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Abstract. Classifying irrigated fields into zones with different probabilities to reach a specific 
yield potential percentage (YP%) is imperative in the management of soil salinity and crop yield. 
Three nonlinear geostatistical models: Disjunctive Kriging (DK), Indicator Kriging (IK), and 
Probability Kriging (PK) are investigated in this study. Conditional probability (CP) maps 
generated by these models are used to classify two irrigated fields into zones with different 
probabilities to reach a specific YP% for a given crop. Soil salinity thresholds of alfalfa and corn 
were used as the conditions for applying the three models on the two datasets of two irrigated fields 
to generate CP maps for the two evaluated crops (alfalfa and corn). The objectives of this study are: 
1) compare different CP maps generated using DK, IK, and PK; 2) compare the estimated YP% of 
alfalfa and corn under different soil salinity thresholds based on the CP maps generated by the 
three models; and 3) provide some guidance to growers to help them decide which crops to grow or 
whether some remediation actions need to be taken or not. The three models were applied on two 
datasets of soil salinity (316 and 163 data points) collected in two irrigated fields. These datasets 
were selected from a project conducted in the southeastern part of the Arkansas River Basin in 
Colorado where soil salinity impacts the crop productivity. Alfalfa and corn were selected because 
they are prevailing crops in the study area. Also, alfalfa represents a moderate tolerant crop while 
corn represents a moderate sensitive crop. The results of this study show that the DK, IK, and PK 
techniques give an accurate characterization and quantification of the different zones of the 
irrigated fields. The generated CP maps using DK are more accurate than those generated using IK 
and PK. The generated CP maps can be used to quantify and assess the productivity of different 
crops under different soil salinity thresholds. 
 
 
 
1. Introduction 
 

Soil salinity is a severe environmental hazard (Hillel 2000) that impacts the growth of 
many crops. Worldwide crop production losses associated with salinity on irrigated lands 
are estimated to be around $11 billion annually and are increasing (Ghassemi et al. 1995). 
Approximately 25-30% of the irrigated lands in the United States have crop yields that are 
negatively affected by high soil salinity levels (Tanji 1990; Ghassemi et al. 1995). The 
Arkansas River drains approximately 25% of the state of Colorado water and is the state’s 
largest river basin. Soil salinity problems exist when the buildup of salts in a crop’s root 
zone is significant enough that a loss in crop yield results. Soil salinity negatively affects 
crop growth by increasing the osmotic potential of the soil solution (Jones and Marshall 
1992). This decreases the crop’s ability to extract water and causes suppressed plant 
growth and decreased yield.  
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There is a pressing need for an accurate method of assessing soil salinity before any 
management decisions can be made. Predictions are often required for planning, risk 
assessment, and decision-making. Linear kriging methods such as simple, ordinary, and 
universal kriging are well established for predicting soil variables at unsampled locations. 
Examples of using linear kriging in soil and water science are well documented (Burgess 
and Webster 1980a; Webster and Burgess 1980; Triantafilis et al. 2001; Eldeiry and Garcia 
2008a, 2008b, 2010). Assessing conditional probability (CP) of a specific variable is as 
important as predicting this variable at unsampled locations, which can be achieved by 
using nonlinear kriging. Nonlinear kriging methods have advantages over linear kriging 
due to their ability to take data uncertainty into account, and are often used to predict the 
CP for the categorical data at an unsampled location (Goovaerts 1994; Oyedele et al. 
1996). Nonlinear kriging techniques depend on the nonlinear transformation of data, 
whether discrete or continuous. The indicator techniques such as indicator kriging (IK) and 
probability kriging (PK) (Journel 1983) involve a nonlinear transformation of the data to a 
discrete variable. The indicator techniques have been widely applied (Halvorson et al. 
1995; Van Meirvenne and Goovaerts 2001; Eldeiry and Garcia 2011). The disjunctive 
techniques involve a nonlinear transformation of the data to a continuous variable. The 
disjunctive technique is exemplified by disjunctive kriging (DK) (Matheron 1976) and has 
found widespread use in soil science (Wood et al. 1990; von Steiger et al. 1996). 

 
DK technique provides an accurate estimate of the property of interest and can obtain 

an estimate of the CP for that property (Yates et al. 1988). CP maps, generated using DK 
technique, can be used as input to a management decision-making model to provide a 
quantitative means for determining whether management actions are necessary (Yates et al. 
1988). Such management decisions may often be based on threshold values of a soil 
property. There are several examples where threshold values of other soil nutrients or soil 
properties are important for management.  Webster and Oliver (1989) found that if the 
concentration of cobalt in the pasture soils of Scotland is smaller than 0.25 mg kg-1 then 
action should be taken to avoid cobalt deficiency in grazing livestock.  Wood et al. (1990) 
quote soil salinity thresholds that are used to determine land suitability for different crops 
in Israel.  Zirschky (1985), Zirschky et al. (1985), and Zirschky and Harris (1986) 
investigated the use of geostatistics for determining reclamation strategies for the cleanup 
of hazardous waste sites.  Schepers et al. (2000) found that the estimates of the 
concentration of a nutrient may be used to plan spatially variable applications of fertilizers.  
Russo (1984a, 1984b) described a method of using geostatistics to aid in managing the 
salinity of a heterogeneous field.  Triantafilis et al. (2004) used IK, mutilpe-indicator 
kriging (MIK) and DK to assess the current status and potential threat of soil salinity. 

 
IK technique is flexible and can be modified to fit specific management or research 

goals by modifying the critical threshold criteria (Smith et al. 1993). It makes no 
assumptions on the underlying invariant distribution (Cressie 1992). The non-parametric 
distribution of IK technique is estimated at fixed thresholds by considering indicator 
transforms of data in the form of cumulative distribution functions (Richmond 2002). IK 
has become very popular in natural resources studies (Juang and Lee 1998).  Solow (1986) 
used simple IK to estimate the conditional probability that a sample point belongs to one 
type or another. Their results show that simple IK performed well, and in some cases can 
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be exact.  Lyon et al. (2006) used IK successfully where they used the depth of water table 
data to quantify the probability of saturation and evaluate the predicted spatial distributions 
of runoff generation risk. (Eldeiry and Garcia 2010) used IK technique to manage soil 
salinity and crop yield. They also used IK technique to generate guidance maps that divide 
each field into areas of expected percent yield potential, based on soil salinity thresholds 
for different crops. They were able to quantify zones of uncertainty that can be used for 
risk assessment of the percent yield potential. 

 
PK is an implementation of indicator and uniform transforms for estimation of spatial 

distributions (Myers 1982; Sullivan 1984). PK is a special form of cokriging that is used to 
estimate the CP at a cutoff, using information from the indicator and uniform transforms 
(Journel, 1989). Only one estimate of the CP is obtained even though two variables, the 
primary indicator transform and the secondary uniform transform, are available. No 
estimate of the uniform transform is rendered. Because the general form of PK is based on 
the general form of cokriging, cokriging is modified and used to develop results (Carr et al. 
1985; Carr and Myers 1990). Several modifications are made to cokriging: (1) a sector 
search algorithm is added, (2) a subroutine for calculating declustering weights is added by 
modifying the program given by Deutsch (1989), (3) the ability to model nested 
variograms is added, and (4) a rank ordering procedure is added wherein ties are broken on 
the basis of the value of the local average for a data location. The modifications allow 
cokriging to be applied to a spatial data set of lead values given in  Isaaks (1984).  

 
Very few previous studies used nonlinear geostatistical techniques to manage soil 

salinity and crop yield. The nonlinear geostatistical techniques are assumed to be more 
accurate than the linear geostatistical techniques. The main contribution of this study is 
that it uses nonlinear geostatistical techniques (DK, IK, and PK) to provide tools to 
manage crop yield and soil salinity by classifying irrigated fields into zones with different 
yield potential percentages (YP%). The three interpolation models were applied to generate 
CP maps to classify the selected irrigated fields into zones with different probabilities to 
reach a specific YP% according to the soil salinity thresholds of alfalfa and corn. 
Classifying irrigated fields into zones with different probabilities to reach specific YP% 
provides valuable information that can be used in the management of soil salinity and crop 
yield. Based on this information, growers can decide which crop to select. Both visual and 
quantitative information give the growers warning about the low YP% in their fields. 
Therefore, growers can pay more attention to these zones. 
 
2. Methods 
 
2.1. Study Area 
 

The study area is located in the south-eastern part of the Arkansas River Basin in 
Colorado, near the cities of Rocky Ford and La Junta (Fig. 1). Farmers in this area are 
facing decreasing crop yields due in part to high levels of salinity in their irrigation water. 
In some areas, land is being taken out of production due to unsustainable crop yields. This 
is due in part to the fact that the Arkansas River is one of the most saline rivers in the 
United Sates (Myers 1982; Tanji 1990). Farmland along the lower Arkansas River Basin 
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has been continuously irrigated since the 1870’s and began to develop shallow, saline 
water tables by the beginning part of the twentieth century (Miles 1977). Average water 
table depths in this region have risen toward the surface approximately 0.3 – 1.3 m 
between 1969 and 1994 (Cain 1997). This has only exacerbated the salinity problems 
because of increased upflux of saline groundwater. In a survey of the region, 68% of 
producers stated that high salinity levels were a significant concern (Frasier 1999). Crop 
yield reduction due to salinity in fields in the Lower Arkansas Valley has been estimated to 
be between 0 and 75%, with a total revenue loss ranging from $0-$750/ha based on 1999 
crop prices (Gates et al. 2002). 
 

 
Figure 1. The study area in the southeastern part of the Arkansas River Basin in Colorado. 

 
2.2. Selected fields and crops 

 
Two datasets of soil salinity (316 and 163 data points) collected in two irrigated fields 

were selected to evaluate alfalfa and corn at different soil salinity thresholds. These 
datasets were selected from a project conducted in the southeastern part of the Arkansas 
River Basin in Colorado where soil salinity impacts the crop productivity. Alfalfa and corn 
were selected because they are prevailing crops in the study area. Also, alfalfa represents a 
moderate tolerant crop while corn represents a moderate sensitive crop. Soil salinity data 
were collected using EM-38 electromagnetic probes and the location of the samples was 
determined using global position systems (GPS) units. The EM-38 electromagnetic probes 
provide vertical and horizontal readings while the GPS units provide X and Y coordinates 
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for each sample point. A calibrated equation to convert the EM-38 electromagnetic probe 
readings to EC (dS/m) which was developed for the study area by (Wittler et al. 2006) was 
used. Soil moisture content and soil temperature were used for the calibration equation. A 
detailed description of how to use the EM-38 electromagnetic probe in combination with a 
GPS for collecting soil salinity can be found in  Eldeiry et al. (2008). Different scenarios 
using each of these crops were created based on the soil salinity thresholds for each of 
them. In addition to the selected crops in this study, any other crop rather than the selected 
crops can be evaluated based on its similarity in soil salinity tolerance to one of the crops 
selected in this study. 
 
Table 1. Soil salinity threshold values (dS/m) of different YP% for the selected crops. 

Crop YP % 
Common name Botanical name 100 <100 & ≥90 <90 & ≥75 <75 & ≥50 <50 & ≥0 

Soil Salinity (dS/m) 
Alfalfa (Forage) Hedicago sativa 2.0 3.4 5.4 8.8 15.5 
Corn (Field) Zea mays 1.7 2.5 3.8 5.9 10.0 
 

Table 1 shows the YP% and the corresponding soil salinity for the alfalfa and corn. 
The YP% values according to soil salinity levels were adapted from (Ayers and Westcot 
1985). The collected soil salinity data in the study area from 1999 up to 2008 show that 
with a moderate sensitive crop such as corn, it is not feasible for corn to reach 100% of 
YP%. The minimum values of the collected soil salinity is all the irrigated fields of the 
study area are > 2 dS/m, while the conditional value for corn to reach 100% of YP% is 1.7 
dS/m. 
 
2.3. Applying the Models 
 

2.3.1. DK Model 
 

The original data must be transformed into a new variable, )(xY , with a standard 
normal distribution where pairs of sample values are bivariate normal. The function, 

)]([ xYφ , which describes this transformation is: 
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The DK estimator is calculated from a sum of unknown functions of the transformed 
sample values, )( ixY . It is required that each unknown function, )]([ ii xYf , depends on 
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where if  is the unknown function with respect to the transformed variable, and n is the 
number of samples. The CP is obtained by defining an indicator variable that is equal to 
unity if ci yxY ≥)( and is otherwise zero (Yates et al. 1986a).  This allows the CP to be 
written in terms of the conditional expectation and gives the estimator of the CP as: 
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where )( cyG and )( cyg are the cumulative and probability density functions. A more 
comprehensive explanation can be found in  Matheron (1976) and Yates et al. (1986a, 
1986b).  
 

2.3.2. IK Model 
 

The essence of the indicator approach is the binomial coding of data into either 1 or 0.  
The indicator codes are generated by the indicator function, which is under a desired 
threshold value thz : 
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The indicator kriging estimator, );(^ 0 thzxI  at the location 0x  can be calculated by: 
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The indicator kriging system given ∑ = 1iλ  is: 
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where jλ  is the weighted coefficient, iγ  is the semivariance of the indicator codes at the 
respective lag distance, and µ  is the Lagrange multiplier. A more detailed description of 
IK can be found in (Goovaerts 1994).  
 

2.3.3. PK Model 
 

The PK estimator is defined by: 
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where iλ  and uiλ  are the weights associated with );( thi zxI  and )( ixU is the standardized 
rank as it was reported in detail by Deutsch and Journel (1997). )( ixU is defined as: 

n
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where r denotes the rank of the thr  order statistic )(rz  located at x, and n is the total 
number of observations (Goovaerts 1997). 
 
 
2.4. Applying the three models on soil salinity datasets 
 

2.4.1. Data transformation 
 

Transformation is used to make the data normally distributed and satisfy assumptions 
of constant variability. Data transformations are performed before using geostatistical 
methods such as DK, IK, and PK. There are many forms of transformations such as: 
normal score, box-cox, log, square-root, logarithmic, and arcsine. The data needs to be 
checked to determine if a transformation is applicable; e.g., the log transformation requires 
that all data are positive. The normal score transformation ranks the dataset from lowest to 
highest values and matches these ranks to equivalent ranks from a normal distribution. The 
transformation is defined by taking values from the normal distribution at that rank. 
Normal score transformations can be used with simple, probability, and disjunctive kriging 
or cokriging. The most fundamental difference between methods of data transformation is 
that the normal score transformation function changes with each particular dataset, whereas 
the others do not (e.g., the log transform function is always the natural logarithm). The 
normal score transformation must occur after detrending, because covariance and 
variograms are calculated on residuals after trend correction. 
 

2.4.2. Generating the CP maps 
 

Crops are generally unaffected by salinity up to some threshold at which time yield 
will begin to decrease linearly as soil salinity levels increase (Maas and Hoffman 1977). 
This correlation between soil salinity and crop productivity was used to generate CP maps 
of YP%.  Soil salinity threshold levels were considered as conditions for a given crop to 
reach a specific YP%. In each of the two selected datasets, the three models were applied 
in order to generate CP maps to classify the selected irrigated fields into zones with 
different probabilities in order to reach a specific YP%, according to the soil salinity 
thresholds of alfalfa and corn. For example, soil salinity threshold of ≤ 5.4 dS/m is set as a 
condition for alfalfa to reach <90 & ≥75 of YP%. The generated CP map of this example 
divides the field by contour lines into zones. The contour lines have probability values of 
100%, 80%, 60%, 40%, 20%, and 0%. The zone contained between the 100% and 80% 
contour lines represents a probability of <100 and ≥ 80 that this zone of the field satisfies 
the soil salinity threshold condition for alfalfa to reach <90 & ≥75 of YP%. The areas of 
different zones are calculated and each zone area is divided by the total area of the field to 
obtain the percentage of that zone to the total area of the field. 
 
2.5. Model Evaluation 
 

Cross-validation was used to evaluate the different scenarios created using the three 
nonlinear geostatistical models (DK, IK, and PK) for the two datasets with the scenarios of 
planting alfalfa and corn at their different soil salinity threshold levels. Root mean square 
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(RMS), mean standardized (MS), and root mean square standardized (RMSS) prediction 
errors were used as the cross-validation evaluation parameters. The MS prediction error 
was used to guarantee that the prediction is unbiased (centered on the measured values). 
The RMS prediction error was used to guarantee that the prediction is as close to the 
measured values as possible. The smaller the RMS prediction error the closer the 
prediction is to the measured value. The RMSS error was used to assess the variability of 
the prediction. If the RMSS is close to one, then the variability of the prediction is 
correctly assessed.  If the RMSS error is greater than one, then the variability of the 
prediction is underestimated.  If the RMSS error is less than one, then the variability of the 
prediction is overestimated. 
 
3. Results 

 
In this section, an example of the generated CP maps using the three nonlinear 

geostatistical models for the scenario of planting alfalfa is provided. The purpose of the 
example is to visualize the spatial variability of the probability of YP% for different zones 
in the field. The importance of this example is to provide visual locations of the different 
zones with the field; however, it is not feasible to provide similar examples for all datasets 
using the three models for the selected crops. Another example of pie charts is provided to 
show the different areas contained within the CP probability contour lines. The importance 
of this example is to provide quantification of different areas, which was not feasible to 
provide with the previous example. However, it is still not practical to provide all datasets 
due to the limited space of the manuscript. Therefore, all zones generated by the three 
models for the two datasets for the scenarios of planting alfalfa and corn at their soil 
salinity thresholds levels are provided in a tabulated form. Even though the tables cannot 
provide the locations of the different zones or a visual scene, the advantage of tables is that 
they can provide the necessary quantification information for large datasets. Both figures 
and tables are important for decision making for both field scale and region scale levels. 
Model evaluation is provided to compare the different models’ predictions of whether if it 
is unbiased, close to the measured values, and successful in assessing the variability. 
Finally, the results were concluded by some recommendations and guidelines for growers 
based on the outcomes of this study. 

 
Figure 2 shows the generated CP maps for the scenario of planting a moderately 

tolerant crop (alfalfa), under the condition that the soil salinity threshold is ≤5.4 dS/m in 
order to reach <90% & ≥ 75% of YP%. In addition to the CP maps, the collected soil 
salinity map - which reveals the spatial distribution of soil salinity points and their values - 
was also displayed. The field is classified into different zones surrounded by contour lines, 
and each contour line represents a specific probability in order for this specific zone to 
reach <90% - 75% of alfalfa YP. The estimation of the three models showed similarities 
between different zones of different probabilities. For the probability of 100%, the three 
models were close in estimating the zones in the lower and upper left parts of the field. 
However, there is a zone in the upper right of the field that both IK and PK models 
estimated as a 100% probability zone, while the DK model estimated as a 80% probability 
zone. Of the three models, the DK estimated another zone as a 100% probability zone in 
the left part of the field inside the < 100 & ≥ 80% probability zone. The zones with a 
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probability of <100% & ≥ 80% adjacent to the 100% probability zones at the bottom and at 
the upper left part of the field are similar using the three models. However, there are some 
other small zones, such as the one at the left part of the field where DK and PK models 
estimated it as an 80% probability zone, while the IK model included it in the 60% 
probability zone. There is a zone in the lower part of the field where the DK estimate was 
more than the IK and PK model estimates. In the left upper part of the field, there is a zone 
where the estimates of both IK and PK models were similar, while the DK model 
estimated part of it as an 80% and the other part as a 60% probability zone. For the < 80% 
& ≥ 60% probability zones, there are two adjacent zones to the < 100% & ≥ 80% 
probability zones (one in the lower and the other in the upper left parts of the field) where 
the three models’ estimates of these zones were very close. There is another zone around 
the < 100% & ≥ 80% probability zone in the lower left part of the field where the estimate 
of the DK model was less than the estimate of both the IK and DK models. There is a zone 
around the < 100% & ≥ 80% zone at the upper left part of the field where the three models’ 
estimates were close.  For the < 60% & ≥ 40% probability, only one zone adjacent to the < 
80% & ≥ 60% probability zone starts from the upper part of the field, is extended at both 
sides, and reaches the < 80% & ≥ 60% zone at the bottom of the field. For the < 40% & ≥ 
20% probability zones, both IK and PK model estimated one zone at the middle of the field 
while the DK model estimated it at as two separate parts: one on the right and the other on 
the left of the field. For the < 20% & ≥ 0% probability zones, the DK model estimated 
three zones, two on the left and one on the right parts of the field, while the estimates of 
both the IK and PK model were less. 
 

Figure 3 shows the pie charts of of the areas with different probabilities caluculated 
from the CP maps generated using the three nonliear geostatistical models (DK, IK, and 
PK) for the scenario of planting alfalfa at different soil salinity thresholds levels. Each 
column of the figure represents one model with different soil salinity threshold levels while 
each row represents a specific threshold for the three models. For the soil salinity threshold 
≤ 3.4 dS/m which produces YP < 100% & ≥ 90%, along the top row of the figure, the three 
models provided similar estimates of zones with different probabilities - except that the 
DK estimated the zone of 100% probability to be larger than the estimates of both the IK 
and PK models. As a result of the DK’s overestimation of the 100% probability zone, the 
DK estimated the < 100% & ≥ 80% probability zone to be lower than both the IK and PK 
models estimated it to be. For the soil salinity threshold ≤ 5.4 dS/m which produces YP < 
90% & ≥ 75%, the second row of the figure, the three models provided similar estimates of 
all zones with different probabilities, except the 100% and < 100% & ≥ 80% probabilities. 
The DK model provides the highest estimates of the zone that produces 100% probability; 
the IK model provides the lowest estimates, and the PK model falls between the DK and 
IK models. As a result, the DK model provides the lowest estimates of the zone that 
produces < 100% & ≥ 80% probability, the IK model provides the highest estimates, and 
the PK model falls between the DK and IK models. For the soil salinity threshold ≤ 8.8 
dS/m which produces YP < 75%  ≥ 50%, the third row of the figure, the three models 
provided similar estimates of almost all zones with different probabilities. The DK 
overestimates the zones that have a probability of < 40% & ≥ 20% compared to the IK and 
DK models, and as a result, the DK model underestimates the zones that have a probability 
of < 40% & ≥ 20% compared to the IK and PK models. For the soil salinity threshold ≤ 
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15.5 dS/m which produces YP < 50% ≥ 0%, the bottom row of the figure, the three models 
provided similar estimates of almost all zones with different probabilities. The DK 
overestimates the zones that have a probability of < 40% & ≥ 20% compared to the IK and 
DK models, and as a result, the DK model underestimates the zones that have a probability 
of < 40% & ≥ 20% compared to the IK and PK models. The figure shows that as one move 
from the top row to the bottom row, the areas with high probability increase while the 
areas with low probability decrease. This reflects the fact that the chances for a given to 
reach high probability with high YP% are low (top row) while the chance to reach high 
probability with low YP% are high (bottom row).  

 
Using Conditional Probability Maps to Manage Soil Salinity and Crop Yield 
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DK

IK PK

Collected Soil Salinity 

 
Figure 3: CP maps for field US14 generated using DK, IK, and PK for sorghum at 
soil salinity threshold of 5.1 dS/m which produces 90% - 75% of YP. 
 
 
Table 2: The cumulative CP% of the whole field for the three datasets at dif-
ferent levels of soil salinity thresholds (different YP%) of alfalfa and corn. 
YP% DK IK PK 
 Alfalfa Corn Alfalfa Corn Alfalfa Corn 

First Dataset 
100       
100-90 29.5 13.7 29.9 8.2 30.4  
90-75 45.7 33.1 47.6 34.8 47.1 34.6 
75-50 75.9 52.0 75.9 53.7 75.9 53.9 
50-0 93.7 80.9 92.9 81.2 93.9 81.1 

Second Dataset 
100       
100-90   3.2  1.4  
90-75 35.7 13.7 36.4 6.0 4.4 1.6 
75-50 90.9 44.9 90.4 45.7 10.8 5.5 

 
 
Figure 2. CP maps with different probability contour lines using the three nonlinear geostatistical (DK, IK, 

and PK) for the scenario of planting alfalfa under the soil salinity threshold condition ≤5.4 dS/m 
that reaches <90% & ≥75% of YP%. 
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DK IK PK
CP (Soil Salinity ≤ 3.4 dS/m ); YP% (< 100 & ≥ 90)

CP (Soil Salinity ≤ 5.4 dS/m ); YP% (< 90 & ≥ 75)

CP (Soil Salinity ≤ 8.8 dS/m ); YP% (< 75 & ≥ 50)

CP (Soil Salinity ≤ 15.5 dS/m ); YP% (< 50 & ≥0)

100 <100 & ≥80 <80 & ≥60 <60 & ≥40 <40 & ≥20 <20 & ≥0  
Figure 3. Pie charts of zone areas with different probabilities caluculated from the CP maps generated using 

the three nonliear geostatistical models (DK, IK, and PK) for the scenario of planting alfalfa at 
different soil salinity thresholds levels. 
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Table 2. Different zones, as a percentage of the whole field, for the scenarios of planting alfalfa and corn at 
different soil salinity thresholds and different probabilities for the first dataset. 

Soil Salinity Threshold; 
YP% 

Probability 
100% <100 & ≥80 <80 & ≥60 <60 & ≥40 <40 & ≥20 <20 & ≥0 

Alfalfa, DK 
≤ 2.0 dS/m; 100%       
≤3.4 dS/m; <100 & ≥90 5.0 5.2 6.6 17.3 47.2 18.7 
≤5.4 dS/m; <90 & ≥75 12.2 9.8 18.7 25.0 22.3 12.0 
≤8.8 dS/m; <75 & ≥50 45.6 20.5 13.7 11.0 6.8 2.5 
≤15.5 dS/m; <50 & ≥0 79.1 13.8 3.9 3.0 0.2 0.0 
 Alfalfa, IK 
≤ 2.0 dS/m; 100%       
≤3.4 dS/m; <100 & ≥90 4.6 5.3 7.0 16.0 52.4 14.7 
≤5.4 dS/m; <90 & ≥75 10.2 11.9 18.1 26.8 31.4 1.6 
≤8.8 dS/m; <75 & ≥50 48.5 16.1 12.8 12.0 10.2 0.4 
≤15.5 dS/m; <50 & ≥0 80.9 8.9 5.4 3.3 1.5 0.0 
  

Alfalfa, PK 
≤ 2.0 dS/m; 100%       
≤3.4 dS/m; <100 & ≥90 5.2 5.2 7.1 14.8 54.2 13.5 
≤5.4 dS/m; <90 & ≥75 10.5 11.9 17.7 26.8 28.9 4.2 
≤8.8 dS/m; <75 & ≥50 48.5 16.1 12.9 11.7 10.5 0.3 
≤15.5 dS/m; <50 & ≥0 79.7 12.5 5.6 2.2 0.0 0.0 
 Corn DK 
≤ 1.7 dS/m; 100%       
≤ 2.5 dS/m; <100 & ≥90 0.0 0.1 2.2 7.3 46.7 43.7 
≤3.8 dS/m; <90 & ≥75 7.2 5.2 8.7 20.9 41.0 17.0 
≤5.9 dS/m; <75 & ≥50 14.7 15.8 21.9 20.1 17.9 9.7 
≤10.0 dS/m; <50 & ≥0 54.7 17.7 12.6 9.1 3.8 1.9 
 Corn IK 
≤ 1.7 dS/m; 100%       
≤ 2.5 dS/m; <100 & ≥90 0.0 0.0 1.2 6.1 25.1 67.5 
≤3.8 dS/m; <90 & ≥75 7.1 5.5 8.0 19.1 54.2 6.1 
≤5.9 dS/m; <75 & ≥50 11.6 20.9 19.2 24.2 20.9 3.2 
≤10.0 dS/m; <50 & ≥0 56.9 16.3 10.9 8.5 7.0 0.5 
 Corn PK 
≤ 1.7 dS/m; 100%       
≤ 2.5 dS/m; <100 & ≥90 0.0 0.0 0.6 4.8 66.6 28.0 
≤3.8 dS/m; <90 & ≥75 7.9 5.7 7.4 18.4 51.7 8.9 
≤5.9 dS/m; <75 & ≥50 12.3 20.3 18.8 24.3 21.6 2.7 
≤10.0 dS/m; <50 & ≥0 56.5 16.5 10.9 8.3 7.7 0.1 
 

Table 2 shows the zones with different probabilities, as a percentage of the whole field, 
for the scenarios of planting alfalfa and corn at their different soil salinity thresholds for 
the first dataset. The soil salinity values of the first dataset show that the highest YP% that 
alfalfa and corn can reach is < 100 & ≥ 90. The table shows that there are similarities and 
differences ranging from slight to significant in the areas of different zones among the 
three models. Besides, there are some differences between the scenarios of planting alfalfa 
and corn in the zones under the same probability and the same YP% for the estimates of 
the same model when using alfalfa and corn. At the soil salinity threshold ≤ 15.5 dS/m, 
which causes the alfalfa YP% to be < 50 & ≥ 0 with the probability of < 100 & ≥ 80, the 
estimations of DK, IK, and PK models were: 13.8, 8.9, and 12.5 respectively. The 
differences between DK and IK and between IK and PK are significant; however, the 
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difference between DK and PK is slight. At a soil salinity threshold of ≤3.4 dS/m which 
causes the alfalfa YP% to be < 100 & ≥ 90 with the probability of < 100 & ≥ 80, the 
estimations of DK, IK, and PK models were: 5.2, 5.3, and 5.2 respectively. This estimation 
of the different models has only slight differences and sometimes there is no difference at 
all. Table 2 shows that with the condition that alfalfa and corn reach the same YP%, the 
areas of different zones of alfalfa are larger than the corresponding ones of corn. At soil 
salinity thresholds: ≤ 3.4, ≤ 5.4, ≤ 8.8, and ≤ 15.5 dS/m there is a 100% probability for 
alfalfa YP% to be: < 100 & ≥ 90, < 90 & ≥ 75, < 75 & ≥ 50, and < 50 & ≥ 0 respectively.  
 
Table 3. Different zones, as a percentage of the whole field, for the scenarios of planting alfalfa and corn at 

different soil salinity thresholds and different probabilities for the second dataset. 
 
YP% 

Areas within different contour lines 
100% <100 & ≥80 <80 & ≥60 <60 & ≥40 <40 & ≥20 <20 & ≥0 

Alfalfa, DK 
≤ 2.0 dS/m; 100%       
≤3.4 dS/m; <100 & ≥90 26.1 13.6 9.9 6.1 20.7 23.7 
≤5.4 dS/m; <90 & ≥75 51.8 6.8 6.9 10.1 14.4 10.0 
≤8.8 dS/m; <75 & ≥50 66.9 10.0 6.9 6.1 6.0 4.1 
≤15.5 dS/m; <50 & ≥0 86.6 3.6 3.6 4.8 1.4 0.0 
 Alfalfa, IK 
≤ 2.0 dS/m; 100%       
≤3.4 dS/m; <100 & ≥90 26.7 14.3 7.4 4.6 9.4 37.5 
≤5.4 dS/m; <90 & ≥75 56.3 3.5 3.3 5.0 17.6 14.3 
≤8.8 dS/m; <75 & ≥50 69.0 8.4 7.7 5.2 8.9 0.7 
≤15.5 dS/m; <50 & ≥0 49.4 3.3 3.3 3.3 8.9 31.8 
 Alfalfa, PK 
≤ 2.0 dS/m; 100%       
≤3.4 dS/m; <100 & ≥90 27.3 13.5 7.8 4.2 25.6 21.6 
≤5.4 dS/m; <90 & ≥75 57.2 3.2 2.9 3.9 20.8 12.0 
≤8.8 dS/m; <75 & ≥50 68.9 8.4 7.7 5.4 8.2 1.3 
≤15.5 dS/m; <50 & ≥0 84.5 6.1 4.6 3.6 1.2 0.0 
 Corn DK 
≤ 1.7 dS/m; 100%       
≤ 2.5 dS/m; <100 & ≥90       
≤3.8 dS/m; <90 & ≥75 40.9 10.9 6.3 8.0 19.3 14.6 
≤5.9 dS/m; <75 & ≥50 57.2 5.3 10.2 8.9 10.8 7.5 
≤10.0 dS/m; <50 & ≥0 71.5 8.6 7.2 3.9 6.0 2.8 
 Corn IK 
≤ 1.7 dS/m; 100%       
≤ 2.5 dS/m; <100 & ≥90       
≤3.8 dS/m; <90 & ≥75 49.4 3.3 3.3 3.3 8.9 31.8 
≤5.9 dS/m; <75 & ≥50 57.7 4.2 9.9 9.8 15.0 3.5 
≤10.0 dS/m; <50 & ≥0 70.9 9.7 7.9 5.2 6.3 0.0 
 Corn PK 
≤ 1.7 dS/m; 100%       
≤ 2.5 dS/m; <100 & ≥90       
≤3.8 dS/m; <90 & ≥75 49.4 49.4 49.4 49.4 49.4 49.4 
≤5.9 dS/m; <75 & ≥50 58.2 58.2 58.2 58.2 58.2 58.2 
≤10.0 dS/m; <50 & ≥0 70.6 70.6 70.6 70.6 70.6 70.6 

 
The DK model estimation of the corresponding zones was: 5.0, 12.2, 45.6, and 79.1 

respectively. At soil salinity thresholds: ≤ 2.5, ≤ 3.8, ≤ 5.9, and ≤ 10 dS/m there is a 100% 
probability for corn YP% to be < 100 & ≥ 90, < 90 & ≥ 75, < 75 & ≥ 50, and < 50 & ≥ 0 
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respectively. The DK model estimation of the corresponding zones was 0, 7.2, 14.7 and 
54.7 respectively. This reflects the fact that alfalfa is a moderate tolerant crop while corn is 
a moderate sensitive crop. Therefore, the chances for alfalfa are higher than corn to reach 
high YP%.    
 

Table 3 shows the zones with different probabilities, as a percentage of the whole field, 
for the scenarios of planting alfalfa and corn at their soil salinity thresholds for the second 
dataset. The soil salinity values of the second dataset show that the highest YP% that 
alfalfa can reach is < 100 & ≥ 90 while corn can reach only < 90 & ≥ 75. Table 3 shows 
that there are fewer similarities among the different models compared to the first dataset, 
the differences range from slight to significant in the areas of different zones. Also, there 
are some differences between the scenarios of alfalfa and corn in the zones under the same 
probability and the same YP% for the estimates of the same model when using alfalfa and 
corn. At the soil salinity threshold ≤ 3.4 dS/m that alfalfa YP% can reach < 100 & ≥ 90 at 
the probability of 100%, the estimations of DK, IK, and PK models were 26.1, 26.7, 27.3 
respectively, with slight differences. However, at the soil salinity threshold of ≤ 15.5 dS/m 
that alfalfa YP% can reach < 50 & ≥ 0 at the probability of 100%, the estimations of DK, 
IK, and PK models were: 86.6, 49.4, and 84.5 respectively. There is a slight difference 
between the estimates of the DK and PK models, while there is a significant difference 
between the DK and IK models and between the IK and PK models. At soil salinity 
thresholds: ≤ 3.4, ≤ 5.4, ≤ 8.8, and ≤ 15.5 dS/m there is a 100% probability for alfalfa YP% 
to be: < 100 & ≥ 90, < 90 & ≥ 75, < 75 & ≥ 50, and < 50 & ≥ 0 respectively. The DK 
model estimation of the corresponding zones was: 26.1, 51.8, 66.9, and 86.6 respectively. 
At soil salinity thresholds: ≤ 2.5, ≤ 3.8, ≤ 5.9, and ≤ 10 dS/m there is a 100% probability 
for corn YP% to be: < 100 & ≥ 90, < 90 & ≥ 75, < 75 & ≥ 50, and < 50 & ≥ 0 respectively. 
The DK model estimation of the corresponding zones was 0, 49.9, 57.2 and 71.5 
respectively. The differences are significant between the areas of the corresponding zones. 
The estimates of the DK model range from slight to significant. The DK model estimate of 
the first zone with alfalfa scenario was 26.1 while its estimate of the similar zone with corn 
scenario was 0 (significant). In the meanwhile, the model estimates for the second zone 
with the scario of alfalfa was 51.8 while its estimate for the similar zone with corn was 
49.9 (slight). 
 

The previous results show that there are differences from slight to significant among 
the three models estimates for the different zone. Based on these differences, there is no 
parameters that tell which model is more accurate than the other. Therefore, cross 
validation parameters are used to evaluate the estimates of the different models. Table 4 
shows the cross validation parameters: MS, RMS, and RMSS for the scenarios of planting 
alfalfa and corn under the conditions of different soil salinity thresholds using the three 
models. There are no values for the scenario of planting corn for the three models at YP% 
of < 100 & ≥ 90 because the soil salinity values are high enough for corn not to reach such 
YP%. Table 4 shows that the MS values are almost 0’s for all the cases, which means that 
the estimations of the three models are unbiased. The RMS values are small for all cases, 
which means that the estimations of the three models are close to the observed values. 
However, there are some values (0.11, 0.13, and 0.19) of the DK model that are smaller 
than the IK and PK models. This implies that the DK model is more accurate than the IK 
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and PK models. The RMSS values are close to 1 for most of the cases, which means the 
three models were accurate in assessing the variability. However, there are a few values of 
RMSS either greater or less than 1, which means that in these cases the model either 
overestimates or underestimates the variability. We can consider the RMSS values of 1 as 
an optimal assessment of the variability, values of RMSS ± 0.05 as a successful estimate of 
the variability, and values of RMSS out of this range to be less successful in assessing the 
variability. There are three cases (0.91, 0.91, and 0.93) where the DK model overestimates 
the variability. There are four cases (0.93, 1.36, 1.16, and 1.39) where the IK model 
overestimates the variability for the first case and underestimates it with the three other 
cases. There are four cases (0.91, 1.36, 1.11, and 1.39) where the PK model overestimates 
the variability for the first case and underestimates it with the three other cases. This gives 
an indication that the DK model was the most successful in assessing the variability among 
the three models which confirms the pevious conclusion that the DK is more accurate than 
the IK and PK models. 
 
Table 4. Cross-validation parameters for the scenarios of planting alfalfa and corn under the conditions of 

several soil salinity thresholds using the three models. 
Cross 
Valid. 
Coeff. 

First Dataset Second Dataset 
YP% 

100 <100&≥90 <90&≥75 <75&≥50 <50&≥0 100 <100&≥90 <90&≥75 <75&≥50 <50&≥0 
Alfalfa; DK 

MS  -0.01 0.00 0.02 0.03  0.01 0.02 0.02 0.01 
RMS  0.30 0.38 0.35 0.24  0.11 0.39 0.34 0.11 
RMSS  0.91 0.99 0.95 0.91  0.98 0.98 0.96 1.01 

Corn; DK 
MS  -0.03 0.01 0.01 0.02   0.01 0.03 0.01 
RMS  0.19 0.32 0.39 0.34   0.13 0.43 0.30 
RMSS  1.02 0.93 1.01 0.96   0.97 1.00 1.01 

Alfalfa; IK 
MS  0.00 0.00 0.00 0.02  0.01 0.00 0.00 0.01 
RMS  0.30 0.39 0.35 0.24  0.09 0.40 0.34 0.11 
RMSS  1.00 0.97 0.98 0.93  1.36 0.99 0.97 1.16 

Corn; IK 
MS  0.00 0.00 0.00 0.00   0.01 0.01 0.00 
RMS  0.19 0.32 0.41 0.34   0.13 0.44 0.31 
RMSS  1.04 0.98 0.98 0.99   1.39 0.99 0.99 

Corn; PK 
MS  0.00 0.00 0.01 0.02  0.02 0.00 0.03 0.01 
RMS  0.30 0.38 0.35 0.25  0.09 0.39 0.34 0.11 
RMSS  1.01 0.97 0.98 0.91  1.36 0.98 0.98 1.11 

Corn; PK 
MS  -0.01 0.00 0.00 0.01   0.01 0.01 0.03 
RMS  0.19 0.32 0.40 0.34   0.13 0.43 0.30 
RMSS  1.05 1.00 0.99 0.98   1.39 0.98 1.00 

 
The following can help the growers to improve the YP% in the low YP% zone: 1) 

improve management of fertilizer application; 2) increase the number of seeds planted; 3) 
check their irrigation system to make sure that these zones receive the required amount of 
water; and 4) check for insects in case they need to apply pesticides and herbicides to 
manage pests 
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4. Conclusion 
 

The techniques presented by the three nonlinear geostatistical models are helpful for 
managing decision-making for growers who face soil salinity problems. These techniques 
provide the growers with visual and quantitative information about zones of their fields 
with different probability to reach a specific YP% for a given crop. These models provide 
them a quantitative means of evaluating different soil salinity zones in their fields. The 
information provided in Figures 2 and 3 for the alfalfa and corn scenarios provides the 
growers with a visual representation of the variation in the probability of YP% in the 
different zones of their fields when planting either alfalfa or corn. Also, the data presented 
in Tables 2 and 3 provide the growers with quantitative information about the probability 
of YP% of different zones in their fields. Based on this information, growers can decide 
which crop to select. Both visual and quantitative information give the growers warning 
about the low YP% in their fields. Therefore, growers can pay more attention to these 
zones, which are mainly affected by soil salinity, to try to alleviate the impact of salinity 
on these zones and to guarantee that there is no other factor adding another impact beside 
soil salinity. 
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