Adaptive Robotic Lab

Modeling of Soft Manipulators Enabled by Twisted-and-Coiled Actuators

Ben Pawlowski and Dr. Jianguo Zhao Department of Mechanical Engineering

Background

Soft Robots:

- Interact more safely with people
- Adapt to uncertain environments and objects

Applications:

- Medical devices
- Work with and alongside people
- Use in environment interaction

Towards a soft pneumatic glove for hand rehabilitation

Modeling:

- Most designs lack a model
- Models developed for specific manipulators
- Useful for design and control

A Multi-Soft-Body Dynamic Model for Underwater Soft Robots

Concentric Tube Robots for Minimally Invasive Surgery

Twisted-and-Coiled Actuators (TCAs):

- Made from nylon, fishing line, etc.
- Actuated with temperature or electrical power
- Flexible
- Relatively large force exerted axially

A sample of a simulated soft manipulator with three TCAs

Artificial Muscles from Fishing Line and Sewing Thread

A soft manipulator made of EcoFlex with two embedded TCAs

Modeling

We want to establish a relationship between actuation values (temperature) and the shape of the manipulator.

Kinematics and Statics:

- 1. Model the statics and kinematics of the body of the manipulator
 - Slender -> Cosserat Rod model
 - Relate internal forces and distributed forces
 - Distributed forces are from actuators and external forces
- 2. Model the statics and kinematics of the actuators
 - Use Cosserat Rod or a string model
 - Relate actuation value to forces
- 3. Balance forces between body and actuators
- 4. Create configuration descriptions of body and actuators
- 5. Relate actuator and body strains
 - This is the main source of coupling in the model
- 6. Establish boundary conditions

Control

Forward Kinematics:

- Predicting configuration from inputs to actuators
- Computations generally quick

Inverse Kinematics:

- Desired configuration to actuator parameters
 - Used for control
- Computations very slow

Solution:

Take advantage of fast forward computations to approximate inverse control.

Static Controller:

The basic model for a static controller is a change in configuration x equals a local linear transformation of the change in actuation parameters q.

$$\Delta x = J \Delta q$$

This can be rewritten to:

 $q_{next}=q_{prev}+J_{approx}^{-1}(x_{desired}-x_{current})$ Where J_{approx} is found by iterating the forward kinematics a few times.

A soft manipulator tracing a circle. All tip positions shown and a few curves shown.

An example of a multi-segment simulation of the TCA manipulator

f(s), l(s) m(L) p x

Cosserat Rod:

- Models most significant strains
- Extension
- Shear
- Bending
- Twisting/torsion

Example setup for a Cosserat Rod

Results:

The model generalizes other established static models and matches their experimental results and predictions.

Current & Future Work

Improvements

- Incorporate dynamics
- More general models of the soft, continuous manipulators and actuators
- Practical control schemes
 - Numerical solutions from analytic models are generally too slow

References

Haines, Carter S., et al. "Artificial muscles from fishing line and sewing thread." science 343.6173 (2014): 868-872.

Polygerinos, Panagiotis, et al. "Towards a soft pneumatic glove for hand rehabilitation." Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013.

Renda, Federico, et al. "A Multi-soft-body Dynamic Model for Underwater Soft Robots." Robotics Research. Springer, Cham, 2018. 143-160.

Dupont, P., et al. "Concentric tube robots for minimally invasive surgery." hamlyn symposium on medical robotics. Vol. 7. 2012.