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I. INTRODUCTION

(1)

(5)

where the subscript S refers to the secondary criterion.
The overall solution is then given by substituting (3) into
(2) to obtain

which has been simplified by taking advantage of the fact
that the projection operator is Hermetian and idempo­
tent [5]. An analogous expression at the acceleration level
allows the local minimization of joint torque.

An alternative to the formulations of (2) and (4) that
also utilizes the available redundancy is to include addi­
tional kinematic constraints to the original problem de­
scribed by (1). If the vector x is augmented with n - m
additional kinematic constraints then the resulting J aco­
bian will be square and traditional inverses can be applied
when it is nonsingular [9]. It has also been shown [1] that
the secondary criterion g(0) can be optimized by includ­
ing the constraint that the gradient of this function be
orthogonal to the null space of J. In both of these cases,
the extra constraints will introduce algorithmic singular­
ities [1] in addition to the kinematic singularities of the
original manipulator.

One effective method of dealing with singularities, be
they kinematic or algorithmic, is to use the damped least
squares formulation [7],[11]. The damped least squares
solution of an equation such as (1) will be denoted by 0(>')

and is defined as the solution that minimizes the quantity

where Ais a weighting factor, sometimes referred to as the
damping factor, which is used to set the relative impor­
tance of satisfying (1) versus the norm of that solution. It
is easy to show that the damped least squares solution is a
generalization of the pseudoinverse solution (obtained by
setting A= 0). Therefore, in the remainder of this work
the first term in (2) or (4) will always be calculated as a
damped least squares solution. Since the addition of the
homogeneous term will always increase the solution norm,
it is added only when the joint norm is below its physical
constraint thus implying that the damping factor is zero
and that the pseudoinverse has been calculated. The ad­
vantage of using this more general technique is that the
same algorithm and architecture can be used for all types

(2)o= J+x + (I - J+J)z

The vast majority of efforts to utilize redundancy in
robotic manipulators have been focused on the resolution
of redundancy at the kinematic level. The kinematics of
manipulators is frequently represented by

Abstract-This work presents a parallel algorithm
for solving the equations of motion for kinematically
redundant robotic systems. This algorithm, which re­
lies on the calculation of the Singular Value Decompo­
sition (SVD), is implemented on a simple linear array
of processing elements. By taking advantage of the er­
ror bounds on the perturbation of the SVD, it is shown
that an array of only four AT&T DSP chips can result
in control cycle times of less than 3 milliseconds for a
seven degree-of-freedom manipulator.

where + denotes the pseudoinverse and (I - J+J)z is the
projection of an arbitrary vector z in 0space onto the null
space of J. The second term in (2) is the homogeneous so­
lution to (1) since it results in no end effector velocity and
will be denoted here by 0H. This homogeneous solution
is frequently used to optimize some secondary criterion
under the constraint of the specified end effector velocity
by choosing z to be the gradient of some function g(O)
[4]. The homogeneous solution can also be used to opti­
mize secondary criteria defined in Cartesian space, either
to impose a priority to the manipulation variables [8] or
to avoid obstacles [5], by using

where x is an m-dimensional vector specifying the end
effector velocity, 0 is an n-dimensional vector denoting
the joint velocities, and J is the m by n Jacobian matrix.
For redundant manipulators n > m so that the general
solution to (1) is typically presented in the form
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of formulations whether they are described by (2), (4), or

by an augmented or extended Jacobian.

where u; and v; are the ith columns of U and V respec­

tively, and r is the rank of J, then the damped least

squares solution can be obtained using

II. REVIEW OF THE SVD

The SVD of the Jacobian is defined as the matrix

factorization

(13)

(19)

(16)

(17)

(18)

sin( I/J) = -p­
v cos(l/J)

and

p =jfjj

'T' 'T'q = J; J; - Jj Jj

v = V4p2 + q2

ffj+ q
cos(l/J) = -­

2v

so that for q ~ 0

j~ = j,; cos(l/J) + jj sin(I/J) (14)

jj = jj cos(I/J) - j,; sin(I/J). (15)

The terms cos(I/J) and sin( I/J) required to achieve orthogo­

nality can be computed by using the formulas given in [6]

which are based on the quantities

and setting the diagonal elements of D to the norms of

the columns of B

thus resulting in the SVD of J.
The orthogonal matrix V is formed as a product of

Givens rotations, each of which is designed to orthogo­

nalize two columns. Considering the current ith and jth

columns of J, multiplication by a Givens rotation results

in the new columns, j~ and jj given by

(6)

(7)

(8)

J = UDVT

r

J = LtT;u;vT
;=1

L
r a,

J(>') = --'-v·u'!'
tT~ +).2 ' ,

;=1 '

where U is an m by m orthogonal matrix of the output

singular vectors, V is an n by n orthogonal matrix of the

input singular vectors, and D is a diagonal matrix of the

singular values, denoted ai, which are typically ordered

from largest to smallest. An efficient implementation of

the SVD is central to the calculation of (2), (4), and 0(>').

In particular, if (6) is written as

and the projection onto the null space by using and for q < 0

n

(I - J+J) = L v;vr.
;=r+1

(9)
r;;=q

sin(I/J) = sgn(p)v~ and
p

cos(l/J) = ---:--(A..) (20)
V SIn 'I'

where the columns of B are orthogonal. A matrix with

orthogonal columns can be written as the product of the

orthogonal matrix U and the diagonal matrix D

Once again, the pseudoinverse is easily obtained from (8)

when). =O.
While the Golub-Reinsch algorithm is arguably the

best general algorithm for calculating the SVD, for this

application one would like to use an algorithm that is

more amenable to parallelization [2]. The algorithm used

here is based on Givens rotations [6]. Successive Givens

rotations are used to generate the orthogonal matrix V

that will result in

If the Givens rotation to orthogonalize columns i and

j is denoted by Vij then the matrix V can be computed

as the product of a set of n(n - 1)/2 rotations, referred

to as a sweep. While the number of sweeps required to

orthogonalize the columns of J is not generally known a

priori, it has been shown that by using information from

the SVD of the previous J one can obtain V in a single

sweep [6). In particular, if one considers (h to be the

current configuration of the manipulator, then the SVD

of J from the previous computation cycle time is known

and is given by

JV=B (10)

where

{
I if p > 0

sgn(p) = -1 if p :( 0 . (21)

B=UD (11) (22)

by setting the columns of U to normalized versions of the

columns of B
(12)

If one considers the current manipulator Jacobian to be

a perturbation of the previous Jacobian then the matrix

J(Ok)V(Ok_1) will have nearly orthogonal columns pro­

vided that this perturbation is small compared to J(Ok-d.
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Therefore, in this work V is calculated as

III. A PARALLEL ARCHITECTURE AND ALGORITHM

where only a single sweep is performed to update the
value of V(Ok-d. A discussion of the types of configura­
tions which will introduce errors into this approximation
is found in [6].

This section discusses a simple parallel architecture
and the implementation of the above algorithm on that
architecture so that solutions in the form of (2), (4), or
0(>") can be calculated in real time. The architecture to
solve these kinematic equations of motion consists of a
host processor and a linear array of n/2 processing ele­
ments (PE's). Each PE in the linear array can exchange
data with the PE on its right or left as well as with the
host processor. This architecture is quite similar to that
proposed in [10] for the control of redundant manipula­
tors, however, it does not require the specialized VLSI
implementation of a CORDIC SVD processor.

Obtaining solutions in the form of (2) or (4) involves
three distinct steps. The first step is the calculation of
the end effector Jacobian, J which is computed locally on
each of the PE's with the host sending only the current
manipulator configuration Ok. The second step involves
the calculation of the SVD of the Jacobian, and the third
step involves forming either (2) or (4) using the SVD to
form the damped least squares inverse of J, the projection
operator (I - J+J), and for (4) the damped least squares
inverse of [Js(I - J+J)]. The parallel execution of these
steps will now be considered in detail.

When the current end effector Jacobian J(Ok) is be­
ing calculated in the four PE's, the SVD of the previ­
ous Jacobian is available in these PE's with each of the
PE's containing two singular values and the input and
output singular vectors associated with these singular val­
ues. The first step in calculating the SVD of the current
Jacobian, identified as step 2.1 in the Fig. 1, is to multi­
ply the current Jacobian J(Ok) by V(Ok-d, the V matrix
associated with the SVD of the previous Jacobian.

The second step in calculating the SVD, identified
as 2.2 in Fig. 1, is the performance of a single sweep of
Given's rotations. In this figure Vi denotes the columns
of the V matrix which are a product of all the Givens
rotations performed up to that point, and b; denotes the
columns of the current matrix B which is the Jacobian
J(Ok) multiplied by the matrix V. The sweep begins at
step 2.2.1 with each PE performing a Given's rotation on

} e..,

}e.

Fig. 1 Step 2 of the algorithm consists of calculating the SVD

of the Jacobian. This is done by first multiplying the Jacobian by

the previous matrix V in step 2.1, then performing a single sweep

of Givens rotations in steps 2.2.1-2.2.8, and finally normalizing the

resulting columns of the matrix B to determine the matrix U and

the singular values.

its two columns of B. As discussed before, the angle of
the plane rotation is selected to make these two columns
orthogonal. The PE's then shift their left column of B
and V to the processor on the right. Now at step 2.2.2
each PE, with the exception of the left-most one, performs
a Given's rotation on its two columns. Each processor
then shifts its right column of B and V to the PE on
its left. This process of left and right shifts continues
until step 2.2.8 when eight levels of Given's rotations (a
single sweep) have been performed. If two data paths
are provided between PE's then the column shift ordering
used in [2] can be used to eliminate the idle PE in each
level. The last step in determining the SVD, identified as
2.3 in Fig. 1 involves calculating the matrix U(Ok) using
(12) and the singular values using (13).

(23)V(9.) = V(9._tl (git Yo;)
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Once the SVD of J has been computed the formation
of (2) or (4), denoted as the third step, is greatly simpli­
fied. The first term of either equation is considered as a
damped least squares solution

(24)

Similarly for a two-dimensional null space the SVD of A,
given by

A = (1Ai UA l V~l + (1A2UA2V~2' (32)

can be computed using a greatly simplified procedure.
First, the matrix Js is multiplied by the singular vectors
that form the null space of J:

which results in a basis for the range of A+. Next, a sin­
gle Givens rotations is performed to orthogonalize these
columns and determine the two input singular vectors:

which is easily computed using the SVD of J by applying
(8). Note once again that this provides the pseudoinverse
solution if ~ = O. The second term of (2) is also easily
computed once the SVD is available by using (9). For
example, when m = 6 and n = 8 the PE's that have
columns 1 to 6 of U,D, and V compute their contribution
to Op as

bAl = JSV7

bA2 = Jsvs

(33)

(34)

while the PE with columns 7 and 8 computes the term

b~l = bAl cos(4)) + bA2sin(4))

b~2 = bA2cos(4)) - bAl sin(4))

VAl =V7 cos(4)) + Vssin(4))

VA 2 =Vscos(4» - V7 sin( 4».

(35)
(36)
(37)
(38)

(I - J+ J)[Js(I - J+ J)]+ = [Js(I - J+ J)]+ (28)

however, it can be shown that the calculation of the SVD
of A+ is not as expensive as it might first seem. It has
been previously shown [5] that

(39)

which are then combined in step 3.4. Once XH and A+
are available the second term of (4) is formed using

The singular values and output singular vectors of A are
then computed using (12) and (13) on b~l and b~2' For
higher degrees of redundancy the vectors bAl thru bAn__
can be orthogonalized by using sweeps of Givens rotation
that are restricted to this n - r dimensional subspace, a
task for which this architecture has been optimized.

Fig. 2 illustrates the computations required to obtain
a solution in the form of (4) on the parallel architecture
for the case where m = 6 and n = 8. As in the computa­
tion of (2), the PE's with columns 1 to 6 compute their
contribution to Op using (8) in step 3.1. The PE with
columns 7 and 8 is responsible for computing the SVD of
[Js(I -J+ J)]+ using the method described above. In step
3.2 the results from the three PE's are combined to form
Op which is then distributed back to each of the three
PE's in step 3.3 so they can each compute two elements
of the intermediate term

(27)

(29)

which is the second term of (2). If the value of the
damping factor was zero then the intermediate terms are
summed to form 0, as defined by (2).

The computation of (4) is more difficult than (2) due
to the calculation of the projection

so that the range of A+ is known to be a subset of the
null space of J. Therefore, to compute its SVD the Givens
rotations can be restricted to the (n-r )-dimensional space
described by the singular vectors Vr+l to Vn rather than
the full n-dimensional space. As an example, consider
the case of a seven degree-of-freedom manipulator with a
one-dimensional null space so that the SVD of A is given
by

where V7 describes the null space of J. It is easy to show
that the only possibly non-zero singular value of A can be
computed by using

(30)

(40)

The value sent to the joint controller is then obtained by
adding Op and OH.

(31)

If (1 Ai =f 0 then the singular vector UA l associated with
this singular value is computed using

JSV7
UAl = --.

(1Ai

IV. IMPLEMENTATION

The algorithm described in the previous section was
implemented on a linear array of eight DSP32 processors
(rated at 5 MFLOPS) that were part of an AT&T Pixel

491



TCALC.iJ = TJAcOBIAN + TSVD + TSOLVE (41)

PEa PE1 PE2 PE3r------·r------·r------· r------·
2.3' U,." V, I. U3 en v. I, u.... v. I. V7 I

I. _~.~.~. ~ I. _~~.~. ~ I. _u~2".V.!.."; I. _ .~. _. ~

Tsv D = TMuLT V +TswEEP + TNORM B (42)

where TMULT v denotes the time required to multiply
J(fh) by V((h-d on the PE's, TSWEEP is the time to
perform a single sweep of Givens rotations, and TNORM B

is the time required to calculate the singular values and
columns of U from the columns of B at the end of the
sweep. From Table lone can see that there is a factor of
four speedup for TMULT v and TNORM B and a 3.5 times
speedup for Tsw EEP illustrating the extremely parallel
nature of this particular algorithm. The theoretical max­
imum speedup of four could by achieved for TswEEP as
well by using the column ordering used in [2] thus remov­
ing the idle PE in every other step as discussed previously.

The computation of (2) in parallel is 3.5 times faster
than the calculation of (2) in serial for the case where
n = 8. The two components involved in the computa­
tion of (2) are TSVD and TSOLVE (2)' The most impor­
tant thing to note is the relatively insignificant amount
of time, 0.16 milliseconds, required to solve (2) once the
SVD of the manipulator Jacobian has been calculated.
The overall speedup factor for the component T S OLV E (2)

is 3.3. This is mostly due to step 3.1 of the calculations for
T S OL V E (2) where there is almost a factor offour speedup
except that there are two fewer divisions on PE3 since it
is calculating UH rather than contributing to Up. In this
timing example, z was calculated as the gradient of the
squares of the joints angles in order to utilize the redun­
dancy for joint range availability [4].

Fig. 2 shows the computation of (4) on the parallel
architecture. The time TSOLVE (4) can be broken down
into TJs MULT which is the time required to multiply Js

times V7 and Vs, TG1VEN which is the time required to
perform the single Givens rotation, TNORM B which is
the time required to find O"Al, O"A2, UAl and UA2 from
b~l and b~2' and TCALC..icH which is the time required to
compute the intermediate term XH. Table 1 shows that
there is a 3.2 times overall speedup in the calculation of
(4) on the parallel architecture and a 1.9 times speedup

for calculating the Jacobian of the CESAR manipulator
[3], which required approximately 0.38 milliseconds were
implemented in order to provide some comparison with
the other execution times. Table 1 shows that once the
SVD of the manipulator Jacobian has been calculated, the
solution to either (2) or (4) can be computed in a rela­
tively short period of time. This is a major motivation
for using the SVD in the computation of these equations.
Since the calculation of the SVD accounts for the majority
of the computation time, approximately 1.7 milliseconds,
the speedup ratio (3.6) associated with the SVD has the
greatest effect on the overall performance improvement
for the calculation of (2) or (4).

The time required to calculate the SVD is given by

3.3'

3.1'

'-- 13
.
2

•

T- T.
UA1 XH UA2 XH
-VA' + -VA

0'1101 0.-.2

9=9P+9H

OH -
3.5

where T J ACOBIAN is the time to acquire the joint posi­
tions and calculate the current Jacobian, Tsv D is the time
to calculate the SVD of the end effector Jacobian J, and
TSOLVE is the time required to form the solution of (2)
or (4) using the SVD of J. Timing information for both
serial and parallel implementations of equations (2) and
(4) on the AT&T pixel machine is presented in Table 1.
Note that the value ofTJACOBIAN is left as a variable pa­
rameter since it is manipulator dependent. The equations

machine with a Sun workstation serving as the host pro­
cessor. This configuration allowed timing evaluations for
manipulator systems with up to sixteen degrees of free­
dom. The algorithm was implemented in C and then com­
piled for the DSP32 PE's. While there was an effort to ef­
ficiently utilize register variables to improve performance,
the execution times are by no means to be considered op­
timal.

The time required for the calculation of U, denoted
by TCALC.iJ, is given by

Fig. 2 After the SVD of Jp has been formed, the calculation of

U= Jj;xp + [Js(I - Jj;Jp)]+(XS - JsJj;xp) can also be

done in parallel.



TABLE 1
TIMING STATISTICS

SVD

Step Serial Parallel SIP

TMULT V 2.1 0.88 ms 0.22 ms 4.0

TSWEEP 2.2 4.50 ms 1.29 ms 3.5

TNORM B 2.3 0.88 ms 0.22 ms 4.0

EQ. (2): iJ = J+i; + {I - J+J)z

Serial Parallel SIP

TSVD 6.2ms 1.7 ms 3.6

TSOLVE (2) 0.5ms 0.2 ms 3.3

TOTAL 6.7ms + T J 1.9 ms + TJ 3.5

Serial Parallel SIP

TSVD 6.2ms 1.7 ms 3.6

TSOLVE (4) 1.4 ms 0.7ms 1.9

TOTAL 7.6ms + TJ 2.4 ms + T J 3.2

for TSOLVE (4)' As mentioned before, the speedup asso­

ciated with Tsv D has the largest effect since the compu­

tation time associated with the SVD of the Jacobian is a

major portion of the total computation time. In Fig. 2,

steps 3.1' to 3.3', the computation of the SVD of A, are

executed in 0.6 milliseconds. Note that for the case where

n =8, these calculations are performed on a single pro­

cessor which is the reason that there is no speedup for

these individual calculations. However, for manipulators

with higher degrees of redundancy step 3.2' will not be a

single Givens rotation, but will instead be several sweeps

of Givens rotations. This means that the parallel archi­

tecture will be of even greater benefit in the higher order

cases since the processors with columns r + 1 to n will be

performing the sweeps of Givens rotations to compute the

SVD of A rather than a single processor.

V. CONCLUSIONS

This work has presented a parallel algorithm and ar­

chitecture for solving the equations of motion for kine­

matically redundant robotic systems. It has been shown

that the various desirable forms of the solutions to these

equations can all be efficiently obtained when the SVD

of the Jacobian is available. The implementation of this

algorithm on an array of AT&T DSP32 processors has il­

lustrated that computation cycle times of less than three

milliseconds can be obtained even when using the most

complicated form of the solution.
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