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FOREWORD 

This is a technical report prepared under a grant by 

the Office of Water Resources Rese arch for a project at Colorado State 

University entitled, "Metropolitan IVater Intelligence Systems." The 

basic objective of the project was to develop criteria and information 

for the development of metropolitan water intelligence systems (1'!\VIS). 

The MWIS is a specialized urban water system form of the management 

information and control system concept which is emerging as a techno-

logical innovation in industrial applications. 

The project consisted of three phases, each lasting about one year. 

This report was prepared during Phase III. Basic objectives for Phase I 

were to: 

1. Investigate and describe modern automation and control 

systems for the operation of urban water facilities 

with emphasis on combined sewer systems. 

2. Develop criteria for managers, planners, and designers 

to use in the consideration and development of centralized 

automation and control systems for the operation of 

combined sewer systems. 

3. Study the feasibility, both technical and social, of 
~ 

automation and control systems for urban water facilities 

with emphasis on combined sewer systems. 

COLORADO STATE UNIVERSITY 



Basic objectives for Phase II were to: 

1. Formulate a design strategy for the automation and 

control of combined sewer systems. 

2. Develop a model of a real-time automation and control 

system (RTACS model). 

3. Describe the requirements for computer and control 

equipment for automation and control systems. 

4. Describe nontechnical problems associated with the 

implementation of automatic and control systems. 

In Phase III the project objectives were focused into three 

basic categories: 

1. Development of control strategy for automated combined 

sewer systems. 

2. To interrelate computer and control equipment system 

design with the control strategy adopted. 

3. To identify and describe the socio-political and economic 

factors to be considered in implementation. 

This report describes factors associated with the first objective 

of Phase III. 
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ABSTRACT 

OPTIMAL CONTROL OF FLm~ IN COMBINED SD~ER SYSTEMS 

This study examines the development of a suitable control logic 

for the real time control of flow in combined sewer systems. The 

approach followed is based on continuous time optimal control theory. 

The combined sewer system is modelled as a series of interconnected 

reservoirs having both weir and orifice controls. Using this model as a 

basis the state equations and inequality constraints of the system are 

then presented. The objective function chosen is that of minimizing 

weighted flow diversions from the system. 

Application of the cal culus of variations tote minimization 

problem yields necessary conditions for an optimal control. These 

necessary conditions are examined and solution forms for the optimal 

control strategies for several configurations and system inflows are 

derived. 

The problem of numerical solution of the necessary conditions is 

examined and it is concluded t hat in general their solution is too 

cumbersome for practical use. An alternative control solution is 

proposed, based on operating rules derived from the common factors 

shovm tc exist in the previously examined solution forms. l1hen combined 

with a first order gradient search technique these operating rules 

yield an optimal control strategy. 

Results of application of this technique to systems of four 

reservoirs and ten reservoirs are presented. They shmv that a satisfactory 

coni.rul strategy ror up to twenty control points ca:, be obtaine: within 

the time limits imposed by real time operation. A further example is 



presented showing the effects of information errors on the true 

optimality of a computed control strategy. 

Finally the necessary modification to the necessary conditions 

for an optimal control in which there are time delays in the flow 

routing are presented. It is shown that the change in operating rules 

amounts to a shift in time scales between reservoirs. 

It appears that the approach outlined herein is a feasible 

solution to the problem of real time control of flow in combined 

sewers. 
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SUMMARY OF THE STUDY 

The study outlined below presents control logic suitable 

for the real time control of flow in combined sewer systems 

containing up to twenty regulator structures each with a 

controllable weir and orifice. It was assumed that presently 

unused storage capacity available in the conduits comprising the 

sewer system (particularly the trunk sewers) could be utilized 

by the controllable weir which would create storage and control 

diversions from the system to the receiving waters. The 

controllable orifice would regulate the flow from the trunk sewers 

to the interceptor sewers. It was assumed that the input run-

off hydrographs to the sewer system and the physical dimensions of 

the sewer system were known data. 

The control logic presented has the advantages that it is 

optimal for most practical purposes; can be used for nonlinear 

systems; does not require large amounts of computer memory storage; 

and has a relatively short computation time (approximately two 

minutes of IBM 60-67 CPU time for a system consisting of twenty 

control points). Its principal disadvantage is that at present 

a new control logic program must be written for each system 

configuration. Examination of the control l~gic shows that in the 

event of an orifice control failure an optimal control strategy 

can still be computed. 
I In the event of a weir failure a sub-

optimal strategy would result. 



The approach taken in this study to determine a suitable 

control logic for control of flow in combined sewers is based on 

continuous time optimal control theory (calculus of variations). 

The necessary model for the optimization assumed that the combined 

sewer system could be modelled as a system of interconnected 

reservoirs with each reservoir representing the backwater storage 

at a regulator structure. (This model is discussed in detail in 

Chapter II). For simplicity of explanation the theoretical and 

numerical results derived in this study were based on standard 

weir and orifice equations; however, it was shown that much more 

general control device equations could be used without changing 

the basic results of the study. Likewise throughout most of the 

study for simplicity of explanation it was assumed that there was 

no time delay or modification of the flow between reservoirs. 

Results were derived in Chapter VI, however, to show that realistic 

flow routing models could be included without modifying the basic 

principles of the control logic. 

The objective function chosen for the optimization procedure 

was basically that of minimizing weighted diversions from the 

system to the receiving waters. Weighted diversions were chosen 

so that consideration could be given to the effect of any required 

diversions from the system on the receiving waters; (This aspect 

is discussed in Chapter II). Initially attempts were made to 

determine the optimal control strategy for a given stonn water 

input and system configuration directly from the necessary 

conditions for an optimal control given by the calculus of 

variations. Experience showed, however, that numerical solution 



of the necessary conditions was for most practical purposes not 

feasible. (Some of the computational problems are discussed in 

Chapter IV). 

Although numerical ansv,ers \"ere difficult to determine it 

was possible to determine the form of the optimal control strategies 

quite easily from an examination of the necessary conditions for 

an optimal control. In Chapter III of the study, the forms of the 

optimal control strategies for four basic configurations of 

reservoirs and several combinations of overflow weighting factors 

were examined. Not only did all the control strategies fall on 

constraint boundaries, they showed the following patterns. 

a) The orifice control for any reservoir could switch 

from a maximum opening (as defined by the physical dimensions of 

the orifice or a flow constraint) to a minimum opening (as defined 

by a minimum allowable orifice opening). For two reservoirs feeding 

a common conduit the switch by one orifice control is accompanied 

by a switch in the opposite direction for the other orifice control. 

(The times at which these jumps in control occurred effectively 

determined when each reservoir filled to capacity). 

b) The weir control (defined as the difference in elevation 

between the water surface elevation and the crest of the weir) could 

only be greater than zero when the depth in the associated reservoir 

was at its maximum limit. 
c) As soon as a reservoir had ceased spilling, its orifice 

control operated in a manner that would give the maximum throughput 

advantage to that reservoir in the system with the highest overflow 

weighting factor which was still overflowing (or could still overflow) 



provided this advantage would be beneficial (if not the reservoir 

with the next highest overflow weighting factor would govern). 

d) The reservoir gaining the throughput advantage then 

operated so as to either utilize the increased available conduit 

capacity or to maintain the downstream reservoir at its maximum 

level. 

Further examination of the form of the optimal control 

strategies showed that given the times at which the switches in 

control specified in "a" above occurred for an optimal control, 

then by points "b" , "c'' and "d" above the control strategy was 

completely determined. Thus the problem was reduced to the 

determination of the optimal times at which a switch in the control 

as given by "a" above should occur. 

As a result of the difficulties encountered in the direct 

solution of the necessary conditions for an optimal contro1 strategy 

an alternative numerical approach was formulted in Chapter IV based 

on the operating procedures described above combined with a first 

order gradient search technique to find the optimal times at which 

a switch in the orifice control should occur. This involved writing 

a sub-program (control program) to route the given system inflows 

through the reservoirs according to the procedures outlined in "b", 

"c" and "d" above and for specified times at which the switches in 

the reservoir controls should occur. By perturbing each of the 

assumed switching times in turn and noting the associated change in 

the objective function the gradient of the objective function with 

respect to the switching times was obtained and used to compute a 

new set of switching times in an iterative procedure until no further 



reduction in the objective function could be obtained i.e., the 

optimal control strategy had been determined. 

In Chapter V the above procedure was applied to systems 

consisting of four and ten reservoirs. For each system several 

different inflow hydrographs and weighting factors for the 

diversions from each reservoir were tried to ensure that the 

proposed procedure would operate satisfactorily. Initially for 

each system the control programs were written for an assumed 

relative order of the reservoir overflow weighting factors, however, 

as more experience was gained it proved possible to obtain essentially 

complete generality with respect to the weighting factors. Although 

under certain conditions sub-optimal control strategies were 

obtained, at no time was the degree of sub-optimality significant 

and in all cases the full storage capacity of the reservoir system 

was utilized. 

For the ten reservoir system the computation times to 

determine an optimal control were in the order of 50 seconds using 

an IBM 60-67 computer. It was shown in the study, however, that 

this time could have been reduced to 20-25 seconds by minor 

modifications to the computational procedure. The entire computer 

program required about 5500 words of computer memory. 

All the numerical results in the study were determined for 

cases in which the flow routing between reservoirs was considered 

to have no time delay or flow modification. In Chapter VI 

application of the variational calculus to problems including 

time delay showed that for routing methods such as progressive 

average lag or Muskingum routing the method of optimal control 



determination would remain essentially unchanged except that there 

would be a shift in the time scales for the different reservoirs 

in the system. The analysis also showed that if the Muskingum 

routing method were used the control strategy would certainly be 
sub-optimal. 

The results of this study showed t hat the procedure 

outlined above would provide a practical method for the real time 

determination of an optimal control strategy suitable for control 

of flow combined sewer systems utilizing available in-line storage 

capacity. Real ist i c flow control device equations and flow routing 

methods could be incorporated into the procedure without appreciable 

alteration to the general procedure. 

It was recommended in the study that the control strategies 

for cases in which the ~aximum allowable depth in a reservoir exceeds 

the maximum weir height be examined so as to allow computation of an 

optimal control strategy in the event of a weir failure. This would 

increase the range of control devices that could be considered. 

Following such a study it was recommended that a general control 

program be written to handle a wide range of system configurations 

so as to reduce the individual effort required by cities for 

implementation of the control logic. 



I. 1 Subject of this Study 

CHAPTER I 

INTRODUCTIOf~ 

The purpose of this study is to develop control logic 

suitable for real time control of flow in combined sewers. The 

object ive of real time control is the optimum use of available 

storage capacity in the conduits in order to reduce diversions from 

combined sewer systems to the receiving waters during periods of 

excess storm \'later runoff. 

This chapter presents the necessary material for an overall 

understanding of the problem of combined sewer overflows. As well it 

attempts to orient the reader to the pertinent aspects of control lrigic 

and control systems and their use in the reduction of pollution caused 

by combined sewers. First a brief outline of the problem is given, 

followed by an overview of some of the proposed methods for reducing 

pollution of receiving waters resulting from undesirable overflows. 

Attention is then focused on automatic control of combined sewer flows 

as a potenti al solution. Following this, some of the relevant aspects 

of automatic control are presented. The chapter concludes with a 

discussion of literature relevant to the topic of control of flow in 

combined sewer systems. 

1.2 The Problem of Combined Sewer Overflow 

In most large cities of North America, at least part of the sewer 

system consists of combined sewers. These sewers are designed to carry 
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both sanitary sewage and storm 1>Jater runoff. Their ori gi na l design was 

such that only a small portion of the storm water runoff, in addition 

to the sanitary flow, could be carried in the system. Excess flow was 

to be diverted to the receiving waters, without treatment, at numerous 

outlet points. The basic design assumption was that the storm water 

was clean and would sufficiently dilute the sanitary sewage so that any 

overflows from the system would not be a health problem. Recent studies 

in Cincinnatti and Tulsa (Weibel and Anderson, 1964; Cleveland,Ramsay 

and Walters, 1970) have shown, however, that storm water alone may be 

heavily polluted and thus the supposed dilution of the sanitary sewage 

does not exist. In some areas, the annual total BOD, suspended solids 

and coliforms reaching the receiving waters from storrn water runoff 

may exceed that from the sevJage tratment plant effluents. Overflows 

from combined sewers must therefore be considered a major source of 

pollutants for many waterways. 

As a result of more stringent water quality requirements, combined 

with the fact that over 36 million people in the United States are served 

by combined se\'Jers, many studies are underway to determine the most 

suitable methods for reducing the pollution caused by overflows from 

combined sewer systems. 

I.3 Possible Solutions of the Combined Sewer Problem 

Solutions to the problem of reduction of pollution of receiving 

' w~ters by combined sewer overflows fall into two categories: removal 
j· of the pollutants from the overflows; and reduction of the volume of 
overflows. Some examples of these methods are discussed be1ow. 
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A. Removal of the Pollutants from the Overflows. 

a) Separation of storm and sanitary sewers. -This solution is not 

too satisfactory since in most cases the storm\•Jater would be sent 

untreated to the receiving waters and, as noted above, may be 

heavily polluted. In addition, the cost of sewer separation may 

be prohibitive. For example, the cost of separating sewers in 

Mi nneapolis - St. Paul is estimated to be 300 million dollars 

(Minneapolis - St. Paul Sanitary District, 1970). 

b) Reduced treatment of combined sewer overflows. -Methods such as 

screeninq/dissolved air flotation and micro-screening have been 

tested and appear to reduce pollutant concentrations of combined 

sewer overflows significantly (Marshe, 1970; Mason, 1970). 

B. Reduction of Overflows from Combined Sewer Systems. 

a) Improvement of the design and maintenance of the regulator 

structures. -At each point at which flow may be diverted from a 

combined sewer system there is a regulator structure normally 

consisting of a small concrete weir, over which passes any flow 

diverted to the receiving waters, and an orifice, through which 

flow remaining with in the system passes. Flow through the orifice 

is normally controlled by some form of moveable gate. Many 

problems resulting from overflows at a regulator structure can be 

traced to poor regulator design or poor maintenance. Studies have 
• 

shown that, in many cases, modification of existing structures 

and/or improved maintenance can lead to significant reductions ·n 

system overflows (Minneapolis - St. Paul Sanitary District, 1979; 
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Sullivan, 1970). 

b) Utilization of the storage capacity available within the existing 

sewer system. -Combined sewers in a large city may range from 6 

to 16 feet in diameter and during most storms flow at less than 

50% of capacity (Homer and Shifrin, Inc., 1968). By installing 

flow control devices within the system it may be possible in many 

instances to utilize the norma lly unu sed sewer capacity to store 

a large fraction of the storm water inflows until they can be 

routed through the normal treatment process. Additional storage 

capacity may be gained by the addition of off-line storage 

reservoirs. The twin cities of Minneapolis - St. Paul have 

installed flow control devices in their combined sewer system and 

have shown significant reductions in combined sewer overflows 

(Minneapolis - St. Paul Sanitary District, 1970). Use of in-system 

and/or off-line storage is also planned in Seattle, San Francisco, 

Chicago and Detroit (Grigg et al, 1973). 

c) Utilization of in-system and/or off-line storage combined with a 

satisfactory control scheme. -If flow control devices are installed 

in a sewer system, but left at pre-set positions, the full storage 

capacity cannot be used since the device settings must include 

safety allowances for possible inflow variations. It appears that 

more effective use of in-system storage could be obtained by sampling 

rainfall during a storm; computing the expected runoff inflow to 

various points of the sewer system; and then computing control 

device positions that would make maximum use of the available system 

storage capacity and thus reduce diversions to the receiving waters 

from the combined sewer system. 
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If in-system storage, control and reduced treatment of overflows 

were to be combined, it might be possible to ensure that the large 

majority of any diversions from the system occurred at a few specific 

locations. This might significantly reduce the number of reduced 

treatment plants necessary to ~aintain a specified receiving water 

quality. 

This study focuses on the utilization of in-system storage 

combined with a satisfactory control scheme and its particular aim is 

the development of a suitable control logic for real time operation. 

Before proceeding to the development of the control logic it is useful 

to examine various degrees of sophistication of control systems and the 

elements of a real time automated control system for combined sewers. 

I.4 Levels of Control 

Several levels of refinement are possible for any control system. 

The least sophisticated control mi ght be termed "pre-set". Here 

control device positions are set on the basis of prior analysis of many 

possibilities or on the basis of "experience". Changes to the control 

device positions are normally made only when the system malfunctions. 

Remote-supervisory control might be considered an intermediate 

level ofsophistication. Here, sensors, placed throughout the system 

which is to be controlled,relay data concerning the state of the system 

to a central control point. Control device changes are then made by 

an operator whose decisions are based upon the state of the system with 

possibly some prediction of future inflows. This method of control is 

generally limited to small scale systems where there are few decisions 

to be made and the amount of information to be analyzed is small. 
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Total automatic control is the most sophisticated and may be 

either feed-back (i . e. based upon the state of the system up to the 

time of decision), feed-forward (i.e. based upon the state of the 

system at some initial time and upon predictions of future inputs to 

the system), or a combination pf the two, wherein required information 

is periodically updated. 

Total automatic control requires knowledge of the state of the 

system, control loqic and, for feed-fon-,ard control, mathematical models 

to predict future system inputs. Because machines may be used to 

analyze large amounts of data, total automatic control is best suited 

to systems where many decisions must be made in a relatively short time. 

Combined sewer systems must generally be considered relatively 

large systems (e.g. Minneapolis - St. Paul has 36 control devices acting 

at 18 points in the combined sewer system (Minneapolis - St. Paul 

Sanitary District, 1970)); thus, if they are to be controlled, they are 

best controlled automatically. In addition, because of t he areal 

variability of the system inputs, maximum use of the system storage 

capacity requires use of feed-forward control. 

I.5 Elements of a Total Automatic Control System for Combined Sewers 

Figure 1.1 shows the elements of a real time automatic control 

system for combined sewers. The elements of this system fall into 

three basic categories (Bell, \~inn and Smith, 1972). 

a) Physical System Components - This category contains all the 

elements of the system to be controlled (e.g. the sewer 

system), the control devices (e.g. inflatable weirs, 
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regulator gates) sensors of the state of the system 

(e.g. rain gauges, water-level indicators), the land 

area from which the runoff occurs, and the rainstorm 

itself. Each of these elements has an effect on the 

results of any control decision. 
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b) The Interface Elements - Any control system (other than 

"pre-set") requires a transfer of information both of input 

knowledge of the state of the system being controlled and 

of output of the control device positions specified by the 

control logic. This transfer takes place through the 

interface elements such as telephone lines and analogue 

to digital converters. 

c) The Central Processor - For feed-forward control the central 

processor contains three basic elements. These are: a 

central memory for all the necessary system data; any 

mathematical models necessary to generate predicted system 

inputs and; the control logic which determines the control 

strategy according to the state of the system and the 

predicted inputs. 

For combined sei,.ier systems the mathematical models required by 

the central processor are (Bell, Winn and Smith, 1972): 

i) a rainfall regeneration model which analyzes data from 

point samplers (rain-gauges) and produces a rainfall pattern varying in 

time and space for the entire duration of the storm, 

ii) a rainfall runoff model which determines the expected runoff 

hydrographs for the duration of the storm using the predicted rainfall 

pattern, 

iii) a model of the conduits, control devices and flows in the 

sewer system. (Usually these form a part of the control logic). 



9 

I.6 Types of Control Logic for Real Time Automatic Control of 

Combined Sewer Systems 

The simplest type of control logic that could be used for 

control of flow in cormined sewers is a strictly feedback control 

(i.e. no predictions of future inflows are used). A simple example of 

feedback control would be opening an orifice on the basis of the depth 

and rate of change of depth immediately upstream of the orifice. This 

logic completely ignores the effects that the outflows may have in the 

future at other points in the system. 

An improvement on the feedback control is the use of 11 rule-

curves" to determine control device positions. For specified future 

inputs specific control steps are taken. Determination of reasonable 
11 rule-curves 11 is a laborious process for even a small system, as it 

involves consideration of a wide range of possible inputs and alternative 

control decisions. 

One way to avoid the difficulty of arbitrarily determining 

reasonable "rule-curves" for each system to be controlled is to use 

some of the techniques of operations research. This involves first the 

determination of a suitable objective (e.g. minimize the volume of flow 

diverted from the system). The problem is then to determine the control 

strategy that will satisfy the objective. A discussion of the merits 

and shortcomings of many of the techniques of operations research 
available to determine this 11 optimal 11 control strategy is given in a 

report by Labadie (1973). Generally, the merits and disadvantages 

revolve around the ability of a given method to deal with non-linearities, 

the amount of computational time and computer storage required to solve 
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the problem numerically, the ability of the technique to determine a 

global optimum (as opposed to a local optimum) and the degree of 

approximation required in the formulation of the problem. 

The control problem can be formulated for discrete time 

intervals or as a continuous time problem, which is the approach taken 

in this study. Solution of the continuous time problem may be obtained 

from the calculus of variations or its subset, continuous time opti mal 

control theory. By suitable choice of an objective function and formulation 

of the problem in the form required by the theory, one obtains a set of 

equations whose solution yields the ti me history of the required control 

device positions so as to minimize (or maximize) the given objective 

function. 

The continuous time formulation has the advantages that it can 

deal with non-linear systems and will give a control device position 

for any point in time. Its principal disadvantages are the difficulty 

in solving for the control from the resulting eauations and the fact 

that their solution yields only a set of necessary but not sufficient 

conditions for an optimum. There is the further disadvantage that even 

if the solution could be shown to be an optimum there is no assurance 
that the optimum would be global. This latter aspect is a problem 

with most techniques dealing with non-l i near systems (Labadie, 1973). 

I.7 The Value of Optimal Control Formulations 

Although a control problem may be formulated and solved to give 

the ''optimal'' control for given input data, the control is optimal only 

in the ~ense that the system model and the information from which the 

control is determined are perfect. The realities of the situation are 
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that both the system model and the input data (e.g., computed runoff 

hydrographs) contain many sources of error and thus the control will 

inevitably be sub-optimal. 

If in reality any control is certain to be sub-optimal, then 

what is the purpose of basing the control upon optimization techniques? 

The principal reason is that operations research techniques bring a 

degree of order to the problem which may not be available in the 

determination of a set of "rule curves". In addition "rule-curves" are 

often based on local characteristics of the probl em, whereas operations 

research techniques may be transferred from one urban area to another. 

A second advantage of solving for the control strategy from 

optimal control formulations is its use in determining the effects of 

possible error sources in the overall control process, as discussed by 

Bell, ~Jinn, and Smith (1972). For an exact model of a physical system, 

optimal control theory gives the necessary conditions for the control 

which will minimize a given objective function. Thus, if perfect 

information is available the resultant control will give the absolute 

minimum of the objective function that is possible for a given storm. 

When used in a model of a real time automated control system, this 

results in a standard of comparison for the effects of errors that will 

be introduced by sensors, information transmission systems, or 

computations prior to control determination (such as runoff). The 

adequacy of the overall system to accomplish the desired objective may 

also be tested and evaluated. 

I.8 Literature Relevant to th~ Combined Sewer Flow Control Problem 

As discussed earlier, background material on pollution caused by 

overflows from combined sewP.r systems is available in studies done in 
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Cincinnatti (Weibel and Anderson, 1964) and Tulsa (Cleveland, Ramsay 

and Walters, 1970) which examine the auality of urban storm water 

runoff; and in studies of the Detroit (Detroit Metro Water Department, 

1970), Minneapolis - St. Paul (Minneapolis - St. Paul Sanitary District, 

1970) and San Francisco (San Francisco Department of Public Works, 1971) 

combined sewer systems, which examine for each city the distribution 

and volume of combined sewer overflows and their water quality. The 

latter three reports also outline the extent of installed or planned 

systems for control of flow in combined sewers. Each of these systems 

plans real time automatic control on a feed-forward basis, but to date 

they have developed no satisfactory control logic. 

Very little literature is available on the subject of control 

logic for real time operation of combined sewer systems. A paper by 

Bell and Winn (1972), which presents some of the early stages of this 

study develops solution forms for the continuous time optimal control 

formulation of simple sewer configurations. Bell, Winn, and Johnson 

(1973) in a related paper included a numerical solution of the continuous 

time control problem for a sewer system consisting of three regulator 

structures. They assumed no time delay in the flow routing between 

regulator structures. The numerical procedure used worked only for 

particular inflow conditions and thus was not satisfactory for real-life 

application. This paper also indicated some of the effects of errors 

in rainfall regeneration on the final control results. In addition, it 

gave an indication of the frequency of sampling and updating of control 

strategy necessary to give reasonable control strategies, (ten minute 

intervals for their example). Winn and Moore (1973) presented a 
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formulation of the problem in the format of regulator theory, a subset 

of calculus of variations which requires a quadratic objective function. 

By suitable transformations they were able to convert the problem 

formulation presented by Bell and Winn into the format required by 

regulator theory. They presented results for two systems. The first 

consisted of one regulator structure only and the second of three 

regulator structures. The latter example used the same system 

confi guration and i nput data as Bell, Johnson and Winn (1973), who solved 

the problem using continuous time optimal control theory.Comparison of 

the results obtained using the two ~ethods shows reasonably close 

agreement between the time histories of the orifice controls, although 

regulator theory yields a smooth curve for the orifice operation while 

continuous time opti mal control theory shows a "bang-bang" t ype of 

operation. The principle difference lies in the operation of the weir 

controls with regulator theory producing a much greater volume of spill 

and consequently less use of available storage capacity. This difference 

is a result of the quadratic objective function which penalizes small 

overflow rates only slightly. The authors felt that this problem could 

be overcome by the use of a dead-band on the weir operation. 

Labadie (1973) has discussed optimization techniques for 

minimization of combined sewer overflow and has presented an approximate 

flow technique for a non-linear, finite dimensional solution to the 

control problem. The principal advantage of this technique is that it 

is adaptable to any method of flood routing between regulator structures. 

In addition it appears that it can be used for problems involving 

off-line storage. Labadie, Grigg and Trotta (1973) obta i ned numerical 
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results using this technique for a system of three regulator structures 

in series and were able to show, by comparison with results obtained 

from a linear programming formulation, that the results were a global 

optimum. They suggested that this technique might be best suited to 

off-line development of rule curves for use in real-time system 

control. 

Grigg et al., (1973) using Vicente Basin in San Francisco as a 

prototype, linearized the problem formulation and 1,,1ere able to obtain 

a solution for three storage locations in series. They also showed 

that time delay in the flow routing could easily be included in the 

formulation. Labadie (1973) pointed out that aside from possible 

errors introduced by linearization of an inherently non-linear problem, 

the linear programming method requires large amounts of computer storage 

for even a small number of control points. 

Bell, Winn and Smith (1972) have discussed the elements of a 

real time automated control system for combined sewers and showed how 

optimal control theory could be used as part of a model of a real time 

automated control system to determine the effect nf various sources of 

infomation error on the system operation. As part of this \'Jork, they 

presented a formulation of the continuous time optimal control problem 

for three storage locations but they assumed no time delay in the flow 

routing. They were unable to obtain a numerical solution to the control 

problem. 

There is considerable literature available on the general subject 

of continuous time optimization. Citron (1969) in his text, has presented 

a derivation of the necessary conditions for an optimal control, from 



15 

the point of the calculus of variations. Pontryagin et al., (1965) 

using the maximum principal, derived the same equations. Most work 

in the field has been for cases involving no time delay; however, 

Pontryagin et al., (1965) presented the necessary conditions for an 

optimal control in those cases where a problem with time delay can be 

stated in the correct format. L.E. EL 1 SGOL 1 C (1960) presented the 

Euler-Lagrange equations including time delay for the more general 

calculus of variations formulation. Hughes (1968) developed the theory 

for calculus of variations including time delay but included only end 

conditions, not side conditions (constraints), although it appears 

that certain types of constraints could easily be included. 

Other relevant literature concerns various aspects of modeling 

sewer systems, in particular the flow, the control device parameters 

and the systems themselves. 

Very little literature is available on flow in sewer systems. 

Indeed, since many systems are over fifty years old, there is often poor 

data on the dimensions of the conduits comprising the systems. Barnes, 

(1968) in a study directed at flow in sewers, measured flow parameters 

in a special test apparatus .and compared them with mathematical results 

obtained by the method of characteristics. Harris (1968c) showed that 

using the progressive average lag method of flow routing, he could 

obtain good agreement between his solutions and those obtained by the 

method of characte ristics for the Minneapolis - St. Paul interceptor 

system. The FWQA Storm Water Management Model (Metcalfe and Eddy, Inc., 

1968a) TRANSPORT section, eliminated many of the dynamic terms of the 

St. Venant equations in an attempted simplification. Unfortunately, 

additional modifications required to overcome calculation instabilities 
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made the method cumbersome; however, in verification tests of their 

model they obtained reasonable results (Metcalfe and Eddy, Inc., 1968b). 

Harris (1968b) appears to have done the only studies of the 

numerical values of parameters of continuously variable flow control 

devices at regulator structures and these were limited to a few 

specific cases. Many hydraulic texts (e.g. Streeter (1966)) quote 

values for weir and orifice parameters, but these are generally not 

in the geometry of regulator structures. 

I.9 Presentation 

This chapter has presented some aspects of the problem of 

combined sewer overflows and the elements of a control system for 

control of flov,, in combined sewers. The remainder of this study is 

devoted to the development of control logic suitable for real time 

application to systems with in-line storage controlled by variable 

weirs and orifices. Application of the control logic developed herein 

to systems using off-line storage has not been examined . 

This study assumes that the required inflow hydrographs, 

physical system constants and information giving the initial state of 

the system are available for input to the control logic. (i.e. It is 

assumed that the contra 1 \.'Ji 11 be of a feed-forward, feed-back form). 

In Chapter II the control problem is formulated as a variational 

problem. First the requirements of the variational formulation are 

outlined. Follm-Jing this the system model is developed, starting \vith 

the equations of the control devices, proceeding through the development 

of the state eauations and constraints and ending with the examination 

of suitable objective functions. Finally a complete formulation of a 

system consisting of two control points in series is presented as an 
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example. Modifications to include more realistic flow routing models 

are left until Chapter VI. Formulations for other configurations are 

left to the Appendices. 

Chapter III presents the solution forms of the optimal control 

strategies for selected cases. . The general procedure used to determine 

solution forms is given first, followed by a detailed example of two 

reservoirs in series. Next there is a discussion of pertinent aspects 

of solution forms for other configurations presented in the Appendices. 

The chapter concludes with an analysis of the factors common to the 

control strategies of all the configurations studied. 

Chapter IV outlines attempts at numerical solutions of the 

necessary conditions for an optimal control and the reasons for their 

failure. An alternative approach to the control problem based on rules 

derived from the solution forms given by optimal control theory is then 

put forward. 

In Chapter V the numerical procedure for application of the 

alternative approach to the control logic suggested in Chapter IV is 

given. Numerical results for systems containing four and ten regulator 

structures respectively are then presented. Following this, possible 

improvements to the computational speed of the control algorithm are 

suggested. 

Chapter VI begins with an outline of the modified Euler-Lagrange 

equations for problems which include time delays. An example of the problem of 

two reservoirs in series with time delay in the flow routing is then 

analyzed. Subsequently the results are generalized for more complex 

problems and the necessary modifications to the no time delay numerical 
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solution are given . 

Chapter VII presents the conclusions and recommendations for 

further work. 
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CHAPTER II 

FORMULATION OF THE CONTROL PROBLEM AS 

A VARIATIONAL PROBLEM WITHOUT TIME DELAY 

11.l Introduction 

In Chapter I the advantages of using optimal control 

formulations in developing control logic for real time control of flow 

in combined sewers were outlined. In this study the approach followed 

in developing a suitable control logic is based upon continuous time 

optimal control theory (calculus of variations). Before proceeding 

to the development of the control logic, a brief description of the 

requirements of continuous time optimal control theory is given below. 

For a more detailed discussion of the topic the reader is referred to 

one of the many texts on the subject e.g. Citron (1969). 

II.2 Requirements of Optimal Control Theory 

Before one can begin to solve a control problem using any 

optimal control formulation it is necessary to have a mathematical 

model giving the laws of motion of the system. For the approach followed 

herein it is assumed that the system is deterministic and can be 

described with lumped parameters i.e. ordinary differential equations 

will suffice for the system description. No restrictions are made on 

system linearity. 

For problems of the type being considered it is useful to divide 

the variables into state variables (denoted by xi, i = l ... n) and 
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control variables (denoted by uj, j = 1 ,m). The definition is not hard 

and fast but may be simply described by equating state variablesto the 

dependent variables of the system and control variables to the 

independent vari ab 1 es. For combined sewer systems \'lith i n-1 i ne storage , 

the control variables are the size of the orifice openings and the 

depth of flow over the weirs at the va r ious regulator structures. The 

state variables are the depth of storage at the regulator structures. 

The system mathematical model is then presented in the form of 

n first order differential equations (often called the differential 

constraints of the system, or state equations) of the form 

dx. 
dt, = f(x 1,x2 .... xn,u1,u 2 .... um,t) i=l, ... ,n I I. 2- l 

Generally this form can be obtained by suitable definition of variables 

and addition of new state variables if necessary. 

In addition to the system differential equations there may be 

inequality constraints on the state and control variables. These are 

generally designated (using X to represent the vector of state variables 

and U to designate the vector of control variables) as: 

C(X,U,t) ~ 0 I I. 2-2 

for those constraints which contain at least one control variable and; 

S(X,t) ~ 0 II.2-3 

for those constraints in which the control variables do not appear 

explicitly. Equations II.2-2 are called control variable inequality 
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constraints and equations II.2-3 are called state variable inequality 

constraints. 

Finally, to complete the system description it is necessary to 

have initial conditions for the state variables at some time ti. 

The above fully describes the system but before one can determi ne 

the optimal control strategy it is necessary to have an objective 

function (often called an index of performance). In its most general 

form the objective function can be written 

I I. 2-4 

where ti and tf are the initial and final times. (Note: minimization and 

maximization problems can be interchanged by multiplication of the 

objective function by -1. Therefore in what follows the minimization 

format wi 11 be used). 

Once the mathematical model has been formulated the problem is 

to determine ui(t), i = 1 .... m, the optimal control strategy. A control 

strategy is defined to be optimal if for all other 

u1(t) 'f U;(t) 

* ¢ : ¢ 

* 

i = 1 , ... ,m I I. 2-5 

I I. 2-6 

where ¢ is the value of the objective function obtained by application 

of control strategy ui (t), i = 1 ... m. The necessary conditions for a 

control strategy to be optimal can be determined by application of the 

calculus of variations. Although sufficient conditions have been 
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developed (Citron, 1969) their complexity precludes their use in most 

practical cases. The optimality of a solution is therefore usually 

based on examination of the results of application of the necessary 

conditions . 

To determine the necessary conditions using the calculus of 

variations one must form an augmented index of performance by adjoining 

the differential constraints and the inequality constraints to the 

objective function by means of Lagrange multipliers, \ (t), n(t) and 

y(t). The \ (t) multipliers are used to adjoin the state equations; the 

n(t) multipliers to adjoin the control variable inequality constraints 

and the y(t) multipliers to adjoin the first (or higher order if 
necessary) derivatives of the state variable inequality constraints. 

(For the state variable inequaltiy constraints, the first or a higher 

order derivative is necessary to bring at least one control variable 

into the constraint). In addition, where derivatives of state variable 

inequality constraints are involved, the lower order derivatives become 

point constraints and are adjoined with multipliers y. It should be 

noted that the multipliers n(t) and y(t) are defined to equal zero when 

their respective constraints are not binding and thus all terms added 

to the objective function equal zero. The augmented index of performance 

is then: 

Min ¢ = 



where j = .•. n 

.Q, = 1 •.. p 

k = 1 •.. s 
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n = no. of state variables 

p = no. of control variable inequality 
constraints 

s =no.of state variable inequality 
constraints 

II.2-7 

t>Jith the problem formulated as outlined above the necessary 

conditions for a control to be optimal can be determined by application 

of the Euler-Lagrange equation which is 

dl d dl 
dy - dt dJ = O I I. 2-8 

where I is the augmented index of performance and y represents the 

state and control variables (i.e. a set of m + n equations is obtained 

where m+n is the number of state and control variables). 

Application of the Euler-Lagrange equation to the augmented 

index of performance yields n equations of the form: 

d F ( X , U ,Jl - d f . ( X , U , t ) d 
dx. A, dx. + ni dx. Ci (X,U,t) , J , , 

i = l, ... ,n: j = l, ... ,n: £ = l, ... ,p: k = l, ... ,s 

I I. 2-9 



24 

which are often called the adjoint equations; and m equations of the 

form (mis the number of control variables) 

i = l, ... m: j = l, ... n: t = l, ... p: k = l, ... s. II.2-10 

which are often called the control equations. 

The remaining necessary conditions to be met are as follows: 

a) Initial and/or final conditions for the state variables and ti me 

(a maximum of 2n+2 conditions):- These are normally determined 

from data supplied by sensors in the system. The initial and 

final values of time are chosen on the basis of the expected 

length of the storm. 

b) Final conditions for the A(t) multipliers:- These are supplied 

by the so-called transversality condition at the final time tf. 

For the case of fixed initial and final times this condition is 

written as: 

/

tf 
A. dx. = 0 

1 1 
t. 

1 

II.2-11 

c) The corner conditions:- These apply when entering or leaving a 

constraint boundary and perfonn a similar function to initial 

and final conditions. 



--~- ---------- ----------- ------, 

25 

For the case where 

5k(X,t) = \(X) II.2-12 

which is the case for all that follows, the corner conditions are: 

i) Upon entering a state . variable constraint boundary (going 

forward in time): 

n 
{I A.f.(X,U,t) - F(X,U,t)}/ 
i = 1 1 1 

t1-

and 3\(X) I 
ax. 

1 t 
l 

n 
= {I A.f.(X,U,t) - F(X,U,t) }/ 1 1 i = 1 

II.2-13 

i = l, ... n II.2-14 

ii) Upon entering a control variable constraint boundary or on 

leaving a state or control variable boundary 

n 
H1 A/i(X,U,t) - F(X,U,t) } / 

I t 2_ 

TI.2-1 5 

= i=l, ... n II.2- l G 

It is important to notice that equation II.2-14 states that on 

entering a state variable constraint there may be a jump in the A(t) 

multipliers. 

tl+ 
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Solution of equations II.2-9 through II.2-16 along with equation 

II.2-1 yields the necessary conditions for an optimal control. The 
* control U (t) is determined from the control equations, or from binding 

constraints. t~ote that the problem is a two point boundary value 

problem with the initial conditions for the state variables generally 

defined at ti and the final conditions for the \ (t) multipliers defined 

at tf. 

The remainder of this chapter develops the system model and 

the objective function for the combined sewer control problem. The 

application of the necessary conditions and the resulting control 

trajectories are left to Chapter III. 

II.3 Elements of the Combined Sewer Mode l 

The first step in setting up a mathematical model of a combined 

sewer system is to model the individual components relevant to the 

problem. This section describes the components and gives their 

mathematical representation. 

A. Elements of Combined Sewer Systems 

Figure II-1 shows an outline of a part of a typical combined 

sewer system. 

Interceptor 
Sewer 

Trunk 
Sewers 

Throughput to .----;r....;i.. ___ i:::_:l,, ___ f!..:,1::::_r~n~t~e~rceptor 
To 

Treatment 
Plant Receiving Waters 

Fig. II.l Outline of a Typical Combined Sewer System 
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Such a system is designed to carry the normal dry weather sanitary 

flow and a limited amount of storm water runoff. Any excess flow is 

diverted from the system to the receiving waters at the points shown 

in the figure. Generally, the points of diversion occur where the 

trunk sewers meet the main interceptor system; however, there may also 

be diversion points in the interceptor system itself. The diversion 

structures, usually called regulators, consist of some form of orifice 

through which passes the flow which is to remain in the system and a 

weir, over which passes the flow diverted from the system. In the case 

of a regulator within the interceptor system these controls may be 

reversed. In order to optimize the utilization of the storage capacity 

of the system it is necessary to have the capability to vary the 

operating positions of the control devices. In a controlled system with 

in-line storage most storage of the flows would take place in the trunk 

sev-1ers. 

B. Typical Regulator Structure 

Regulator (;ate C-q 
-- 2 -,-----...... ,__ ____ , 

4 
Section AA p 

Crown of trunk sewer 

A Invert of trunk sewer 
Elevation 

Fig. II.2 Schematic of a Typical Regulator Structure 
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Figure 1~2 shows a schematic of a typical regulator structure 

installed in the Minneapolis - St. Paul combined sewer system. The 

weir height is varied by inflating or deflating the flexible dam and 

the orifice opening is controlled by hydraulically raising or lowering 

the regulator gate. 

The mathematical equation for flow over the weir in its most 

general form is (Streeter 1966) 

0 = C (h)ha ·w w II.3-1 

= flow rate vol/sec 

a coefficient which is generally a function of the shape 
of the weir crest and the crest length 

h = d - hf where d and hf are as defined in figure II-2 

a = an empirical coefficient. 

By allowing Cw to be a function of h,the effects of variable we ir width 

due to the curvature of the walls of the conduit and, the effects of 

drowning out the weir if the overflows become very large are included 

in the equation. 

For a broad crested weir of constant width L the theoretical 

equation for flow over a weir is (Streeter 1966) 

C h3/2 
w II.3-2 

Because of its simple form equation II.3-2 ·is used throughout for ease 

of explanation. It is shown, however, in Chapter III that the more 

general form, equation II.3-1, can be used without altering the general 

form of the optimal control solutions. 
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Flow through the orifice is governed by the equation 

~ = C r 2(d + b) B ·o D I I. 3-3 

where CD is a coefficient which is generally a function of orifice 
shape and entrance conditions 

r 

d 

b 

B 

is the orifice diameter 

is the depth of water above the floor of the conduit 

is the vertical distance from the conduit floor to the 
orifice centerline (positive downward) 

is an empirical exponent 

As was the case for the weir, the coefficient CD need not be 

considered a constant, but can be a function of (d + b) and r; thus a 

more general form is: 

I I. 3-4 

This formulation is not a true representation of the orifice 

at a regulator structure which is normally a rectangular shaped opening 

such as shown in Figure II-2. For such an orifice the governing 

equation for the flow is: 

where Ag is the area of the opening 

p is the distance from the floor of the conduit to the 
bottom of the orifice (positive doi,.mward) 

q is the height of the opening 

I I. 3-5 
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By ensuring that the maximum flow at all-depths using equation 

II.3-4 is equal to the maximum flow at the same depths based on equation 

II.3-5 (or a more general form) it is possible to convert any given 

orifice radius to an equivalent rectangular opening for less than 

maximum openings. If, in equation II.3-4, it is assumed that c0 is 

constant, bis equal to zero and, the theoretical value B equals 1/2 

applies then equation II.3-4 reduces to 

Q = C ''d / o D ya II. 3-6 

Again because of its simple form equation II.3-6 is used throughout for 

ease of explanation. It is shown in Chapter III, however, that the more 

general equation II.3-4 can be used without altering the general form 

of the optimal control solutions. 

That the more general orifice and flow eauations should be 

used in any model of a real-life system is adequately demonstrated in 

the analysis by Harris (1968b) of the major diversion structures in the 

Minneapolis - St. Paul interceptor system. It appears that equations 

II.3-1 and II.3-4 would be adequate to represent most of the structures 

he discusses, particularly since in any numerical analysis the functions 

need be only continuous and not necessarily mathematically smooth. 

C. Reservoir Representation of In System Storage 

Any reduction in outflow at a regulator structure will produce 

a back water curve such as shown in Figure II-3. 
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Fig. II.3 Backwater at a Regulator Structure 

A simple approximation to this backwater storage is shown in 

Figure II-4. Here the volume of water shown shaded in Figure II-3 is 

concentrated in a dummy reservoir located at the regulator structure 

and the flow in the pipe upstream of the reservoir is assumed to act 

as if there were no backwater storage. If the dimensions of the 

reservoir are the same as those of the original conduit then the depth 

in the reservoir at the downstream end should be a reasonable 

approximation to the depth at the regulator structure in the actual 

backwater case. This approximation is aided by the fact that the 

volume of water stored in the triangle SXY of Figure II-3 is close to 

the volume of water remaining in the conduit between Sand Yin 

Figure II-3. 
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Fig. II.4 Reservoir Approximation of Backwater Storage 

Preliminary studies, using a system having three control roints, 

were reported by Bell, Johnson and Winn (1973). They compared the 

results from a control computed on the basis of the reservoir 

approximation with those for the same control used in a verifi ed model 

which had a more comp l ex backwater approximation. Table 11.l reproduced 

from the paper shows that reasonably good agreement was obtained bebveen 

the two models. 

TABLE II.l 

Test Results Using the Proposed Mode l 

Optimal Control 
Based on True Runoff 

Maximum depth at Pt 2 
Maximum depth at Pt l 
Maximum depth at Pt 3 
Total Overf low Volume at Pt 2 
Total Overflow Volume at Pt l 
Total Overf low Volume at Pt 3 
Maximum Outflow Pt 2 & Pt 3 
Maximum Outflow Pt l 

D. Fl ow Representation 

Control 
Program 
13.00 ft 
8. 50 ft 
8.50 ft 

26,000 ft3 
2,740 ft3 

18,200 ft3 
92 cfs 

16.7 cfs 

Physical System 
Model 

13.02 ft 
3.60 ft 
8.59 ft 

27,400 ft3 
3,560 ft3 

19,400 ft3 
92 cfs 
17 cfs 

In any free surface flow such as normally exists in a sewer 

system the velocity at which any change in flow rate is passed through 

the system is approximate ly equal to (Streeter and Wylie, 1967) 
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V = Vgd. ± V 
C 

where g = gravity 

d = depth of flow in the conduit in ft 

v = velocity of flow in the conduit in f.p.s. 

V = 
C velocity of the perturbation in f.p.s. 

The positive sign represents the effect of changes proceeding 

downstream and the negative sign is for changes proceeding upstream. 

For a depth of flow of a 4 feet and v = 4 fps 

vc = 11 + 4 = 15 fps. 

Thus, in a mile of conduit, a not uncommon distance in a sewer system, 

(Minneapolis - St. Paul has up to 40,000 feet between some control 

points) the delay quite easily amounts to 5-6 minutes or more between 

the time that a change is made at an upstream regulator and its effect 

is felt at a control point downstream. 

Undoubtedly any model of the flow routing in a combined sewer 

system should include the effects of time delay if the computed control 

is to be reasonably accurate. Initially, however, it is worthwhile to 

assume that there is no time delay and that control changes are felt 

immediately throughout the system. It is shown in Chapter VI that 

more realistic flow routing models can be included in the formulation. 

This addition increases the complexity of the control and adjoint 

equations but does not measurably affect the numerical solution 

procedure. 
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II.4 The State Equations of the System 

Although the state equations must be written for each individual 

system, the form is often repetitive within each system and between 

systems. The equations discussed below are those for a system in which 

the time delays in flows travelling from one point to another within 

the system are negligible. In addition, the reservoir analogy is 

assumed to apply for backwater storage at a regulator. Figure II-5 

outlines the basic unit to be analyzed. 

Q (t) 

Fig. II.5 Basic Unit of a Combined 
Sewer System 

r 

For any reservoir in the system the inflows are: 

Q w 

the urban 

land runoff plus the dry weather sanitary flow v,1hich is represented by 

the hydrograph q(t) and; the through-flows from parallel upstream 

reservoirs feeding into the reservoir under discussion which are 
m 

represented by I Q , where mis the number of parallel reservoirs . . l O. I 1 = 1 

The instantaneous outflow rates from the reservoir are defined by Q 
w 

the flow over the weir and Q0 the flow through the orifice. 
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The differential (state) equation of the reservoir is the 

continuity equation v1hich states that the rate of change of storage in 

a reservoir is equal to the instantaneous inflow rate minus the 

instantaneous outflow rate. Thus, 

or on 

A(d) iW_ = dt 
m 
I Qo. + q(t) - Qo - Ow 

i = 1 1 

rearranging and letting ( . ) d = dt 
rn 
I Oo.+q(t)-Qo-Qw 

a i = 1 1 
= A(d) 

I I. 4-1 

I I. 4-2 

Substituting equation II.3-2 for Qw and equation II.3-6 for Q
0 

and Q
0

. 
1 

(assuming that all system throughput is through the orifices at the 

regulators) yields the basic form of the state equations. 
m 
L c0~ r. 2+q(t)-cr}ff ri-c h3/ 2 

i = 1 i 1 1 Iv a = A d I I. 4-3 

A model of any combined se1,1er system meeting the requirements 

outlined above would haven state equations (one for each of then 

regulator structures in the system) of the form of equation II.4-3. 

II.5 The Svstem Constraints 

The major sources of system constraints are: 

a) control device limitations - these are usually maximum 

or minimum settings of the control devices or may be limitations on 

the rate of operation; 

, j 
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b) flow limitations within the system - flows in the 

conduits cannot exceed the capacity of the individual conduits or 

some minimum flow must be maintained 

c) storage cons t raints - the depth of storage at a regula t or 

structure cannot exceed a priori li mits (usually based on some safety 

criterion). 

Each of these constraints i s discussed below with the exception 

of the constraints on rate of operation of control devices. These 

constraints are discussed in an exampl e in Chapter III. 

A. Control Variable Inequality Constraints. 

Constraints on the control devices and maximum allowable 

system flows fall in the classification of control variable i nequality 

constraints. For the case where there is no limitation on the rate of 

operation of the control devices the control variables are: the depth 

of flow over the weir, hand; the orifice radius, r. One or both of 

these variables must appear in the control variable inequality constraints. 

For this assumption the control variabl e ineouality constraints 

are given below for the individual control variables. 

a) The orifice constraint:-

(r- R . )(r- R ) < 0 m1n max II . 5-1 

i.e~, the radius of an orifice cannot be greater than some maximum 
' va(~e, Rmax' dictated by the physical limitations of the orifice 

or.e ning; nor can it be less than some minimum value R .. m1n The minimum 

limit is inserted because optimal control may require at certain times 

t~at throughput at a particular regulator be reduced to zero. Such a 



37 

requirement might result in an undesirable settlement of sediment 

upstream of the regulator. By maintaining some minimum opening, this 

problem may be alleviated. In addition placing the limitation on a 

minimum value of r instead of a minimum flow rate through the orifice 

eliminates the possibility of the problem becoming infeasible as a 

resul t of a very small depth (see equation II.3-6). It also simplifies 

operational control procedu res. 

b) The weir constraint:-

h(h - d) ~ 0 II.5-2 

i.e., the depth of flow over the weir cannot be less than zero (to 

prevent negative flows over the weir) or greate r than the depth of 

water stored immediately upstream of the v1eir. 

c) The flow constraints:-

In addition to the constraints imposed by phys ical limitations 

of the control dev ices themse lves there is constraint on the instantaneous 

flow rate in each indivi dua l conduit of the form: 

I I. 5-3 

i.e., 0
0

. are the throu ghputs from m reservoirs feeding a given conduit 
1 

and qj(t) are r input runoff hydrograph s to the conduit. The instantane<x.~s 

sum of these fl ows cannot exceed some maximum permissible flow, Qmax 

dictated by the s ize,roughness and slore of the conduit and the neces s~ty 

to maintain free surface flow. 

The ma ximum limit, Qmax' is premised on the assumption that -

steady uniform conditions ex ist in the conduit. In an actual system th.e 
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flow will more likely be unsteady, non-uniform flow; however, as the 

control will tend to make maximum use of the system flow capabilities, 

the total flow should remain relatively constant and thus the 

approximation of steady uniform flow should be valid. 

B. State Variable Inequality Constraints. 

The remaining constraints are those on the allowable range of 

depths behind each regulator which have the form 

d(d - D) : 0 II. 5-5 

i.e., the depth cannot be less than zero or greater than some a priori 

limit D. 

In this constraint the control does not appear explicitly 

and thus it is called a state variable inequality constraint. If this 

constraint is differented with respect to time the control will appear 

and equation II.5-5 can be replaced by two constraint eouations as 

outlined earlier. These are: 

s0 = d(d - D) ~ 0 I I. 5-6 

which applies at the instant the constraint boundary is first reached 

and; 

S' = ~t [d(d - D)] = (2d - D)d = n II. 5- 7 

which applies along the constraint boundary. 

Substituting equation II.4-3 for a into equation II.5-7 yie l ds 

a constraint which includes a control variable and has the form 
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[q(t) 
S 1 = ( 2d - D) 

m 
+ I c0-vi r. 2 - c h312 - cfd r2J . 1 . 1 1 w D 

l = l 
A d = 0 

I I. 5-8 

The state equations described in section II.3 and the constraints 

described in this section, along with the initial conditions, form the 

complete description of the combined sewer system model. 

II.6 The Objective Function for the Problem 

The overall objective of control of combined sewer systems is 

to reduce the amount of pollution of the receiving waters. Objectives 

commensurate with this overall objective are: 

a) minimize t he total volume of flow diverted from the 

combined sewer system to the receiving waters . . 

b) minimize the total amount of pollutants entering the 

receiving waters from the combined sewer system. 

c) minimize the amount of those pollutants considered most 

harmful that reaches the receiving waters from the combined sewer system. 

d) mini mize the amount of pollutants reaching the receiving 

waters so that the reduction in the economic cost of pollution is a 

maximum. 

Item (b) recognizes spatial and temporal differences in water 

quality, but does not recognize the variations in potential damage of 

the various pollutants. 

Item (c) recognizes the variations in potential damage of 

the various pollutants and to some extent recognizes their spatial and 

temporal variation. 

Item (d) is essentially the same as Item c, except that the 

potential damage is specified in termsof dollars instead of a value 
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judgment. This allows an economic balance to be struck in tenns of 

incremental benefits and the incremental costs of the system required 

to produce those incremental benefits. l·Jith i terns a, b and c, the 

reouired degree of rollution reduction and therefore the degree of 

system control is based on value judgments. (It should be noted that 

in determining economic values much value judgment may be involved). 

and dis 

One objective function which recognizes parts of items a, b, 

tf n 

=J [ l i = l 
Min <P 

t. 
1 

z.c h. 312Jdt 
1 W . 1 

1 

II.6-1 

where z. is a positive constant and n is the number of reservoirs. 
1 

The idea behind this objective function is that the various 

types of pollutants and their concentrations have a spatial variation 

throughout the combined sewer system. It would therefore seem 

desirable to reduce or prevent overflows from certain parts of the 

combined sewer system from reaching the receiving waters; whereas 

overflows from other parts of the system may be considered relatively 

harmless to the receiving waters. By using knowledge based on water 

quality tests in the combined sewer system, combined with knowledge of 

the effects of pollutants on the receiving waters (due both to the 

type of pollutant and its point of introduction) it should be possible 

to arrive at a set of weighting factors that will result in minimization 

of pollution of the receiving waters. This problem of choice of we ighting 

factors is beyond the scope of this dissertat ion. 

Due to present limitations of accuracy and reliability of 
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v,ater quality sensors (Minneapolis - St. Paul Sanitary District , 1970) 

along with related problems of modelling pollutant flow to the required 

degree of accuracy, it does not appear feasible to use an objective 

function based directly on pollutant overflow volumes. If reasonable 

water quality data is obtained from the sewer system by a point 

sampling program, the objective function given by equation II.6-1 should 

be a good compromise. 

It would appear that equation II.6-1 could be imrroved by 

making the weighting factors functions of time. Although there has been 

sho~m a definite "first flush" of pollutants in the early rart of a 

storm (e.g., studies in Tulsa (Cleveland, Ramsay and \~a lters, 1~70)) 

it appears that very little would be gained by the addition of this 

complexity, particularly in view of the fact that the application of 

optimal control theory to the combined sewer problem using the 

objective function of equation II.6-1 sho\'/s that the control during the 

early stages of a storm is usually such as to maximize the throughput 

at each regulator. 

Early studies of the optimal control problem showed that if 

equation II.6-1 was used as the objective function then at certain points 

in time the orifice control would be bounded but not unique. It was 

found that adding throughput terms with negative ~ve ightin g factors 

removed most of the non-uniaueness problems. Thus an alternative 

objective function was devised and used for all remaining studies . It 

is: 

Min <P II.6-2 
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where Z. > 0 
1 

i = l, ... ,n 

Zi+n < () i = l, ... ,n 

It was thought in addition that it might be advantageous to 

the sewage treatment process to receive larger flm"s from certain 

portions of a combined sewer system and that by weighting the 

throughputs this advantage might be realized. The type of control result-

ing from the application of optimal control theory, however, tends to 

make any such gains doubtful. 

Although this dissertation is directed at controlling flow 

during storm periods it is worthwhile to point out that during normal 

dry weather operation of a sewer system there may be possible advantages 

to the sewage treatment process gained by usir.g the objective function 

of equation II.6-2 with the ~veighting factors on the throughput tems 

being functions of time. 

II.7 /\n Example of a Complete Problem Fomulation 

For completeness, a complete problem formulation for a simple 

system consisting of t11/o reservoirs in series will novJ be given. 

Figure II-6 shows the system to be modelled. The variables used are all 

as described earlier: 

In order to simplify notation in the following chapter where 

the forms of some optimal control strategi =s for this problem 

are derived, the following variables are introduced: C1 which 

represents the left hand side of control variable ine~uality constraint 

t , and Sk wh ich represents the first deri vati ve of state variable 

inequality constraint k. 
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Fig. II.6 The Two Reservoirs in Series System 

For this system the state equations are: 

o1 (t)+C0 Vz r/ - c0 -yd r/ - C h 3/2 

dl = 2 l w1 l 
fl Al dl = 

II.7-1 

and q2(t)-CD -f"'ci;_ r22 C h 3/2 

d2 = 2 \\'2 2 
= f2 II.7-2 A2(d2) 

The control variable inequality constraints of the system are; for 

the control variables themselves; 

Rmax ) < O 
l 

I I. 7-3 

I I. 7-4 
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II.7-5 

and I I. 7-6 

and for the flow rates within the system: 

Cr:: = (q, (t) + CD -v7f;_ r2 2 0 ) < 0 
::J ·max -2 1 

II .7-7 

and s6 = (~3(t) + c0 -y7f, r 1 
2 

~max) < () -
1 3 

II. 7-8 

The final system constraints are those on the depths immediatel J 

upstrea~ of the regulator structures. As noted earlier these are state 

variable inequality constraints and must be stated as a pair of 

constraints for each reservoir. Thus, 

d1(d1 o1) < o 

and d2(d2 02) < 0 

I I . 7 - 9 

II.7-ln 

are the two point constraints which apply at the instant the boundary 

is reached and: 

(t) +C ~rTct 2 C ~ITd r 1
2 - C h 3/ 2 

0 1 D vu 2 r2 - 0 vu, 1 2 1 w, ----=---~,_,-..-C-.----_:_--=0 A1 d1 
II.7-11 

and a2(t)-Co ~2 r22 C t,23/2 
2 "'12 ----~-~~--~--=0 

A2(d2) 
II.7-1 2 

apply along the depth constraint. 
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The objective function for this problem is: 

Min 

II.7-13 

To complete the formulation to the point where the necessary 

conditions for an optimal control can be deterriined by the calculus of 

variations, it is necessary to form an augmented index of performance. 

Letting the right hand sides of equations II.7-1 and II.7-2 equal f1 
and f2 respectively for ease of notation and using Lagrange multipliers 

as described in section II.2 of this chapter, yields as an augmented 

index of performance 

+ n 1(r1-R. )(r1-R ) + n 2(r2-R. )(r2-R ) m,n 1 max1 m,n 2 max2 

II.7-14 
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By application of the variational principles to equation 

II.7-14 as outlined in section II.2 of this chapter, the necessary 

conditions for controls h1(t), h2(t), r 1(t) and r2(t) to be an optimal 

control strategy can be determined. 

.. 
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CHAPTER III 

EXAMINATION OF SOLUTION FORMS FOR SELECTED CASES 

III.l Introduction 

Before proceeding with attempts at numerical solution of 

the necessary conditions for an op timal control it is worthwhile to 

examine the form of the optimal control solutions. Such an 

examination may save much time in attempting parti cular types of 

numerical solutions which, because of their peculiarities, are 

doomed to failure. 

This chapter outlines the procedure used to obtain solution 

forms of the optimal control for particular cases. The solution forms 

for the two reservoir problem formulated in Chapter II are examined 

in detail. The solution forms for other configurations are then 

presented and their peculiarities discussed. (The derivations of 

these solution forms are left to the Appendices). In all the cases 

examined in this chapter it is assumed that there is no time delay 

in the flow routing. 

III.2 The Procedure Used to Determine Solution Forms 

The procedure used to determine the form of a solution of 

the necessary conditions for a particular set of inflows consisted 

of five steps. 
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a) The problem was formulated for the system configuration to be 

analyzed. 

b) Using the general form of necessary conditions, given in 

Chapter II, the control and adjoint equations were determi ned 

from the augmented objective function and the values of the A 

multipliers at tf evaluated. 

c) A control strategy U(t) was assumed and the state variable 
path that would result from the use of U(t), was determined . 

d) Starting at tf the problem was worked backwards to see that all 

the necessary conditions could be satisfied. 

e) The solution was examined to see if the control U(t) could be 

improved and the value of the objective function reduced. 

A detailed application of this procedure is given below for 

the problem of t\-10 reservoirs in series formulated in Chapter I I. 

III.3 Solution Forms for the Problem of T\\10 Reservoirs in Series 

A. The Necessary Conditions. 

The complete formulation for the problem of two reservoirs 

in series was presented in Chapter II. The necessary conditions for 

an optimal control can be determined by app lying the general form of 

the adjoint and control equations presented in the beginning of Chapter 

II (equations II.2-9 and II.2-10) to the augmented objective function 

for the two reservoir problem (equation II . 7-14). This procedure 

results in the set of six equations (two adjoint and four control 

equations) given below. Note that the state variables are ct 1 and ct 2 
(equivalent to xi in Section II.2) and the control variables are 
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r1, r2. h1 and h2 (equivalent to ui). 

a) The adjoint equations for the two reservoir problem 

are upon simplification and rearrangement: 

d[A1 (d1 )] 
dt - 11 3hl I I I . 3-1 

and 
\ l-yl (2d1-D1) 

[ A (d ) ] } 
1 1 

III.3-2 

b) The control e~uations for the two reservoir problem are 

upon simplification and rearrangement: 

pl = {Zl + 
\ 1- y 1(2d 1-D1) l/ 2 [ Al(dl) ] }3/2Cw

1
h1 + n 3(2h1-d 1) = O 

III.3-3 

and 

\ 2-y2( 2d2-D2) 1/2 
[ A2(d2) ] }3/2Cw2h2 + 11 4(2h2- D2 ) = n 

III.3-4 

which are the control equations for h1 amd h2 respectively and, 

+ n 1 ( 2 r1 - R - R . ) = ') max1 mrn1 
II I .3-5 
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and 

+ 'TT 2(2r2-R -R . ) = 0 III.3-6 max 2 mrn 2 

which are the control equations for r 1 and r2 respectively. The 

notation Pi on the left hand sides of eq uations III.3-3 to III.3-6, 

respectively has been introduced for later shorthand use. 

Finally the values of the A multip lie rs at tf are obtained 

from the transversality condition (equation II.2-11). Applying this 

condition to the augmented index of performance for the two reservoir 

problem yields 

o 1d(d1) + A2d(d2) }J + o 1d(d1) + A2d(d 2) } / 
It; ltf 

= 0 

III.3-7 

Since d1 and d2 are given at t equals t; ,d(d1)/t; and d(d2)/t; 

are equal to zero. At tf,dl and d2 are independent and not restrained 

and thus for equation III.3-7 to be satisfied: 

= 0 

= 0 

With the control and adjoint equations determined the 

feasibility of various solutions can now be tested. 

II I. 3-8 

III.3-9 
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B. Two reservoirs in series Z1>Z2 - CASE l. 

In the example that follows the relationships given below are 

assumed to exist for the weighting factors 

zl > z2 III.3-10 

-Z3 > -Z4 III.3-11 

zl-z3 > Z2-z4 III.3-12 

The last requirement is necessary to prevent the problem becoming 

equivalent to the case z2 greater than z1 , a problem not discussed 

herein but whose solution should become obvious as the various 

configurations are studied. 

Further it is assumed that for a particular set of input 

hydrographs the control trajectories have the form given in Figure 

III . l (a and b) and the state variable trajectories that result from 

the application of these controls have the form given in Figure III.l 

(c and d). 

Finally it is assumed that the downstream flow constraint 

Qmax (refer to Figure II-6) is never binding, and thus r1 is always 
3 

equal to Rm . ax 1 
The control and state variable trajectories shown in Figure 

III.l may be described as follows: 

The orifice control for the upstream reservoir is fully open 

and remains so until t 1 when the sum of the outflow from the 

upstream reservoir plus the inflow hydrograph q1(t) is equal 

to Q max · 1 



r2 
R max2 

t. 
1 
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r2 /h2 
-,,. ' .,,,, ' ' 

(a) Reservoi r 2 Control Variable Trajectori es 

' -.. -- ..... ,, /, .... 
' (b) Res er voir 1 Control Variable Trajectories 

(c) Reservoir 2 Oenth Trajectory 

(d) Reservoir Time Depth Trajectorv 

Fig. III .1 The Assumed Control and State Variable 
Tra jectories for CASE 1 

t 
f 

h 2 
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The upstream orifice control is varied to maintain the total 

flow at its maximum allowable limit, Q . max1 
At t 2, orifice control r2 is reduced to its minimum allowable 

value R . and remains at this value until t 5 . m,n2 
At t 3, d1 becomes eoual to o1 and the downstream weir control 

h1 must be operated to maintain the depth o1. This operation 

continues until t 5. 

At t 4, d2 becomes equal to o2, and the weir control h2 must 

be operated to maintain the depth o2. This operation continues 

until t 6. 

At t 5 the inflow to the downstream reservoir has decreased 

to the point where h1 has been reduced to zero. The reservoir 

level still equals o1. It is now possible to increase the 

outflow from the upstream reservoir without overflowing 

downstream. Thus r2 increases until it is fully open at t 7 
and is operated in a manner that keeps h1 equal to zero and 

d1 equal to o1. 

At t 6 , as a result of the increased outflow from the upstream 

reservoir h2 is reduced to zero. The upstream reservoir 

level d2 then drops below the depth constraint o2. 

When r2 reaches its maximum value Rmax
2 

at t 7, the total 

inflow to the downstream reservoir can no longer be maintained 

so as to keep d1 equal to o1 thus d1 drops off the depth 

constraint. 

It remains now to show that the control strategy outlined 

satisfies the necessary conditions. 



54 

At each point in time it is necessary to be able to determine 

values for: the four controls, r1, r 2, h1 and h2; the t \vo >. (t) 

multipliers; the six n(t) multipliers; the two y(t) multipliers 

and; the state variables d1 and d2. The assumed results of integration 

of the state equations for the problem (equations II.7-1 and II.7-2) 

have already been given in Figure III-1. The remaining variables can 

be determined by working backwards from tf. 

For example, in the interval t 7 to tf the following relationships 

exist. 

I II. 3-13 rl = R + (r1-R . )(r1-R ) = 0 + 7T l 'f 0 max1 mrn1 max1 

r2 = R + (r -R )(r -R ) = Cl +n2 ,;o max 2 min 2 max 2 2 2 
III.3-14 

hl = 0 + h1(h1-d1) = 0 + 7T 3 'f 0 III.3-15 

II I. 3-16 

I I I . 3-17 

III.3-18 

ql ( t) + c0 ~ r/ - 0max < 0 + 7T = 0 
2 l 5 III.3-19 

q3(t) + CD /crj rl2 Q < 0 + 7T 6 = 0 
l max 3 

III .3-20 

In the above equations there are four non-zero Lagrange 

multipliers and they can be used to satisfy the four control equations. 

Thus the value of multiplier n1 can be determined from the control 

equation for r1 (equation III.3-5) to yield 



Al 
= { Z3 + A ( d ) } 

1 1 
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R . m,nl 

R max1 
- R max1 

III .3-21 

Similarly the other non-zero multipliers can be determined from the 

remaining control equations for the time interval t 7 to tf. 

With the control equations satisfied in the time interval 

being considered all that remains is to integrate the adjoint equations 

III.3-1 and III.3-2. 

Upon substitution of the appropriate values of the n and y 

multiplers these equations become: 

III.3-22 

and 

III.3-23 

Since z3 and z4 are both less than zero the trajectories of 

the >. multipliers in the interval t 7 to tf are as shown on Figure III.2 . 

At t 7 there is a corner. At t 7_ 

ct 1 (d1-o1) = o III.3-24 

and 

III.3-25 

All other constraints remain as before. 
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"I (t) 

t 

Fig. III.2 The Trajectories of the A Multipliers 
for CASE l 

Application of the corner conditions (equations II.2-15 and I I.2-16) 

yields on substitution for f1 and f 2 and upon noting that h1 and h2 

are zero: 



= 

= 

Since all the terms in 

thus approach the same 
that equation III.3-26 

57 

- Z3Co a:, R2 - Z4Co /d.2R2 J 
1 max1 2 max 2 t?+ 

equation III.3-2G are continuous at t7 
1 imit from either the left or right it 
is in fact an equality. 

III.3-26 

III.3-27 ---
III.3-28 

and 

is obvious 

The remaining details of the solution are presented in Table 

III.l which shows for each time interval on Figure III.1: the non-bind-

ing constra i nts and the resultant zero Lagrange mu l tipliers; the binding 

constraints and their associated non zero Lagrange multipliers and the 

control equations which these multipliers are used to satisfy; and the 

equations used to determine each control variable. For each time 

interval and corner Table III.2 shows the equations of the A multipliers 

and the conditions at each corner. The notation used in these tables 

is the same as that given in Chapter II with the formulation of the 

problem (i.e. Ci represents the left hand side of control variable 

inequality constraint i and is associated with multiplier 1f •• 
l 

represents the left hand side of the first derivative of state 

s. 
l 

variable inequality constraint i and is associated with multiplier yi). 

The notation Pi was given at the beginning of this chapter and represents 

the control equations. rlote that it is not really necessary to know 

the values of the Lagrange multipliers associated with the inequality 
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Solution of the Constraint tlultipliers, Control Equations and Controls for the Problem of Two 
Reservoirs in Series CASE l 

2 3 4 5 
Control Equations Constraint th~t 

Time lion Binding Associated Zero Binding Associated Non Satisfied by Controls are 

~ Constraints MultiQliers Constraints Zero MultiQliers MultiQliers Determined from 

tf>t>t7 C5 •s C1 • 1 P3 rl .• c1 = o 

c6 "6 C2 •2 P4 r2 • c2 • 0 

s1 yl C3 •3 pl hl + c3 = 0 

Sz y2 C4 •4 p2 hz + c4 • 0 

t7>t>t6 c2 •2 C •1 P3 rl + c1 = o 
l 

CS •s C3 •3 pl hl + c3 = 0 

c6 "6 C4 •4 Pz hz + C4 = 0 

Sz Yz sl yl P4 rz • s1 • 0 

t6>t>ts c2 •2 cl •1 P3 rl • c1 • o u, 

C4 •4 C3 •3 pl hl • c3 = 0 co 

CS •s s1 yl p2 rz + ~l = 0 

c6 "6 Sz y2 P4 "2 + s2 = 0 

ts>t >t4 C3 •3 cl "1 P3 rl + c1 = o 

C4 •4 C2 •2 P4 r2 + :2 • 0 

cs •s s1 yl pl "1 + Sl • 0 

c6 "6 S2 y2 p2 "2 • s2 

t4>t>t3 CJ •3 cl •1 P3 rl + C1 = 0 
cs "s c2 •2 P4 rz ~ ~' :is 0 
c6 "6 c4 •·4 P2 h l + S1 • O 
S2 y2 sl YJ P1 h2 + C4 • 0 



TABLE II l. l cont'd 

C5 "s cl "1 P3 rl .. 
c6 "6 C2 "2 P4 r2 .. 
51 yl CJ "3 pl hl .. 
52 y2 C4 "4 p2 h2 .. 
c2 "2 c1 "1 P3 rl .. 
c6 "6 C3 "3 pl r2 .. 
51 yl C4 "4 Pz hl .. 
S2 Yz cs "5 P4 h2 .. 
C5 "s cl "1 P3 rl .. 
c6 "6 c2 "2 p4 r2 .. 
SI yl C3 •3 pl hl .. 
S2 y2 C4 "4 p2 h2 .. 

rlotes : 
l. Time interval s are those shown on Figure 111.l. 
2. Lagrange multipliers in this column are those associated with the non bindi ng constraints on the same line 

in th~ previous column. 

c1 • o 
c2 = o 
c3 • 0 
c4 = 0 

c1 = o 
c5 = 0 
c3 = 0 
c4 = 0 

c1 = o 
c2 = 0 
c3 • 0 
c4 • 0 

3. Lagrange mult i pliers in this column are those associated with the binding constraints on the same line in the previous column. 
4. Control equation& listed in this cGlumn are satisfied by the Lagrange mutlipliers on the same 11ne 1n the previous column. 
5. r1 .. c1 • 0 should be read as "r 1 is determined from c1 = 0. The controls in this column are listed in 

tne oroer required for solution. 

u, 
<.O 
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TABLE III.2 

THE EQUATIONS OF THE ;... MULTIPLIERS AND THE CORNER CONDITIONS FOR THE 
PROBLEM OF TWO RESERVOIRS IfJ SERIES CASE 1 

Time 

Corner at t 7 

Corner at t 6 

Values of ~i or "i 

;... = 0 1 
"2 = 0 

2 
"l 

c0 r1 ;... d[A1(d1)] 
~ = 1 + 1 
1 {Z3 + A

1
(d

1
)} 2ld1 A1 (d1) dt 

2 
"2 "1 CD r2 ;... d[A2(d2)J 

;... = {Z4 + A (d ) - A1(d
1

)} 2 + 2 
2 2 2 2ld2 A2(d2) dt 

All variables are continuous. Therefore the corner 
conditions yield 

,l.1 / = "1 / t7_ t7+ 
"2/ = "2/ t7_ t7+ 

C R2 

{Z3 + 
11-Y1 °1 o1 max1 ;... 1 d[A1(d1)J 

"1 = [A (d } ] } + 
1 1 2101 Al ( d 1 ) dt 

canst. 

All variab l es are continuous. Therefore the corner 
conditions yield 

~ = 0 2 const. 

= const. 



TABLE 111.2 con'd 

Corner at t 5 

t5>t>t4 

Corner at t 4 

t4>t>t3 

Corner at t 3 

61 

All variables are continuous. Therefore the corner 
conditions yield 

'),,2/ t = '),,2/ t 
5- 5+ 

C R2 

),,1 {Z3 -
o1 max1 con st. = z,} 2ID = 

1 
C R2. • o2 m,n 2 = canst. ),,2 = {Z4 - z2 + Zl} 2/D 

2 

At t , h2 is discontinuous and therefore d is 
disc2ntinuous. As this corner is the entrfrnce to a 
state variable inequality constraint boundary a jump 
in the value of A2 can occur. The corner cond i tions 
yield 

A,L· = Al/ t '"4- 4+ 

).21t = -Z/'2(D2) 
4-

C R2 

", o1 max1 canst. = {Z3-Z1}2ld = 
1 

At t , h1 is discontinuous and therefore a1 is 
discdntinuous. As this corner is the entrance to a 
state variable inequality constraint boundary a jump 
in the value of Al can occur. The corner conditions 
yield 

Al/t = -z1A1(o1) 
3-

A21t = A2/t 
3- 3+ 
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TABLE III.2 cont'd 

Corner at t 2 

Corner at t 1 

At t the variable r is discontinuous however the corner 
condftions require: 2 

For the jump in r2 to be pennissible requires that 

A 1 A2 
[A ( d ) J = [A (d) + Z4]t 

l 1 t 2 2 2 
2 

C R2 
d[A1 (d1)] 

Al 
Al o1 max1 Al 

= {Z3 + A {d )} 2/d + 
1 l 1 Al ( dl) dt 

A2 = 
A2 d[A2(ct 2)J A2 

= canst. A2(d2) dt + 
A2(d2) 

All var i ables are continuous . Therefore the corner 
conditions yield 
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constraints only that they can be used to satisfy a particular control 

equation. 

Finally note from Figure III.2 that the condition listed in 

Table III.2 as necessary for a jump in the control r2 to occur at 

time t 2 can in fact occur. (This is most easil y seen by assuming 

Ai(di) is equal to l). Thus it has been shown that the solution 

assumed in Figure III.l is in fact feasible, given the assumptions 

and limitations outlined at the beginning of this sec tion. 

C. Discussion of the Results of CASE l . 

The first question to be answered is: is the proposed 

solution optimal? After t 4 on Figure III.l, when both reservoirs are 

storing the maxi mum amount of water and begin to overflow i t is 

obvious that nothing can be done to the controls to reduce the 

overflow volume from the two reservoirs. The key 01iestion concerns 

the validity of the jump in control r2 at t2. 

That this is reasonable may be shown by referring to Figure 

III.3. If the switch in r2 takes place at t 2 + E then there will be 

an increase in throughput volume from reservoir 2 of 6S4 and a 

decrease in overflow volume from reservoir 2 of 6S2. By continuity 

= 0 III.3-29 

As a result of the increased input to reservoir there will 

be an increased overflow volume from that reservoir of 6S1 and since 

the depth in reservoir l at t 2 +Eis now greater than it would have 

been without the addition of 6S4 there will be an increase in the 

outflow volume from reservoir l of 6S3. For this reservoir the 

continuity equation yields 
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•••• effects of perturbed control 

Fig. III.3 The Effects of a Perturbation of Control r2 at time t 2 

III.3-30 

The change in the value of the objective fu ~ction resulting 

from the change in the time that the jump in control r 2 takes place 

is: 
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III.3-31 

By substituting the results of equation III.3-29 and III.3-30 into 

equation III.3-31 this change in the objective function can be 

expressed as 

III.3-32 

Now AS3 is a function t 3-t2 as well as the change in depth 

of reservoir l. If for several values of t 2, the perturbation in r 2 
is such as to keep AS4 constant then AS3 will vary from a value of 

zero when t 2 equals t 3 to a value of AS4 when t 3-t2 approaches 

infinity. Thus when t 2 equals t 3 equation III.3-32 reduces to 

III.3-33 

which by the assumptions given for the relative values of the weighting 

factors is greater than zero. Similarly for t 3-t2 very large the 

change in the objective function is 

which by the initial assumptions is less than zero. Thus there is 

some value of t 2 at which A~ is zero. Prior to this value of t 2 any 

increase in throughput from reservoir 2 is advantageous and after t 2 
disadvantageous. Therefore there should be a switch in control r 2 
at time t 2. 
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Simply stated, the switch in control occurs at that point in 

time, where the incremental benefits gained by increasing th e through-

put from the upstream reservoir are just equal to the increased costs 

at the do\'mstream reservoir of overfloviing a portion of that volume 

minus the benefits derived from the increased downstream through pu t. 

If there is a binding constraint on the flow rate from the 

downstream reservoir throughout the period ti to t 3 then 

III.3-35 

and thus there would be no time at which it would be beneficial to 

decrease upstream overflow at the expense of increased downstrea~1 

overflow. 

Similarly if 

III.3-36 

then the time required to gain any incremental benefits from increased 

outflow from the upstream reservoir may be greater than that available. 

The solution forms for these latter two possibilities will be 

examined later in this section. 

Returning to the solution for CASE 1 it is interesting to 

note that t 3-t2 as defined on Figure III.l will be smaller for R . m,n2 
(Since in the interval greater than zero than for Rmin equal to zero. 

>-2 2 
t 2 to t 3 if Rmin

2 
is zero A

2
(d

2
) is constant - see Table III.2 and 

Figure III.2). This is explained by the fact that any incremental 

increase in throughput ~s2 from the upstream reservoir falls on top 
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of the throughput due to Rmin . This combined effect on the down-
2 

stream reservoir level means that the throughput from the downstream 

reservoir ~S3, necessary to decrease the objective function can be 

obtained in less ti me. Note that having R . greater than zero does m,n 2 
not mean that a better value will be obtained for the objective functi on 

than for the case R . equals zero. m,n2 
At this point it is advantageous to point out some more 

general aspects of the solution. In the formulation of the control 

problem in Chapt er II it was suggested that the addition of z3 and z4, 

the weighting factors on the throughputs, would remove some non-

uniqueness from the controls. This can be observed by examining 

equation III.3-5 and III.3-6, the control equations for r1 and r2 
along with equations III.3-22 and III.3-23, the adjoint equations for 

the interval of ti me t 7 to tf. 

Since at tf the A multipliers are zero by equations III.2-8 

and III.2-9, then if 

Z = Z = 0 3 4 III.3-37 

the values of the adjoint equations over the interval are 

A = A = 0 1 2 III.3-38 

Inserting the values from these two equations into the control 

equations for r1 and r2 (recalling that yl, y2, n 5 and n6 were zero) 

shows that they will automatically be satisfied regardless of the 

values of r 1 and r2 since 
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Al 0 II I. 3-39 
Z3 + A (d ) = 

l l 

and 
A2 Al II I. 3-40 Z4 + A (d) - Al ( d l ) 

= 0 
2 2 

(Note if r
2 

is equal to R or R . , TT 2 will be zero in eauation max2 mrn 2 
III.3-6 and likewise TT l will be zero regardless of the value of r1 

in this interval). 
Thus, there is no way to determine the control in this 

interval. In fact, if equation III.3-37 applies, any values for r1 

and r
2 

are optimal provided there is no overflow from either reservoir 

in this interval. 
The formulation of the general problem in Chapter II did not 

include limits on the rates of operation of the control devices. The 

jumps in controls r 2, h1 and h2 would all require their respective 

control devices to operate at infinite rates, which is impossible. 

A reasonable approximation to this infinite operation rate wou ld be 

to operate the devices at their maximum rates and initiate their 

operation so that they were one half way through their required 

movement at the time the jump in control was to have occurred. If 

at any other time during the control process the optimal control 

required operation at a rate faster than the capabilities of the 

control device, then the device could be operated at its maximum 

speed until its position again fell on the optimal trajectory. From 

the form of the solution obtained for CASE 1, the above form of 

operation would appear to be close to that which one would expect 

to be required by a problem formulation including rate limitations 

on the control devices and most certainly would be within the 
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accuracy of information on which the control is based. For this 

reason, the use of a more accurate model, including control device 

rate limitations cannot be jus tified. 

The eauations for the flow control devices in Chapter II were 

all reduced to simple forms for ease of understanding. Had the more 

general forms, equat i ans I I. 3-1 and I I. 3-4 been used in CASE l it is 

clear that the form of the control equations (equations III.3-3 to 

III.3-6) and the adjoint equations (equations III.3-1 and III.3-2) 

would have remained unchanged also. This results from the fact that 

for z3 and z4 non zero the solution path for the control variables 

follows constaint boundaries throughout. For example, in the solution 

presented: 

throughout and: 

r2 

or r2 

or r2 

or r2 

= R max 1 

= R max,, 
L 

= R . m,n2 

{[Cd /D.j R2 ;a: 1/2 = - q1(t)]/C0 d2} 
1 max1 2 

= {[Q - ql (t)]/CD ~ } l/2 max1 2 

II I. 3-40 

I I I . 3-41 

III.3-42 

III.3-43 

II I. 3-44 

(Eauation III.3-43 is determined from d1(d1-o1) = 0), and equation 

III.3-44 from the flow constraint downstream of reservoir 2. Similarly 

h1 and h2 are determined from the first derivatives of the depth 

constraints. Thus, effectively the control drops out of the control 
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equations, from which it is normally determined. This result is 

essentially true for all the solution forms to be discusssed. 

The boundary aspect of the solution, which is not unexpected, 

as it would seem reasonable to use the maximum capacity of all parts of 

the system, has its drawbacks. It can be shown that the necessary 

conditions will be satisfied by almost any other solution for which the 

control is on the boundary (certain jumps in control being the 

exception). This creates a large number of possible optimal solutions, 

from which an optimum must be selected by physical understanding of the 

problem. It does, however, have the advantage that the more general 

control device equations may be used. 

Finally, a peculiarity of this problem resulting from the corner 

conditions at t 3 and t 4 should be noted. At both these times there is 

a jump in the A multipliers. Working the problem backwards as was done 

for CASE 1, it was easy to determine the value of the A multip liers to 

the left of the jump. However, if the correct values of the A multipliers 

had been known at ti, and the problem solved going forward, it would have 

been impossible to determine the values of the A multipliers to the 

right of the jump. In both cases they are multiplied by the first 

derivatives of the state variables which are zero on the depth constraint. 

Thus each time they drop out of the corner conditions. To solve the 

problem going forward it would be necessary to guess nev, values of A1 
and A2 at t 4+ and t 3+ respectively and continue the problem to tf and 

ensure that Al/t and Az;t reached the values required by the 
f f 

transversality condition. Essentially there is a separation of the 

problem into two separate problems, before and after the corner. What 
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happens after the corner is independent of happenings prior to the 

corner. Later in this study this separation will be used to advantage. 

To complete the study of the problem of two reservoirs in 

series, two other cases are discussed below. 

D. Two Reservoirs in Series with Z1>> z2 - CASE 2 

The assumptions concerning the relative values of the weighting 

factors and the non applicability of the flow constraint downstream of 

reservoir 1 as in CASE 1 apply. The control and adjoint equations are 

as derived in section III.3-A. The objective function state equations 

and constraints for this problem are those derived in section II.7. 

Figure III.4 shows the assumed control and state variable trajectories. 

The principle difference between these trajectories , and those of 

Figure III. l , result from the jump in control r2 taki ng place sooner . 

Because of this there is no overflow from the downstream reservoir and 

the upstream reservoir fills earlier than in CASE l. Since there is no 

overflow from the downstream reservoir, d1 is continuous at the entrance 

to the state variable constraint 

III.3-45 

Since all the controls are also continuous at t 4, the corner condition 

(equation II.2-13) is automatically satisfied regardless of the value 

of Al/t However, by equation II.2-14, Al/t may be discontinuous. 
4- 4-

This result is not as unreasonable as it may appear if it is noted that 

there must be some value of z1 say Z~ in CASE l at which the overflow 

from reservoir l is extremely small. For any values of 

z1 > Z~ III.3-46 
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(a) Control Trajcctori 0s for Res ervoir 2 

(b) Control Trajectories for Reservoir 1 

(c) Depth Trajectory for Res ervoir 2 

Time 

Fig. III.4 The Assumed Control and State Variable 
Trajectories for CASE 2 
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the point at which the switch in r2 occurs must be independent of z1 , 

(which was not true in CASE l). The value of Al/t
4

_must therefore 

be obtained by integrating forward from the value of Al required by 

the corner conditions for the switch in control r2, which is the same 

as that required for CASE l i.e. 

III.3-47 

In addition the switch in control r2 must be timed so that reservoir 

fills at the point 

= CD /1'5:l R2 
1 max1 

III.3-48 

which is the earliest point that reservoir l can fill without overflowing. 

The remainder of the solution for CASE 2 is similar to CASE l 

and need not be discussed further. 

E. Two Reservoirs in Series with a Downstream Flo\'1 

Constraint - CASE 3. 

The only difference between this case and CASE 1 is that the 

flow constraint (equation II.7-8) limiting the outflow from reservoir 

is assumed to be binding for all time. The control, adjoint and state 

equations are as derived for CASE 1. Figure III.5 shows the assumed 

control and state variable trajectories. 

The principle differences between Figure III.5 and Figure III.4 

are: 

R . < r1 < R m,n 1 max1 
II I. 3-49 
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for all time and; r2 is non unique in the interval ti to t 4 and; h2 

is non unique in the interval t 3 to t 4. 

(a) Control Variable Trajectories for Reservoir 2 
1 

hl 
'-----'---L..---'--'-----------L..--..i-.-'---...... ~- t 
(b ) Control Variable Trajectories for Res ervoir 1 

'-----'---'----'--'---------'---..1-.-'---.... -t 
(c) De~th Trajectory for Res ervoir 2 

...._ __ .......... ~_ ......... ________ __._ __ ..__ ........ __ ...__t 
t . 

1 Time 
(d) Depth Trajectory for Reservoir 1 

Fig. 111.5 The Assumed Control and State Variable 
Trajectories for CASE 3 

As a result of the non uniqueness of r2, d1 is not necessarily 

zero at t
4

_ and thus the corner conditions yield upon simplification: 

111.3-50 
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Furthennore the adjoint equation for Al in the interval t 3 to t 4 
reduces to: 

= constant= z4 - z2 III.3-51 

When this result is substituted into the control equation for r 2 
(equation III.3-6) it becomes for the interval t 3 to t 4 : 

(z4-z2-z4+z2)2C0 !o.:2 r 2 + n 0 (2r2-R . -R ) = O 
2 L m,n 2 max2 

Ill.3- 52 

Note that if: 

R . < r < R m,n 2 - 2 - max 2 
III.3- 53 

equation III.3-52 is automatically satisfied regardless of the value 

of r 2 in the interval. Similarly it can be shown that equation 111.3-52 

applies for the interval ti to t 3 also. 

The determining factor for the control r 2 is the requirement 

that the volume of flow released from reservoir be such that the 

conditions at the corner t 4 occur. This volume of flow, 6S4 , is by 

continuity; 

t4 D 
, s4 "Qmax3 - J ql(t)dt - fl Al(dl)d(d) 

t . dl 1 . 

III.3-54 

1 

Whereas, in the previous two cases, without the binding flow constraint, 

the outflow volume from reservoir l could be maximized by maintaining 

maximum outflow from reservoir 2 as long as possible before reducing 

r2 to R · with the binding flow constraint there is no such min ' 2 
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advantage to be gained. In addition, note that the control alternative 

for r2, shown on Fi gure III.5 having a jump from R to R . at t 2 max 2 m,n 2 
is an allowable control and tha t as a resu l t, reservoir 2 spills at t3. 

Although there are many more pos si b e cases for tr e two res-

ervoirs in series configurati on, the three examples presented herein 

point out some of the probl ems that may occu- , part i cu a~l y as a 

result of the corner condit i ons at a state variable cons traint. Further, 

they show that t here are many common aspects to the opt imal control for 

the system, the princip le one being the j ump i n the upstream reservoir 

control. 

III.4 Two Reservoirs i n Parallel - CASE 4 

The schematic diagram of this configuration is shown in Figure 

III.6. In this case i t i s assumed that the flow const rai nt Qmax is 
l 

binding for at least some portion of the ti me ti to tf, otherwise the 

~roblem reduces to one of two separate, singe reservoi rs, whose 

optimal cont rol is obv ious. Further, it is assu~ed that the following 

relationships exist for t he weight ing factors in the objective function : 

111.4-1 

III.4-2 

and 
III.4-3 

where z1 and z2 are the weighting factors on the overflows and z3 and 

z4 are the weighting factors (less t han zero on the throughputs from 

reservoirs l and 2 respectively. (Changing the direction of the 

inequalities given above effectively reverses the problem). 
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q. (t) - inflow hydrographs 
1 

Q - flow constraints max 1 

Fig. III.6 The Two Reservoirs in Parallel System 

The description of the operation shown in Figure III.7 is as 
follows: (the verification of the solution is given in Appendix l) 

The flow constraint Q a is not binding and both orifices m x1 
can be maintained at their maximum openings. 

At t 1, the flow constraint Qmax is reached and control 
l 

r2 is reduced to a level that maintains equality of the 

flow constraint. The orifice controls are operated in 

this manner until t 4. 

At t 2 the depth of storage in reservoir l reaches its 

depth constraint D1 and h1 must be operat ed in a manner that 

keeps: 

-+ d = 0 l 
This operation continues up to t 4. 

III.4-4 
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At t 3 the depth of storage in reservoir 2 reaches the 

depth constraint defined by o2 and h2 must be operated in 

a manner that maintains 

III .4-5 

This operation continues until t 6 . 

At t 4, the inflow q1(t) is equal to the throughput from 

reservoir l. Beyond this point in time, h1 is zero and 

r 1 is reduced from Rmaxl so as to maintain the equality 

given by equation IIl.4-4. Since r1 is decreasing, r2 
can increase to maintain the total downstream flow equal 

to Q max · l 
At t 5 , r 2 has increased to R ma x2 

and thus r1 can begin to 

increase so as to maintain total flow e~ual to Q . max1 
This opening of r1 results in outflow exceeding inflow 

for reservoir l and as a result, after t 5 

_ I I I . 4-6 

At t 6 , the inflow to reservoir 2 equals the orifice 

throughput. After t 6 , r 2 can be decreased to maintain d2 

equal to o2. This allows the rate of opening of r1 to be 
increased to maintain maximum system outflow. 

At t 7, r1 equals Rmax and r2 can again begin to increase 
l 

until at tf' r 2 equals R . max 2 

The major points of interest in this sequence of operation are: 

the introduction of the control of r1 in the interval t 4 to t 5 and of 

r 2 in the interval t 6 to t 7 dictated by the necessity to maintain 
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R . min 1 

R . min 2 
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rl 

- < hl 

' \ 
(a) Contrnl Variable Trajectories for Reservoir 1 

h2 

~ - -, 

... 
(b) Control Variable Trajectories for Reservoir 2 

(c) Depth Trajectory for Reservoir 1 

tl t2 t3 t4 ts t6 t7 tf 

(c) Depth Trajectory for Reservoir 2 
Time 

Fig. I I I. 7 The Assumed Control and State Variable 
Trajectories for CASE 4 
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d=D-* d=O III.4-7 

and; the combined operation of the two reservoir orifices to keep the 

downstream flow constraint binding. 

Although they are not discussed herein , jumps in the controls 

r1 and r 2 are possible when the flow constraint is binding. A jump 

in the controls r1 and r2 must occur simultaneously in this circumstance, 

one control being determined from an orifice constraint and the other 

from the flow constraint. 

Finally, following reasoning similar to that used for CASE 3 

it can be argued that conditions can exist for which the controls r1 
and r2 are coupled by the flow constraint but non unique over some 

interval. The cons traint on their operation is the necessity to pass 

a given volume of flow through one of the reservoirs in a specified 

t ime . 

III.5 Examples of Three Reservoir Configurations 

Optimal solutions for two possible three reservoir configurations 

are outlined below. Detailed solutions for the state and control 

variable trajectories presented are given in Appendices II and III. 

These two configurations are called the "V" configuration, shown in 

Figure III-8 and the "Y" configuration, shown in Figure III-10. 

A. The Three Reservo·r V Configuration CASE 5. 

It is assumed in this case that the flow constraint represented 

by Q in Figure III-8 is binding for most of the time period being max 2 
considered and tha t the weighting factors in the objective function have 

the following relationships 
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Fi9 . III. 8 The Three Re s e rvo ir "I" ".: 011fi qu rati on 
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z1 > z2 > Z3 

z1-z4 > z2-z5 > Z-z6 

III.5-1 

III.5-2 

III.5-3 

where z1, z2 and z3 are the weighting factors on the overflows, and 

z4 , z5 and z6 are the weighting factors (less than zero) on the 

throughputs from reservoirs l, 2 and 3 respectively. 

The assumed trajectories for the state and control variable are 

shown in Figure III-9. 

R . min 1 
(a) Control and 

r2,h2,d2 

(b) 

D2 

R . min 2 
Control and 

r3,h3,d3 

R max 3 

r 

State Variable Trajectories for Reservoir 1 

d 
, 

' ' 
State Variable Trajectories for Reservoir 2 

ti t1 t2 t3 t4 ts t6 t7 ts tg t1ot11t12tf 
(c) Control and State Variable Trajectories for Reservoir 3 

Time 

Fig. III.9 The Assumed Control and State Variable 
Trajectories for CASE 5 
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A description of the trajectories shown in Figure III-9 is 

as follows. 

Up to t 1 all orifices are operated at their maximum 

openings. 

At t 1, the two flow constraints defined by Q and · max l 
Q become binding. max2 

After t 1 , r 2 is operated to keep 

the total flow downstream of reservoir 2 equal to Q . max1 
Similarly r3 is operated to the limits dictated by 

Qmax · 2 
At t 2, the control r2 jumps 

the flow constraint defined 

from reservoirs l and 2 can 

r 3 > R . 
m,n3 

to R . . Here, even though 
m,n2 

by Q is binding, outflow max 2 
be increased provided that: 

I I I . 5-4 

If this is not the case then conditions become similar to 

CASE 3 and a non unique control will result. 

At t 3, the depth constraint defined by o2 becomes binding 

and reservoir 2 begins to spill. After t 3, h2 is determined 

by the requirement that d2 equals zero. 

At t 4 and t 5, reservoirs l and 3 begin to spill and their 

weir controls are determined in a manner analogous to h2. 

At t 6 , the outflow capacity of reservoir l exceeds the 

inflow and h1 is reduced to zero. After t 6 there are two 

possibilities: r1 can be decreased in a manner that 

maintains 

-+ a, = o III.5-5 
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thus allowing r 3 to increase or; r1 can be kept at its 

maximum value and r2 can be increased to satisfy the above 

equation. Since by the assumptions listed earlier: 

III.5-6 

the latter control is optimal. 

After t 7 , control r2 is again governed by Qmaxl and cannot 

be opened suffi~iently to keep d1 at its maximum limit. 

After t 7, with r 2 determined by the flow constraint, it is 
advantageous to decrease r1 to satisfy equation III.5-5 

and increase the outflow capacity available to r3. 

At t 8 , reservoir 2 stops overflowing. The control h0 is 
L 

reduced to zero and it now becomes advantageous to operate 

r2 so that 

-+ d = 0 2 III.5-7 

controls r1 and r3 are operated as in the previous interval. 

At t 9, r3 has reached its upper 1 i mit. After this, control 
r1 can be operated to satisfy the fl O\v constraint Q . max2 The control r2 can be operated to maintain maximum stora 9e 

depth in reservoir 1. As a result of this operation ct 2 
falls below the depth constraint 00 • 

L 

At t 10 , reservoir 3 stops spilling and again there arc two 

possible control operations. Either the operation in the 

previous interval can be maintained or; r3 can be decreased 

so as to maintain 

-+ JII. 5- 3 
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thus allowing r1 to increase more rapidly to maintain 

maximum allowable system outflow while r2 is operated as 

before. Since throughput from reservoir 3 has the least 

negative value, the latter control is optimal. 

At t 11 , r1 reaches its upper limit. Thus after this time 

r3 inc reases to maintain ma ximum system outflow, causing 

ct 3 to fall below the limit o3. Control r2 is operated as 

before. 

Finall y at t 12 , r2 reaches its upper limit causing ct1 to 

fall below o1. Control r3 also reaches its upper limit 

once again at t 12 . 

The most important point to note from the above description is 

the operation of the reservoir controls after each reservoir stops 

overflowing. When t he flow constraints are not binding, those 

reservoirs that have ceased to overflow operate in a manner that allows 

the maximum throughput from the reservoir in the system which is still 

overflowing and has the highest overflow weighting factor. If a flow 

constraint becomes binding then the operation of those reservoirs which 

have ceased overflowing is such as to maximize the throughput from that 

reservoir in the system which has the next highest overflow factor. 

Again it should be noted that the controls are always determined 

from constraint boundaries. 

B. The Three Reservoir Y Configuration CASE 6 

It is assumed in this case that none of the flow constraints 
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are binding; that the reservoir areas are constant; that R . are m1ni 
zero and; that the weighting facto rs on the overflow and throughput 

are as given by equations III. 5-l, 2 and 3. The assumed state and 

control variable trajectories are shown in Figure III -11. In this 

case there are steps in control r 2 and r3. If the flow constraint 

Qmax were binding, one of the two upstream reservoirs would have a 
non anique orifice control in the interval ti to t 4. (The other orifice 

control would either be at its maximum or minimum li mit, depending upon 

the infl ow to the system). 

Immediately after reservoir ha~ stopped overflowing at t 6; 

r2 is determined from the requirement that: 

-+ a, = a I I I . 5-9 

Fig. III.lO The Three Reservoir "Y" Configuration 
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1, 
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~ v rl / 

/ ,- ...... ( hl 

' 
(a) State and Control Variable Trajectories for Reservoir 1 

(b) State and Control Variable Trajectories for Reservoir 2 

d 

TO Tl T2 T3 T4 TS T6 T7 T8 Tg TlO Tf 

(c) State and Control Variable Trajectori es for Reservoir 3 

Fig. III.ll The Assumed Cont rol and State V ~ r i abl e 
Trajectories for CASE G 

t 
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After t 7 when reservoir 2 stops overflowing r2 is determined by the 

requirement that: 

-+ d = 0 2 III.5-10 

and r 3 is determined from eouation III.5-9. After t 7 when reservoir 

3 stops overflowing r 3 is determined by the requirement that 

-+ III.5-11 

while r 2 is again determined by equation III.5-9. 

Finally, after t 9 , when r 2 has reached its upper limit, r 3 
is determined by equation III.5-9. 

Note again in this example that the controls are only determined 

from system constraints. 

III.6 Discussions of the Factors Common to All the Cases Examined 

A. Limitations. 

In all of the cases examined it was assumed that 

h. < d. 
1 1 

= l , ... , n III.6-1 

i.e., that the system overflow capacity would never be exceeded. This 

is considered to be in the nature of a "disaster" situation and 

extremely unlikely to occur. In the event that the instantaneous inflow 

rate did exceed the overflow capacity of a reservoir when it 1t1as at 

maximum depth, it appears that the optimal strategy would be to begin 

operating the weir before the peak inflow occurred and before the depth 

constraint was reached so that enough reservoir storage would be 

available to absorb part of the peak inflow. This operation, however, 
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has not been considered. 

In all of the cases studied there was an implicit assumption 

that once a reservoir stopped overflowing, the inflow hydrographs would 

not be such as to cause the reservoir to overflow a second time. To be 

assured that this is the case the inflow hydrograph to a given reservoir 

must be monotonically decreasing once the reservoir stops overflowing. 

Inflow hydrographs not meeting this assumption may still have the 

control trajectories discussed but this cannot be assured. There is no 

restriction on the shape or the number of peaks of the inflow hydrograph 

prior to the reservoir ceasing to overflow other than that relating to 

the peak overflow capacity. 

B. Common Factors in the Control Strategies. 

Several factors are common to all the solution forms discussed. 

In each of the examples the control could always be determined from a 

constraint boundary. As the main result of minimizing the ob jective 

function is the minimization of weighted diversions from the system; 

it is reasonable to expect that this would be accomplished by maximum 

utilization of system throughput and system storage capacity. It 

follows that if the operation of the controls is always determined from 

constraint boundaries then sooner or later there wi ll be jumps in the 

controls from one constraint boundary to another (such as were observed 

for the orifice controls). Further, if the operation of the controls 

can ahJays be determined from constraint boundaries then there is a 

limited number of possible forms of operation for each control. For 

example, the control h, for any reservoir, can be determined from only 
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two eauations: 

h(h-d) < 0 III.6-2 
and 

d = 

m 
I Co lct.r. 2 + q(t) - c01cfr2 - c h312 

i = 1 i , , \v 
--------~~-------=O A d III.6-3 

If his always less than d, then the only available choices for hare 

zero or a value that sets equation III.6-2 equal to zero. 

Likewise, the control r appears in equation III.6-3; in the 

orifice constraint; 

in equations of the form: 

m 
q(t) + L CD lcfr.2 < Qmax 

i=l 1 1 1 

or in equations of the form; 

d. = 
J 

c0 /cf r2 + q(t) - c0 /cT.r .2 - C h. 3/ 2 
J. J .J w. J 

----~~~~-~----=J--=O A( d.) 
J 

(in which case r is one of the ri of equation III.6-3). 

III.6-4 

III.6-5 

III.6-fi 

Thus, there is a limited number of possible values of rat any 

one time. Which equations are used to determine hand r is a function 

of the available constraint multipliers. There is not necessarily a 

unique solution to the problem and considerable logic may be required 

to determine which of the possible combinations of controls is in fact 

optimal. 
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CHAPTER IV 

NUMERICAL SOLUTION OF THE OPTIMAL CONTROL PROBLEM 

IV .1 Introduction 

This chapter outlines the problems encountered while 

attempting to determine an optimal control by numerical solution 

of the necessary conditions. 

First some of the re~uirements that must be ~et by any 

nu~erical solution are presented. This is followed by a discussion 

of the particular numerical difficulties peculiar to the variational 

formulation of the problem. The actual numerical techniques 

attempted and the reasons for their failure are then given. Finally 

an alternative approach to the problem, based on examination of the 

control trajectories given in Chapter III, is outlined. Verification 

of the alternative approach is left until Chapter V. 

IV.2 Requirements of the Numerical Solution 

For a numerical solution of the control problem to be practical 

it should be capable of determining the necessary control strategies in 

under two minutes (this assumes that the controls will be updated 

approximately every twenty minutes and; that obtaining information 

from sensors and converting that information into a computed runoff 

input to the combined sewer system model will require about three 

• 
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minutes). In addition to determining the required control within 

a given time, the numerical technique used must be capable of 

obtaining a solution for all possible inputs within the design limits. 

A solution technique which converges to a solution only 95% of the time 

is not satisfactory. Further, it is desirable that any numerical 

technique used for real time control be capable of being adapted to 

those instances in which control device failures occur. Thus, the 

numerical techninue should be ab le to determine an optimal control when 

at least one of the control devi ce posi ti ons is considered fixed, 

(as opposed to determining a control in whi·ch the devi ce failure is 

neglected). Finally it is economically desirable, but not necessary, 

that the control program requ ire as little computer storage as possible. 

IV.3 Problems to be considered in the Numerical Solution of the 

Combined Sewer Problem 

The necessary conditions for a so 1 uti on to the combined sev~er 

control problem form a two point boundary value problem in which the 

initial conditions are known for the state variables and the final 

conditions are known for the A multipliers. As a result,some 

iterative technioue must generally be used to arrive at the optimal 

solution. Some of the difficulties that must be considered in selecting 

a numerical method suitable for the combined sewer problem are discussed 

below. 

It was shown in Chapter III that jumps occur in the A multipliers 

at the entrance to a state variable constraint boundary. It was also 

shown that on the t side of the jump there was a choice of possible 
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values for A multipliers. Neglecting for the moment the case where 

the value of A at t could not be determined directly from the 

corner conditions, it is obvious that the problem is essentially a 

multiple boundary problem. Thus, the problem can be divided at tb, 

the unknown time at which the state variable constraint becomes 

binding. 

problem. 

Between tb+ and tf there is a two point boundary value 

Between t. and tb the problem is still a two point 
1 -

boundarv value problem but now the state variables are known at t. 
v 1 

and tb- and the va lue of A at tb- must be one of a discrete number of 

possibilities (e.g. CASE and CASE 3·discussed in Chapter III). Thus, 

the value of A at tb- is effectively an unknown except that it must 

satisfy the corner conditions. In reality this is determining the 

time tb at which the jump in A must occur. For the cases where the 

value of A at tb-' and therefore effectively tb, cannot be determined 

from the corner conditions there must be some other conditions, such as 

the flow conditions of CASE 2, which define the time tb. The problem 

then still can be subdivided into more than one two point boundary 

value problem. 

An additional complication at the entrance to a state variable 

const raint boundary is the fact that even if A is known at tb-' the 

corner conditions will not yield the value of A at tb+ (since at tb+' 

A is multiplied by d which is zero). Therefore, any numerical techniqu e 

that requires forward integration of the A multipliers (i.e. an initial 

value of A is assumed) is faced first with the problem of the correct 

end point at tb- and second, with making a new guess for A at tb+' A 

numerical technique which integrates the A multipliers backward reduces 

the problems at the boundaries to the correct determination of A at tb-
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(Although it would seem that the correct value of A at tb_ would be 

obtained for all those cases in which d at tb_ is non zero, the sheer 

fact that finite steps are used in the integration of both the state 

and adjoint equations may leave some doubt if the conditions at tb+ 

are 

d = n IV.3-1 

and 
s > h > O; s-small IV.3-2 

With exact integration should h be zero or not?) 

The second problem area to be considered in the determination 

of a suitable numerical technique is the fact, demonstrated in Chapter 

III, that the optimal control trajectory lies along constraint 

boundaries. As a result, the control cannot be determined from the 

control equations, which is the normal procedure. Thus, unless the 

problem can be fonnulated in a manner which ensures that the control 

can be determined from the control equations, the numerical solution 

must include some logic to determine first; which control is to be 

determined from whi~h constraint boundary; and second, which Lagrange 

multiplier (n ,y) is to be used to satisfy which control equation 

(recall that one multiplier may appear in several control equations). 

The first part is relatively simple, even for fairly large systems. 

The second when combined with the first requires complex logic for even 

a small (e.g. three reservoir) system. In addition,should a particular 

series of inflows to the reservoir system occur which has not been 

considered in development of the logic, then the numerical method may 

either breakdown completely, in which case no control is obtained, or 
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yield a sub-optimal control. For these reasons, a numerical technique 

\-Jhich allm1s the determination of the control directly from the control 

equations would be preferred, provided the necessary reformulation did 

not alter the basic structure of the problem. 

The final problem to be considered is that caused by non 

unique controls. If the problem formu lation given in Chapters II and 

III is used, difficulties may arise in determining when the control is 

non unique. Given that the control is non unique there is the further 

difficulty of dete rmining a control which satisfies the necessary 

conditions. Again it appears that it might be advantageous to reformulate 

the problem so that the possibility of non unique controls is avoided. 

IV.4 Numerical Methods Considered in Attempts to Solve the Necessary 

Conditions 

A. "Shooting Technique. 

One common method used to solve two point boundary value 

problems is to guess initial values of the A multipliers and then integrate 

the state and adjoint equations forward, one step at a time to tf. At 

each point in time the known values of the A multipliers and the state 

variables are used to determine new controls for the next integration 

step. The integrated values of the A's at tf are compared with the 

known values obtained from the transversality condition and if they do 

not agree within some tolerance limits, a new guess is made, (usually 

on the basis of the gradient dAtf/dAti). 

For the combined sewer problem this technique suffers from all 

the drawbacks discussed in the previous section and thus was considered 
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unsuitable. 

B. "Steepest Ascent Technique. 

There are many numerical techniques which fall into this 

category. The one tried in this study consisted of: initially guessing 

a time history for the orifice controls; integrating the state equations 

forward to tf' one step at a time using the assumed orifice control (the 

weir controls 1t1ere determined from the first derivative of the state 

variable constraint when d = Dmax); and then integrating the A multi-

pliers backward from tf' using the previously determined state variable 

path and the new A multipliers to determine a new set of controls at each 

time step. The procedure was then repeated from ti using the new 

control until, for two successive iterations, the same control was 

obtained (within tolerance limits). This method 1vas tried for the problems 

of two reservoirs in series and the three reservoir "V" configuration. 

Limited success was obtained for the two reservoir case. The first 

difficulty that had to be overcome was related to the controls after a 

reservoir started overflowing. If the state variables were not on the 

required boundaries for an optimal solution during this period, the y 

multipliers associated with the state variable constraints were zero and 

the remaining constraint boundaries available for control determination 

at each time step were sub-optimal. This problem was surmounted by 

programming additional logic into the forward integration of the state 

variables. After each reservoir started overflowing, this logic 

determined the optimal orifice operation until tf. Additional logic 

was also added to the reverse integration to determine the correct 
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multipliers to be associated with each control equation. The reverse 

integration then verified the control backward to the time each 

reservoir filled. Beyond this point it was possible to determine when 

the switch in orifice control from minimum to maximum occurred. 

However, even for the two reservoir problem, the solution tended to 

oscillate. If during one iteration the switch in the upstream orifice 

control occurred too ear ly, then the downstream reservoir filled after 

the optimum ti me. On the next iteration the reverse would be true. 

This oscillation was easily damped by limiting the change in the 

switching point. After that it was possible to obtain some numerical 

results. The results were limited because up to this time it was 

assumed that CASES 2 and 3 of Chapter III were extensions of CASE 
and thus only one possibility for the value of the A multipliers was 

assumed at tb_. 

Further work using this technique was stopped when it was 

realized that there were other possibilities for the values of the A 

multipliers at tb_. 

Aside from the difficulties in programming the logic, 

particularly that associated with the determination of which multi -

plier to use to satisfy which control equation, the program was 

computationally slow (partly as a result of the complex logic). Even 

if the technique could have been made to work successfully, it is 

doubtful that the computational time for a reasonable number of 

reservoirs would have been short enough for use in real-time control. 

(For the three reservoir problem, 1-2 minutes CDC 6400 computer time 

were required). 
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C. "Penalty Function" Technique. 

As pointed out earlier it might be beneficial to reformulate 

the problem in such a manner that the control can be determined from 

the control equations. In addition it would be desirable to eliminate 

the jumps in the A multipliers and, if possible eliminate the 

possibility of non unique controls. Such a reformulation, which 

maintains the essential points of the formulation given in Chapter II, 

is possible. It is accomplished by replacing each of the inequality 

constraints by new terms in the objective function. These terms are 

zero if the constraint that they replace is not violated; and increase 

in value very rapidly for any small violation of the constraint. 

For this study, all the control variable inequality constraints, 

which had the form: 

IV.4-1 

were replaced by terms in the objective function having the form 

where 

K(X)[X . X ] {(X-Xmin)(X-Xmax)} 2 
min' max 

IV.4-2 

K(X)[X X J min' max 
= O; 

K; 
if Xmin:X::Xmax 
if X<X . or X>X IV.4-3 m, n max 

(The second term in equation IV .4-2 \'/as squared to insure continuous 

first derivatives). 

In order to ensure that the control could be determined from 

the control equations it was necessary to replace the state variable 

inequality constraints which have the form 
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by penalty functions of the form 

K(d+a ot)[o O J{(d+dot-D . )(d+dot-o ) }2 
min' max mln max 

IV.4-4 

where 

d 

m 
L C0 ld.r. 2 + q(t) - C Id r2 - C h3/ 2 

. 1 . 11 D w 
1= 1 

IV.4-5 
= ---------=-A-rd-,-,---------

(which is equa tion II.4-3) and; ot is a small fixed time increment. 

Minimum limits greater than zero were required in all the 

penalty functions in order to avoid a saddle point solution when 

r, h or d equalled zero. 

The modified objective function now included a penalty function 

of the form outlined above for each inequality constraint in the 

formulation given in Chapter II. The differential constraints remained 

the same as those in Chapter II and were adjoined to the objective 

function with Lagrange multipliers (A). Because the state variable 

inequality constraints were eliminated,the A multipliers in the penalty 

function formulation were now continuous at all times. 

The penalty function formulation was combined with the steepest 

ascent technique in an attempt to solve the three reservoir 11 V11 problem. 

With this combination, no complex logic was required in the computer 

program to adjust the controls during the forward integration. 

Although the penalty function formulation appeared to eliminate 

many of the problems of the formulation presented in Chapter II, it 

brought forward new problems. The determination of the controls at 

each point in time required the simultaneous solution of six highly 
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non-linear equations. Solution of these equations was computationally 

slow (using Newton's Method) and it was very difficult to ensure 

convergence to a solution. This, however, was not as serious as the 

problems encountered with the integration of the A multipliers. The 

discontinuities in the A multipliers in the inequality constraint 

formulation were replaced by very rapid changes in the values of the 

A multipliers in the penalty function formulation. As the optimal 

solution was very sensitive to the values of the A multipliers, 

particularly if the magnitude of the multiplier became too great, it 

would have been necessary to reduce the time increment used for the 

integration to a very small value in order to obtain the required 

accuracy. This would have greatly increased the computational time 

as well as computer memory storage requirements. Even when satisfactory 

valuesof the A multipliers were obtained, the solution technique showed 

evidence of the same oscillation problems that appeared in the steepest 

ascent technique. As the numerical solution technique was already 

computationally too slow to be feasible for real time automatic control, 

it was felt that further work was not justified and this approach was 

abandoned. 

IV.5 An Alternative Approach to the Determination of an Optimal Control 

Another approach to the problem of solution of the necessary 

conditions is to divide the problem into two steps. The first step is 

to try and determine an optimal control for a given set of reservoirs and 

inflow data. In the second step, once this "optimal" control has been 

obtained and the resultant state variable trajectories determined, the 
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necessary conditions can be applied to ensure that the solution is in 

fact optimal. This method should reduce the oscillation problems that 

occurred with the steepest ascent technique and as the "optimum11 

conditions should exist on both sides of a state var iable boundary, 

there should be less problems determining the value of the \ multipliers 

at the tb- side of a jump. Also, it might be computationally much 

faster than the steepest ascent techni~ue as the reverse integration 

is performed onl y once to verify that the control satisfies the 
necessary conditions. The principle disadvantage of this method is 

that it would still require most of the logic of the steepest ascent 

technique. This means that the programmer must consider all possibilities 

of operation. To reduce the number of possibilities to a managable 

size this may mean that it would be necessary to write a new program for 

each reservoir system configuration and, for any system configuration, 

a new program for each different set of relative values of the weighting 

factors (e.g. if for the same reservoir configuration one case has z1 
greater than z2 and another case to be considered has z2 greater than 

z1 , then separate contro 1 programs might be re qui red). For rea 1 time 

control however thisis not a serious disadvantage as it is reasonable 

to assume that the reservoir configuration, and the overflow and 

throughput weighting factors, once determined, would remain fixed. It 

would be a disadvantage in the design stages of a project where both 

the configuration and the weighting factors might be altered. 

The prob 1 em of determining an '1optima l 1
1 contro 1 in the first 

step can be broken into two stages. First, for each reservoir orifice 

control r.(t) it is assumed that a jump in control from R (or the J max. 
J 
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maximum conduit capacity) to R. occurs at time X .. Second, if any min. J 
J 

reservoir fills to the point dJ. equals Dmax. say at time tb., then 
. J J 

after tb . , a set of reservoir operation rules must be devised wh ich 
J 

minimizes the sum of the wei ghted diversions from the system. The 

basis of these rules is given in Chapter III and is discussed in more 

detail in the next section. Given the set of operating rules, the 

problem is now reduced to the determination of the optimal switching 

ti mes , X . ( j = 1 , • • • , n ) . 
J 
That is, the problem is now 

Min cp 
n 

Z.c h.312 + , z c rr 2Jdt L ·+ D va . r. 
1 wi 1 j=l J n j J J 

IV. 5-1 

and for given values of the Z weighting factors this becomes 

IV.5-2 

This problem can be solved by a gradient search procedure 

(see for example Wilde and Beightler, 1967) to obtain those values of 

x. that minimize the objective function . With the known values of the 
J 

switching times Xj and the given operating rules, the control is fully 

determined. It remains to show that it satisfies the necessary 

conditions for an optimal control. Examnles of the use of this 

techniaue are given in Chapter V. The basis of the operating rules 

is discussed in section 6 of this chapter. 

If the operating rules are correctly formulated then the obvious 

question arises: is it necessary to ensure that the control satisfies 

the necessary conditions? First of all, the logic that determines 
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which of the TI and y multipliers should be used to satisfy which 

control equation during the reverse integration would be based on the· 

known form of the operating rules. Therefore, any error in the forward 

integration would be reflP.cted in a compensating error in the reverse 

integration. Second, the final check, which, by the above statements 

is almost assured of being satisfied, would increase the computational 

time and computer memory requirements and produce effectively no new 

usable information. Finally, even if the check did reveal that the 

operating rules did not produce an optimal control, there is not much that 

could be done during real time operation. For these reasons it was 

decided in this study not to proceed with the development of the check 

routine. 

IV.6 The Operating Rules for a System of Reservoirs 

A. The Weir Control. 

As noted in the examples given in Chapter III the weir control 

h. for reservoir j only operates when 
J 

d. = D. 
J .1 

IV.6-1 

Also, as noted in Chapter III, the operation of the weir under 

this condition is always such as to keep 

a. = a 
J IV.6-2 

This was true for all the examples cited in Chapter III, provided the 

assumption holds that for all time: 

h. < d. 
J J IV.6-3 
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(Cases where this assumption does not hold have not been discussed 

in this study). Under the above conditions,in all the examples 

cited, the orifice control was determined from some other equation. 

As any other method of weir operation leaves open the 

possibility that the full storage capacity of a reservoir may not be 

used, there is no reason to doubt the generality of the above 

procedure. 

B. The Orifice Controls. 

As demonstrated in Chapter III the optimal solution is always 

on constraint boundaries. The orifice control rj for any reservoir j 

appears only in the following constraints: 

q(t) + 

d. = 
J 

and 

(r.-R . )(r.-R ) < 0 
J m1nj J maxj 

m 
(CD ~ rk 2) + c0 Id. r. 2 l < 

. J J -k=l k J 
m 

CD l<lj// - 2 q(t) + l c0 ld.r. -
k=l k . J J J A. ( d.) 

l l 

2 q ( t) + CD la. r . 
j J J 

m 
+ l CD la r 2 -

p=l } p p 

IV.6-4 

Qmax IV.6-5 

h.3/2 C 
'v-1. J 

J IV.6-6 

C lc[ 2 C h 3/ 2 
D krk - k k wk 

IV.6-7 

where the subscript kin thelast equation represents the reservoir 

immediately downstream. It was pointed out in Chapter III, that 

multipliers are only available to allow the determination of r. from 
J 

equation IV.6-6 when 
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h. = 
J 

0 IV.6-8 

and 
d. = D IV.6-9 

J j 

Thus, unless reservoir j has filled and stopped overflowing the control 

r. must be determined from either equations IV.6-4, IV.6-5 or IV.6-7. 
J 

For reasons equivalent to the above, r. can only be determined 
J 

from equation IV.6-7 if 

= 0 IV.6-10 

and 
= IV.6-11 

As the reservoirs do not fill until sometime after the start of 

a storm, this means that initially the control rj must be determined 

from equations IV.6-4 or IV.6-5 (the latter may represent more than one 

equation). If the optimal control specifies the maximum output from 

reservoir j then the possible values for r. are 
J 

r . = 
J 

IV.6-12 

or r. equals the limiting value determined by equation IV.6-5. If the 
J 

optimal control specifies the minimum outflow from reservoir j then 

only equation IV.6-4 applies and 

r. 
J 

= R . min. 
J 

IV.6-13 

The examples worked in Chapter III showed that a jump in the control 

r. from a maximum value to a minimum value could occur at time X. 
J J 

where 
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t. < X. < tf 
l - J - IV.6-14 

Therefore, if the control is operated at its maximum value in 

the interval ti to X. and then switched to its minimum value after X. 
J J 

and, if in searching for an optimum, X. 
J 

is allowed to vary from t. to 
l . 

tf then there is no loss of generality. The control rj can be at a 

maximum value for all time, or until such time as it can be determined 

from equations IV.6-6 or IV.6-7; or r . can be a combination of the 
J 

above as determined by the switching time Xj. It should be noted from 

the examples given in Chapter III that for reservoirs in series having 

the downstream overflow weighting factor greater than the upstream 

weighting factor (and assuming that the throughput weighting factors 

are negligible in comparison) the necessary conditions required the 

switch in control x. for the upstream reservoir to occur before the 
J 

downstream reservoir fills. If this were not the case, then water 

\'JOuld be diverted from the do\'mstream reservoir that could have been 

diverted from the upstream reservoir at a smaller cost. 

For reservoirs operating in parallel and governed by a common 

flow constraint (equation III.6-5) at the outlet of the entire system, 

the examples of Chapter III showed that the total overflow from the 

system outlet is always the maximum possible. Thus, the switch in 

control is not from a maximum to a minimum position but from a 

dominant (i.e., first call on the conduit capacity) to a subservient 

position. Therefore, for two reservoirs in parallel it is only 

necessary to consider the switching time for one reservoir. The switch 

for the other reservoir must occur at the same time in the opposite 

direction. As demonstrated in the examples in Chapter III the reservoir 

with the highest overflow weighting factor will start at t. in the 
l 

dominant position. 
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In the examples examined in Chapter III, the only time when 

control rj could move off the boundaries given by equations IV.6-4 

and IV.6-5 was when reservoir j stopped overflowing, in which case the 

control could be determined from equation IV.6-6, or when the reservoir 

immediately downstream stopped overflowi ng, in which case the control 

could be determined from equation IV.6-7. The former, which results 

in a decrease in r., tan only occur if: r. was in a maximum position 
J J 

or; if rj had previously been determined from equation IV.6-7 which 

causes an increase in r. (this is a result of the assumption that once 
J 

a reservoir stops overfiowing the inflow hydrograph is monotonically 

decreasing). When reservoir j stops overflowing, the choice of 

decreasing rj (if possible) or increasing rupstream depends upon the 

location in the system of the reservoir with the highest overflow 

weighting factor that is still overflowing (or may overflow) and whose 

throughput can be increased by application of either equations IV.6-6 

or IV.6-7. Note that in either case this may cause a chain reaction 

throughout the system as for example in CASE 5 (the three reservoir 
11 V11 configuration) discussed in Chapter Ill. When reservoir 2 stops 

overflowing at t 8 , r2 is determined from 

IV.6-15 

This reduces the out fl ml/ from reservoir 2 and thus r 1 is determined 

from 

IV.6-16 

These two operations allow increased outflow from reservoir 3, the only 

reservoir in the system that is still overflm'ling. 
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Finally, if a reservoir stops overflowing, and cannot be 

operated to increase the outflow of a reservoir that is still 

overflowing (or may overflow), then it operates in a manner that 

maximizes the weighted system throughput (for example CASE 5, the 

interval t 10 to tf). 

The above operating rules have been based on the limited 

possibilities shown to exist for solution of the necessary conditions 

as exemplified by the examples given in Chapter III. By suitable 

choice of the switching times Xj for the switch in each reservoir 

control, each reservoir can be made to fill if possible (i.e., if the 

inflow qj(t) is great enough). Thus, the maximum storage capacity of 

each reservoir will be utilized. The operational procedure after each 

reservoir stops overflowing, assures that the storage in each reservoir 

is not reduced to the detriment of reservoirs that are still overflowing, 

or may still overflow. At their worst, (i.e., violation of the 

requirement of monotonicity of the inflow hydrograph after a reservoir 

has stopped overflowing) these rules will minimize total system over-

flow. At best, they will insure that the weighted overflow from the 

system is minimized once the optimum switching times have been determined. 

IV.7 Comments on the Alternative Approach to the Detennination of 

an Optimal Control 

At the start of this chapter several criteria were outlined that 

should be met by a numerical solution to the control problem. It is 

worthwhile to compare the proposed solution technique with these 

criteria. 
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In the following chapter it is shown that using the proposed 

system for determination of an optimal control the time available for 

the determinat ion of an optimal control (two minutes ) would allow real 

time control for a system having up to twenty reservoirs. (The 

Minneapolis - St. Paul system has 18 control points (Minneapolis - St. 

Paul Sanitary District, 1970)). Although the rules proposed do not 

guarantee a global optimum, they do ensure a reasonable control. The 

studies outlined in the next chapter revealed no problems with 

convergence to a solution. In addition the computer programs required 

very little computer memory storage. 
Although the proposed procedure is easily adaptable to complex 

weirs and orifices at regulator structures, it does not have complete 

adaptability to control device failures. If an orifice became locked 

in one position there is no problem of immediate adaptation since the 

problem becomes for rk, the locked orifice. 

IV.7-1 

which is still within the original format of the problem. If a weir 

control becomes blocked in one position, the best adaptation might be 

to reduce Dmax for that reservoir so as to increase the storage safety 

margin; however, the computed control would r.ot be optimal. If it 

suddenly became desirable to change the relative values of the weighting 

factors, then unless the control programs were completely general (i.e., 

capable of determining an optimum for any set of overflow weighting 

factors) such a change might not always be immediately possible. 

(Experience indicates, however, that at least some generality is possible). 
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CHAPTER V 

NUMERICAL RESULTS 

V.l Introduction 

In this chapter,optimal control strategies obtained numerically 

for two different reservoir configurations are presented and discussed. 

The control logic used for these examples was based on the operational 

rules discussed in Chapter IV in combination with a first order 

gradient search technique. The first example presented is a control 

strategy for a system of four reservoirs in series. This system, 

although relatively simple, was chosen in order to gain experience in 
programming the necessary logic. The second example consists of a 

system of ten reservoirs and was chosen to illustrate the fact that 

the optimal control for a reasonably complex system could be determined 

rapidly enough for real time operation. A final example is presented 

showing the optimal control for a system of three reservoirs in the 11 V11 

configuration. This solution, obtained by use of a steepest ascent 

technique, is included to show the effect that information errors 

may have on the optimality of a control. 

V.2 Optimal Control Strategies for Four Reservoirs in Series 

The system analyzed is shown in Figure v.1. The program logic 

was based on the operating procedures discussed in Chapter IV and the 

optimization of the switching times (Xi) was accomplished by means of a 
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first order gradient search technique. The experience and insight 

gained using the four reservoirs in series program resulted in less 

complex logic in the ten reservoir program. Therefore only the logic 

and solution procedure for the ten reservoir problem are discussed in 

detail. 

The relative values of the weighting factors considered for 

the four reservoir problem were 

V. 2-1 

q. (t) = inflow hydrograph 
1 

Q = flow constant max. 
1 

Fig. V.l The Four Reservoir System 

where z1 , ... ,z4 were the overflow l-Jei ghti ng factors; and 

V.2-2 
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where z5, .... ,z8 were the throughput weighting factors for reservoirs 1 

to 4 respectively . In addition 

V.2-3 

These were equivalent to the limitations given in Chapter III to 

prevent the possibility of inadvertently changing the overflow 

priorities of the system by making the magnitude of a throughput 

weighting factor too large. Note in this example that the most 

upstream overflow weighting factor was greater than that for the 

reservoir directly downstream. In this case the switch in control 

for reservoir 4 could occur after reservoir 3 started overflowing. 

It was assumed that 

R . = 0 min; (i = 1 , ... ,4) V.2-4 

for all reservoirs. 

Twelve trials were made with this program using different input 

hydrographs, overflow and throughput weighting factors, reservoir sizes, 

and initial switching times. Typical solution times for fifty time 

increments were in the order of eight seconds using an IBM model 60-67 

computer under the control of an MTS operating system. No attempts were 

made to decrease these computational times although, as pointed out 

later in the discussion of the ten reservoir example, there were several 

obvious ways in which the computational time could have been considerably 

reduced. The maximum number of iterations required for convergence of 

any individual control determination was ten. For all cases the 

convergence was very stable, even when the optimal control required that 
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a reservoirfill but not overflow. (In actual fact, there was always 

a slight overflow in these cases but it was always the minimum that 

could be obtained for the given integration step size). 

Reservoir dl Reservoir d2 
6 1 6 2 

4 rl 4 r2 
2 hl 2 

+-' 0 0 
~ 0 10 20 30 40 50 
1-, .. 

d4 ..c: .. Reservoir Reservoir "'06 
3 6 4 

4 
2 
0 

0 10 20 30 40 10 20 30 40 50 
Time increments 

Fig. V.2 Control Strategy for Four Reservoirs in Series 
with a Small Difference Between Overflow 

Weighting Factors 

Figure V.2 shows the results of a typical optimal control 

determination. Pertinent data for the example is listed in Table V.l. 

In this example the overflow weighting factors were such that it was 

Table V.l 

Data for Example #1 

Reservoir Number 1 
Overflow Weighting Factor 3.00 
Throughput Weighting Factor -0.30 
Maximum Allowable Depth 5.50 
Maximum Allowable Orifice Opening 3.0 

2 
2.75 

-0.27 
5.50 
3.0 

3 
2.50 

-0.25 
5.75 
3.0 

4 
2.67 

-0.26 
6.0 
3.0 



114 

advantageous to increase the outflow from reservoir 2 so that reservoir 

l spilled, even though reservoir l had a higher overflow weighting 

factor. A similar effect is evident for the flow between reservoirs 

2 and 3. It was not advantageous to allow overflow from reservoir 4 

and its outflow was the maximum permissable until t equalled 35 units 

at which point it could begin withholding outflow to the advantage of 

the downstream reservoirs. Although the inflows to reservoir 3 were 

still too great to prevent overflow when t equalled 50 units, the 

remaining reservoirs in the system were being operated to the maximum 

advantage of reservoir 3 at this time. Eventually as the inflows 

decreased with time, all the orifices would have opened to their 

maximum limits. 

Reservoir Reservoir 2 d2 
6 

1 1 4 
2 hl 

...,o 
~ 0 10 20 30 40 50 0 10 20 30 40 50 I 
H 
~ 

..c: d4 ~ Reservoir d3 Reservoir "Cl 

6 3 6 4 

4 4 
2 2 
0 0 

0 10 20 30 40 50 0 10 20 30 40 50 
Time increments 

Fig. V.3 Control Strategy for Four Reservoirs in Series 
with a Large Difference Between Overflow 

Weighting Factors 
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Figure V.3 shows the control solution when the differences 

between the individual weighting factors were increased to the values 

shown in Table V.2. All other data was the same as in the previous 

example. In this case it was not advantageous to spill from reservoir 

1. The spill that is shown was a result of the numerical inaccuracy. 

Had orifice 2 closed one time increment sooner, reservoir 1 would 

Table V.2 

Weighting Factors for Example #2 

Reservoir Number 
Overflow Weighting Factor 
Throughput Weighting Factor 

1 
6.0 

-0.60 

2 
4.0 

-0.40 

3 
2.0 

-o.2n 
4 

3.0 
-0.30 

not have filled. Because the logic was programmed so that once orifice 

2 closed it could only be opened if reservoir 1 filled, the optimal 

solution required small overflow from reservoir 1. If smaller time 

steps had been used, this overflow would have been reduced. Note that 

orifice 3 remained closed for almost the entire time for which the 

control was computed and as a result filled to capacity much sooner 

than in the previous example. In this example the spill from reservoirs 

2 and 3 was increased over that in the previous example while that 

from reservoir 1 was reduced, as would be expected. 

V.3 The Ten Reservoir Example 

A. The System. 

A.s the preliminary results from the four reservoir case indicated 

that the control logic could be programmed without too much difficulty and 
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that the gradient search technique would find the optimal switching times 

in a stable manner, experiments were tried using a larger and more 

complex configuration. This configuration, consisting of ten storage 

locations, is shown in Figure V.4. ~ote that it contains as subsets 

the three reservoir "V" and "Y" configurations, and series configurations. 

The relative values of the overflow weighting factors for which this 

program was written are shown in Table V.3. 

q. = inflow hydrograph 
l 

Q = flow constraint max. 
l 

reservoir number 

i 23 = overflow weighting factor 

23+lO = throughput weighting factor 

Fig. V.4 The Ten Reservoir System 
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Table V.3 

Relative Values of the Overflow Weighting Factors 
for the Ten Reservoir Problem 

For left hand branch 

For the right hand branch 

For the entire system 

Z1 >Z2 >Z4 >Z3 

Z5>Z6>Z7>Zg >Z8>z10 
Z1>Z2>Z5>Z4>Z6>Z3>Z7>Zg >Z8>z10 

As was the case for the previous examples,the absolute valu~of the 

throughput we ' ghting factors were made small in comparison to the 

overflow \oJeighting factors for the individual reservoirs. 

Note that the left hand branch is similar to the four reservoir 

example; however, some of the overflow weighting factors for the right 

hand branch are larger than some of the overflow weighting factors in 

the left hand branch. 

B. The Control Logic. 

Figure V.5 shows a simplified flow diagram of the logic used 

to determine the control, given the times Xi at which jumps occur in 

the controls. For reservoirs 1and51vhich are in a "V" configuration 

the switching times for reservoirs 1 and 5 were both included to allow 

more generality. If at any time both controls were specified to be 

dominant or both subservient then the control for reservoir l assumed 

the dominant positi on. Reservoirs 7 and 8 which form part of a "Y'' 

configuration each required the specification of a switching time as 

reservoir 6 downstream could require them to shut down at separate 

times (recall CASE 6 i n Chapter III). Thus a total of ten switching 

times had to be specifi ed. 

The integration of the state equations was accomplished by a 
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READ AND WRITE DATA 

COMPUTE PARAMETERS COMMON 
TO ALL RUNS 

INTERPOLATE POINTS ON INFLOW 
HYDROGRAPHS (QIN (K,J)) 

SECTION B - EVALUATION OF THE OBJECTIVE FUNCTION 

INITIALIZE VARIABLES 

DETERMINE INITIAL ORIFICE 
OPERATING MODES (ICLOSE (1)) 

DETERMINE INITIAL CALCULATION 
ORDER FOR ORIFICE FLOWS (INEXT(I)) 

SET ORIFICE THROUGH PUTS = 0 (QTHRU (J) 

CHECK FOR CHANGE IN DOMINANCE BETWEEN 
ORIFICES 1 AND 5: ADJUST IF NECESSARY 

ICLOSE(K) = 1 ICLOSE (K) = 5 

QTHRU(K) EQUALS MAX . 
ALLOWABLE OUTFLOW (DEFINED 
BY LESSER OF QMAX OR RMAX) 

QTHRU(K) EQUALS MAXIMUM 
ALLOWABLE OUTFLOW 

(SUBSERVIENT) 

w 
"' 0 _, 
u 

QTHRU(K) DETERMINED 
ON BASIS D(K) =O 

QTHRU(K) DETERMINE O ON 
BASIS D(DOWNSTREAM) = O 

Fig. V.5 Simplified Flow Diagram of Logic Used to Determine 
Control Strategy for Given X. 

l 



ICLOSE(5) = 1 
ICLOSE(1 ) = 5 

Fig. V.5 continued 
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119 

RESET VALUES OF ICLOSE 
FOR SYSTEM 

INTEGRATE DEPTH ONE TIME 
INCREMENT DN (K) = D(K) + b • DT 

DETERMINE LIMITS OF SEARCH FOR 
RESERVOIRS THAT MAY BE AIDED 

FIND LIMITS UPSTREAM 

FIND LIMITS DOWNSTREAM 

YES 

JZCNT = 0 

YES 

NO 

YES 



J = J + 1 

GOTO A 
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FIND LIMITS FOR PARALLEL RESERVOIRS 

SEARCH WITHIN LIMITS FOR RESERVOIR 
IMAX WITH HIGHEST OVERFLOW 

WEIGHTING FACTOR AND IOVER.NE .3 

RESET VALUES OF I CLOSE FOR SYSTEM 
ACCORDING TO VALUES OF IMAX AND K 

DETERMINE NEW ORDER OF CALCULATION 
1. COMPUTE THOSE RESERVOIRS WITH 

ICLOSE = 1 OR ICLOSE = 3 AND R = RMAX 
2. COMPUTE THOSE RESERVOIRS WITH ICLOSE = 2 
3. COMPUTE THOSE RESERVOIRS WITH ICLOSE = 4 

YES 

DO IN ORDER OF DECREASING RESERVOIR NUMBER 
4. COMPUTE THOSE RESERVOIRS WITH ICLOSE = 3 

DO IN ORDER OF INCREASING RESERVOIR NUMBER 

10 
PH1Z = PH1Z + E (Z(K + 10) • OTHRU(K) + Z(K) • OOVER(K)) 

K=1 

NO 

NO 

WRITE OUT DATA FOR 
TIME STEP 

T = T + DT 

RETURN 

Fig . V.5 continued 
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first order technique (i.e. the known state and control variables at 

time T were used to compute the state variables at time T + OT) . This 

meant that the controls at time T first had to be determined. To do 

this five forms of orifice operation were defined: 

if: 

type 1 t he orifice was at its maximum allowable opening 

or at a limit determined by a downstream flow 

constraint; 

type 2 - the orifice was at its minimum opening (which was 

assumed to be zero in this example); 

type 3 - the orifice was controlled by the downstream 

reservoir in a manner that maintained a(downstream)=O; 

type 4 - the orifice was controlled to maintain d = O; 

type 5 - the orifice was maintained at the maximum opening 

that would ensure the full use of the conduit 

capacity remaining after another parallel reservoir 

had taken first priority on the flow capacity. 

This was used for reservoirs 1 and 5. 

If the orifice operation was type 1, which was always the case 

T < X. 
1 

V. 3-1 

(where Xi is the time at which a jump in the orifice control for 

reservoir i could occur) then no change to any other form of operation 

could occur. This was done to ensure that during the gradient search 

process any perturbation of Xi would produce a meaningful derivative. 

To aid the convergence procedure, and reduce the programming 

problems, use was made of the fact shown in the examples of Chapter III 
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that if a reservoir was overflowing, and the reservoir upstream had a 

lower overflow weighting factor, then the upstream orifice would be 

closed. This lead to inclusion in the program of a section that 

adjusted the switching times Xi at the start of each iteration in the 

gradient search process to ensure that such would be the case. (An 

exception to this adjustment was made in the case of reservoirs seven 

and eight since the possibility existed that one orifice might not 

be required to close - see example in Appendix 1V). 

Given the type of orifice operation, the order of calculation 

for each reservoir outflow was then determined to ensure that all 

necessary information was available before a reservoir outflow was 

calculated. Thus reservoir outflows for orifices with operations 

type 1, or type 2 were computed first followed by those orifices with 

operation type 4. The order of calculation for orifices with type 4 

operation had to be further refined to progress downstream. Reservoirs 

with orifice operation type 5 could then be computed followed, finally, 

by those with type 3 operation which were calculated in order 

progressing upstream. 

With the orifice operation types determined, the throughputs for 

each reservoir were determined and checks were made to ensure that no 

constraints were violated. The state equations were then integrated 

one time step (OT) forward by assuming that all the weir controls were 

zero. If the new value of di for any reservoir i exceeded the limit 

D then h. was increased to ensure that: max. , , , 
d. = , D max. , 
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If the old value of d
1
. was equal to D and the new value of d

1
. was max. 

1 
less than Dmax. then reservoir i had stopped overflowing and its 

1 
orifice operation could be altered, if necessary, to aid some other 

reservoir in the system. First it was necessary to determine which 

reservoirs could be aided.(E.g. an upstream reservoir with its orifice 

already fully open could not be aided, nor could any reservoir further 

upstream. Likewise reservoirs downstream of a reservoir with its 

orifice fully open could not be aided unless Twas greater than the 

switching time for that reservoir). Having defined the range of 

reservoirs whose overflow might possibly be reduced, a search was made 

among those reservoirs for the one with the highest overflow weighting 

factor, that had not stopped overflowing. (This included those reservoirs 

that had not yet begun to overflow). The orifice operations were then 

adjusted accordingly (e.g., if the reservoir that could be aided was in 

a parallel branch then the orifices of all reservoirs downstream of 

reservoir i to the junction of the parallel group of reservoirs were 

adjusted to type 4 operation. Those parallel reservoirs upstream from 

the junction and including the reservoir to be aided had their orifice 

operations changed to type 3). l~ith the change in the orifice operations 

it was necessary to change the order of calculation to the form outlined 

earlier. After this step was completed all the throughputs for the time 

step were recomputed and new integrated values of the state variables 

determined. At the completion of each time step, the weighted overflows 

and throughputs for the time step were added to the objective function. 

The entire process was then repeated successively until the final time 

limit. At this time the value of the objective function for given 

values of x. was known. 
1 
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A listing of this subroutine (SUBROUTINE PHI) is given in 

Appendix VI). 

C. The Gradient Search Routine. 

A complete description of the first order gradient search 

procedure is given by Wilde and Beightler (1967). A brief outline 

of this procedure as used to determine the optimal control strategy is 

given below. 

To determine the optimum values of the switching times \, a 

first order gradient search routine was programmed for the computer. 

For a given set of switching tirres (X~) this routine first determined 

the rate of change of the objective function( ¢) with respect to each 

Xi. This was accomplished by perturbing each Xi by -OT and computing 

a new value of the objective function for each perturbation (-OT was 

used because of the requirement that ari orifice close if the reservoir 

downstream had a higher overflow weighting factor and began to overflow). 

100 - ? 100 
80 80 ....... 

,µ 60 ... 60 .:: ' Q) 40 ' 40 s ' Q) ' i-.. 20 ' 20 () ' .:: 0 0 .,..; 

Q) 0 10 20 30 40 s 50 0 10 20 30 40 50 
.,..; 
,µ 100 t:qg 100 ......... 
Q) 80 • .. /q8 80 g Ao ..... . , ' ..... 60 I , . 60 0 , ' ', > 40 . , .. ' 40 / , ' ' , 7 ..... 

' 20 . .,,,,.,...· , -- __ , 20 qlO 
0 0 

0 10 20 30 40 50 0 10 20 30 40 50 
Time increments 

Fig. V.6 Inflow Hydrographs for the Ten Reservoir Example 
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Fig . V.7 The Op timal Control Strategy for the Ten Rese r vo; r 
Examrle 
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For a given reduction r in the objective function, this 

routine then determined new values of X. (X!) on the basis of the 
l l 

gradient at X~ and checked that the objective function had in fact 

been reduced. If it happened that the objective function was not 

reduced, then the amount of the desired reduction, r , was decreased 

until either: a reduction in the objective function was obtained or; 

r had been reduced to a size such that only one of the X!, say xr, 
l l 

differed from X~ by an amount OT. In the latter case, if the objective 
l 

function had still not been reduced, the derivative of xf was assumed 

to be zero. The desired reduction r was then increased and the iteration 

was continued with the remaining Xi until either: the objective function 

was decreased or; until all the derivatives were zero. (Because of the 

finite time steps, zero in this case meant that~*· changed signs for 
l 

perturbations either side of each variable Xi). 

Several test runs showed that if a derivative was zero during 

one iteration, then in successive iterations, it was likely to remain 

so, even though other variables might change by relatively large amounts. 

As a result, once the derivative of a variable became zero, that variable 

was dropped from further computations until all derivatives were zero. 

At this point computations were again made for all the switching times 

and any final adjustments in the variables Xi were made. The net effect 

of this change was to reduce the computation time by about one half. 

D. Numerical Results. 

Figure V.6 shows the input hydrographs and Figure V.7 shows the 

resulting computed optimal control strategy for the ten reservoir 

system. The necessary constants for each individual reservoir are 
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shown in Table V.4. All the flow constraints (Q a ) were set at 95 cfs m x. 
l 

except Qmax , which was set at 165 cfs and Qmax , which was set at 195 
1 5 

cfs. 

Table V.4 

Data for the Ten Reservoir Example 

Reservoir No: 2 3 4 5 6 7 8 9 10 
Overflow Heighting Factor 10.0 9.30 6.50 7 .90 8.60 7.20 5.80 4.40 5.10 3.70 
Throughput Heighting Factor -.060 -.059 -.055 - .057 -.058 - .056 -.054 -.052 -.053 - .051 
Co 2.50 2.00 2.00 2.00 2 .50 2.00 2.00 2.00 2.00 2.00 

15.0 15.0 15.0 15.0 15 .0 15.0 15.0 15.0 15.0 15.0 

80+50d 8o+50d 50+80d 50+80d 50+80d 50+80d 50+80d 50+80d 50+80d 50+80d 

The results showed that the overflows from reservoirs 1 , 2, 4, 

5, 6 and 9 were as close to zero as the numerical accuracy of the program 

would allow. The overflow from the system occurred from reservoirs 3, 

7, 8 and 10. At first glance it appeared that the overflow from reservoir 

3 could be reduced at the expense of reservoir 7, which had a lower 

overflow weighting factor, by maintaining orifice 1 in the dominant 

position for a longer time and thus increasing the flow through reservoirs 

1, 2 and 3. In fact this would probably have been the case if shorter 

time steps were used; however, any attempts to improve on this control 

were offset by the numerical accuracy of the program. It appeared that 

the objective funct ion might have been reduced by about 50 units if the 

control had been exact, which was a small amount when compared to the 

total reduction in the objective function for this run of about 16,500 
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units. Note that all reservoirs in the system filled and remained 

filled until all system overflow had ceased; thus any effects of 

decreasing the spill from one reservoir would have been at the expense 

of overflowing from another reservoir in the system. The net effect 

would therefore have been equal to the reduction in overflow volume 

from the first reservoir times the difference between the overflow 

weighting factors of the two reservoirs. 

It is worth noting in this example that the inflow q4 to 

reservoir 3 was not monotonic decreasing after reservoir 3 stopped 

overflowing. Because reservoir 4 was completely shut down while q4 
was increasing, this did not lead to a sub-optimal control. 

The above example was typical of the type of control strategies 

obtained. Other examples showing the results of different input hydro-

graphs, flow constraints and weighting factors are shown in Appendices 

IV and V. 

E. Operating Experiences and Computational Times for the Ten 

Reservoir Control Program. 

The only difficulties experienced with the control program were 

the sub-optimality that could be attributed to numerical accuracy and 

certain cases of sub-optimality that could be attributed to the use of a 

first-order gradient search technique. These latter cases, invariably 

occurred when the relative values of the overflow weighting factors 

between two reservoirs in series were such that the optimal control 

required that the downstream reservoir fill but not overflow. When this 

condition was reached during the iterative process, any perturbation of 

the upstream swttching time alone would result in an increase in the 

objective function. If the switching time were decreased there would 



129 

be increased ove r flow for the upst ream reservoir and incomple t e 

utilization of t he storage downstream .. If the switching t ime were 

increased overflow would occur downstream at a higher penalty than if 

it had occurred ups t ream. Had higher order derivatives been used, 
' the simultaneous movement of several controls might have resulted in 

an overall reduction of the objective function. The final con t rol 

obtained in these cases, although sub-optimal, still resulted in the 

full use of the system storage capacity and the majority of t he 

overflow occurred from the reservoirs with the lowest overflow wei ghting 

factors; however, the distribution of overflow between those reservoirs 

that overflowed could have been improved. The example shown in Figure 

V. 7 shows this effect although in this case numerical accuracy was the 

over-riding factor. 

The normal operating times for the ten reservoir control 

program for 50 time steps were about 50 seconds using an IBM Model 

60-67 computer with an MTS operating system. The maximum time for any 

run was 58 seconds. The core storage required by the gradient search 

routine and the control program was a total of 22,406 bytes 

(Approximately 5,500 words). 

As mentioned previously the computational time could be 

significantly reduced. The reduction obtained by modifications to 

the gradient search routine have previously been discussed. Further 

reductions in the computational time could have been obtained by: 

a) revising the procedure for calculating the numerical 

derivatives. Each derivative calculation required 

operation of the control program from time zero. A 
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reduction of 30-40% in computational time could have 

been obtained by storing the results up to each 

switching time when computing the base value of the 

objective function. Computation of the perturbed 

values of the objective function could have then been 

computed for only the time span after the base value 

switch in control occurred. 

b) using longer time steps during the initial stages of the 

optimization process. Only during the latter stages of 

the optimization was it necessary to compute the control 

to the final accuracy desired. Tests indicated that this 

would have lead to a further reduction in computation 

time of about 30%. 

c) increasing the convergence tolerance. For the results 

presented herein, the convergence criterion was that all 

derivatives with respect to the switchin9 times be zero 

(i.e. a perturbation either way from the base value of the 

switching times resulted in a change in sign of the 

derivative). Typically a first order gradient technique 

will get close to the optimum very rapidly and then its 

approach is very slow. For example, in obtaining the 

results shown in Figure V.7, 80% of the reduction in the 

objective function was obtained in the first 10 iterations. 

Another 10 iterations were required to reach the minimum . 

value. 
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Thus so~e further saving in computational time could have 

been obta ined by relaxing the convergence criterion. 

Althou gh optimizati on techniques other than the first order 

grad ient techniq ue may have been more efficient, the results obtained 

using t he first order gradient technique showed that the computational 

times would be w·thin the limits required for real-time operation. 

Further examination of optimization techniques was beyond the scope of 

this study . 

The com~u ta t ional time required fo r sys tems larger than 10 

reservoirs can only be estimated. Indications are that the computational 

time would increase in the order of the 2.5 power of the number of orifice 

controls. Thus if no improvements are made in the operating efficiency 

of the optimization process, the computa tional time for 50 time steps for 

a system hav· g 2 orifice control s would be in the order of 280 seconds. 

With the suggested operating improvements this coul d be reduced to 140 

seconds for a system of 20 reservoirs. This is about the upper limit of 

the time avai a e fr real-time control determinat ion. 

F. Development of a More General Control Program. 

The cont rol prog r am escr i bed above was initially designed to 

dete m' ne t e co tro fo r the specific configuration and relative values 

of the overflow we·g ti g fa ct rs discussed at the beginni ng of this 

section. As ~he program was developed, it appeared that it cou d be 

mod i f'ed to be more flexib e in the choice of the relative values of the 

weig t ing facto rs . The flow chart shown in Fi gu re V.5 is that of the 

revised prog am. For the gi ven reservoir configu rat ion it i s beli eved to 

be complete ly general w·~n respec t to t he re l ati ve values of the overflow 
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weighting factors except for the restriction that z7 be greater than z8 
(assuming that the throughput factors are very small in comparison). 

This former restriction was not removed because the manner in which the 

original program was set up was not amenable to simple change. Some 

results using relative values of the overflow weighting factors other 

than those listed in Table V.3 are given in Appendix V. 

Although no attempt was made to write a control program which 

would be capable of determining the control for any given configuration 

of reservoirs, there do not appear to be any serious difficulties 

preventing the writing of such a program. The greatest difficulty would 

seem to be in determining the dominance and subservience of the orifice 

controls for more than two reservoirs in parallel. This condition, 

which has not been investigated in this study should be examined before 

any attempt is made to write a more general control program. 

V.4 An Example of the Effect of Information Errors on Control Optimality 

The results discussed below are presented in more detail in a 

paper by Bell, Johnson and Winn (1973). In this part of the study an 

attempt was made to gain some insight into the effects of information 

errors on the accuracy of the computed control. 

To determine the effects of information errors it was necessary 

to develop a model of a real-time automated control system (RTACS). 

This development is discussed by Bell, Winn and Smith (1972). The 

flow chart of the RTACS model is shown in Figure V.8. The information 

errors considered were those resulting from the regeneration of a time 

varying field of rainfall data from point rainfall data. The 
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prediction model for rainfall runoff in the control algorithm and 

the rainfall runoff model in the physical system were identical. 

Error Generat i on 
Sensors 

Rain fal 1 Predict ion Opt ima l 
Regene r at ion Mode l Cent ro l Logic 

Rai nfall Rwioff 

Contro l 
Al gori : hm 

Error Genera- Cont rol Error ----- - --, 
Point Rai nfal 1 · 

Rain Storm 
Enter ed as 

Grid of Points 

Rainfall 
Integrated 

I 

I 
L _____ _ 

True Average 
Ra i nfa ll Over 
Suba reas of 
Runoff Model 

t i on Sensors Generation 

Rainfall 
Runoff 

Mode l 

Transport 
(sewer routing) 

Mode l 

Fig. V.8 Elements of the RTACS Model 

t-
Phys i cal 
Syst e:n 

The basi n analyzed is shown in Figure V.9. The sewer system 

draining this basin has three flow control points and is anal ogous to 

the three reservoir 11 V" configuration discussed in Chapter III. The 

conduits between reservoirs are short enough that the time delays in the 

flow can be neglected. 

The assumed rainstorm shown in Figure V. 10 travelled westward 

across the basin at a rate of 250 feet per minute. The rainfall 

intensity i,.1as assumed to be constant in the north-south di rec ti on and 

the western edge of the storm was assumed to be on the eastern edge of 

the catchment at t = 0. It took 50 minutes for the storm to pass 

completely over the basin. 

The rainfall was recorded at raingauge Bon Figure V.9. To 

determine the rainfall to be used for input to the prediction model for 

rainfall runoff in the control algorithm, two rainfall regeneration 
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models were used. The first model assumed that the point rainfall 

recorded at raingauge B was constant over the entire basin. The 

second model assumed that the rainfall intensity recorded at raingauge 

B would occur over each of the subcatchments at time t + T. where T. 
1 1 

,--. 
+-' 

LEGEND 

- Direction of Drainage 
G) Subcatchment Number 

®] Entry Point for Sewer System Input ~ 
<Q Flow Control Point 

~ Sewer Element 

- - -- Gutter or Pipe 
• Rain Gauge 

9000 @ Land Use Pat:amet~r 

r ·--
8000 1 

7000 ______ , @ 

6000 '@ 
B* 

~ 5000 
> 

4000 

300 @ 

2000 © 
(}) 

I000+--~-~------.------.------,..---...-
0 2000 4000 6000 

X(ft) 

Fig. V.9 The Physical System 

was defined for each subcatchment as the time for the storm to move 

from over the raingauge to the center of subcatchment i. These time 

delays are listed in Table V.5. The resultant input hydrographs to the 
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control model resulting from these regeneration models are shown in 

Figure V.11. The true runoff input to the transport (sewer routing) 

model is shown in Figure V.12. It is the sum of the dry weather flow 

plus the runoff computed using the true average rainfall over the 

subareas of the runoff model. The true runoff was used in all tests 

as input to the transport model. 

3 Storm Travels Westward 
~ Undiminished at 250 ft/min 
..c 
.......... 
~ 

·.-I 
'-' 

0 +-.....--...--.....----..--..--.....-,---,...--,---,.---,.---,.--,.--1---.----.----.---........ "T-...,....;::i.. 

0 2 4 6 8 10 12 14 16 18 20 22 24 
Time (minutes) 

Fig. V.10 The Assumed Rain Storm 
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Table V.5 

Time Delays for Rainfall Regeneration Based on Rainfall at Gauge B 

Sub catchment 
Number 

1 
2 
3 
4 
5 
6 

Distance of Subcatchment 
from Rain Gauge B (ft) 

5350 
6100 
2100 
3900 
1700 
1900 

Time Delay 
T; (min) 

22 
24 
8 

16 
6 
8 

Three tests were made. In the first test the optimal control 

was computed using the true runoff and then this control was used to 

operate the controls in the transport model. The second test used the 

runoff computed from raingauge B data (untranslated) as input to the 

optimal control logic. Again the computed control was used to 

operate the transport model. The final test followed the same procedure 

using the runoff computed from translated raingauge B data. In each 

case the optimal control was determined using a steepest ascent 

technique. 

Table V.6 shows a comparison of the results predicted by the 

control program and the actual results obtained when the control was 

used in the transport model for each of the cases examined. 

Table V.6 

Comparison of the Effects of Information Errors on 
Control Strategies 

Optimal Control Based Control Physical System 
on True Runoff Program Model 

Maximum depth at Pt 2 13. 00 ft 13.02 ft 
Maximum depth at Pt 1 8.50 ft 8.60 ft 
Maximum depth at Pt 3 8.50 ft 8.59 ft 
Total Overflow Volume at Pt 2 26,000 ft3 27,400 ft 3 
Total Overflow Volume at Pt 1 2,740 ft3 3,560 ft3 



Total Overflow Volume at Pt 3 
Maxi mum Out fl ow Pt 2 & Pt 3 
Maximum Outflow Pt l 

Optimal Control Based on 
Rain Gauge B Data 

Maximum Depth at Pt 2 
Maximum Depth at Pt l 
Maximum Depth at Pt 3 
Total Overflow Volume at Pt 2 
Total Overflow Volume at Pt l 
Total Overflow Volume at Pt 3 
Maximum Outflow Pt l & Pt 3 
Maximum Outflow Pt 2 

Optimal Control Based on 
Rain Gauge B Data 

Translated 

Maximum Depth at Pt 2 
Maximum Depth at Pt 1 
Maximum Depth at Pt 3 
Total Overflow Volume at Pt 2 
Total Overflow Volume at Pt 1 
Total Overflow Volume at Pt 3 
Maximum Outflow Pt 1 & Pt 3 
Maximum Outflow Pt 2 
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Table V.5 continued 

18,200 ft3 
92 cfs 

16. 7 cfs 

13.00 ft 
8.50 ft 
8.50 ft 

7,650 ft3 
0 ft3 

23,700 ft 3 
92 cfs 

16.7 cfs 

13. 00 ft 
8.17 ft 
8.50 ft 

370 ft3 
0 ft3 

15,100 ft3 
92.0 cfs 
16.7 cfs 

19,400 n 3 
92 cfs 
17 cfs 

14.12 ft 
9.08 ft 
8.96 ft 

30,600 ft3 
12,800 ft 3 
18, l 00 ft3 

94.5 cfs 
21 cfs 

13.64 ft 
8.73 ft 
8.87 ft 

14,700 ft 3 
3.580 ft 3 

16,700 ft 3 
95 cfs 

20. 4 cfs 

Considering the differences between the mathematical model in 

the control logic and the transport model, the agreement obtai ned 

between the two models when the true runoff \'Jas used fo r contra l is 

surprisingly good. 

Although the contr~ using data from raingauge B t ranslated 

produced the lowest overflow volumes, it did so at the expense of 

violating all the depth and flow constraints. This resulted from the 

fact that the control runoff model did not include the dry weather 

flow and thus produced hydrographs that were lower than the true 

hydrographs. Therefore all the orifices were maintained at their full 
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opening and the weirs at control points 1 and 2 were maintained at 

their maximum level. 

The control using the untranslated raingauge B data resulted 

in the greatest system overflows because the timing of the runoff 

peaks was generally early. This resulted in all the orifice and weir 

adjustments being made too early. The failure to include dry weather 

flow compounded the problem but timing was the main problem. 

Although these tests are far from definitive they do indicate 

that information errors resulting in mistiming of the input hydrographs 

to the control logic, or in underestimation of the flows, may result 

in considerable deviations from true optimality for any computed control. 

The situation represented by this example was highly simplified and many 

more sources of information error exist within the system. In addition, 

the control in this instance was computed after the fact i.e . , it 

assumed that complete knowledge of the storm was available for the 

control program. In actual operation some inference as to the course 

of the storm must be made each time the control is updated. 
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CHAPTER VI 

MODIFICATIONS TO THE VARIATIONAL FORMULATION 

TO INCLUDE MORE REALIST! C FLOvJ ROUTING MODELS 

VI .1 Introduction 

To this point in the study, it has been assumed that the flow 

leaving one reservoir appears instantly at a reservoir downstream or at 

the junction of parallel reservoirs. As shown in CHAPTER V, this 

assumption is valid for relatively short conduits; however, conduit 

lengths up to three miles are not uncommon in combined sewer systems in 

major urban centers. In these cases, the downstream reservoir observes 

a time delay, as well as modification of the flow regime in the flow 

that leaves the upstream reservoir. 

This chapter presents the modified Euler-Lagrange equations 

applicable to problem formulations including time delay. This is 

followed by a discussion of some of the flow routing models suitable 

for combined sewers. Finally, to illustrate the effects of time delay 

on the optimal control an example of two reservoirs in series is 

presented. 

VI.2 The Modified Euler-Lagrange Equations 

To date there is very little discussion in the literature of the 

modifications necessary to the Euler-Lagrange equations to include time 

delay. Hughes (1968) discussed the variational problem with time delay 

but did not consider side conditions (constraints). Pontryagin et al. 
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(1965) discusses briefly the solution of problems with time delay using 

the maximum principle. EL'SGOL'C (1960) presented the modified Euler-

Lagrange equations without discussion. It does not appear that anyone 

has given a complete discussion of the variational problem with time 

delay, which includes differential constraints, state and control 

variable inequality constraints, corner and end conditions. Useful 

information can be obtained by applying the modified Euler-Lagrange 

equations presented by EL'SGOL'C to a variational formulation of the 

control problem which includes time delay. 

The modified Euler-L agrange equations as presented by EL'SGOL'C 

are 

( F ' x . ( s ) - dd F ' x . ( s ) ) t + ( F' x . ( s - -r) - dd x . ( s - -r) ) t+ = 0 , s , s= , s , s= , 

(i=l, ... ,n) 

where: F'x(s) is the first derivative of the augmented index 

performance F with respect to x(s) 

, is the time delay 

s is a dummy variable 

IV.1-1 

The terms in the first set of brackets are the normal form of the Euler-

Lagrange equation. The terms in the second set of brackets are the 

modifications due to time delay and would be repeated if more than one 

time delay was applicable. 

VI.3 Flow Routing Models Suitable for Flow in Combined Sewers 

This discussion w· 1 be l imi ted to two possible flow routing 

models sugges ted in the iteratu re as suitable for flow in combined 



142 

sewers although there are undoubtedly other models that may be 

suitable. 

A. The Muskingum Routing Method. 

This method is discussed by Lawler (1964). It has been 

proposed for use in routing flow in combined sewers by Labadie (1973) 

and Grigg et al. (1973). 

A simplified form of the Muskingum equation given by Lawler is 

VI.3-1 

where: I1 and I2 are the inflows to the conduit at times t 1 and t 2 
respectively (t2 > t 1); 

o1 and o2 are the outflows from the conduit at times t 1 and t 2 ; 

c1 , c2, c3 are empirical coefficients. 

The more general form of the Muskingum equation used by Labadie 

and Grigg et al includes only the above variables but allows a more 

general relationship between them. For simplicity of discussion equation 

VI.3-1 will be used herein. 

B. The Progressive Average Lag Technique. 

Harris (1968c) has suggested the use of this technique for 

routing flows in a model of the combined sewer system of Minneapolis -

St. Paul. In tests of his model he was able to obtain good agreement 

between flows routed using the progressive average lag technique and 

the same flows routed using the method of characteristics which is 

generally considered to be the most accurate method of flow routing. 

The progressive average lag method as presented by Lawler (1964) has the 
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basic equation: 

- 1 Ot - - (It + It d + It 2dt + . '. + I ( 1 )d ) n - , - , - t -,- t-,- n- t VI.3-2 

where Otis the out flow from the conduit at time t; 

It-, ... It- , -(n-l)dt are the inflows to the conduit at times 

t- , .... t-,-(n-l)dt; 

, is an emp irica l time lag; 

n is the number of inflows averaged. 

Both the Muskingum and Progressive average lag techniques were 

originally developed for use in flood routing in river channels. Both 

techniques app ly only to free surface flow and both could not be 

expected to be accurate under conditions of rapidly varied flow (e.g. 

surges). 

VI.4 The Two Reservoir Problem with Time Delay 

To demonstrate the effects of time delay on the optimal control 

strategy, the two reservoir problem with time delay is formulated below 

and some facets of the effect of time delay examined. 

A. Formulation of the T\iw Reservoir Problem with Time Delay. 

This system is the same as that shown in Figure II-6 except that 

it is now ass umed that the flow leaving reservoir 2 is delayed and 

modified before it reaches reservoir 1. 

The differen tia l constraints of the system are 

IV.4-1 
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d2 = (q2 - CD2;a;r/ - cvi//12 )/A2(d2) = f2 VI.4-2 

v3 = f{C0 ld2(t-B)[r2(t-B)J 2, c0 ld2(t-C)[r2(t-C)J 2, v3(t-E) } = f 3 2 2 
VI.4-3 

Equation VI.4-1 is similar to equation II . 7-1 except that the 

outflow from the upstream reservoir in the latter equation has been 

replaced by v3. Equation VI.4-2 is identical to equation Il.7-2. The 

last equation VI.4-3 represents the inflow to reservoir 1 (v3) as a 

function of the inflow v3, E time units earlier and the outflows from 

reservoir 2, Band C time units earlier. Note that if 

E = C VI.4-3 

and 
B = 0 VI.4-4 

the above formulation is equivalent to the use of a muskingum routing. 

If v3 is eliminated from the right hand side of equation VI.4-3 the 

formulation is equivalent to a progressive average lag routing with 

n = 2. 

The control variable inequality constraints for the problem are: 

(r. - R . )(r. Rmax.) < 0 i = 1 , 2 
1 min; 1 -

1 
VI.4-5 

h. ( h. -d.) < 
1 1 1 

0 i = 1 ' 2 VI.4-6 

c0 /ct, r,2 + Cl3(t) - 0max < 0 
1 3 

VI.4-7 

and 
\)3 + ql(t) - 0max < 0 -2 

VI.4-8 

Equations VI.4-5, - VI.4-7 are identical to equations II.7-3 - II.7-6 and 

II.7-8 respectively. Equation VI.4-8 is a modified form of equation 

II.7-7 in which v3 represents the delayed output from reservoir 2. 
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The state variable inequality constraints are: 

(d. - D )d. < 0 , maxi , i = 1 , 2 VI.4-9 

Using the same objective function given by equation II.7-13 and 

adjoining the differential and inequality constraints in the usual manner 

yields as an augmented index of performance 

VI.4-10 

In the above ~t2 anci f 3 represent the right hand sides of equations 

VI.4-1, VI.4-2 and VI.4-3 respectively. There are 7 variables(d1 ,d 2,r1,r2 
h1,h 2 and v3) in eauation VI.4-10 and therefore the application of the 

modified Euler-Lagrange equation (VI .2-1) should yield 7 eqL,ations (3 

adjoint equations and 4 control equations). 
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B. The Necessary Conditions for the Problem 

The resultant control equations for this example upon taking 

derivatives with respect to r 1 ,r2,h 1 and h2 become: 

= 0 VI.4-11 

which is identical in form to equation III.3-5; 

>- 2-y2( 2d2-D2) 
{Z4 + A (d ) }2C 0 lc[2r 2 + n2(2r2-R -R . ) 2 2 2 max2 m,n2 

VI.4-12 

which bears some resemblance to equation III.3-6 but which requires 

further modification; 

{Zl + 
>. 1-y1(2d1-o1) l/ 2 + 1T 3(2h,-d,) 0 A(d) } 3/2Cwhl = 

1 1 1 
VI. 4-13 

\-Jhich is identical in form to equation III .3-3; and 

{Z2 + 
A2-y2( 2d2-D2) 1/2 

n4(2h 2-d2) 0 A (d ) } 3/2C~J h2 + = 
2 2 2 

VI.4-14 

As would be expected the only control equati on to differ from those in 

the example in Chapter III is equation VI.4-12. 

Taking the derivatives with respect to the state variables 

d1 ,d 2 and v3 yields the adjoint equations for the problem which are: 
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2 
Al-yl(2dl-Dl) CD rl A dA l _ dAl 

{Z + --~~- + } l + l f h 3 A1(d1) n5 2/d1 A1(d1) 1 dd1 - n3 l - cit 

VI.4-1 5 

VI .4-16 

and 

VI.4-17 

By substituting the results of either equations VI.3-1 or VI.3-2 

into equation VI.4-8 and arplying this result to equat i on VI.4-17 the last 

term of equation VI.4-17 falls out and A3 becomes 

VI.4-18 

When the results of substitution of the routing eauations into 

equation VI.4-8 and the value of A3 are applied to equations VI.4-12 and 

VI .4-16, these latter equations become: 

+ n2(2r 2-R -R . ) = O max2 m1 n2 
VI.4-19 
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and; 

VI.4-20 

In the above two equations, K1 and K2 are constants determined 

by the type of flow routing used. Observe that if a progressive average 

lag technique were used with n equal one, then 

VI. 4-21 

In addition if 

B = 0 VI.4-22 

equations VI.4-19 and VI .4-20 reduce to the same form as equations 

III.2-9 and III.2-3. 

The control equations for the two reservoir problem with time 

delay are now equations VI.4-11, 13, 14 and 19 and the adjoint equations 

VI.4-15, 18 and 20. The effect of the routing with time delay amounts 

to a shift in time scales as would be expected. 

C. Analysis of the Necessary Conditions. 

Although a complete analysis of the two reservoirs in series 

problem with time delay will not be attempted here, it is worthwhile to 
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consider the condition analogous to the no time delay case in which the 

outflow from the upstream reservoir is governed by 

VI. 4-23 

(i.e. the downstream reservoir is full but not overflowing). 

Assume that: 

C > B > 0 and C > E V .4-24 

If the downstream reservoir s~ops overflowing at t = t 2 and if 

it is assumed that the upstream reservoir behaves similarly in the 

delay and no time delay cases and allows only the minimum flow determined 

by R . into reservoir 1 when reservoir 1 is overflowing then over some m,n2 
interval t 2- 6 to t 2 for R . equal to zero 

m,n2 

This leads to the requirements that 

and 

in the interval 

VI.4-25 

VI. 4-26 

VI. 4-27 

VI.4-28 

Vl .4-29 
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(This assumes that it is not possible to combine positive values of 

the upstream reservoir throughput to obtain a zero value for v3). 

If r 2 is to increase from its minimum position, at sometime t a , 

to maintain maximum storage in reservoir 1 after it ceases to overflow, 

then examination of equation VI.4-19 shows that in general the only 

Lagrange multipliers available to satisfy this equation are yl/t 
a+B 

and yl/t . That is either: ~c 

VI.4-30 

or 

t = t +C 2 a VI.4-31 

If equation VI.4-31 applies then flows above the minimum will reach 

reservoir 1 at 

which is prior to t 2, thus violating the assumed operation and require-

ment given by equation VI.4-26. 

If equation VI.4-30 applies then all the requirements given by 

equations VI.4-26 to 29 are met and the inflow to reservoir resulting 

from the operation of reservoir 2 will begin to increase at t 2+ as 

desired. Thus the shift in time scales is equal to B. 

By similar reasoning it can be shown that the multiplier 

available to satisfy equation VI.4-19 when the flow constraint (equation 

VI.4-8) is binding is n6/t a+B 
The multiplier available to satisfy equation VI.4-19 when h2 is 

greater than zero and d2 equals o2 is clearly y2/t . 
a 
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Observe that if a Muskingum type flow routing is used that B 

equals zero and thus the physical reality of the delay in the flow 

routing is ignored by the mathematics. 

VI.5 Adjustments to the Numerical Technique to Include Realistic 

Flow Routing Models 

The above examination of the two reservoir problem with time 

delay is admittedly far from complete; however, the similarity between 

the control and adjoint equations for the delay and no delay cases would 

indicate that the general form of the solutions with no time delay for 

other configurations should be equally applicable to problems with time 

delay by shifting the time scales for each reservoir by B., where B. is 
J J 

the smallest time lag applicable to conduit j. Provided the upstream 

flow conditions (i.e. d and r) are known for the time interval 

t -C. < t < t
0 0 J 

VI. 5-1 

where Cj is the greatest time lag associated with conduit j then all the 

necessary information is available to compute the inflows at time t. 

Thus the only alterations necessary to include flow routing with time delay 

in the numerical technique proposed in this study are: 

a) the upstream flow conditions in the interval given by equation 

VI.5-1; 

b) 

c) 

a shift in the time scales for each upstream reservoir of B.; 
J 

addition of the flow routing equations. 
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CHAPTER VI I 

CONCLUSIONS AND RECm1MENDATI0NS FOR FURTHER WORK 

VII.l. Conclusions 

In this study the calculus of variations was applied to the 

problem of minimizing the weighted diversions of flow to the receiving 

waters from a combined sewer system. 

In Chapter I some possible solutions to the combined sewer 

problem were examined. It was shown that use of existing system storage 

capacity may be considered a feasible solution to the overflow problem. 

The problems related to the determination of control logic that would 

maximize the use of available system storage capacity were outlined 

and the advantages of optimal formulations presented. The information 

presented in this chapter established the fact that the study of suitable 

control logic for control of flows in combined sewers is a practical and 

relevant problem in North America today. 

In Chapter II the definition of an optimal control was given 

along with the necessary conditions given by the calculus of variations 

for a control to be optimal. A mathematical representation of the 

backwater storage in a controlled combined sewer system as a series of 

interconnected reservoirs and orifices was presented. In this chapter 

standard weir and orifice equations were used; however, the results of 

Chapter III showed that much greater generality of weir and orifice 

representations could be substituted in the formulation without affecting 
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the overall results. Constraints were placed on the range of operation 

of the flow control devices, the storage available in each reservoir 

and the flow capacities of the conduits. No constraints were placed on 

the rate of operation of the control devices but it was pointed out in 

Chapter III that a reasonable approximation to the rate limited case 

could be made very easily. Throughout most of this study it was assumed 

that there was no time delay in the flow routing. Considering the 

accuracy of the data that will be available with present technology, and 

the results of the real time automatic control simulation presented in 

Chapter V, the system model presented in Chapter II can be considered 

suitable for the determination of an optimal control strategy in those 

cases where the time delays in flow routing are small. The results of · 

Chapter VI extended this model for arbitrary time delays in the flow 

routing. In Chapter IV it was shown that the orifice control had 

sufficient flexibility to allow an optimal control determination in the 

event that an orifice control became inoperable and thus fixed in one 

position. The flexibility of the weir control to allow an optimal control 

determination was shown to be somewhat limited in the case of its failure. 

Two forms of the objective function for the problem were also 

presented in Chapter II, one including only the weighted overflows, the 

other including weighted overflows and throughputs. It was shown in 

Chapter III that the latter objective function eliminated some possibilities 

of non unique orifice controls from the control problem. The latter 

objective function was thus used for the remainder of this study. It was 

always assumed that the throughput weighting factors were very small in 

comparison to the overflow weighting factors to avoid inadvertently making 

overflow from one reservoir greater than desired. 



154 

In Chapter III and Appendices I-III the forms of the optimal 

control trajectories obtained from the calculus of variations were 

presented for fo ur configurations and various assumed input hydrographs. 

It was assumed that the depth of flow over the weir was always less 

than the maximum allowable. It was further assumed that after a 

reservoir stopped overflowing the inflow hydrograph to the reservoir 

was non increasing. The results demonstrated that the optimal control 

trajectories were always obtained from constraint boundaries except for 

those cases in which the orifice control was non unique. For these 

latter cases an optimal solution determined entirely by constraint 

boundaries was al ways feasible. It was shown that as a result of the 

optimal solution lying along constraint boundaries the possible methods 

of operation of the control devices and their sequence of operation was 

highly limited . This important result was used to advantage in Chapters 

IV and V to determine a numerical technique to solve the control problem. 

In Chapter III the possibilities for several different feasible 

values of the Lagrange multiplier at the t side of the entrance to a 

state variable constraint boundary were demonstrated. The division of 

the problem into two separate problems by this constraint boundary 

entrance was also explained. 

In Chapter IV the attempts to determine the optimal control 

strategy by numerical solution of the necessary conditions were discussed. 

The problems caused by the combination of numerical inaccuracy and the 

possible values of the Lagrange multipliers to the left of the entrance 

on to a state variable constraint boundary were outlined ( both as a 

result of a jump in the multipliers, as in the case of the steepest 

ascent technique, or as a result of the equivalent rapid change in 
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value of the multipliers in the penalty function technique). Although 

the penalty function formulation reduced the logic required for control 

operation after the reservoirs stopped overflowing when compared to 

the steepest ascent technique, it appeared that even if the problems 

at the state variable constraint boundaries could be overcome, the 

computational time required to obtain the optimal control for a system 

of reasonable size would be too great for practical use. In general 

it would appear from the results presented in this chapter that the 

problems caused by jumps in the Lagrange multipliers preclude the 

determination of the optimal control strategy for the combined sewer 

problem by direct solution of the necessary conditions, at least in the 

time required for real time operation. 

As a result of the above findings, it was proposed in Chapter IV 

that the results obtained in Chapter III be formulated into a set of 

operating rules and the problem reduced to that of determining the 

optimal switching times Xi. Even though the resulting control would not 

be optimal if the limitations of non increasing flows on the latter 

parts of the input hydrographs were violated, the control would at worst 

assure maximum utilization of the available system storage capacity. 

This methodology in which the results of the analysis of solution forms 

obtained by examination of the necessary conditions are used to obtain 

reasonable operating rules with a resultant major reduction in the 

dimensionality of the overall problem is another important result of this 

study and would appear to extend the usefulness of t he application of 

variational calculus to practical proble~s. 

Chapter V presented optimal control trajectories for two system 
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configurations obtained by optimizing the switching times Xi for the 

given operating rules. The results showed that for a system of up to 

twenty reservoirs, the optimal control (optimal for the given operating 

rules) could be obtained in approximately two minutes provided 

relatively minor modifications were made to the opti mization procedure. 

This time is believed to be reasonable for real time control determin-

ation. The control trajectories presented always made maximum 

utilization of the available system storage capacities and generally 

permitted overflow from only those reservoirs with the highest overflow 

weighting factors. The use of a first order gradient search technique 

to obtain the optimal switching times Xi gave satisfactory results but 

no claim is made that it is the best technique for this application. 

The results noted in Chapter V and presented in Appendix V show 

that at least generality with respect to the relative values of the 

overflow weighting factors can be obtained from a program written to 

obtain the optimal control trajectories for a given configuration of 

reservoirs and arbitrary input hydro9raphs. There does not appear to 

be any problems that would prevent the writing of a program capable 

of determining the optimal control trajectories for an arbitrary 

configuration of reservoirs having arbitrary overflow weighting factors 

and input hydrographs. 

The simulation example presented at the end of Chapter V 

demonstrated the use of the control logic, the reasonableness of the 

reservoir representation of backwater storage and the lack of 

optimality that will invariably exist when the computed optimal control 

is applied to an actual operating system. This lack of true optimality 
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serves as further justification for the approach proposed in Chapter 

IV and demonstrated in Chapter V. 

In Chapter VI it was demonstrated that the solution procedure 

presented in Chapters IV and V could be easily modified to include more 

realistic flow routing methods. These modifications should have minimal 

effect on the computational times presented in Chapter V. It was also 

demonstrated that the use of a Muskingum routing technique in optimal 

control formulations will produce unrealistic results. 

Generally it can be concluded that the methodology presented 

herein represents a feasible and practical approach to the determination 

of reasonable control strategies for the minimization of weighted 

overflow from combined sewer systems having weir and orifice controls 

and utilizing in-line storage. 

VII.2 Recommendations for Further Work 

In this study only cases involving two reservoirs in parallel 

were examined. The optimal control trajectories for more than two 

reservoirs in parallel should be examined to detennine the dominance-

subservience relationships that may exist for the orifice controls in 

these configurations. It is expected that the control strategies will 

have a similar form to those presented herein. 

In Chapter IV the l ack of adaptability of the weir controls in 

those instances in which they become inoperable was noted. It would be 

fruitful to reformulate the orifice controls in the opti mal control 

problem in terms of the weir height w instead of the depth of flow 

over the weir h. This would not only allow better control determination 
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in the event of a device failure but would increase the generality 

of the overall solution to those cases in which the maximum allowable 

depth at a control point is greater than the maximum height of the 

weir. At present the maximum weir height must be greater than or 

equal to the maximum allowable depth. 

In Chapter V it was noted that the possibility of writing a 

general control program existed. Following the examination of the 

two areas suggested above, it would appear that such a program would 

be a useful contribution. Undoubtedly it would be computationally 

slower than a program written for a specific configuration but it 

would aid greatly in the determination of an optimum configuration. 

The first order gradient search technique used in this study 

to determine the optimum switching times was not claimed to be the best 

for this purpose. It is possible that other optimization techniques 

might produce substantial reductions in computational time and at the 

same time eliminate some of the problems shown in Chapter V to exist 

with the first order gradient technique. 

The effect of information errors on the overall control results 

was examined only briefly in this study. It would appear fruitful to 

examine not only the effects of these errors but the major sources. 

The problem of regeneration of a field of rainfall data in space and 

forward in time from a series of point rainfall readings would appear 

to be one of the most pressing in this area. 

In Chapter IV it was stated that approximately two minutes 

would be available for control determination. This was an estimate 

based on known times for the determination of runoff inputs and, 

estimates of the times that the other data gathering and control 
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supervision functions would require. The validity of this estimate 

should be checked to determine the seriousness of the time constraint. 

This examination would also of necessity include a study of the optimal 

time span between control updates. 

It appears that there might be some benefit to the sewage 

treatment process to examine the companion dry weather problem to the 

problem of minimization of weighted diversions from combined sewer 

systems. This is the determination of the throughputs from the reservoirs 

to maximize overall sewage treatment. This would allow increased 

benefits to be obtained from the same control equipment possibly in the 

areas of reduced treatment plant capacity requirements and improved 

treatment. 
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APPENDIX I 

THE PROBLEM OF TWO RESERVOIRS IN PARALLEL 

A.I.l Introduction 

Thi s Appendi x gives the complete solution for CASE 4 in 

Chapter III; the problem of the optimal control of two reservoirs in 

parallel each of which overflows. 

The format followed is similar to that of CASE l in Chapter 

III except that the algebraic equations for the Lagrange multipliers 

associated with the ineouality constraints are not given as it is only 

important to know that a particular multiplier is available to satisfy 

a particular control equa tion. 

To simplify notation,the following variables have been 

introduced; f 1 and f 2 which represent the right hand sides of the state 

eauations; c1-c5 which represent the left hand side of the control 

variable inequality constraints; s1 and s2 which represent the left 

hand side of the state variable inequality constraints and; P1 - P4 
which represent the control equations. 

A.I.2 The State Equations 

The two reservoirs in parallel system is shown in figure III-6. 

For this system, following the formulation given in Chapter II the 

state equations are: 



and; 

a 1 = 
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C h 3/2 w, 1 

C h 3/2 w2 2 

A.I.3 The System Inequality Constraints 

A. The control variable inequality constraints 

C. = (r.-R . )(r.-R ) < () , 1 mm. , max. 
1 1 

= 1 ,2 

i = 1 , 2 

B. The state variable inequality constraints 

s. = d.(d.-0.) < 0 
1 1 1 1 -

i = 1,2 A.I.2-4 

A.I.4 The Augmented Objective Function 

A. I-1 

A. l-2 

A.I-3 

A. l-4 

A. I-5 

A. I-6 

Using the abbreviations given in equations A.I-1 - A.l-5 and 

taking the first derivative of the state variable inequality constraint 

to adjoin the state variable inequality constraints in the normal manner, 

the augmented objective function for the problem becomes 
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A. I-7 

A.I.5 The Control and Adjoint Equations 

Applying the Euler-Lagrange equation to the aug~ented objective 

function yields the following necessary conditions for an optimal control. 

A. The control equations 

>- , - y1 ( 2dl -D1) 
Pl = {Z3 + A1 ( ct

1
) + 1r 5 }2Co

1 
ld'i r, + 1r l ( 2r1 -Rmax

1 
-Rmi n

1
) = O 

A. I-8 

"2-y2( 2d2-D2) 
P2 = {Z4 + A

2
(ct

2
) + 1r 5}2Co

2
1cSr2 + 1r2( 2r2-Rmax

2 
-Rmin

2
) = O 

A. I-9 

A.I-10 

A.I-11 
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B. The adjoint equations 

", -y, (2d, -o,) C r 2 
dA1 ( ct1 ) • {Z3 + 

o, 1 "1 
"1 = + 1T 5} + fl n}l A1 ( dl ) 2ldl A1 (d1) ddl 

A.I-12 
2 

"2-y2( 2d2-D2) CD r2 "2 dA2(ct 2) 
• 2 f2 1T 4h2 "2 = {Z4 + A {d) + 1T 5} + 2ld2 A2(d2) dd2 2 2 A.I-13 

In equations A.I-12 and A.I-13 any terms in which yi and fi appear as a 

product have been eliminated since one or the other is always zero. 

C. The transversality condition 

The values of "i (i = 1 ,2) at tf as given by the transversality 

condition are: 

"ii t = 0 
f 

A.I-14 

and; 

"/ t = n 
f 

A.I-16 

A.I.6 The Solution Form ~Jhen Both Reservoirs Overflow 

In determining the solution form for a case when both reservoirs 

overfl ov,, 

(a) 

(b) 

( C) 

( d) 

the following assumptions were made: 

z1 > z2 > 0 

-Z3 > -Z4 > 0 

-Z3 + Z1 > -Z4 + z2 

h. < d. 
1 1 

i = 1 ,2 

A.I-16 

A.l-17 

A.I-18 

A.I-19 
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The assumed state and control variable trajectories for the optimal 

solution are shown in figu re III-7. The description of the co trol 

ope rations is the same as that given for CASE 4 in Chapter III. 

Following t he procedure outlined in Chapter III the verification 

of the assumed t ajectories can proceed backward from tf. Fr each time 

interval on figure III .7,Table Al.l shows: the non binding constraints 

and the resultant zero Lagrange multipliers; the bi nding constraints , 

their associated non-zero Lagrange multipliers and the cont rol equations 

which these mul t iplie rs are used to satisfy ; and the equations used to 

determine each control var i able. For each time interval and corner, 

Table Al.2 shows the equations of the A multipliers. The form of the A 

multipliers is plotted on figure Al .1 in terms of Ai/Ai(di). 

).. 
1 

A. (d.) 
1 1 

01.---,l--...J------,.-l-----.!""---+--~le--4--_;~--- t 
4 5 6 7 f 

-Z 2 

-Z 1 

Fi gure Al.l The Trajectories of the A Multipliers 



TABLE Al .1 

Solution of the Constraint Multipliers, Control Equations and Controls for the Two Reservoirs in Parallel. 
l 2 3 4 5 

Control Equations Constraint 
Time Non Binding Associated zero Binding Associated Non satisfied by Controls are 
Interval Constraints Multi [!l iers Constraints Zero Multi[!liers Multi[!l iers Determined From 

c2 n2 cl nl pl r1 + c1 = o 
tf>t>t7 sl yl c3 ff3 P3 r2 + c5 • 0 

S2 y2 C4 n4 P4 h1 .. c3 = o 
Cs nS p2 h2 + c4 = 0 

cl nl C3 n3 P3 r2 .. ~2=0 
t7>t>t6 c2 n2 C4 n4 P4 r1 .. cs= o 

s1 yl Cs ns pl h1 + c3 = 0 

S2 Y2 p2 h2 + c4 = 0 
_, 

p2 r 2 .. c2 = o 0) 

cl nl c2 ff2 ex, 

t6>t>t5 C4 n4 C3 n3 P3 r 1 +CS= 0 

Sl yl C5 ns pl h1 + c3 = 0 

S2 Y2 P4 h2 .. s2 = o 

C3 ff3 P3 rl + sl = 0 
t5>t>t4 cl "1 

CS "s p2 r 2 + c5 = o 
c2 "2 

Sl yl pl h1 + c3 = 0 

C4 "4 
S2 y2 P4 h2 + ~2 = 0 



TABLE Al.1 continued 

c2 ff2 cl ffl pl r1 + c1 = o 
t4>t>t3 C3 ff3 C5 ns p2 r 2 ... c5 = o 

C4 ff4 sl yl P3 h1 ... ~1 = 0 

S2 y2 P4 h2 + s2 = 0 

C2 ff 2 cl ffl pl r1 ... cl = 0 

t3>t>t2 C3 ff 3 C4 ff4 P4 r2 ... ~5 = 0 

S2 Y2 C5 ff 5 p2 hl + S1 = 0 

S1 yl P3 h2 -+ c4 = 0 

C2 n2 cl nl pl rl + cl = 0 

t2>t>t1 S1 yl C3 n3 P3 r 2 +C5 =0 

S2 y2 C4 n4 P4 h1 -+ c3 = 0 

C5 ns p2 h2 -+ C4 0 
..... 
O'\ 

C5 ffs cl ffl pl r 1 .. c1 = o \.0 

t1 , t ~t0 S1 yl C2 ff2 p2 r 2 -+ c2 = 0 

S2 y2 C3 n3 P3 h1 -+ c3 = 0 

C4 n4 P4 h4 .. c4 = 0 

Notes 

1. Time intervals are those shown on figure Al.2. 
2. Lagrange Multipliers in this column are those associated with non-zero constraints on the same line 

in the previous column. 
3. Lagrange Multipliers in this column are those associated with binding constraints on the same line 

in the previous column. 
4. Control equations listed in this column are satisfied by the Lagrange multipliers on the same line 

in the previous column. 
5. r 1 + C1 = 0 should be read as "r1 is determined from C1 ~ O". The controls in this column are listed 

in the order required for solution. 



170 

TABLE Al.2 

The Equations of the A Multipliers and the Corner Conditions for the Problem 
of Two Reservoirs in Parallel 

Time 

Corner at t 7 

Corner at t 6 

All variables are continuous. Therefore the corner 
conditions yield: 

. Al dA1(d1) Al 
Al = A1 ( d l ) fl ddl -+ Al ( d 1 ) = const. 

A dA2(d2) A2 x = 2 f2 = const. 2 A2(d2) dd2 -+ A2(d2) 

All variables are continuous. Therefore the corner 
conditions yield: 
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TABLE Al.2 continued 

Corner at t 5 

Corner at t 4 

Corner at t 3 

canst. 

All variables are continuous. Therefore the corner 
conditions yield: 

cons t. 

All variables are continuous. Therefore the corner 
conditions yield: 

At t 3 the control h7 is discontinuous and the derivative 
of tne state variable dz is discontinuous. In this case 
the corner conditions yield: 
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TABLE Al.2 continued 

Corner at t 2 

Corner at t 1 

At t2 the control h1 is discontinuous and the derivative 
of tne state variable d1 is discontinuous. In this case 
the corner conditions yield: 

All variables are continuous. Therefore the corner 
conditions yield : 
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A.I.7 Possibilities for a Jump in Control 

In the interval ti-tl both orifice controls are at their 

maximum and so a jump is meaningless. 

In the interval t 1-t2 when the flow constraint is binding 

examination of control equtions A.I-8 and A.I-9 shows that for a 

switch in the controls to occur would require: 

\ "2 
Z3 + Al(~l) = Z4 + A2(d2) A. I-20 

Examination of the equations for the >. 'sin this interval shows that 

this would require: 

~l = 0 A.I-21 

which it can only approach assymptotically. Therefore no switch in 

control can occur in this interval. 

Following similar reasoning, and noting that when a reservoir 

is overflowing, a jump in the control ri will require a jump in the 

weir control hi, it can be shown that there are no possibilities 

for jumps in the orifice controls for this problem. 

For inflows which will not fill reservoir 1 if orifice 1 

remains the dominant control, different corner conditions, analogous to 

those of CASE 2 or CASE 3 given in Chapter III for reservoirs in series 

may occur and thus lead to a switch in the dominance of the orifice 

controls. 
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APPENDIX II 

THE PROBLEM OF THREE RESERVOIRS IN THE 11 V" CONFIGURATION 

A.II.l Introduction 

This Appendix gives the complete solution for CASE 5 in 

Chapter III; the problem of three reservoirs in the V configuration, 

each of which overflows. 

The format followed is similar to that of CASE l in Chapter III 

except that the algebraic equations of the Lagrange multipliers 

associated with the inequality constraints are not given as it is only 

important to know that a particular multiplier is available to satisfy 

a particular control equation. 

To simplify notation the following variables have been 

introduced: fi, v1hich represents the right hand sides of the state 

equations; Cj, which represents the left hand side of the control variable 

inequality constraints; Sk which representsthe left hand side of the 

state variable inequality constraints and; P. which represents the 
J 

control equations. 

A.II.2 The State Equations 

The three reservoir "V" configuration is shown in figure III-8. 

For this system, following the formulation given in Chapter II the 

stat~. equations are: 



175 

q,(t) + q4(t) + CD ~r/ - CD ~r, 2 - c\~,h, 3/ 2 

a, = ------~2 -----'-1 ____ .;__ = f1 
A1 d1 

q2(t) - CD ;a;r/ - c~·J//12 
d2 = _____ 2;:.,.--,..-,--,--..=:----

A2 ( d2) 

A.II.3 The System Inequality Constraints 

A. The Control Variable Inequality Constraints 

c. = h.(h.-d.) < 0 
l l l l 

i = l ,2 ,3 

c.+3 = (r.-R )(r.-R. ) < o i = 1,2,3 
1 , maxi 1 mm; 

C = 7 

C = 8 

ql(t) + CD /c[2r22 - Q ~ 0 
2 max1 

CD /cf, rl 2 + CD ;a;r3 2 - Qmax 
l 3 2 

< () 

B. The State Variable Inequality Constraints 

s. = d.(d.-D.) < 0 
l l l l -

i = 1,2,3 

A.II.4 The Augmented Objective Function 

A.II-1 

A.II-2 

A.II-3 

A. II-4 

A. II-5 

A. II-6 

A.II-7 

A.II-8 

Using the abbreviations given in equations A.II-1 through A.II-8 

and taking the first time derivative of the state variable inequality 

constraints and adjoining them in the usual manner, the augmenteq 
' · 
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objective function for the problem becomes: 

A.II-9 

A.II.5 The Control and Adjoint Equations 

Applying the Euler-Lagrange equation to the augmented objective 

function yields the followin g necessary conditions for an optimal control. 

A. The Control Equations 

;>._ l-yl{ 2dl-Ol) 3/2 
pl= {Zl + Al(dl) }3/2Cwlhl + TI 1{2hl-dl) = 0 A.II-10 

;>._ 2- y2{ 2d2-02) 3/2 
P2 = {Z 2 + A (d ) }3/2CH h2 + TI 2(2h 2-d 2) = 0 

2 2 2 
A.II-11 

;>._ 3-Y3(2d3-D3) 3/2 
P3 = {Z3 + A (d ) }3/2C14 h3 + TI 3(2h 3-d3) = 0 

3 3 3 
A.II-12 

;>._ l-yl{2dl-Dl) 
P4 = {Z4 + A

1
(d

1
) + TI 8}2Co/ciir1 + TI 4( 2rl-Rmax

1
-Rmin

1
) = O 

A.II-13 
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A.II-14 

>- 3-Y3(2d3-D3) 
p6 = {Z6 + A3(d3) + ;r8}2CD3 ld3r3 + ;r6(2r3-Rmaxl -Rminl) = 0 

A.II-15 

B. The Adjoint Equations 

2 
= >- l-yl(2dl-D1) + } CD/1 +_:i_f dAl(dl) 

>- 1 {Z4 + A1(d1) ;r8 2/dl A1(d1) 1 ddl - ;r lhl 

A.II-16 

>- 2-y2( 2d2-D2) 
A2 = {Z5 + ( Az(dz) ) 

>. 2 dA2(d 2) 
+ A2(d 2) f2 dd2 

A.II-17 

>- 3-y3(2d3-D3) 
>- 3 = {Z6 + A (d) 

3 3 

A.11-18 

In equations A.II-16 - A.11-18, any terms in 1.,,hich Y; and f; 

appear as a product have been eliminated since one of the other is . always 

zero. 

C. The Transversality Condition 

The values of >- ;It as given by the transversality conditio~ are: 
f 

A.11-19 
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and 

A.II.6 The Solution Forms When All Reservoirs Overflow 

In determining a solution form for a case where all three 

reservoirs overflow, the following assumptions were made: 

(a) z1 > z2 > z3 > 0 

( b) -Z4 > -Z5 > -Z6 > 0 

A. II-20 

A.II-21 

A.II-22 

A.II- 23 

(c) z, - Z4 > z2 - Z5 > Z3 - z6 > o A.II-24 

(d) h. < 
l 

d. 
l 

i = 1 , 2 ,3 A.II-25 

The assumed state and control variable trajectories for the 

optimal solution are shown in figure III-9. 

The description of the control operations is the same as that 

gi~en for CASE 5 in Chapter III. 

Following the procedure outlined in Chapter III the verification 

of the assumed trajectories can proceed backward from tf. For each time 

interval on figure III-9, Table A2.l shows the non-binding constraints 

and th~ resulting zero Lagrange multipliers; the binding constraints 

and their associated non-zero Lagrange multipliers and the control 

equations which these mu l tipliers are used to satisfy; and the equations 

used to determine each control variable. For each time interval and 
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corner Table A2.2 shows the equations of the A multipliers. The form 

of the A multipliers is plotted on figure A.2.1 in terms of A./A.(d.). 
1 1 1 

-z 3 

-z 2 

-z 1 

Fig. /\2 . l The Trajectories of the A Multip l ie rs fo r t he 
Three Reservoir 11 Y11 Configuration 

A.II.7 Possibilit i es for a Jump in Control 

For the reasons given in section A.I.7 of Appendix I, a swit<:t, in 

control between r1 and r3 is not possible for the three reservoir •'V" 

configuration when all three reservoirs overflow. If neither rese·rvo ir l 

or 2 overflows, or if the outflow from reservoir 2 is limited by the f low 

constraint c7 = 0 and reservoir l does not overflow, then the possibility 



TABLE A2.1 

Solution of the Constraint Multipliers, Control Equations and Controls for the Case of Three 
Reservoirs in the "V" Configuration. 

2 3 4 5 Time Non-Binding Associated Zero Binding, Associated tlon Control Equations Constraint Controls Interval Constraints Multi el iers Constrai nts Zero Multiel iers Satisfied bl Multi(!liers Are Determined From 

tf>t>t12 C7 "7 cl "1 pl r1 + c4 = 0 
Ca "a C2 •2 p2 r2 + c5 = 0 
sl yl C3 "3 P3 r3 + c6 = o 
S2 Y2 C4 •4 P4 h1 + c1 = o 
S3 Y3 C5 "5 P5 h2 + c2 = 0 

CG "6 ?6 h3 + c3 = 0 O:> 
0 

tl 2>t>t11 cs "s cl "l pl h1 .. c1 = o 
c6 "6 c2 "2 p2 h2 • c2 = o 
C7 "7 C3 "3 P3 h3 + c3 = 0 
S2 Y2 C4 "4 P4 r1 + c4 = 0 
S3 Y3 Ca "a p6 r2 + sl = 0 

sl ·,1 P5 r 3 + Ca = o 

tll >t>t10 C4 "4 cl "1 pl h1 .. c1 = o 
C5 "s c2 •2 p2 h2 .. c2 = o 
c6 "6 C3 "3 P3 h3 + c3 = 0 
C7 "7 Ca "a P4 r 3 +S3 =o 
S2 y2 s1 yl p~ r1 .. c8 = 0 

S3 Y3 p6 r3 .. sl = 0 



TABLE A2.l continued 

t1 o>t>t9 C3 "3 cl "1 pl h1 .. c1 • o 
C4 "4 c2 "2 p2 h2 .. c2 = o 
C5 "5 c6 "6 p6 r3 .. c6 = o 
C7 "7 Ca "a P4 rl .. ~8 = 0 
S2 Y2 sl yl p5 r2 .. s1 = o 

S3 Y3 P3 h3 + c3 = 0 

t9,t,t8 C3 "3 cl "1 pl h1 .. c1 = o 
C4 "4 C2 "2 p2 h2 .. c2 = o 
C5 "5 Ca "a p6 r2 .. s2 • o 
c6 "6 s1 yl P4 rl + sl = 0 
C7 "7 S2 y2 P5 r3 .. c8 = o 

S3 Y3 P3 h3 .. s3 = o 

t8,t, t 7 C2 "2 cl "1 pl h1 .. c1 = o 
C3 "3 C7 "7 p:! h2 + S 2 = 0 
C4 "4 Ca "a PG r2 ·• c7 = O 00 

--' C5 "5 sl yl P4 rl + sl = 0 
c6 "6 S2 Yz P5 r3 .. ~8 = 0 

S3 Y3 P3 h3 + s3 = 0 

t7>t >t6 c2 "2 cl "1 pl h1 .. c1 = o 
C3 "3 C4 "4 P4 rl + :4 = 0 
C5 "s Ca "a p6 r2 + ~l = 0 
c6 "6 sl yl P5 h2 + s2 = O 
c, "7 S2 Y2 p2 r3 + ~8" 0 

S3 Y3 P3 h3 .. s3 • 0 



TABLE A2.l continued 

t6>t>ts cl "1 C4 "4 P4 r1 + c4 = 0 
c2 "2 cs "s P5 r2 + Cs = o 
C3 "3 Ca "a p6 h1 + s1 = o 
c6 "6 s1 yl pl h2 + s2 = 0 
C7 "7 S2 y2 p2 r3 +:a= 0 

S3 Y3 P3 h3 + s3 = 0 

ts>t >t4 cl "1 C3 "3 P3 r1 + c4 = 0 
C2 "2 C4 "4 P4 r2 +Cs= o 
c6 "6 CS "s PS r 3 +Ca= 0 
C7 "7 Ca "a p6 h1 + ~1 = 0 
S3 Y3 s1 YI pl h2 + s2 = 0 

S2 Y2 p2 h3 + c3 = 0 

t4>t>t3 c2 "2 cl "1 pl h1 + c1 = o 
c6 "6 C3 "3 P3 r 1 + c4 = 0 CX> 

N 
C7 "7 C4 "4 P4 r2 + cs = o 
sl Y] CS "s Fs h2 + s2 = o 
S3 13 Ca "a p6 r3 + Ca = 0 

S2 y2 p2 h3 + c3 = 0 

t3>t>t2 c6 "6 cl "1 pl r1 + c4 = 0 

C7 "7 c2 "2 p2 h1 + c1 = o 
s1 yl C3 "3 P3 r 2 +CS= 0 
S2 Y2 C4 "4 P4 h2 + c2 = 0 

S3 Y3 CS "s PS r3 + Ca = o 
Ca "6 p6 h3 + c3 = 0 



TABLE A2.1 continued 

C5 "4 cl "1 pl 
c6 "s c2 "2 p2 
sl yl C3 "3 P3 
S2 Y2 C4 "4 P4 
S3 Y3 C7 "7 P5 

CB "s p6 

C7 "7 cl "1 pl 
CB "s c2 "2 p2 
sl Yj C3 "3 P3 
S2 y2 C4 "4 P4 
S3 Y3 C5 "s PS 

c6 "6 p6 

Notes 

1. Ti me intervals are those shown on figure A2. 2. 
2. Lagrange mult i pliers inthis column are those associated with non zero constraints on the same line in 

the previous column. 

r1 .. c4 = 0 
h1 .. c1 = o 
r2 .. C7 0 
h2 .. c2 = 0 
r 3 .. c8 = 0 
h3 .. c3 = 0 

rl .. C4 = 0 
r 2 .. c5 = 0 
r3 .. c6 = o 
h1 .. c1 = o 
h2 .. c2 = 0 
h3 -+ c3 = 0 

3. Lagrange multipliers in this column are those associated with the binding constraints on the same lines 
in the previous column. 

4. Control equations listed in this column are satisfied by the Lagrange multipliers on the same line in 
the previous column. 

5. r1 .. c4 • 0 should be read as "r1 is determined from c4 = O". The controls in this column are listed in 
the order required for solution. 

co w 
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TABLE A2.2 

The Equations of the X Multipl i ers and the Corner Conditions fo r the Problem 
of Three Reservoirs in the "V" Configuration. 

Time 

Corner at t 12 

Corner at t 11 

t11>t>t10 

All variables are continuous. Therefore the corner 
conditions yield: 

x./t = x. / 1 12- 1 t12+ 
i = 1,2,3 

... X2 
canst . A2(d2) 

... >. 3 cons t. A3(d3) 

All variables are continuous. Therefore the corner 
conditions yield : 

L;t = ). ./ t = 1 ,2 ,3 
l 11- l 11+ 

).. dA i (di) >.. 
Xi - l f ... l canst. -~ i ddi ~ 

( 

= 1,2 ,3 



TABLE A2.2 cont'd 

Corner at t 10 

Corner at t 9 

Corner at t 8 

Corner at t 7 

Corner at t6 
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All variables are continuous. Therefore the co ner 
conditions yield: 

= 1 ,2, 3 

>. . dA
1
. (d

1
.) 

>. - 1 f i -~ i ddi 

All variables are continuous. Therefore the corner 
conditions yield: 

>-;It = >. . /L 
9- l -y+ 

1,2 ,3 

>. . dA . ( d. ) 
>. _ l f l l 
; -~ i ddi -+ canst. 

All variables are continuous. Therefore the corner 
conditions yield: 

>../t = >../t 
1 8- 1 8+ 

= 1 ,2 ,3 

>.. dAi (di) 
>. 

1
• = ;r-rj-, f A,,d,1 i dd 1• l l 

canst. 

All variables are continuous. Therefore the corner 
conditions yield: 

).. 

i = 1 ,2 

= 1,2 ,3 

1,2 ,3 

+ 1 = canst. i = 2,3 
~ 

A variables are continuous. Therefore the corner 
conditions yield: 

). ./t = >../t 
l 6- l 6+ 

· i = 1 ,2 ,3 



TABLE A2.2 cont'd 

Corner at t 5 

Corner at t 4 
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= const. 

At t , h is discontinuous and therefore d is 
disc6ntiKuous. Therefore the corner conditions yield: 

'A,./t = 'A. ·1t 
l 5- l 5+ 

= 1,2 

and 

At t , h is discontinuous and therefore d1 is 
disc~nti~uous. Therefore the corner conditions yield: 

'A.1/t = -z,A,(01) 
4 

'A,./t = L/t 
l 4- l 4+ 

= 2, 3 



TABLE A2.2 cont ' d 

Corner at t 3 

Corner at t 2 

t2> >t, 
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2 
Al A CD rl 

( 3 1 Al = {Z4 + A (d) - 26 + A (d ) )} 2/d 
1 1 3 3 1 

const. 

At t , h i s discontinuous and therefore d is 
dis dnti~uous. Therefore the corner condifions yield: 

A,/t = A,/t 
1 3- 1 3+ 

i = 1 ,3 

and 

At this corner there is no state variable constraint involved , 
thus even though the control r1 is discontinuous the corner 
conditions require 

A•/t = A,/t = 1 , 2 ,3 
1 2- 1 2+ 

C r 2 
dA1(ct 1) 

~l 
Al A3 D1 1 Al 

fl = {Z4 + A (d
1

) - (Z6 + A3(d3))} 21d1 + A1(ct 1) ddl 

~i 
Ai dA;(di) A, 

= fi 1 A. (d,) + A. (cl . ) const. = 2,3 
1 1 ddi 1 1 
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Corner at t 1 

188 

All variables are continuous. Therefore the corner 
conditions. yield: 

Ai/t = A,/t . 
· 1- 1 l+ 

= 1 ,2,3 

· C r 2 
Al Dl 1 Al 

~, = {Z4 + A (d )} 21d + A (d ) 
1 1 l 1 1 
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of a jump in control between r1 and r3 exists. 

To show that the jump in control r2 can occur at t 2, the corner 

conditions given by equations II.2-13 and 14 of Chapter II can be applied 

(observe that yk equals zero) or the control equation for r 2 (equation 

A.2-14) can be examimed. Following the latter approach, if a jump in 

control r2 is to occur then equation A.2-14 must at some instant in time 

be zero for any value of r2. This leads to the requirement that: 

= 0 A.II-26 

when neither rese rvoi r 1 nor reservoir 2 is overflowing. By considering 

the case when the absolute value of Zr- is very small and referring to 
:) 

figure A2.l, it is seen that this condition can occur at t 2 as shown. 

Another possibility of interest that could occur if reservoir 2 

started overflowing much sooner,is that the control r2 could switch while 

reservoir 2 is ove rflowing. The corner conditions shmv that the necessary 

condition for a swi tch in control r2 to occur in this situation is 

A.II-27 

which, provided reservoir is not overflowing, can occur (refer to 

figure A2.l). 

By followi ng simi l ar procedures it can be shown that for the 

relative values of the weighting factors gi ven by equations A.II-22 to 25, 

the switch in control r2 cannot occur while reservoir 1 is overflowing. 

Other possibilities related to the discussion of the problem 
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of two reservoirs in series, discussed in Chapter III, apply to the 

three reservoir problem . 

., <. ,, 
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APPENDIX I II 

THE PROBLEM OF THREE RESERVOIRS IN THE "Y" CONFIGURATION 

A.III.l Introduction 

This appendix gives the complete solution for CASE 6 in Chapter 

III; the problem of three reservoirs in the Y configuration, each of which 

overflm<Js. 

The format followed is similar to that of CASE 1 in Chapter III 

except that the algebraic equations of the Lagrange multipliers associated 

with the inequality constraints are not siven as it is only important 

to know that a particular multiplier is available to satisfy a particular 

control equation. 

To simplify notation the following variables have been introduced: 

fi, which represents the right hand side of the state equations; Cj which 

represents the left hand side of the control variable inequality cor traints; 

Sk, which represents the left hand side of the state variable inequa 

constraints and; P. which represents the control equations. 
J 

A.III.2 The State Equations 

The three reservoir "Y" configuration is shown in figure III-10. 

For this system, fo l lowing the formulation given in Chapter II, the 

state equations are: 
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A. I II.3 The System Inequality Constraints 

A. The Control Variable Inequality Constraints 

c.+3 = h. (h.-d.) < o = 1,2,3 
l l l l 

B. The St ate Variable Inequality Constraints 

s. = d. (d.-0.) < 0 
l l l l 

- C h 3/2 
\•J l l 

A.III-1 

A.III-2 

A. I II-3 

A.III-4 

A.II I -5 

A. III -6 

A.III-7 

A.III-9 

A.III-10 
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A.111.4 The Augmented Objective Function 

Using the abbreviated notation given in equations A.111-1 

through A.111-10 and; taking the first time derivative of the state 

variable inequality constraints and adjoining them in the usual manner, 

the augmented objective function for the problem becomes: 

T 
-Jf 3 3/2 2 Min~ - q: ( Z. c1., h. + Z. +3c0 /cf r1 ) · l 1 "j, 1 1 . 1 1 = 1 1 

0 

3 . 10 3 
+ L (A,(d.-f.) + L n .C. + L y .(2d.-D.)f .}dt 

j=l J J J j=l J J R=l J J J J 

3 
+ l y .s. 

i = l J J 

A.III.5 The Con trol and Adjoint Equations 

A.III-11 

Applying the Euler-Lagrange equations to the augmented index of 

performance yields the following necessary conditions for an optimal 

control. 

A. The Control Equations 

r, cz, + 
Al-yl(2d1-D1) ~ l/ 2 n4(2h 1-d1) 0 = A (d) J3/2Lw h1 + = 

1 1 1 
A.III-12 

[72 + 
A2-y2( 2d2-D2) 1/2 

5(2h2-d2) = 0 p2 = A (d) ]3/2Cw h2 + n 
2 2 2 

A.III-13 

P3 = [Z3 + 
A3-Y3(2d3-D3) 1/2 = 0 A (d) ]3/2Cw h3 + n6(2h 3-d 3) 

3 3 3 
A.III-14 
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>- 1- y 1 (2d1-o1) 
P =[Z4 + A(d) + n10 ]2C0 1a:1r1 + n (2r-R -R . )=O 4 1 1 1 l l max1 min 1 

A.III-15 

+ n7 + ng}2Co ~r2 + n2( 2r2-Rmax -Rmin) = O 
2 2 2 

A.III-16 

>. 3- y3(2d3-D 3) >. 1- y1(2d 1-o1) 
p6 = {Z6 + [ A

3
(d

3
) J - [ A

1
(d

1
) J 

+ n8 + n9}2C0 /cf.3r 3 + n3(2r3-R -R . ) = O 
3 max3 m,n 3 

A.III-17 

B. The Adjoint Equations 

A.III-18 

A.III-19 

C r 2 
>. 3- y3(2d3-D3) >- 1- y1(2d1-D1) o3 3 

>- 3 = {Z6 + [ A
3

(d
3

) J - [ A
1

(d
1

) J + n8 + ng} 2ld
3 

>. 3 dA3(d3) 
+A3(d3)f3 d(d 3) - n6h3 A.III-20 

In equations A.III-18 to A.III-20, any terms in which y . and f. 
l l 

appear as a product have been eliminated as one or the other is always zero. 
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C. The Transversality Condition 

The values of A,/t as given by the transversality condition , f 

A,;t = 0 
f 

A.III-21 

A/t = 0 
f 

A.III-22 

A/t = 0 
f 

A.III-23 

A.III.6 The Solution Forms When All Reservoirs Overflow 

In determining a solution form for the case where all three 

reservoirs overflow, the following assumptions were made 

(a) z, > z2 > Z3 > 0 A.III-24 

(b) -Z4 > -z 5 > -Z6 > 0 A.III-25 

(c) z1-z4 > Z2-Z5 > Z3-Z6 > 0 A. II l-26 

(d) h. < d. = 1 , 2, 3 A.III-27 , , 
(e) R . = mm. , 0 = 1 ,2 ,3 A. III-28 

( f) 'JT . , = 0 = 7,8,9,10 A. II I-29 

(g) A. ( d.) = K. = 1 ,2 ,3 A. I II-30 , , , 

Assumption f means that it was assumed that none of the flow 
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constraints were violated. 

The assumed state and control ~ariable trajectories for the 

optimal solution are shown in figure III-11. A brief description of the 

control operations is given with the discussion of CASE 6 in Chapter 

II I. 

Following the procedure outlined in Chapter III the verification 

of the assumed trajectories can proceed backward from tf. For each time 

interval on figure III-11, Table A3. l shows the non binding constraints 

and the resultant zero Lagrange multipliers; the binding constraints 

and their associated non zero Lagrange multipliers and the control 

equations which these multipliers are used to satisfy; and the equations 

used to determine each control variable. For each time interval and 

corner, Table A3.2 shows the equations of the >. multipliers. The form 
>. . 

of the >. multipliers is plotted in figure /l.3.1 in terms of A.(d.) 
l l 

>... 
1 

A. (d.) 
1 1 

Time 

-Z2A2(d2) 

-Z11\ (dl) 

Fig. A3.l The Trajectories of the A Multipliers for 
the Three Reservoir "Y" Configuration 



TABLE A3.l 

Solution of the Constraint Multipliers, Control Equations and Controls for the Case of Three Reservoirs in 
l 2 the "Y" Configuration 3 Control Equations 4 Constraint Control~ 

Time Non Binding Associated Zero Binding Associated No n Satisfied by Are Determined 
Interval Constraints Multi[!liers Constraints Zero Multi l i rs Multi [!l iers From 

tf>t>t10 cl 117 cl Tl l P4 rl -+ cl = 0 
Cg Tia c2 112 P5 r2 -+ c2 = 0 
Cg 119 C3 113 p6 r 3 -+ c3 = 0 
ClO 11 10 C4 Tl4 pl hl -+ c4 = 0 
s1 yl C5 Tl5 p2 h2 -+ c5 = 0 
S2 y2 c6 115 P3 h6 ... c6 = o 
S3 Y3 

t1o>t>t9 c3 113 cl Tl l P4 h1 -+ c4 = 0 
cl c2 P5 h2 -+ c5 = 0 -' 

117 112 i.O 

Cg C4 pl h3 ... c6 = o -.....J Tlg Tl4 
Cg Tlg C5 115 p2 rl -+ cl = 0 
ClO 1110 c6 116 P3 r2 ... ~2 = O 
S2 Y2 sl yl p6 r 3 -+ s1 = 0 
S3 Y3 

tg>t>tg c2 112 cl Tl l P4 h1 -+ c4 = 0 
C3 113 C4 114 pl h2 -+ c5 = 0 
cl 117 C5 115 p2 h3 ... c6 = o 
Cg Tlg c6 115 P3 r1 ... c1 = o 
Cg 119 sl Yj P3 r2 -+ sl = 0 
ClO 1110 S3 Y3 P3 r 3 ... s3 = o 
S2 Y2 



TABLE A3.1 continued 

ta>t>t7 c2 1T2 cl 1T 1 P4 hl + c4 = 0 
c3 1T3 C4 1T4 pl h2 + c5 = o 
c6 1T6 C5 1T5 p2 rl + ~1 = 0 
C7 1T7 sl yl p6 r 2 + S3 = 0 
Ca ira S2 Y2 P5 r3 + ~1 = 0 
Cg 1Tg S3 Y3 P3 h3 + S3 = 0 
c10 1T10 

t7>t>t6 c2 1T2 cl 1T l P4 h1 + c4 = 0 
C5 1T5 C3 1T3 p6 rl + cl = 0 
c6 1T6 C4 1T4 pl r 3 + c3 = o 
C7 1T7 s1 yl P5 r2 + ~l = 0 
Ca ira S2 Y2 p2 h2 + S2 = 0 __, 

Cg S3 P3 h3 + s3 = o I.O 1Tg Y3 co 
ClO 1Tl0 

t6>t>t5 C4 1T4 C1 1T l P4 r1 ... c1 = o 
C5 1T5 c2 1T2 P5 r2 + c2 = 0 
c6 1T6 C3 1T3 p6 r 3 + c3 = 0 
C7 1T7 Sl yl pl h1 + s1 = o 
Ca ira S2 Y2 p2 h2 + s2 = 0 
Cg 1Tg S3 Y3 P3 h3 + s3 = 0 
c10 1Tl0 



TABLE A3. l continued 

ts>t>t4 C4 TT4 cl TT l P4 r1 + c1 = 0 
cs TT 5 c2 TT2 P5 r2 + c2 = 0 
cl TT] C3 TT3 p6 r 3 + c3 = 0 
CB Tia c6 TT6 P3 h3 + :6 = 0 
Cg llg s, yl pl h1 + s, = 0 
c,o TTlQ S2 Y2 p2 h2 + s2 = a 
S3 Y3 

t4>t>t3 C5 Tis c, Tll P4 r1 + c1 = O 
Cy TT] c2 TT2 PS r2 + c2 = 0 
CB TTB C3 TT3 p6 r 3 + c3 = 0 
Cg llg C4 TT4 pl h1 + c4 = 0 
c,o TT10 c6 TT6 P3 h3 + ~6 = 0 --' 

I..O s, yl S2 Y2 p2 h2 + s2 = 0 I..O 

S3 Y3 
t3>t>t2 Cy TT] c, TT, P4 r 1 + c1 = 0 

CB TTB C2 TT2 P5 r2 + c2 = 0 
Cg TTg C3 TT3 p6 r 3 + c3 • 0 
c,o TT,o C4 TT4 pl h1 + c4 = 0 
s, yl C5 TT5 p2 h2 + Cs = 0 
S2 y2 c6 TT6 P3 h3 + c6 = a 
S3 Y3 



TABLE A3.l continued 

t2>t>t1 C7 TT] cl TTl P4 r1 + c1 = o 
CB '1TB c2 TT2 P5 r2 + c2 = 0 
Cg TTg C3 TT3 p6 r 3 + c3 = 0 

ClO TTlO C4 TT4 pl h1 + c4 = 0 
sl yl C5 TT5 p2 h2 + c5 = 0 
S2 Y2 c6 TTfi P3 h3 + c6 = o 
S3 Y3 

t 1>t>t0 C7 TT] cl TT l P4 r1 + c1 = o 
CB '1TB c2 TT2 P5 r2 + c2 = 0 
Cg TTg C3 TT3 p6 r 3 + c3 = 0 

ClO TTlO C4 TT4 pl h1 + c4 = 0 N 
0 

sl yl C5 TT5 p2 h2 +cs= 0 0 

S2 Y2 c6 TT6 P3 h6 .+ c6 = o 
S3 Y3 

Notes: 
l. Time intervals are those shown on Figure A3.2. 
2. Lagrange multipliers in this column are those associated with non zero constraints on the same line in 

the previous column. 
3. Lagrange multipliers in this column are those associated with the binding constraints on the same lines 

in the previous column. 
4. Control equations listed in this column 

the previous column. 
are satisfied by the Lagrange multipliers on the same line in 

5. r1 + C~ = 0 should he read as "r1 is determined from c4 = O". The controls in this colullVl are listed in 
the or er required for solution. 
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TABLE A3.2 

THE EQUATIONS OF THE A MULTIPLIERS AND THE CORNER CONDITIONS FOR THE 

PROBLEM OF THREE RESERVOIRS IN THE "Y" CONFIGURATION 

Time 

Corner at t 10 

Corner at t 9 

. 
Values of Ai or Ai 

All variables are continuous. Therefore the corner 
conditions yield 

A•/ = A·/ 
1 t10- 1 t10+ 

~ = 0 3 

i = 1 ,2 ,3 

-+ A3 = const. 

All variables are continous. Therefore the corner 
conditions yield 



TABLE A3.2 cont'd 

Corner at t 8 

Corner at t 7 

Corner at t 6 
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+ >.i = const. i = 2,3 

All variables are continuous. Therefore the corner 
conditions yield 

.... >.i = const . i = 2,3 

All variables are continuous. Therefore the corner 
conditions yield 

L/t = ). ./t 
l 7- l 7+ 

i=l,2,3 

+ >.i = const. i = 2,3 

All variables are continuous. Therefore the corner 
conditions yield 

i = 1,2,3 

+ >.i = const. = 1 ,2, 3 



TABLE A3.2 cont'd 

Corner at t 5 

Corner at t 4 

Corner at t 3 
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At t 5, h3 is discontinuous and therefore d is 
discontinuous. Therefore the corner condi~ions 
yield 

Ai/t = A,/ t = 1 ,2 
5- 1 5+ 

A3/t = -z3A3(D3) 5-

c0 r1 
2 . 1 Al = {Z4 - z,J 2/d 

1 

. 
Al = 0 -+ Ai = const. i = 2,3 

At t 4 , h1 is discontinuous and therefore a is 
discontinuous. Therefore the corner conditions yield 

Al/t = -z1A1(D1) 
4-

A,/t = L/t , 4- 1 4+ 
i = 2,3 

. Al 

. 
Ai = 0 -+ Ai = const . i = 2,3 

At t3, h2 is discontinuous and therefore a3 is 
discontinuous. Therefore the corner doncitions 
yield 

A,/t = A·/t 1 3- 1 3+ 
i = 1,3 
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Corner at t 2 

Corner at t 1 

t 1>t~t0 
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. 
Ai = 0 + ;1.; = canst. i = 2,3 

At this corner there is no state variable inequality 
constraint involved, thus, even though the control r 2 
is discontinuous the corner conditions require: 

i = 1,2,3 

A 
+ __.l.._ = cons t. 

A3(d3) 

At this corner there is no state variable inequality 
constraint involved, thus, even though the control r3 is discontinuous the corner conditions require: 

;1.,/t = ).. / t , 1- , 1+ 
2 

:i.. CD rl 
Al = {24 + 1 } 1 

A1ca1J ud1 
C r 2 

:i.. 1 :i.. 2 D2 2 
).2 = {Z - + } . 5 Al (d1) A2(d2) 2ld2 

C r 2 
:i.. 1 :i.. 2 03 3 

;l..3 = {Z - + } 6 A1 ca, J A2(d2) ud3 
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A.III.? Possibilities for a Jump in Control 

To show that the jumps in controls r2 and r3 can occur at times 

t 2 and t 1 respectively , the corner conditions given by equations II.1 -11 

and 12 of Chapter I I can be applied, or the control equations for r2 and 

r3 (equations A.III-16 and A.III-17) can be examined. Following the 

latter approach, if a jump in control r2 is to occur then equation 

A.III-16 must at some instant in time be zero for any value of r2. When 

neither reservoir l or reservoir 2 is overflowing this leads to the 

requirement that 

= () A.III-31 

Examination of the A trajectories shown on figure A3.l shows that this 

condition can occur at t 2. Similar results can be sh own for the jump in 

control r3 at t 1. For this case the necessary condition for a jump in r3 
is 

= 0 A.III-32 

Other possibilities for jumps in the controls r2 and r3 are 

similar to those discussed in CASES l, 2 and 3 of Chapter III and the 

series part of the three reservoir "V" configuration discussed in Appendix 

I I. 
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APPENDIX IV 

EXAMPLES OF OPTIMAL CONTROL 

A. IV. 1 Introduction 

This appendix gives the optimal control results for the ten 

reservoir control problem for two examples in which the weighting factors 

are as discussed in Chapter V and shown in Table V.3. The inflow 

hydrographs for both examples are the same and are shown in figure A4.l. 

Their peaks are shifted in time to simulate the passage of a storm from 

top to bottom across the basin shown in figure V.4 of Chapter V. 

The values of the overflow and throughput weighting factors are 

the same for both examples and are listed in Table A4.l. 

TABLE A4. l 

The Weighting Factors For Examples A4. l and A4.2 
Reservoir Overflow Throughput Number vJeighting Weighting 

Factor Factor 
1 20 -.060 2 16 -.059 3 8 -.055 4 12 -.057 5 14 -.058 6 10 -.056 7 7 -.054 8 6 -.052 9 6.50 -.053 10 5.50 - . 051 
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The weighting factors were given a large spread, in an attempt to ensure 

that it would not be advantageous for the overflow from a reservoir to 

be reduced with a resultant increase in the overflow from a downstream 

reservoir with a higher overflow weighting factor. 

A.IV.2 Example A4.l 

In this example only the flow constraint governing the outflows 

from reservoirs 1 and 5 was binding. The data for the reservoir 

constraints is shown in Table A4.2 The results presented in figure 

A4.2 show that in fact there was no advantage to be gained by over-

flowing from a reservoir with a high overflow weighting factor. The 

overflows shown for reservoirs 1, 5 and 6 are as small as numerical 

accuracy would allow. The outflow from reservoir 3 was zero until 

reservoir 2 stopped overflowing and thus no further reduction could be 

made in the overflow from reservoir 2. The results for the remaining 

reservoirs appear to be optimal. 

TABLE A4.2 

The Reservoir Constraints for Example A4. l 

Reservoir CD cw R 01nitial 0max A( ct) Number max 
1 2.50 15. 0 3.0 1.0 6.0 50 + 80d 
2 2.00 15. 0 3.0 1.0 6.0 50 + 80d 
3 2.00 15.0 3.0 1.0 6.0 50 + 80d 
4 2.00 15 .0 3.0 1 .o 6.0 50 + 80d 
5 2.50 15 .0 3.0 1.() 6.0 50 + 80d 
6 2.00 15 .0 3.0 1.0 6.0 50 + 80d 
7 2.00 15 .0 3.0 1.0 6.0 50 + 80d 
8 2.00 15 .0 3.0 1.0 6.0 50 + 80d 
9 2.00 15 .0 3.0 1.0 6.0 50 + 80d 
10 2.00 15 .0 3.0 1.0 6.0 50 + 80d 
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Reservoir 1 Reservoir 2 
6 dl 6 d2 

3 3 
hl 

0 0 
0 10 20 30 40 50 0 10 20 30 40 50 

Reservoir 3 Reservoir 4 
6 6 

d3 d4 
3 3 r4 

0 0 
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6 Reservoir 5 6 
µ ds d 4-1 

r6~ 
I 3 3 H 
~ 

..c: hs ~ 

"'Cl 0 0 
0 10 20 30 40 50 0 10 20 30 40 50 

7 Reservoir 8 
6 6 

3 3 

0 0 
0 10 20 30 40 50 0 10 20 30 40 50 

Reservoir 9 Reservoir 10 
6 dg 6 

rg hg 
3 3 

0 0 
0 10 20 30 40 50 0 10 20 30 40 50 

Time increments 

Fig . A4.2 The Computed Optimal State and Control Var i ablP. 
Trajectories for Example A4.l 
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This run took 86 seconds of IBM 60-67 computer time, including 

the plotting routines and reduced the objective function from an 

initial value of 88,712 to a final value of 74,563. 

The explanation of this time which was 45% greater than that 

of any other run, is given in section A.IV.4. Ninety percent of the 

reduction was obtained within the normal running time of 50 seconds. 

A.IV.3 Example A4.2 

In this example the area-depth relationships of the reservoirs 

were changed from the previous example along with the discharge 

coefficients for orifices 5 and 6. The values of the area depth 

relationships and the discharge coefficients are listed in Table A4.3 

TABLE A4.3 

Data for Example A4.2 

Reservoir A(d) CD Number 
1 30 + 140d 2.5 
2 40 + 185d 2.0 
3 20 + 175d 2.0 
4 30 + 120d 2.0 
5 50 + lOOd 3.2 
6 50 + 180d 3.0 
7 50 + 150d 2.0 
8 30 + 140d 2.0 
9 30 + 185d 2.0 
10 50 + 80d 2.0 

The intent of this run was to demonstrate what happens when a 

storm is too small to require the entire capacity of the system. The 

results of this run, which was stopped before completion, are plotted 

on figure A4.3. They show that the optimal control tends to make 

maximum use of the downstream storage capacity. Considering the 
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Fig. A4.3 The Computed Optimal State and Control Variable 
Trajectories for Example A4.2 
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accuracy of information available for the control determination, this 

tendency could result in unnecessary overflow from the system when in fact 

there is ad.equate storage capacity available. Protec ti on against such 

an occurrence could be obtained by placing a safety factor on the 

maxi mum allowable depth for the most critical downstream reservoirs in 

the system. 

Ideally, this run should have filled all the downstream reservoirs 

to their maximum capacity where possible, and yet not have permitted any 

overflow. Numerical accuracy generally precludes finding exactly zero 

overflow, and thus in cases where there is more than adequate storage 

capacity in the system, as there is in this example, the numerical 

optimum is obtained by filling each reservoir just short of its maximum 

depth (since the overflow penalties exceed any throughput gains). When 

this occurs there is no way for the upstream orifices to open once they 

have shut down. Thus in this example, when run to completion, none of 

the reservoirs overflowed during the fifty time steps but orifices 3, 4, 

7, 9 and 10 were still shut down at T = 50. Probably the simplest way to 

avoid this problem i s to allow a small amount of overflow from each 

reservoir without penalty; the gain in throughput would then not be offset 

by a penalty against any small overflow and the computed optimal control 

would then ensure that all downst ream reservoirs filled where possible 

and as a result the orifice controls for each orifice would be opening 

at tf. 

One final point of interest in this example is the operation of 

the orifice controls for reservoirs seven and eight. If only one reservo i r , 

say reservoir seven, were upstream of reservoir six, then it would be 
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computationally advantageous during the optimization process to shut down 

orifice seven as soon as reservoir six overflowed. With two reservoirs 

in parallel upstream of reservoir six, such a procedure would prevent the 

gradient search procedure from obtaining the optimal control for reservoirs 

seven and eight in cases similar to this example, where reservoir six 

should fill to maximum capacity but not overflow. If the true optimal 

solution allowed overflow from reservoir six then for the given overflow 

weighting factors, orifices seven and eight would in fact close before 

reservoir six overflows; however, there is no way to determine a priori 

that this will in fact be the case. 

A.IV.4 Comments on the Examples 

For these two computer runs, the gradient search routine was 

modified to eliminate the problems created when one reservoir in the 

system reached its maximum level but did not overflow. Prior to the start 

of each iteration a check was made to determine if the volume of spill 

from each reservoir was less than a predetermined limit. If any reservoir 

filled and had overflow less than the specified limit, the switching time 

for the upstream reservoir was increased by one time step. In addition, 

the adj~sted switching time for the upstream reservoir was assumed to be 

an optimum value and was held constant unless in later iterations the 

overflow from the downstream reservoir again fell below the arbitrary limit 

in which case the adjustment procedure was again applied to the upstream 

reservoir. When an upstream reservoir switching time was adjusted an 

additional check was made to ensure that the adjustment would not cause it 



to stop overflowing. If this reservoir was itself liable to stop 

overflowing then an adjustment was applied to the next reservoir 

upstream. Once all derivatives were found to be zero, then further 

iterations were made in which no checks or adjustments were made for 

small spill volumes. (This was similar to the procedure - in fact an 

additional part of it - discussed in Chapter V to reduce computations by 

temporarily eliminating any switching times which showed a zero 

derivative). 

The results obtained using the above procedure showed that it 

worked effectively and did produce some reduction in the objective function 

when compared to results obtained without the additional routine. The 

increased reduction in the objective function which amounted to less than 

10% of the total reduction, for Example A4.l was obtained at the expense 

of a 45% increase in computational time. When it is realized that in this 

example during the initial iteration, the orifice switching times were 

adjusted to prevent flow into an overflowing reservoir from an upstream 

reservoir with a lower overflow weighting factor, (with the exception of 

reservoir six) and, as a result, the full capacity of nine of the ten 

storage reservoirs was utilized and all but 200 volume units of the 

remaining reservoir utilized, then it does not appear that the benefits 

gained by the additional computations are worth the increase in 

computational time. 
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APPENDIX V 

EXAMPLES OF OPTIMAL CONTROL - GENERAL PROGRAM 

A.V.l Introduction 

This appendix gives the optimal control results for the ten 

reservoir control problem for two examples in which the relative values 

of the overflow weighting factors are different from those discussed in 

Chapter V and shown in Table V.3. 

The inflow hydrographs for both examples are the same and are 

shown in figure A.5.1. Their peaks are shifted in time to simulate 

the passage of a storm from left to right across the basin shown in 

figure V.4 of Chapter V. 

The data for the reservoir constants was also kept constant for 

the two examples and is shown in Table A5.l 

TABLE A5. 1 

The Reservoir Constants for the Control Examples 

Reservoir CD CW R 0initial D A(d) 
Number max max 

1 2.50 15 .0 3.0 1.0 6.0 50 + 80d 
2 2.00 15 .0 3.0 1.0 6.0 50 + 80d 
3 2.00 15 .o 3.0 1.0 6.0 50 + 80d 
4 2.00 15.0 3.0 1.0 6.0 50 + 80d 
5 2.50 15 .0 3.0 1.0 6.0 50 + 80d 
6 2.00 15 .o 3.0 1.0 6.0 50 + 80d 
7 2.00 15.0 3.0 1.0 6.0 50 + 80d 
8 2.00 15.0 3.0 1.0 6.0 50 + 80d 
9 2.00 15 .o 3.0 1.0 6.0 50 + 80d 
10 2.00 15.0 3.0 1.0 6.0 50 + 80d 
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A.V.2 Example A5.l 

In this example all the flow constraints were non binding and 

thus the system behaved as if it were two separate series systems. The 

relative values of the weighting factors are listed in Tabl e A5.2 

Reservo ir 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

TABLE A5.2 

The Weighting Factors for Example A5.l 

Overflow 
1/eighting 
Factor 

10.0 
9.30 
5.80 
6.50 
8.60 
7.90 
7.20 
4.40 
5. 10 
3.70 

Throughput 
vJe i ghti ng 
Factor 

-.060 
-.059 
-.054 
-.055 
-.058 
-.057 
-.056 
-.052 
-.053 
- .051 

The results presen ted in fi gure A5.2 show that for reservo i rs 1 and 2 

there was a slight advantage to be gained by reducing overflow f rom 

reservoir 2 at the expense of reservoir 1. The same advantage could also 

be gained by reduci ng overflow from reservoir 6 at the expense of 

reservoir 5. In the latter case the late peak of the inflow hydrograph 

to reservoir 5 resulted in a much larger spill from that rese rvoir than 

from reservoir 1. There was also a longer time span between the time 

orifice 6 closed down and reservoir 5 overflowed than there was from 

reservoirs 1 and 2, thus increasing the advantage to be gained by 

decreasing spill from reservoir 6 at the expense of reservoir 5. There 
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Trajectories for Example A5 .l 
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does not appear to be any changes that could be made to the controls 

that would reduce the objective function. 

This run took 51 seconds of IBM 60-67 computer time (including the 

plotting routines) and reduced the objective function from an initial 

value of 63,634 to a final value of 54,480. 

A.V.3 Example A5.2 

In this example the flow constraint Qmax' was set at 165 vol/time 

increment, thus ensuring that the ten reservoirs behaved as one system. 

The relative values of the weighting factors are listed in Table A5.3. 

Reservoir 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

TABLE A5.3 

The Weighting Factors for Example A5.2 

Overflow Weighting 
Factor 

5.0 
4.0 
3.0 
2.0 

11.0 
10.0 
9.0 
8.0 
.7 .o 
6.0 

Throughput 
vJei ghti ng Factor 

-.054 
-.053 
-.052 
-.051 
-.060 
-.059 
-.058 
-.057 
- .056 
-.055 

In this example the overfl ow weighting factors decreased 

upstream for each of the two main legs of the system. The results are 

presented in figure A5.3 and show that because of the flow constraint 

there was no advantage to be gained by reducing the overflow from 
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reservoir 2 at the expense of reservoir and thus there was no overflow 

from reservoir l. However as a result of the zero overflow from l, some 

initial outflow was required from reservoir 3 to ensure that reservoir l 

filled. Shutting down orifice 2 or orifice 3 one time step earlier would 

have reduced the inflow to reservoir l sufficiently that it would not 

have filled and by the operating rules would have been unable to open 

orifice 2 (and hence 3). It is possible that if orifice 2 shut down one 

time step later and orifice 3 shut down at time zero a slight reduction 

in the objective function might have been realized (depending upon the 

effects of numerical accuracy). This same effect is evident in the 

operation of orifice 7 which possibly should have been closed earlier. In 

this case a reduction in throughput from reservoirs 6 or 7 would have 

caused a slight reduction in the throughput from reservoir 5 which would 

allow a slight increase in throughput from reservoir 1 again preventing its 

filling. For reservoirs 5, 6 and 7 because there was no constraint on the 

outflow from reservoir 5 it would, however, have been advantageous to 

reduce the overflow from an upstream reservoir at the expense of a down-

stream reservoir but not to the extent shown in this example. (Compare 

the weighting factors and results of example A5.l with those for this 

example). No improvement can be made on the results shown for reservoirs 

8-10. 

This run took 51 seconds of IBM 60-67 computer time (including 

plotting routines) and reduced the objecrjve function from an initial value 

of 67,470 to a final value of 57,566. 
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A.V.4 Comments on the Examples 

In the two examples presented in this appendix the initial 

guesses of the switching times were made quite large, thus ensuring that 

nearly all the reservoirs filled to their maximum values initially. At 

the start of each iteration these switching times are automatically 

adjusted to ensure that if a reservoir is spilling there is no inflow 

from an upstream reservoir with a lower overflow weighting factor. Thus 

the initial guess is immediately adjusted to a reasonably good guess. 

As a result, a large portion of the reduction of the objective function 

can be attributed to the redistribution of the total spill amongst the 

ten reservoirs of the system. On this basis it would appear, therefore, 

that any further improvement in the results in Example A5.2 would have 

been small. 
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APPENDIX VI 

THE CONTROL PROGRAM 

Figure A6.l is a listing of the subroutine used to determine 

the value of the ob j ective function for a given set of values of the 

switching times Xi. The listing is for the most general relationships 

between the overflow weighting factors as discussed in Appendix V. 

The neumonics of the program and the required data inputs are 

noted in the corrment statements. The logic follows the flow chart 

shown in figure V.5. 
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Fig. A6.l Listing of the Control Subroutine for the 
Ten Reservoir Example 

5 SUBROUTINE PHI(JPRI~T,X,PHIZ,IOVER,QTOT) 
b C THIS PROGRAM COMPUTES THE MINIMUM OVERFLQW FOR A TEN RESERVOIR PROBLEM 

__ .J. _ _ _.L_(j l VE..N.-1HLSW LT CH.l.N.G._EOllillL..x..!ll..._liLLAR.!LHJ...S_ B.F srnvo IHS 1_,_2,3 AND If 
B C RIGHT ARM HAS RFSFRVOIRS 5,b,B,~ AND 10, RESFRVQIR 7 IS PARALLEL WJTH 
9 C RESERVOIR 8 AND FEEDS RESERVOIR b, RESERVOIRS 1 AND 5 ARE OOwNSTREAM 

10 C THE OVERFLO~ WEIGHTING FACTORS ARE ORDERED Zl ,GT, 22 .GT, ZS ,GT, _ 
11 C Z4 ,GT, lb ,GT, Zl ,GT, Z7 ,GT, zq ,GT, ZB ,GT, ZIO , THE THROUGHPUT 
12 C ~EIGHTING FACTORS ARF. PROPORTIONiL TO (BUT VERY MUCH SMALLER IN 

_ 13 ___ L.IU G ~ll.U D L.1.H AlLll:iLJl'l.Elil. L.QJl--1..ALJ. UR.S .• _ l...2..1.. AND Z 2 2 ARE DUMM Y 
14 C 
15 C * * • • • * • • * * • • * * * • * • * * * * * * * * ** 
lb C THE DATA REQUIREl"ENTS AREi• * 
17 C COCI) • ORIFICE COEFFICIENTS CW(!)• ~EIR COEFFICIENTS * 
18 C RM(I) • MAX ORIFICE RADIUS OMCI) • MAX DEPTH BEHIND WEIR * 

_ l_lL_ _L__DllU~ -1.hlll.AL...fil S.,_ D.U_..T..uHcuS __ --'S.uA..__.__.( IL..)L......!:A'-!.N.D_ .5fill..l__RU ER v O I H ST PR ACE * 
20 C QMAXCI)• MAX ALLOwAALE FLO~ PARAMETERS * 
21 C DOwNSTRFAM OF THE RESERVOIR DT • INTEGRATION TIMF. INT ERVAL * 
22 C QJCJ) • POINTS ON THE INFLOW THAX • STOPPING TIME (:XMAX IN ·- * 
23 C HYDROGRAPH DTQ HIN APART GRADIENT) * 
2a C * ** * * * * * * * * * * * * * * * * * * * * * * * * * 

....25. ____ c_ 
2& DIMENSION C0(10),COM(tO),RMC10),C~(1D),DM(tO),QMAX(10),SA(10), 
27 1SB(t0),DI(10),ZC22),QIC11),H(10),R(10),DCIO),DN(10),X(10), 
28 2QII(13,101),ICLOSt(10),QTHRU(13),QOVER(10),JNEXT(10),!DUM(10) 
zq 3,I0VERC10),KFILL(t0) 
30 DIMENSION ALPHC20) ,DPDC55,l0),DPRCS5,t0),0PH(55,10),0PY(SS), 

_ 3.1 __ __ _1..o..e.I..l~.5.L _________________________ _ 
32 DIMENSION QTOT(IO) 
33 I FORMATCIX,41HTHE INPUT DATA TO THE CONTROL PROGRAM IS•) 
34 2 FORMAT(10FB,?.) 
JS 3 FORMATCIX,5HD~PTH,2X,10(2X,FI0,2)) 
3b a FO~MAT(IX,5HQUvER,2X,10(2X,F10,2)) 

_ 3J _ ___ _5__.f0!:<!'4.J..H1.XL.5..tLG.lt<_llW.t.UL1.Q..Lal.,£.A...><......,,_L.L.. _______________ _ 
38 b FORMAT(tX,7HORIFICE,10(2X,F10,2)) 
19 7 FORMAT(1X,4HWEIR,3X,10(iX,FI0,2)) 
ao 8 FORMAT(1X,bHINFLOW,1X,13(1X,F8,2)) 
41 Q FORMAT(5X,bHTIME :,F8,2) 
42 10 FORMAT(1X,23HTHF FINAL RESULTS ARE •,F10,2,bH = PHI) 

- ~_3 _ ____ .U _fOR.M.~lCLQJ5J ____________ _____________ _ 
44 GO TO (770,880,BR0,880),JPRINT 
45 C SECTION A** * * * * * * * * * * * * * * * * * * * * * * 
4h C kEAO DATA, COMPUTE HYDROGRAPH POI~TS FOR EACH OT INTERVAL ,COMP UTE ~ 

47 C MISCELLANEOUS PARAMETERS, ANO wRITE OUT DATA * * * * * * * • .. 
48 770 wRITECb,l) 
1,1.9 _ ________ ..!l.O ..1.LI.;..Lt.10 _ _______ ·----·-----------
50 READ(S,~) COCI),CW(Tl,DICI),O~Cl),RM(J),SACI),SB(I) 
51 WH!Tt(o,2) CO(l),CW(l),DICI),DM(l),RMCI),SA(I),SB(l) 
~2 71 CONTINUE 
53 READCS,2) (QMAX(J),1=1,10) 
54 READ(S,2) CZ(Il,I=t,20) 

. ..55-___ R~~.D C 5,..2.1_,.,_D..LTL. _,_TM'-'--"'-A X,,_ ________________________ _ 
Sb READCS,11) JGRAPH 
57 WRJTf(b,2) (QMAX(ll,1•1,10) 
SR WRJT[(b,2) CZCil,1=1,20) 
5q WRITECo,2) DT,TMAX 
bO wRJTf(b,11) JGRAPH 
bl C CCHPLI..lLJ11.S.C.~LJ..A.~EOU S PARAMETERS COMMON TO ALL ITERATIONS .. . ~· .. 
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b2 Z(21): 0,00 
bl l(22): 100,00 
&4 DO 72 I=1,10 
&5 72 COM(I) :COCI)•(RH(l)**2) 
bb NT: TMAX/DT + 1,01 
¼1----- -NT~-~l'.--+--------------------------
08 ND: NTH/10 
bQ DTQ: ND 
70 DO 73 I=l,ll 
71 REAOC5,2)COI(L),L:1,11) 
72 00 74 J:t,10 
-1-l---------l(......:.-,>---1------------------------------
74 OIFF: (QICK) ~ QJ(J))/DTQ 
75 M: (J•l)*NO + 1 
7b N: J•NO 
77 DO 74 L:M,N 
78 P: L•M 

-'1-.Q, ___ ~,....._f+I---I-C-l-rt-+--=--WQ-1-I+C.J--JJ-) ~+~P"--'*lt.{0}-.llµ,F~F'--------------------
80 OIICI, NT) : 0IC1l) 
81 ~RITECb,2) (QJ(L),L:1,11) 
82 73 CONTINUE 
A3 C • * * * * * * * * * * * * * * * * * * * * * * * * * * * 
64 C START SFCTI0N B • l:IIALUATION OF THE 08JECTlllf FUNCTION 

.S-S-~- ~U-f E- --l H~ OU(;.~ 11 TS 4 ND-0-11..E~UH .. JJ,i.£._ji_U'£N....-5-w ..... I~t__..c.,.,H...,.J_,,N..,G'----"P'-'"Oul....,NuT-.:S1---
8 b C 
~7 C COMPU1E INITIAL CONDITIONS FOR T:O,O 
88 880 PHIZ: 0,0 
BQ T: O,O 
QO L0t,,,f: XC1) + OT 
.91 XO~,._,OuNo,:Ec..------------------------------qz 00 5001 KJ:1,10 
Q3 5001 QTOT(KJ): 0 1 0 
q4 00 51 t=t,10 
Q~ JCLOSf(t):t 
9b IFCX(I),LE,O,O) ICLOSECI):2 

_q.7_ - . --- - tOV.fR--{.l+-=-l-------------
QA JNEXT(I)=I 
QQ IF(I,N[,5) CO TO 51 
00 ICL0SEC5):5 
01 IFCICLOSECt),NE,2) GO TO 51 
02 ICLOSEC1)=5 ..Ol-----~.N0 .. -'--\--1.--J---_,_ _________________________ _ 

04 ICL0SE(5):t 
05 INEXTCS):1 
O& 51 DCI) = DICI) 
07 00 52 1=11,13 
06 5? QTHRU(l): 0 1 0 
0 Q___ (_....SE.ta N..-0 lJ T £.R.. L O OP ON I I H£.....S.!.E.eJL_t * * * * *~~--"-• _,,_,. --"-* ---"-* --"-* --"'-* 
10 DD 500 J:l,t,,,TM 
11 LOOP: 0 
12 JZLOOP: 0 
13 C CO~PUTE ORIFICE THROUGHPUTS * * * * • * * * * * * * * * * * 14 202 DO 118 KJ:1,10 
15----1--1/L Q!HR.l.).( l(.J..1---•---.JU--..-J~------------------------
l b Jf(XONt,GT,XCS)) GO TO 2021 
17 IFCXC5),LT,T•DT,OR,XC5),GT,T) GO TO 2021 
18 ICL0StC1): 1 
19 ICLOSECS) ~ 5 
20 DO 2022 KJ=1,10 

~ .l . ,, lF(I%)(l(kl),EQ,1) COO TO 20Zl 
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122 IFCINE XTCKI),NE,5) GO TO 2022 
123 INfXT(Kl): 1 
12~ GO TO 2022 
125 2023 INEXT(KI) • S 
12b 2022 CONTINUE 

-12...7 2021 COJtlUIU..c.---------------------------
128 DO 100 KI: 1,10 
12q K :JNEXT(KI) 
130 C CLOSE ORIFICES IF T,GT,X(K) OR IF DOWNSTRE~~ RESER VO I R OV ERFLOW S 
131 C PROVIDED ZU,LT,ZO 
132 IFCICLOSEC K),GT,1,0R,K,EQ,5) GO TO 111 
I 33 I U.l!...ffi._1..L..GO TO 1 ._1 5..,_ ________________ _ 
134 IFCT,LE, X(Kl) GO TO 111 
13S ICLOSE(Kl: 2 
13b 111 IF ( JPRINT,E0,2,0R,JPRINT,EQ,3) GO TO 112 
137 IFCO(K),G E,D~(KJ,AND,IUVER(K),LT,3) GO TO 114 
138 GO TO 112 

-1-3.9__ 11 4 I E C ~ f.!414.llii..K-.LQ..._b , O 8 , K , E Q , 1., DH , K , t C. , l_Ql_G.CL.10_1. ..... l ... 2 _____ _ 
140 LK: K+l 
141 lFCICLOS E(LK l,GE,2) GO TO 112 
14< IFCZ CLK ),GT,Z(K)) GO TO 112 
143 I CLOSE(LK): 2 
144 IFC ,GT, XCLK) ) GO TO 112 
.L4.S.....____ -X.1..Lll_;__~__u_I/.2 ._Q _____ _ 
14b JFClCLOSlCK ),EQ,5) X(LK): T t DT/2 1 0 
147 GO O 11 2 
148 115 IFC T• OT,Lf.,X(1),AND,T,GT,X(1))GO TO 11b 
149 GO TO 111 
IS O 11b ICLOSEC1):5 
151 ICLO.S.ECS):t 
152 INEXT(KI):5 
153 K: S 
1S4 M: KI+1 
155 00 117 LK:M,10 
15b IF(INEXTCLK),EQ,5) INEXTCLK): 1 

..1..S_L _ --1u__c_ol:il.lil.\L..__ __________________________ _ 
158 GO TO 111 
159 112 M: ICLOSECK) 
1b0 GO TO ( b0 ,70,80,qO,bO),M 
tbl C COMPUTE TMR0UGHPUT ON THE ~ASIS ORIFICE AT MAX ALLOwABLE 
1b2 bO gTHRUCK): COM(Kl*SQRT(D(Kl) 
I bl E..tK_ ...EJl.<la.0.H ..... .!t.f:.!1.... 5 LJiJLT...O..... ... t>. L __________ _ 
lb4 JF(QTHRU(K) t OIICK,J),GT,QMAXCK)) QTHRUCK): QMAX(K) • QIIC~ , ) 
lbS JF(K,E0,7,0R,K,E0,8) GU TO 63 
1bc GO TO 100 
1&7 &1 L = 5 
1&8 N: 1 

.1.b.~---- .l.f_LK • EQ • 5 l L = 1 . 
170 &2 IfCQTHRU(K)+QIICK,J)+QTHRU(Ll+QIICL,J),GT,QMAX(N)) QlHRU(K): 
171 1UMAX(N)• QTHRU(L)•OII(K,J) •QIICL,J) 
172 GO TO 100 
173 b3 N=S 
174 L= 7 

.i.1.5 IF C K_..E..Q. 7) L=8~-------------- ----------
17b GO TO &2 
171 C CO MPU E TH ROU GHPUT ON THE BASJS OHFICE IS FULLY CLOSED 
178 70 QTH RU (K) =o,o 
17q GO TO 100 
180 C COMPUTE THROUGHPUT ON THE BASIS DDOT(OOWNSTREAM) : 0 

.~ ~ I.. . 60 ,IL ~~~-~--------------------------
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182 IFCK,E 0,6 ) J L : b 
183 JFC JL,fQ,b) GO TO 65 
184 QTHHU(Kl : QT HRU (JL) • GI1CK, J) 
185 JF(QTH HU(K) ,LT,O,Ol GO TO 70 
18b 6 1 If(QTHA U(K)+Qll(K,J),GT,UMAX(K) ) QTHRU(K) :QHAX(K) - 0Il(K,J) 
-Ul-7------QOUhl-=- C-0!1..{.K-µSO!<+~.µ...J+---------------------
188 JFC QTHR U(Kl,GT, OD UH ) QTHRU(K): QDUM 
189 GO TO 100 
190 85 L: 7 
191 IF(K 1 f~,7l L: 8 
192 PSlJM: CH lCL,J) + QIICK,Jl + QTHRU(L) 
-1-Q.J~----- •CJ T-HR-U-C K- ) - -=--O--U .tR1.l--{..J b-)~-C.SU!1 
1q4 IFCQTHH UC ~l,L E,O,O) GO TO 70 
195 JF(QTH RU (K) + QSUM,GT,QMAX(5 )) QTHAU(K) : QMAX ( S)•QSUM 
19b GO TO 81 
197 C COMPUTF THRO UGHP UT ON THE BASIS OD OTC K) a 0 
196 qo IFCK,EQ,b) GO TO 95 
_, ..q__,,_ ___ ---4..----,-.......... .--..'-j-----------------------------
200 IFCK,E G,4) L: 12 
20 1 IFCK,f CJ ,7) L : 13 
202 QTHRU(K) : Q ICL, J ) + QTHRU (L ) 
203 IFCK,E Q,5,0H,K,E0 , 1 ) GO TO 91 
204 GO TO Rt 
2..0.f>.. 9 l QOO-M--=-CQ.14~U-O---(..I(..)...), ____________________ _ 

20b JF(QTHHU(K) 1 GT 1 QD UM) QTHRU( K) : QDUM 
207 GO TO bl 
?.oe 95 QTHR U(K) : QJIC7,J) + QJIC6 ,J ) + QTHRU(7) +OTHRU(8) 
209 GD TO 81 
210 100 CONTINUE 
2 -1--1 - - ----C---C-H~f THU ! HE Ftl-U..-C..A l..!-Y-Of-T..HE:-U-NLf....Rill1 RFSFRV..OI....,R..,S"------
212 C l AND 5 JS BEI NG USE n TO CAPAC IT Y, NOTE THAT IF THE HYDROGRAPHS 
213 C ! ~CREASED SHAHPLY , SOMf RESERV OI RS MIGHT OVERFLOW THAT HAD PREVIOUSLY 
214 C CtASED TO OVERFLOW 
2!5 JZCNT: 0 
21h IFCICL OSE( l ), NE ,4,A ND ,1CLOS EC5 ),~E,4) GO TO 101 
<l-11- ---- -- - - - -H - CG-:f-MRU+W + QH«R..UC~l + QI IC l ,..J.i-.......nIIC5i, I) + ...0..01,GE,QMU .. U)J___ 
21~ 1 GO TO IOI 
219 JFCICL0SEC5),EG 1 4 ) GO TO 10 31 
220 ICLOSECI) : 5 
221 ICLOSEC5) : 1 
222 ~L: 2 
u ~-- ·0--1~------------------------------
224 1031 lCLOS E(I) : I 
225 JCLOSEC 5) : 5 
22b KL: b 
227 10 32 DO 102 KJ: Kl,10 
228 lFCICLOSt(KJ),EQ,4) GO TO 103 
.n _q_ _____ - -----1 f...U.ci..osu . .l(J..h-£.Q-.-1~ ~> .....JG~o..,_r_µn..,_ ... 1 u..O ~ ... • - ---------------- ----
230 lCLOSE CKJ) : 3 
231 GO TO 104 
232 10 3 JF(KJ,EQ,7) GO TO 1oz 
233 ICLOSECKJ) : 3 
234 IF CKJ,EQ,4) GO TO 104 
-2-lS---- - -1..0 24 QN .. UJ11..,.... ______________________________ _ 
23b 104 JZ CNT: 10 
237 101 CON TINUE 
238 C COMPU l f RFSE~VOJR DEPTHS AND WEIR OVE HFLOWS w MAKE CHECKS FOR CHANGES 
239 C IN CO~P UJATION ORDE R * ~ * * * * * * * * * * • • * * * * • * 
240 DO 20 0 K=l,10 

-.11,l ._ , I f" < JZ~~r+-'~~1--1-.u-....1.--¥-.i.--------------------
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242 L=K+l 
243 I F CK,E ~.4 ) L=l2 
244 IFCK,EQ,7) L=ll 
245 QIN: QIICL,J) + QTHRUCL) 
24b IFCK.EQ.b) QIN: QIN+ QII(8,J) + QTHRU(8) 
2117 AR£.i-=-.SA..1.K..L+ ....... Stli!U .. !O.UO, ___________________ _ 
2u8 DDOT: (QIN• ~THRU(K))/AREA 
24Q DNCK) : D(K) +OOOT*DT 
250 IF CDN(K)+,002 ,Gt.DM(K))GO TO 110 
251 IF CD(K)+,002 ,Gte DM(K) ,AND,DN(K)+,002 ,LT,DM(K)) GO TO 120 
252 QOVfR(K): 0,00 
253- --- ~Q_tJL2.DJl 
254 110 QOVtR(K): QIN• DTHRUCK) • (DM(K) • D(K))*AREA/OT 
255 lF(DN( K).GT 1 0M (K)) DN(K): DM(K) 
25& I~CQOVERCM),LT.O,O) QOVER(K ): 0 1 0 
257 IFCIOVtR(K) 1 NE 1 3 1 AND ,QOV~R(K) 1 GT •• 002) IOVERCK) : 2 
258 GO TO 200 
25 9 e........c..Q111J.ll_C.liil!.GE.S.-1lLJJj LfillJ)£R __ Q.f. ____ C..AL.C..U.LA.li .. O.N ....... '!_f..l..N.ll RE SE R YO I R I'! I I H 
2b0 C NEXT LARGEST 2 THAT IS OVERFLO~ING OR MAY OVtRFLOW 
2b1 120 !MAX : 0 
2b2 QOVER(~): 0 1 00 
263 !OVER(K): 3 
264 C DEflNE THE LIMITS OF THE SEARCH 
2_b5 __ ______c:___f__ililLU-'tlIL~U~P~5~I~RE.~A~M _______________________ _ 
2bb NBL = K + l 
267 NBU: 4 
268 !FCK.GE,5) NBU: 10 
2bQ KU: K 
270 IF(NBL,f.Q,S.OR,NBL,EQ,11) GO TO 1502 
2.ll_ ___ __QJ)........1.5..0. L!..J = N 8 L , ,i __ BJ.!..._ 
272 IFCKJ,EQ,7) GO TO 1504 
?.73 IFCICLOSfCKJ),rn,1) GO TO 1502 
274 KM: KJ • 1 
?75 IF(ICLOSECKJ).EQ,3,AND,ON(KM)+,0-02,LT.D~(KM)) GO TO 1502 
270 GO TO 1501 
.2.1...L . .. ------1.S. QJj __ --1 ui c LU.StiJJ......E..Q_J...Af:,!.D • x c Los E c a > • rn .. L, .... 1 ._> -'G""'o"--------T'--'0"'_1Ls~· 0""2,,___ ______ _ 
278 IFCICLOSEC7),E~.3,AN0,ICLOSECR),E0,1,AND 1 DN(6)+,002 1 LT,OM(6)) GO 
2H 1 TO 1502 
260 1501 KU: KJ 
281 C SEA RCH FDR LIMITS OO~NSTREAM 
282 15 02 N~U: K 
2.1U .... _ _ _ ____ N.L'.k.~=____... ___________________________ _ 
28U IF(K,GE,5) NBL: S 
285 KO: K 
280 KR: NBU + 1 
287 00 !503 KJ:NBL,N BU 
288 KR: KR• t 
.2.~9 _ _ ___ _li_C KR, EQ, SL!tlL.1.Q.......15.,,__,,_ ____________________ _ 
290 IF(KR 1 EQ,7 1 A~D.CT+DT,LT,X(b),OR,ICLOSE(6),tQ 0 2 )) GO TO 1~0 5 
2Q1 IFC(T+nT,LT,X(KR),OR,ICLOSE(KRJ,fQ,2),ANO,KR ,NE, 7) GO TO 1505 
292 1503 KO: KR 
293 1505 IFCKO,EQ,1,0R,KO,EQ,5) GO TO 1550 
?.Q4 GO TO 1520 
.2.9..S ___ c_____s.oRC!LEJlli. .E.AR..!llE L RE.SERVO.JRS THAT MAY BE Al ')E O 
2Q& 1550 CON INUE 
297 IFCK,GE,5) GO TO 150b 
2Q8 NBL: S 
zqq NBU • 10 
300 GO TO 1510 '0_1, 150b NB--=:__., ___________________________ _ 



229 

302 NBU • 4 
303 1510 KP• 0 
304 DO 1507 KJ:NBL,NBU 
305 IF(KJ,t Q,7) GO TO 1soq 
30b IF(ICLOSt.CKJ),EU,1) GO TO 1515 

--J-0-1------Il'.{KJ,t.G-rl -.-OR-w--KJ---.-~~)....40-+T .... 0-1s~01-ee:1-----------------
30a KM: KJ • l 
309 IFCICLOSECKJ),fQ,3,ANO,DN(KM)+,002,LT,OM(KM)) GO TO 1515 
310 GO TO 1507 
311 1508 IFCICL05t.(KJ),EU,5,AND 1 QTHRUCKJ),GE,COM(KJ)•SQRTC0(KJ)))GO TO 1515 
312 GO TO 1507 

-J l--~-----1--5 OQ---I ~--{ IC L--OSf--(-7 ... h-f-~ ,-A-N-0- ... r.r.-1. 0 SE .{-a.)--y-f:A..r1--~ o.,_ ..... 1 S"-+'1 s~---------
314 IFCICL OS~(7 ),EU,3,ANO,ICLOSEC8),EQ,3,ANO,ON(b)+,002,LT 0 DM(b)) 
315 1 GO TO 1515 
310 1507 KP: KJ 
317 C LIMITS Or SEARCH ARE NOW DEFINED 
318 1515 IFCKP, EQ,O) GO TO 1520 

-3-l--9-------~---~-----------------------------
320 NBU: 4 
321 IFCK,LT,SJ NBU : 10 
322 GO TO 1530 
323 1520 IF(K,GT,4) GO TO 1521 
324 NBL = 5 

-3~5 ----- -NW-------:.-1-0------------------------------
320 GO TO 1530 
327 1521 NBL: 1 
328 NBU: 4 
J29 C SEARtH FOR RESERVOIR THAT IS OR MAY BE OVERFLOWING 
330 1530 ZMAX : 0,0 

.... H-1 --- ------I..lil.X--=-u.----
3 J 2 00 1531 KJ ~ 1,10 
333 lF(IOV[ R(KJ) ,fQ,3) GO TO 1531 
334 IFCKJ,l T,KO,OR,KJ,GT ,KU) GO TO 1531 
335 IFC~J, GE , NRL ,AND,KJ,LE,NBU) GO TO 1531 
336 !FCZCKJ),LT,ZMAX) GO TO 1531 

... ,-.J.-7 -- -------Zl<I-U....-=-------1--(J(.J_,_ _________________________ _ 
33~ IMAX: KJ 
33q 1531 CONTINUE 
340 IF(ZMAX,GT,0,0) GO TO 1540 
341 IF(K,EQ,4,0R,K,EQ,7,0R,K,EQ,10) GO TO 200 
342 IR: K + 1 

... ].ll -J ____ ---I.E(lR-.--C-Q,7) GO IO 1532-
344 IFCICL OSr(I R),EQ,3) GO TO 200 
3U5 1533 ICLOSf(IRJ : 3 
3Ub GO TO 190 
3~7 1532 IfCICLOSE(7),NE,3) GO TO 1533 
348 IR: 8 

-3 4 9 -----------IF C LC LOSE (1.Rl...-N£..3J_----G.O...~I.__.o,____1~s ... 3,J... __________________ _ 
350 GO TO 200 
351 1suo CONTIN UE 
352 C RESfT RESERVOIR CONTROLS 
353 IF((K,GE,~,A~D.IMAX,GE,5),0R,(K,LT,5,ANO,IMAX,LT,5)) GO TO 122 
35U JF(K,Gt,5,ANn,JMAX,LT,5) GO TO 124 
3~5--C--C.ASE--X-.L...T ~S-.Al>ID-~..Lc..E..-,~5------------------------
35& MK: 1 
357 NK s 0 
35~ LK: 5 
359 1U2 DO 140 KJ:MK,K 
3b0 140 ICLOSECKJ) : 4 

7-H_I lU.OSE--+t_j(+-..._.1---------------------------
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lb2 1U3 DO 1U1 KJ:NK,IMAX 
3~3 ICLOSECKJ): 3 
3b4 JFCKJ,E0,7,ANO,IMAX,GT,7) ICLOSE(KJ): 4 
3b5 141 CONTINUE 
3bb GO TO 1QO 

_JbL __ __L _.C_ASE._KG I, 5 AIID IHAX, I I, 5, ______________________ _ 
3b8 124 MK: 5 
3b9 NK: 2 
370 LK: 1 
171 GO TO 142 
372 C CASE KAND IMAX BUTH GT, OR LT, 5 

.3.13. _ _ ...,_2.z.-1.E1.K+GL.ll1A.X) GO TO_L/lS 
37U NK: K + l 
375 IFCK,E0,7) NK: K 
37b GO TO 1U3 
377 14~ ICLOSECK): 4 
378 GO TO 1QO 

.3.ZQ 190 .Lo..aE : I QOP~~--------------------------
380 JZCNT: 0 
381 IFCLOOP,GT,20) GO TO bbb 
382 LK=O 
383 C COMPUTE THOSE RfSERVOIRS WITH %CLOSE: l 
384 KM: 1 

.36 5... _ -ti.92.. .0 Q_ J,_91J.J..tl .... , .Ll ~0 _____ _ 
3~b JFCICLOSE(KJ),NE,KM) GO TO 191 
387 1193 LK: LK + 1 
388 INfXTCLK): KJ 
38Q t91 CO~TINUE 
JQO JF(KM,EO,~) GO TO 197 
3-9.l__ ___ _ _lUX!1JJ~ .. 2.L .GJL_I_Q__j 9~---------------------
392 C co~PUTE THOSf RESERVOIRS WITH lCLOSE: 2 
3•:n KM : 2 
3q4 GO TO 1192 
395 C COMPUTE THOSE RESERVOIRS ~ITH ICLOSE: 4 1 00 IN ORDER OF DECREASING 
JQb C R~Sf~VOIR NUMBER 
39 7_ -·- _..1..92 . J (_M =-=--------------- ------------------
398 1Q3 NK: 0 
3qq DO 194 KJ=t,10 
400 IFl!CLOSECKJ),NE,KM) GO TO 194 
401 NK: NK + 1 
402 IDUM(NK) : KJ 

jj__0_3 19 .. L C.0.N.tDLU,---:-----:------------ ------------
404 !F(NK,EQ,O) GO TO 197 
405 DO lQb KJ =!,NK 
40b LK: LK + 1 
407 JMAX: 0 
408 JF(KM,f.Q,3) JMAX: 100 

_4_0_9__ _ _ _ ___ o.o _ .t9.5.....KL=.um, ___ _ 
410 .MN: IDU~(KL) 
411 IF((KM,E0,3,AND,MN,GT,JMIX),OR,M~,EQ,21) GO TO 195 
412 IF((KM,FG,4 1 AND,MM,LT,JMAX),OR,MN,f0 1 22) GO TO 195 
413 JMAX: MN 
414 MP: KL 

.IH.5 1 q5 ___ CO.t-i.l11ill.E._ 
Ulb INEXTCLK): JMAX 
417 IDUM(MP): 18 + KM 
U18 lqb CONTINUE 
419 1q7 !FCKM,EQ,3) GO TO 202 
420 lF(KM,EQ 0 U) GO TO 1197 
Jl2t -L-till1fUJE JHClfil._RESERYQIRS WITH ICLQS~ 3. DO IN OROER OF HiCRtA ST NG 
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422 C RESERVOIR NUMBER 
423 KM : 3 
424 GO TO tqJ 
425 C COMPUTE THOSE R~SFRVOIRS wITH ICLOSE: 5 
42b 11q7 KM: 5 
~+7-------1GO- lO------l-t-¥-<!------------------------------
428 bbb ~RITt(b,11) (INEXT(I),J:t,10 
429 wRJTtCb,11) CICLOSECI),I=t,10) 
1130 WRITE(b,11> I( 

431 WRITtCb,2) (X(I),I=l,10) 
432 GO TO bbl 

---4-l-l .?O O C.0~------------------------------
434 IFCJPRINT,NE,3) GO TO 250 
435 bb1 CONTIN UE 
43b ~RITECn,q) T 
437 WR!TE(b,3) CD(KM),KM:t,10) 
438 , WRITECn,11) (QOVER(K~),KM=t,10) 
If J 9 to! R~RCI.I 1---11 (,-1!K~My)1-,,,__,,KuM1..---.lH,,-11L-10~)1-------------------
440 WRITE(b,8) (QJI(KM,J),KM:t,13) 
41'1 DPTCJ) : T 
442 JKM : J 
443 2402 DO 240 KM=l,10 
444 OPD(JKM,KM) : D(t<M) 

-4-4-5 RC KM) - S Cl R l ( Q l.HRl.l..{..lUI.J t CC O (KM) *-SQJU.LD (KM) ) )..~------------
44 b DPR(Jt<M,KM) : R(KM) 
447 H(~M) : (QOVER(KM)/CW(t<M))**,6bb7 
448 OPH(JKM,KM) : H(KM) 
114q 240 CONTINUE 
450 WRITFCb,b) (R(KM),KM:1,10) 

...a.s 1 WR . .I.! -~C-o, 7) CH (.JLJ,Ll-+.l(.tu.J ... f.+'u+----------------------
452 IFCLOOP,GT,20) STOP 2 
453 250 CONTINUE 
11511 DO 5002 KJ:t,10 
455 5002 QTOT(KJ) : QTOT(KJ) + QOVER(KJ) 
11~6 DO 2b0 l(M:t,10 

---4-S+- .j..K.....:KH--+JJ.------------------------------
458 PHIZ: PHIZ +QTHRU(KM)*ZCLK) + QOVER(KM)•ZCt<M) 
a~q 2b0 D(KM) : DN(KM) 
460 500 T: T + OT 
461 PHIZ : PHIZ•DT 
4b2 IFCJPRINT,EQ,3) WRITE(b,10) PHIZ 

...JJb.J__ _ C PL,.0 ... !.....R~L-.--'--l'-----------------------~-------
4 b4 IF(JPRJNT,NE,3) GO TO 3301 
465 I~(JGRAPH,Nt,O) GO TO 3301 
466 REAOC5,tl) ND,KA,t<B,~C,KO 
467 REA0(5,2) HA,HB,HC ,VA,VB,VC 
4b8 I U : b 

... Ub.'l ___:_l)Q._---3 3 0.3-J~µ,... ________________________ _ 
470 READC5,3310) (ALPHCI),I:t,20) 
471 3310 FORMAT(20A4) 
472 DO 3303 NF=t,3 
473 DO 3304 NPD:t,51 
474 GO TO (3305,3306,3307),NF 

-'175 :B 05 OP.Y-U!.P.O) = DPD C N~.....,.......,'---------------------------
476 GO TO 3304 
477 3306 OPY(NPO) : DPR(NPO,Jt<M) 
478 GD TO 3304 
47q 3307 DPY( NPD) : OPH(NPD,JK~) 
480 3304 CONTINUE 

~ .l ,,, Cl>I.L. C<;PL (l>PT,DPY,OPY,ND,NF,1<A,KB,KC,KD,H4+HB,HC,VA,VB,VC,AI PH,111) 
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12 

48 2 3303 CONTI NUE 
483 C PLOT HYDR OGRAPHS 
48 0 ~EAD ( 5 11) NO,KA;KB,KC,KD 
485 READC5 , 2) HA ,H B,HC,VA,VB,VC 
48 0 NI = •2 
_ll8.1 _ ____ ~ N .... I .... I..._.:.~ - --- -~- - - ------ -------- - - ------
Q8 8 00 03 01 JKM=1,S 
48 q NI : NJ + 3 
49 0 NI 1 : NII + 3 
491 IFC NII ,G T,1 3 ) NII: 11 
492 NF : 0 

-'i.9-' -----~R.U.D C 5 , BI 0 L 1.A L PH Cl), I :;_i_,__..__"-4--___________________ _ 
494 DO 4302 JK: NI,NII~ 
495 NF : NF + 1 ~ 
490 oo 4303 JL=1,51 
497 4303 OPY(JL) : QII CJK,JL) . 
498 CALL CGPL(OPT, OPY,OPY,NO,NF,KA,KB,KC,KD,HA,H B, HC,V A, VB ,VC,ALPH,!U) 
Jt(!9 __ -',l3.,Q_2_ -r_Q~N~I-l~N-IJ~F _________________ _______________ _ 
500 4301 CONTINUE 
501 NF : 0 
502 CALL CGPLCDPT,DPY,DPY,ND,NF,KA,KB,KC,KO,HA,HB,HC,VA, VBr VC,ALPH,IU) 
503 3301 CONTINUE 
504 RETURN 

_s_o_s _____ _ _ ~ ~ -------- ------------------------ -

287 6 205 2 
2421i-:os17oq g;p ~ 
l!i/01 38-£DHJO GB[ It 
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