
THESIS

FASTER GRAPH ALGORITHMS VIA SWITCHING CLASSES

Submitted by

Nathan Lindzey

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2012

Master’s Committee:

Advisor: Ross McConnell

Wim Bohm
Tim Penttila



ABSTRACT

FASTER GRAPH ALGORITHMS VIA SWITCHING CLASSES

The runtime of an algorithm is intimately related to how an instance is represented. Recall

that the runtimes of the first generation of graph algorithms were expressed as functions of

n := |V |. This analysis was natural since at this time graphs were represented in n2 space

via their adjacency matrix. It was soon noticed that if m := |E| = o(n2), then a variety

of graph algorithms could be sped-up by computing the adjacency-list from the adjacency

matrix, then running the algorithm on the more efficient adjacency-list representation. This

motivated the introduction of m to the runtime of graph algorithms and it is now customary

in algorithm design to assume that a graph instance is given in the form of its adjacency-

list. For instance, a graph algorithm is not considered to run in linear time unless it runs in

O(n + m) time. An O(n2) bound is not considered linear, even though the two bounds are

the same in the worst case.

Let m̃ be the size of the minimum representative of a graph G’s switching class (w.r.t.

to some switching operation). It is shown that better bounds for several classical graph

algorithms can be obtained by modifying them so that their running time is a function of

n+m̃ rather than of n+m. This is significant because m̃ is O(m) but m is not O(m̃). This is

accomplished by first computing the so-called partially complemented adjacency list (pc-list)

from an adjacency list, then designing an algorithm that is amenable to the more efficient

pc-list representation. The pc-list data-structure is generalization of the adjacency list that

has a natural correspondence to switching classes. Using this approach, better bounds are

obtained for bipartite maximum matching, graph diameter, and vertex-weighted all-pairs

shortest path.
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Chapter 1

Introduction

The runtime of an algorithm is intimately related to how an instance is represented. Consider

the problem of determining the parity of an integer n. Before solving the problem, the

representation of the instance n must be established. If n is given in unary representation,

then determining the parity of n is linear in the number of ones. However, if n is given in

binary representation, then the problem can be solved in constant time. Many problems that

are not believed to be solvable in polynomial-time (e.g. integer factorization) can be solved

in linear-time if the instance is represented in unary. This analysis is quite misleading since

a number’s unary representation is exponentially larger than it’s binary representation. It

is easy to see that there is no number theoretic problem for which a unary representation

gives rise to a faster algorithm. In light of this, it is natural to claim binary to be a better

representation and always insist that an instance is given in this form. This notion can

be formalized as follows. Let X,X ′ be two representations for some class of objects C. If

|X ′| = O(|X|) but |X ′| 6= Θ(|X|), then there are members of C that have an asymptotically

smaller representation underX ′, which makesX ′ a more efficient representation for that class.

It is then possible for X ′ to be leveraged algorithmically to give rise to faster algorithms.

The following brief historical overview of graph representations will help illustrate this point.

Runtimes of first generation graph algorithms were expressed as monomials of n. This

analysis was natural since at this time graphs were represented via their n × n adjacency

matrix. Of course, this representation is not an efficient way to represent digraphs since

matrices take Θ(n2) space and not all digraphs have size proportional to n2.
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It was soon noticed that if m = o(n2), then a variety of graph problems could be solved

more efficiently by first computing an adjacency list representation from the adjacency ma-

trix, then running an algorithm designed for the more efficient representation. This motivated

the introduction of m to the runtime of graph algorithms and it is now customary in algorithm

design to assume that a graph instance is given in the form of its adjacency-list.

The primary contribution of this work is the development of algorithms for the partially

complemented adjacency lists (pc-lists) [3], a representation that is capable of realizing a

variety of different switching classes. We show that several graph problems for which no

linear-time algorithm is known can be seen as a switching class problem and solved more

efficiently by first computing the pc-list from an adjacency list (or matrix) then running an

algorithm designed for the pc-list. On the other hand, we give conditions for which it is

fruitless to cast a graph problem as a switching class problem and end with future research

directions.

1.1 Switching Classes

There are many types of graph switching operations in the literature [7] [3]. A property

common to them all is that the operation alters the neighborhood of a set or single vertex

by changing edges to nonedges and nonedges to edges.

Definition 1.1.1 Let v be a vertex of directed or undirected graph G.

• An out-switch σ+
v (G) changes v’s out-neighbors to non out-neighbors and vice versa.

• An in-switch σ−v (G) changes v’s in-neighbors to non in-neighbors and vice versa.

Figure 1.2 shows the resultant switched graph after a sequence of out-switches on vertices

(2, 3, 4, 5, 6, 7, 8). Figure 1.2 shows the switched graph after the above sequence of out-

switches and an in-switch on vertex 1. If we perform an in-switch and an out-switch on the

same vertex then this is equivalent to what is known as Seidel-switching [7].

Definition 1.1.2 A Seidel-switch σv(G) changes v’s neighbors to non neighbors and vice

versa.
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Notice that if a Seidel-switch is performed on an undirected graph, then the switched graph is

also undirected. Since the order in which we switch vertices does not matter, it is convenient

to switch on a set U ⊆ V rather a sequence which we denote by σU(G). If both in-switches

and out-switches are allowed, then two sets I, O ⊆ V must be defined which we denote by

σ±I,O(G). This operation is known as Gale-Berlekamp switching for reasons which will soon

be apparent. From these switching operations, there are a number of equivalence relations

that one can define on G, the class of labeled digraphs on n vertices.

Definition 1.1.3 Let G,H be digraphs defined on the same labeled set of vertices V .

• G,H are out-equivalent if σ+
U (G) ∼= H for some U ⊆ V .

• G,H are in-equivalent if σ−U (G) ∼= H for some U ⊆ V .

• G,H are in-out equivalent if σ±I,O(G) ∼= H for some I, O ⊆ V

• G,H are Seidel-equivalent if σU(G) ∼= H for some U ⊆ V .

Proposition 1.1.4 The relations above are equivalence relations over G.

Proof: Let ∼ denote the out-equivalent relation and let ∆ denote symmetric difference. It’s

clear that G ∼ G since ¬+
{}(G) = G. Since ¬+

U(¬+
U(G)) = G, it follows that G ∼ H ⇒ H ∼ G.

Lastly, if H = ¬+
U(G) and F = ¬+

W (H), then ¬+
U∆W (G) = F . Proof that the rest of the rela-

tions form equivalences classes follows similarly. ♦

Let G+ := G/C+ be the out-switching classes on n vertices with members G + C+ ∈ G+

and H+C+ ∈ G+. Let
⊕

be the Hadamard product (symmetric difference) of the adjacency

matrices of the coset representatives.

Theorem 1.1.5 H = (G+,
⊕

) ∼= Zn2−2n
2

Proof: We have |H| = 2n2−2n since each equivalence classes is of size 2n and |G| = 2n2−n.

Since H is Abelian and h2 = 0 ∀h ∈ H, it must be that H ∼= Zn2−2n
2 . ♦
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In fact, H is a vector space over F2. A basis for this vector space can be constructed as

follows. Pick a graph B1
v for which the only adjacency is v → u. Next, pick a graph B2

v for

which the only adjacencies are v → u, v → w. Continue this process until v is connected to

n−2 vertices. The neighborhood of v in any graph can be represented as a linear combination

of elements of B and the vectors of B are linearly independent since they all lie in different

equivalence classes. Repeating this process for all v′ ∈ V \{v} will span H, so B is basis of

size n2 − 2n.

It is well-known that Seidel switching classes and Gale-Berlekamp switching classes afford

groups [7] [16]. It is also clear that in-switching classes form a group since it is clear that

G− ∼= G+.

Definition 1.1.6 The minimum representative of C is a not necessarily unique graph G̃ ∈ C

having minimum edge cardinality m̃.

The minimum representative of an in-switching class G̃− ∈ C− and an out-switching class

G̃+ ∈ C+ can be found in O(n + m). We can find G̃+ by out-switching every vertex whose

neighborhood exceeds n/2 and G̃− can be found by in-switching every vertex that appears

more than n/2 times as an out-neighbor. It is then straightforward to perform the switches

and construct G̃ in O(n2) time.

Finding the minimum representative of an in-out equivalence class C± corresponds to a

well-known combinatorial and coding theory problem known as the Gale-Berlekamp switching

game which is defined as follows. Let A be a n× n 0-1 matrix and let d be the total number

of ones in A. The goal is to minimize d via switching (complementing) rows and/or columns

of A [16]. It is NP-hard to compute G̃±; however, there do exist linear time approximation

algorithms for this problem [11].

Seidel-switching classes (two-graphs) are a well studied object in the Algebraic Graph

Theory that has a rich literature [7]. It has been shown that computing G̃ of a Seidel-switching

class is NP-hard [9], but can be approximated heuristically in O(m) time as follows. Notice

that if u, v ∈ U are (non) adjacent in G, then u, v are (non) adjacent in σU(G). It follows
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Figure 1.1: Undirected Graph G with Adjacency List

that G[U ] ∼= σU(G)[U ] and G[V − U ] ∼= σU(G)[V − G] which implies that Seidel-switching

on U is equivalent to complementing the cut induced by U . Therefore, given a dense graph

G, one can find sparse members by approximating MAX-CUT which can be done in O(m)

time [14]. The problem can also be solved via a (1 − ε) δ-dense approximation algorithm

where δ is the smallest degree of any vertex in G [4]. This runtime of this algorithm can be

O(n2) by setting ε accordingly.

1.2 Partially Complemented Adjacency Lists

A partially complemented adjacency list (pc-list) is an adjacency list outfitted with a boolean

vector of size of n that represents vertex switches. If both in-switches and out-switches are

permitted, then an additional boolean vector of size n is required. One of the virtues of this

representation is that it preserves all the information of the original graph. Figures 1.1 1.2 1.3

demonstrate the space savings of this representation [3].

In [3] the question of whether symmetric (Seidel) switching classes could be leveraged

algorithmically was left open. In the next chapter, we show that if the vertices are ordered

such that the switched ones appear before unswitched ones and the neighbor-lists respect

this ordering, then breadth-first search on a graph can be solved in time proportional to the

minimal representative of its Seidel-switching class.
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Figure 1.2: σ+
U (G), U = {2, 3, 4, 5, 6, 7, 8} with pc-list

Figure 1.3: σ±I,O(G), I = {1}, O = {2, 3, 4, 5, 6, 7, 8} with pc-list
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1.2.1 Limitations

To understand the limitations of partially complemented representations, it is useful to con-

sider the Erdos-Renyi uniform random graph model G(n, p = 1
2
) [1]. In this model, an edge

appears in a graph with probability 1/2 and so the probability of constructing an arbitrary

labeled graph is 2−(n
2). It is well-known that G(n, p = 1

2
) forms a binomial distribution over

the class of graphs on n vertices and it follows that almost all graphs are n/2-regular by

the law of large numbers. These graphs have approximately the same number of edges as

nonedges so intuitively, one can see that switching them will not yield an asymptotically

sparser representation. Since |G| = Θ(|G̃|) almost always holds, we must concede that par-

tially complemented representations do not provide an asymptotically better representation

for most of graphs; however, this is not surprising since most graphs have a binary entropy

that approaches one. What is more interesting is that in this setting the graphs which exhibit

the worst runtimes are those that are ≈ n/2-regular. This is contrary to traditional algorithm

analysis which would have us believe that graphs denser than those that are ≈ n/2-regular

come closer to exhibiting worst-case behavior of an algorithm.

1.2.2 Advantages

Over the years there has been work towards speeding-up graph algorithms over dense in-

stances. The techniques developed so far all somewhat involved insofar that they employ

sophisticated pre-processing [6], data-structures [10], and “RAM tricks” [2] to achieve loga-

rithmic improvements in runtimes for canonical graph problems over sufficiently dense graphs.

It has also been shown that dense graphs can be approximated via sparse graphs with sur-

prising accuracy. This is known as graph sparsification and many graph problems can be

approximated in linear time using sparsification techniques which can provide huge (super-

logarithmic) speed-ups in runtime [5]. The only drawback is that these techniques do not

guarantee optimality. To our knowledge, this is the first graph compression or sparsification

technique that is able to provide both super-logarithmic speed-ups in runtime and exact

solutions for several canonical graph problems considered in [6] [10] [2] given a sufficiently
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dense graph.

In our situation, a graph is sufficiently dense when m̃ = o(m). To better understand

the asymptotics, consider an arbitrary out-switching class C+ on n vertices. It is clear that

H ∈ C+ ⇒ H ∈ C+ so as a special case, when H = o(H), then it is possible for a pc-list

to provide an asymptotic speed-up in runtime. We stress that if there exists a linear-time

algorithm for solving the problem, then no asymptotic improvements can be made. For

example, the results of [3] centered around the development of out-switching and in-switching

class algorithms for graph problems that admit linear-time algorithms; however, it requires

O(n2) time to construct G̃ so there was no chance to make asymptotic improvements in

runtime for those algorithms. It is important to note that although the speed-ups achieved

[6] [2] are modest, there are dense graphs for which m̃ = Θ(m), so their methods can provide

a logarithmic speed-up when ours cannot.

Finally, it is well known that solving many graph theoretical problems involves considering

properties of both G and G. A virtue of the pc-list is that it is a more natural representation

for algorithmic problems where the complement must also be considered. In particular, the

pc-list has been used to develop an elegant recognition algorithm for interval graphs. Interval

graphs are exactly those graphs that are chordal and co-comparibility (graphs whose comple-

ments are transitively-orientable) [17]. In [12] a pc-algorithm for transitive orientation was

developed which implied a O(n+mlog(n)) algorithm for computing a transitive orientation

of a graph’s complement. Since chordal graph recognition is O(n + m) this gave rise to an

elegant O(n+mlog(n)) interval graph recognition algorithm.
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Chapter 2

Algorithms

There is an intuitive reason why pc-representations can provide asymptotically faster graph

algorithms. Let’s consider graph traversal on an undirected graph. The algorithm can be

seen as a sequence of good and bad queries (edge visits). A good query discovers a vertex

that has not been visited which results in adding a vertex and an edge to the traversal forest.

A bad query discovers a vertex that has already been discovered which does not contribute

to the output traversal forest. In the best case, an algorithm is composed entirely of good

queries which results in a query sequence of length n − 1 for connected graphs. Also, if the

graph itself is a tree, then we are guaranteed this best case scenario. Let an optimal traversal

for any graph be an O(n) query sequence. Most traversal algorithms cannot guarantee an

optimal traversal since it takes time to determine if a neighbor has already been visited. Let

O be an oracle that provides an undiscovered non-neighbor of u or null for a current vertex

u. By querying O, we spend no time considering previously discovered vertices which gives

an O(n) algorithm. The problem is that without this oracle, there exists an ordering of the

neighbor-lists where one must query all of the edges which makes traversal proportional to

the number of edges in the worst case. Also, since there can only be n−1 good queries in any

traversal algorithm, it follows that dense graphs have asymptotically more bad queries than

good queries. The partially complemented representation allows us to get a smaller bound

on the number of bad queries by charging them to m̃ and guarantees that if a switched vertex

queries a non-neighbor, then it will be a good query.

9



2.1 Basic Techniques and Algorithms

In this section we present basic techniques for designing pc-algorithms and review graph

traversal for pc-lists presented in [3]. These techniques and traversal algorithms will be

used to obtain better bounds and establish the correctness of more involved pc-algorithms.

The bounds that we state are in terms of the size of the minimal representative n + m̃;

however, they can also be given in terms of the size of any member Ĝ of G’s switching class.

This is especially useful for switching classes where computing the minimal representative is

computationally intractable.

• The neighbor-lists can be radix-sorted with respect to an ordering of V in O(n+ m̃)

• For any pc-algorithm, the number of non-neighbors that are examined must be propor-

tional to G̃.

The later point is clear since if v is switched, then querying a non-neighbor u of v corresponds

to querying the edge (v, u) in the original graph. If the number of queried non-neighbors is

ω(G̃), then the runtime of the algorithm will be dominated by these queries.

In the algorithms below, the number of non-neighbors that are considered will be propor-

tional to the number of vertices. To amortize the cost, each query to a non-neighbor will be

charged to that non-neighbor and the sum non-neighbor charges will be O(n) if each vertex

is charged a constant number of times.

2.1.1 Breadth First Search

Theorem 2.1.1 Given G̃, it takes O(n+ m̃) to construct a BFS-tree of G.

Assume that G̃ is a minimal representative of G’s out-switching class. As in the standard

algorithm, divide the V into undiscovered nodes U , queued nodes, and processed nodes.

Initially all nodes but the start node are in U , and the start node is inserted to a queue. To

process a node, remove it from the front of the queue, and insert any undiscovered neighbors

to the back of the queue, marking them as discovered. Keep the undiscovered nodes U in a
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doubly-linked list. This list will allow us to amortize the cost of processing switched vertices.

To process an non out-switched node, proceed as in the standard case. When processing

an out-switched node v, mark the neighbors of v in U . Then traverse U , splicing out any

unmarked nodes and inserting them on the queue. Marking the nodes can be charged to the

edges of G̃ that are responsible for applying the marks. Touching an unmarked node can

happen at most once per node, since the node is removed from the list of undiscovered nodes

whenever this happens. These two observations imply the O(n+ m̃) bound.

Now assume that G̃ is a minimal representative of G’s Seidel-switching class. Recall that

for Seidel-switching we assume that the neighbor-lists of each vertex is ordered such that

the switched vertices appear before the unswitched vertices. For convenience, we will add a

dummy neighbor (marker) immediately before the first unswitched vertex of a neighbor-list.

The BFS algorithm above is modified as follows. If the current vertex u is Seidel-switched,

then every neighbor before the marker is handled as though u is not out-switched whereas

every neighbor after the marker is handled as though v is out-switched. If the current vertex

u is not Seidel-switched, then every neighbor before the marker is handled as though u is out-

switched whereas every neighbor after the marker is handled as though u is not out-switched.

We now address a generalization of BFS known as the Single Source Shortest Path (SSSP)

problem with respect to switching classes in Section 2.1.2.

2.1.2 Single Source Shortest Path

Briefly, optimization on switching classes is a somewhat obscure topic since optimization

problems involving relations traditionally have been deemed graph theoretical. Most graph

optimization problems involve computing minima or maxima over a weighted relation, hence

they are usually not amenable to switching since the complement of a weighted edge is not

well-defined. However, in some situations the weight of an edge (u, v) can be expressed as

function of its endpoints (e.g. w((u, v)) = w(u)+w(v) ∀u, v ∈ V ). This scenario is amenable

to pc-representations because weights of nonedges are well-defined via their endpoints.

To determine if the weight function can be expressed as w((u, v)) = w(u)+w(v) ∀u, v ∈ V ,

11



let w : E 7→ R be a weight function and let I be the m×n edge-vertex incidence matrix of G.

We can try to solve system of linear equations I|−→w where −→w are the edge weights in column

vector form. When G is connected and contains more than n edges, then this corresponds

to a sparse over-determined system of linear equations. In general, such a system admits no

solutions so it follows that most edge weight functions cannot be represented as the sum of

endpoints. However, if I|−→w does admit a solution, then single source shortest path problems

can be solved more efficiently using pc-lists as follows.

Theorem 2.1.2 Let G be a positive edge-weighted graph such that w((u, v)) = w(u) +w(v).

Given G̃+, SSSP(G) = O(nlog(n) + m̃).

Proof: Sort the vertices by weight, then radix sort the neighbor-lists with respect to the

vertex ordering in timeO(nlog(n)+m̃). It is clear that if the doubly-linked list of undiscovered

vertices U respects the ordering of V , then PC-BFS solves the problem in O(n+ m̃) time. It

is also clear that if the vertex weights are positive integers ≤ N , then SSSP(G) = O(Nn+ m̃)

♦

In other words, a shortest-path tree is a BFS-tree in this scenario which is generally not true

for SSSP in general. This algorithm will be used in the next section to obtain a better bound

for the All-Pairs Shortest Path (APSP) problem when the same restrictions are enforced on

the weight function.

2.1.3 Depth-first Search

Theorem 2.1.3 Given G̃, it takes O(n+ m̃) to construct a DFS-tree of G.

Proof: This bound was shown in [3]; however, the following DFS algorithm of [15] is

conceptually much simpler. Assume that G̃ is a minimal representative of G’s out-switching

class. As in the standard algorithm, divide V into undiscovered nodes U and processed nodes

D. Initially all nodes but the start node s are in U and s is at the top of the stack D. Keep-

ing U as a doubly-linked list will allow us to amortize the cost of processing complemented

vertices. Assume the neighbors in the adjacency list in the same order as U and have each
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neighbor n in a neighbor-list point to its corresponding node in U . To process an unswitched

node v, proceed as in the standard case. To process a switched node, scan U from left to

right skipping over neighbors of v until a non-neighbor u is encountered. Once u has been

encountered, we remove u from U , push it onto D, then recurse. A non-neighbor can only be

touched once since the node is immediately removed from U and pushed onto D. Skipping

neighbors can be charged to the arc of G that is responsible. Notice that when u returns

from a recursive call, the list of undiscovered vertices will be decimated by the recursive calls

invoked by ancestors of u. This decimation makes it difficult to find the correct position

in U for v to resume the scan for non-neighbors upon returning from a recursive call. To

find a valid entrance into U , let nv be v’s most recently skipped neighbor before v invokes

a recursive call. After v returns from the recursive call, if nv is no longer in U , then nv was

pushed onto D by an ancestor of u. In this case, we remove nv from Nv and set nv to the

next most recently skipped neighbor. We repeat this process until nv points to a node that

exists in U . If no such neighbor exists, then nv points to the head of U . The node nv now

becomes the starting point of the scan in U . It is clear that every node to the right of nv is

either a non-neighbor of v or a neighbor that has not been touched. The time spent finding a

valid entrance into U can be charged to the neighbor arcs of v. It is clear that each neighbor

of v is skipped at most once since they are removed from Nv once they cannot be used to

gain entrance to U . It follows that the total number of skips is O(m̃) which gives a O(n+ m̃)

time bound. ♦

2.2 Better Bounds for Super-Linear Graph Algorithms

This section is composed of new work that establishes better bounds for several super-linear

graph algorithms.

13



2.2.1 Diameter

Definition 2.2.1 The diameter of an unweighted graph is the maximum length of a shortest

path between any two vertices.

At present, the most efficient method for determining graph diameter is the O(n(n + m))

naive algorithm which calls BFS from each vertex and reports the height of the tallest BFS-

tree across all runs. The theorem below shows that pc-representations easily yields a better

bound for the problem.

Theorem 2.2.2 The diameter of G can be computed in time O(n(n+ m̃))

Proof: Construct G̃ and run PC-BFS(v, G̃) ∀v ∈ V in n2 + n(n+ m̃) = O(n(n+ m̃)). ♦

2.2.2 Vertex-Weighted All-Pairs Shortest Path

Theorem 2.2.3 Let G be a positive edge-weighted graph such that wuv = w(u) + w(v).

APSP(G) = O(n(n+ m̃)).

Proof: Construct G̃+. Run PC-SSSP on an arbitrary vertex then run PC-BFS on each of

the remaining vertices in time n2 + nlog(n) + n(n+m)) = O(n(n+ m̃)) ♦

2.2.3 Bipartite Maximum Matching

At present, the best time bound for bipartite maximum matching is O(
√
nm). We show that

pc-representations allow for the problem to be solved in time O(n2 +
√
nm̃) or O(

√
nm̃) if

given G̃+. Since matching algorithms are among the most difficult combinatorial algorithms,

we will assume out-switching for sake of simplicity. We begin with an overview of matching

theory which can also be found in [8].

Definition 2.2.4 A matching M is a set of edges such that no two edges are incident to the

same vertex.
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Definition 2.2.5 A path (without repeated vertices) is an augmenting path w.r.t. a matching

M iff its endpoints are free (unmatched) and its edges are alternatively in E-M and in M.

Lemma 2.2.6 If M is a matching an P is an augmenting path with respect M, then M∆P

is a matching, and |M∆P | = |M |+ 1.

Proof: There is one more edge from E −M than M in an augmenting path, hence those

edges that don’t belong to M become a new matching which is one greater than |M |. ♦

Theorem 2.2.7 Let M and N be matchings s.t. |M | = r, |N | = s and s > r, then M∆N

contains at least s− r vertex disjoint augmenting paths w.r.t. M .

Proof: Consider the subgraph H induced by the edges M∆N . Since no vertex of H has

degree greater than two, H consists of components C1 · · ·Ck that are either isolated vertices,

even cycles, or augmenting paths. Let δ(Ci) denote the number of N -edges minus the number

of M -edges in Ci. If Ci is an isolated vertex or an even cycle, then δ(Ci) = 0. If Ci is an

augmenting path relative to M or N, then δ(Ci) = {1,−1}. Since
∑k

i δ(Ci) = s − r, there

must be at least s − r augmenting paths relative to M that furthermore are vertex disjoint

as they are each separate components. ♦

Theorem 2.2.8 Let M and N be matchings s.t. |M | = r, |N | = s and s > r, then M∆N

contains at least s− r vertex disjoint augmenting paths w.r.t. M .

Proof: Consider the subgraph H induced by the edges M∆N . Since no vertex of H has

degree greater than two, H consists of components C1 · · ·Ck that are either isolated vertices,

even cycles, or augmenting paths. Let δ(Ci) denote the number of N -edges minus the number

of M -edges in Ci. If Ci is an isolated vertex or an even cycle, then δ(Ci) = 0. If Ci is an

augmenting path relative to M or N, then δ(Ci) = {1,−1}. Since
∑k

i δ(Ci) = s − r, there

must be at least s − r augmenting paths w.r.t. M that furthermore are vertex-disjoint as

they are each separate components. ♦
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Corollary 2.2.9 M is a maximum matching iff there is no augmenting path with respect to

M.

Corollary 2.2.10 Let M be a matching, |M | = r, and s > r be the cardinality of a maximum

matching N . Then there exists an augmenting path with respect to M of length ≤ 2br/(s −

r)c+ 1.

Proof: By Theorem 1, there are s − r vertex-disjoint (hence edge-disjoint) augmenting

paths w.r.t M . The augmenting paths together contain at most r M -edges, so any one of

these augmenting paths has at most br/s− rc M -edges, hence at most 2br/s− rc+ 1 alto-

gether. ♦

Theorem 2.2.11 Let M be a matching, P a shortest augmenting path w.r.t M, and P’ an

augmenting path w.r.t M∆P , then |P ′| ≥ |P |+ |P ∩ P ′|.

Proof: Let N = M∆P∆P ′. Since |N | − |M | = 2, there are vertex-disjoint augmenting

paths P1, P2 in H = (V,M∆N). Since M∆N = P∆P ′, we have |P∆P ′| ≥ |P1| + |P2|.

But P1, P2 ≥ P since P1, P2 are disjoint and P is a shortest augmenting path w.r.t M .

Hence, |P∆P ′| ≥ |P1| + |P2| ≥ 2|P | and since P∆P ′ = |P | + |P ′| − 2|P ∩ P ′|, we have

|P ′| ≥ |P |+ |P ∩ P ′|. ♦

The result above suggests an iterative computing scheme for computing a maximum match-

ing: find a shortest augmenting path Pi, set Mi = Mi∆Pi and repeat, halting only when no

augmenting path can be found. Another subtle corollary of Theorem 2 is the following:

Corollary 2.2.12 For all i,j such that |Pi| = |Pj|, Pi and Pj are vertex-disjoint.

Proof: Suppose |Pi| = Pk, i < k, Pi, Pj vertex-disjoint. Also, any Pj s.t i < j < k is

vertex-disjoint from Pi and Pk. This implies that Pk is an augmenting path w.r.t Mi∆Pi,

and hence Pk ≥ |Pi| + |Pi ∩ Pk| by Theorem 2. But |Pi| = |Pk| implies |Pi ∩ Pk| = 0, so Pi

and Pj are edge-disjoint. Suppose Pi and Pk share a vertex v, but then the two paths must
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share the Mi∆Pi-edge that is incident to v, a contradiction. ♦

From Theorem 2 and the above corollary, it follows that the lengths of each successive

shortest augmenting path will be monotonic increasing and consecutive Pi, Pi+1, · · ·Pj that

aren’t strictly increasing are all augmenting paths w.r.t. Mi−1.

Theorem 2.2.13 Let s be the cardinality of a maximum matching. The number of distinct

integers in the sequence, |P0|, |P1|, · · · , |Pi|, · · · is less than or equal to 2b
√
sc+ 2.

Proof: Let r = s −
√
s. Then |Mr| = r and by Corollary 2, |Pr| ≤ 2bs −

√
sc/(s − bs −

√
sc) + 1 ≤ 2b

√
sc + 1. Keeping in mind the length of an augmenting path is always odd,

there are at most b
√
sc+1 distinct positive odd integers from |P0| · · · |Pr|. Also |Pr+1| · · · |Ps|

contribute at most d
√
se distinct integers, so b

√
sc+ 1 + d

√
se ≤ 2b

√
sc+ 2. ♦

It follows that the number of distinct integers corresponds to the number of times Step 1

must be executed, so there are O(
√
n) executions of Step 1. Given the results above, the

following is a general strategy for finding maximum matchings of arbitrary graphs.

MAX-MATCHING(G):

1. Let g be the length of a shortest augmenting path w.r.t M. Find a maximal set of
vertex-disjoint paths P1 · · ·Pt each of length g that are augmenting paths w.r.t M.
Otherwise, halt.

2. M ←M∆P1∆ · · ·∆Pt; go to 1.

Finally, it suffices to show that Step 1 can be implemented in O(n+m) to get a O(
√
n(n+m))

time-bound for computing a maximum matching. The following sections show how Step

1 can be implemented in O(n + m) time for the bipartite case. We then show how the

implementation can be modified to allow for partially complemented graphs which in turn

will imply an O(n+ m̃) bound for Step 1.

Let GM = (A,B,E) denote the a bipartite graph with respect some matching M ⊆ E.

The Hopcroft-Karp algorithm consists of O(
√
n) phases (calls to Step 1). At the beginning
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of a phase, G is modified to contain a source vertex s that is adjacent to every unmatched

vertex in A. A phase consists of a single call to BFS followed by a single call to DFS. For

each of these calls we modify the traversal slightly as follows. If a current vertex of the

search was reached via an unmatched edge, then the current vertex is forced to only visit its

matched neighbor in the search. The call to BFS is necessary to build a directed acyclic level

graph H having the property that any source to sink path is a shortest augmenting path.

To ensure that the level graph has this property, BFS is not allowed to progress beyond the

level where the first unmatched vertex in B is discovered. By Theorem [?], augmenting along

a set of vertex-disjoint shortest augmenting paths at the end of each phase cannot decrease

the depth of the level graph in the next phase. This explains why only O(
√
n) phases are

needed. Once the level graph is determined, depth-first search is called on each neighbor of

s to find a maximal set of vertex-disjoint shortest augmenting paths P in H. Once P has

been computed, the matching M is extended by augmenting along each path in P and then

a new phase begins. The algorithm halts when P = ∅.

Theorem 2.2.14 Let G be a bipartite graph. Then a maximum matching can be found in

O(n2 +
√
nm̃) time.

Proof:

There are a few obstacles that are immediately apparent for developing a partially com-

plemented implementation of Hopcroft-Karp. Notice that in general if G is bipartite, then

G̃ is not bipartite, hence the graph implied by the pc-representation won’t be bipartite. Fur-

thermore,it is easy to see that no member of G’s out-switching class can be asymptotically

smaller than G. To overcome this, we can construct a bipartite pc-representation by restrict-

ing the set of non-neighbors of v ∈ A to be B − N(v) and maintaining two doubly-linked

lists of undiscovered vertices UA, UB for the bipartition. It is clear that constructing H would

require time disproportional to m̃; however, this is not necessary since a level graph can be

represented in O(n) space by partitioning the vertices according to their level. Let L be an

array of doubly-linked lists that represents said level partition.
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Let FA (FB) be the set of unmatched vertices in A (B). We run PC-BFS from s ∈ B

with the following modifications. Let u be the current vertex at level i. If u ∈ A, then we

use UB for the list of undiscovered vertices. We splice out the newly discovered vertices as

before, but we also insert the spliced vertices at L[i + 1]. If u is matched and in B then we

only visit the vertex that u is matched to in A. If a newly discovered vertex exists in FB,

then a shortest augmenting path P has been discovered. Once a shortest augmenting path

has been discovered, we do not let PC-BFS progress past the current level and we only allow

unmatched vertices to enter the queue. Once the search has been stopped, the queue contains

only unmatched vertices of B reachable from free vertices of A via a shortest augmenting

path. Once PC-BFS halts, the discovered vertices are partitioned as doubly-linked lists in

L, but these lists do not necessarily respect the ordering of the neighbor-lists of vertices in

A and B. To fix this, we can run a radix sort on ordered pairs (x, y) where x is the level and

y is a vertex and reconstruct L in O(n) time.

To find a maximal set of vertex-disjoint shortest augmenting paths, it suffices to call

PC-DFS from each unmatched vertex in A, all of which reside in L[1]. It is easy to see that

PC-DFS from a vertex at level i can be conducted per usual by setting U = L[i + 1] since

each partition of L can be viewed as a decimated list. If the current vertex of PC-DFS is an

unmatched vertex of B, then the DFS recursion stack corresponds to a shortest augmenting

path P of H. In this case, we abort the current search, set P = P ∪ P , remove the vertices

of P from L, and then start a new DFS search from a free vertex in A. Once no more

augmenting paths can be found, the matching M is updated in O(n) by augmenting each

P ∈ P which gives an O(n+ m̃) implementation of a phase. ♦

2.3 PC Amenability

In Section 2.1 we observed that optimization problems involving edge-weighted graphs in gen-

eral cannot be solved more efficiently via pc-representation. We now explore other conditions

for which pc-representations cannot be used to obtain more efficient algorithms. If the output

19



of a problem is Ω(m) space, then obviously any algorithm that solves the problem must take

Ω(m) time. It follows that a problem is amenable to pc-representations if its output is ω(m).

For this reason, problems such as Euclidean Tour and Ear Decomposition cannot be analyzed

in terms of m̃. Roughly speaking, if for every instance the problem requires every edge to

be examined, then it cannot be solved more efficiently via pc-representations. However, the

majority of graph problems have an O(n) certificate so this is seldom an obstacle.

Even if the output of a problem is small enough, it is still not the case that any algorithm

for the problem is amenable to pc-representations. It is possible for an algorithm to examine

Θ(m) edges even though the output is O(n). For instance, the maximum matching problem

has an O(n) output; however, the maximum matching algorithm of Micali and Vazirani for

general graphs has insurmountable obstacles that make an O(n+ m̃) implementation of Step

1 unlikely [13].
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Chapter 3

Conclusions

We have shown that when a super-linear graph problem can be cast as switching class prob-

lem, it is possible for the pc-list to provide a better bound for algorithm that solves the

problem. Aside from obtaining better bounds, pc-lists also benefit algorithmic graph theory

by allowing O(n2) factors to be removed from runtimes that arise when one has to construct

the complement to solve a problem posed on the original graph. This plays an important role

in graph class decision problems since a linear recognition algorithm for C does not imply a

linear recognition algorithm for co-C since one must first construct the complement. However,

if the algorithm is amenable to pc-representations, then it recognizes C and its complement

in the same time and space.

3.1 Future Work

A pc-algorithm for general graph maximum matching has been developed, but proof of

its correctness has been put aside as doctoral work. We previously mentioned that the

algorithm of Micali and Vazirani is unlikely to be amenable to pc-representations, hence our

pc-algorithm is modification of Gabow and Tarjan’s O(
√
nm) algorithm. Their algorithm

is remarkable since it requires O(
√
n) phases but unlike the algorithms of Micali-Vazirani

and Hopcroft-Karp, it does not require that the vertex-disjoint augmenting paths of Step 1

be shortest. A pc-algorithm for general graph maximum matching immediately allows for a

better bound on the k-edge connectivity augmentation problem when k = n− 2. The k-edge

connectivity augmentation problem asks for smallest set of edges F such that G′ = (V,E∪F )
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is k-edge connected. This problem is NP-hard; however for the special case of (n − 2)-edge

connectivity, the problem reduces to finding a maximum matching on the complement which

makes it solvable in O(n2 +
√
nm) [18]. A pc-algorithm for general maximum matching would

solve this problem in O(
√
nm) time or O(n2 +

√
nm̃).

We conclude with an agenda for future doctoral work on the subject of pc-representations:

• Establish correctness of partially complemented implementation of Gabow-Tarjan.

• Determine if negative weights can be handled in PC-SSSP and PC-APSP.

• Develop vertex-weighted bipartite and general maximum matching for switching classes.

• Further development of algorithms for Seidel-switching classes.
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[9] Eva Jeĺınková, Ondrej Suchý, Petr Hlinený, and Jan Kratochv́ıl. Parameterized prob-
lems related to seidel’s switching. Discrete Mathematics & Theoretical Computer Sci-
ence, 13(2):19–44, 2011.

[10] Ming-Yang Kao, Neill Occhiogrosso, and Shang-Hua Teng. Simple and efficient graph
compression schemes for dense and complement graphs. J. Comb. Optim., 2(4):351–359,
1998.

[11] Marek Karpinski and Warren Schudy. Linear time approximation schemes for the gale-
berlekamp game and related minimization problems. In Proceedings of the 41st annual
ACM symposium on Theory of computing, STOC ’09, pages 313–322, New York, NY,
USA, 2009. ACM.

[12] Ross M. Mcconnell and Jeremy P. Spinrad. Modular decomposition and transitive ori-
entation. Discrete Math, 201:189–241, 1995.

23



[13] Silvio Micali and Vijay V. Vazirani. An o(
√
ve) algorithm for finding maximum matching

in general graphs. In FOCS, pages 17–27, 1980.

[14] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge Univer-
sity Press, New York, NY, USA, 1995.

[15] Nissa Osheim. Personal Communication.

[16] R. M. Roth and K. Viswanathan. On the hardness of decoding the gale berlekamp code.
IEEE Trans. Inf. Theor., 54(3):1050–1060, March 2008.

[17] Jeremy Spinrad. Efficient Graph Representations. AMS, 2003.

[18] Laszlo Vegh. Connectivity Augmentation Algorithms. PhD thesis, Eotvos Lorand Uni-
versity, 2010.

24


