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FOREWORD

This is a technical report prepared under a grant by
the Office of Water Resources Research for a project at Colorado State
University entitled, '"Metropolitan Water Intelligence Systems." The
basic objective of the project was to develop criteria and information
for the development of metropolitan water intelligence systems (MWIS).
The MWIS is a specialized urban water system form of the management
information and control system concept which is emerging as a techno-
logical innovation in industrial applications.

The project consisted of three phases, each lasting about one year.

This report was prepared during Phase I1I. Basic objectives for Phase I

were to:

1. Investigate and describe modern automation and control
systems for the operation of urban water facilities
with emphasis on combined sewer systems.

2. Develop criteria for managers, planners, and designers
to use in the consideration and development of centralized
automation and control systems for the operation of
combined sewer systems.

3 Study'the feasibility, both technical and social, of
automation and control systems for urban water facilities

with emphasis on combined sewer systems.

COLORADO STATE UNIVERSITY
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Basic objectives for Phase II were to:

1. Formulate a design strategy for the automation and
control of combined sewer systems.

2. Develop a model of a real-time automation and control
system (RTACS model).

3. Describe the requirements for computer and control
equipment for automation and control systems.

4. Describe nontechnical problems associated with the

implementation of automatic and control systems.

In Phase III the project objectives were focused into three

basic categories:

1. Development of control strategy for automated combined
sewer systems.

2. To interrelate computer and control equipment system
design with the control strategy adopted.

3. To identify and describe the socio-political and economic

factors to be considered in implementation.

This report describes factors associated with the first objective

of Phase III.
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Title II, from funds provided by the United States Department of Interior
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ABSTRACT
OPTIMAL CONTROL OF FLOW IN COMBINED SEWER SYSTEMS

This study examines the development of a suitable control logic
for the real time control of fiow in combined sewer systems. The
approach followed is based on continuous time optimal control theory.

The combined sewer system is modelled as a series of interconnected
reservoirs having both weir and orifice controls. Using this model as a
basis the state equations and inequality constraints of the system are
then presented. The objective function chosen is that of minimizing
weighted flow diversions from the system.

Application of the calculus of variations to the minimization
problem yields necessary conditions for an optimal control. These
necessary conditions are examined and solution forms for the optimal
control strategies for several configurations and system inflows are
derivad.

The problem of numerical solution of the necessary conditions is
examined and it is concluded that in general their solution is too
cumbersome for practical use. An alternative control solution is
proposed, based on operating rules derived from the common factors
shown tc exist in the previously examined solution forms. When combined
with a first order gradient search technique these operating rules
yield an optimal control strategy.

Results of application of this technique to systems of four
reservoirs and ten reservoirs are presented. They show that a satisfactory
conirul strategy tor up to twenty control points can be obtaine? within

the time limits imposed by real time operation. A further example is




presented showing the effects of information errors on the true
optimality of a computed control strategy.

Finally the necessary modification to the necessary conditions
for an optimal control in which there are time delays in the flow
routing are presented. It is shown that the change in operating rules
amounts to a shift in time scales between reservoirs.

It appears that the approach outlined herein is a feasible
solution to the problem of real time control of flow in combined

sewers.
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SUMMARY OF THE STUDY

The study outlined below presents control logic suitable
for the real time control of flow in combined sewer systems
containing up to twenty regulator structures each with a
controllable weir and orifice. It was assumed that presently
unused storage capacity available in the conduits comprising the
sewer system (particularly the trunk sewers) could be utilized
by the controllable weir which would create storage and control
diversions from the system to the receiving waters. The
controllable orifice would regulate the flow from the trunk sewers
to the interceptor sewers. It was assumed that the input run-
off hydrographs to the sewer system and the physical dimensions of
the sewer system were known data.

The control logic presented has the advantages that it is
optimal for most practical purposes; can be used for nonlinear
systems; does not require large amounts of computer memory storage;
and has a relatively short computation time (approximately two
minutes of IBM 60-67 CPU time for a system consisting of twenty
control points). Its principal disadvantage is that at present
a new control logic program must be written for each system
configuration. Examination of the control logic shows that in the
event of an orifice control failure an optimal control strategy
can still be computed. In the event of a weir failure a sub-

optimal strategy would result.




The approach taken in this study to determine a suitable
control logic for control of flow in combined sewers is based on
continuous time optimal control theory (calculus of variations).
The necessary model for the optimization assumed that the combined
sewer system could be modelled as a system of interconnected
reservoirs with each reservoir representing the backwater storage
at a regulator structure. (This model is discussed in detail in
Chapter II). For simplicity of explanation the theoretical and
numerical results derived in this study were based on standard
weir and orifice equations; however, it was shown that much more
general control device equations could be used without changing
the basic results of the study. Likewise throughout most of the
study for simplicity of explanation it was assumed that there was
no time delay orlmodification of the flow between reservoirs.
Results were derived in Chapter VI, however, to show that realistic
flow routing models could be included without modifying the basic
principles of the control logic.

The objective function chosen for the optimization procedure
was basically that of minimizing weighted diversions from the
system to the receiving waters. Weighted diversions were chosen
so that consideration could be given to the effect of any required
diversions from the system on the receiving waters. (This aspect
is discussed in Chapter II). Initially attempts were made to
determine the optimal control strategy for a given storm water
input and system configuration directly from the necessary
conditions for an optimal control given by the calculus of

variations. Experience showed, however, that numerical solution




of the necessary conditions was for most practical purposes not
feasible. (Some of the computational problems are discussed in
Chapter IV).

Although numerical answers were difficult to determine it
was possible to determine the form of the optimal control strategies
quite easily from an examination of the necessary conditions for
an optimal control. In Chapter III of the study, the forms of the
optimal control strategies for four basic configurations of
reservoirs and several combinations of overflow weighting factors
were examined. MNot only did all the control strategies fall on
constraint boundaries, they showed the following patterns.

a) The orifice control for any reservoir could switch
from a maximum opening (as defined by the physical dimensions of
the orifice or a flow constraint) to a minimum opening (as defined
by a minimum allowable orifice opening). For two reservoirs feeding
a common conduit the switch by one orifice control is accompanied
by a switch in the opposite direction for the other orifice control.
(The times at which these jumps in control occurred effectively
determined when each reservoir filled to capacity).

b) The weir control (defined as the difference in elevation
between the water surface elevation and the crest of the weir) could
only be greater than zero when the depth in the associated reservoir
was at its maximum limit.

¢) As soon as a reservoir had ceased spilling, its orifice
control operated in a manner that would give the maximum throughput
advantage to that reservoir in the system with the highest overflow

weighting factor which was still overflowing (or could still overflow)




provided this advantage would be beneficial (if not the reservoir
with the next highest overflow weighting factor would govern).

d) The reservoir gaining the throughput advantage then
operated so as to either utilize the increased available conduit
capacity or to maintain the downstream reservoir at its maximum
Tevel.

Further examination of the form of the optimal control
strategies showed that given the times at which the switches in
control specified in "a" above occurred for an optimal control,
then by points "b", "c" and "d" above the control strategy was
completely determined. Thus the problem was reduced to the
determination of the optimal times at which a switch in the control
as given by "a" above should occur.

As a result of the difficulties encountered in the direct
solution of the necessary conditions for an optimal control strategy
an alternative numerical approach was formulted in Chapter IV based
on the operating procedures described above combined with a first
order gradient search technique to find the optimal times at which
a switch in the orifice control should occur. This involved writing
a sub-program (control program) to route the given system inflows
through the reservoirs according to the procedures outlined in “h* .
"c" and "d" above and for specified times at which the switches in
the reservoir controls should occur. By perturbing each of the
assumed switching times in turn and noting the associated change in
the objective function the gradient of the objective function with
respect to the switching times was obtained and used to compute a

new set of switching times in an iterative procedure until no further




reduction in the objective function could be obtained i.e., the
optimal control strategy had been determined.

In Chapter V the above procedure was applied to systems
consisting of four and ten reservoirs. For each system several
different inflow hydrographs and weighting factors for the
diversions from each reservoir were tried to ensure that the
proposed procedure would operate satisfactorily. Initially for
each system the control programs were written for an assumed
relative order of the reservoir overflow weighting factors, however,
as more experience was gained it proved possible to obtain essentially
complete generality with respect to the weighting factors. Although
under certain conditions sub-optimal control strategies were
obtained, at no time was the degree of sub-optimality significant
and in all cases the full storage capacity of the reservoir system
was utilized.

For the ten reservoir system the computation times to
determine an optimal control were in the order of 50 seconds using
an IBM 60-67 computer. It was shown in the study, however, that
this time could have been reduced to 20-25 seconds by minor
modifications to the computational procedure. The entire computer
program required about 5500 words of computer memory.

A11 the numerical results in the study were determined for
cases in which the flow routing between reservoirs was considered
to have no time delay or flow modification. In Chapter VI
application of the variational calculus to problems including
time delay showed that for routing methods such as progressive

average lag or Muskingum routing the method of optimal control




determination would remain essentially unchanged except that there
would be a shift in the time scales for the different reservoirs
in the system. The analysis also showed that if the Muskingum
routing method were used the control strategy would certainly be
sub-optimal.

The results of this study showed that the procedure
outlined above would provide a practical method for the real time
determination of an optimal control strategy suitable for control
of flow combined sewer systems utilizing available in-line storage
capacity. Realistic flow control device equations and flow routing
methods could be incorporated into the procedure without appreciable
alteration to the general procedure.

It was recommended in the study that the control strategies
for cases in which the maximum allowable depth in a reservoir exceeds
the maximum weir height be examined so as to allow computation of an
optimal control strategy in the event of a weir failure. This would
increase the range of control devices that could be considered.
Following such a study it was recommended that a general control
program be written to handle a wide range of system configurations
so0 as to reduce the individual effort required by cities for

impTlementation of the control logic.




CHAPTER 1
INTRODUCTION

I.1 Subject of this Study

The purpose of this study is to develop control Togic
suitable for real time control of flow in combined sewers. The
objective of real time control is the optimum use of available
storage capacity in the conduits in order to reduce diversions from
combined sewer systems to the receiving waters during periods of
excess storm water runoff.

This chapter presents the necessary material for an overall
understanding of the problem of combined sewer overflows. As well it
attempts to orient the reader to the pertinent aspects of control logic
and control systems and their use in the reduction of pollution caused
by combined sewers. First a brief outline of the problem is given,
followed by an overview of some of the proposed methods for reducing
pollution of receiving waters resulting from undesirable overflows.
Attention is then focused on automatic control of combined sewer flows
as a potential solution. Following this, some of the relevant aspects
of automatic control are presented. The cnapter concludes with a
discussion of literature relevant to the topic of control of flow in

combined sewer svstems.

1.2 The Problem of Combined Sewer Overflow

In most large cities of North America, at least part of the sewer

system consists of combined sewers. These sewers are designed to carry




both sanitary sewage and storm water runoff. Their original design was
such that only a small portion of the storm water runoff, in addition
to the sanitary flow, could be carried in the system. Excess flow was
to be diverted to the receiving waters, without treatment, at numerous
outlet points. The basic design assumption was that the storm water
was clean and would sufficiently dilute the sanitary sewage so that any
overflows from the system would not be a health problem. Recent studies
in Cincinnatti and Tulsa (Weibel and Anderson, 1964; Cleveland,Ramsay
and Yalters, 1970) have shown, however, that storm water alone may be
heavily polluted and thus the supposed dilution of the sanitary sewage
does not exist. In some areas, the annual total BOD, suspended solids
and coliforms reaching the receiving waters from storm water runoff
may exceed that from the sewage tratment plant effluents. Overflows
from combined sewers must therefore be considered a major source of
pollutants for many waterways.

As a result of more stringent water quality requirements, combined
with the fact that over 36 million people in the United States are served
by combined sewers, many studies are underway to determine the most
suitable methods for reducing the pollution caused by overflows from

combined sewer systems.

1.3 Possible Solutions of the Combined Sewer Problem

Solutions to the problem of reduction of pollution of receiving
waters by combined sewer overflows fall into two categories: removal

of the pollutants from the overflows; and reduction of the volume of
overflows. Some examples of these methods are discussed beiow.




a)

b)

a)

A. Removal of the Pollutants from the Overflows.
Separation of storm and sanitary sewers. -This solution is not
too satisfactory since in most cases the stormwater would be sent
untreated to the receiving waters and, as noted ahove, may be
heavily polluted. In addition, the cost of sewer separation may
be prohibitive. For example, the cost of separating sewers in
Minneapolis - St. Paul is estimated to be 300 million dollars
(Minneapolis - St. Paul Sanitary District, 1970).
Reduced treatment of combined sewer overflows. -Methods such as
screening/dissolved air flotation and micro-screening have been
tested and appear to reduce pollutant concentrations of combined

sewer overflows significantly (Marshe, 1970; Mason, 1970).

B. Reduction of Overflows from Combined Sewer Systems.
Improvement of the design and maintenance of the regulator
structures. -At each point at which flow may be diverted from a
combined sewer system there is a regulator structure normally
consisting of a small concrete weir, over which passes any flow
diverted to the receiving waters, and an orifice, through which
flow remaining within the system passes. Flow through the orifice
is normally controlled by some form of moveable gate. Many
problems resulting from overflows at a regulator structure can be
traced to poor regulator desiqp or poor maintenance. Studies have
shown that, in many cases, modification of existing structures\
and/or improved maintenance can lead to significant reductions in

system overflows (Minneapolis - St. Paul Sanitary District, 1970;




Sullivan, 1970).

Utilization of the storage capacity available within the existing
sewer system. -Combined sewers in a large city may range from 6

to 16 feet in diameter and during most storms flow at less than

50% of capacity (Homer and Shifrin, Inc., 1968). By installing

flow control devices within the svstem it may be possible in many
instances to utilize the normally unused sewer capacity to store

a large fraction of the storm water inflows until they can be

routed through the normal treatment process. Additional storage
capacity may be gained by the addition of off-line storage
reservoirs. The twin cities of Minneapolis - St. Paul have
installed flow control devices in their combined sewer system and
have shown significant reductions in combined sewer overflows
(Minneapolis - St. Paul Sanitary District, 1970). Use of in-system
and/or off-line storage is also planned in Seattle, San Francisco,
Chicago and Detroit (Grigg et al, 1973).

Utilization of in-system and/or off-line storage combined with a
satisfactory control scheme. -If flow control devices are installed
in a sewer svstem, but Teft at bre—set positions, the full storage
capacity cannot be used since the device settings must include
safety allowances for possible inflow variations. It appears that
more effective use of in-system storage could be obtained by sampling
rainfall during a storm; computing the expected runoff inflow to
various points of the sewer system; and then computing control
device positions that would make maximum use of the available system
storage capacity and thus reduce diversions to the receiving waters

from the combined sewer system.




If in-system storage, control and reduced treatment of overflows
were to be combined, it might be possible to ensure that the large
majority of any diversions from the system occurred at a few specific
Tocations. This might significantly reduce the number of reduced
treatment plants necessary to maintain a specified receiving water
quality.

This study focuses on the utilization of in-system storage
combined with a satisfactory control scheme and its particular aim is
the development of a suitable control logic for real time operation.
Before proceeding to the development of the control logic it is useful
to examine various degrees of sophistication of control systems and the

elements of a real time automated control system for combined sewers.

1.4 Levels of Control

Several levels of refinement are possible for any control system.

The least sophisticated control might be termed "pre-set". Here
control device positions are set on the basis of prior analysis of many
possibilities or on the basis of "experience". Changes to the control
device positions are normally made only when the system malfunctions.

Remote-supervisory control might be considered an intermediate
level ofsophistication. Here, sensors, placed throughout the system
which is to be controlled,relay data concerning the state of the system
to a central control point. Control device changes are then made by
an operator whose decisions are based upon the state of the system with
possibly some prediction of future inflows. This method of control is
generally Timited to small scale systems where there are few decisions

to be made and the amount of information to be analyzed is small.




Total automatic control is the most sophisticated and may be
either feed-back (i.e. based upon the state of the system up to the
time of decision), feed-forward (i.e. based upon the state of the
system at some initial time and upon predictions of future inputs to
the system), or a combination of the two, wherein reauired information
is periodically updated.

Total automatic control requires knowledge of the state of the
system, control logic and, for feed-forward control, mathematical models
to predict future system inputs. Because machines mav be used to
analyze large amounts of data, total automatic control is best suited
to systems where many decisions must be made in a relatively short time.

Combined sewer systems must generally be considered relatively
large systems (e.g. Minneapolis - St. Paul has 36 control devices acting
at 18 points in the combined sewer system (Minneapolis - St. Paul
Sanitary District, 1970)); thus, if they are to be controlled, they are
best controlled automatically. In addition, because of the areal
variability of the system inputs, maximum use of the system storage

capacity requires use of feed-forward control.

1.5 Elements of a Total Automatic Control System for Combined Sewers

Figure 1.1 shows the elements of a real time automatic control
system for combined sewers. The elements of this system fall into
three basic categories (Bell, Winn and Smith, 1972).

a) Physical System Components - This category contains all the

elements of the system to be controlled (e.g. the sewer

system), the control devices (e.g. inflatable weirs,
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regulator gates) sensors of the state of the system

(e.g. rain gauges, water-level indicators), the land

area from which the runoff occurs, and the rainstorm

itself.

results of any control decision.

Each of these elements has an effect on the




b) The Interface Elements - Any control system (other than
"pre-set") requires a transfer of information both of input
knowledge of the state of the system being controlled and
of output of the control device positions specified by the
control logic. This transfer takes place through the
interface elements such as telephone lines and analogue
to digital converters.

c) The Central Processor - For feed-forward control the central
processor contains three basic elements. These are: a
central memory for all the necessary system data; any
mathematical models necessary to generate predicted system
inputs and; the control logic which determines the control
strategy according to the state of the system and the
predicted inputs.

For combined sewer systems the mathematical models required by

the central processor are (Bell, Winn and Smith, 1972):

i) a rainfall regeneration model which analyzes data from
point samplers (rain-gauges) and produces a rainfall pattern varying in
time and space for the entire duration of the storm,

ii) a rainfall runoff model which determines the expected runoff
hydrographs for the duration of the storm using the predicted rainfall
pattern,

iii) a model of the conduits, control devices and flows in the

sewer system. (Usually these form a part of the control logic).




1.6 Types of Control Logic for Real Time Automatic Control of

Combined Sewer Systems

The simplest type of control logic that could be used for
control of flow in combined sewers is a strictly feedback control
(i.e. no predictions of future inflows are used). A simple example of
feedback control would be opening an orifice on the basis of the depth
and rate of change of depth immediately upstream of the orifice. This
logic completely ignores the effects that the outflows may have in the
future at other points in the system.

An improvement on the feedback control is the use of "rule-
curves" to determine control device positions. For specified future
inputs specific control steps are taken. Determination of reasonable
"rule-curves" is a laborious process for even a small system, as it
involves consideration of a wide range of possible inputs and alternative
control decisions.

One way to avoid the difficulty of arbitrarily determining
reasonable "rule-curves" for each system to be controlled is to use
some of the techniques of operations research. This involves first the
determination of a suitable objective (e.g. minimize the volume of flow
diverted from the system). The problem is then to determine the control
strategy that will satisfy the objective. A discussion of the merits

and shortcomings of many of the techniques of operations research
available to determine this "optimal" control strategy is given in a

report by Labadie (1973). Generally, the merits and disadvantages
revolve around the ability of a given method to deal with non-linearities,

the amount of computational time and computer storage required to solve




the problem numerically, the ability of the technique to determine a
global optimum (as opposed to a local optimum) and the degree of
approximation reauired in the formulation of the problem.

The control problem can be formulated for discrete time
intervals or as a continuous time problem, which is the approach taken
in this study. Solution of the continuous time problem may be obtained
from the calculus of variations or its subset, continuous time optimal
control theory. By suitable choice of an objective functioﬁ and formulation
of the problem in the form required by the theory, one obtains a set of
equations whose solution yields the time history of the required control
device positions so as to minimize (or maximize) the given objective
function.

The continuous time formulation has the advantages that it can
deal with non-linear systems and will give a control device position
for any point in time. Its principal disadvantages are the difficulty
in solving for the control from the resulting eaquations and the fact
that their solution yields only a set of necessary but not sufficient
conditions for an optimum. There is the further disadvantage that even

if the solution could be shown to be an optimum there is no assurance
that the optimum would be global. This latter aspect is a problem

with most techniques dealing with non-linear systems (Labadie, 1973).

1.7 The Value of Optimal Control Formulations

Although a control problem may be formulated and solved to give
the "optimal" control for given input data, the control is optimal only
in the 'sense that the system model and the information from which the

control is determined are perfect. The realities of the situation are
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that both the system model and the input data (e.g., computed runoff
hydrographs) contain many sources of error and thus the control will
inevitably be sub-optimal.

If in reality any control is certain to be sub-optimal, then
what is the purpose of basing the control upon optimization techniques?
The principal reason is that operations research techniques bring a
degree of order to the problem which may not be available in the
determination of a set of "rule curves". In addition "rule-curves" are
often based on local characteristics of the problem, whereas operations
research techniques may be transferred from one urban area to another.

A second advantage of solving for the control strategy from
optimal control formulations is its use in determining the effects of
possible error sources in the overall control process, as discussed by
Bell, Winn, and Smith (1972). For an exact model of a physical system,
optimal control theory gives the necessary conditions for the control
which will minimize a given objective function. Thus, if perfect
information is available the resultant control will give the absolute
minimum of the objective function that is possible for a given storm.
When used in a model of a real time automated control system, this
results in a standard of comparison for the effects of errors that will
be introduced by sensors, information transmission systems, or
computations prior to control determination (such as runoff). The
adequacy of the overall system to accomplish the desired objective may

also be tested and evaluated.

1.8 Literature Relevant to the Combined Sewer Flow Control Problem

As discussed earlier, background material on poliution caused by

overflows from combined sewer svstems is available in studies done in
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Cincinnatti (Weibel and Anderson, 1964) and Tulsa (Cleveland, Ramsay

and Walters, 1970) which examine the auality of urban storm water
runoff; and in studies of the Detroit (Detroit Metro Water Department,
1970), Minneapolis - St. Paul (Minneapolis - St. Paul Sanitary District,
1970) and San Francisco (San Francisco Department of Public Works, 1971)
combined sewer systems, which examine for each city the distribution
and volume of combined sewer overflows and their water quality. The
latter three reports also outline the extent of installed or planned
systems for control of flow in combined sewers. Each of these systems
plans real time automatic control on a feed-forward basis, but to date
they have developed no satisfactory control logic.

Very little literature is available on the subject of control
logic for real time operation of combined sewer systems. A paper by
Bell and Winn (1972), which presents some of the early stages of this
study develops solution forms for the continuous time optimal control
formulation of simple sewer configurations. Bell, Winn, and Johnson
(1973) in a related paper included a numerical solution of the continuous
time control problem for a sewer system consisting of three regulator
structures. They assumed no time delay in the flow routing between
regulator structures. The numerical procedure used worked only for
particular inflow conditions and thus was not satisfactory for real-life
application. This paper also indicated some of the effects of errors
in rainfall regeneration on the final control results. In addition, it
gave an indication of the frequency of sampling and updating of control
strategy necessary to give reasonable control strategies, (ten minute

intervals for their example). Winn and Moore (1973) presented a
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formulation of the problem in the format of regulator theory, a subset
of calculus of variations which requires a quadratic objective function.
By suitable transformations they were able to convert the problem
formulation presented by Bell and Winn into the format required by
regulator theory. They presented results for two systems. The first
consisted of one regulator structure only and the second of three
regulator structures. The latter example used the same system
configuration and input data as Bell, Johnson and VWinn (1973), who solved
the problem using continuous time optimal control theory.Comparison of
the results obtained using the two methods shows reasonably close
agreement between the time histories of the orifice controls, although
regulator theory yields a smooth curve for the orifice operation while
continuous time optimal control theory shows a "bang-bang" type of
operation. The principle difference lies in the operation of the weir
controls with regulator theory producing a much greater volume of spill
and consequently Tess use of available storage capacity. This difference
is a result of the quadratic objective function which penalizes small
overflow rates only slightly. The authors felt that this problem could
be overcome by the use of a dead-band on the weir operation.

Labadie (1973) has discussed optimization techniques for
minimization of combined sewer overflow and has presented an approximate
flow technique for a non-linear, finite dimensional solution to the
control problem. The principal advantage of this technique is that it
is adaptable to any method of flood routing between regulator structures.
In addition it appears that it can be used for problems involving

off-line storage. Labadie, Grigg and Trotta (1973) obtained numerical




results using this technique for a system of three regulator structures

in series and were able to show, by comparison with results obtained
from a linear programming formulation, that the results were a global
optimum. They suggested that this technique might be best suited to
off-1ine development of rule curves for use in real-time system
control.

Grigg et al., (1973) using Vicente Basin in San Francisco as a
prototype, linearized the problem formulation and were able to obtain
a solution for three storage locations in series. They also showed
that time delay in the flow routing could easily be included in the
formulation. Labadie (1973) pointed out that aside from possible
errors introduced by linearization of an inherently non-linear problem,
the linear programming method requires large amounts of computer storage
for even a small number of control points.

Bell, Winn and Smith (1972) have discussed the elements of a
real time automated control system for combined sewers and showed how
optimal control theory could be used as part of a model of a real time
automated control system to determine the effect of various sources of
information error on the system operation. As part of this work, they
presented a formulation of the continuous time optimal control problem
for three storage locations but they assumed no time delay in the flow
routing. They were unable to obtain a numerical solution to the control

problem.

There is considerable literature available on the general subject

of continuous time optimization. Citron (1969) in his text, has presented

a derivation of the necessary conditions for an optimal control, from



15

the point of the calculus of variations. Pontryagin et al., (1965)
using the maximum principal, derived the same equations. Most work
in the field has been for cases involving no time delay; however,
Pontryagin et al., (1965) presented the necessary conditions for an
optimal control in those cases where a problem with time delay can be
stated in the correct format. L.E. EL'SGOL'C (1960) presented the
Euler-Lagrange equations including time delay for the more general
calculus of variations formulation. Hughes (1968) developed the theory
for calculus of variations including time delay but included only end
conditions, not side conditions ( constraints), although it appears
that certain types of constraints could easily be included.

Other relevant literature concerns various aspects of modeling
sewer systems, in particular the flow, the control device parameters
and the systems themselves.

Very little literature is available on flow in sewer systems.
Indeed, since many systems are over fifty years old, there is often poor
data on the dimensions of the conduits comprising the systems. Barnes,
(1968) in a study directed at flow in sewers, measured flow parameters
in a special test apparatus .and compared them with mathematical results
obtained by the method of characteristics. Harris (1968c) showed that
using the progressive average lag method of flow routing, he could
obtain good agreement between his solutions and those obtained by the
method of characteristics for the Minneapolis - St. Paul interceptor
system. The FWQA Storm Water Management Model (Metcalfe and Eddy, Inc.,
1968a) TRAHSPORT section, eliminated many of the dynamic terms of the
St. Venant equations in an attempted simplification. Unfortunately,

additional modifications required to overcome calculation instabilities



made the method cumbersome; however, in verification tests of their

model they obtained reasonable results (Metcalfe and Eddy, Inc., 1968b).
Harris (1968b) appears to have done the only studies of the
numerical values of parameters of continuously variable flow control
devices at regulator structures and these were Timited to a few
specific cases. Many hydraulic texts (e.g. Streeter (1966)) quote
values for weir and orifice parameters, but these are generally not

in the geometry of regulator structures.

1.9 Presentation

This chapter has presented some aspects of the problem of
combined sewer overflows and the elements of a control system for
control of flow in combined sewers. The remainder of this study is
devoted to the development of control logic suitable for real time
application to systems with in-line storage controlled by variable
weirs and orifices. Application of the control logic developed herein
to systems using off-1ine storage has not been examined .

This study assumes that the required inflow hydrographs,
physical system constants and information giving the initial state of
the system are available for input to the control logic. (i.e. It is
assumed that the control will be of a feed-forward, feed-back form).

In Chapter II the control problem is formulated as a variational
problem. First the requirements of the variational formulation are
outlined. Following this the system model is developed, starting with
the equations of the control devices, proceeding through the development
of the state eauations and constraints and ending with the examination
of suitable objective functions. Finally a complete formulation of a

system consisting of two control points in series is presented as an
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example. Modifications to include more realistic flow routing models
are left until Chapter VI. Formulations for other configurations are
left to the Appendices.

Chapter III presents the solution forms of the optimal control
strategies for selected cases. The general procedure used to determine
solution forms is given first, followed by a detailed example of two
reservoirs in series. Next there is a discussion of pertinent aspects
of solution forms for other configurations presented in the Appendices.
The chapter concludes with an analysis of the factors common to the
control strategies of all the configurations studied.

Chapter IV outlines attempts at numerical solutions of the
necessary conditions for an optimal control and the reasons for their
failure. An alternative approach to the control problem based on rules
derived from the solution forms given by optimal control theory is then
put forward.

In Chapter V the numerical procedure for application of the
alternative approach to the control logic suggested in Chapter IV is
given. Numerical results for systems containing four and ten regulator
structures respectively are then presented. Following this, possible
improvements to the computational speed of the control algorithm are
suggested.

Chapter VI begins with an outline of the modified Euler-Lagrange
equations for problems which include time delays. An example of the problem of
two reservoirs in series with time delay in the flow routing is then
analyzed. Subsequently the results are generalized for more complex

problems and the necessary modifications to the no time delay numerical
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solution are given.

Chapter VII presents the conclusions and recommendations for

further work.
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CHAPTER 11
FORMULATION OF THE CONTROL PROBLEM AS
A VARIATIONAL PROBLEM WITHOUT TIME DELAY

II1.1 Introduction

In Chapter I the advantages of using optimal control
formulations in developing control logic for real time control of flow
in combined sewers were outlined. In this study the approach followed
in developing a suitable control logic is based upon continuous time
optimal control theory (calculus of variations). Before proceeding
to the development of the control logic, a brief description of the
requirements of continuous time optimal control theory is given below.
For a more detailed discussion of the topic the reader is referred to

one of the many texts on the subject e.g. Citron (1969).

I1.2 Requirements of Optimal Control Theory

Before one can begin to solve a control problem using any
optimal control formulation it is necessary to have a mathematical
model giving the laws of motion of the system. For the approach followed
herein it is assumed that the system is deterministic and can be
described with Tumped parameters i.e. ordinary differential equations
will suffice for the system description. HNo restrictions are made on
system linearity.

For problems of the type being considered it is useful to divide

the variables into state variables (denoted by Xis 1= T...n) and
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control variables (denoted by Uy j = 1,m). The definition is not hard

and fast but may be simply described by eauating state variablesto the

dependent variables of the system and control variables to the

independent variables. For combined sewer systems with in-1ine storage,

the control variables are the size of the orifice openings and the

depth of flow over the weirs at the various reqgulator structures. The

state variables are the depth of storage at the regulator structures.
The system mathematical model is then presented in the form of

n first order differential equations (often called the differential

constraints of the system, or state equations) of the form

dx.
i i - n,
. = F(X?XZ'"'xn’ul’”2'°"um‘t) i=1lyee.4sn II.2-1

Generally this form can be obtained by suitable definition of variables
and addition of new state variables if necessary.

In addition to the system differential equations there may be
inequality constraints on the state and control variables. These are
generally designated (using X to represent the vector of state variables

and U to designate the vector of control variables) as:

C(X,U,t) < O I1.2-2

for those constraints which contain at least one control variable and;

S(X,t) < 0 11.2-3

for those constraints in which the control variables do not appear

explicitly. Equations I11.2-2 are called control variable inequality
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constraints and equations II.2-3 are called state variable inequality
constraints.

Finally, to complete the system description it is necessary to
have initial conditions for the state variables at some time t..

The above fully describes the system but before one can determine
the optimal control strategy it is necessary to have an objective
function (often called an index of performance). In its most general
form the objective function can be written

tf
Min ¢ = q(ti,tf,)(i,)(f) +j F(X,U,t)dt I1.2-4
5
where t and te are the initial and final times. (Note: minimization and
maximization problems can be interchanged by multiplication of the
objective function by -1. Therefore in what follows the minimization
format will be used).

Once the mathematical model has been formulated the problem is

to determine ui(t), i =1....m, the optimal control strategy. A control

strategy is defined to be optimal if for all other

Uq(t) # U.}(t) -i . 1,...,[‘5’! II-2‘5
*
6 > ¢ 11.2-6

where ¢* is the value of the objective function obtained by application
of control strateay ui(t), i =1...m. The necessary conditions for a
control strategy to be optimal can be determined by application of the

calculus of variations. Although sufficient conditions have been
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developed (Citron, 1969) their complexity precludes their use in most
practical cases. The optimality of a solution is therefore usually
based on examination of the results of application of the necessary
conditions.

To determine the necessary conditions using the calculus of
variations one must form an augmented index of performance by adjoining
the differential constraints and the inequality constraints to the
objective function by means of Lagrange multipliers, r(t), =(t) and
y(t). The A(t) multipliers are used to adjoin the state equations; the
n(t) multipliers to adjoin the control variable inequality constraints

and the y(t) multipliers to adjoin the first (or higher order if
necessary) derivatives of the state variable inequality constraints.

(For the state variable inequaltiy constraints, the first or a higher
order derivative is necessary to bring at least one control variable

into the constraint). In addition, where derivatives of state variable
inequality constraints are involved, the Tower order derivatives become
point constraints and are adjoined with multipliers y. It should be
noted that the multipliers n(t) and y(t) are defined to equal zero when
their respective constraints are not binding and thus all terms added

to the objective function equal zero. The augmented index of performance

is then:

t
.F
Min o = g(tXi,teXe) + 7,5, (X,t) +j’ F(X,U,t)dt

t;

t
f
+I [356F5 (006U, 8)} + 1, (4,0, )
t

.i
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+ v G5, (X)) dt 11.2-7
where j =1 .n n = no. of state variables
2@ wuap § p = no. of control variable inequality
constraints
k=1...s: s = no. of state variable inequality

constraints

With the problem formulated as outlined above the necessary
conditions for a control to be optimal can be determined by application

of the Euler-Lagrange equation which is

€l .8 .4dl . 5 I1.2-8

where I is the augmented index of performance and y represents the
state and control variables (i.e. a set of m + n equations is obtained
where mtn is the number of state and control variables).

Application of the Euler-Lagrange equation to the augmented

index of performance yields n equations of the form:

arOGu,e) S0 g

dx. j Hii g dx

CE(X,U,t)

¥ & Taweayl® 2 g £ 3 T o B 2 Tyonesd

I1.2-9




24

which are often called the adjoint equations; and m equations of the

form (m is the number of control variables)

df.(X,U,t)
dF(X,U,t) P i d d ,d ;
- A 7 i =
duy § gty Do MUty gt Nt =
= Tyl 55 Taowslil B = L aadd E#E Tgond I11.2-10

which are often called the control equations.
The remaining necessary conditions to be met are as follows:

a) Initial and/or final conditions for the state variables and time
(a maximum of 2n+2 conditions):- These are normally determined
from data supplied by sensors in the system. The initial and
final values of time are chosen on the basis of the expected
length of the storm.

b) Final conditions for the A(t) multipliers:- These are supplied
by the so-called transversality condition at the final time tf.
For the case of fixed initial and final times this condition is

written as:

o X = D I1.2-11

=13
S
—
-

dg(xistisxfstf) +

i=1

c) The corner conditions:- These apply when entering or leaving a
constraint boundary and perform a similar function to initial

and final conditions.




For the case where

S (Xst) =5, (X) 11.2-12

which is the case for all that follows, the corner conditions are:
i) Upon entering a state variable constraint boundary (going

forward in time):

nHe-13
N1

{
i=]

L FL (XU, t) - F(X,U,t)}// = {
11 i=1

A (X,U,t) - F(x,u,tJ}//
£y

t1+

I1.2-13

= 99y _ =
and Ai// * vy a; // = Ai// i=1,...n I1.2-14
i t, ts

ii) Upon entering a control variable constraint boundary or on

leaving a state or control variable boundary

-3

n
{
i=

xLFL(X,U,t) - F(x,u,t)}// = {
1 L i

AL (GULE) - r(x,u,t)//
-]11
t

7 Y2

11.2-1%

A.// - A.// i=1,...n 11.2-16
1 : |

It is important to notice that eauation II.2-14 states that on
entering a state variable constraint there may be a jump in the A(t)

multipliers.
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Solution of equations II.2-9 through II1.2-1€ along with equation

I1.2-1 yields the necessary conditions for an optimal control. The
control U*(t) is determined from the control equations, or from binding
constraints. fote that the problem is a two point boundary value
problem with the initial conditions for the state variables generally
defined at t, and the final conditions for the A(t) multipliers defined
at tf.

The remainder of this chapter develops the system model and
the objective function for the combined sewer control problem. The

application of the necessary conditions and the resulting control

trajectories are left to Chapter III.

II1.3 Elements of the Combined Sewer Model

The first step in setting up a mathematical model of a combined
sewer system is to model the individual components relevant to the
problem. This section describes the components and gives their
mathematical representation.

A. Elements of Combined Sewer Systems

Figure II-1 shows an outline of a part of a typical combined

Trunk
sewer system. Sewers
Interceptor P¥version egulator Structure
Sewer from System

Throughput to

l_ Interceptor
{/> /> ——. 10
Treatment
e T e

Fig. II.1 Outline of a Typical Combined Sewer System
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Such a system is designed to carry the normal dry weather sanitary
flow and a 1imited amount of storm water runoff. Any excess flow is
diverted from the system to the receiving waters at the points shown
in the figure. Generally, the points of diversion occur where the
trunk sewers meet the main interceptor system; however, there may also
be diversion points in the interceptor system itself. The diversion
structures, usually called regulators, consist of some form of orifice
through which passes the flow which is to remain in the system and a
weir, over which passes the flow diverted from the system. In the case
of a requlator within the interceptor system these controls may be
reversed. In order to optimize the utilization of the storage capacity
of the system it is necessary to have the capability to vary the
operating positions of the control devices. In a controlled system with
in-Tine storage most storage of the flows would take place in the trunk
sewers.

B. Typical Regulator Structure

t,f'-hx\TTunk Sewer

Crest of Fabridam

Regulator q%te

S P——

Section AA ——j P
r«-—A Crown of trunk sewer

Gate Overflow
Entrance
Fabrldam

Invert of trunk sewer
Elevation

Fig. II.2 Schematic of a Typical Regulator Structure
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Figure II-2 shows a schematic of a typical regulator structure
installed in the Minneapolis - St. Paul combined sewer system. The
weir height is varied by inflating or deflating the flexible dam and
the orifice opening is controlled by hydraulically raising or lowering
the regulator gate.

The mathematical equation for flow over the weir in its most

general form is (Streeter 1966)

— a’ P
0, = C,(hh I1.3-1
where Qw = flow rate vol/sec
C,(h) = a coefficient which is generally a function of the shape
of the weir crest and the crest length
h =d - hf where d and hf are as defined in figure II-2

o an empirical coefficient.

By allowing Cw to be a function of h,the effects of variable weir width
due to the curvature of the walls of the conduit and, the effects of
drowning out the weir if the overflows become very large are included
in the equation.

For a broad crested weir of constant width L the theoretical

equation for flow over a weir is (Streeter 1966)

. 3/2 _ ~,3/2
0, = 3-09Lh C.h 11.3-2

Because of its simple form equation II.3-2 is used throughout for ease
of explanation. It is shown, however, in Chapter III that the more
general form, equation II.3-1, can be used without altering the general

form of the optimal control solutions.
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Flow through the orifice is governed by the equation

_ 2 B
!}0 = CD r°(d + b) I1.3-3
where CD is a coefficient which is generally a function of orifice
shape and entrance conditions
r is the orifice diameter
d s the depth of water above the floor of the conduit

b is the vertical distance from the conduit floor to the
orifice centerline (positive downward)

8 is an empirical exponent

As was the case for the weir, the coefficient CD need not be
considered a constant, but can be a function of (d + b) and r; thus a
more general form is:

2(4 + b)® 11.3-4

Q = {CD(d + bsr)}r

0

This formulation is not a true representation of the orifice
at a regulator structure which is normally a rectangular shaped opening
such as shown in Figure II-2. For such an orifice the governing

equation for the flow is:

Qp = Cphgld + p - a/2)® 11.3-5

where Ag is the area of the opening

p 1is the distance from the floor of the conduit to the
bottom of the orifice (positive downward)

q 1is the height of the opening
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By ensuring that the maximum flow at all-depths using equation
I1.3-4 is equal to the maximum flow at the same depths based on equation
I1.3-5 (or a more general form) it is possible to convert any given
orifice radius to an equivalent rectangular opening for less than
maximum openings. If, in equation II.3-4, it is assumed that CD is
constant, b is equal to zero and, the theoretical value 8 equals 1/2

applies then equation II.3-4 reduces to

qQ, = cDV'd'r- {1.3-6

Again because of its simple form equation II.3-6 is used throughout for
ease of explanation. It is shown in Chapter III, however, that the more
general equation I1.3-4 can be used without altering the general form
of the optimal control solutions.

That the more general orifice and flow eauations should be
used in anv model of a real-life system is adequately demonstrated in
the analysis by Harris (1968b) of the major diversion structures in the
Minneapolis - St. Paul interceptor system. It appears that equations
I1.3-1 and I1.3-4 would be adequate to represent most of the structures
he discusses, particularly since in any numerical analysis the functions
need be only continuous and not necessarily mathematically smooth.

C. Reservoir Representation of In System Storage

Any reduction in outflow at a regulator structure will produce

a back water curve such as shown in Figure II-3.
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Fig. II.3 Backwater at a Regulator Structure

A simple approximation to this backwater storage is shown in
Figure II-4. Here the volume of water shown shaded in Figure II-3 is
concentrated in a dummy reservoir located at the regulator structure
and the flow in the pipe upstream of the reservoir is assumed to act
as if there were no backwater storage. If the dimensions of the
reservoir are the same as those of the original conduit then the depth
in the reservoir at the downstream end should be a reasonable
approximation to the depth at the regulator structure in the actual
backwater case. This approximation is aided by the fact that the
volume of water stored in the triangle SXY of Figure II-3 is close to
the volume of water remaining in the conduit between S and Y in

Figure II-3.




Reservoir
Trrrrrrrrrrry

Fig. II.4 Reservoir Approximation of Backwater Storage
Preliminary studies, using a system having three control points,
were reported by Bell, Johnson and Winn (1973). They compared the
results from a control computed on the basis of the reservoir
approximation with those for the same control used in a verified model
which had a more complex backwater approximation. Table II.1 reproduced
from the paper shows that reasonably good agreement was obtained between

the two models.

TABLE II.1

Test Results Using the Proposed Model

Optimal Control Control Physical System
Based on True Runoff Program Model
Maximum depth at Pt 2 13.00 ft 13.02 ft
Maximum depth at Pt 1 _ 8.50 ft 8.60 ft
Maximum depth at Pt 3 8.50 ft 8.59 ft
Total Overflow Volume at Pt 2 26,000 ft3 27,400 ft3
Total Overflow Volume at Pt 1 2,740 ft3 3,560 ft3
Total Overflow Volume at Pt 3 18,200 ft3 19,400 ft3
Maximum Outflow Pt 2 & Pt 3 02 cfs 82 cfs
Maximum Outflow Pt 1 16.7 cfs 17 cfs

D. Flow Representation
In any free surface flow such as normally exists in a sewer
system the velocity at which any change in flow rate is passed through

the system is approximately equal to (Streeter and Yylie, 1967)




33

where ¢ gravity
d = depth of flow in the conduit in ft
V. = velocity of flow in the conduit in f.p.s.
Vc = velocity of the perturbation in f.p.s.
The positive sign represents the effect of changes proceeding
downstream and the negative sign is for changes proceeding upstream.

For a depth of flow of a 4 feet and v = 4 fps

v =11 +4

15 fps.

Thus, in a mile of conduit, a not uncommon distance in a sewer system,
(Minneapolis - St. Paul has up to 40,000 feet between some control
points) the delay quite easily amounts to 5-6 minutes or more between
the time that a change is made at an upstream regulator and its effect
is felt at a control point downstream.

Undoubtedly any model of the flow routing in a combined sewer
system should include the effects of time delay if the computed control
is to be reasonably accurate. Initially, however, it is worthwhile to
assume that there is no time delay and that control changes are felt
immediately throughout the system. It is shown in Chapter VI that
more realistic flow routing models can be included in the formulation.
This addition increases the complexity of the control and adjoint
equations but does not measurably affect the numerical solution

procedure.
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IT.4 The State Equations of the System

Although the state equations must be written for each individual
system, the form is often repetitive within each system and between
systems. The equations discussed below are those for a system in which
the time delays in flows travelling from one point to another within
the system are negligible. In addition, the reservoir analogy is
assumed to apply for backwater storage at a regulator. Figure II1-5

outlines the basic unit to be analyzed.

m
2 B Q(t)
1=1 1

Fig. II.5 Basic Unit of a Combined
Sewer System

For any reservoir in the system the inflows are: the urban
Tand runoff plus the dry weather sanitary flow which is represented by
the hydrograph q(t) and; the through-flows from parallel upstream

reservoirs feeding into the reservoir under discussion which are
m

represented by ) Q_ , where m is the number of parallel reservoirs.

=1 Y

|
The instantaneous outflow rates from the reservoir are defined by Qw

the flow over the weir and QO the flow through the orifice.
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The differential (state) equation of the reservoir is the
continuity equation which states that the rate of change of storage in
a reservoir is eaqual to the instantaneous inflow rate minus the

instantaneous outflow rate. Thus,

13

d(d) _ . ,
Ald) === 1 Q +alt)-Qq, -9, I1.4-]
i=1 7
or on rearranging and letting (°) = g€
m

L Qy.tq(t)-Q -9
a = i=1_°1 v 11.4-2
- A(d) +d-e

Substituting equation 11.3-2 for Qw and equation I1.3-6 for 0 and QO
;
(assuming that all system throughput is through the orifices at the

regulators) yields the basic form of the state equations.

=

¥

It~

2 3/7
L CU'\v}:ii r'1_2+q(t)—CD d r “thJKL
N '|
d = A(d) [1.4-3

A model of any combined sewer system meeting the requirements
outlined above would have n state eauations (one for ecach of the n

requlator structures in the system) of the form of equation 11.4-3.

II.5 The System Constraints

The major sources of system constraints are: )
‘ a) control device limitations - these are usually maximum

or minimum settings of the control devices or may be limitations on

the rate of operation;
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b) flow limitations within the system - flows in the
conduits cannot exceed the capacity of the individual conduits or
some minimum flow must be maintained

c) storage constraints - the depth of storaae at a regulator
structure cannot exceed a priori limits (usually based on some safety
criterion).

Each of these constraints is discussed below with the exception
of the constraints on rate of operation of control devices. These
constraints are discussed in an example in Chapter III.

A. Control Variable Inequality Constraints.

Constraints on the control devices and maximum allowable
system flows fall in the classification of control variable inequality
constraints. For the case where there is no Timitation on the rate of
operation of the control devices the control variables are: the depth
of flow over the weir, h and; the orifice radius, r. One or both of
these variables must appear in the control variable inequality constraints.

For this assumption the control variable ineauality constraints
are given below for the individual control variables.

a) The orifice constraint:-

) < 0 I1.5-1

(r-R max’ -

2 J m'in

)(r - R
i.€.y the radius of an orifice cannot be greater than some maximum

vgiue, R dictated by the physical Timitations of the orifice

max *
opening; nor can it be less than some minimum value Rmin' The minimum
limit is inserted because optimal control may require at certain times

that throughput at a particular regulator be reduced to zero. Such a
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requirement might result in an undesirable settlement of sediment
upstream of the regulator. By maintaining some minimum opening, this
problem may be alleviated. In addition placing the Timitation on a
minimum value of r instead of a minimum flow rate through the orifice
eliminates the possibility of the problem becoming infeasible as a
result of a very small depth (see equation 11.3-6). It also simplifies
operational control procedures.

b) The weir constraint:-

h(h -d) < 0 I1.5-2
j.e., the depth of flow over the weir cannot be less than zero (to
prevent negative flows over the weir) or greater than the depth of
water stored immediately upstream of the weir.
c) The flow constraints:-
In addition to the constraints imposed by vhysical limitations
of the control devices themselves there is constraint on the instantaneous

flow rate in each individual conduit of the form:
qulE) = <0 11.5-3

TulBas Qoi are the throughputs from m reservoirs feeding a given conduit

and qj(t) are p input runoff hydrographs to the conduit. The instantaneous

sum of these flows cannot exceed some maximum permissible flow, Qmax

dictated by the size,roughness and slope of the conduit and the necess¥ty

to maintain free surface flow. W
The maximum Timit, Qmax’ is premised on the assumption that

steady uniform conditions exist in the conduit. In an actual system the
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flow will more likely be unsteady, non-uniform flow; however, as the
control will tend to make maximum use of the system flow capabilities,
the total flow should remain relatively constant and thus the
approximation of steady uniform flow should be valid.

B. State Variable Inequality Constraints.

The remaining constraints are those on the allowable range of

depths behind each regulator which have the form

d(d -D) < O 11.5-5
i.e., the depth cannot be less than zero or greater than some a priori
1imit D.

In this constraint the control does not appear explicitly

and thus it is called a state variable inequality constraint. If this
constraint is differented with respect to time the control will appear
and eauation 11.5-5 can be replaced by two constraint eauations as
outlined earlier. These are:

0 _

- =d(d-D0) < 0 I1.5-6
which applies at the instant the constraint boundary is first reached
and;

d

s =9 [dd-m]=(2d-D)d =0 ——_

which applies along the constraint boundary.

Substituting ecuation 11.4-3 for d into equation II.5-7 yields

a constraint which includes a control variable and has the form
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m
[a(t) + T oV, r? - ¢ n¥/% - cfd v
s' = (2d - D) ) e = 0

I1.5-8

The state equations described in section II.3 and the constraints
described in this section, along with the initial conditions, form the

complete description of the combined sewer system model.

IT1.6 The Objective Function for the Problem

The overall objective of control of combined sewer systems is
to reduce the amount of pollution of the receiving waters. Objectives
commensurate with this overall objective are:

a) minimize the total volume of flow diverted from the
combined sewer system to the receiving waters.

b) minimize the total amount of pollutants entering the
receiving waters from the combined sewer system.

c) minimize the amount of those pollutants considered most
harmful that reaches the receiving waters from the combined sewer system.

d) minimize the amount of pollutants reaching the receiving
waters so that the reduction in the economic cost of pollution is a
maximum.

Item (b) recognizes spatial and temporal differences in water
quality, but does not recognize the variations in potential damage of
the various pollutants.

Item (c) recognizes the variations in potential damage of
the various pollutants and to some extent recognizes their spatial and
temporal variation.

Item (d) is essentially the same as Item ¢, except that the

potential damage is specified in termsof dollars instead of a value
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judgment. This allows an economic balance to be struck in terms of
incremental benefits and the incremental costs of the system required
to produce those incremental benefits. lith items a, b and c, the
reauired degree of pollution reduction and therefore the degree of
system control is based on value judgments. (It should be noted that
in determining economic values much value judgment may be involved).
One objective function which recognizes parts of items a, b,

and d is

f n
Min ¢ =.[- [ 1 ZC, h,
=] ¢ Y

t.
i

32944 I1.6-1

where Zi is a positive constant and n is the number of reservoirs.

The idea behind this objective function is that the various
types of pollutants and their concentrations have a spatial variation
throughout the combined sewer system. It would therefore seem
desirable to reduce or prevent overflows from certain parts of the
combined sewer system from reaching the receiving waters; whereas
overflows from other parts of the system may be considered relatively
harmless to the receiving waters. By using knowledge based on water
quality tests in the combined sewer system, combined with knowledge of
the effects of pollutants on the receiving waters (due both to the
type of pollutant and its point of introduction) it should be possible
to arrive at a set of weighting factors that will result in minimization
of pollution of the receiving waters. This problem of choice of weighting

factors is beyond the scope of this dissertation.

Due to present limitations of accuracy and reliability of
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water quality sensors (Minneapolis - St. Paul Sanitary District, 1970)
along with related problems of modelling pollutant flow to the required
degree of accuracy, it does not appear feasible to use an objective
function based directly on pollutant overflow volumes. If reasonable
water quality data is obtained from the sewer system by a point

sampling program, the objective function given by equation II1.6-1 should
be a good compromise.

It would appear that equation II.6-1 could be improved by
making the weighting factors functions of time. Although there has been
shown a definite "first flush" of pollutants in the early part of a
storm (e.g., studies in Tulsa (Cleveland, Ramsay and Walters, 1970))
it appears that very little would be gained by the addition of this
complexity, particularly in view of the fact that the application of
optimal control theory to the combined sewer problem using the
objective function of eauation I1.6-1 shows that the control during the
early stages of a storm is usually such as to maximize the throughput
at each regulator.

Early studies of the optimal control problem showed that if
equation II.6-1 was used as the objective function then at certain points
in time the orifice control would be bounded but not unique. It was
found that adding throughput terms with negative weighting factors
removed most of the non-uniaueness problems. Thus an alternative

objective function was devised and used for all remaining studies. It

is:

.F
3 3/2
Ming =I [2 Z;C b, /2 Lssn D Vd; ]dt I1.6-2




where Z, » 0 1 2 Vlsewast

Zoo & B ¥E Duunayl

It was thought in addition that it might be advantageous to
the sewage treatment process to receive larger flows from certain
portions of a combined sewer system and that by weighting the
throughputs this advantage might be realized. The type of control result-
ing from the application of optimal contrel theory, however, tends to
make any such gains doubtful.

Although this dissertation is directed at controlling flow
during storm periods it is worthwhile to point out that during normal
dry weather operation of a sewer system there may be possible advantages
to the sewage treatment process gained by using the objective function
of equation I1.6-2 with the weighting factors on the throughput terms

being functions of time.

II.7 An Example of a Complete Problem Formulation

For completeness, a complete problem formulation for a simple
system consisting of two reservoirs in series will now be given.
Figure 1I-6 shows the system to be modelled. The variables used are all
as described earlier:

In order to simplify notation in the following chapter where
the forms of some optimal control strategi2s for this problem
are derived, the following variables are introduced: C? which
represents the left hand side of control variable ineauality constraint

L, and SP which represents the first derivative of state variable

inequality constraint k.
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Fig. II.6 The Two Reservoirs in Series System

For this system the state equations are:

2 . 2 3/2
OT(t)+CD£V d2 ry CD] d ryo- Cw1h1

(.:1 = = f
1 Aq(d1) 1
I1.7-1
and q,(t)-C, VT, r.2 - ¢ h,3/?
. 2 D2 2 2 W 2
d, = = 11.7-2
2 Az(dz) 2

The control variable inequality constraints of the system are; for

~ the control variables themselves;

Cy = (ry = Rosn Mry = Rose ) s 0 5 11.7-3

min max
1 ]

)(r, - R Y = B 3 11.7=4

=
-
=
™
n
3
=T}
>
™~
:
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C3 = h](h] - dT) < 0 11.7-5
and 64 = hz{hz - d2) < 0 11.7-6
and for the flow rates within the system:

. 2 :
CS (q1(t) + CDQV‘12 ry" - Qmax1)1 8 11.7-7
2

~ = s ¥ . =

and “6 (na(t) + CD1\}d1 " ﬂmax3) <0 11.7-8

The final system constraints are those on the depths immediately
upstream of the regulator structures. As noted earlier these are state
variable inequality constraints and must be stated as a pair of

constraints for each reservoir. Thus,

a.
—t
—_
a.
=il
]
o
—
fa)
-]
~J
]
2

and d

are the two point constraints which apply at the instant the boundary

is reached and:

n](t)+CDé\(d_2 el - Cnl\/d_] r? - Cw1h]3/2
Sy = (2 = Dy) A ) =0
I1.7-11
and a,(t)-Cp \[EE r22 « B Ji, 0"
4 2 Wo 2
S, = (2d2 = [)2) ’B‘szg) =0 I1.7-12

apply along the depth constraint.
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The objective function for this problem is:

t
.F
o 3/2 3/2 2
Min o --]' [z]cw]h1 + 22Cw2h2 + ZBCD?fd1 i
t.
:
+ 7,6,V4, rzz]dt 11.7-13

2

To complete the formulation to the point where the necessary
conditions for an optimal control can be determined by the calculus of
variations, it is necessary to form an augmented index of performance.
Letting the right hand sides of equations II.7-1 and I1.7-2 equal f]
and f2 respectively for ease of notation and using Lagrange multipliers
as described in section II.2 of this chapter, yields as an augmented

index of performance
Min ¢ = §1d](d] - DT) + -?Zdz(d2 - D2)
3/2

3/2 2
s B2 T Il Vi

2 : 1
+ zqcnz d, r,ldt t{’ [Ay(d)-F1) + 2, (d,-,)

_ | . 2
+ mghylhy=dy) + mahy(hp=dy) + me(aft) + AR
2
N Qmax1) + mglag(t) + CD]U dpr" - Qmax3)
+ vy (2d1-Dy)Fy + v,(2d,-D,)f, Tdt 11.7-14

Bt e
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By application of the variational principles to equation
11.7-14 as outlined in section I1I.2 of this chapter, the necessary
conditions for controls h1(t), h2(t), r](t) and rz(t) to be an optimal

control strategy can be determined.
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CHAPTER III

EXAMINATION OF SOLUTION FORMS FOR SELECTED CASES

ITI.1 Introduction

Before proceeding with attempts at numerical solution of
the necessary conditions for an optimal control it is worthwhile to
examine the form of the optimal control solutions. Such an
examination may save much time in attempting particular types of
numerical solutions which, because of their peculiarities, are
doomed to failure.

This chapter outlines the preccedure used to obtain solution
forms of the optimal control for particular cases. The solution forms
for the two reservoir problem formulated in Chapter II are examined
in detail. The solution forms for other configurations are then
presented and their peculiarities discussed. (The derivations of
these solution forms are left to the Appendices). In all the cases
examined in this chapter it is assumed that there is no time delay

in the flow routing.

111.2 The Procedure Used to Determine Solution Forms

The procedure used to determine the form of a solution of
the necessary conditions for a particular set of inflows consisted

of five steps.
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a) The problem was formulated for the system configuration to be
analyvzed.

b) Using the general form of necessary conditions, given in
Chapter II, the control and adjoint equations were determined
from the augmented objective function and the values of the 2
multipliers at tf evaluated.

c) A control strategy U(t) was assumed and the state variable
path that would result from the use of U(t), was determined.

d) Starting at tf the problem was worked backwards to see that all
the necessary conditions could be satisfied.
e) The solution was examined to see if the control U(t) could be
improved and the value of the objective function reduced.
A detailed application of this procedure is given below for

the problem of two reservoirs in series formulated in Chapter II.

II11.3 Solution Forms for the Problem of Two Reservoirs in Series

A. The Necessary Conditions.

The complete formulation for the problem of two reservoirs
in series was presented in Chapter II. The necessary conditions for
an optimal control can be determined by applying the general form of
the adjoint and control equations presented in the beginning of Chapter
II (equations I1I.2-9 and I1.2-10) to the augmented objective function
for the two reservoir problem (equation II.7-14). This procedure
results in the set of six equations (two adjoint and four control
equations) given below. MNote that the state variables are d1 and d2

(equivalent to x; in Section I1.2) and the control variables are
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ris Too h1 and h2 (equivalent to ”i)‘

a) The adjoint equations for the two reservoir problem

are upon simplification and rearrangement:

C. r ?
dx A,=y4(2d,-D,) D, 1
PP B L ot L P
It 3 ¥ g A (d;) ' T2,
a dIA(d))]
+ ATE) T - mghy 3 I11.3-1
and
3 ) R 2 o
Be o G wwi 2 (p(2dy- Dz)] [ -v4(2d;-D, 3
It 4t s A, d,) A (d))
2
Cp, 2 v, d[A,(d,)]
AR 227" . b I11.3-2
2/d, " R,(d,) at 4" el

b) The control eauations for the two reservoir problem are

upon simplification and rearrangement:

e 1-Yq(2d=Dy) a2 .

Ppo= ) ¥ gy P M T mgl2nmdy) =
111.3-3

and
2d.,-D.,)
. Ap=vp(2d5-05) /2 . )

P2 Ly Lz + { ( 2_) 113/2Cw2h2 + "4(2h2'32) = q

111.3-4

which are the control equations for h1 amd h, respectively and,

-y, (2d D
= {23 + [ ] Y1 ( I ] + 1 /H- r

](2r1 maxT Dmin]) =1 IT1.3-5
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and
An-yA(2d,-D,) A=y, (2d,-D;)
) pra\etgrtyg 1NV
By & 40y * [y - Iy Y % /d, 1y
o\Yy 1\ 2
+oay(2ryR o R ) =0 I111.3-6

-
max2 1!12

which are the control equations for r and rs respectively. The
notation Pi on the left hand sides of equations III.3-3 to III.3-6,
respectively has been introduced for later shorthand use.

Finally the values of the X multipliers at tf are obtained
from the transversality condition (equation II1.2-11). Applying this
condition to the augmented index of performance for the two reservoir

problem yields

{A1d(d1) + )\Zd(dz)}/ + {h1d(d]) * ’\Zd(d2)}/ =0
t, te
I11.3-7

and d(dz)/t.

Since d1 and d2 are given at t equals ti,d(d1)/t 1

‘i
are equal to zero. At tf,d1 and d2 are independent and not restrained

and thus for equation III.3-7 to be satisfied:

\ = 0 I11.3-8
te

)‘2/
te

With the control and adjoint equations determined the

1"
]

I111.3-9

feasibility of various solutions can now be tested.
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B. Two reservoirs in series Z]>22 - CASE 1.
In the example that follows the relationships given below are

assumed to exist for the weighting factors

21 > 22 II1.3-10
-23 > -24 IT1.3-11
21-23 > 22—24 I1T.3-12

The last requirement is necessary to prevent the problem becoming
equivalent to the case 22 greater than 21, a problem not discussed
herein but whose solution should become obvious as the various
configurations are studied.

Further it is assumed that for a particular set of input
hydrographs the control trajectories have the form given in Figure
ITI.17 (a and b) and the state variable trajectories that result from

the application of these controls have the form given in Figure III.1

(c and d).

Finally it is assumed that the downstream flow constraint
Qmax3 (refer to Figure 11-6) is never binding, and thus ry is always
equal to R

max.
1

The control and state variable trajectories shown in Figure
ITII.1 may be described as follows:
ti-t The orifice control for the upstream reservoir is fully open
and remains so until t, when the sum of the outflow from the
upstream reservoir plus the inflow hydrograph n](t) is equal

to QmaxI‘
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The upstream orifice control is varied to maintain the total

flow at its maximum allowable Timit, Q .
max,

At t2, orifice control ro is reduced to its minimum allowable

value R and remains at this value until t5.

min
At t3, d? Eecomes eaual to U] and the downstream weir control
h1 must be operated to maintain the depth D1. This operation
continues until te-

At t4, d2 becomes equal to DZ’ and the weir control h2 must

be operated to maintain the depth DZ‘ This operation continues
until t6.

At t5 the inflow to the downstream reservoir has decreased

to the point where h] has been reduced to zero. The reservoir
level still equals D1. It is now possible to increase the
outflow from the upstream reservoir without overflowing
downstream. Thus rs increases until it is fully open at t7
and is operated in a manner that keeps hI equal to zero and

d] eaual to D].

At t., as a result of the increased outflow from the upstream

6°
reservoir h2 is reduced to zero. The upstream reservoir

level d2 then drops below the depth constraint DZ'

When ro reaches its maximum value Rmaxz at t7, the total
inflow to the downstream reservoir can no longer be maintained
so as to keep d1 equal to D1 thus d1 drops off the depth
constraint.

It remains now to show that the control strategy outlined

satisfies the necessary conditions.




At each point in time it is necessary to be able to determine
values for: the four controls, r1s Tos hy and hz; the two A(t)
multipliers; the six =(t) multipliers; the two y(t) multipliers
and; the state variables d] and d2. The assumed results of integration
of the state equations for the problem (equations II.7-1 and II.7-2)
have already been given in Figure III-1. The remaining variables can

be determined by working backwards from te

For example, in the interval t? to tf the following relationships

exist.
i = gy, > (r1-Rm1n1)(r1—Rmax1) =07 #0 II1.3-13
r, = Rmax2 - (rz—Rminz)(rg—Rmaxz) = () » T £0 III.3-14
hy =0 > hy(hy=dy) =0 > 1y #0 111.3-15
hy =0 »hylhy=dy) = 0 >, # 0 I11.3-16
dy(dq=Dy) <0 > y; =0 111.3-17
dy(dyD,y) <0 + v, =0 I11.3-18
q(t) + CDZ/HE r,? - sy <0 75 = 0 I11.3-19
a5(t) + cD1¢H; r? - o <0 > % = 0 I11.3-20

In the above equations there are four non-zero Lagrange
multipliers and they can be used to satisfy the four control equations.
Thus the value of multiplier ™ can be determined from the control

equation for " (equation 111.3-5) to vield
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2C. v/d- R
A] D1 1 max1

w. = LI, ¥ } I11.3-21
1 # A1(d1) Rmin1 B Rmax]

Similarly the other non-zero multipliers can be determined from the
remaining control equations for the time interval t7 to tf.

With the control equations satisfied in the time interval
being considered all that remains is to integrate the adjoint equations
ITI1.3-1 and III.3-2.

Upon substitution of the appropriate values of the = and y

multiplers these eauations become:

2
d, oM N dIA(d))]
e = [, } +
@t 3V R 7, TR Td
I11.3-22
and 2
dx ) A CD )
2 = {I.% 2 i q Loy 2
dt 4 Az(dz] A](d1) 2/62
A d[A,(d,)]
2 2dy
i 111.3-23

Since 23 and 24 are both less than zero the trajectories of
the » multipliers in the interval t, to te are as shown on Figure III.2.

At t, there is a corner. At t,_

d1(d1-D]) =0 I11.3-24
and

(rz—Rminz)(rz—Rmaxz) <0 I11.3-25

A1l other constraints remain as before.
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Fig. II1.2 The Trajectories of the A Multipliers
for CASE 1

Application of the corner conditions (equations 11.2-15 and 11.2-16)

yields on substitution for f, and f2 and upon noting that h1 and h2

are zZero:

a. (t)4C. v@or.2 = C VA RE q.(t)=Co Vaor,2

1 D, "2°2 ql__1 max, 2 D, "2°2 5
[y A (dy) b+ At ra Z3%, "1 Rnax

149 AL, 1 1
(t)+C. VARE. . - C, /A RZ
2 q] D2 2 max2 D] 1 max1

= = [
246D2¥d2r2 ]t LA}{ Al(d1) } &
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2
qz(tJ'CDE'/HERmax2 - P ]
i } - 2,C R = L O VdLR
2 Az(dz) 3 DI 1 max, 4 02 2 max, t
II11.3-26
,\]/ = J«.I/ III.B-Z?H-
ts- 7+ '
5\2/ = }\2/ II11.3-28

Since all the terms in equation III.3-26 are continuous at t7 and

thus approach the same 1imit from either the left or right it is obvious
that equation III.3-26 is in fact an eauality.

The remaining details of the solution are presented in Table
II1.1 which shows for each time interval on Figure III.T: the non-bind-
ing constraints and the resultant zero Lagrange multipliers; the binding
constraints and their associated non zero Lagrange multipliers and the
control equations which these multipliers are used to satisfy; and the
equations used to determine each control variable. For each time
interval and corner Table II1.2 shows the equations of the X multipliers
and the conditions at each corner. The notation used in these tables
is the same as that given in Chapter II with the formulation of the
problem (i.e. C1 represents the left hand side of control variable
inequality constraint i and is associated with multiplier s Si
represents the left hand side of the first derivative of state
variable inequality constraint i and is associated with multiplier Yi)'
The notation Pi was given at the beginning of this chapter and represents
the control equations. Illote that it is not really necessary to know

the values of the Lagrange multipliers associated with the inequality




Solution of the Constraint Multipliers, Control Equations and Controls for the Problem of Two
Reservoirs in Series CASE 1

TABLE 111.1

5

! ¢ Control Cquations Constraint that
Time flon Binding RAssociated Zero Binding Associated Non Satisfied by Controls are
Interval Constraints Multipliers Constraints Zero Multipliers Multipliers Determined from
tf)t’t? Cs "g C‘i LhY F'3 5 Tl CI =0

% "6 € %2 Ps T vepm0
5 i Cy b P kg *hig¥9
Sy 5 Cy " % hy = Cq=0
t}.i't’ls CZ L) G " P3 My = ¢, = 0
Cs "5 % "3 Py by *y =0
% "6 b4 "4 P hy +Cq=0
52 2 5 n Pa rp +% =0
te)t’ts Cz ﬂz C.J 1|,' P3 r“ - cl =0
C4 " C3 y PI h] - (Z3 =0
Cs s 5 " P2 rp 3 =0
(I6 L 52 Y2 P4 hz + S2 =0
ts*t‘t4 C3 T C" LB P3 P C‘ =0
Cq "4 €2 "2 Pa By Sied
Cs "5 3 ! " hy #5 =0
b6 " 52 Y2 P2 By ¥
Pt ‘3 "3 & M P3 ry *C=
% "5 & "2 Py ¥ % By
c " c 2 < =0
SE 6 4 ‘4 PZ h.l * 51 =0
2 Y 5 ¥ &
2 1 1 3 h2 C4=0

39




TABLE [11.1 cont'd

tptot, Cg T & " Py ros €
Cﬁ " Cz “2 F'4 rz )
5 " ¢ " X Mo~ G
52 Yz Ed " Pz h;! -+ C4
t2>t>t] Cz s C1 " P3 o c
% 5 ) "3 i rg + Cg
5] g Cq wq P2 hl - Ca
% "2 bs "5 Pa bz =+ &y
ety Cs v G " Ps 2 e
s "6 2 " Ps 2 * 6
5y " C; "3 Py s by
52 1'2 C'ﬂ wd P2 hz - 54
Notes:

1. Time intervals are those shown on Figure II1.1.

2. Lagrange multipliers in this column are those associated with the non binding constraints on the same line
in the previous column.

3. Lagrange multipliers in this column are those associated with the binding constraints on the same line in the
previous column,

4. Control equations listed in this column are satisfied by the Lagrange mutlipliers on the same line in the
previous column.

5. r, +C, =0 should be read as "r] is determined from C] = 0. The controls in this column are listed in
the orber required for solution.

LI |
o o o o

o o o o

(=T =~ Y~ Y~ |
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TABLE 111.2

THE EQUATIONS OF THE X MULTIPLIERS AND THE CORMER CONDITIONS FOR THE
PROBLEM OF TWO RESERVOIRS IN SERIES CASE 1

tetoty

Corner at t7

t7>t>t6

Corner at t6

t>t>t

Values of ii or A,

A =0
Ry %0
C. 1 2
A D,"1 A d[A,(dq)]
M =3+ g (; T} Z{d ¥y ]d ;t ]
()7 2vd - ATy
2
A v, . A,  d[A,(dy)]
Ay =12yt g g ¥ (é K o * T ) at
2ldy) A4, 2 Ryld;

A11 variables are continuous. Therefore the corner
conditions yield

A AL/
Ao/ = 2,/
2 ty_ 2 ts, 5
Ay-v4D CD Rmax A d[A, (d,)]

5, o= 42,4 [ 1" I]} 1 e 1 171
1 3 A1(d]) Z/D] A]{d]) dt
: A d[A,(d,)] A
Az - 'y (3 ') gt 2 -+ A {g-) = const.

22 er

A1l variables are continuous. Therefore the corner
conditions yield

Ay/ M
Ve 1




TABLE III.2 con'd

Corner at t5

t5>t>t4

Corner at t4

t4>t>t3

Corner at t3

61

A1l variables are continuous. Therefore the corner
conditions yield

Mg, T Mt
Al = A/

2 t5— 2 t5+

2
< CD Rmax]
i\.l - {23 - Z]}—f?ﬁ',l_—— = const.
2
. Co_Rmin
,\2 = {24 - 22 + Z-I }WDZ— = const.

At t,, h, is discontinuous and therefore d, is
discontinuous. As this corner is the entrdnce to a
state variable inequality constraint boundary a jump
in the value of Ay can occur. The corner conditions
yield

A]Ltd- = x]/t4+
A2!t4_ = —ZZAZ(DZ)
C. R
. ] 01 max1
11 = {23 - 21}—3737—-— = const.
2
RS,
A, Dmin, A, d[A,(d,)]

e
"

2
{Zy % 25 } +
2 4 1 Az(dz) 2#62 AzIdz} dt

At t,, hy is discontinuous and therefore d; is
discgntinuous. As this corner is the entrance to a
state variable inequality constraint boundary a jump
in the value of Xy can occur. The corner conditions
yield

A1/t -21A1(D])

3_
sz = let

t3. 3+
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TABLE III.2 cont'd

C, R
. - A i D, "max, A d[A](d1)]
typtat, A\ = {23+ N G R TR W ) T
c. R?
) lz A.I [:'2 min2 AZ dEAz(dz)]
Ay % Sty ¥oomiy = iy ¥ gy
2 219, 19 2 2'9
Corner at t2 At t, the variable ro is discontinuous however the corner
condgtions require:
A/ A/
L t2- 1 t2+
Al = A,/
2 tz_ 2 t2+
, For the jump in r, to be permissible requires that
RT XZ
[K1(d1j] ) {Az(dzj ' Z4]t2
t
C. R
. A X D, ‘max, . M d[A](dI)]
t vt I T ™ 7 R 7 G B
b ﬁ“%%“T‘d[Azéiz)] TR 23 e
2V 2 i
Corner at t1 A11 variables are continuous. Therefore the corner
conditions yield
XS = A/
1 t. 1 ts
Xaf A/
2
, \ ‘Cn1r1 A dIA(d))]
totot, A = {234 90 % R P Y (10 BT
2
. A A b, Ny, dlAy(dy)]
A Wy N Y T R e By T
2 () Ay(d, 2 Aldy t
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constraints only that they can be used to satisfy a particular control
equation.

Finally note from Figure III.2 that the condition listed in
Table III.2 as necessary for a jump in the control r2 to occur at
time t2 can in fact occur. (This is most easily seen by assuming
Ai(di) is equal to 1). Thus it has been shown that the solution
assumed in Figure III.1 is in fact feasible, given the assumptions
and Timitations outlined at the beginning of this section.

C. Discussion of the Results of CASE 1.

The first question to be answered is: 1is the proposed
solution optimal? After t4 on Figure III.1, when both reservoirs are
storing the maximum amount of water and begin to overflow it is
obvious that nothing can be done to the controls to reduce the
overflow volume from the two reservoivs. The key ouestion concerns
the validity of the jump in control rp at t,.

That this is reasonable may be shown by referring to Figure
ITI1.3. If the switch in s takes place at t2 + ¢ then there will be

an increase in throughput volume from reservoir 2 of aS4 and a

decrease in overflow volume from reservoir 2 of AS2. By continuity

£S4 + &52 = 0 I11.3-29

As a result of the increased input to reservoir 1 there will
be an increased overflow volume from that reservoir of 351 and since
the depth in reservoir 1 at t, + ¢ is now greater than it would have
been without the addition of asa there will be an increase in the
outflow volume from reservoir 1 of &53' For this reservoir the

continuity equation yields
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seee effects of perturbed control
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Fig. II1.3 The Effects of a Perturbation of Control r

at time t2 2

AS, = QS] = aS3 = 0 I11.3-30

4

The change in the value of the objective function resulting
from the change in the time that the jump in control ro takes place

1S
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By substituting the results of equation III.3-29 and III.3-30 into
equation III.3-31 this change in the objective function can be
expressed as

Ap = 21(asq-aSBy{Zz—Zq)aS4—Z3aS3 I11.3-32

Now aS3 is a function t3—t2 as well as the change in depth
of reservoir 1. If for several values of t2, the perturbation in ro
is such as to keep aSa constant then &53 will vary from a value of
zero when t2 equals ty toa value of aS4 when t,-t, approaches

3 2
infinity. Thus when t, equals t, equation III.3-32 reduces to
2 3

A = (21—22+Z4]as4 I11.3-33

which by the assumptions given for the relative values of the weighting
factors is greater than zero. Similarly for t3—t2 very large the

change in the objective function is

A ~ -(22-Z4+23}&S4 I11.3-34

which by the initial assumptions is less than zero. Thus there is

some value of t, at which 4¢ is zero. Prior to this value of t, any
increase in throughput from reservoir 2 is advantageous and after t2
disadvantageous. Therefore there should be a switch in control r

2
at time t2.
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Simply stated, the switch in control occurs at that point in
time, where the incremental benefits gained by increasing the through-
put from the upstream reservoir are just equal to the increased costs
at the downstream reservoir of overflowing a portion of that volume
minus the benefits derived from the increased downstream throughput.

If there is a binding constraint on the flow rate from the

downstream reservoir throughout the period ti to t3 then

AS3 =10 I'11.3-35

and thus there would be no time at which it would be beneficial to
decrease upstream overflow at the expense of increased downstrean
overflow.

Similarly if

7. s I11.3-36

then the time required to gain any incremental benefits from increased

outflow from the upstream reservoir may be greater than that available.
The solution forms for these latter two possibilities will be

examined later in this section.

Returning to the solution for CASE 1 it is interesting to

note that t.-t, as defined on Figure III.1 will be smaller for R .
3 "2 m1n2

greater than zero than for R equal to zero. (Since in the interval

I’)!\ﬂl"lz

t2 to t3 ok i Rm1n2 is zero A2 d? is constant - see Table III.2 and

Figure 111.2). This is explained by the fact that any incremental

increase in throughput ASZ from the upstream reservoir falls on top
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of the throughput due to R This combined effect on the down-

min,"
stream reservoir level means %hat the throughput from the downstream
reservoir 553, necessary to decrease the objective function can be
obtained in less time. Note that having Rminz greater than zero does
not mean that a better value will be obtained for the objective function

than for the case R equals zero.

min

At this pointzit is advantageous to point out some more
general aspects of the solution. In the formulation of the control
problem in Chapter II it was suggested that the addition of 23 and 24,
the weighting factors on the throughputs, would remove some non-
uniqueness from the controls. This can be observed by examining
equation III.3-5 and III.3-6, the control equations for " and ro
along with equations III.3-22 and III.3-23, the adjoint equations for
the interval of time t, to t..

Since at te the A multipliers are zero by equations 111.2-8

and III.2-9, then if

Ly & Zn =10 I11.3-37

Rz = An =0 IT1.3-38

Inserting the values from these two equations into the control
equations for " and rs (recalling that Y1» Yps Tg and T Were zero)
shows that they will automatically be satisfied regardless of the

values of " and rs since
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A
1 _
23 + E;THYT- = 0 111.3-39
and
i) 1
Z, + - = 111.3-40
4 Az(d27 A1(d1)
(Note if ry is equal to R or R , 7, will be zero in equation

max, min2 2
I11.3-6 and likewise ™ will be zero regardless of the value of ry
in this interval).

Thus, there is no way to determine the control in this
interval. In fact, if eauation 111.3-37 applies, any values for ry
and ro, are optimal provided there is no overflow from either reservoir
in this interval.

The formulation of the general problem in Chapter II did not
include limits on the rates of operation of the control devices. The
jumps in controls ros h1 and h2 would all require their respective
control devices to operate at infinite rates, which is impossible.

A reasonable approximation to this infinite operation rate would be
to operate the devices at their maximum rates and initiate their
operation so that they were one half way through their required
movement at the time the jump in control was to have occurred. If
at any other time during the control process the optimal control
required operation at a rate faster than the capabilities of the
control device, then the device could be operated at its maximum
speed until its position again fell on the optimal trajectory. From
the form of the solution obtained for CASE 1, the above form of
operation would appear to be close to that which one would expect
to be required by a problem formulation including rate limitations

on the control devices and most certainly would be within the
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accuracy of information on which the control is based. For this

reason, the use of a more accurate model, including control device
rate limitations cannot be justified.

The eauations for the flow control devices in Chapter II were
all reduced to simple forms for ease of understanding. Had the more
general forms, equations II.3-1 and II.3-4 been used in CASE 1 it is
clear that the form of the control equations (eauations III.3-3 to
I11.3-6) and the adjoint equations (equations II1.3-1 and III.3-2)
would have remained unchanged also. This results from the fact that
for 23 and 24 non zero the solution path for the control variables
follows constaint boundaries throughout. For example, in the solution

presented:

r1 = Rmax 111.3-40

ry = Rmaxz 111.3-41
or r, = Rminz I11.3-42
p r, = ([C, /0. RE . - q,(t)1/C. va317/2 I11.3-43
g 2 d;""1 Tmax, T % D," "2 .
or r, = {[Q - g, (t)1/C, V@ 11/2 111.3-44

2 max] 1 02 2 .

(Equation III1.3-43 is determined from d](d1-D]) = 0), and equation
II1.3-44 from the flow constraint downstream of reservoir 2. Similarly
h1 and h2 are determined from the first derivatives of the depth

constraints. Thus, effectively the control drops out of the control
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equations, from which it is normally determined. This result is
essentially true for all the solution forms to be discusssed.

The boundary aspect of the solution, which is not unexpected,
as it would seem reasonable to use the maximum capacity of all parts of
the system, has its drawbacks. It can be shown that the necessary
conditions will be satisfied by almost any other solution for which the
control is on the boundary (certain jumps in control being the
exception). This creates a large number of possible optimal solutions,
from which an optimum must be selected by physical understanding of the
problem. It does, however, have the advantage that the more general
control device equations may be used.

Finally, a peculiarity of this problem resulting from the corner
conditions at t, and t, should be noted. At hoth these times there is
a jump in the A multipliers. Working the problem backwards as was done
for CASE 1, it was easy to determine the value of the A multipliers to
the left of the jump. However, if the correct values of the » multipliers
had been known at ti’ and the problem solved going forward, it would have
been impossible to determine the values of the A multipliers to the
right of the jump. In both cases they are multiplied by the first
derivatives of the state variables which are zero on the depth constraint.
Thus each time they drop out of the corner conditions. To solve the
problem going forward it would be necessary to guess new values of M
and AZ at t4+ and t3+ respectively and continue the problem to tf and
ensure that A1/tf and AZ/tf reached the values required by the
transversality condition. Essentially there is a separation of the

problem into two separate problems, before and after the corner. lhat
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happens after the corner is independent of happenings prior to the
corner. Later in this study this separation will be used to advantage.

To complete the study of the problem of two reservoirs in
series, two other cases are discussed below.

D. Two Reservoirs in Series with Z}>> 22 - CASE 2

The assumptions concerning the relative values of the weighting
factors and the non applicability of the flow constraint downstream of
reservoir 1 as in CASE 1 apply. The control and adjoint equations are
as derived in section III.3-A. The objective function state equations
and constraints for this problem are those derived in section II.7.
Figure III.4 shows the assumed control and state variable trajectories.
The principle difference between these trajectories, and those of
Figure III.1, result from the jump in control rs taking place sooner.
Because of this there is no overflow from the downstream reservoir and
the upstream reservoir fills earlier than in CASE 1. Since there is no
overflow from the downstream reservoir, &] is continuous at the entrance

to the state variable constraint

d](d1—D]) < 0 II1.3-45
Since all the controls are also continuous at t4, the corner condition
(equation I1.2-13) is automatically satisfied regardless of the value

of A]/t However, by eauation II.2-14, A]/t may be discontinuous.
4—

4-
This result is not as unreasonable as it may appear if it is noted that
there must be some value of 21 say Z% in CASE 1 at which the overflow

from reservoir 1 is extremely small. For any values of

[I1.3-46
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the point at which the switch in ro occurs must be independent of Z],
(which was not true in CASE 1). The value of A]/tq_must therefore

be obtained by integrating forward from the value of M required by
the corner conditions for the switch in control rps which is the same

as that required for CASE 1 i.e.

A A
1 _ 2
W = W"'Za I11.3-47

In addition the switch in control ) must be timed so that reservoir 1

fills at the point

q(t) = CD]/D] Rﬁah - cnz/d_z Rr2n1'n2 I111.3-48
which is the earliest point that reserveir 1 can fill without overflowing.

The remainder of the solution for CASE 2 is similar to CASE 1
and need not be discussed further.

E. Two Reservoirs in Series with a Downstream Flow

Constraint - CASE 3.

The only difference between this case and CASE 1 is that the
flow constraint (equation I1.7-8) limiting the outflow from reservoir 1
is assumed to be binding for all time. The control, adjoint and state
equations are as derived for CASE 1. Figure III.5 shows the assumed
control and state variable trajectories.

The principle differences between Figure III.5 and Figure III.4
are:

Rmin <Py % Rmax1 ITI.3-49




74

for all time and; ro is non unique in the interval t. to t, and; h2

is non unique in the interval t3 to t4.

T, | i h2
T L)
2 h
Rmax / ’ h2
- 2 —A‘ % iy -T-
e S
P‘miﬂ \"‘ -
2 1 t
r, (a) Control Variable Trajectories for Reservoir, 2
1
R 1 T
max, / 1 ______,...-—'
Rmin h1
e i / t
d2 (b) Control Variable Trajectories for Reservoir 1
D =
’ ,,,—’f———-f—*’ ‘“‘\\\
d t
1 (c) Denth Trajectory for Reservoir 2
Dl T /_
ot
P
ti  t1t2 3% Time B %% %

(d) Depth Trajectory for Reservoir 1

Fig. I11.5 The Assumed Control and State Variable
Trajectories for CASE 3

As a result of the non uniqueness of Fos 81 is not necessarily

zero at t4_ and thus the corner conditions yield upon simplification:

A =(Z, - 22)A1(D]) ITI.3-50
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Furthermore the adjoint equation for M in the interval ty to t4
reduces to:
)

A Tq, = constant = 7, - 7, IT1.3-51

When this result is substituted into the control eauation for s

(equation III.3-6) it becomes for the interval ty to t;:

(24‘22‘24+22)2502’ﬁé Pyt “2(2”2'Rm1n2'Rmax2) =0
111.3-52
MNote that if:
R . <r, <R I1I.3-53
m1n2 - 2 - max2

equation IIT.3-52 is automatically satisfied regardless of the value
of rs in the interval. Similarly it can be shown that equation III.3-52
applies for the interval tﬁ to t3 also.

The determining factor for the control ro is the requirement
that the volume of flow released from reservoir be such that the
conditions at the corner t, occur. This volume of flow, ﬁS4, is by

continuity;

t4 D]
154 % Qg - f 0p (t)dt f A, (d))d(d) [11.3-54
t %

;
Whereas, in the previous two cases, without the binding flow constraint,
the outflow volume from reservoir 1 could be maximized by maintaining
maximum outflow from reservoir 2 as long as possible before reducing

ry to Rmin ; with the binding flow constraint there is no such
2
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advantage to be gained. In addition, note that the control alternative

for os shown on Figure III.5, having a jump from Rmaxz to Rminz at t2

is an allowable control and that as a result,reservoir 2 spills at té.
Although there are many more possible cases for the two res-

ervoirs in series configuration, the three examples presented herein

point out some of the problems that may occur, particularly as a

result of the corner conditions at a state variable constraint. Further,

they show that there are many common aspects to the optimal control for

the system, the principle one being the jump in the upstream reservoir

control.

I111.4 Two Reservoirs in Parallel - CASE 4

The schematic diagram of this configuration is shown in Figure
IIT.6. In this case it is assumed that the flow constraint Qmax1 is
binding for at least some portion of the time ti to tes otherwise the
problem reduces to one of two separate, single reservoirs, whose

optimal control is obvious. Further, it is assumed that the following

relationships exist for the weighting factors in the objective function:

ZT > 22 I11.4-1

Z1-14 > 32—24 I11.4-2
and _

—23 > ~24 I11.4-3

where 2] and 22 are the weighting factors on the overflows and 23 and
Z, are the weighting factors (less than zero) on the throughputs from
reservoirs 1 and 2 respectively. (Changing the direction of the

inequalities given above effectively reverses the problem).
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qi(t) - inflow hydrographs q3(t)

Q

- flow constraints )

Fig. II1.6 The Two Reservoirs in Parallel System

The description of the operation shown in Figure III.7 is as

follows: (the verification of the solution is given in Appendix 1)

The flow constraint Qmax1 is not binding and both orifices
can be maintained at their maximum openings.
At tT’ the flow constraint Qmax1 is reached and control
ro is reduced to a level that maintains equality of the
flow constraint. The orifice controls are operated in
this manner until t,-
At t2 the depth of storage in reservoir 1 reaches its
depth constraint D, and h1 must be operated in a manner that
keeps:
dy =Dy > dy=0 111.4-4

This operation continues up to t4.
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-4 At t3 the depth of storage in reservoir 2 reaches the
depth constraint defined by D2 and h2 must be operated in

a manner that maintains
d,=D, =+ d,=0 111.4-5

This operation continues until t6'
ty-to At tys the inflow q]{t) is equal to the throughput from
reservoir 1. Beyond this point in time, h1 is zero and

" is reduced from R so as to maintain the equality
max,
given by equation III.4-4. Since " is decreasing, rs

can increase to maintain the total downstream flow equal

to Qmax1'
At t5, s has increased to Rmaxz

increase so as to maintain total flow equal to Q

and thus ry can begin to

max,

1
This opening of g results in outflow exceeding inflow

for reservoir 1 and as a result, after t5

dI < D] I11.4-6

t.-t At t6’ the inflow to reservoir 2 equals the orifice
throughput. After t6' r, can be decreased to maintain d?

equal to 02. This allows the rate of opening of " to be

increased to maintain maximum system outflow.

to-t At t-, r, eauals R and r, can again begin to increase
7 “f 77 1 2

until at tf, ro equals R

max

max.,"
2

The major points of interest in this sequence of operation are:
the introduction of the control of r in the interval t4 to t5 and of

ro in the interval te to t, dictated by the necessity to maintain
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d=D =+ d=0 111.4-7

and; the combined operation of the two reservoir orifices to keep the
downstream flow constraint binding.

Although they are not discussed herein, jumps in the controls
" and r, are possible when the flow constraint is binding. A jump
in the controls ™ and ry must occur simultaneously in this circumstance,
one control being determined from an orifice constraint and the other
from the flow constraint.

Finally, following reasoning similar to that used for CASE 3
it can be argued that conditions can exist for which the controls r
and r, are coupled by the flow constraint but non unique over some
interval. The constraint on their operation is the necessity to pass
e given volume of flow through one of the reservoirs in a specified

time.

IIT.5 Examples of Three Reservoir Configurations

Optimal solutions for two possible three reservoir configurations
are outlined below. Detailed solutions for the state and control
variable trajectories presented are given in Appendices II and III.

These two configurations are called the "V" configuration, shown in
Figure III-8 and the "Y" configuration, shown in Figure III-10.

A. The Three Reservoir V Configuration CASE 5.

It is assumed in this case that the flow constraint represented
by Qmaxz in Figure III-8 is binding for most of the time period being

considered and that the weighting factors in the objective function have

the following relationships




81

Fig. II1.8 The Three Peservoir "\

Configuratian
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IT1.5-1

21 > 22 > 23
e - = - K-
Z.I 24 > 22 25 Z 26 [11.5-2
—24 > -25 > -26 % 10 IT11.5-3

where 21, Z2 and 23 are the weighting factors on the overflows, and
24, 25 and 26 are the weighting factors (less than zero) on the
throughputs from reservoirs 1, 2 and 3 respectively.

The assumed trajectories for the state and control variable are
shown in Figure III-9.
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A description of the trajectories shown in Figure III-9 is
as follows.
Up to t] all orifices are operated at their maximum
openings.
the two flow constraints defined by Q and

max
1

Q become binding. After t1, rs is operated to keep
2

the total flow downstream of reservoir 2 equal to Q

1°
max

max. "
1

Similarly rs is operated to the limits dictated by
qmaxz'

At t,, the control r, jumps to R . . Here, even though
2 2 min,

the flow constraint defined by Qmax is binding, outflow
2

from reservoirs 1 and 2 can be increased provided that:

> le.na I11.5-4

If this is not the case then conditions become similar to

¥'3

CASE 3 and a non unique control will result.

At t.,, the depth constraint defined by D2 becomes binding

3'!
and reservoir 2 begins to spill. After t3, h2 is determined

by the requirement that 62 equals zero.

At t, and t5, reservoirs 1 and 3 begin to spill and their

4
weir controls are determined in a manner analogous to hE'

t6-t7 At ts,

inflow and h] is reduced to zero. After t6 there are two

the outflow capacity of reservoir 1 exceeds the

possibilities: ry can be decreased in a manner that

maintains

d,y =D > dy =0 ITI1.5-5
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thus allowing rs to increase or; ry can be kept at its
maximum value and r2 can be increased to satisfy the above

equation. Since by the assumptions listed earlier:

2-25 > 23-26 ITI.5-6

74
the latter control is optimal.
After t?, control ro is again governed by Qmax1 and cannot
be opened sufficiently to keep d] at its maximum limit.

After t?, with o determined by the flow constraint, it is
advantageous to decrease g to satisfy equation III.5-5

and increase the outflow capacity available to rs.
At t8’ reservoir 2 stops overflowing. The control h, is
reduced to zero and it now becomes advantageous to operate

r2 so that
d, =D, » d,=0 I11.5-7

controls ™ and r3 are operated as in the previous interval.
At tg, rs has reached its upper limit. After this control

ry can be operated to satisfy the flow constraint Qmax?‘
The control r, can be operated to maintain maximum stofane
depth in reservoir 1. As a result of this operation d2
falls below the depth constraint DE‘

At t10, reservoir 3 stops spilling and again there are two
possible control operations. Cither the operation in the
previous interval can be maintained or; r, can be decreased

so as to maintain

dy =D, > d.=0 111.5-8
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thus allowing ry to increase more rapidly to maintain
maximum allowable system outflow while ry is operated as
before. Since throughput from reservoir 3 has the least

negative value, the latter control is optimal.

t]1-t12 At t11, " reaches its upper limit. Thus after this time
r3 increases to maintain maximum system outflow, causing
d3 to fall below the limit D3. Control ro is operated as
before.

tlZ'tf Finally at 0> ro reaches its upper limit causing d] to

fall below D]. Control ra also reaches its upper limit

once again at t]2'

The most important point to note from the above description is
the operation of the reservoir controls after each reservoir stops
overflowing. When the flow constraints are not binding, those
reservoirs that have ceased to overflow operate in a manner that allows
the maximum throughput from the reservoir in the system which is still
overflowing and has the highest overflow weighting factor. If a flow
constraint becomes binding then the operation of those reservoirs which
have ceased overflowing is such as to maximize the throughput from that
reservoir in the svstem which has the next highest overflow factor.

Again it should be noted that the controls are always determined

from constraint boundaries.

B. The Three Reservoir Y Configuration CASE 6

It is assumed in this case that none of the flow constraints




36
are binding; that the reservoir areas are constant; that Rmin- are
1
zero and; that the weighting factors on the overflow and throughput
are as given by equations III.5-1, 2 and 3. The assumed state and
control variable trajectories are shown in Figure III-11. 1In this

case there are steps in control ro and rae If the flow constraint

Q
max
non 5nique orifice control in the interval ti to t4. (The other orifice

were binding, one of the two upstream reservoirs would have a

control would either be at its maximum or minimum 1imit, depending upon
the inflow to the system).
Immediately after reservoir 1 has stopped overflowing at t6;

rs is determined from the requirement that:

d, =D > dy =0 II1.5-9

Fig. II1.10 The Three Reservoir "Y" Configuration
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After t7 when reservoir 2 stops overflowing ro is determined by the

requirement that:

d. =0 111.5-10

and r3 is determined from eouation II1.5-9. After t? when reservoir

3 stops overflowing rs is determined by the requirement that
dy =D, > d,=0 I11.5-11

while ro is again determined by equation III.5-9.
Finally, after tgs when ro has reached its upper limit, rs
is determined by eguation III.5-9.
Note again in this example that the controls are only determined

from system constraints.

II1.6 Discussions of the Factors Common to A1l the Cases Examined

A. Limitations.

In all of the cases examined it was assumed that

hi < di 1 = Taeu sl I11.6-1

i.e., that the system overflow capacity would never be exceeded. This
is considered to be in the nature of a "disaster" situation and
extremely unlikely to occur. In the event that the instantaneous inflow
rate did exceed the overflow capacity of a reservoir when it was at
maximum depth, it appears that the optimal strategy would be to begin
operating the weir before the peak inflow occurred and before the depth
constraint was reached so that enough reservoir storage would be

available to absorb part of the peak inflow. This operation, however,
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has not been considered.

In all of the cases studied there was an implicit assumption
that once a reservoir stopped overflowing, the inflow hvdrographs would
not be such as to cause the reservoir to overflow a second time. To be
assured that this is the case the inflow hydrograph to a given reservoir
must be monotonically decreasing once the reservoir stops overflowing.
Inflow hydrographs not meeting this assumption may still have the
control trajectories discussed but this cannot be assured. There is no
restriction on the shape or the number of peaks of the inflow hydrograph
prior to the reservoir ceasing to overflow other than that relating to

the peak overflow capacity.

B. Common Factors in the Control Strategies.

Several factors are common to all the solution forms discussed.
In each of the examples the control could always be determined from a
constraint boundary. As the main result of minimizing the objective
function is the minimization of weighted diversions from the system;
it is reasonable to expect that this would be accomplished by maximum
utilization of system throughput and system storage capacity. It
follows that if the operation of the controls is always determined from
constraint boundaries then sooner or later there will be jumps in the
controls from one constraint boundary to another (such as were observed
for the orifice controls). Further, if the operation of the controls
can always be determined from constraint boundaries then there is a
1imited number of possible forms of operation for each control. For

example, the control h, for any reservoir, can be determined from only
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two eauations:

h(h-d) < 0 111.6-2
and i
Ch v@r.2 + q(t) - Co/d v - ¢ p3/2
5 1':'{ D.i 1 1 D W
d = ATd) =0 111.6-3

If h is always less than d, then the only available choices for h are
zero or a value that sets equation II11.6-2 equal to zero.
Likewise, the control r appears in equation I11.6-3; in the

orifice constraint;

(pR gl lr=Roce) ¢ © 111.6-4
in eauations of the form:
g 2 I
< H I1.6-
a(t) +igl CD]¢ﬁ?r1 = Onax U

or in equations of the form;

Cy /A 2+ q(t) - G, “H}sz -, hj3/2
d. = J J =0 I1.6+4
A(d.
k| ( J)

(in which case r is one of the r; of equation II1.6-3).

Thus, there is a limited number of possible values of r at any
one time. Which equations are used to determine h and r is a function
of the available constraint multipliers. There is not necessarily a
unique solution to the problem and considerable logic may be required
to determine which of the possible combinations of controls is in fact

optimal.
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CHAPTER IV

NUMERICAL SOLUTION OF THE OPTIMAL CONTROL PROBLEM

IV.1 Introduction

This chapter outlines the problems encountered while
attempting to determine an optimal control by numerical solution
of the necessary conditions.

First some of the reauirements that must be met by any
nunerical solution are presented. This is followed by a discussion
of the particular numerical difficulties peculiar to the variational
formulation of the problem. The actual numerical techniques
attempted and the reasons for their failure are then given. Finally
an alternative approach to the problem, based on examination of the
control trajectories given in Chapter III, is outlined. Verification

of the alternative approach is Teft until Chapter V.

IV.2 Requirements of the Numerical Solution

For a numerical solution of the control problem to be practical
it should be capahle of determining the necessary control strategies in
under two minutes (this assumes that the controls will be updated
approximately every twenty minutes and; that obtaining information
from sensors and converting that information into a computed runoff

input to the combined sewer system model will require about three
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minutes). In addition to determining the required control within

a given time, the numerical technique used must be capable of

obtaining a solution for all possible inputs within the design limits.
A solution technique which converges to a solution only 95% of the time
is not satisfactory. Further, it is desirable that any numerical
technique used for real time control be capable of being adapted to
those instances in which control device failures occur. Thus, the
numerical techniaue should be able to determine an optimal control when
at least one of the control device positions is considered fixed,

(as opposed to determining a control in which the device failure is
neglected). Finally it is economically desirable, but not necessary,

that the control program require as little computer storage as possible.

IV.3 Problems to be considered in the Humerical Solution of the

Combined Sewer Problem

The necessary conditions for a solution to the combined sewer
control problem form a two point boundary value problem in which the
initial conditions are known for the state variables and the final
conditions are known for the X multipliers. As a result,some
iterative techniaue must generally be used to arrive at the optimal
solution. Some of the difficulties that must be considered in selecting
a numerical method suitable for the combined sewer problem are discussed
below.

It was shown in Chapter III that jumps occur in the A multipliers
at the entrance to a state variable constraint boundary. It was also

shown that on the t_ side of the jump there was a choice of possible
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values for A multipliers. Neglecting for the moment the case where

the value of A at t_ could not be determined directly from the

corner conditions, it is obvious that the problem is essentially a
multiple boundary problem. Thus, the problem can be divided at tb,

the unknown time at which the state variable constraint becomes
binding. Between o, and tf there is a two point boundary value
problem. Between ti and tb- the problem is still a two point

boundary value problem but now the state variables are known at ti

and t,_ and the value of X at t,. must be one of a discrete number of
possibilities (e.g. CASE 1 and CASE 3"discussed in Chapter III). Thus,
the value of ) at tb- is effectively an unknown except that it must
satisfy the corner conditions. In reality this is determining the

time tb at which the jump in X must occur. For the cases where the
value of » at t,_, and therefore effectively t_, cannot be determined
from the corner conditions there must be some other conditions, such as
the flow conditions of CASE 2, which define the time ty- The problem

then still can be subdivided into more than one two point boundary

value problem.

An additional complication at the entrance to a state variable
constraint boundary is the fact that even if x is known at tb_, the
corner conditions will not yield the value of X at the (since at tb+’

A is multiplied by d which is zero). Therefore, any numerical technique
that reauires forward integration of the A multipliers (i.e. an initial
value of A is assumed) is faced first with the problem of the correct
end point at tb- and second, with making a new guess for ) at tb+' A
numerical technique which integrates the x» multipliers backward reduces

the problems at the boundaries to the correct determination of A at t, _.
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(Although it would seem that the correct value of i at t,_ would be
obtained for all those cases in which d at t,_ is non zero, the sheer
fact that finite steps are used in the integration of both the state
and adjoint equations may leave some doubt if the conditions at tb+

are

d = 0 IV.3-1

and
e >h>0; e-small . IV.3-2

lith exact integration should h be zero or not?)

The second problem area to be considered in the determination
of a suitable numerical technique is the fact, demonstrated in Chapter
III, that the optimal control trajectory lies along constraint
boundaries. As a result, the control cannot be determined from the
control equations, which is the normal procedure. Thus, unless the
problem can be formulated in a manner which ensures that the control
can be determined from the control eaquations, the numerical solution
must include some logic to determine first; which control is to be
determined from which constraint boundary; and second, which Lagrange
multiplier (m,y) is to be used to satisfy which control equation
(recall that one multiplier may appear in several control equations).
The first part is relatively simple, even for fairly large systems.

The second when combined with the first requires complex Togic for even
a small (e.qg. three reservoir) system. In addition,should a particular
series of inflows to the reservoir system occur which has not been
considered in development of the Togic, then the numerical method may

either breakdown completely, in which case no control is obtained, or
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yield a sub-optimal control. For these reasons, a numerical technique
which allows the determination of the control directly from the control
equations would be preferred, provided the necessary reformulation did
not alter the basic structure of the problem.

The final problem to be considered is that caused by non
unique controls. If the problem formulation given in Chapters II and
III is used, difficulties may arise in determining when the control is
non unique. Given that the control is non unique there is the further
difficulty of determining a control which satisfies the necessary
conditions. Again it appears that it might be advantageous to reformulate

the problem so that the possibility of non uniaue controls is avoided.

IV.4 Numerical Methods Considered in Attempts to Solve the Necessary

Conditions

A. "Shooting Technique.

One common method used to solve two point boundary value
problems is to guess initial values of the X multipliers and then integrate
the state and adjoint equations forward, one step at a time to tf. At
each point in time the known values of the X multipliers and the state
variables are used to determine new controls for the next integration
step. The integrated values of the A's at te are compared with the
known values obtained from the transversality condition and if they do
not agree within some tolerance limits, a new guess is made, (usually

on the basis of the gradient di /dxt_).

t
f i
For the combined sewer problem this technique suffers from all

the drawbacks discussed in the previous section and thus was considered
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unsuitable.

B. "Steepest Ascent Technique.

There are many numerical techniques which fall into this
category. The one tried in this study consisted of: initially guessing
a time history for the orifice controls; integrating the state equations
forward to tf, one step at a time using the assumed orifice control (the
weir controls were determined from the first derivative of the state
variable constraint when d = Dmax); and then integrating the ) multi-
nliers backward from tes using the previously determined state variable
path and the new X multipliers to determine a new set of controls at each
time step. The procedure was then repeated from ti using the new
control until, for two successive iterations, the same control was
obtained (within tolerance Timits). This method was tried for the problems
of two reservoirs in series and the three reservoir "V" configuration.
Limited success was obtained for the two reservoir case. The first
difficulty that had to be overcome was related to the controls after a
reservoir started overflowing. If the state variables were not on the
required boundaries for an optimal solution during this period, the y
multipliers associated with the state variable constraints were zero and
the remaining constraint boundaries available for control determination
at each time step were sub-optimal. This problem was surmounted by
programming additional logic into the forward integration of the state
variables. After each reservoir started overflowing, this logic
determined the optimal orifice operation until te. Additional logic

was also added to the reverse integration to determine the correct
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multipliers to be associated with each control equation. The reverse
integration then verified the control backward to the time each
reservoir filled. Beyond this point it was possible to determine when
the switch in orifice control from minimum to maximum occurred.
However, even for the two reservoir problem, the solution tended to
oscillate. If during one iteration the switch in the upstream orifice
control occurred too early, then the downstream reservoir filled after
the optimum time. On the next iteration the reverse would be true.
This oscillation was easily damped by Timiting the change in the
switching point. After that it was possible to obtain some numerical
results. The results were limited because up to this time it was

assumed that CASES 2 and 3 of Chapter III were extensions of CASE 1
and thus only one possibility for the value of the A multipliers was

assumed at t_ .

Further work using this technique was stopped when it was
realized that there were other possibilities for the values of the 2
multipliers at t__.

Aside from the difficulties in programming the logic,
particularly that associated with the determination of which multi-
plier to use to satisfy which control equation, the program was
computationally slow (partly as a result of the complex logic). Even
if the technique could have been made to work successfully, it is
doubtful that the computational time for a reasonable number of
reservoirs would have been short enough for use in real-time control.

(For the three reservoir problem, 1-2 minutes CDC 6400 computer time

were reauired).
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C. "Penalty Function" Technique.

As pointed out earlier it might be beneficial to reformulate
the problem in such a manner that the control can be determined from
the control equations. In addition it would be desirable to eliminate
the jumps in the A multipliers and, if possible eliminate the
possibility of non unique controls. Such a reformulation, which
maintains the essential points of the formulation given in Chapter II,
is possible. It is accomplished by replacing each of the inequality
constraints by new terms in the objective function. These terms are
zero if the constraint that they replace is not violated; and increase
in value very rapidly for any small violation of the constraint.

For this study, all the control variable inequality constraints,

which had the form:

(X-X_. ) (X=X <0 IV.4-1

min max)

were replaced by terms in the objective function having the form

KOOy 7 L0x )32 IV.4-2

min’xmax LG

where

K(X)

min

17 03 1 Xpin<X<Knax

min’xmax

K if X<xm1n or X>Xmax Iv.4-3

(The second term in equation IV.4-2 was squared to insure continuous
first derivatives).

In order to ensure that the control could be determined from

the control equations it was necessary to replace the state variable

inequality constraints which have the form
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d(d-D__.) < 0

max® -

by penalty functions of the form

K(d+tost)ry o q((dvdst-D . ) (d+dst-D )12 IV.4-4

min® max Thax

where

m

I ¢y A2+ qlt) - ¢y /T ré - ¢ 32 IV.4-5
e IR, v
d =

A(d)

(which is equation 1I1.4-3) and; 6t is a small fixed time increment.

Minimum 1imits greater than zero were required in all the
penalty functions in order to avoid a saddle point solution when
r, h or d equalled zero.

The modified objective function now included a penalty function
of the form outlined above for each inequality constraint in the
formulation given in Chapter II. The differential constraints remained
the same as those in Chapter II and were adjoined to the objective
function with Lagrange multipliers ()). Because the state variable
inequality constraints were eliminated,the » multipliers in the penalty
function formulation were now continuous at all times.

The penaltv function formulation was combined with the steepest
ascent technique in an attempt to solve the three reservoir "V" problem.
With this combination, no complex logic was required in the computer
program to adjust the controls during the forward integration.

Although the penalty function formulation appeared to eliminate
many of the problems of the formulation presented in Chapter II, it
brought forward new problems. The determination of the controls at

each point in time required the simultaneous solution of six highly
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non-linear equations. Solution of these equations was computationally
slow (using Newton's Method) and it was very difficult to ensure
convergence to a solution. This, however, was not as serious as the
problems encountered with the integration of the XA multipliers. The
discontinuities in the X multipliers in the inequality constraint
formulation were replaced by very rapid changes in the values of the

A multipliers in the penalty function formulation. As the optimal
solution was very sensitive to the values of the X multipliers,
particularly if the magnitude of the multiplier became too gfeat, it
would have been necessary to reduce the time increment used for the
integration to a very small value in order to obtain the required
accuracy. This would have greatly increased the computational time

as well as computer memory storage requirements. Even when satisfactory
valuesof the A multipliers were obtained, the solution technique showed
evidence of the same oscillation problems that appeared in the steepest
ascent technique. As the numerical solution technique was already
computationally too slow to be feasible for real time automatic control,
it was felt that further work was not justified and this approach was

abandoned.

IV.5 An Alternative Approach to the Determination of an Optimal Control

Another approach to the problem of solution of the necessary
conditions is to divide the problem into two steps. The first step is
to try and determine an optimal control for a given set of reservoirs and
inflow data. In the second step, once this "optimal" control has been

obtained and the resultant state variable trajectories determined, the
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necessary conditions can be applied to ensure that the solution is in
fact optimal. This method should reduce the oscillation problems that
occurred with the steepest ascent technique and as the "optimum"
conditions should exist on both sides of a state variable boundary,
there should be less problems determining the value of the A multipliers
at the ty. side of a jump. Also, it might be computationally much
faster than the steepest ascent technique as the reverse integration

is performed only once to verify that the control satisfies the
necessary conditions. The principle disadvantage of this method is

that it would still require most of the logic of the steepest ascent
technique. This means that the programmer must consider all possibilities
of operation. To reduce the number of possibilities to a managable
size this may mean that it would be necessary to write a new program for
each reservoir system configuration and, for any system configuration,
a new program for each different set of relative values of the weighting
factors (e.g. if for the same reservoir configuration one case has Z1
greater than 22 and another case to be considered has 22 greater than
Zl’ then separate control programs might be required). For real time
control however thisis not a serious disadvantage as it is reasonable
to assume that the reservoir confiquration, and the overflow and
throughput weighting factors, once determined, would remain fixed. It
would be a disadvantage in the design stages of a project where both
the configuration and the weighting factors might be altered.

The problem of determining an "optimal" control in the first
step can be broken into two stages. First, for each reservoir orifice

control rj(t) it is assumed that a jump in control from R (or the
J



maximum conduit capacity) to R . =~ occurs at time Xj. Second, if any

reservoir fills to the point d. equals D -
J

say at time ty s then
after tb , a set of reservoir operation rules must be devised which
m1n1m1zes the sum of the weighted diversions from the system. The
basis of these rules is given in Chapter III and is discussed in more
detail in the next section. Given the set of operating rules, the
problem is now reduced to the determination of the optimal switching

times, Xj i P 5

That is, the problem is now

Minr=tr[r§2 3/2+§z R e
b I L -[ 2 j+n .. J J
a J= d
Y IV.5-1
- f(Z],ZZ..Zzn,X],XZ...Kn)
and for given values of the Z weighting factors this becomes
Min o = F(X]aXpsenusX)) IV.5-2

This problem can be solved by a gradient search procedure
(see for example Wilde and Beightler, 1967) to obtain those values of
Xj that minimize the objective function. With the known values of the
switching times Xj and the given operating rules, the control is fully
determined. It remains to show that it satisfies the necessary
conditions for an optimal control. Examples of the use of this
technique are given in Chapter V. The basis of the operating rules
is discussed in section 6 of this chapter.

1f the operating rules are correctly formulated then the obvious
question arises: 1is it necessary to ensure that the control satisfies

the necessary conditions? First of all, the logic that determines
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which of the = and y multipliers should be used to satisfy which

control equation during the reverse integration would be based on the
known form of the operating rules. Therefore, any error in the forward
integration would be reflected in a compensating error in the reverse
integration. Second, the final check, which, by the above statements

is almost assured of being satisfied, would increase the computational
time and computer memory requirements and produce effectively no new
usable information. Finally, even if the check did reveal that the
operating rules did not produce an optimal control, there is not much that
could be done during real time operation. For these reasons it was

decided in this study not to proceed with the development of the check

routine.

IV.6 The Operating Rules for a Svstem of Reservoirs

A. The Weir Control.
As noted in the examples given in Chapter III the weir control

hj for reservoir j only operates when
d. = D, IV.6-1

Also, as noted in Chapter III, the operation of the weir under

this condition is always such as to keep
d. =0 . IV.6-2

This was true for all the examples cited in Chapter III, provided the

assumption holds that for all time:

hj < dj IV.6-3
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(Cases where this assumption does not hold have not been discussed
in this study). Under the above conditions,in all the examples
cited, the orifice control was determined from some other equation.

As any other method of weir operation leaves open the
possibility that the full storage capacity of a reservoir may not be
used, there is no reason to doubt the generality of the above
procedure.

B. The Orifice Controls.

As demonstrated in Chapter III the optimal solution is always
on constraint boundaries. The orifice control r5 for any reservoir j

appears only in the following constraints:

(rj'Rmini)(rj"Rmaxj) < 0 1V.6-4
m 2 >
q(t) + kZ1 (CDk/H; P ) + CD.JEB r.l < Q IV.6-5

- “max
j J

m
2 _ 2 _ 3/2
q(t) +k§1 chuﬁer CD'/EBrj Cw_hj

E & ] j )
dj Ai(di) IV.6-6
m
and 2 2 2 3/2
q{t) + €, vd.r.* + ) Cy /dr C, dr.,©-C h
5 4 Dj 33 p= DyPP D, k' k W,k
k A (dy)
IV.6-7

where the subscript k in thelast equation represents the reservoir
immediately downstream. It was pointed out in Chapter III, that
multipliers are only available to allow the determination of rj from

equation IV.6-6 when
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h. = 0 IV.6-8

and

d. = V.6~
j Dj IV.6-9

Thus, unless reservoir j has filled and stopped overflowing the control
rj must be determined from either equations IV.6-4, IV.€6-5 or IV.6-7.
For reasons equivalent to the above, rj can only be determined
from equation IV.6-7 if
hk = 0 IV.6-10

and
IV.6-11

As the reservoirs do not fill until sometime after the start of
a storm, this means that initially the control rj must be determined
from equations IV.6-4 or IV.6-5 (the Tatter may represent more than one
equation). If the optimal control specifies the maximum output from

reservoir j then the possible values for rj are

rj = Rmax. IV.6-12
J

or rj equals the 1imiting value determined by equation IV.6-5. If the
optimal control specifies the minimum outflow from reservoir j then

only equation IV.6-4 applies and
F. # R, IV.6-13

The examples worked in Chapter III showed that a jump in the control
rj from a maximum value to a minimum value could occur at time Xj

where
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ekt IV.6-14

i f

Therefore, if the control is operated at its maximum value in
the interval t; to Xj and then switched to its minimum value after Xj
and, if in searching for an optimum, Xj is allowed to vary from ti to
te then there is no loss of generality. The control rj can be at a
maximum value for all time, or until such time as it can be determined
from equations IV.6-6 or IV.6-7; or ry can be a combination of the
above as determined by the switching time Xj. It should be noted from
the examples given in Chapter III that for reservoirs in series having
the downstream overflow weighting factor greater than the upstream
weighting factor (and assuming that the throughput weighting factors
are negligible in comparison) the necessary conditions required the
switch in control Xj for the upstream reservoir to occur before the
downstream reservoir fills. If this were not the case, then water
would be diverted from the downstream reservoir that could have been
diverted from the upstream reservoir at a smaller cost.

For reservoirs operating in parallel and governed by a common
flow constraint (eauation III.6-5) at the outlet of the entire system,
the examples of Chapter III showed that the total overflow from the
system outlet is always the maximum possible. Thus, the switch in
control is not from a maximum to a minimum position but from a
dominant (i.e., first call on the conduit capacity) to a subservient
position. Therefore, for two reservoirs in parallel it is only
necessary to consider the switching time for one reservoir. The switch
for the other reservoir must occur at the same time in the opposite
direction. As demonstrated in the examples in Chapter III the reservoir
with the highest overflow weighting factor will start at ti in the

dominant position.
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In the examples examined in Chapter III, the only time when
control rj could move off the boundaries given by equations IV.6-4
and IV.6-5 was when reservoir j stopped overflowing, in which case the
control could be determined from equation IV.6-6, or when the reservoir
immediately downstream stopped overflowing, in which case the control
could be determined from equation IV.6-7. The former, which results
in a decrease in rj, can only occur if: rj was in a maximum position
or; if rj had previously been determined from equation IV.6-7 which
causes an increase in rj (this is a result of the assumption that once
a reservoir stops overflowing the inflow hydrograph is monotonically
decreasing). When reservoir j stops overflowing, the choice of

decreasing r, (if possible) or increasing r depends upon the

upstream
location in the system of the reservoir with the highest overflow
weighting factor that is still overflowing (or may overflow) and whose
throughput can be increased by application of either equations IV.6-6
or IV.6-7. Note that in either case this may cause a chain reaction
throughout the system as for example in CASE 5 (the three reservoir

"V" configuration) discussed in Chapter IIl. When reservoir 2 stops

overflowing at t8, ro is determined from

d, = 0 IV.6-15

This reduces the outflow from reservoir 2 and thus r] is determined

from

d. = 0 IV.6-16

These two operations allow increased outflow from reservoir 3, the only

reservoir in the system that is still overflowing.
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Finally, if a reservoir stops overflowing, and cannot be
operated to increase the outflow of a reservoir that is still
overflowing (or may overflow), then it operates in a manner that
maximizes the weighted system throughput (for example CASE 5, the
interval tio to tf).

The above operating rules have been based on the Timited
possibilities shown to exist for solution of the necessary conditions
as exemplified by the examples given in Chapter III. By suitable
choice of the switching times Xj for the switch in each reservoir
control, each reservoir can be made to fill if possible (i.e., if the
inflow qj(t) is great enough). Thus, the maximum storage capacity of
each reservoir will be utilized. The operational procedure after each
reservoir stops overflowing, assures that the storage in each reservoir
is not reduced to the detriment of reservoirs that are still overflowing,
or may still overflow. At their worst, (i.e., violation of the
requirement of monotonicity of the inflow hydrograph after a reservoir
has stopped overflowing) these rules will minimize total system over-
flow. At best, they will insure that the weighted overflow from the

system is minimized once the optimum switching times have been determined.

IV.7 Comments on the Alternative Approach to the Determination of

an Optimal Control

At the start of this chapter several criteria were outlined that
should be met by a numerical solution to the control problem. It is
worthwhile to compare the proposed solution technique with these

criteria.
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In the following chapter it is shown that using the proposed
system for determination of an optimal control the time available for
the determination of an optimal control (two minutes) would allow real
time control for a system having up to twenty reservoirs. (The
Minneapolis - St. Paul system has 18 control points (Minneapolis - St.
Paul Sanitary District, 1970)). Although the rules proposed do not
guarantee a global optimum, they do ensure a reasonable control. The
studies outlined in the next chapter revealed no problems with
convergence to a solution. In addition the computer programs required

very Tittle computer memory storage.
Although the proposed procedure is easily adaptable to complex

weirs and orifices at regulator structures, it does not have complete
adaptability to control device failures. If an orifice became Tocked
in one position there is no problem of immediate adaptation since the

problem becomes for P the locked orifice.

= r, = R IV.7-1

which is still within the original format of the problem. If a weir
control becomes blocked in one position, the best adaptation might be

to reduce Dmax for that reservoir so as to increase the storage safety
margin; however, the computed control would rot be optimal. If it
suddenly became desirable to change the relative values of the weighting
factors, then unless the control programs were completely general (i.e.,
capable of determining an optimum for any set of overflow weighting
factors) such a change might not always be immediately possible.

(Experience indicates, however, that at least some generality is possible).
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CHAPTER V

NUMERICAL RESULTS

V.1 Introduction

In this chapter,optimal control strategies obtained numerically
for two different reservoir configurations are presented and discussed.
The control logic used for these examples was based on the operational
rules discussed in Chapter IV in combination with a first order
gradient search technique. The first example presented is a control
strategy for a system of four reservoirs in series. This system,

although relatively simple, was chosen in order to gain experience in
programming the necessary logic. The second example consists of a

system of ten reservoirs and was chosen to illustrate the fact that

the optimal control for a reasonably complex system could be determined
rapidly enough for real time operation. A final example is presented
showing the optimal control for a system of three reservoirs in the "V"
configuration. This solution, obtained by use of a steepest ascent
technique, is included to show the effect that information errors

may have on the optimality of a control.

V.2 Optimal Control Strategies for Four Reservoirs in Series

The system analyzed is shown in Figure V.1. The program logic
was based on the operating procedures discussed in Chapter IV and the

optimization of the switching times (Xi) was accomplished by means of a
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first order gradient search technique. The experience and insight
gained using the four reservoirs in series program resulted in less
complex logic in the ten reservoir program. Therefore only the logic
and solution procedure for the ten reservoir problem are discussed in
detail.

The relative values of the weighting factors considered for

the four reservoir problem were

Z

]>22>Z4>Z3 V.2-1

q. (t) = inflow hydrograph qmax ] __dl h
. 3 1

Q = flow constant . - J_‘
a5 2 ~

Q‘I'I'I.'J.}'(2 T
By
Qmax1
Fig. V.1 The Four Reservoir System
where 21,...,24 were the overflow weighting factors; and
Li=-2p > Lo=1, > Lp-1py > Z,-L V.2-2

175 2 76 4 "8 3 4
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where Zp,....,Zg were the throughput weighting factors for reservoirs 1

to 4 respectively. In addition

-25 > —26 > -28 > —27 V.2-3

These were equivalent to the limitations given in Chapter III to
prevent the possibility of inadvertently changing the overflow
priorities of the system by making the magnitude of a throughput
weighting factor too large. Note in this example that the most
upstream overflow weighting factor was greater than that for the
reservoir directly downstream. In this-case the switch in control
for reservoir 4 could occur after reservoir 3 started overflowing.

It was assumed that

Roz.. =0 (i=1,...,4) V.2-4

for all reservoirs.

Twelve trials were made with this program using different input
hydrographs, overflow and throughput weighting factors, reservoir sizes,
and initial switching times. Typical solution times for fifty time
increments were in the order of eight seconds using an IBM model 60-67
computer under the control of an MTS operating system. No attempts were
made to decrease these computational times although, as pointed out
later in the discussion of the ten reservoir example, there were several
obvious ways in which the computational time could have been considerably
reduced. The maximum number of iterations required for convergence of
any individual control determination was ten. For all cases the

convergence was very stable, even when the optimal control required that
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a reservoirfill but not overflow. (In actual fact, there was always
a slight overflow in these cases but it was always the minimum that

could be obtained for the given integration step size).

Reservoir d Reservoir d

1
64 : [/ g 2 7z

+_| O T 1 Ll T L] 1 L 1 T O
€70 10 20 30 40 50 O
=

0 20 30 40 ' 50

P d3 d4
o Reservoir '/ Reservoir
6" 3 6— 4
44 ’//,_ 3 4
2_ ...---fl'_"3 T 2_ h
3 4
O 1 T T ——0 |"r’1 I

30 40 50 O 10 20 30 40 50

Time increments

| T
O 10 20

Fig. V.2 Control Strategy for Four Reservoirs in Series
with a Small Difference Between Overflow
Weighting Factors

Figure V.2 shows the results of a typical optimal control
determination. Pertinent data for the example is Tisted in Table V.1.

In this example the overflow weighting factors were such that it was

Table V.1

Data for Example #1

Reservoir Number 1 2 3 4
Overflow Weighting Factor 3.00 2.75 2.50 2.67
Throughput Weighting Factor -0.30 -0.27 -0.25 -0.26
Maximum Allowable Depth 5.50 5.50 S 6.0
Maximum Allowable Orifice Opening 3.0 3.0 3.0 3.0
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advantageous to increase the outflow from reservoir 2 so that reservoir
1 spilled, even though reservoir 1 had a higher overflow weighting
factor. A similar effect is evident for the flow between reservoirs
2 and 3. It was not advantageous to allow overflow from reservoir 4
and its outflow was the maximum permissable until t equalled 35 units
at which point it could begin withholding outflow to the advantage of
the downstream reservoirs. Although the inflows to reservoir 3 were
still too great to prevent overflow when t equalled 50 units, the
remaining reservoirs in the system were being operated to the maximum
advantage of reservoir 3 at this time. Eventually as the inflows
decreased with time, all the orifices would have opened to their

maximum Timits.

d

R . r Reservoir 2 ,/’dz
64 Reservoir 61 =

Ly 1//th 4‘{2/ h

2‘ 1 2- w
0 T I I B =T o Trr-r T ™

1 ) |
O 10 20 30 40 560 O 10 20 30 40 80

Reservoir d Reservoir
3 y i 4
h

6
4 3 4-
2 r)z—

4
0 3 =Z5 0 v

1
O 10 20 30 40 50 O 10 20 30 40 50

Time increments

Fig. V.3 antro1 Strategy for Four Reservoirs in Series
with a Large Difference Between Overflow
Weighting Factors
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Figure V.3 shows the control solution when the differences
between the individual weighting factors were increased to the values
shown in Table V.2. A1l other data was the same as in the previous
example. In this case it was not advantageous to spill from reservoir
1. The spill that is shown was a result of the numerical inaccuracy.

Had orifice 2 closed one time increment sooner, reservoir 1 would

Table V.2

Weighting Factors for Example #2

Reservoir Number 1 2 3 &
Overflow Weighting Factor 6.0 4.0 2.0 3.0
Throughput Weighting Factor -0.60 -0.40 -0.20 -0.30

not have filled. Because the logic was programmed so that once orifice
2 closed it could only be opened if reservoir 1 filled, the optimal
solution required small overflow from reservoir 1. If smaller time
steps had been used, this overflow would have been reduced. HNote that
orifice 3 remained closed for almost the entire time for which the
control was computed and as a result filled to capacity much sooner

than in the previous example. In this example the spill from reservoirs
2 and 3 was increased over that in the previous example while that

from reservoir 1 was reduced, as would be expected.

V.3 The Ten Reservoir Example

A. The System.
As the preliminary results from the four reservoir case indicated

that the control logic could be programmed without too much difficulty and
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that the gradient search technique would find the optimal switching times
in a stable manner, experiments were tried using a larger and more
complex configuration. This configuration, consisting of ten storage
locations, is shown in Figure V.4. Mote that it contains as subsets

the three reservoir "V" and "Y" configurations, and series configurations.
The relative values of the overflow weighting factors for which this

program was written are shown in Table V.3.

inflow hydrograph

o)
pde
i

Q = flow constraint H¥3
max.

reservoir number
23 = overflow weighting factor
Z

3410 ° throughput weighting factor

Fig. V.4 The Ten Reservoir System




117

Table V.3

Pelative Values of the Overflow Weighting Factors
for the Ten Reservoir Problem

For left hand branch Z]>22>24>Z3
For the right hand branch 25)26}Z7>29>28>210
For the entire system Z]>22>25>Z4>26>Z3>Z7>Zg>28>210

As was the case for the previous examples,the absolute valuesof the
throughput weighting factors were made small in comparison to the
overflow weighting factors for the individual reservoirs.

Note that the left hand branch is similar to the four reservoir
example; however, some of the overflow weighting factors for the right
hand branch are larger than some of the overflow weighting factors in
the left hand branch.

B. The Control Logic.

Figure V.5 shows a simplified flow diagram of the logic used
to determine the control, given the times Xi at which jumps occur in
the controls. For reservoirs 1 and 5 which are in a "V" configuration
the switching times for reservoirs 1 and 5 were both included to allow
more generality. If at any time both controls were specified to be
dominant or both subservient then the control for reservoir 1 assumed
the dominant position. Reservoirs 7 and 8 which form part of a "Y"
configuration each required the specification of a switching time as
reservoir 6 downstream could require them to shut down at separate
times (recall CASE 6 in Chapter III). Thus a total of ten switching
times had to be specified.

The integration of the state eauations was accomplished by a




118

SECTION A — INPUT
|

| READ AND WRITE DATA |
1

COMPUTE PARAMETERS COMMON
TO ALL RUNS

INTERPOLATE POINTS ON INFLOW
HYDROGRAPHS (QIN (K, J))

L]
SECTION B — EVALUATION OF THE OBJECTIVE FUNCTION

[_INITIALIZE VARIABLES |
|
DETERMINE INITIAL ORIFICE
OPERATING MODES (ICLOSE (1))
1

DETERMINE INITIAL CALCULATION
ORDER FOR ORIFICE FLOWS (INEXT (1))

®

l SET ORIFICE THROUGH PUTS = 0 (QTHRU (J)

I

CHECK FOR CHANGE IN DOMINANCE BETWEEN
ORIFICES 1 AND 5: ADJUST IF NECESSARY

,

K=INEXT (KJ)

YES

IST-DT < X(IK)<T?

IST < X(K) AND DOWNSTREAM RESERVOIR
WITH LARGER Z OVERFLOWING AND

JPRINT = 1 OR 4 AND K.NE. 7 OR 8? YES

X(K)=T - DT
ICLOSE (K} =2

CHECK
VALUE OF
ICLOSE (K)

ICLOSE(K) =1 ICLOSE (K) =56

QTHRU(K) EQUALS MAXIMUM
ALLOWABLE OUTFLOW
(SUBSERVIENT)

QTHRU(K) =0

QTHRU(K) DETERMINED
ON BASIS D(K) =0

ICLOSE (K}

QTHRU(K]) EQUALS MAX.
ALLOWABLE OUTFLOW (DEFINED
BY LESSER OF QMAX OR RMAX)

QTHRU(K) DETERMINE 0 ON
BASIS DIDOWNSTREAM) =0

I

g. V.5 Simplified Flow Diagram of Logic Used to Determine
Control Strategy for Given Xi
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1S MAXIMUM CAPACITY OF CONDUIT BELOW
RESERVOIRS 1 AND 5 BEING UTILIZED?

YES

JZCNT =0 |

ICLOSE(5) =1 ICLOSE(1) =1
ICLOSE(1) =5 ICLOSE(5) =5
RESET VALUES OF ICLOSE

FOR SYSTEM

JZCNT =10

YES IS

1 JZCNT = 10?

NO

INTEGRATE DEPTH ONE TIME
INCREMENT DN(K) = D(K) + D « DT

YES
IS DN(K). GT. D MAX(K)?

COMPUTE OVERFLOW
QOVER(K)
SET IOVER(K) =2

IS D(K]) . GT. D MAX(K)?

IOVER(K) =3

DETERMINE LIMITS OF SEARCH FOR
RESERVOIRS THAT MAY BE AIDED
FIND LIMITS UPSTREAM

FIND LIMITS DOWNSTREAM

Fig. V.5 continued




DO LIMITS DOWNSTREAM
PREVENT PARALLEL RESERVOIRS
FROM BEING AIDED

FIND LIMITS FOR PARALLEL RESERVOIRS

k

SEARCH WITHIN LIMITS FOR RESERVOIR
IMAX WITH HIGHEST OVERFLOW
WEIGHTING FACTOR AND IOVER.NE.3

RESET VALUES OF ICLOSE FOR SYSTEM
ACCORDING TO VALUES OF IMAX AND K

fp—

DETERMINE NEW ORDER OF CALCULATION

1. COMPUTE THOSE RESERVOIRS WITH
ICLOSE = 1 OR ICLOSE = 3 AND R = RMAX

2. COMPUTE THOSE RESERVOIRS WITH ICLOSE = 2
3. COMPUTE THOSE RESERVOIRS WITH ICLOSE = 4

DO IN ORDER OF DECREASING RESERVOIR NUMBER
4. COMPUTE THOSE RESERVOIRS WITH ICLOSE = 3

DO IN ORDER OF INCREASING RESERVOIR NUMBER

GOTOAl

v

10
PHIZ=PHIZ+ ¥ (Z(K+10) « QTHRU(K) + Z(K) * COVER(K)
NO
YES
WRITE OUT DATA FOR
TIME STEP
NO
J=J+1 4
GOTOA RETURN

Fig. V.5 continued
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first order technique (i.e. the known state and control variables at
time T were used to compute the state variables at time T + DT). This
meant that the controls at time T first had to be determined. To do
this five forms of orifice operation were defined:
type 1 - the orifice was at its maximum allowable opening
or at a limit determined by a downstream flow

constraint;

type 2 - the orifice was at its minimum opening (which was
assumed to be zero in this example);

type 3 - the orifice was controlled by the downstream
reservoir in a manner that maintained a(downstream)=0;

type 4 - the orifice was controlled to maintain d = 0;

type 5 - the orifice was maintained at the maximum opening

that would ensure the full use of the conduit

capacity remaining after another parallel reservoir

had taken first priority on the flow capacity.

This was used for reservoirs 1 and 5.

If the orifice operation was type 1, which was always the case
TE:
T < Xi V.3-1

(where Xi is the time at which a jump in the orifice control for
reservoir i could occur) then no change to any other form of operation
could occur. This was done to ensure that during the gradient search
process any perturbation of Xi would produce a meaningful derivative.

To aid the convergence procedure, and reduce the programming

problems, use was made of the fact shown in the examples of Chapter III
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that if a reservoir was overflowing, and the reservoir upstream had a
lower overflow weighting factor, then the upstream orifice would be
closed. This lead to inclusion in the program of a section that
adjusted the switching times Xi at the start of each iteration in the
gradient search process to ensure that such would be the case. (An
exception to this adjustment was made in the case of reservoirs seven
and eight since the possibility existed that one orifice might not

be required to close - see example in Appendix 1V).

Given the type of orifice operation, the order of calculation
for each reservoir outflow was then determined to ensure that all
necessary information was available before a reservoir outflow was
calculated. Thus reservoir outflows for orifices with operations
type 1, or type 2 were computed first followed by those orifices with
operation type 4. The order of calculation for orifices with type 4
operation had to be further refined to progress downstream. Reservoirs
with orifice operation type 5 could then be computed followed, finally,
by those with type 3 operation which were calculated in order
progressing upstream.

With the orifice operation types determined, the throughputs for
each reservoir were determined and checks were made to ensure that no
constraints were violated. The state equations were then integrated
one time step (DT) forward by assuming that all the weir controls were
zero. If the new value of di for any reservoir i exceeded the limit

Dmax , then hi was increased to ensure that:
.i
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If the old value of di was equal to Dmax and the new value of di was
i
- then reservoir i had stopped overflowing and its
i

orifice operation could be altered, if necessary, to aid some other

less than Dm

reservoir in the system. First it was necessary to determine which
reservoirs could be aided.(E.g. an upstream reservoir with its orifice
already fully open could not be aided, nor could any reservoir further
upstream. Likewise reservoirs downstream of a reservoir with its
orifice fully open could not be aided unless T was greater than the
switching time for that reservoir). Having defined the range of
reservoirs whose overflow might possibly be reduced, a search was made
among those reservoirs for the one with the highest overflow weighting
factor, that had not stopped overflowing. (This included those reservoirs
that had not yet begun to overflow). The orifice operations were then
adjusted accordingly (e.g., if the reservoir that could be aided was in
a parallel branch then the orifices of all reservoirs downstream of
reservoir i to the junction of the parallel group of reservoirs were
adjusted to type 4 operation. Those parallel reservoirs upstream from
the junction and including the reservoir to be aided had their orifice
operations changed to type 3). With the change in the orifice operations
it was necessary to change the order of calculation to the form outlined
earlier. After this step was completed all the throughputs for the time
step were recomputed and new integrated values of the state variables
determined. At the completion of each time step, the weighted overflows
and throughputs: for the time step were added to the objective function.
The entire process was then repeated successively until the final time
1imit. At this time the value of the objective function for given

values of Xi was known.
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A Tisting of this subroutine (SUBROUTINE PHI) is given in
Appendix VI).

C. The Gradient Search Routine.

A complete description of the first order gradient search
procedure is given by Wilde and Beightler (1967). A brief outline
of this procedure as used to determine the optimal control strategy is
given below.

To determine the optimum values of the switching times Xi’ a
first order gradient search routine was programmed for the computer.
For a given set of switching times (X?) this routine first determined
the rate of change of the objective function (¢) with respect to each
Xi‘ This was accomplished by perturbing each Xi by -DT and computing
a new value of the objective function for each perturbation (-DT was
used because of the requirement that an orifice close if the reservoir

downstream had a higher overflow weighting factor and began to overflow).
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Fig. V.6 Inflow Hydrographs for the Ten Reservoir Example
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For a given reduction r in the objective function, this
routine then determined new values of X, (X%) on the basis of the
gradient at X? and checked that the objective function had in fact
been reduced. If it happened that the objective function was not
reduced, then the amount of the desired reduction, I, was decreased
until either: a reduction in the objective function was obtained or;
I had been reduced to a size such that only one of the X;, say X?,
differed from X? by an amount DT. In the latter case, if the objective
function had still not been reduced, the derivative of XE was assumed
to be zero. The desired reduction I was then increased and the iteration
was continued with the remaining Xi until either: the objective function
was decreased or; until all the derivatives were zero. (Because of the
finite time steps, zero in this case meant that g%f changed signs for
perturbations either side of each variable Xi)' T

Several test runs showed that if a derivative was zero during
one iteration, then in successive iterations, it was likely to remain
so, even though other variables might change by relatively large amounts.
As a result, once the derivative of a variable became zero, that variable
was dropped from further computations until all derivatives were zero.
At this point computations were again made for all the switching times
and any final adjustments in the variables Xi were made. The net effect
of this change was to reduce the computation time by about one half.

D. Numerical Results.

Figure V.6 shows the input hydrographs and Figure V.7 shows the
resulting computed optimal control strategy for the ten reservoir

system. The necessary constants for each individual reservoir are
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shown in Table V.4. A1l the flow constraints (Q ) were set at 95 cfs

max.
i
except Qmax]’ which was set at 165 cfs and Qmaxs’ which was set at 195

cfs.

Table V.4

Data for the Ten Reservoir Example

Reservoir No: 1 2 3 4 5 6 7 8 9 10
Overflow Weighting Factor 0.0 9.30 6.50 7.90 8.60 7.20 5.80 4.40 5.10 3.70
Throughput Weighting Factor -.060 -.059 -.055 -.057 -.058 -.056 -.054 -.052 -.053 -.051

CD 2,50 2.00 2.00 2.00 2.50 2.00 2.00 2.00 2.00 2.00
CH 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
Area 80+50d 80+50d 50+80d 50+80d 50+80d 50+80d 50+80d 50+80d 50+80d 50+80d

The results showed that the overflows from reservoirs 15 24 45
5, 6 and 9 were as close to zero as the numerical accuracy of the program
would allow. The overflow from the system occurred from reservoirs 3,
7, 8 and 10. At first glance it appeared that the overflow from reservoir
3 could be reduced at the expense of reservoir 7, which had a lower
overflow weighting factor, by maintaining orifice 1 in the dominant
position for a longer time and thus increasing the flow through reservoirs
T, 2 and 3. In fact this would probably have been the case if shorter
time steps were used; however, any attempts to improve on this control
were offset by the numerical accuracy of the program. It appeared that
the objective function might have been reduced by about 50 units if the
control had been exact, which was a small amount when compared to the

total reduction in the objective function for this run of about 16,500
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units. Hote that all reservoirs in the system filled and remained
filled until all system overflow had ceased; thus any effects of
decreasing the spill from one reservoir would have been at the expense
of overflowing from another reservoir in the system. The net effect
would therefore have been equal to the reduction in overflow volume
from the first reservoir times the difference between the overflow
weighting factors of the two reservoirs.

It is worth noting in this example that the inflow Ay to
reservoir 3 was not monotonic decreasing after reservoir 3 stopped
overflowing. Because reservoir 4 was completely shut down while 94
was increasing, this did not lead to a sub-optimal control.

The above example was typical of the type of control strategies
obtained. Other examples showing the results of different input hydro-
graphs, flow constraints and weighting factors are shown in Appendices
IV and V.

E. Operating Experiences and Computational Times for the Ten

Reservoir Control Program.

The only difficulties experienced with the control program were
the sub-optimality that could be attributed to numerical accuracy and
certain cases of sub-optimality that could be attributed to the use of a
first-order gradient search technique. These latter cases, invariably
occurred when the relative values of the overflow weighting factors
between two reservoirs in series were such that the optimal control
required that the downstream reservoir fill but not overflow. When this
condition was reached during the iterative process, any perturbation of
the upstream switching time alone would result in an increase in the

objective function. If the switching time were decreased there would
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be increased overflow for the upstream reservoir and incomplete
utilization of the storage downstream.. If the switching time were
increased overflow would occur downstream at a higher penalty than if

it had occurred upstream. Had higher order derivatives been used,

the simu1faneous movement of several controls might have resulted in

an overall reduction of the objective function. The final control
obtained in these cases, although sub-optimal, still resulted in the
full use of the system storage capacity and the majority of the

overflow occurred from the reservoirs with the lowest overflow weighting
factors; however, the distribution of overflow between those reservoirs
that overflowed could have been improved. The example shown in Figure
V.7 shows this effect although in this case numerical accuracy was the
over-riding factor.

The normal operating times for the ten reservoir control
program for 50 time steps were about 50 seconds using an IBM Model
60-67 computer with an MTS operating system. The maximum time for any
run was 58 seconds. The core storage required by the gradient search
routine and the control program was a total of 22,406 bytes
(Approximately 5,500 words).

As mentioned previously the computational time could be
significantly reduced. The reduction obtained by modifications to
the gradient search routine have previously been discussed. Further

reductions in the computational time could have been obtained by:

a) revising the procedure for calculating the numerical
derivatives. Each derivative calculation required

operation of the control program from time zero. A

N
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reduction of 30-40% in computational time could have

been obtained by storing the results up to each

switching time when computing the base value of the
objective function. Computation of the perturbed

values of the objective function could have then been
computed for only the time span after the base value
switch in control occurred.

using longer time steps during the initial stages of the
optimization process. Only during the latter stages of
the optimization was it necessary to compute the control
to the final accuracy desired. Tests indicated that this
would have Tead to a further reduction in computation
time of about 30%.

increasing the convergence tolerance. For the results
presented herein, the convergence criterion was that all
derivatives with respect to the switching times be zero
(i.e. a perturbation either way from the base value of the
switching times resulted in a change in sign of the
derivative). Typically a first order gradient technique
will get close to the optimum very rapidly and then its
approach is very slow. For example, in obtaining the
results shown in Figure V.7, 80% of the reduction in the
objective function was obtained in the first 10 iterations.
Another 10 iterations were required to reach the minimum

value.
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Thus some further saving in computational time could have
been obtained by relaxing the convergence criterion.

Although optimization techniques other than the first order
gradient technique may have been more efficient, the results obtained
using the first order gradient technique showed that the computational
times would be within the Timits required for real-time operation.
Further examination of optimization techniques was beyond the scope of
this study.

The computational time required for systems larger than 10
reservoirs can only be estimated. Indications are that the computational
time would increase in the order of the 2.5 power of the number of orifice
controls. Thus if no improvements are made in the operating efficiency
of the optimization process, the computational time for 50 time steps for
a system having 20 orifice controls would be in the order of 280 seconds.
With the suggested operating improvements this could be reduced to 140
seconds for a system of 20 reservoirs. This is about the upper limit of
the time available for real-time control determination.

F. Development of a More General Control Program.

The control program described above was initially designed to
determine the control for the specific configuration and relative values
of the overflow weighting factors discussed at the beginning of this
section. As the program was developed, it appeared that it could be
modified to be more flexible in the choice of the relative values of the
weighting factors. The flow chart shown in Figure V.5 is that of the
revised program. For the given reservoir configuration it is believed to

be completely general with respect to the relative values of the overflow
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weighting factors except for the restriction that 27 be greater than 28
(assuming that the throughput factors are very small in comparison).
This former restriction was not removed because the manner in which the
original program was set up was not amenable to simple change. Some
results using relative values of the overflow weighting factors other
than those Tisted in Table V.3 are given in Appendix V.

Although no attempt was made to write a control program which
would be capable of determining the control for any given configuration
of reservoirs, there do not appear to be any serious difficulties
preventing the writing of such a program. The greatest difficulty would
seem to be in determining the dominance and subservience of the orifice
controls for more than two reservoirs in parallel. This condition,
which has not been investigated in this study should be examined before

any attempt is made to write a more general control program.

V.4 An Example of the Effect of Information Errors on Control Optimality

The results discussed below are presented in more detail in a
paper by Bell, Johnson and Winn (1973). In this part of the study an
attempt was made to gain some insight into the effects of information
errors on the accuracy of the computed control.

To determine the effects of information errors it was necessary
to develop a model of a real-time automated control system (RTACS).
This development is discussed by Bell, Winn and Smith (1972). The
flow chart of the RTACS model is shown in Figure V.8. The information
errors considered were those resulting from the regeneration of a time

varying field of rainfall data from point rainfall data. The
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prediction model for rainfall runoff in the control algorithm and

the rainfall runoff model in the physical system were identical.

Rainfall Prediction Optimal
; " Control
Regeneration Model ——{Control Logic Algorishm
Rainfall Runoff AR
Error Generation
Sensors
o
o
&
Error Genera-| [Control Erreor 5
feadies T naddan el (e | tion Sensors Generation o
Point Rainfall] - |
|
b o o o i o i i R, -
Physical
Rain Storm Rainfall True Average Rainfall Transport System
Entered as H—'lntc- catéd F=—{Rainfall Over [~=] Runoff [—={(sewer routing)
Grid of Poinzs g Subareas of Model Model
Runoff Model

Fig. V.8 Elements of the RTACS Model

The basin analyzed is shown in Figure V.9. The sewer system
draining this basin has three flow control points and is analogous to
the three reservoir "V" configuration discussed in Chapter III. The
conduits between reservoirs are short enough that the time delays in the
flow can be neglected.

The assumed rainstorm shown in Figure V.10 travelled westward
across the basin at a rate of 250 feet per minute. The rainfall
intensity was assumed to be constant in the north-south direction and
the western edge of the storm was assumed to be on the eastern edge of
the catchment at t = 0. It took 50 minutes for the storm to pass
completely over the basin.

The rainfall was recorded at raingauge B on Figure V.9. To
determine the rainfall to be used for input to the prediction model for

rainfall runoff in the control algorithm, two rainfall regeneration
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models were used. The first model assumed that the point rainfall
recorded at raingauge B was constant over the entire basin. The
second model assumed that the rainfall intensity recorded at raingauge

B would occur over each of the subcatchments at time t + Ti where Ti
LEGEND

== Direction of Drainage

@ Subcatchment Number

Entry Point for Sewer System Input L/‘/‘
Q Flow Control Point

Sewer Element

- =-=-- Gutter or Pipe

* Rain Gauge

90001 @ Land Use Parameter

80001

7000

6000

50001

V(£ft)

40001

30001

2000+

1000 T .1
0 2000

L I T

T #
4000 6000

x(ft)
Fig. V.9 The Physical System
was defined for each subcatchment as the time for the storm to move
from over the raingauge to the center of subcatchment i. These time

delays are listed in Table V.5. The resultant input hydrographs to the
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control model resulting from these regeneration models are shown in

Figure V.11.

The true runoff input to the transport (sewer routing)

model is shown in Figure V.12. It is the sum of the dry weather flow

plus the runoff computed using the true average rainfall over the

subareas of the runoff model. The true runoff was used in all tests

as input to the transport model.
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Fig. V.10 The Assumed Rain Storm
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Table V.5

Time Delays for Rainfall Regeneration Based on Rainfall at Gauge B

Subcatchment Distance of Subcatchment Time Delay
Number from Rain Gauge B (ft) T (min)
1 5350 22
2 6100 24
3 2100 8
4 3900 16
5 1700 6
6 1900 8

Three tests were made. In the first test the optimal control
was computed using the true runoff and then this control was used to
operate the controls in the transport model. The second test used the
runoff computed from raingauge B data (untranslated) as input to the
optimal control logic. Again the computed control was used to
operate the transport model. The final test followed the same procedure
using the runoff computed from translated raingauge B data. In each
case the optimal control was determined using a steepest ascent
techniaue.

Table V.6 shows a comparison of the results predicted by the
control program and the actual results obtained when the control was

used in the transport model for each of the cases examined.

Table V.6

Comparison of the Effects of Information Errors on
Control Strategies

Optimal Control Based Control Physical System
on True Runoff Program Model

Maximum depth at Pt 2 13.00 ft 13.02 ft

Maximum depth at Pt 1 8.50 ft 8.60 ft

Maximum depth at Pt 3 8.50 ft 8.59 ft

Total Overflow Volume at Pt 2 26,000 ft3 27,400 ft3

Total Overflow Volume at Pt 1 2,740 ft3 3,560 ft3
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Table V.5 continued

Total Overflow Volume at Pt 3 18,200 ft3 19,400 ft3
Maximum Outflow Pt 2 & Pt 3 92 cfs 02 cfs
Maximum Outflow Pt 1 16.7 cfs 7 efs

Optimal Control Based on
Rain Gauge B Data

Maximum Depth at Pt 2 13.00 ft 14,12 ft
Maximum Depth at Pt 1 8.50 ft 9.08 ft
Maximum Depth at Pt 3 8.50 ft 8.96 ft
Total Overflow Volume at Pt 2 7,650 ft3 30,600 ft3
Total Overflow Volume at Pt 1 0 ft3 12,800 ft3
Total Overflow Volume at Pt 3 23,700 ft3 18,100 ft3
Maximum Outflow Pt 1 & Pt 3 92 cfs 94.5 cfs
Maximum Outflow Pt 2 16.7 cfs 21 cfs

Optimal Control Based on
Rain Gauge B Data

Translated
Maximum Depth at Pt 2 13.00 ft 13.64 ft
Maximum Depth at Pt 1 d.17 Tt 8.73 ft
Maximum Depth at Pt 3 8.50 ft 8.87 ft
Total Overflow Volume at Pt 2 370 ft3 14,700 ft3
Total Overflow Volume at Pt 1 0 ft3 3,580 ft3
Total Overflow Volume at Pt 3 15,100 ft3 16,700 ft3
Maximum Outflow Pt 1 & Pt 3 92.0 cfs 95 cfs
Maximum Outflow Pt 2 16.7 cfs 20.4 cfs_

Considering the differences between the mathematical model in
the control logic and the transport model, the agreement obtained
between the two models when the true runoff was used for control is
surprisingly good.

Although the control using data from raingauge B translated
produced the lowest overflow volumes, it did so at the expense of
violating all the depth and flow constraints. This resulted from the
fact that the control runoff model did not include the dry weather
flow and thus produced hydrographs that were lower than the true

hydrographs. Therefore all the orifices were maintained at their full
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opening and the weirs at control points 1 and 2 were maintained at
their maximum level.

The control using the untranslated raingauge B data resulted
in the greatest system overflows because the timing of the runoff
peaks was generally early. This resulted in all the orifice and weir
adjustments being made too early. The failure to include dry weather
flow compounded the problem but timing was the main problem.

Although these tests are far from definitive they do indicate
that information errors resulting in mistiming of the input hydrographs
to the control Tlogic, or in underestimation of the flows, may result
in considerable deviations from true optimality for any computed control.
The situation represented by this example was highly simplified and many
more sources of information error exist within the system. In addition,
the control in this instance was computed after the fact i.e., it
assumed that complete knowledge of the storm was available for the
control program. In actual operation some inference as to the course

of the storm must be made each time the control is updated.
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CHAPTER VI

MODIFICATIONS TO THE VARIATIONAL FORMULATION
TO INCLUDE MORE REALISTIC FLOW ROUTING MODELS

VI.1 Introduction

To this point in the study, it has been assumed that the flow
leaving one reservoir appears instantly at a reservoir downstream or at
the junction of parallel reservoirs. As shown in CHAPTER V, this
assumption is valid for relatively short conduits; however, conduit
lengths up to three miles are not uncommon in combined sewer systems in
major urban centers. In these cases, the downstream reservoir observes
a time delay, as well as modification of the flow regime in the flow
that leaves the upstream reservoir.

This chapter presents the modified Euler-Lagrange equations
applicable to problem formulations including time delay. This is
followed by a discussion of some of the flow routing models suitable
for combined sewers. Finally, to illustrate the effects of time delay
on the optimal control an example of two reservoirs in series is

presented.

VI.2 The Modified Euler-Lagrange Equations

To date there is very little discussion in the literature of the
modifications necessary to the Euler-Lagrange equations to include time
delay. Hughes (1968) discussed the variational problem with time delay

but did not consider side conditions (constraints). Pontryagin et al.
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(1965) discusses briefly the solution of problems with time delay using
the maximum principle. EL'SGOL'C (1960) presented the modified Euler-
Lagrange equations without discussion. It does not appear that anyone
has given a complete discussion of the variational problem with time
delay, which includes differential constraints, state and control
variable inequality constraints, corner and end conditions. Useful
information can be obtained by applying the modified Euler-Lagrange
equations presented by EL'SGOL'C to a variational formulation of the
control problem which includes time delay.

The modified Euler-Lagrange equations as presented by EL'SGOL'C

are

(lei(s) — %‘; Flii(s))s=t + (le.i(s-T) = %-é_ ii(s-r))5=t+1’ =0
(1 = 1 0cesn) IV.1-1

where: F'x(s) is the first derivative of the augmented index
performance F with respect to x(s)
T is the time delay
s is a dummy variable
The terms in the first set of brackets are the normal form of the Euler-
Lagrange equation. The terms in the second set of brackets are the
modifications due to time delay and would be repeated if more than one

time delay was applicable.

VI.3 Flow Routing Models Suitable for Flow in Combined Sewers

This discussion will be Timited to two possible flow routing

~

models suggested in the literature as suitable for flow in combined
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sewers although there are undoubtedly other models that may be
suitable.

A. The Muskingum Routing Method.

This method is discussed by Lawler (1964). It has been
proposed for use in routing flow in combined sewers by Labadie (1973)
and Grigg et al. (1973).

A simplified form of the Muskingum equation given by Lawler is

2 C.ly + Chly + €50 VI.3-1

0y = Gy, + Coly + €504

where: I] and I2 are the inflows to the conduit at times t1 and t2
respectively (t, > t;);
O] and 02 are the outflows from the conduit at times t] and t2;

C], C2, C3 are empirical coefficients.

The more general form of the Muskingum equation used by Labadie
and Griga et al includes only the above variables but allows a more
general relationship between them. For simplicity of discussion equation
VI.3-1 will be used herein.

B. The Progressive Average Lag Technique.

Harris (1968c) has suggested the use of this technique for
routing flows in a model of the combined sewer system of Minneapolis -
St. Paul. In tests of his model he was able to obtain good agreement
between flows routed using the progressive average lag technique and
the same flows routed using the method of characteristics which is
generally considered to be the most accurate method of flow routing.

The progressive average lag method as presented by Lawler (1964) has the

i
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basic equation:

sl
O ™ [Ty F 1 +

t ot ¥ Tparadt ¥ Tpenagat ¥ o0 F Licea(n-1)at) 1352

where Ot is the outflow from the conduit at time t;

I n-1)dt are the inflows to the conduit at times

t-t *"° It—w-(
t-1....t-1-(n-1)dt;
T is an empirical time lag;

n is the number of inflows averaged.

Both the Muskingum and Progressive average lag techniques were
originally developed for use in flood routing in river channels. Both
techniques apply only to free surface flow and both could not be
expected to be accurate under conditions of rapidly varied flow (e.g.

surges).

VI.4 The Two Reservoir Problem with Time Delay

To demonstrate the effects of time delay on the optimal control
strategy, the two reservoir problem with time delay is formulated below
and some facets of the effect of time delay examined.

A. Formulation of the Two Reservoir Problem with Time Delay.

This system is the same as that shown in Figure II-6 except that
it is now assumed that the flow Teaving reservoir 2 is delayed and
modified before it reaches reservoir 1.

The differential constraints of the system are

& i . g _ 3/2 "

IV.4-1

1
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v ) - 3/2 _ g

d2 (q2 CDZJH;rZ szhz )/Az(dz) =f, VI.4-2

. a2 - TR & N o

by = f{CDZJHETTTE)[rz(t B)]¢, CDZJHETTTE3[r2(t C)1%s v3(t E)) = £,
Vi.4-3

Equation VI.4-1 is similar to equation II.7-1 except that the
outflow from the upstream reservoir in the latter equation has been
replaced by 63. Equation VI.4-2 is identical to equation II.7-2. The
last equation VI.4-3 represents the inflow to reservoir I (03) as a
function of the inflow 63, E time units earlier and the outflows from

reservoir 2, B and C time units earlier. Note that if

E=C VI.4-3

and
B=20 VI.4-4

the above formulation is equivalent to the use of a muskingum routing.
If 03 is eliminated from the right hand side of equation VI.4-3 the

formulation is equivalent to a progressive average lag routing with

n=2.
The control variable inequality constraints for the problem are:
(ri - Rmini)(ri - Rmaxi) < 0 i=1,2 VI.4-5
hi(hi'di) < 0 1 ® Ty 2 VI.4-6
2

CD1/EI'1r] + q5(t) - Omax3 < 0 VI1.4-7
and

03 + q1(t) - Qmaxz < 0 VI1.4-8

Equations VI.4-5, - VI.4-7 are identical to equations II.7-3 - II.7-6 and
I1.7-8 respectively. Equation VI.4-8 is a modified form of equation

I1.7-7 in which 03 represents the delayed output from reservoir 2.




145

The state variable inequality constraints are:
(d. - D Jd. < @ . i= L2 VI.4-9
.i
Using the same objective function given by equation II.7-13 and
adjoining the differential and inequality constraints in the usual manner

yields as an augmented index of performance

Ming = y]d](d1—D1) + dez(dZ'DZ)

.F
3/2 3/2 2
+ f 0y 178+ 20, 0,2+ 20 ey
0 [
t
2 L ;
+ z4cD2/HEr2 }dt + {A1(d1-f1) + A2(d2—f2) - 13(u3—F3)
0
+

ﬂl(rI"Rmax])(rl_Rmin]) ’ 1"2{r2—Rmax2)("z‘Rmh,]z}

+ malhy)(hy=dy) + mp(hy)(hy-dy)

# (CD /a;r]z + Q3(t) = Qmax ) + TFB(\.)3 T ('I('t) - Qmax2)

1 3

+

Y.|(2d1-D1)fI " YZ(Zdz—Dz)fz}dt VI.4-10

In the above flfz and f3 represent the right hand sides of equations
VI.4-1, VI.4-2 and VI.4-3 respectively. There are 7 variab]es(d1,d2,r1,r2
h1,h2 and v3) in eauation VI.4-10 and therefore the application of the
modified Euler-Lagrange equation (VI.2-1) should yield 7 equations (3

adjoint equations and 4 control equations).
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B. The Necessary Conditions for the Problem
The resultant control equations for this example upon taking

derivatives with respect to rl’rZ’h1 and h2 become:

A-v7(2dy-D,)

{23 * A1(d1) ¥ TTS}ZCD1'/H;Y‘1 ¥ Trl(zrl_Rmax]-Rmin1)
= 0 VI.4-11
which is identical in form to equation III.3-5;
Ao=v,(2d,-D,)
2 2NErg me
{Z +———-(—)—,’2C vd,r, + m,(2r,-R R . )
4 Az d2 D2 2 2 e max, ~min,
d f,(r,(s-B)) d f3(rys-C))
- Dgls) —g(emy ) - Dy(s) —grgemy?) ® 9
2 s=t+B 2 s=t+C
VI.4-12

which bears some resemblance to equation III.3-6 but which requires

further modification;

Ay=vy(2d1-Dy)

1/2 B
{Z] + AI(dI) } 3/26H1h] + n3(2h]-d1) =0 VI.4-13
which is identical in form to equation III.3-3; and
Rkt 8hol . e o T2
{z, + Az(dzj } 3/ szhz n4(2h2—d2) =0 VI.4-14

As would be expected the only control equation to differ from those in
the example in Chapter III is equation VI.4-12.
Taking the derivatives with respect to the state variables

dl,d2 and va yields the adjoint equations for the problem which are:




and

2
Aq=vs (2d-D- ) Cp. 1 A dA da
{1, + LA R Wt L m.} ] + 1 f ] - a h, = il
3 A4, ) 2 PR @ s T ®
VI.4-15
2
C F
Ao-ya(2d.-D.) ©D.T2 \ dA
277p(2d,-Dy) "D, 2 2
(Z, + } 4 £ S
4 A, (d,) 278, * () f2ad, - ah
TR sl P R e
2 s=t+B 2 s=t+C
V1.4-16
g .‘«.1-\-1(2d1—01]] [d 'df3({:3(s—E)}‘] dh
e i1 - - o p o + = —
Jt-"6 A(E) N G R S
VI.4-17

By substituting the results of either equations VI.3-1 or VI.3-2

into equation VI.4-8 and anplying this result to equation VI.4-17 the last

term of equation VI.4-17 falls out and 13 becomes

(7\1"'\"1 (2d1'0-|))
}\3 = —776 + A_I_(d.l_) VI.4']8

When the results of substitution of the routing eauations into

equation VI.4-8 and the value of Aq are applied to equations VI.4-12 and

VI.4-16, these latter equations become:

AZ-Y2(2d2~02) AT-Y1(2d1—D1)

Z, + - Kil=m +
{24 x, 1ET, A(d) ]

t+B

K[ s ] j2c. /T
- -T . + } r
ol"g mE,) e D B2

+ ﬂZ(ZFZ-Rmaxanminz) = 0 VI.4-19
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and;
3 Ap1p(2dy-D5) R [, 4 A-vq(2d;-Dg)
4 A,(,) 1L-76 BT
G 'R 2

x1-y1(2d1—01) 02 2 > dA2

- Kol-mg + — 1@ Vwva— t xay T @@
1(dy t+C 2 Roldy 2

ar,

- mhy = T VI.4-20

In the above two equations,K1 and I<2 are constants determined
by the type of flow routing used. Observe that if a progressive average

lag technique were used with n equal one, then

K] = VI.4-21
K2 = 0

In addition if
B =10 VI.4-22

equations VI.4-19 and VI.4-20 reduce to the same form as equations
[11.2-9 and III.2-3.

The control equations for the two reservoir problem with time
delay are now equations VI.4-11, 13, 14 and 19 and the adjoint equations
VI.4-15, 18 and 20. The effect of the routing with time delay amounts
to a shift in time scales as would be expected.

C. Analysis of the Necessary Conditions.

Although a complete analysis of the two reservoirs in series

problem with time delay will not be attempted here, it is worthwhile to
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consider the condition analogous to the no time delay case in which the

outflow from the upstream reservoir is governed by

d: = 0 VI.4-23

(i.e. the downstream reservoir is full but not overflowing).

Assume that:

C>B>0 and C > E VI.4-24

If the downstream reservoir stops overflowing at t = t2 and if
it is assumed that the upstream reservoir behaves similarly in the

delay and no time delay cases and allows only the minimum flow determined

by Rmin into reservoir 1 when reservoir 1 is overflowing then over some
i
interval tz-a to t2 for Rminz equal to zero
Ve = 0 VI.4-25

Cp ;/dz(t-B)(rz(t—B))2 = 0 VI.4-26
2
Cp Va,(E-C) (ry(t-C)) = 0 VI.4-27
2

and ba(t-E) = 0 VI.4-28

in the interval
t.-A <t <t VI.4-29
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(This assumes that it is not possible to combine positive values of
the upstream reservoir throughput to obtain a zero value for 03).

If v, is to increase from its minimum position, at sometime ta,

2
to maintain maximum storage in reservoir 1 after it ceases to overflow,
then examination of equation VI.4-19 shows that in general the only
Lagrange multipliers available to satisfy this equation are Y1/t
atB
and v,/ . That is either:
1"t
atC
t, = ta+B VI.4-30

or

t, = ta+C VI.4-31

If equation VI.4-31 applies then flows above the minimum will reach
reservoir 1 at

t3 = t2—C+B

which is prior to tz, thus violating the assumed operation and require-
ment given by equation VI.4-26.

If equation VI.4-30 applies then all the requirements given by
equations VI.4-26 to 29 are met and the inflow to reservoir 1 resulting
from the operation of reservoir 2 will begin to increase at t,, as
desired. Thus the shift in time scales is equal to B.

By similar reasoning it can be shown that the multiplier
available to satisfy equation VI.4-19 when the flow constraint (equation
VI.4-8) is binding is ﬂﬁ/ta+B‘
The multiplier available to satisfy equation VI.4-19 when h2 is

greater than zero and d2 equals D2 is clearly Y2/t .
(0
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Observe that if a Muskingum type flow routing is used that B
equals zero and thus the physical reality of the delay in the flow

routing is ignored by the mathematics.

VI.5 Adjustments to the Numerical Technique to Include Realistic

Flow Routing Models

The above examination of the two reservoir problem with time
delay is admittedly far from complete; however, the similarity between
the control and adjoint equations for the delay and no delay cases would
indicate that the general form of the solutions with no time delay for
other configurations should be equally applicable to problems with time
delay by shifting the time scales for each reservoir by Bj’ where Bj is
the smallest time lag applicable to conduit j. Provided the upstream

flow conditions (i.e. d and r) are known for the time interval

tg"Cy <t st VI.5-1

where Cj is the greatest time lag associated with conduif j then all the
necessary information is available to compute the inflows at time t.
Thus the only alterations necessary to include flow routing with time delay
in the numerical technique proposed in this study are:
a) the upstream flow conditions in the interval given by equation
VI.5-1;

b) a shift in the time scales for each upstream reservoir of Bj;

c) addition of the flow routing equations.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

VII.1. Conclusions

In this study the calculus of variations was applied to the
problem of minimizing the weighted diversions of flow to the receiving
waters from a combined sewer system.

In Chapter I some possible solutions to the combined sewer
problem were examined. It was shown that use of existing system storage
capacity may be considered a feasible solution to the overflow problem.
The problems related to the determination of control logic that would
maximize the use of available system storage capacity were outlined
and the advantages of optimal formulations presented. The information
presented in this chapter established the fact that the study of suitable
control logic for control of flows in combined sewers is a practical and
relevant problem in North America today.

In Chapter II the definition of an optimal control was given
along with the necessary conditions given by the calculus of variations
for a control to be optimal. A mathematical representation of the
backwater storage in a controlled combined sewer system as a series of
interconnected reservoirs and orifices was presented. In this chapter
standard weir and orifice equations were used; however, the results of
Chapter III showed that much greater generality of weir and orifice

representations could be substituted in the formulation without affecting
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the overall results. Constraints were placed on the range of operation
of the flow control devices, the storage available in each reservoir
and the flow capacities of the conduits. No constraints were placed on
the rate of operation of the control devices but it was pointed out in
Chapter III that a reasonable approximation to the rate Timited case
could be made very easily. Throughout most of this study it was assumed
that there was no time delay in the flow routing. Considering the
accuracy of the data that will be available with present technology, and
the results of the real time automatic control simulation presented in
Chapter V, the system model presented in Chapter II can be considered
suitable for the determination of an optimal control strategy in those
cases where the time delays in flow routing are small. The results of"
Chapter VI extended this model for arbitrary time delays in the flow
routing. In Chapter IV it was shown that the orifice control had
sufficient flexibility to allow an optimal control determination in the
event that an orifice control became inoperable and thus fixed in one
position. The flexibility of the weir control to allow an optimal control
determination was shown to be somewhat Timited in the case of its failure.
Two forms of the objective function for the problem were also
presented in Chapter II, one including only the weighted overflows, the
other including weighted overflows and throughputs. It was shown in
Chapter III that the latter objective function eliminated some possibilities
of non unique orifice controls from the control problem. The latter
objective function was thus used for the remainder of this study. It was
always assumed that the throughput weighting factors were very small in
comparison to the overflow weighting factors to avoid inadvertently making

overflow from one reservoir greater than desired.
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In Chapter III and Appendices I-III the forms of the optimal
control trajectories obtained from the calculus of variations were
presented for four configurations and various assumed input hydrographs.
It was assumed that the depth of flow over the weir was always less
than the maximum allowable. It was further assumed that after a
reservoir stopped overflowing the inflow hydrograph to the reservoir
was non increasing. The results demonstrated that the optimal control
trajectories were always obtained from constraint boundaries except for
those cases in which the orifice control was non unique. For these
latter cases an optimal solution determined entirely by constraint
boundaries was always feasible. It was shown that as a result of the
optimal solution lying along constraint boundaries the possible methods
of operation of the control devices and their sequence of operation was
highly Timited. This important result was used to advantage in Chapters
IV and V to determine a numerical technique to solve the control problem.

In Chapter III the possibilities for several different feasible
values of the Lagrange multiplier at the t_ side of the entrance to a
state variable constraint boundary were demonstrated. The division of
the problem into two separate problems by this constraint boundary
entrance was also explained.

In Chapter IV the attempts to determine the optimal control
strategy by numerical solution of the necessary conditions were discussed.
The problems caused by the combination of numerical inaccuracy and the
possible values of the Lagrange multipliers to the left of the entrance
on to a state variable constraint boundary were outlined ( both as a
result of a jump in the multipliers, as in the case of the steepest

ascent technique, or as a result of the equivalent rapid change in
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value of the multipliers in the penalty function technique). Although
the penalty function formulation reduced the logic required for control
operation after the reservoirs stopped overflowing when compared to
the steepest ascent technique, it appeared that even if the problems

at the state variable constraint boundaries could be overcome, the
computational time required to obtain the optimal control for a system
of reasonable size would be too great for practical use. In general

it would appear from the results presented in this chapter that the
problems caused by jumps in the Lagrange multipliers preclude the
determination of the optimal control strategy for the combined sewer
problem by direct solution of the necessary conditions, at least in the
time required for real time operation.

As a result of the above findings, it was proposed in Chapter IV
that the results obtained in Chapter III be formulated into a set of
operating rules and the problem reduced to that of determining the
optimal switching times X; - Even though the resulting control would not
be optimal if the limitations of non increasing flows on the latter
parts of the input hydrographs were violated, the control would at worst
assure maximum utilization of the available system storage capacity.
This methodology in which the results of the analysis of solution forms
obtained by examination of the necessary conditions are used to obtain
reasonable operating rules with a resultant major reduction in the
dimensionality of the overall problem is another important result of this
study and would appear to extend the usefulness of the application of
variational calculus to practical problems.

Chapter V presented optimal control trajectories for two system
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configurations obtained by optimizing the switching times Xi for the
given operating rules. The results showed that for a system of up to
twenty reservoirs, the optimal control (optimal for the given operating
rules) could be obtained in approximately two minutes provided
relatively minor modifications were made to the optimization procedure.
This time is believed to be reasonable for real time control determin-
ation. The control trajectories presented always made maximum
utilization of_the available system storage capacities and generally
permitted overflow from only those reservoirs with the highest overflow
weighting factors. The use of a first order gradient search technique
to obtain the optimal switching times Xi gave satisfactory results but
no claim is made that it is the best technique for this application.

The results noted in Chapter V and presented in Appendix V show
that at least generality with respect to the relative values of the
overflow weighting factors can be obtained from a program written to
obtain the optimal control trajectories for a given configuration of
reservoirs and arbitrary input hydrographs. There does not appear to
be any problems that would prevent the writing of a program capable
of determining the optimal control trajectories for an arbitrary
configuration of reservoirs having arbitrary overflow weighting factors
and input hydrographs.

The simulation example presented at the end of Chapter V
demonstrated the use of the control logic, the reasonableness of the
reservoir representation of backwater storage and the lack of
optimality that will invariably exist when the computed optimal control

is applied to an actual operating system. This lack of true optimality
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serves as further justification for the approach proposed in Chapter
IV and demonstrated in Chapter V.

In Chapter VI it was demonstrated that the solution procedure
presented in Chapters IV and V could be easily modified to include more
realistic flow routing methods. These modifications should have minimal
effect on the computational times presented in Chapter V. It was also
demonstrated that the use of a Muskingum routing technique in optimal
control formulations will produce unrealistic results.

Generally it can be concluded that the methodology presented
herein represents a feasible and practical approach to the determination
of reasonable control strategies for the minimization of weighted
overflow from combined sewer systems having weir and orifice controls

and utilizing in-1ine storage.

VII.2 Recommendations for Further Work

In this study only cases involving two reservoirs in parallel
were examined. The optimal control trajectories for more than two
reservoirs in parallel should be examined to determine the dominance-
subservience relationships that may exist for the orifice controls in
these configurations. It is expected that the control strategies will
have a similar form to those presented herein.

In Chapter IV the Tack of adaptability of the weir controls in
those instances in which they become inoperable was noted. It would be
fruitful to reformulate the orifice controls in the optimal control
problem in terms of the weir height w instead of the depth of flow

over the weir h. This would not only allow better control determination
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in the event of a device failure but would increase the generality
of the overall solution to those cases in which the maximum allowable
depth at a control point is greater than the maximum height of the
weir. At present the maximum weir height must be greater than or
equal to the maximum allowable depth.

In Chapter V it was noted that the possibility of writing a
general control program existed. Following the examination of the
two areas suggested above, it would appear that such a program would
be a useful contribution. Undoubtedly it would be computationally
slower than a program written for a specific configuration but it
would aid greatly in the determination of an optimum configuration.

The first order gradient search technique used in this study
to determine the optimum switching times was not claimed to be the best
for this purpose. It is possible that other optimization techniques
might produce substantial reductions in computational time and at the
same time eliminate some of the problems shown in Chapter V to exist
with the first order gradient technique.

The effect of information errors on the overall control results
was examined only briefly in this study. It would appear fruitful to
examine not only the effects of these errors but the major sources.
The problem of regeneration of a field of rainfall data in space and
forward in time from a series of point rainfall readings would appear
to be one of the most pressing in this area.

In Chapter IV it was stated that approximately two minutes
would be available for control determination. This was an estimate
based on known times for the determination of runoff inputs and,

estimates of the times that the other data gathering and control
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supervision functions would require. The validity of this estimate
should be checked to determine the seriousness of the time constraint.
This examination would also of necessity include a study of the optimal
time span between control updates.

It appears that there might be some benefit to the sewage
treatment process to examine the companion dry weather problem to the
problem of minimization of weighted diversions from combined sewer
systems. This is the determination of the throughputs from the reservoirs
to maximize overall sewage treatment. This would allow increased
benefits to be obtained from the same control equipment possibly in the
areas of reduced treatment plant capacity requirements and improved

treatment.
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APPENDIX 1
THE PROBLEM OF TWO RESERVOIRS IN PARALLEL
A.I1.1 Introduction

This Appendix gives the complete solution for CASE 4 in
Chapter III; the problem of the optimal control of two reservoirs in
parallel each of which overflows.

The format followed is similar to that of CASE 1 in Chapter
III except that the algebraic equations for the Lagrange multipliers
associated with the ineauality constraints are not given as it is only
important to know that a particular multiplier is available to satisfy
a particular control equation.

To simplify notation,the following variables have been
introduced; fl and fz which represent the right hand sides of the state
equations; C1—65 which represent the Teft hand side of the control
variable inequality constraints; S] and 52 which represent the left
hand side of the state variable inequality constraints and; Pl - P4

which represent the control equations.

A.1.2 The State Equations

The two reservoirs in parallel system is shown in figure III-6.
For this system, following the formulation given in Chapter II the

state equations are:



3 = Jo b= A.I-1
1 A, (d.) 1 '
171
and;
- 2 3/2
, 9p(t) = Cp Ydory” - Gy hy
d, = 2“” 2 A.I-2
22
A.1.3 The System Inequality Constraints
A. The control variable inequality constraints
Ci = (ri'Rmini)(ri-Rmaxi) < N i=1,2 A.1-3
C_i+2 e h_i(h_i-d_i) f O ‘i = 1,2 Q.I"q
Co = Cu /Er2 + C Vr.l + aqa(t) Q.. < 0 A.1-5
5 D] 11 D2 2'2 3 max - '
B. The state variable inequality constraints
Si = di(di'Di) <0 i=1,2 A.l1.2-4 A.1-6

A.1.4 The Augmented Objective Function

Using the abbreviations given in equations A.I-1 - A.I-5 and
taking the first derivative of the state variable inequality constraint
to adjoin the state variable inequality constraints in the normal manner,

the augmented objective function for the problem becomes
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t
f
L. 3/2 3/2 ?
Mine = J( {Z1Cw1h1 + chwzhz + z3cD]/E;r1
0

2 . .
* ZyCp, MAary” * M (dy-fy) + ap(dy-fy)
tmly # mply + o maly + myly + mgCo + vy (2d4-D,)f,

- y2(2d2-D2)f2}dt + ¥1s1 + ?252 A.1-7

A.1.5 The Control and Adjoint Equations

Applying the Euler-Lagrange equation to the augmented objective
function yields the following necessary conditions for an optimal control.

A. The control equations

M-vq(2d;-D;)

Py =134 Rq(d1) ¥ 1'T5}2CD1 a]r] * HT(ZrI"Rmax1'Rmin1) =0
A.1-8
An=v,(2d,-D,)
2 '2 - RF :
P, = {Z; * + m.}2Cy Vdor, + n(2r,-R . =R . ) =0
2 4 Az(dz) 5 02 2'2 22 max, “min,
A.I-9
A;=v4(2d,-D;)
_ 1714294 1/2 e i
P3 = {Z] + A](dT) }3/25N1h1 + n3(2h1 d1} N A.I-10
Ap=v,(2d,-D,)
i i (- P .
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B. The adjoint equations

= p 2
Aq=vq(2d,-D,) D, 1 A dA, (d,)
f = {Z, + 1 1 1 1 1 1 1 1
1 3 ( ) + 7.} 574 + P f - w.h
A, (dy] 5 7 Ay 1 ddy 31
A.1-12
An=Ya(2d,=D.,) Cp ”22 \ dA. (d.,)
ty =12y + % e 22+ ngt o+ ey 2 T~ T
2(dy 5 2 Ppldy 2
A.1-13

In equations A.I-12 and A.I-13 any terms in which Y5 and f. appear as a

product have been eliminated since one or the other is always zero.

C. The transversality condition
The values of A5 (i =1,2) at te as given by the transversality
condition are:

= 0 A.1-14

and;

= N A.1-16

A.1.6 The Solution Form When Both Reservoirs Overflow

In determining the solution form for a case when both reservoirs

overflow, the following assumptions were made:

1 > 22 >0 A.I-16

(b) -Z3 > —24 >0 A.1-17

(a) 2

(g) ~lu® Ly 2 =Ly + 1 A.1-18

37 A 4"
(d) h; < d. jim 1,2 A.1-19
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The assumed state and control variable trajectories for the optimal
sofution are shown in figure III-7. The description of the control
operations is the same as that given for CASE 4 in Chapter III.
Following the procedure outlined in Chapter III the verification
of the assumed trajectories can proceed backward from te. For each time
interval on figure I11.7,Table Al.1 shows: the non binding constraints
and the resultant zero Lagrange multipliers; the binding constraints,
their associated non-zero Lagrange multipliers and the control equations
which these multipliers are used to satisfy; and the equetions used to
determine each control variable. For each time interval and corner,
Table Al1.2 shows the equations of the » multipliers. The form of the A

multipliers is plotted on figure Al1.1 in terms of Ai/Ai(di).

N
1
Ai(di)
|
o
A @) |
A '
'S ~J
AJ(dy) I \
i 1 2 3 4 5 6 7 £
A
h\\\\\ e S
A (d.)
L L
2
-Z /!
H M
AL(d)

Figure A1.1 The Trajectories of the A Multipliers




TABLE Al.1

Solution of the Constraint Multipliers, Control Equations and Controls for the Two Reservoirs in Parallel.

1

2

3

4
Control Equations

5

Constraint

Time Non Binding Associated zero Binding Associated Non satisfied by Controls are
Interval Constraints Multipliers Constraints Zero Multipliers Multipliers Determined From
EZ T, C] ™ P] I"] - C1 0
tfv-t»l:-‘|r 5, 4! 53 ma P3 Ty =+ C5 0
s, Yp L " s hy +Cy=0
Cs g P2 hZ + C4 0
G f €3 '3 P3 Tp*8,=0
tptotg Cy *2 Cq " Py ¥y =05 =9
| " Cs "5 Py hy=C3=0
52 Yo F‘2 h2 + Cq 0
C] L C2 "y T—"2 r2 - CZ 0
te>totg Gy "a C3 %3 Py vy #lg =0
5 n Cs \ P Ry =Ly =0
52 Yp Py hy, + Sy 0
Cy "y Py rp 5 =0
1;5>l‘,>1:4 ET n.l
C5 g F'2 fz - CS 0
" 7
5] 1 P.I h] + C3 0
C4 '4
S, v, Ps h, + Sz 0

891




TABLE Al.1 continued
) * G " | Py by =0
tyototy C4 " Cg " - Py Cg =0
Cy " Sy e Py hy + ?1 =0
52 Yo P4 |'|2 + SZ =0
Cz i) C1 L P'l. 5 i C-I =0
typtot, Cs "3 Cq "4 Py rp+Cg=0
S2 Y2 Cg "5 Pa hy+3;=0
5] e P3 h2 + 54 =0
cz o C.l " P] Fy C1 =0
t2>t>t-| S'I 3 C3 L P3 rp* CS =0
52 Yo C‘1 L Pll h]-C3=D
Cs g P2 hz -+ C4 =0
-
Cg "g G " Py P> Cy= 0 3
t1>t3t° 51 A CZ L) PZ r"2 - £2 =
) T2 C3 *3 P3 hy>Cy=0
Cq " P‘l hy + C“ =0

Notes

1. Time intervals are those shown on figure Al.2.

2. Lagrange Multipliers in this column are those associated with non-zero constraints on the same line
in the previous column.

3. Lagrange Multipliers in this column are those associated with binding constraints on the same line
in the previous column.

4. Control equations listed in this column are satisfied by the Lagrange multipliers on the same line
in the previous column.

5. ry +Cy = 0 should be read as "ry is determined from Cy = 0". The controls in this column are listed
1% the order required for solution.
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TABLE Al1.2

The Equations of the A Multipliers and the Corner Conditions for the Problem
of Two Reservoirs in Parallel

Time Values of ii or A,
tf x} =0
2
A x, T2 A dA. (d,)
tootot b = (sl ¥ permeges gepir) =gt ity
f 7 1 374 AIIHIS Azldzi 2762 A1id15 1 dd1
i2=A?§)deA§sd2) -rA?g):COﬂSt.
2T 2 2872
Corner at t? A11 variables are continuous. Therefore the corner
conditions yield:
Al = A,/
1 t?_ 1 t7+
I 4 o
2 t7_ 2 t?+
. A dA](dI) A
11 1 j
i2 ® % ?g ) €2 dA§;d2) N zg S i const.
v 2 A
Corner at t6 A1l variables are continuous. Therefore the corner

conditions yield:

:)\.{
e,

= sz




171:

TABLE Al1.2 continued

Corner at t5

t5>t>t4

Corner at t4

t,>t>t

Corner at t3

b dA, (d,) A
1T (; T ;d L. (% y = const.
14 1 104y
2
, o D2 day(dy)
Ay = UZy72p) - (254 A](d1})} 278, T2 —dd

A

2

A11 variables are continuous. Therefore the corner
conditions yield:

A/ = A,/
Ao/ = A,/
: 11 dA1{d1) A

- f - = const.
1 A1(d1) 1 dd] A1(d])

iz = g ?5 ] f) dAgidz) > 7 25 v const.
" At 2 2R

A1l variables are continuous. Therefore the corner
conditions yield:

Xly = A5/
1ty i tgy

Ao/ = A,/
2
Cp, M A

. 1 1 dA](d1)
b= 23 - (22 7 pay 1

1

P . Ay ; dAz{dz} . Ao
2 "~ K,(d,) "2 T dd, R, (d

= const.
2)

At t, the control h, is discontinuous and the derivative
of tﬁe state variable do is discontinuous. In this case
the corner conditions yield:

Ale = A/

Aole, = ~Zafa(Dp)
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TABLE A1.2 continued

A Cp. " A
5 2 1
tytet, M o= U(Zy°7) - (ﬁETH;T * 1)} -7

1
iz = 5 ?5 7-f2 dAgédZ) » %g = const.
2 2 2 2

Corner at ty At t, the control hy is discontinuous and the derivative
of tﬁe state variable dy is discontinuous. In this case
the corner conditions yield:

Me, = hiA(0)
Xal = A,/
2%, T M,
2
) A A CD]rT N dA, (d,)
tyt>ty M o= (zg+ Ay - (gt A, (d,)] 2P A I R
A dA,(d,) A
s pa 2' "2 2
A, = f + — = const.
2 Az(dzj 2 dd2 A2
Corner at t] A1l variables are continuous. Therefore the corner
conditions yield:
A,/ = A/
Aal = A,/
2ty " "oty
2
. kT \ dA, (d;)
tptat ky ® by ® 0 7 R P Aty 0
2
Ca
Az 02 2 A? dAz(dZJ

A, = {Z, + } + f
2 47 Ry(dp)" "27d,” T ATd,) T2 Tdd,
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A.I.7 Possibilities for a Jump in Control

In the interval ti-t both orifice controls are at their
maximum and so a jump is meaningless.

In the interval t1-t2 when the flow constraint is binding
examination of control equtions A.I-8 and A.I-9 shows that for a

switch in the controls to occur would require:

A A
- 2
3 Bay " Lt RTe,) -

Examination of the equations for the i's in this interval shows that

this would require:

i] = 0 A—I"Z]

which it can only approach assymptotically. Therefore no switch in
control can occur in this interval.

Following similar reasoning, and noting that when a reservoir
is overflowing, a jump in the control r; will require a jump in the
weir control hi’ it can be shown that there are no possibilities
for jumps in the orifice controls for this problem.

For inflows which will not fill reservoir 1 if orifice 1
remains the dominant control, different corner conditions, analogous to
those of CASE 2 or CASE 3 given in Chapter III for reservoirs in series

may occur and thus lead to a switch in the dominance of the orifice

controls.
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APPENDIX II
THE PROBLEM OF THREE RESERVOIRS IN THE "V" CONFIGURATION

A.I1I1.1 Introduction

This Appendix gives the complete solution for CASE 5 in
Chapter III; the problem of three reservoirs in the V configuration,
each of which overflows.

The format followed is similar to that of CASE 1 in Chapter III
except that the algebraic equations of the Lagrange multipliers
associated with the inequality constraints are not given as it is only
important to know that a particular multiplier is available to satisfy
a particular control equation.

To simplify notation the following variables have been
introduced: fi, which representsthe right hand sides of the state
equations; Cj, which represents the left hand side of the control variable
inequality constraints; Sk which representsthe left hand side of the
state variable inequality constraints and; Ej which represents the

control equations.

A.I1.2 The State Equations

The three reservoir "V" configuration is shown in figure III-8.
For this system, following the formulation given in Chapter II the

state equations are:
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2 2 . 3/2
01 () + q4(t) + Cp YAyr," - Cp Y& -y Iy
d, = 2 1 L = £, AII-T
1 A1(d1) 1 '
_ 2 _ 3/2
; 9 (t) an“aérz szhz
= = 'F A-II'Z
2 Az(dz) 2
and 2 3/2
o a(t) - C03“35r3 " Cuhs
d, = = f A.I1-3
3 Aa(d3) 3
A.11.3 The System Inequality Constraints
A. The Control Variable Inequality Constraints
Ci = hi(hi'di) < 0 i = T.2.3 A.1I-4
Ci+3 = (ri—Rmaxi)(ri-Rmini) <0 i=1,2,3 A.II-5
. 2 ;
C, = q,(t) + CD?VHErZ . omax] <0 A.11-6
Co = Cn VAR 2 + C /Agra? - Q.. <0 A.I1-7
8 D1 11 D3 3'3 max, - :
B. The State Variable Inequality Constraints
Si = di(di‘Di) <0 i=1,2,3 A.1I-8

A.II.4 The Augmented Objective Function

Using the abbreviations given in equations A.II-1 through A.II-8
and taking the first time derivative of the state variable inequality

constraints and adjoining them in the usual manner, the augmented

-
ale
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objective function for the problem becomes:

t
.F
; " 3/2 3/2 3/2 2
Ming :]' {Z1tw]h1 ¥ chwzhz ¥ 23cw3h3 ¥ z4cD]¢a;r1
0

2 2 - -
* zscnz“aérz + Zscnsﬂféra 2y (dy=fy) + 2,(dy-f5)

+ 7,0, + m,C, + 7,C

Cq + mply + maly + myly + mgly

* 33(8 -f,) + 7

3 3 1

+ mglg + oLy + mglg + v1(2d1-Dy)fy + v,(2d,-D,)f,

+ Y3(2d3-D3)f3}dt - ;151 + ;252 A.I1-9

A.I1.5 The Control and Adjoint Equations

Applying the Euler-Lagrange equation to the augmented objective
function vields the following necessary conditions for an optimal control.

A. The Control Equations

A1—y1(2d1-D])

) 3/2 _
Py = 2y ¢ gy 132 ny(2hy-dy) = 0 A.II-10
K=y 280,
) p~1p(2d5-D, 3/2 )
Aa=vY (2d -D )
. 3-v3(2d3-Ds 3/2 .
Py = By + gy 3/2 g na(2hy=dg) = 0 AII-12
A1-v;(2d;-Dy) "
Pa = g * —x 1@ T * “8}‘501'31r1 * “4(2r1-Rmax1_Rmin1) o

A.II-13
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2p7vp(2dp=Dy)  Ay-v4(2d;-D;)

b m {2 % 5
5 = {Z5 * Ad,) )= A(E)

) + n?}chZVHErZ

+ mg(2ry-R max, Rminz) . A.11-14

; A3™ (2d3 D4) T
6= g+ 3d,) + r8}2CD3 dary + ﬂﬁ(znmeax]'Rmin1) = 0
A.11-15

B. The Adjoint Equations

. Xy =4 (2dy-Dy) Co. ™ ) dA, (d.)
O W 1 LA LB P . AT
1 = ATE) I W (1 I R 1
A.T1-16
Y,(2d,-D,) (2d.-D,) CD "22
}\={2+(2 22)- ]YT ]1)+n}
2 5 A,(d,) A, (dy) 27d
A dA,(d,)
2 245
" f ik A TI-17
A () 2 ~dd, 2Ny
o=y, (2d,-D,) Cp r32 A dA,(d,)
g = (Zg + 2 Y3A (g P * gl At Ay T3 —— - h
3(d3 3 Azldy) '3 ddy 33
A.1I-18

In equations A.II-1€ - A.II-18, any terms in which Y; and fi
appear as a product have been eliminated since one of the other is always

Zero.

C. The Transversality Condition

The values of Ai/t as given by the transversality conditien are:
f

A = 0 A.II-19

/
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= 0 3 A.II-20

and

= 0 ; A.1I-21

A.II.6 The Solution Forms When A1l Reservoirs Overflow

In determining a solution form for a case where all three

reservoirs overflow, the following assumptions were made:

(a) Z;>17,>123>0 A.11-22
(b) Ly > =Ig > =1 > 0 A.11-23
(c) Z] - 24 > 22 - 25 > 23 - 26 >0 A.11-24
(d) h; < d, i=1,2,3 A.11-25

1 1

The assumed state and control variable trajectories for the
optimal solution are shown in figure III-9.

The description of the control operations is the same as that
given for CASE 5 in Chapter III.

Following the procedure outlined in Chapter III the verification
of the assumed trajectories can proceed backward from tf. For each time
interval on figure III-9, Table A2.1 shows the non-binding constraints
and the resulting zero Lagrange multipliers; the binding constraints
and their associated non-zero Lagrange multipliers and the control
equations which these multipliers are used to satisfy; and the equations

used to determine each control variable. For each time interval and
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corner Table A2.2 shows the equations of the ) multipliers. The form

of the X multipliers is plotted on figure A.2.1 in terms of Ai/Ai(di).

e
[

Fig. A2.1 The Traiectories of the ) Multipliers for the
Three Reservoir "“Y" Configuration

'31:'

A.II.7 Possibilities for a Jump in Control

For the reasons given in section A.I.7 of Appendix I, a switch in
control between r and rs is not possible for the three reservoir "V"
configuration when all three reservoirs overflow. If neither resérvoir 1
or 2 overflows, or if the outflow from reservoir 2 is limited by the flow

constraint C7 = 0 and reservoir 1 does not overflow, then the possibility




TABLE A2.1

Solution of the Constraint Multipliers, Control Equations and Controls for the Case of Three

Reservoirs in the "V" Configuration.

5

Time Non-Binding Associated Zerg Binding Associated Hon3 Control Equations y Constraint Controls
Interval Constraints Multipliers Constraints Zero Multipliers Satisfied by Multipliers Are Determined From

tetoty, % " G B P rp+Cy=0

CB g Cz ™ P2 rp ES 0

S-! " C3 ™y P3 r3 - C6 0

52 Y2 Cy " Py hy + €, =0

Sy Y3 Cs T Pg hy +C, =0

C; "6 P hy +Cy=0

htty Cs “5 ¢ M Py hy =Gy =0

CE e C2 2 I:'2 hz + Cz 0

G " Cq "3 Py Ry kg e 0

2 Y2 Ca s p ry+Cp=0

5 ¥ C " 4 1714

3 3 53 "8 P rp+5,=0

1 n Ps ry*Cg=0

bt C4 "4 3 ™ M hy =5y =0

CS e Ez ) PE h2 + C2 0

Cs s G " Py hy Gy 00

57 i Cg '8 Py ry*$;=0

52 Y2 3 N P, ry =Ly 0

L Y3 P; G e Tl

081



TABLE A2.1 continued

Lot c

ty oty (3

t,>t>t

t,)btﬁ C

5 =2 =

~N oW

% o =
- h N B W

=

=

4 = o
o B W M

=

. e T |

N WM

=

-
—

=

=

=
e o M

T W W W W w9
W O Py -

Y v © T v W W W W
Ww o B O ra W ;s O M -

-

T 0O WV v
o o s —

=
N_.:I'
*

- =
- w
s

O Ve o0 oo

(=T = = I = I =~ ¥ = ]

o o oo oo

o o oo oo

o o o o o o

181




TABLE A2.1 continued
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oo oo oo oo oo oo oo oo oo
" " " L} " " U L] " " ] U] L] " n L " "
oW oe— o ™M o W o o~ N ™M —r U N O ™M
LD O W O 20 0O O (SN S IS U = e &
t ¢ ¢ ¢ & @ L I + o+ 0+ttt
_— 0 = oM M —_ N M - M — = 0N N M
L kS £ == £ = kL £ £ =& £ k£ k£

& W W0 o~ Nm ™M = W W o~ — M o= W WO N
(=S - - T - O - T -0 =S - O - N - - =S - S - S - -

- = E = -
= W 0 o= NMm ™M = W 0 — N —_ M o= N O NN
(55 T 55 R U5 I e I T I | (35 S D S S T e ) 2w o0 oV
—_— 0 M WO M~ — N D M & O P~ — ™
E E E E F E E FE FE > E F E > >
— 0 ™M O M~ —_ 0N WO M~ m LAV LT - T O ol ot
(SN S ENE RS =) oo o o wu L S L

t6>t>t5
t5>t’t4
t4>t>t3

o o oo oo
L] " " " " "
= .~ 1 NN B M™m
Do w0 e W
o+t 4+ ot 4
-_ —_ 0N ™M
L £ & £ = =

i I IO - " s Y -
G A & a6 o o

— 0 M = W O
= E E

~— N M = 0 O
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TABLE A2.1 continued

typtet Cs 4 G L) " rp+C=0
Cs g ) b P2 hy+C =0
51 n lZZ3 g I'-'3 ry + E? =0
52 7] Ca L P4 hZ -C2=0
% Y3 " "7 Pe rg*Cg*0
Cg "8 Ps R R
LRt ¢ % ki b P P +C=0
CS g Cz my F'2 rz - C5 =0
s Y Cy T Py ry+Ce=0
52 Y2 Cq "4 Ps hy »Cy =0
53 Y3 £s s Ps hp+Cp=0
t " P hy+Cy3=0 B
&
Notes

1. Time intervals are those shown on figure A2.2.

2. Lagrange multipliers inthis column are those associated with non zero constraints on the same line in
the previous column.

3. Lagrange multipliers in this column are those associated with the binding constraints on the same lines
in the previous column.

4. Control equations listed in this column are satisfied by the Lagrange multipliers on the same line in
the previous column,

S. r+C= 0 should be read as "r1 is determined from Cq = 0". The controls in this column are listed in
the order required for solution.
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TABLE A2.2

The Equations of the » Multipliers and the Corner Conditions for the Problem
of Three Reservoirs in the "V" Configuration.

Time Values of i1 or A;
te .
.\2 =
1 =
: Car 2
. A Dy M dA (d,{)
tet>t, Ay = ﬂﬂ}“‘*?'“z CAE W R
2
_ by b ot Ay dA (dz)
el B w o m N(‘T}"“.?’“‘z 4, ' &) 2 I,
2
A, 0,73 A dA, (d.)
Aa = (2o + } i . 3 ¢ 11
3 6 A3(d3) 2 d3 ﬁ3(d3) 1 ddI
Corner at tlz A1l variables are continuous. Therefore the corner
conditions yield:
X,/ = A,/ i=1,2,3
Phs. T '
2
) Ay A CD]r1 M dA,(d;)
ti2tty, SRS T v 70 B Tl v 70 7 Pl .10 B B
A dA,(d,) A
: 2 202 2
Ay = f - = const.
o Az(dz} 2 d?z ) Ezidzi
A dA,(d X
3 373 3
f - = const.
=R (d3) da3 Isldai
Corner at t11 A11 variables are continuous. Therefore the corner
conditions yield:
i,/ = A/ i=1,2,3
Titn. T
A dAi{di) X

. . = + 1 = i =
t]l’t’tlﬂ 11 - ni(di} fi ddi I;TH;T- const. i =1,2,3




TABLE A2.2 cont'd

Corner at t10

to bty

Corner at t9

t9>t>t8

Corner at tB

t83t>t7

Corner at t7

t?>t>t6

Corner at t&
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A11 variables are continuous.
conditions yield:

To: = A4 i
o o4

: A dAi(di) :
iR i T dd

A

A11 variables are continuous.
conditions yield:
A/ A/ is=
i tg_ i t9+
- A " dA; (d;)
i Ai{d{] i dd;

A11 variables are continuous.
conditions yield:

At Xif

i tB— i'tg,

. A " dAi(di) .
i Aitdi) i ddi

A11 varijables are continuous.
conditions yield:

A A/
1!t7_ ity

Therefore the corner

=1,2,3
A
= const. i=1,2
AR ’
&) r32 ) dA,(d,)
3 3 3193

= - - - 2 — e ———
3= g-23-2; -1 I;TH;T}‘E7H;‘ * AT 3 G

Therefore the corner

1,253

'A-m = const.
b R

Therefore the corner

i=1,2,3

= const.

Therefore the corner

r
0,1 Ay dAT(d])

>
—
I

={Zy+ 15 -1 - Ig *+ I3}

M dA, (d,)

A = f
i ETdT i T,

A1l variables are continuous.
conditions yield:

As/s As/
1 ‘G- i tﬁ"’

+ f
ZJd] ﬁl{d]} 1 dd1

Al

+ H%T = const. i=2,3
it

Therefore the corner

i=1,2,3

i=1,2,3

1=1,23
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TABLE A2.2 cont'd

2
1501'1 \ dA; (d;)

= 1(24-27) - (Z4-24)) At T f
2
C. r

.2 A dA,(d,)
((25-2,) + 2)b5— * 7 (3 7 =

2 Rld, 2

t6>t>t5

e
—
I

e
[+ ]
1]

. Ay ] dA3(d3) A "
Ay = + = const.
3 A3(d3} 3 dd, K3Id3)

Corner at tg At t., h, is discontinuous and therefore d., is
discgntiguous. Therefore the corner condigions yield:

A/ = A/ i=1,2
i't i t5+ :

and

Ay, = Zahalby) "
) Cn1r1 A dA, (d, )
- -~ _— 1
t>tot, M o= UZ407y) - (Zg-23)) zva * Ay 1
2

CD r

2 A dA,(d,)
2 2 2y
= {Z.-1,+1,} + f
? b 2™ 2/&2 Az(dzf' 2 dd
A dA,(d,) A
: 3 33 3
Aq = f - = const.
3 Aa(d3} 3 dd3 §3id35

e
[l

2

Corner at t, At t,, h, is discontinuous and therefore dy is
discgntiAuous. Therefore the corner conditions yield:

M, * -Z;A, (04)

A/ = A/
Tty 1 tg,
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t4>t>t3

Corner at t3

typtot,

Corner at t2

1:.2=-'f.=~t-i
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2
i Ay : kg : CD1r1
Ay = + - (Z. + }
! ¢ *EaT - Ve T Iy v
A dAi(d1}
+ £
AT 1 T,
2
) ( | i Cazrz % dA,(d,)
N = () } + £
2 57%2) = K 27, Ry T2 g,
A dA,(d,) A
. 3 3493 3
= f - = .
"3 7 ATy '3 Tdqg Agldg) const

At t., h, is discontinuous and therefore d. is
di’cantiﬁuous. Therefore the corner cundi%ions yield:

xif S i=1,3
ity its,
and
Cs T 2
. 11 ( 13 ) D] 1 A1 dA1(d])
A, = {Z, + -(Z, + } + ¥
1 4 ﬁ1id1] 6 A3(d3) 2/61 A](d]) 1 dd]
2
Cn P
iy Ay ) A ; D, 2 . Ay " dA,(d,)
2 5 Az[dZ] A1[d]) 2/ﬂ2 Az(dz} 2 dd2
13 dA3{d3)

Ay = f
37 A;Tdy) '3 Tddg

At this corner there is no state variable constraint involved,
thus even though the control ry is discontinuous the corner
conditions require

X/ = A/ i=1,2,3
1ty o,
2
A % Cp. " A dA, (d,)
A NP B N SR
4 A-l d1 6 E3id3) g 2/61 A1(d]) 1 dd1

n

A4 dA, (d,) A
LA CPYIRE By * Eld;y T comst. 1= 2.4
1

X
i s i
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Corner at t]

t >t2t

1

188

A1l variables are continuous. Therefore the corner
conditions. yield:

\efe = Ao i=1,2,3
i t1_ i t1+ ’
‘ 2
x, B.M A dA, (ds)
i={z4+AJi]2]’d +A(]:I g :id1
L 1(dy)7 27dy - Ayldy) 1
G P 2
. ( Az - 11 ) 02 ;e Xy dAz(dz)
3 ® (2 * 5 (0, } + f
2 5 * K,(d,) AN % L ¥ P A €7 ad,
2
G 1
. Ay Dy'3 Ay dA5(d,)

Ay = {Z, + } + f
3 6 A3(d3} 2JH3 Aa(d3) 3 dd3
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of a jump in control between " and rs exists.

To show that the jump in control r, can occur at t2, the corner
conditions given by equations I1.2-13 and 14 of Chapter II can be applied
(observe that ?k equals zero) or the control equation for ry (equation
A.2-14) can be examimed. Following the latter approach, if a jump in
control T is to occur then equation A.2-14 must at some instant in time

be zero for any value of ro- This leads to the requirement that:

Ag M

7+ ; -9 A.11-26
5 Ay(d,)  A;(dy)

when neither reservoir 1 nor reservoir 2 is overflowing. By considering
the case when the absolute value of 25 is very small and referring to
figure A2.1, it is seen that this condition can occur at t2 as shown.
Another possibility of interest that could occur if reservoir 2
started overflowing much sooner,is that the control rs could switch while
reservoir 2 is overflowing. The corner conditions show that the necessary

condition for a switch in control ro to occur in this situation is

-22 + 25 B W A.1I-27

which, provided reservoir 1 is not overflowing, can occur (refer to
figure A2.1).

By following similar procedures it can be shown that for the
relative values of the weighting factors given by equations A.1I-22 to 25,
the switch in control r, cannot occur while reservoir 1 is overflowing.

Other possibilities related to the discussion of the problem
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of two reservoirs in series, discussed in Chapter III, apply to the

three reservoir problem.
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APPENDIX III

THE PROBLEM OF THREE RESERVOIRS IN THE "Y" CONFIGURATION

A.II1.1 Introduction

-“"
-

-

This appendix gives the complete solution for CASE 6 in Chapter
111; the problem of three reservoirs in the Y configuration, each of which
overflows.

The format followed is similar to that of CASE 1 in Chapter III
except that the algebraic equations of the Lagrange multipliers associated
with the inequality constraints are not given as it is only important
to know that a particular multiplier is available to satisfy a particular
control equation.

To simplify notation the following variables have been introduced:
fi’ which represents the right hand side of the state equations; Cj which
represents the left hand side of the control variable inequality cor traints;

Sy which represents the left hand side of the state variable inequa

constraints and; Pj which represents the control equations.

A.111.2 The State Equations

The three reservoir "Y" configuration is shown in figure III-10.
For this system, following the formulation given in Chapter II, the

state equations are:
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aralt) + ap(t) + Oy ory® + Oy s - CD1“E;r12 . Cw1h13x2
. 2 3 ]
d. =
1 AT(dI)
( 2 3/2 A.TII-1
o Glt) - C02"3-2‘”2 " Ty, M2
d, = A.III-2
2 A(d)
T & _ 3/2
o ag(t) C03@% "3
d = A.III"S
3 AL(d3)
A.II1.3 The System Inequality Constraints
A. The Control Variable Inequality Constraints
C; = (ri-Rmini)(ri—Rmaxi) < 0 1% 14243 A.111-4
C-|+3 = h'i{h'i_d'i) 2 0 i=1,2,3 A.III-5
_ 2
C; = applt) + an“aérz : Opa, A.111-6
2
Cg = aqp(t) + CD3/Hér3 < Qmax3 A.111-7
= 2 2
Cq = qqa(t) + aqp(t) + CDZ“HErz + c03/a§r3 < Qmax1 A.111-8
_ 2
Cig = CD1/E;rT < Qmax4 A.I1I-9
B. The State Variable Inequality Constraints
S. =d.(d;-D;) < 0 A.111-10
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A.I11.4 The Augmented Objective Function

Using the abbreviated notation given in equations A.III-1
through A.III-10 and; taking the first time derivative of the state
variable inequality constraints and adjoining them in the usual manner,

the augmented objective function for the problem becomes:

Mino j’ (12,6, i +z1+3cD/a‘r1)

5 171
g( (d.-f.) ;:0 g ( )

# § (gldof) + § w.C; v,(2d.-D,)f . }dt

FEIRR AR I 3133 L e - gh
3—

+ D . e
LS5 A.III-11

A.I11.5 The Control and Adjoint Equations

Applying the Euler-Lagrange equations to the augmented index of
performance yields the following necessary conditions for an optimal

control,

A. The Control Equations

Ay=v+(2d-D5)
) | I i s 1/2 zd.) =
Py = [ + R ]3/2CN]h1 + mp(2hy=di) = 0 A.III-12
-Yp(2d5-D,) 172 , )
Py = [Z, + e ]3/2Cw2h2 + mg(2hy-dy) =0 AIII-13
A3-v4(2d3-03) 1/2
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A1 (2d;-0)
Ut Tt 03, Ayt (2 Ry Ry ) 7 0

A.I11-15
T4 [*2‘*2(2d2‘02)] ) *1"*1(2d1‘01)3
5 A,(d,) A, (d;)
+omg + wg}2c02¢85r2 - n2(2r2—Rmax2-Rmin2) =0 A.III-16
6 A,(ds) A, (dy)
+ g ﬁ9}2503/85r3 + n3(2r3-Rmax3-Rmin3) =1 AI11-17
The Adjoint Equations
o 2
= {Z, + + Tant + :
4 A (d;) 107 ~27/d A (d.Yy "1 —dd
1'% 1 19 ]
- mahy A.III-18
Ay=vs(2d,-D,) Ay=v,(2d,-D,) CD r‘22
_ e G M o 2
SR ey ;0 e Bl Sy v v e IR Y+
2v%2 1'% 2
A dA,(d,)
2 22
B f -n.h A.I11-19
R,(d,) "2 dd, 572
Ag=Ya(2d=D.) A=y (2d,-D, ) Cp r32
-z, + [2 Tgtels™ty ] - [ b o o, 16 5, e
6 Ra(d,) A, (dy) 8 " "o'ToVd,
3\%3 1Y% 3
A dA,(d,)
3 3\"3
" Rldy) T3 Al e A.I11-20

equations A,III-18 to A.III-20, any terms in which Y5 and fi

product have been eliminated as one or the other is always zero.
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C. The Transversality Condition

The values of Ai/t as given by the transversality condition
f

are:

l1/tf = 0 A.III-21
sztf = 0 A.111-22
AB/tf = 0 A.III-23

A.111.6 The Solution Forms When A1l Reservoirs Overflow

In determining a solution form for the case where all three

reservoirs overflow, the following assumptions were made

(a) Z;>2,>123 >0 A.111-24
(b) ~Zy> -Z> Lz >0 A.111-25
(c) Zy-Z, > Z,25 > 13- > O A.111-26
(d) hy < d; i=1,23 A.111-27
() Ry = 0 i=1,52,3 A.111-28
1
(f) =, =0 i=7,8,9,10 A.TI1-29
(g) A;(dy) = K; i=1,2,3 A.I11-30

Assumption f means that it was assumed that none of the flow
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constraints were violated.

The assumed state and control variable trajectories for the
optimal solution are shown in figure III-11. A brief description of the
control operations is given with the discussion of CASE 6 in Chapter
LLX,

Following the procedure outlined in Chapter III the verification
of the assumed trajectories can proceed backward from te. For each time
interval on figure III-11, Table A3.1 shows the non binding constraints
and the resultant zero Lagrange multipliers; the binding constraints
and their associated non zero Lagrange multipliers and the control
equations which these multipliers are used to satisfy; and the equations
used to determine each control variable. For each time interval and
corner, Table A3.2 shows the equations of the » multipliers. The form

AL
of the » multipliers is plotted in figure A3.1 in terms of A.1d. .
1[ 1:

AL k\\\\\
i
i

~~
(=¥
—t

B %tz 4y B %% Y Yt Y Yyt
XS/AS(ds] Time
. £ ~ZA,(dy)
S ~Z,A,(d))
A/, (d,) -2,A,(d)
N
AI/Al(dl]

Fig. A3.1 The Trajectories of the A Multipliers for
the Three Reservoir "Y" Configuration




TABLE A3.1

Solution of the Constraint Multipliers, Control Equations and Centrols for the Case of Three Reservoirs in
the "Y" Configuration

1 2 3 Control Equati uns4 Constraint Contro]é
Time Non Binding Associated Zero Binding Associated Non Satisfied by Are Determined
Interval Constraints Multipliers Constraints Zero Multipliers _Multipliers From
tetty & 5 C] " Ps By~ & =9
CB g C2 1P P5 r, *+ (Z2 =0
Cg g C3 r: P6 ry C3 =0
%10 0 G "4 i hy = Cy=0
1 " Cs "5 P2 hp > Gg:= 0
52 Yo C6 Te P3 h6 - [26 =0
53 Y3
tio>tty Cy 'S 5| “1 Pa b+ Cg= 0
7 2 g
8 4 4
5 0
6 0
0
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L O QW W) L D O W) N N (SIS R . N 7 B e B s ]
£+ 4 4 4 t o+t 4 4 N
— N — &N M M — r— N N Nm — N M o— &N M
£ £ = = = o £ k= = = c c “ & L £ = =
s —~ O W I ™M = W o~ Wi oNN™m = W W o — o™
a o o o A A o o o o oo o o oo oo o oo
—_ = W -~ & ™M r— M < =0 ™M ~ N ™M — &N ™M
E E EBE = > E E F > > > E E E = > >
_ D = O ™M — M - N M — 0 M - N ™M
(SIS S 7 e (55 T O T 6 7 T 7 N 7 ] (SRS R R I 7 I 7
L=} o (=]
o ™M W M~ 0 O — N W W~ 00 oo~ = W W M~ O o —-
E E E E E E E E B F FE E K E E E E E E E E
o o o
N ™M W M~ 0 oy — N I W~ O O = N W e~ O oo
(SRS st s o o o o o o o (S SRS S S ]
P~ w un
+ - +
A A M
] 4 )
A A A
0 ~ w
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TABLE A3.1 continued
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TABLE A3.1 continued

t

2t S ™ G = Py ry+Cys
Cs L C2 m, F'5 ro > CZ =
Cg g C3 Ty P‘3 ry Cs =
10 ™o Cq "4 " hy+ Gy =
$ 1 Cs "5 Py hy + Cg =
) Y2 Ce "6 Py hy + Cg =
33 3

t]>t>t0 C7 T C] m P4 r C1 =
CB m CZ 112 P5 l"2 * CZ -
Cq g C3 " Pe byl *
10 ™o Cq s Py hy + G4 =
$ " Cs s P2 hy +Cg =
S, Y e # Py hg * Cg =
53 Y3

Notes:

1. Time intervals are those shown on Figure A3.2.

2. Llagrange multipliers in this column are those associated with non zero constraints on the same line in
the previous column.

3. Lagrange multipliers in this column are those associated with the binding constraints on the same lines
in the previous column.

4. Control equations Tisted in this column are satisfied by the Lagrange multipliers on the same line in
the previous column.

B. T =+ Cg = 0 should be read as "ry is determined from C4 = 0". The controls in this column are listed in
the order required for solution.

o o o o o o

[ TN o= Y = R e N = 2 = |

00¢
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TABLE A3.2

THE EQUATIONS OF THE A MULTIPLIERS AND THE CORNER CONDITIONS FOR THE

PROBLEM OF THREE RESERVOIRS IN THE "Y" CONFIGURATION

Time

tet>tyg

Corner at ty,

oot

Corner at t9

Values of Ay or Ai

Ai =0 i=1,2,3
2
WY
£ oy Bamsen
L T ¥
2
\ o .2
Ay =I5+ g (E T "R (A ) -3
. oldy)  Ayldy 2
2
A A, .3
3= {Zg + g 3 il (L 7} 233
3ldy)  Ayld, 3

A11 variables are continuous. Therefore the corner
conditions yield

A/ = A/ i=1,2,3
i t10_ i t]ﬂ+ :
2
A CD r1
by & (2, + e F il
1 4 6 A3]d3§ ?731
2
o
x3 12 02 2

Ao = {Z = I, = + }
2 5§ % " A3(dy) T Ay(d,) T2V,
A, = 0 + A3 = const.

A1l variables are continous. Therefore the corner
conditions yield
11!t

=l{
9- 1 tos




TABLE A3.2 cont'd

t9>t>t8

Corner at t8

t >t>t7

8

Corner at t?

t?>t>t6

Corner at t6

t6>t>t5

202

2
11-y1(2d]-01]1cﬂ,r1
{Zy + ATa,) 2/

> .
"

]

ii =0 + Ai = const. i=2,3

A11 variables are continuous. Therefore the corner
conditions yield

WY, i=1,2,3
Pty itg,
2

A=y~ (2d-D;) ©D,"1
i 1-7112d,-Dy) "D,
i B TR

114

11 =0 - x{ = const. i=2,3

A11 variables are continuous. Therefore the corner
conditions yield

A § =7,253

./ = A/
L "ty

2
, A-vq(2d3-Dy) ©0,"
A=z + )

4 0 0

ii = 0 * Ay - const. i=2,3

A11 variables are continuous. Therefore the corner
conditions yield

Ayf =2 X/ i=1,2,3

i1 = 0 > Ay = const. i=1,2,3



TABLE A3.2 cont'd

Corner at t5

t5>t>t4

Corner at t4

t4>t>t3

Corner at t3
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At tg, hy is discontinuous and therefore d, is
discontinuous. Therefore the corner condi%ions

yield
Xa B W 4 i=1,2
"alE. ~Z3h4(D3)
% r12
. - 1
1] B {24 - Z]}—?7H;—
A =0 + A4 = const. { =2.3

At ts» h] is discontinuous and therefore d, is
discontinuous. Therefore the corner condi%ions yield

Alye, = Gty
O | P 4 1= 2,3
ity ity ’
2
R

L _ 1

i1 =0 + Ay = const. i=2,3

At t3, h, is discontinuous and therefore &3 is
discontinuous. Therefore the corner doncitions

yield
Mg = M, i=1,3
Mlt, = k(D)




TABLE A3.2 cont'd

t3>t>t2

Corner at tz

>t>t

Corner at t]

204

2
v .M
3w Ty o
1 4 31131) 27d1
i1 = 0 > Ay = const. f =23

At this corner there is no state variable inequality
constraint involved, thus, even though the control r,
is discontinuous the corner conditions require:

Ao/ A/ i=1,2,3
ity ity
. A CnlrI
M= Ayt L

119 1

2

: A v, Cp.T2
%, = {2 = T * TP
S T 1 I (40 R X

A

0 -~ K;TSET = const.

At this corner there is no state variable inequality
constraint involved, thus, even though the control r
is discontinuous the corner conditions require:

.
w
]

O £ = A/
ity ity
2
A CD "1
N B ATy i
! 47 R4, 27,
2
A r, T2
A, Tt T
2 = s WA " R4 27,
2

Cir
. M Ao Dy 3
S TR T N I W ) vy
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A.III.7 Possibilities for a Jump in Control

To show that the jumps in controls ry and rs can occur at times
t2 and tI respectively, the corner conditions given by equations II.1-11
and 12 of Chapter II can be applied, or the control equations for rs and
rs (equations A.III-16 and A.III-17) can be examined. Following the
latter approach, if a jump in control rs is to occur then equation
A.III-16 must at some instant in time be zero for any value of ro- When

neither reservoir 1 or reservoir 2 is overflowing this Teads to the

reauirement that

Az 7\]
Zg + - =0 A.I11-31
57 R,(d,) ~ A(dy)

Examination of the A trajectories shown on figure A3.1 shows that this
condition can occur at tz. Similar results can be shown for the jump in

control rs at t1. For this case the necessary condition for a jump in rs

is

J\3 J\.I
Z + - U A.III‘32
6 A3(d3) A1(d1)

Dther possibilities for jumps in the controls ry and ry are
similar to those discussed in CASES 1, 2 and 3 of Chapter III and the
series part of the three reservoir "V" configuration discussed in Appendix

11
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APPENDIX IV

EXAMPLES OF OPTIMAL CONTROL

A.IV.1 Introduction

This appendix gives the optimal control results for the ten
reservoir control problem for two examples in which the weighting factors
are as discussed in Chapter V and shown in Table V.3. The inflow
hydrographs for both examples are the same and are shown in figure A4.1.
Their peaks are shifted in time to simulate the passage of a storm from
top to bottom across the basin shown in figure V.4 of Chapter V.

The values of the overflow and throughput weighting factors are

the same for both examples and are listed in Table A4.1. |

TABLE A4.1

The Weighting Factors For Examples A4.1 and A4.2

Reservoir Overflow Throughput
Number Weighting Weighting

Factor Factor
1 20 -.060
2 16 -.059
3 8 -.055
4 12 -.057
5 14 -.058
6 10 -.056
7 7 -.054
8 6 -.052
9 6.50 -.053
10 5.50 -.051
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The weighting factors were given a large spread, in an attempt to ensure
that it would not be advantageous for the overflow from a reservoir to
be reduced with a resultant increase in the overflow from a downstream

reservoir with a higher overflow weighting factor.

A.IV.2 Example A4.1

In this example only the flow constraint governing the outflows
from reservoirs 1 and 5 was binding. The data for the reservoir
constraints is shown in Table A4.2 The results presented in figure
A4.2 show that in fact there was no advantage to be gained by over-
flowing from a reservoir with a high overflow weighting factor. The
overflows shown for reservoirs 1, 5 and 6 are as small as numerical
accuracy would allow. The outflow from reservoir 3 was zero until
reservoir 2 stopped overflowing and thus no further reduction could be
made in the overflow from reservoir 2. The results for the remaining

reservoirs appear to be optimal.

TABLE A4.2

The Reservoir Constraints for Example A4.1

Reservoir

Number CD CN Rmax DInitia] Dmax A(d)

1 2.50 15.0 3.0 1.0 6.0 50 + 80d
2 2.00 15.0 3.0 1.0 6.0 50 + 80d
3 2.00 15.0 3.0 1.0 6.0 50 + 80d
4 2.00 15.0 3.0 1.0 6.0 50 + 80d
5 2.50 15.0 3.0 1:0 6.0 50 + 80d
6 2.00 15.0 3.0 1.0 6.0 50 + 80d
7 2.00 15.0 3.0 0 6.0 50 + 80d
8 2.00 15.0 3.0 1.0 6.0 50 + 80d
9 2.00 15.0 3.0 1.0 6.0 50 + 80d
10 2.00 15.0 3.0 1.0 6.0 50 + 80d
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Fig. A4.1 The Inflow Hydrographs for Examples

Ad4.1 and A4.2
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This run took 86 seconds of IBM 60-67 computer time, including
the plotting routines and reduced the objective function from an
initial value of 88,712 to a final value of 74,563.

The explanation of this time which was 45% greater than that
of any other run, is given in section A.IV.4. Ninety percent of the

reduction was obtained within the normal running time of 50 seconds.

A.IV.3 Example A4.2

In this example the area-depth relationships of the reservoirs
were changed from the previous example along with the discharge
coefficients for orifices 5 and 6. The values of the area depth
relationships and the discharge coefficients are listed in Table A4.3

TABLE A4.3

Data for Example A4.2

Reservoir A(d) CD
Number

1 30 + 140d 2D
2 40 + 185d 2.4
3 20 + 175d 2.0
4 30 + 120d 2.0
5 50 + 100d 3.2
6 50 + 180d 3.0
7 50 + 150d 2.0
8 30 + 140d 2.0
9 30 + 185d 2.0
10 50 + 8nd 2.0

The intent of this run was to demonstrate what happens when a
storm is too small to require the entire capacity of the system. The
results of this run, which was stopped before completion, are plotted
on figure A4.3. They show that the optimal control tends to make

maximum use of the downstream storage capacity. Considering the
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accuracy of information available for the control determination, this
tendency could result in unnecessary overflow from the system when in fact
there is adéquate storage capacity available. Protection against such

an occurrence could be obtained by placing a safety factor on the

maximum allowable depth for the most critical downstream reservoirs in

the system.

Ideally, this run should have filled all the downstream reservoirs
to their maximum capacity where possible, and yet not have permitted any
overflow. Numerical accuracy generally precludes finding exactly zero
overflow, and thus in cases where there is more than adequate storage
capacity in the system, as there is in this example, the numerical
optimum is obtained by filling each reservoir just short of its maximum
depth (since the overflow penalties exceed any throughput gains). When
this occurs there is no way for the upstream orifices to open once they
have shut down. Thus in this example, when run to completion, none of
the reservoirs overflowed during the fifty time steps but orifices 3, 4,
7, 9 and 10 were still shut down at T = 50. Probably the simplest way to
avoid this problem is to allow a small amount of overflow from each
reservoir without penalty; the gain in throughput would then not be offset
by a penalty against any small overflow and the computed optimal control
would then ensure that all downstream reservoirs filled where possible
and as a result the orifice controls for each orifice would be opening
at te.

One final point of interest in this example is the operation of
the orifice controls for reservoirs seven and eight. If only one reservoir,

say reservoir seven, were upstream of reservoir six, then it would be
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computationally advantageous during the optimization process to shut down
orifice seven as soon as reservoir six overflowed. With two reservoirs

in parallel upstream of reservoir six, such a procedure would prevent the
gradient search procedure from obtaining the optimal control for reservoirs
seven and eight in cases similar to this example, where reservoir six
should fill to maximum capacity but not overflow. If the true optimal
solution allowed overflow from reservoir six then for the given overflow
weighting factors, orifices seven and eight would in fact close before
reservoir six overflows; however, there is no way to determine a priori

that this will in fact be the case.

A.IV.4 Comments on the Examples

For these two computer runs, the gradient search routine was
modified to eliminate the problems created when one reservoir in the
system reached its maximum level but did not overflow. Prior to the start
of each iteration a check was made to determine if the volume of spill
from each reservoir was less than a predetermined limit. If any reservoir
filled and had overflow less than the specified Timit, the switching time
for the upstream reservoir was increased by one time step. In addition,
the adjusted switching time for the upstream reservoir was assumed to be
an optimum value and was held constant unless in later iterations the
overflow from the downstream reservoir again fell below the arbitrary limit
in which case the adjustment procedure was again applied to the upstream
reservoir. llhen an upstream reservoir switching time was adjusted an

additional check was made to ensure that the adjustment would not cause it
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to stop overflowing. If this reservoir was itself liable to stop
overflowing then an adjustment was applied to the next reservoir
upstream. Once all derivatives were found to be zero, then further
iterations were made in which no checks or adjustments were made for
small spill volumes. (This was similar to the procedure - in fact an
additional part of it - discussed in Chapter V to reduce computations by
temporarily eliminating any switching times which showed a zero
derivative).

The results obtained using the above procedure showed that it
worked effectively and did produce some reduction in the objective function
when compared to results obtained without the additional routine. The
increased reduction in the objective function which amounted to less than
10% of the total reduction, for Example A4.1 was obtained at the expense
of a 45% increase in computational time. When it is realized that in this
example during the initial iteration, the orifice switching times were
adjusted to prevent flow into an overflowing reservoir from an upstream
reservoir with a lower overflow weighting factor, (with the exception of
reservoir six) and, as a result, the full capacity of nine of the ten
storage reservoirs was utilized and all but 200 volume units of the
remaining reservoir utilized, then it does not appear that the benefits
gained by the additional computations are worth the increase in

computational time.
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APPENDIX V

EXAMPLES OF OPTIMAL CONTROL - GENERAL PROGRAM

A.V.1 Introduction

This appendix gives the optimal control results for the ten
reservoir control problem for two examples in which the relative values
of the overflow weighting factors are different from those discussed in
Chapter V and shown in Table V.3.

The inflow hydrographs for both examples are the same and are
shown in figure A.5.1. Their peaks are shifted in time to simulate
the passage of a storm from left to right across the basin shown in
figure V.4 of Chapter V.

The data for the reservoir constants was also kept constant for

the two examples and is shown in Table A5.1

TABLE A5.1

The Reservoir Constants for the Control Examples

5ﬁ;§;:01r CD CN Rmax Dinitia1 Dmax A(d)
1 2.50 15.0 3.0 1.0 6.0 50 + 80d
2 2.00 18.0 3.0 1.0 6.0 50 + 80d
3 2.00 15.0 3.0 1.0 6.0 50 + 80d
4 2.00 15.0 3.0 1.0 6.0 50 + 80d
5 2.50 15.0 3.0 1.0 6.0 50 + 80d
6 2.00 15.0 3.0 1.0 6.0 50 + 80d
7 2.00 15:0 3.0 1.0 6.0 50 + 80d
8 2.00 15.0 3.0 1.0 6.0 50 + 80d
9 2.00 15.0 3.0 1.0 6.0 50 + 80d
10 2.00 15.0 3.0 1.0 6.0 50 + 8o0d
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A.V.2 Example A5.1

In this example all the flow constraints were non binding and
thus the system behaved as if it were two separate series systems. The

relative values of the weighting factors are listed in Table A5.2

TABLE A5.2

The Weighting Factors for Example A5.1

Reservoir Overflow Throughput

Number Weighting Weighting
Factor Factor

1 10.0 -.060

2 9.30 ~-.059

3 5.80 -.054

4 6.50 -.055

5 8.60 -.058

6 7.90 -.057

7 7.20 -.056

8 4.40 -.052

9 5.10 -.053

10 3.70 -.051

The results presented in figure A5.2 show that for reservoirs 1 and 2
there was a slight advantage to be gained by reducing overflow from
reservoir 2 at the expense of reservoir 1. The same advantage could also
be gained by reducing overflow from reservoir 6 at the expense of
reservoir 5. In the latter case the late peak of the inflow hydrograph
to reservoir 5 resulted in a much larger spill from that reservoir than
from reservoir 1. There was also a longer time span between the time
orifice 6 closed down and reservoir 5 overflowed than there was from
reservoirs 1 and 2, thus increasing the advantage to be gained by

decreasing spill from reservoir 6 at the expense of reservoir 5. There
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does not appear to be any changes that could be made to the controls
that would reduce the objective function.

This run took 51 seconds of IBM 60-67 computer time (including the
plotting routines) and reduced the objective function from an initial

value of 63,634 to a final value of 54,480.

A.V.3 Example A5.2

In this example the flow constraint Qmax’ was set at 165 vol/time
increment, thus ensuring that the ten reservoirs behaved as one system.

The relative values of the weighting factors are listed in Table A5.3.

TABLE A5.3

The Weighting Factors for Example A5.2

Reservoir Overflow Weighting Throughput
Number Factor Weighting Factor

-.054
~.0563
062
-.051
-.060
059
-.058
-.057
-.056
=.0b5

OO~ HWM
Sl el

NN OO—=MNDWP~O,m

(s Nan Han Jae i ao Reo Ran e o s )
1

0

In this example the overflow weighting factors decreased
upstream for each of the two main legs of the system. The results are
presented in figure A5.3 and show that because of the flow constraint

there was no advantage to be gained by reducing the overflow from
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reservoir 2 at the expense of reservoir 1 and thus there was no overflow
from reservoir 1. However as a result of the zero overflow from 1, some
initial outflow was required from reservoir 3 to ensure that reservoir 1
filled. Shutting down orifice 2 or orifice 3 one time step earlier would
have reduced the inflow to reservoir 1 sufficiently that it would not
have filled and by the operating rules would have been unable to open
orifice 2 (and hence 3). It is possible that if orifice 2 shut down one
time step later and orifice 3 shut down at time zero a slight reduction
in the objective function might have been realized (depending upon the
effects of numerical accuracy). This same effect is evident in the
operation of orifice 7 which possibly should have been closed earlier. In
this case a reduction in throughput from reservoirs 6 or 7 would have
caused a slight reduction in the throughput from reservoir 5 which would
allow a slight increase in throughput from reservoir 1 again preventing its
fi11ing. For reservoirs 5, 6 and 7 because there was no constraint on the
outflow from reservoir 5 it would, however, have been advantageous to
reduce the overflow from an upstream reservoir at the expense of a down-
stream reservoir but not to the extent shown in this example. (Compare
the weighting factors and results of example A5.1 with those for this
example). No improvement can be made on the results shown for reservoirs
8-10.

This run took 51 seconds of IBM 60-67 computer time (including
plotting routines) and reduced the objective function from an initial value

of 67,470 to a final value of 57,566.
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A.V.4 Comments on the Examples

In the two examples presented in this appendix the initial
guesses of the switching times were made quite large, thus ensuring that
nearly all the reservoirs filled to their maximum values initially. At
the start of each iteration these switching times are automatically
adjusted to ensure that if a reservoir is spilling there is no inflow
from an upstream reservoir with a Tower overflow weighting factor. Thus
the initial guess is immediately adjusted to a reasonably good guess.

As a result, a large portion of the reduction of the objective function
can be attributed to the redistribution of the total spill amongst the
ten reservoirs of the system. On this basis it would appear, therefore,
that any further improvement in the results in Example A5.2 would have

been small.
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APPENDIX VI

THE CONTROL PROGRAM

Figure A6.1 is a listing of the subroutine used to determine
the value of the objective function for a given set of values of the
switching times Xi. The Tisting is for the most general relationships
between the overflow weighting factors as discussed in Appendix V.

The neumonics of the program and the required data inputs are
noted in the comment statements. The logic follows the flow chart

shown in figure V.5.




5 SUBRNUTINE PHI(JPRINT,X,PHIZ,IGVER,GTOT)
[ C THIS PROGRAM COMPUTES THE MINIMUM DVERFLOW FOR A TEN RESERVOIR PROBLEM
7 C GIVEN THE SWITCHING POINTS_X(I), LEFT ARM HAS RESERYOIRS 1,2,3 AND 4
8 C RIGHT ARM HAS RFSFRVOIRS S,6,8,9 AND 10, RESERVOIR 7 IS PARALLEL wWITH
9 C RESERVOIR 8 AND FEEDS RESERVOIR &, RESERVOIRS 1 AND 5 ARE DOWNSTREAM
10 C THE OVERFLOW WEIGHTING FACTORS ARE ORDERED 21 ,GT, Z2 LGT, 25 ,GT,
i1 c 24 ,67, 26 .67, 23 ,GT, ZT7 ,GT, 29 ,GT, 28 ,GT, Z10 , THE THROUGHPUT
12 C *EIGHTING FACTORS ARE PROPORTIONAL TO (BUT VERY MUCH SMALLER IN
_ 13 € MAGNITUDE THAN THE OVERELOW FACTURS, Z21 AND 722 ARE DUMMY
14 c
15 C =* LI T * & *x & ® ® & N * & W R A R * 2 * * ® & & WA
16 C THE DATA REGUIREMENTS AREl= *
17 C CO(I) = ORIFICE COEFFICIENTS CW(I) = WEIR COEFFICIENTS *
18 C FRM(I) = MAX ORIFICE RADIUS DM(1) = MAX DEPTH BEWIND WEIR *
19 € DI(I) = INITIAL RES, DEPTHS  SA(I) AND SB(]) RESERVOIR STORAGE =
20 C GMAX(I)=~ MAX ALLOWABLE FLOW PARAMETERS *
21 c DOWNSTHFAM DOF THE RESERVOIR DT = INTEGRATION TIME INTERVAL "
22 C QI(J) = POINTS ON THE INFLOW TMAX = STOPPING TIME (=XMAX IN *
23 c HYDROGRAPH DTQ MIN APART GRADIENT) *
24 C & k% * & & W * % * " %R LI k X * % * & *® * k ® & % &
B ey ottt = -
2o DIMENSION COC10),COMC10),RM(10),Cw(10),DM(10),0MAX(10),5AC10),
27 1SB(10),NI(10),2(22),00IC11),H(10),RC10),D(10),DNC10),X(10),
28 2011(¢13,101),ICLOSEC10),GTHRU(L13),00VER(10),INEXT(10),IDUM(]10)
29 3,I0VER(10),KFILL(10)
30 DIMENSION ALPH(20) ,DPD(55,10),DPR(55,10),0PH(55,10),DPY(55),
31 1DPT(55)
3e DIMENSION GTOT(10)
33 I FORMAT(1X,41HTHE INPUT DATA TO THE CONTROL PROGRAM IS~ )
34 2 FORMAT(10FB,2)
35 3 FORMAT(1X,SHDEPTH,2X,10(2X,F10,2))
16 4 FORMAT(1X,5HQUVER,2X,10(2X,F10,2))
37 % FORMAT(1X,5HOTHRU,2X,10(2X,F10,2))
38 6 FORMAT(1X,7HUORIFICE,10(2X,F10,2))
39 7 FORMAT(1X,4HWEIR,3X,10(2%X,F10,2))
40 B FORMAT(1X,6HINFLOW,1X,13(1X,FB,2))
ay 9 FORMAT(SX,6HTIME =,FB8,2)
4z 10 FORMAT(IX,23HTHF FINAL RESULTS ARE =,F10,2,6H = PHI)
4% 11 FORMAT(10IS5) oy
oy GO TO (770,880,880,8B80),JPRINT
us C SECTION A = & % & % ® & % * % & %% &* ® * % & & & & & % * &
Uk C KEAD DATA, COMPUTE MYDROGRAPH POINTS FOR EACH DT INTERVAL ,COMPUTE =
47 C MISCELLANEOUS PARAMETERS, AND wRITE QUT DATA xR AR R A K AP
4B 770 WRITE(6,1)
69 e R0 TY TR _— :
50 READ(S,2) CO(I) CW(CT),DICI) D™M(T),RM(I),SA(I),SB(])
51 wRITE(b,2) COCI),CW(I)yDI(I),DM(I),RM({1),SA(I), SB(I)
52 71 CONTINUE
53 READ(S5,2) (OMAX(I),I=1,10)
54 READ(S,2) (Z(I),151,20)
85 = READ(5,2) DT,THMAX
Se READ(S5,11) JGRAPH
57 WRITE(6,2) (GMAX(I),1=1,10)
58 WRITE(6,2) (Z(1),1=1,20)
59 WRITE(6,2) DT,TMAX
60 WRITE(A,11) JGRAPH
61 L COMPUTF MISCELLANEQUS PARAMETERS COMMON TO ALL ITERATIONS
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Fig. A6.1 Listing of the Control Subroutine for the

Ten Reservoir Example
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62 Z(21) = 0,00

63 Z(22) = 100,00

64 DO 72 I=1,10

65 T2 COM(I) =CO(I)®(RM(1)%n2)

66 NT = TMAX/DT ¢ 1,01

6l —— —— _NTM. = NT = |

68 ND = NTH/1O

69 pTQ = ND

70 DD 73 I=1,13 g _—
71 READ(5,2)(0I(L),L31,11)

72 DO 74 J=1,10

73 K= J s 1

74 DIFF = (OI(K) = Q@I(J))/DTQ

1S M = (J=])aND ¢

76 N = JaND

77 DO T4 L=M,N

78 P = LeM

39— 74 OHI(l,L)=-01(J) + P*DIFF

8o GII(I,NT) = QIC(11)

81 WRITE(6,2) (BICL),L=1,11)

82 73 CONTINUE

A3 C = = ok k k A & & %k & %k & ® Kk kx & * Kk & &% &k &k ® X & & R
84 C START SFCTION B = EVALUATION OF THE OBJECTIVE FUNCTION

85 _ COMPUTE THROUGHPUTS AND OVERFLOWS FUR THE GIVEN SWITCHING POINTIS
86 c

a7 C COMPUTE INITIAL CONDITIONS FOR T=0,0
88 880 PHIZ = 0,0

89 T = 0,0

90 LONE = X(1) + DT

91 XONE = | ONE

92 PO 5001 KJ=1,10

93 5001 QTOT(KJ) = 0,0

94 DO 51 I=1,10

95 ICLOSE(TI)=1

96 IF(X(I),LE,0,0) ICLOSE(I)=2
e ] IOVER(]) =}

98 INEXT(I)=1

99 IF(1.NE,S5) GO TO 51

00 ICLOSE(S)=5

01 IFCICLOSE(1),NE,2) GO TO 51

0e ICLOSE(1)=5

03 - INEXT(1) =%

o4 ICLOSE(5)=]

0s INEXT(5) =]

06 51 DCI) = DIC(I)

07 DO 52 I=11,13

08 §2 QTHRUC(CI) = 0,0

09 (. BEGIN OUTER LDOP 0N TIHE STEES & A_A K K R £ & Rk & * & & A
10 DO 500 J=1,NTM

1 LOOP = 0

12 JZLOOP = 0

13 C COMPUTE ORIFICE THROUGHPUTS A X KR X R A R Ak AR WK KRN KK
14 202 DO 118 KJ=1,10

15 ~ 3118 QTHRU(KJ) = 0,0

16 IF(XOME ,GT4X(5)) GO TO 2021

17 IF(X(S), LT T=DT,0RX(5),6T,T) GO TO 2021
18 ICLOSE(1) = }

19 ICLOSE(S) & 5

20 DD 2022 KI=1,10

24 JTELINEXT(KI)LEQ 1) G0 10 2023




122
123
124
125
126

2023
2022
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IFCINEXT(KI) NE,S5) GO TG 2022
INEXT(RI) = 1

GO TO 2022

INEXT(KI) =2 S

CONTINUE

127 2021 CONTINUE

128 DO 100 KI = 1,10

129 K sINEXT(KI)

130 C CLOSE ORIFICES IF T,GT,X(K) DR IF DOWNSTREAM RESERVOIR OVERFLOWS
13t C PROVIDED ZU,LT,ZD

132 IFC(ICLDSE(K),GT,1,0R,K.EQ,5) GO TO 111

133 IF(K,E0,1) GO TO 115

134 IF(T,LE,X(K)) GO TO 111}

135 ICLOSE(K) = 2

136 111 IF(JPRINT.EG,2.,0R,JPRINT,EQ,3) GO TO 112

137 IF(D(K)GE,DM(K) AND,JOVER(X),LT,3) GO TO 114

138 GO YO 112

119 114 1F(K EQ, U, 0R K ,EQ,b,0R K FO,7.0R, K EG,10) GO TO %412
140 LK = K#1

141 IF(ICLOSE (LK),GE,2) GO TO i1i2

142 IF(Z(LK), GT,Z(K)) GO TO 112

143 ICLOSE(LK) = 2

1ed IF(T,GT,X(LK)) GO TO 112

14s X{LK) = 1 = DT/2,0 -

146 IF(ICLOSE(K) ,EQ,5) X(LK) = T ¢+ DT/2,0

167 GO 7O 112

148 115 IF(T=DT,LEX(1),AND,T,GT, X(1))GO TO 116

149 GD TO 111

150 116 ICLOSE(1)=5

151 _ICLOSE(S)I=1 -
152 INEXT(KI)=5

153 K =5

154 M = Klef

155 DO 117 LK=M,10 .

156 IFCINEXT(LK) EG,5) INEXT(LK) = 1}

X852 . - 3P CONTINUE

158 GO TO 111

159 112 M = JCLOSE(K)

160 GO TO (60,70,80,90,60),M

161 C CGMPUTE THROUGHPUT ON THE BASIS ORIFICE AT MAX ALLOWABLE

162 60 NTHRUCK) = COMEK)*SART(ND(K))

163 IF(KEQela0R,K.EQLS) GO _TO 61 _— SRR
164 IF(QTHRUCK) # OTII(X,J),6T,3MAX(K)) OTHRU(K) = GMAX(K) = QII(K,J)
165 IF(K,EQ,7,0R,K,EG,8) GU TOD 63

166 GO TO 100

167 61 L =5

168 N =1

169 e IFIK,EDS) Lui o —

170 62 IF(OTHRUCKI+QII(K,J)4QTHRUCL)4NIT(L,J),GT,GMAX(N)) QTHRU(K) =
17 JOMAX(N)= GTHRUCLI=QII(K,J) =QII(L.J)

172 GO TO 100

173 63 N=S

174 L=7

175 IF(KEQ,T7) L=8

176 GO TO &2

177 C COMPUTE THROUGHPUT ON THE BASIS ORFICE IS FULLY CLOSED

178 70 GTHRU(K) =0,0

179 GO TO 100

180 C COMPUTE THROUGHPUT ON THE BASIS DDOT(DOWNSTREAM) = 0

181 BQ JL = K = 1
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182 IF(K,EQ,B) JL = &
183 IF(JL,FR,6) GO TO 85

164 QTHRU(K) = ATHRU(JL) = GII(K,J)

185 IF(QTHRU(X),LT,0,0) GO TO 70

186 81 IF(QTHRU(K)I*QIT(K,J) 6T UMAX(K)) QTHRU(K) =0MAX(K) = QII(K,J)
187 QUM = COM(K)=2SORTLD(K))

188 IF(QTHRU(K) ,GT,GDUM) GTHRU(X) = QDUM

189 GO TO 100

190 85 L =7

191 IF(K,F,7) L=8

192 LSUM = QITCL,J) + QII(K,J) + QTHRU(L)

193 OTHRU(K)-= QTHRU(JL) = 0OSUM

194 IF(RTHRU(K) ,LE,0,0) GO TO 70

195 IF(QTHRU(KR) + QSUM,GT,.AMAX(S5)) QTHRU(K) = OMAX(5)=QSUM

196 GO TD 81

197 C COMPUTF THROUGHPUT ON THE BASIS DDOT(K) = 0

198 90 IF(K,EQ,6) GO TO 95

.l.ﬂﬂ. e i T}

200 IF(K,EG,4) L = 12

201 IF(K,ER,7Y L = 13

20¢e OTHRU(K) = QII(L.,J) + QTHRU(L)

203 IF(KLEG,5,0R K ,EQ,1) GO TO 9%

204 GO TO A1

205 91 QDUM = COM(K)}2SQRT(D(K))

206 IF(OTHRU(K) ,GT ,UDUM) QTHRU(X) = QDUM

207 GO TO &1

208 95 QTHRU(K) = QIIC(7,J) # QII(8.J) + QTHRU(T) +GTHRU(B)

209 GO T0 81

210 100 CONTINUE

FAS| — C  CHECK _JO SFF THAT THE FULL CAPACITY OF THE LINE FROM RESERVQIRS
21e. C 1 AND S IS BEING USEN TO CAPACITY, NOTE THAT IF THE HYDROGRAPHS
213 C IMCREASED SHAKPLY, SOME RESERVOIRS MIGHT OVERFLOW THAT HAD PREVIOUSLY
cld C CEASED TO OVERFLOW

215 JZCNT = 0

ele IF(ICLOSEC1) JMNE U AND,ICLOSE(S) NE,4) GO TO 1014

237 — IF(OTHRULL) + OTHRULS) 4 QIICI,J)+ QBI1(5,J) + ,001,GFE,GMAX(1))
218 1 GO T0 101

219 IF(ICLOSE(S)EG,4) GO TO 1031

220 ICLOSE(1) = 5

221 ICLOSE(S) = 1

222 kKl = 2

22% —  _ GD-JC-103&-

efu 1031 ICLOSE(1) = 1

225 ICLCSE(S) = S

ceb KL = 6

227 1032 DO 102 KJ = KL,10

228 1IFCICLOSE(KJ) ,ER,4) GO TO 103

229 . _JF(ICLOSE(KJ]),.EQ,1) GO TO 104

230 ICLOSE(KJ) = 3

231 GO TO 104

232 103 IF(XKJ,EQ,7) GO TO 102

233 ICLOSE(KJ) = 3

234 IF(KJ,EQ,4) GO TO 104

235 102-CONTINUE

236 104 JICNT = 10

237 101 CONTINUE

218 C COMPUTE RESERVOIR DEPTHS AND WEIR OVERFLOWS = MAKE CHECKS FOR CHANGES
239 C IN COMPUTATION DRDER * ® % & & & &% % & & & & & & % # & & % %
2un DO 200 K=1,10

284 IFCJICNT EG.40) GO YO 190




228

242 L=Ke]

243 IF(K,ER,4) L=12

244 IF(K,EQ,T) L=13

245 QIN = QIT(L,J) + QTHRU(L)

246 IF(K,EG,6) QIN = GIN¢ QII(8,J) + QGTHRU(S)

24y 0 AREA = SA(K) ¢ SH(K)=*D(K)

2us DDOT = (GIN = GTHRU(CK))I/AREA

249 DN(K) = D(K) +DDOT*DT

250 IF(DN(K)+,002 ,L,GE,DM(K))GOD TO 110

251 IF(D(K)+,002  ,GE, DM(K) ,AND,DN(K)+,002 ,LT,DM(X)) GO TO t20
252 GOVER(K) = 0,00

253 = GO _TO 200

254 110 GOVER(K) = QIN = OTHRU(K) = (DM(K) = D(K))*AREA/DT

255 IF(ON(K),GT,OM(K)) DN(K) = DM(K)

256 IF(OOVER(K) ,LT,0,0) QOVER(K) = 0,0 :
257 IFCIOVER(K) JNE,3,AND ,QOVER(K) ,GT,,002) IOVER(K) = 2

258 GO TO 200

259 € COMPUTE CHANGES IM THE ORNDER OF CALCULATION = FIND RESERYQIR wITH
260 C NEXT LARGEST Z THAT IS OVERFLOWING OK MAY OVERFLOW

261 120 IMAX = 0

262 ROVER(X) = 0,00

263 I0VER(K) = 3

264 C PDEFINE THE LIMITS OF THE SEARCH

265 C FIND LIMITS UPSTREAM

266 NBL = K + 1

267 NBU = 4

268 IF(K,GE,5) NBU = {0

269 KU = K

270 IF (NBL,EQ,5,0R,NBL,EG,11) GO TO 1502

271 DD_1S01 K J=NBL ,NBY

ere IF(KJL,ER,7) GO TO 1504

273 IF(ICLOSF(KJ), ,EQ,1) GO TO 1502

274 KM = KJ = |

215 IF(ICLOSE(KJ) ,EQ,3,AND ,DN(KM)+,002,LT,DM(KM)) GO TO 1502
276 GO TO 1501

211 . 1504 IF(ICLOSE(7),EQ.1,AND, ICLOSF(8),EQ,1) GO YO 1502

278 1IF(ICLOSE(7) EG,3,AND,ICLOSE(8) ,EQ, 3 ,AND,DN(6)+,002,LT,DM(6)) GO
279 1 70 1502

280 1501 KU = KJ

281 C SEARCH FDR LIMITS DOWNSTREAM

282 1502 NBU = K

283 NBL = 1

284 IF(k,GE,5) NBL = §

285 KD = K

286 KR = NBU + |

287 DO 1503 KJ=NBLNBU

288 KR = KR = |

289 _ JF(KR,EQ,5) GO TQ 1593

290 IF(KR,EG,7 4AND(T#DT LT, X(6),0R,ICLOSE(6),EQ,2)} GO TO 1505
291 IF((T+DT LT X (KR),OR,ICLOSE (KR) ,kEQ,2) ,AND,KR,NE,T7) GD TO 1505
292 1503 KD = KR

293 1505 IF(KD,EQ,1,0R,kKD,EQ,5) GC TO 1550

294 GO TO 1520

295 C SEARCH FOR PARALLEL RESERVOJRS THAT MAY BE AIDED
296 1550 CONTINUE

297 IF(K,GE,5) GD TO 15086
298 NBL = S

299 NBU = 10

300 GO T0 1510

301 31506 NBL = |
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302 NBU = 4
303 1510 KP = 0

304 DO 1507 KJ=NBL,NBU

305 IF(KJ,EQ,7) GO TO 1509

306 IF(ICLOSE(KJ),EQ,1) GO TO 1515

307 TF{XJ Q41 ,0R,KJ,EQ,5) GO TO 1508

308 KM = KJ = |

309 IF(ICLOSF(KJ) F@,3,ANDDN(XM)+,002,LT,DM(KM)) GO TO 1515
310 GO 10 1507

311 1508 IF(ICLOSE(KJ) EW,5,AND,GTHRU(KJ),GE,COM(KJ)*SQRT(D(KJ)IIIGO TO 1515
312 GO TO 1507

313 3509 JF{ICLOSELT ) F O, (ANDICLOSE(B) ,EQ, 1) GO TO §54S
314 IF(ICLOSH(T) EG,3,AND,ICLOSE(B) ,EQ,3,AND,DON(6)+,002,LT,DM(6))
115 i GO TO 1515

3116 1507 KP = KJ

317 C LIMITS OF SEARCH ARE NOwW DEFINED

318 1515 IF(KP,ER,0) GO TO 1520

_3’_0_______ NB‘_LK_D - !

320 NBU = 4

321 IF(k,LT,S) NBU = {0

322 GO TO 1530

323 1520 IF(x,GT,4) GO TO 1521

324 NBL = S5

325 NBU-—=-10

326 GO TO 1530

327 1521 NBL = 1

328 NBU = 4

129 C SEARCH FOR RESERVOIR THAT IS UR MAY BE OVERFLOWING
330 1530 ZMAX = 0,0

33y IMAX = 0

332 NO 1531 KJ = 1,10

333 1FCIOVER(KJ) FQ,3) GO TO 1534

334 IF(KJ,LT,KD,OK ,KJ,GT ,XU) GO TO 1531

335 1F (KJ,GE ,NBL ,AND KJ LE,NBU) GO TO 1531

336 TF(2(KJ),LT,ZMAX) GO TO 1531

337 - - ZMAX = 2(KJ)

3318 IMAY = KJ

33¢ 1531 CONTINUE

340 IF(ZMAX,GT,0,0) GO TO 1540

341 1F (XK ,EN,4,0R K, ER,7,0R,K,EQe10) GO TO 200

3u2 IR = K + 1

343 . IF(IR,EQ,7) GO 10 1532

36U IF(ICLOUSE(IR),EQ,3) GO TO 200

345 1533 JCLOSF(IR) = 3

3ue GO TD 190

3L 1532 IF(ICLOSE(7),NE,3) GO TO 1533

1uB IR = 8

349 . IF(ICLOSE(IR),NE_3) GO TO 1533

350 GO TO 200

351 1540 CONTINUE

iSe C RESFT RESERVOIR CONTROLS

353 1F ( (K ,GE,5,AND ,IMAX ,GE,5) ,0R, (K,LT,5,AND,IMAX,LT,S5)) GO TO 122
354 IF(K,GE,S,AND IMAX LT, ,5) GO TO 124

355 C._CASE K,LT,5 AND IMAX,GE,S

156 MK = |

357 NE = &

358 LK = 5

359 1u2 DO 140 KJ=MK,K

160 1do ICLOSE(KJ) = 4

364 1CLOSE(LX) = 5

Ll



421  C COMPUTE THOSE RESERVOIRS WITH ICLOSE

230
362 143 DD 141 KJSNK,IMAX
363 ICLOSE(KJ) = 3
364 IF(KJ,ED,7,AND ,IMAX ,GT_7) ICLNSE(KJ) = 4
365 141 CONTINUE
166 GO TO 190
26T C _CASE_XGT,S AND IMAX.LTY,S
3ed 124 MK = §
169 NK = 2
370 LKk = 1§
371 GO TO 142
3172 C CASE X AND IMaX BOTH GT, OR LT, S
373 122  1F(K,GT,IMAX) GO TO_ 145
374 NK = K + 1
375 IF(K,EQ,T) Nk = K
176 GO TO 143
77 145 ICLOSE(K) = 4
378 GO TO 190
379 190 LOOP = LOQOP & 1
380 JICNT = 0
381 IF(LOOP,GT,20) GO TOD 666
3Be LK=0 R
383 C COMPUTE THDSE RFSERVQIRS WITH ]CLOSE = 1
384 KM = 1
385 1192 DO 191 KJ=1,10 T
366 IF(ICLDSE(KJ) NE,KM) GO TO 191
387 1193 LK = LK + 1
L1:1: INFXTI(LK) = KJ
389 191 CONTINUE
390 IF (kM ,EQ,5) GO TO 197
391 IF(xM,EG,2) GO TO 192
3192 C COMPUTE THOSF RESERVOIRS WITH ICLOSE = 2
393 kM = 2
194 GO YO 1192
395 C COMPUTE THOSE RESERVOIRS wITH ICLOSE = 4, 0O IN ORGCER OF DECREASING
3196 C FRESFRVOIR NUMBER d
2T 192 kp = §
39A 193 NK = 0
199 DO 194 xJ=1,10
400 IF(ICLOSE(KJ),NE,KM) GO TO 194
a0 NK = NK ¢+ |
402 IDUM(NK) = KJ
403 194 CONTINUE
oy IF(NK,EQ,0) GO TO 197
4ns DO 196 KJ=1,gNK
406 LK = LK + 1}
407 JMAX = 0
408 IF(KM EQ,3) JMAX = 100
409 DO 195 KL=1,NK
410 MN = IDUM(KL)
a1l IF((KM EQ,3,AND MN,GT ,JMAX) ,0R (MN,ER,21) GO TO 193
412 IF((KM FO, U AND MN,LT JMAX) (OR MN ,EQ,22) GO TO 19S
413 JMAX = MN
414 MP = KL
i . LA 195 CONTINUE
416 INEXT(LK) = JMAX
ai7 IDUM(MP) = 18 + KM
ui8 196 CONTINUE
419 197 IF(KM,EQ,3) GO TO 202
az20 IF(KM,EQR.4) GO TO 1197

= 3, DO IN ORDER OF INCREASING

N



231
4ee C RESERVOIR NUMBER
uz23 KM = 3
ueu GO TO 193
az2s C COMPUTE THOSE RESFRVOIRS WITH ICLOSE = S
426 1197 KM = S
4T ——————— G0 TO 1192
428 bbb WRITE(6,11) (INEXT(I),I=1,10 )
uz29 wWRITE(6,11) (ICLOSEC(I),I=1,10)
u3o WRITE(b,11) K
a3y WRITE(B,2) (X(I),I=1,10)
aze GO TO 661
433 200 CONTINUE
434 IF (JPRINT ,NE,3) GO TO 250
435 661 CONTINUE
43is WRITE(R,9) T 5
437 WRITE(65,3) (D(KM),KM=1,10)
438 WRITE(6,4) (OOVER(KM),KM=1,10)
439 —  WRITELH,5) (LTHRU(KM) , KMz1,10)
440 WRITE(6,8) (GII(KM,J),KM=1,13)
441 DPT(J) = T
que JKM = J f
aul 2402 DO 240 KM=1,10
dau DPD(JKM,KM) = D(KM)
a4s 00 R(KM) = SORT(QTHRU(KM)/(CO(KM)IxSQRI(D(KM))]))
ays DPR{JKM,KM) = R(KM)
aq7 H(kM) = (QUVER(KM)/CW(KM))x* 6667
448 DPH(JKM,KM) = H(KM)
uy49 240 CONTINUE
450 WRITE(6,6) (R(KM) KM=1,10)
wsy WRITE(6,7) (H{KM),KM=],10)
452 IF(LOOP,GT,20) STOP 2
453 250 CONTINUE
4su DO S002 KJ=1,10
4ss 5002 QTOT(KJ) = GTOT(KJ) + GOVER(KJ)
use DO 260 KM=1,10 .
457 LK =KM &« 10
458 PHIZ = PHIZ +0THRUCKM)*Z (LK) + QOVER(KM)*Z(KM)
59 260 D(KM) = DN(KM)
Us0 S00 T =71 ¢ OT
us1 PHIZ = PHIZ*DT
462 IF(JPRINT,EQ,3) WRITE(6,10) PHIZ
Med ¢ PLOT RESULTIS
ubd IF(JPRINT ,NE,3) GO TO 3301
465 IF (JGRAPH ,NE,0) GO TO 3301
4bb READ(S,11) ND,KA,KB,KC,KD
ub7 READ(5,2) HA,HB,HC:VA,VB,VC
'y IU = &
489 DO 3303 JKM=1,10
470 READ(5,3310) (ALPH(I),I=1,20)
471 3310 FORMAT(20A4)
472 DO 3303 NF=1,3
473 PO 3304 NPD=1,51
4Ty GO TO (3305,3306,3307),NF
415 13105 DPY(NPD) = DPD(NPD,JKM)
476 GO TO 3304
477 3306 DPY(NPD) = DPR(NPD,JKM)
478 GO TO 3304
a79 3307 DPY(NPD) = DPH(NPD,JKM)
4éo 3304 CONTINUE

484 CALL-CGRL{DPT,DEY,DPY ND NE , KA KA, KC, KD, HA,HA,ZHC VAL VB, VO ALPH,THY
CALL (LPT,




232

llﬂ -- 19

ug2 3303 CONTINUE

483 C PLOT HYDROGRAPHS

4au READ(S5,11) ND,KA,KB,KC,KD

4as READ(5,2) HA,HB,HC,VA,VB,VYC

486 Nl 5 =2

487 NIl = 0

4Bs DO 4301 JKM=1,S

UT.R NI 2 NI + 3

490 NII = NII + 3 =
u91 IF(NII,GT,13) NI! = 13

492 NF = 0

493 22002020 2 READ(S,3310) (ALPH(I),I=1,20)

49y DO 4302 JK=N], NII%

49s NF = NF ¢ 1

u9s DO 4303 JL=1,51

497 4303 DPY(JL) = QIICJK,JL) .

498 CALL CGPL(DPT,DPY,DPY,ND,NF,KA,KB,KC,KD,HA,HE,HC,VA,VB,VC,ALPH,IU)
A99 - 4302 CONTIMUF

500 4301 CONTINUE

501 NF = 0

592 CALL CGPL(DFTsDPY DPY ND yNF ;KA KB, KC,KD HA,HB ,HC VA, VO, ,VCALPH,,TIU)
503 3301 CONTINUE

504 RETURN

LA b S END

287 6 2052
242 0y E

1 38-000-00 sec
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