A3.5. Pterocephalus depressus Moroccan pincushion Exp. 1 mean average root rating (1-
5) and 95% confidence intervals for each treatment. Means with different significance groups are 
significantly different at the level of P < 0.05. 

Treatment Root Rating 
(1-5) 

Lower CI 
2.5% 

Upper CI 
97.5% 

Significance 
Group 

control 3.94 3.593 4.29 5 
benzyladenine_Foliar 3.83 3.419 4.25 45 
ethephon_Foliar 3.92 3.502 4.33 45 
GA3_Foliar 3.12 2.769 3.47 34 
GA3 + benzyladenine_Foliar 3.18 2.828 3.52 345 
GA3 + ethephon_Foliar 2.82 2.475 3.17 23 
GA3 + auxin_Foliar 3.88 3.534 4.23 45 
GA3_Drench 2.01 1.357 2.64 123 
GA3 + benzyladenine_Drench 1.81 1.157 2.44 12 
GA3 + ethephon_Drench 2.83 2.157 3.44 2345 
GA3 + auxin_Drench 1.00 0.282 1.72 1 

 

 

Table A3.6. Pterocephalus depressus Moroccan pincushion Exp. 2 mean average root rating and 
95% confidence intervals for each treatment. Means with different significance groups are 
significantly different at the level of P < 0.05. 

Treatment Root Rating 
(1-5) 

Lower CI 
2.5% 

Upper CI 
97.5% 

Significance 
Group 

control 3.92 3.374 4.462 3 
benzyladenine_Foliar 3.53 2.957 4.043 3 
ethephon_Foliar 3.17 2.624 3.712 3 
GA3_Foliar 3.33 2.848 3.819 3 
GA3 + benzyladenine_Foliar 3.93 3.448 4.419 3 
GA3 + ethephon_Foliar 2.86 2.354 3.361 3 
GA3 + auxin_Foliar 3.67 3.181 4.152 3 
GA3_Drench 2.25 1.309 3.191 23 
GA3 + benzyladenine_Drench 0.43 -0.441 1.241 12 
GA3 + ethephon_Drench 2.01 0.914 3.086 123 
GA3 + auxin_Drench 0.00 -0.841 0.841 1 
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A4. Chapter 4 Appendices 

A5. ICP-OES Statistics 

A5.1 SOP for ICP-OES performed 

ICP-OES protocol 2013 

- Connect tubes to peristaltic pump, one for waste (red) closest to the ICP, one for sample 
(black). Wedge both ends into the notches, place tubes in their grooves and close clamp in 
back, control tightness if needed with screws. Note: the pump turns clockwise, so the side of 
the sample tube coming from the autosampler should be in the front, and the waste tube 
coming from the machine too 

- Clamp tubes in back of autosampler into place as well (no need to tighten). There are two 
parts: the curved white part comes up from the front, then the yellow piece clicks over it from 
the back. You may have to pull the little white ring next to the yellow part a bit to make it 
click 

- Gas tanks for nitrogen and argon are normally kept open. Check the gas tank pressures for 
N2 and argon – pressure normally is 100 psi on both (should be at least 60). Check the tank is 
still full enough, try to have it at least a quarter, ideally half full for a long run (little gauge in 
center of tank) 

- Check that the water rinse level is high enough (carboy below with funnel) and waste tank 
has space 

- Open program WinLab32 on computer, if not already open 
- Under System – go to pump on/off  and click on 
- Under Analysis – go to Autosampler  – probe up/down – down 
- Check liquids are running in both sample tube and waste tube (waste tube looks like pearly 

droplets). If needed fill up sipper reservoir with water from squeeze bottle 
- Under system click plasma on/off. It takes a minute for the torch to light, and the pump will 

turn off and on during this process 
- Check you see the flame behind the ICP window 
- Under file – open – method - choose Smits4 as method 
- Under tools – open sample info editor – a table will open 
- Place your tubes on the autosampler. The standards and QC go in the big holes on the 

autosampler. These are numbered 1-10.  Use 50 mL tubes for these. The blank goes in the 
back, then Std1, Std2 and QC (see below for what is in them). The samples go in racks, and 
are numbered autosampler positions 11-…  There are different racks you can use, for smaller 
(8 mL) or bigger (15 mL) tubes.  The total # of samples you can do using the 8 mL racks is 
360 (4 x 90) and with the 15 mL racks 240 (4 x 60). Under Options – Autosampler – you 
can browse between racks. Choose either the name that ends in 360 (if you use the 8 mL 
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tubes) or the one that ends in 240 (for the 15 mL tubes). There should not be open spaces 
between samples. You may want to put water or QC1 as samples now and then (every 50 or 
between sample sets or between high and low expected concentrations)  

- Fill out the autosampler sample info table. In the row where it says sample 1, type in the 
column autosampler location (AS location) 11. Sample 1 is 12, etc. Under Sample ID type 
the names of all the samples (keep it simple, so e.g. A1-A40). It helps to use the autofill 
feature in the table: right click on table cell, choose column fill. Then in the window that 
opens select the autosampler nr range and the sample nr range and OK. You can do this for 
the sample nr and for the sample ID (next column). Note: if the program says the max nr of 
samples is 250 you can change it to 360 by clicking edit – append rows – and change the max 
# of samples. Save as sample info file using e.g., the date as file name (080613 for instance).  

-  [If you need to make a new design: Under utilities – data manager – report – create new 
design – next – today only – next – report format: crosstabshortlandscape next – click date 
and time – next – save as e.g. Smits4 and a letter] 

-  If using an existing design: Under Auto icon open automated analysis control (if not 
already open) 

- Open the sample info file of the day (if not already open) 
- Click on open under results data set name, type a name e.g. the date, and click ok 
- Set the machine to auto shutdown if it will run past 5 pm. Select what time it should shut 

down (including plasma and pump), and what time it has to turn back on (not plasma and 
pump) 

- Click analyze. You will now see a list of your Stds and samples 
- Check the sample list. If not complete, click rebuild list 
- If this is the first run of the day, click Hg auto wavelength realign box 
- Hit analyze all icon on top of that window 
- Click on results icon to show progress, click on spectra icon to show spectra 
- Stay around and check all goes well until the machine passed the QC and starts on the 

samples 
- Check on machine every 90 min or so, look at results window and spectra window. Refill the 

QC (which is the same solution as standard 1). In the analysis history it should say analyzed 
for the samples and QC passed for the QC (every 20 samples). 

- When it is done  
- Under file – utilities – data manager – Library category – choose results – ok 
- Select your file of the day (name = date usually)  
- Click report 
- Choose existing design – browse – smits4 – next – select all 
- Click Preview - print 
- Click download button (envelope with down arrow) 
- Choose MS Excel 97-2000 data only, and choose disk file to save it to 
- Click OK 
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- Choose flash drive (E) on computer and save 
- Open it with Excel from flash drive to check 
- If machine is done for the day make sure torch is off, tubes are loose. 

Standards for new ICP-OES (July 10 2013 - present) 

 Calibration Blank (5% HNO3) 

 STD 1    2 ppm   Cd, Cr, Cu, Mn, Mo, Ni, Zn, Fe, Pb 

  &  1 ppm   Se, As, W 

In blank 

 STD 2    10 ppm   S, Mg, Ca, V, P, K 

  In blank 

How to make new standards: 

Make 1 L blank: 50 mL HNO3 in 950 mL dd water. 

Fill volumetric 500 mL flask (bulb with neck) with ~400 mL blank. 

Add each element to flask using 1 mL pipette (blue tip) from “holy stocks” solutions from the 
Soil, Water and Plant Testing lab. Most are 1,000 ppm, but some are 10,000 ppm so check!).  For 
example: 1000 ppm  2 ppm is 500x dilution, so add 1 mL per 500 mL. 

Fill flask up to the mark with more blank. Mix well and transfer to standard bottle. 
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A5.2 Tables and Figures from ICP-OES  

Table A5.1 Pterocephalus depressus Moroccan pincushion mean average phosphorus (mg/kg) 

per dry leaf sample and 95% confidence intervals for each treatment. Means with different 

significance groups are significantly different at the level of P < 0.05. 

Treatment 
Mean Amount 

of Phosphorus 

Lower CI 

2.5% 

Upper CI 

97.5% 

Significance 

Group 

control 3964 3213 4715 1 

Benzyladenine Foliar 3837 3111 4562 1 

Ethephon Foliar 4364 3638 5089 1 

GA3 Foliar 3895 3214 4577 1 

GA3 + benzyladenine Foliar 3616 2890 4342 1 

GA3 + ethephon Foliar 3969 3243 4695 1 

GA3 + IBA Foliar 4413 3711 5116 1 

GA3 Drench 4612 3800 5423 1 

GA3 + benzyladenine Drench 4175 3286 5063 1 

GA3 + ethephon Drench 3711 2563 4858 1 

GA3 + IBA Drench 3538 2391 4685 1 
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Fig. A5.1. Pterocephalus depressus Moroccan pincushion mean average phosphorus (mg/kg) per 

dry leaf sample. Standard error bars indicate a 95% confidence interval for the mean. 
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Table A5.2 Pterocephalus depressus Moroccan pincushion mean average sodium (mg/kg) per 

dry leaf sample and 95% confidence intervals for each treatment. Means with different 

significance groups are significantly different at the level of P < 0.05. 

Treatment 
Mean Amount 

of Sodium 

Lower CI 

2.5% 

Upper CI 

97.5% 

Significance 

Group 

control 845 620 1069 1 

Benzyladenine Foliar 970 753 1187 1 

Ethephon Foliar 965 748 1182 1 

GA3 Foliar 536 332 740 1 

GA3 + benzyladenine Foliar 754 537 971 1 

GA3 + ethephon Foliar 696 479 913 1 

GA3 + IBA Foliar 688 478 899 1 

GA3 Drench 716 473 959 1 

GA3 + benzyladenine Drench 717 451 983 1 

GA3 + ethephon Drench 989 646 1332 1 

GA3 + IBA Drench 666 323 1009 1 
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Fig. A5.2. Pterocephalus depressus Moroccan pincushion mean average sodium (mg/kg) per dry 

leaf sample. Standard error bars indicate a 95% confidence interval for the mean. 
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Fig. A5.3. Pterocephalus depressus Moroccan pincushion mean average potassium (mg/kg) per 

dry leaf sample. Standard error bars indicate a 95% confidence interval for the mean. 
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Table A5.3 Pterocephalus depressus Moroccan pincushion mean average calcium (mg/kg) per 

dry leaf sample and 95% confidence intervals for each treatment. Means with different 

significance groups are significantly different at the level of P < 0.05. 

Treatment 
Mean Amount 

of Calcium 

Lower CI 

2.5% 

Upper CI 

97.5% 

Significance 

Group 

control 10117 8435 11800 1 

benzyladenine Foliar 10121 8496 11747 1 

ethephon Foliar 10819 9194 12445 1 

GA3 Foliar 8800 7274 10327 1 

GA3 + ethephon Foliar 8645 7019 10270 1 

GA3 + benzyladenine Foliar 9291 7665 10916 1 

GA3 + IBA Foliar 10021 8447 11595 1 

GA3 Drench 11466 9649 13284 1 

GA3 + benzyladenine Drench 9780 7789 11771 1 

GA3 + ethephon Drench 8157 5587 10727 1 

GA3 + IBA Drench 8725 6155 11295 1 
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Fig. A5.4. Pterocephalus depressus Moroccan pincushion mean average calcium (mg/kg) per 

dry leaf sample. Standard error bars indicate a 95% confidence interval for the mean. 
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Table A5.4 Pterocephalus depressus Moroccan pincushion mean average magnesium (mg/kg) 

per dry leaf sample and 95% confidence intervals for each treatment. Means with different 

significance groups are significantly different at the level of P < 0.05. 

Treatment 
Mean Amount 

of Magnesium 

Lower CI 

2.5% 

Upper CI 

97.5% 

Significance 

Group 

control 3648 3225 4072 1 

benzyladenine Foliar 3671 3261 4080 1 

ethephon Foliar 3712 3302 4121 1 

GA3 Foliar 3357 2972 3741 1 

GA3 + benzyladenine Foliar 3211 2801 3620 1 

GA3 + ethephon Foliar 3324 2914 3733 1 

GA3 + IBA Foliar 3451 3055 3848 1 

GA3 Drench 4044 3586 4501 1 

GA3 + benzyladenine Drench 3693 3192 4195 1 

GA3 + ethephon Drench 3421 2774 4068 1 

GA3 + IBA Drench 2930 2282 3577 1 
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Fig. A5.5. Pterocephalus depressus Moroccan pincushion mean average magnesium (mg/kg) per 

dry leaf sample. Standard error bars indicate a 95% confidence interval for the mean. 


