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ABSTRACT OF THESIS 

A PARAMETRIC OPTIMAL ESTIMATION RETRIEVAL OF THE NON-

PRECIPITATING PARAMETERS OVER THE GLOBAL OCEANS 

There are a multitude of spacebome microwave sensors in orbit, including the 

TRMM Microwave Imager (TMI), the Special Sensor Microwave/lmager (SSM/I) on-

board the DMSP satellites, the Advanced Microwave Scanning Radiometer - Earth 

Observing System (AMSR-E), SSMIS, WINDSAT, and others. Future missions, such as 

the planned Global Precipitation Measurement (GPM) Mission, will incorporate 

additional spacebome microwave sensors. The need for consistent geophysical 

parameter retrievals among an ever-increasing number of microwave sensors requires the 

development of a physical retrieval scheme independent of any particular sensor and 

flexible enough so that future microwave sensors can be added with relative ease. To this 

end, we attempt to develop a parametric retrieval algorithm currently applicable to the 

non-precipitating atmosphere with the goal of having consistent non-precipitating 

geophysical parameter products. An algorithm of this nature makes is easier to merge 

separate products, which, when combined, would allow for additional global sampling or 

longer time series of the retrieved global geophysical parameters for climate purposes. 

This algorithm is currently applied to TMI, SSM/I and AMSR-E with results that are 

comparable to other independent microwave retrievals of the non-precipitating 

parameters designed for specific sensors. 
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The physical retrieval is developed within the optimal estimation framework. The 

development of the retrieval within this framework ensures that the simulated radiances 

corresponding to the retrieved geophysical parameters will always agree with observed 

radiances regardless of the sensor being used. Furthermore, a framework of this nature 

allows one to easily add additional physics to describe radiation propagation through 

raining scenes, thus allowing for the merger of cloud and precipitation retrievals, if so 

desired. Additionally, optimal estimation provides error estimates on the retrieval, a 

product often not available in other algorithms, information on potential forward 

model/sensor biases, and a number of useful diagnostics providing information on the 

validity and significance of the retrieval (such as Chi-Square, indicative of the general 

"fit" between the model and observations and the A-Matrix, indicating the sensitivity of 

the model to a change in the geophysical parameters). There is an expected global 

response of these diagnostics based on the scene being observed, such as in the case of a 

raining scene. Fortunately, since TRMM has a precipitation radar (TRMM PR) in 

addition to a radiometer (TMI) flying on-board, the expected response of the retrieval 

diagnostics to rainfall can be evaluated. It is shown that a potentially powerful rainfall 

screen can then be developed for use in passive microwave rainfall and cloud property 

retrieval algorithms with the possibility of discriminating between precipitating and non-

precipitating scenes, and further indicating the possible contamination of rainfall in cloud 

liquid water path microwave retrievals. 
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1.1 Motivation 

CHAPTERl 

INTRODUCTION 

Global oceanic measurements of integrated water vapor, surface wind speed, 

integrated cloud liquid water, and sea surface temperatures are used in climate and 

weather forecast models, as well as in studies of the hydrologic cycle and 

ocean/atmospheric exchanges. The retrieval of these parameters on a global scale has a 

long history dating back to the advent of the satellite and spacebome passive microwave 

sensors (see Wilheit and Chang 1980, Wilheit et al. 1984, Alishouse et al. 1990a, 1990b, 

Wentz 1997, and Deblonde 2001). Over the past three decades, a multitude of 

spacebome microwave sensors have been developed. Each sensor is designed to view the 

upwelling microwave radiation from the Earth's surface/atmosphere and has a unique 

combination of frequencies and polarizations that are used in non-raining and raining 

retrieval algorithms. Typically, the algorithm used for retrieval of the non-precipitating 

parameters is completely independent of the algorithm used for retrieval of precipitation. 

However, because clouds and precipitation are related, the idea of retrieving the 

properties of both in a combined framework is an appealing one. A goal of this study, 

then, is to provide such a framework. While this research focuses on applying the 

retrieval framework to non-precipitating scenes as a first step, the algorithm is designed 
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so that both the non-precipitating and precipitating retrievals can be merged. The result 

would be a coherent, global picture of the atmospheric geophysical parameters with the 

precipitation and cloud property retrievals being combined. 

The need for consistent geophysical parameter retrievals among an ever-increasing 

number of sensors requires the development of a retrieval scheme independent of any 

particular sensor and flexible enough so that future microwave sensors can be added with 

relative ease. Whereas a statistical algorithm relies on empirically derived relationships 

between particular radiances and geophysical parameters, a physical retrieval scheme is 

based on the underlying physics of radiative transfer across the microwave spectrum, and 

thus satisfies the requirement of a sensor-independent microwave algorithm. An 

algorithm of this nature also makes it easier to merge separate products, which, when 

combined, would allow for additional global sampling or longer time series of the 

retrieved global geophysical parameters for climate purposes. 

A physical retrieval uses a forward radiative transfer model with appropriate 

representation of the thermodynamic and radiative properties and structure of the 

atmosphere and surface. Given a set of measured brightness temperatures, the forward 

model can be inverted to yield the geophysical parameters of interest with the assurance 

that the environmental assumptions are self-consistent and independent of the sensor. 

Furthermore, a physical retrieval can be applied to a wide range of actual atmospheric 

conditions, some of which may not be accommodated by existing empirical algorithms. 

Since this scheme is model-based, it is important that the model properly represent the 

true nature of the atmosphere and surface. 
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This study employs a physical retrieval with a non-precipitating radiative transfer 

model that takes into account absorption and emission in the atmosphere over a wind-

roughened ocean surface. By focusing on oceans, fewer model assumptions are required. 

Modeling emissivity over the ocean is less complex than over land. Also, by restricting 

the study to non-precipitating scenes, the more complicated scattering processes that take 

place when microwave radiation interacts with precipitating liquid water/ice clouds can 

be neglected. The physical retrieval is developed within the optimal estimation 

framework. Within optimal estimation, the forward model is inverted and a physically 

consistent solution is sought in an iterative manner with the requirement that the retrieved 

geophysical parameters will yield brightness temperatures derived from the forward 

model that agree with observed brightness temperatures within an allotted noise/error 

range. If the forward model is modified so that radiation propagation through 

precipitating scenes can be dealt with, then the framework that merges both the non-

precipitating and precipitating retrieval algorithms emerges. 

Thus, there is a multifaceted goal in developing a physical retrieval of the non-

precipitating parameters within the optimal estimation framework. First, an algorithm 

that can be applied to any current and future spacebome sensor is desired. There are a 

number of spacebome microwave sensors currently in orbit. The TMI, the SSM/1 

onboard the DMSP satellites, AMSR-E, SSMIS, WindSat and others are all currently 

providing radiance information. Future missions, such as the Global Precipitation 

Measurement (GPM) mission, will incorporate additional spacebome microwave sensors. 

If independent sensors are viewing the same location on Earth, then the retrieval 

algorithm should yield comparable geophysical parameters regardless of the sensor being 
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used and without having to change the forward model (aside from changes in viewing 

geometry, spatial resolution, antenna pattern and sensor channels). Furthermore, an 

algorithm designed within the optimal estimation framework provides the error 

associated with all retrieved geophysical parameters, a diagnostic often not possible in 

ot er retrieval frameworks. Since all measurements in the geosciences have an 

uncertainty associated with them, knowing the errors associated with each retrieval 

allows for a greater understanding of the problem. Additionally, an internal check on 

validity of retrieval is desired. The optimal estimation chi-square diagnostic indicates 

w ether or not simulated radiances agree with observed radiances and if the retrieval is 

valid or needs to be discarded. If chi-square is larger than expected, then it is possible 

that the pixel may be contaminated by precipitation. Thus, a viable method for rainfall 

screening or rainfall probability can be derived, a method described in greater detail in 

C apter 4. The differences in radiances can also be used as a diagnostic for testing the 

forward model (Prigent et al. 1997), and thus it becomes possible to begin to understand 

the magnitude or influence of biases present in the forward model. Furthermore, the 

brightness temperature biases corresponding to the retrieved solutions can also be used to 

assess calibration standards for individual sensors. The benefits of optimal estimation 

can thus be summarized as providing fully parametric retrievals, associated error 

estimates, a rain screen methodology and forward model/sensor calibration error 

diagnostics. 
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1.2 Non-Precipitating Radiative Transfer Model 

The radiance, or intensity of radiation, emitted from a blackbody is given by 

Planck's function 

2hv3 lc 2 

B(v,n = hv /KT 1' e -

where h is Planck's constant (6.63 x 10-34 J s), vis the frequency of radiation in Hertz, c 

is the speed of light in free space (3 x 108 m s-1), K is Boltzmann's constant (1.38 x 10-23 

Joules/Kelvin) and T is the absolute temperature in Kelvins. In the microwave portion of 

the radiation spectrum ranging from approximately 1 cm to 1 m in wavelength, the 

Rayleigh-Jeans approximation can be made and the radiance distribution can be 

expressed as 

(1.2) 

where Bis in W m-2 sf 1 Hz-1
, vis the frequency of radiation, K is Boltzmann's 

constant, T is the absolute temperature and c is the speed of light. The intensity can be 

expressed in units of temperature by inverting Eqn. (1.2) and solving forT. Intensity 

expressed in these terms is referred to as a brightness temperature. This is the 

temperature that is required to match the observed radiance given by the Planck function 

at a particular frequency. In the microwave part of the spectrum, then, radiance is 

directly proportional to absolute thermodynamic temperature. 

The atmosphere under study is one in which scattering processes are neglected. 

Furthermore, it is assumed that there are no horizontal variations in the atmospheric 

structure and thus no variation of the radiance in an azimuthal direction (plane-parallel 

assumption). Thus, electromagnetic waves propagating through an atmospheric layer are 
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affected only by the processes of absorption and emission, with transmittances depending 

only on the path taken through the layer of interest and the frequency of radiation. The 

general equation describing the above process is given by 

(1.3) 

where the frequency dependence of the above terms is understood. kabs is the 

atmospheric absorption coefficient dependent on cloud liquid water content, water vapor 

content, oxygen (and collision-induced absorption for nitrogen), atmospheric temperature 

and pressure. / is the radiance entering the layer and B(T) is the Planck emission of the 

layer. The change in radiance di along a distance ds through an atmospheric layer is 

then affected by two processes: extinction decreasing the radiance due to absorption of 

radiation through the layer ( -kabl) and emission within the layer increasing the radiance 

( kabfl(T) ). The path length ds can be expressed in terms of height in the atmosphere by 

the equation 

ds = dz /cos(0) , 

where dz is the change in atmospheric height and 0 is the incidence angle (angle of 

intersection of the vector of radiation propagation with Earth's curved surface). 

Integrating Eqn. (1.3) along a path ds from s, to s2 and rearranging yields 

S? 

/(s2) = l(s,)e-lr<s, }-T(s2)I + J B(s')e-lT(s}-T( s2 )ldr(s) • 

(1.4) 

(1.5) 

The optical depth r of an atmospheric layer from s1 to s2 , a measure of the integrated 

absorption along a distance ds, is given by 

(1.6) 
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The radiance at s2 is the result of radiance originally incident at s1 being attenuated by 

absorption as it propagates from s1 to s2 (the extinction term) and contributions from 

integrated emission along ds (the source term). 

For this study, the above equation is applied in a recursive manner with the 

atmosphere being divided into a number of layers of equal depth with an assumed, 

latitudinal varying temperature lapse rate and scale height for water vapor distribution 

based on climatology as derived from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) reanalysis. Cosmic background radiation (I"(TOA)) with a 

brightness temperature of 2.7 K is incident at the top of the atmosphere (TOA) and 

propagates down along a path ds with changes in radiance through each layer being 

governed by Eqn. (1.5) due to absorption and emission processes. The downwelling 

radiance at z = 0 (I"(sfc)) is then reflected by the ocean (along with additional emission 

from the surface) with the upwelling radiance (l\sfc)) given by 

l (sfc) = (1- e )I" (sfc) + eT.1c , (1.7) 

where 'f.1c is the absolute thermodynamic temperature of the ocean surface and e is the 

microwave emissivity, which is dependent on the dielectric properties of the ocean as 

well as the surface wind speed and direction. l (sfc) is then propagated upward through 

the atmospheric layers along ds with the radiance emerging at the TOA ( l (TOA)) being 

observed by the spacebome sensor (in the form of a brightness temperature). 

1.2.1 Emissivity Model 

The accuracy of the retrieval of the non-precipitating parameters is tied to the 

accuracy of the ocean emissivity model since the atmosphere for non-precipitating scenes 
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is relatively transparent at the frequencies used in this study. Thus, the upwelling 

radiance is to a large degree tied to emission from the surface and reflection of 

downwelling radiance at the surface, particularly for completely clear-sky scenes. The 

accuracy of the model chosen for emissivity computations over the ocean surface is 

dependent upon several factors-those that arise from the nature of the seawater itself 

and others that arise when wind roughens an ocean surface. 

1.2.1.1 SPECULAR COMPUTATION OF EMISSIVITY 

First, the computation of the specular (calm wind conditions) emissivity over 

seawater is relatively straightforward. Assuming a calm ocean surface, the emissivity at 

a particular incidence angle 0 can be computed by 

especu/ar = 1- RP , (1.8) 

where e specular is the specular emissivity at a polarization p, and RP is the square of the 

Fresnel reflection coefficient at polarization p . For vertical and horizontal polarizations 

then , 

R _ 0 
2 

H -

~--- 2 

R = 
V , 

(1.9) 

(1.10) 

where c is the complex dielectric coefficient of seawater, the variable that is dependent 

upon the dielectric properties of the water. If both £ and the incidence angle are known, 

then the specular emissivity can be computed with relative ease. For a completely calm 

ocean surface with 0° < 0 < 90°, emissivity at vertical polarization is larger than 

8 



emissivity at horizontal polarization (a difference that is exploited in surface wind 

retrieval and is largest at incidence angles near the Brewster angle, explained in a later 

section). 

Several models exist for computing E as a function of seawater temperature, 

salinity, and frequency of radiation. However, with the lack of permittivity data, many of 

these models extrapolate permjttivity measurements performed at spot frequencies and 

limited temperatures to many more frequencies, where the extrapolation can lead to 

significant errors in permittivity values. Ellison et al. (1998 and 2003) carried out 

additional experiments and determined the permittivity of synthetic seawater with a 

salinity of 35 parts per thousand (.i.J in 2-5 GHz steps from approximately 3 to 105 GHz 

over a number of sea surface temperatures. A salinity of 35 7. 0 is representative of that 

which is observed in natural seawater on the open ocean. The differences in permittivity 

between synthetic seawater and natural seawater are discussed by Ellison et al. (1998 and 

2003) and are smaller than the 1 % experimental error over a range of 3-20 GHz and 

smaller than the 3% experimental error for higher frequencies. Emjssivities using Eqns. 

(1.9) and (1.10) over a range of frequencies have been computed using these permittivity 

measurements. The results are compared to other widely used emissivity models 

(specular only) at a chosen sea surface temperature of 20°C and incidence angle of 52.8°. 

The comparisons are shown in Figures 1.1 and 1.2 for horizontal and vertical 

polarizations, respectively. Similar results are obtained (not shown) when using 

permittivity data at other sea surface temperatures and comparing it to the same 

emissivity models used in the figures . 
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Figure 1.2. Specular Emissivity (V-Pol) vs Frequency. 

The new permittivity measurements of Ellison et al. (1998 and 2003) have been 

incorporated into the Deblonde and English (2001) emissivity model shown in Figures 

1.1 and 1.2. While the choice of permittivity model used for specular computation has 

the greatest impact for calm wind conditions, the choice continues to be significant for 

wind speeds up to 5-7 m s·1 (Ellison et al. 2003). Thus, for the specular portion of this 
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model, Deblonde and English (2001) has been used in this study. Additional details on 

this model can be found in Deblonde (2000). 

1.2.1.2 COMPUTATION OF EMISSIVITY FOR ROUGH OCEAN SURFACE 

When increasing surface winds (specifically, the friction velocity at the air-ocean 

interface) roughen the ocean surface, the microwave emissivity can no longer be 

computed with the specular equations. When the surface becomes rough, the emission 

increases and becomes less polarized for the range of incidence angles of the sensors used 

in this study (Aziz et al. 2005). There are a number of reasons for this. When surface 

waves are generated on the ocean surface with wavelengths that are long compared to the 

wavelength of radiation, then the local incidence angle changes and the polarization 

states are mixed. Furthermore, increasing wind speed over the ocean surface generates 

sea foam as the ocean waves break. While sea foam typically may cover only 3% of the 

sea surface, it has an emissivity much higher than that of seawater and at wind speeds 

greater than 15 m s-1
, foam brightness may provide as much as half of the wind speed 

signature to a spacebome radiometer (Smith 1988). Another process that affects the 

emissivity is that of the diffraction of microwave radiation by surface waves that are 

small compared to the radiation wavelength-waves known as capillary waves. These 

three effects are typically parameterized into an empirical "roughness" function 

(f(wind)) that when added to e specuta, yields 

e = espec11lar + f (wind) • (1.11) 

where e is the microwave emissivity used in Eqn. (1.7), taking into account a rough sea 

surface and seawater dielectric properties. Additionally, the roughness of the sea surface 
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and the geometry of the waves is also a function of wind direction. In this study, 

however, wind direction effects are not considered since the impact on the horizontal and 

vertical polarization states is estimated to be considerably less than the other errors that 

arise from the combined effects of the different components of the non-precipitating 

forward model (error analysis described in Chapter 3). 

The ability to understand and model f(wina) is the subject of ongoing research. 

First, the effects of surface roughness and foam need to be considered separately 

(Padmanabhan et al. 2006) since the exact contribution of each is not well understood. 

Experimentally determining the variations of foam/whitecap coverage in different wind 

regimes, understanding when foam develops, investigating the effects of wind direction 

on foam, and understanding the effects of foam on emissivity at varying incidence angles 

are all areas where research is in progress (see Rose et al. 2002, Aziz et al. 2005, and 

Padmanabhan et al. 2006). A highly accurate empirical model with the ability to fully 

parameterize the effects of wind speed and direction on the properties and coverage of 

foam does not exist at this time. Additionally, the geometry of waves as a function of 

ocean surface stratification, distributions of the slopes of waves varying with wind 

direction, speed and duration, and the effects of multiple reflections from time varying 

and spatially varying slopes of waves as functions of wind are not well understood. 

However, the importance of taking into account the increased emissivity as a function of 

wind is understood and needed in order to retrieve the non-precipitating parameters over 

the ocean. To do this, the rough sea surface model of Wilheit (1979b) is used. Wilheit 

(1979a,b) pointed out that the microwave emissivity of the wind-roughened ocean surface 

may be adequately represented by a geometric optics model requiring knowledge of the 
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statistical distribution of surface slopes (Petty and Katsaros 1994 ). It is based on the 

Hollinger (1971) adjustment to the Cox and Munk (1954) model treating the surface as an 

ensemble of facets with a Gaussian distribution. Each facet is treated as a specular 

surface, with the total surface emissivity being an area-weighted average of each facet's 

emissivity. His approach does not take into account the fact that reflected sky radiation 

observed at an incidence angle of 0 arrives at the surface from a range of zenith angles 

distributed asymmetrically about 0. Doing so would lead to an increase in reflected 

radiance relative to that computed with the specular equations if the incidence angle is 

smaller than about 55° (Petty and Katsaros 1994, Matzler 2005). Sea foam effects are 

taken into account in this model, with the emissivity of sea foam causing an increase in 

upwelling radiance, but decreasing the reflectivity of the facets due to a layer of 

absorbing non-polarized foam (Kohn 1995), thus decreasing the magnitude of the 

multiple reflection processes. The emissivities as a function of wind speed for various 

frequencies using the Wilheit (1979b) model are shown in Figures 1.3 and 1.4 for a sea 

surface temperature of 20°C and an incidence angle of 52.8°. 
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Figure 1.4. Wilheit (1979b) Rough Sea Surface Emissivity Model (V-Pol). 

1.2.2 Microwave Absorption 

1.2.2.1 GASEOUS ABSORPTION MODEL 

Although the atmosphere is relatively transparent to radiation at the frequencies 

used in this study, the ability to obtain accurate and useful non-precipitating retrievals is 

nonetheless dependent upon an accurate knowledge of the atmospheric microwave 
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spectrum and the frequency-specific absorption functions that are dependent on both the 

molecular constituents of dry air and the abundance of water (in gaseous and liquid 

form). The process of line absorption occurs if the quantum energy associated with 

radiation at a particular frequency equals the difference in energy between two allowed 

states (electronic, vibrational, rotationaJ) of an atom or molecule. Only radiation at 

specific frequencies will then be absorbed. Radiation at the microwave frequencies used 

in this study interacts (rotationaJ transitions) with 0 2 andH20. The absorption lines at 

these specific frequencies will together be referred to as the line absorption spectrum. In 

the lower atmosphere, absorption lines undergo a pressure-broadening process, a 

mechanism that increases the absorption around the theoreticaJ resonant frequencies and 

dominates the line shape. The broadening process is attributed to collisions among the 

absorbing molecules themselves ( 0 2 and H20) and collisions with the main atmospheric 

constituents ( N 2 and 0 2). The effect on absorption is easily seen when looking at the 

absorption spectrum for the lower part of the atmosphere and comparing it to the 

absorption spectrum for higher levels of atmosphere. 

Two well-known gaseous absorption models are the Liebe et al. (1993) and 

Rosenkranz (1998) absorption models. Since Rosenkranz (1998) is partially based on 

Liebe et al. (1993), the two models show similar absorption near the center of the 22.235-

GHz water vapor absorption line and around the 60-GHz set of oxygen absorption lines. 

However, in the continuum regions (for example, around 30-40 GHz), there is a 

difference of 5-10% between the two models. Currently, there are unresolved issues in 

the determination of parameters that enter into water-vapor absorption modeling, 

particularly in the continuum region. Furthermore, an accurate assessment of absorption 
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model uncertainties, starting from the laboratory data from which the models were 

developed, does not exist (Marchand et al. 2003). According to the study of Pardo et al. 

(2001), the Liebe et al. (1993) model may not have an accurate enough description of the 

continuum between resonant frequencies. Additionally, Westwater et al. (2001) and 

Marchand et al. (2003) compared the two models in ground-based radiometry studies and 

suggested that the Rosenkranz (1998) gaseous absorption model may yield more accurate 

results. Since the development of the Rosenkranz (1998) model, additional modifications 

have been made involving absorption line width and intensity, particularly at the 22-GHz 

water vapor line, resulting in decreases in water vapor and temperature retrieval biases 

when compared to radiosondes during additional ground-based radiometer studies at The 

Atmospheric Radiation Measurement (ARM) Program site in the southern Great Plains 

(Liljegren et al. 2005). The modified Rosenkranz (1998) model is the gaseous absorption 

model used in this study (referred to as Rosenkranz (2003)). 

Figure 1.5 shows a comparison of the two models up to 300 GHz for a temperature 

of 20°C, water vapor content of 15 g m-3 and an atmospheric pressure of 100 mb. The 

effects of pressure-broadening are shown in Figure 1.6 with the absorption lines being 

much broader at 1000 mb. The absorption coefficient is in units of km- 1 and is a measure 

of the fractional loss of intensity at a specific frequency per distance through an 

absorbing medium. 
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Figure 1.5. Gaseous absorption model comparsion (100 mb, 20°C, 15 g m-3 of H 20 
vapor). 

1 00.000 c-r--.--.-,--,--,--.-~~~~--,--,-.-,~--.--.-,--,--,--.-~--,--,--,--, 

- - Liebe 93 
-- Rosenkra nz 03 

10.000 

E .,, 
'--"' 1.000 v a. 
V 

C: 
.Q a. 0 .100 
0 
"' D .,: 

0.010 
1000 mb Pressure, 20 deg C, 15.0 g/rrr3 Water Vapor 

0.001 
0 100 200 300 

Frequency (GHz) 

Figure 1.6. The effects of pressure-broadening on the absorption spectrum (1000 mb, 
20°C, 15 g m-3 of H 20 vapor). 

1.2.2.2 LIQUID WATER ABSORPTION 

The calculation of cloud liquid water absorption is highly dependent on the 

complex dielectric constant of water, which is in tum related to the temperature-
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dependent viscosity of liquid. Thus, the cloud-absorption coefficient is relatively 

sensitive to temperature. Additionally, for non-precipitating clouds, the drop sizes are 

assumed to be much smaller than the wavelength of microwave radiation (the Rayleigh 

approximation). Thus, cloud liquid water absorption depends only on the total liquid 

amount and not on drop size distribution. Uncertainties in cloud water absorption arise 

from uncertainties in the models as well as uncertainties in the average thermodynamic 

temperature of the cloud. 

A liquid water absorption model widely used is that of Liebe et al. (1991). It is 

based on a variety of laboratory measurements of the dielectric properties of water 

(Westwater et al. 2001). Two versions of the model are available-one with a single 

Debye fit and the other with a double Debye fit to the complex dielectric properties of 

water. The double Debye fit has additional parameters that allow for a greater fit to the 

dielectric property data available over a larger range of frequencies. It is considered 

more accurate. Furthermore, the model is considered most accurate for water 

temperatures above 0°C since most of the experimental measurements of the dielectric 

properties were made at temperatures above 0°C. Rosenkranz made modifications to the 

Liebe et al. (1991) double Debye model. A comparison among the three models is shown 

in Figure 1.7 as a function of frequency . Smaller differences among all three models 

exist at lower frequencies, while differences of up to 2% exist between the Rosenkranz-

modified Liebe model and the Liebe et al. (1991) double Debye model at higher 

frequencies. The differences between the single Debye and double Debye models are on 

the order of 10-15% at the highest frequencies, shown in Figure 1.7. 
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With respect to temperature, the models begin to diverge below 0°C. Figure 1.8 

illustrates the differences among the three models as the liquid water temperature is 

varied. Above freezing, there is less than a 1-2% difference in liquid water absorption 

among the three models. However, at the coldest temperatures, differences of up to 15% 

exist. In this study, the non-precipitating clouds are placed low in the atmosphere and 

radiating at thermodynamic temperatures above 0°C. Thus, the choice of model for cloud 

water at these temperatures has little impact on the final cloud water retrieval. 

Additionally, without plentiful dielectric property data below 0°C, it is difficult to 

determine which model may be more accurate for supercooled water clouds. Thus, for 

this study, the Rosenkranz-modified Liebe et al. (1991) cloud water absorption model is 

chosen. 
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Figure 1.7. Cloud Liquid Water Absorption in 1an-1 as a function of frequency. 
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CHAPTER2 

SPACEBORNE SENSORS AND DATA DESCRIPTION 

2.1 Spaceborne Sensors 

A central goal of this study is to design an algorithm that yields the same non-

precipitating geophysical parameters when applied to any spacebome sensor. The 

algorithm was originally applied to the TRMM Microwave Imager (TMI), but has also 

been successfully applied to SSM/1 F13, F14 and F15 as well as AMSR-E. 

The TRMM satellite was launched into a non-sun synchronous orbit (crosses 

equator at varying local times) in 1997 to an altitude of 350 km (403 km post-boost) with 

a focus of observing upwelling radiances in the region from approximately 38°N to -38°S 

latitude. The TMI radiometer beam intersects the earth ' s surface with an average 

incidence angle of 52.8° (as measured from the local Earth normal). The TMI is a 9-

channel microwave radiometer with center frequencies of 10.65, 19.35, 21.3, 37.0 and 

85.5 GHz. Horizontal and vertical polarizations are measured at each frequency except 

21.3 GHz, where only vertical polarization is measured. The effective fields of view 

(EFOV, the footprint size taking integration time into account) for TMI range from 63 

km x 37 km at 10.65 GHz to 7 km x 5 km at 85.5 GHz. Additional information on 

TRMM!fMI can be found in Kummerow et al. (1998). 
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The Special Sensor Microwave lmager (SSM/1), first launched in 1987, is 

onboard the Defense Meteorological Satellite Program (DMSP) satellites F8, FlO, Fl 1, 

F13, F14 and F15 at an altitude of approximately 860 km. These satellites are in sun-

synchronous orbits, with equatorial crossing times remaining nearly constant throughout 

the year, although orbit degradation does cause a slow change in these times over longer 

periods. The SSM/1 is a 7-channel radiometer with center frequencies at 19.35, 22.235, 

37.0 and 85.5 GHz. Vertical and horizontal polarizations are measured at each frequency 

except 22.235 GHz, where only vertical polarization is measured. The sensor EFOV 

views the earth with close to global coverage over a 24-hr period at an average incidence 

an 0 le of 53.1 °. Due to the higher orbit of the SSM/Is, the spatial resolution is worse, with 

EFOVs ranging from approximately 70 km x 40 km at 19.35 GHz to 15 km x 13 km at 

85.5 GHz. In this study, SSM/1 data from F13, F14, and F15 were used. Hollinger et al. 

(1987 and 1990) contain additional information on the DMSP SSM/ls. 

The Advanced Microwave Scanning Radiometer-Earth Observing System 

(AMSR-E) onboard the Aqua satellite was launched in 2002 to an altitude of 705 km. 

This satellite is also in a sun-synchronous orbit, similar to the SSM/ls, with equatorial 

crossing times at 01:30 and 13:30 Local Solar Time. AMSR-E is a 12-channel 

microwave radiometer measuring horizontal and vertical polarizations existing at each of 

the six frequencies. The center frequencies are 6.925, 10.65, 18.7, 23.8, 36.5 and 89.0 

GHz, with slightly worse spatial resolutions, as compared to TMI. The average earth 

incidence angle for AMSR-E is 55°, with data being gathered on a global basis, similar to 

the SSM/ls. Further details on the AMSR-E radiometer can be found in Kawanishi et al. 

(2003). 
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2.2 Comparison with In-Situ Data 

Integrated column water vapor from the Integrated Global Radiosonde Archive 

(IGRA) and surface wind speed data from the Tropical Atmosphere-Ocean (TAO) buoy 

array are used for in-situ comparison to the retrieved integrated water vapor and retrieved 

surface wind speed. Since global in-situ data are nonexistent for integrated cloud liquid 

water, the retrieved cloud liquid water paths from both Remote Sensing Systems (RSS) 

and the National Aeronautics and Space Administration Water Vapor Project (NV AP) 

dataset (Randel et al. 1996) are used in this study for additional algorithm comparison. 

2.2. 1 Total Precipitable Water Retrieval Validation 

The IGRA dataset consists of global radiosonde observations (RAOBs) for 

approximately 1500 land and island locations. Data records for the archive extend back 

to 1970 and are available from the National Climatic Data Center (NCDC). The 

radiosonde transmits its measurements to ground stations where they are processed into 

pressure, temperature, dew point depression, and geopotential height. The locations of 

the radiosonde launch sites used for retrieval comparison are shown in Figure 2.1. 
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Figure 2.1. Global View of IGRA Station Locations. 
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Quality control algorithms screen out profiles lacking physical consistency among 

variables or having physically impossible values, climatological outliers (beyond a 

number of standard deviations from the mean), temporal or vertical inconsistencies in a 

variable (using statistical z-scores and the variations of the z-scores with height, for 

example), identical reports of a variable over a successive number of levels, or erroneous 

surface elevation reports. Overall , by applying all of these quality control measures, only 

a fraction of 1 % of the radiosonde profiles are removed. Detailed information on the 

IGRA dataset and quality control measures can be found in Durre et al. (2006). 

The World Meteorological Organization (WMO) has set accuracy requirements 

for radiosonde measurements dependent upon both the intended use of the data and the 

pressure level at which the measurements were made. The strictest requirements are 

those for the lower troposphere, where pressure, temperature and relative humidity are to 

be measured with an accuracy of 1 mb, 0.5°C and 5%, respectively. A detailed analysis 

of errors associated with radiosonde observations as a function of height in the 

atmosphere, instruments being used, moisture content, etc., can be found in Elliot and 

Gaffen (1991), Garand et al. (1992) and Free et al. (2005). 

To compute the total precipitable water (TPW) from the RAOB soundings, it is 

required that the atmospheric pressure, temperature, and dew point values are valid at 

each of the mandatory pressure levels (1000, 925, 850, 700,500,400, 300 and 250 mb). 

Additionally, it is required that a valid surface observation exists. Water vapor mixing 

ratios are then computed at each level. To calculate the mixing ratios, the vapor pressure 

at each level is first computed using an empirical equation for vapor pressure ( vp in 

millibars) as a function of dew point, given by 
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(2.1) 

where ½ is the dew point in °C at a particular level in the sounding. The vapor pressure 

computed in this manner can be fitted to within 0.1 % of tabulated vapor pressure data 

over the temperature range - 30°C to 35°C (Bolton 1980). The water vapor mixing ratio 

( r , the mass of water vapor per mass of dry air) is then computed using 

vp r=.622--, 
p-vp 

(2.2) 

where r is unitless and pis the atmospheric pressure (mb) reported by the radiosonde. 

RAOB TPW values are computed by integrating the mixing ratios over the vertical 

column using the equation 

l PJ TPW =- rdp , 
g PB 

(2.3) 

where TPW is in units of kg m·2 (or mm) andg is the acceleration due to gravity. With 

all mandatory pressure levels being required, the integration is carried out from 1000 mb 

to 250 mb. The retrieved TPW is compared to the RAOB computed TPW if the satellite 

overpass time is within 1 hr of the reported RAOB time and the lat/Jon coordinates of the 

satellite pixel are within a 0.50° x 0.50° lat/Jon box centered on the reported location of 

the radiosonde release site. 

Radiosondes used in the IGRA dataset are launched two times per day at 00 and 

12 UTC. Additionally, a ll stations are land based (including islands). This somewhat 

looser coincidence requirement relative to surface wind in-situ comparison (details in the 

following section) is needed to obtain enough samples for statistically meaningful 

comparisons. 
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2.2.2 Surface Wind Retrieval Validation 

Retrieved 19.5-meter ocean surface wind speeds (defined as VSFC) are compared 

to surface wind speed data from a number of TAO moored buoys located from 

approximately 160° E longitude to 90° W longitude in the Pacific Ocean. The actual 

locations of the buoys are shown in Figure 2.2 . 
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Figure 2.2. Locations of TAO buoys for use in retrieval/in-situ wind speed comparison. 

The buoys used in the TAO array measure winds at a height of approximately 4 m 

above mean sea level. The accuracy of the reported wind speed is 0.3 m s·1 or 3%, 

whichever is larger. High-resolution surface wind data exist at hourly, 15-minute, and 

IO-minute averaging intervals. In this study, the IO-minute averaging interval is selected. 

Because the retrieved winds are at 19.5 m, buoy winds need to be adjusted to an 

equivalent height. Thus, a logarithmic adjustment was made to the buoy wind speeds 

using a power-law wind profile given by 

(2.4) 

where W buoy(,
2

J is the logarithmically adjusted buoy wind speed at height z2 (in this case 

19.5 m), W buoy (z ,J is the reported buoy wind speed at z" and the empirically derived 

26 



exponent P::::: 0.11 based on Hsu et al. (1994). This approach does not include effects 

due to differences in atmospheric stability. If atmospheric conditions differ from near 

neutral stability, additional errors may result. For individual match-ups, the retrieved 

wind is compared to the buoy log-corrected wind speed if the satellite overpass time is 

within five minutes of the reported buoy time and the lat/Ion coordinates of the satellite 

pixel are within a 0.25° x 0.25° lat/Ion box centered on the buoy of interest. Additional 

information on the structure and purpose of the TAO array as well as quality control 

procedures for the measurements made at the buoy locations can be found in McPhaden 

et al. (1998). 

2.2.3 Column-Integrated Cloud Liquid Water Comparison 

Surface wind speed at 10 m height, TPW, integrated cloud liquid water (LWP) 

and surface rain rate data at a resolution of 0.25° x 0.25° are produced by Remote Sensing 

Systems (RSS) under sponsorship from the NASA Earth Science REASoN DISCOVER 

Project. RSS uses data from the TMI, AMSR-E, and a number of SSM/ls to retrieve 

geophysical parameters. Since these data are widely used in the remote sensing 

community, and a global dataset of in-situ cloud liquid water does not exist, a comparison 

to the RSS LWP is made. The approximate RMS error for RSS LWP is given as 0.03 

mm. Additional detai ls on the available products as well as information on possible 

systematic errors in the retrievals can be found in Wentz (1997) and Wentz and Meissner 

(1999). RSS data are available at www.remss.com. 

Microwave retrievals of integrated cloud liquid water are also available from the 

NV AP liquid water path retrieval algorithm (Greenwald et al. 1995 and Randel et al. 
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1996). Data are produced on l O x l O grids using a number of spacebome sensors. For the 

time period of comparison, an average daily grid box LWP was produced using SSM/1 

Fl 1, Fl3 and Fl 4. The NV AP LWP algorithm is physically based, using 

emission/absorption characteristics of the SSM/119.35- and 37-GHz channels. 

Additional details can be found in Greenwald et al. (1993 and 1995). 

2.3 Ancillary Data 

Due to constraints in the information content available in radiance channels, not 

all parameters to which the forward model is sensitive can be retrieved. Thus, these 

parameters must be provided in order for radiances to be simulated. In this study, in 

order to retrieve the non-precipitating parameters, the physical retrieval algorithm 

requires as input sea surface temperatures, profiles of atmospheric temperature and water 

vapor. These profiles are generated using information from the ECMWF ERA-40 

Reanalysis Project. The purpose of the project is to produce a comprehensive set of 

global analyses describing the atmospheric state, land and ocean-wave conditions from 

1957 to 2002 using information from the ECMWF data-assimilation (model and analysis) 

system. Further details on the project can be found in Uppala et al. (2005). 

For each satellite pixel location, the surface atmospheric temperature is assumed 

to be equal to the underlying sea surface temperature. The Optimum Interpolated (01) 

weekly-average sea surface temperatures (SST) produced by the National Oceanic and 

Atmospheric Administration (NOAA) are used for surface atmospheric 

temperature/ocean skin temperature. The weekly product uses both in-situ and satellite 

data as inputs to an interpolation technique that requires detailed error statistics 
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depending on quality and type of data as well as on spatial coverage. A detailed 

description of the dataset and of the 01 technique used to produce it can be found in 

Reynolds and Smith (1994) and Reynolds et al. (2002). If the geographical coordinates 

of the satellite pixel lie within the 1 ° x 1 ° resolution 01 grid box, then the SST within that 

box is assigned to the satellite pixel. 

By assigning a particular lapse rate to the pixel, the temperature profile can be 

generated. Using the pressure and temperature information (1000 mb to 100 mb) from 

the ECMWF dataset, the change in temperature with height ( dT/ dz) in a layer i is 

computed by using 

LR= dT = dT(-pg) 
' dz dp RT ' 

(2.5) 

where p is the average atmospheric pressure of the layer, T is the average temperature of 

the layer, and R is the gas constant for dry air. Only lapse rates for ECMWF grid boxes 

with a flag for no precipitation are used. The grid box lapse rate is then computed by 

averaging the calculated layer lapse rates. Lapse rates are then generated using a year of 

ECMWF data averaged across all longitudes to create zonal averages. These zonal and 

annual average lapse rates are used in the retrieval algorithm to generate temperature 

profiles for the satellite pixels (co-location procedure similar to that of the SST match-

ups). The distribution of lapse rates as a function of latitude can be seen in Figure 2.3. 

The water vapor profile for a pixel is generated using a function that distributes 

the integrated water vapor amount according to a scale height for water vapor describing 

the exponential decrease of water vapor with height. For each pixel, then, a water vapor 

scale height ( H) is needed. To compute H, a function of the form 

WV =WV -Z/ H ; oe (2.6) 
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Figure 2.3. ECMWF Zonal Average Lapse Rates for 1998. 

is fit to the specific humidity profile provided by ECMWF for each grid box. In 

Eqn. (2.6), WV0 is the ECMWF surface layer specific humidity and Z is the height above 

the surface. H is chosen so that the differences between the ECMWF water vapor profile 

and the smoothed profile from Eqn. (2.6) are minimized using an iterative method. For 

all ECMWF global, oceanic grid boxes where the precipitation flag indicates no-

precipitation, H is computed. Like lapse rate computation, H is averaged annually and 

longitudinally. Using a match-up procedure like the one used for lapse rates, H is then 

assigned to the satellite pixel and is used in the non-precipitating retrieval algorithm. 

Figure 2.4 shows the distribution of calculated water vapor scale heights on a global 

scale. 

While the lapse rate and water vapor scale height parameters are clearly not only 

di stributed latitudinally in nature, but also this approach is adopted for algorithm speed 

and to describe a first order change in these parameters as a function of latitude (versus 

simply using a global average lapse rate and scale height). The sensitivity of the 
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geophysical parameter retrieval and simulated brightness temperatures to a change in the 

assumed lapse rate or scale height is discussed in Chapter 3. 
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Figure 2.4. ECMWF Zonal Average Water Vapor Scale Heights for 1998. 

The optimal estimation algorithm retrieves geophysical parameters only in non-

precipitating scenes. A number of diagnostics, described in Chapters 4 and 5, indicate 

whether the non-precipitating assumption is reasonable. The TRMM 2A25 dataset 

(containing retrieved near surface rain rates) is used in this study for evaluation of non-

raining scenes as observed from the TRMM Precipitation Radar (PR) and is compared to 

TMI pixels for which the non-raining parameters were retrieved. It has a swath width of 

215 km and a spatial resolution of 4.3 km at nadir. Additional details on TRMM PR can 

be found in Kummerow et al. (1998). 
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CHAPTER3 

PHYSICAL RETRIEVAL METHOD 

3.1 Optimal Estimation Inversion 

Within the context of the general inversion problem, the relationship between the 

physical properties of the atmosphere and the measured radiometric quantities can be 

generalized with the following expression: 

y = f(x,b)+£ (3.1) 

where y is the measurements vector (such as radiances arriving at the spacebome 

sensor), f is the forward model describing the physics of the measurement system and 

radiative transfer through the atmosphere, x is the state vector containing the properties 

of the atmosphere (TPW, VSFC and L WP) to be estimated, b is the set of parameters not 

included in the state vector, but assumed to be known in the model atmosphere 

(temperature lapse rate, scale height for water vapor, height of cloud in atmosphere, 

spectral line strengths and widths, etc.), and £ is the error term containing uncertainties 

due to the nature of the measuring instrument, errors in the forward model f, and 

uncertainties in the forward model parameter ( b) assumptions. In designing a physical 

retrieval algorithm, for a given state vector x, it is desired that the forward computed 

radiances f(x,b) agree with y within the allotted model and sensor error estimates given 

by £. 
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The treatment of errors, described by c, within a probability density function 

( pdf) framework using a Bayesian approach provides both insight into the inversion 

problem and useful information on the errors associated with the retrieved state vector. 

Using Bayes' theorem, the conditional probability P(xly) of a state x given a set of 

measurements y is given by 

P(xl ) = P(ylx)P(x) 
y P(y) 

(3.2) 

where P(ylx) is the conditional probability of y given a state x, P(x) is the prior pdf 

of the state vector x, and P(y) is the prior pdf of the measurement vector. The optimal 

solution is the state vector that maximizes the conditional probability P(xly) for a 

particular y. By considering P(y) a normalizing factor, complete! y independent of x, 

P(xly) is maximized when the product of P(ylx)P(x) is maximized. Using Bayes' 

theorem again, P(x) can be expressed in a proportionality relationship given by 

{ 
l T - 1 )} P(x)ocexp --(x-x ) S (x-x 
2 a a a (3.3) 

where xa is some prior knowledge of the atmospheric state (a priori state vector), 

in ependent of the measurements, and Sa is the associated error covariance matrix 

containing the estimated variance in the a priori values in the diagonal elements as well 

as information on the correlations between the errors in the off-diagonal elements. The 

conditional probability P(ylx) can be expressed as 

(3.4) 
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where SY is the measurements/forward model error covariance matrix and the other terms 

have already been defined. The covariance matrix SY is the matrix version of £ for the 

measurement and model related errors, containing the squared values of the errors due to 

sensor noise and model in the diagonal elements of the matrix and covariance of the 

errors between the different radiance channels in the off-diagonal elements. P(ylx) is the 

function derived by the forward model. Conceptually, givenx, there is an expected set of 

upwelling radiances y measured by the sensor, the values of which are given by the 

forward model f(x,b) plus an associated error variance given by SY. Thus, using Eqns. 

(3.3) and (3.4), P(ylx)P(x) is maximized when 

has reached a maximum. This occurs when 

(3.5) 
Term I Term 2 

is minimized. Thus, a cost function <I> has been defined. Term 1 represents the 

contribution to <I> from deviations away from the fixed a priori values used for the state 

vector. Term 2 represents contributions to <I> from forward computed radiances differing 

from satellite observed radiances. The maximum probability state x is found by equating 

the gradient ( V) of the cost function <I> to zero. Starting with a first guess X;, the 

solution x is found in an iterative manner using V x<I> in a framework analogous to 

Newton's method. A detailed description of this technique can be found in Rodgers 

(2000). The iterative form is given by 
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X i+l = X ; + (S~' + K; s;'KS'[K; s;'(y- f(x ;,b))-S~'(x; - xa)] (3 .6) 

where X ;+ i is the state vector at i + l iterations, K =if/ dx is the change in the forward 

model computed radiances as the state vector is perturbed (a matrix of derivatives known 

as the Jacobian), and the other terms have been defined earlier in this section. Equation 

(3.6) is solved numerically in this study to find the optimal estimate for x given a set of 

microwave radiances. The physics of the plane-parallel radiative transfer model of 

Chapter 1 is contained within f(x ;,b) . The difficulty of arriving at the optimal exact 

solution with appropriate error bars depends on the nonlinearity of the retrieval problem. 

In the nonlinear problem, spurious minima may exist, and a non-optimal, exact solution 

can be reached. In the non-precipitating regimes of this study, forward computed 

radiances monotonically increase or decrease with respect to an increase or decrease in 

the elements of xa . Thus, the non-precipitating retrieval problem is only moderately 

nonlinear and the solution is ensured to be the optimal , exact one. Additionally, in this 

framework, parameters contained within the state vector are assumed to be Gaussian-

distributed with random error variances in both Sa and SY. While TPW and VSFC 

represent Gaussian-distributed parameters, LWP does not. Therefore, in this retrieval , 

the log 10(LWP) is retrieved given this parameter more closely resembles a Gaussian-

distributed parameter, similar to TPW and VSFC. This is done implicitly, with final 

results showing LWPs transformed out of log space. It can be seen in Eqn. (3.6) that if K 

is zero, the solution x will be no different from xa since a model-derived solution relying 

on the provided measurements cannot be found. Therefore, the variation and magnitude 

of K over the range of microwave frequencies used in this study is explored and 

discussed in the next section. 
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3.2 Sensitivity to the Non-Precipitating Parameters 

The retrieval method should be designed so that the elements of the state vector x 

are sensitive to changes in the measurements vector-in other words, the Jacobian 

( K =if/ dx) should be nonzero for all physically possible values that the elements of the 

state vector can assume in non-precipitating scenes. Figure 3.1 shows the sensitivity of 

the forward computed radiances to changes in the elements of the state vector over a wide 

range of microwave frequencies used in this study for vertical (top panel) and horizontal 

(bottom panel) polarizations, respecti vely. While the forward model sensitivities are 

dependent on the scene under observation, the sensitivities shown in Figure 3.1 are 

computed assuming an atmospheric scene well-represented by the values contained 

within x
0

• It can be seen that the Jacobian is nonzero for the channel frequencies used in 

this study outside of the oxygen-absorption complex centered at 60 GHz. Additionally, 

the sensitivities at vertical polarization are lower than the sensitivities at horizontal 

polarization. This significant difference between these two polarizations over the ocean 

arises because the spacebome sensors view the Earth at incidence angles other than nadir. 

Therefore, the horizontal emissivity over a calm ocean surface is much lower than the 

vertical emissivity, as explained in Chapter 1. For a given SST, the horizontally 

polarized brightness temperature will then be significantly lower than the vertically 

polarized brightness temperature. Since the ocean scene brightness temperatures are 

relatively cold, particularly for the horizontally polarized channels, there is a background 

against which the warming effect of water vapor and cloud liquid water can be observed 

(due to the emission characteristics of each). Additionally, an increasing surface wind 

speed also leads to a warming effect by increasing the horizontally polarized emissivity 
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(for incidence angles less than approximately 55°) as mentioned in Chapter 1. Thus, 

these radiometric signals, represented by the nonzero sensitivities observed in Figure 3.1, 

are large enough to enable measurements of the non-precipitating parameters using all the 

current and future spaceborne radiometers (containing channels with nonzero 

sensi tivities) utilizing the same physical, non-precipitating forward model within the 

optimal estimation retrieval framework. 
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Figure 3.1. Sensitivities (cf/ dx,) of forward computed microwave radiances to 
perturbations of the elements of the state vector x normalized by 
max(cf / dx,) for an Earth incidence angle of 53°. 

3.3 Error Analysis 

In order to obtain appropriate error estimates for each of the retrieved geophysical 

parameters, the sources and magnitudes of error that propagate into the final retrieved 
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atmospheric state must be known. These sources include errors in the a priori estimate, 

forward model parameter errors and errors specific to the sensor/measurement system. 

The a priori state vector xa is a three-element vector containing the global annual 

means for TPW, VSFC and LWP derived from the Remote Sensing Systems (described 

in Chapter 2) AMSR-E retrieval dataset. Additionally, the standard deviations of these 

parameters on a global, annual basis have been computed and used as the errors in the a 

priori estimate (square root of the diagonal elements of covariance matrix SJ. The 

values of the a priori estimates and the associated standard deviations are shown in Table 

3.1. It is assumed that there are no correlations in the a priori estimate errors, and 

therefore, all off-diagonal elements of the error covariance matrix are zero. 

Table 3.1. Values for xa and ...Js: used in the non-precipitating geophysical parameter 
retrieval. 

TPW VSFC LWP 
(mm) (mis) (mm) 

A Priori State 25.0 8.0 0.05 
Vector xa 
A Priori Error 15.5 3.5 0.25 

With respect to the forward model, there are a number of sensor independent 

sources contributing to SY and thus to the total retrieval error. The sources having the 

largest impact on the non-precipitating retrieval error (those that cause the largest change 

in forward computed brightness temperatures) include the errors in the sea surface 

temperature, calculated sea surface emissivity, distribution functions for atmospheric 

temperature and water vapor, and errors in the gaseous (including 0 2) and liquid water 
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absorption models. By perturbing the model parameters by an amount equivalent to 

a souRcE , the resulting error in the upwelling radiances can be estimated (given by aT8 , in 

Kelvin). In this study, a souRcE is computed for each of the forward model parameters-

that is, all parameters not included in the state vector x. The calculation of asouRcE 

varies depending on the nature of the source. The error budget for the source terms 

having the largest effect on the forward computed radiances (for a number of channels 

used in this study) is shown below in Table 3.2. 

Table 3.2. Error budget for the forward model parameters. A change in the forward 
model parameter, given by a souRcE, results in a change in each of the 
upwelling radiances arriving at the spaceborne sensor over the microwave 
frequency spectrum, given by aT8 . (H = horizontally polarized channel; V = 
vertically polarized channel) 

(jSOURCE (jTB (Kelvin) 

II H II V 19 H 19V 21H 21 V 22 H 22 V 37 H 37 V 86 H 86 V 

(jSST 0.1°c 0.14 0.35 0.o7 0.2 1 0.21 0.30 0.26 0.34 0.18 o.oz 0.04 0.24 

(jEMIS 1.24 0.70 1.26 0.74 0.95 0.59 0.81 0.54 1.44 0.69 0.83 0.38 

(jSCLHT 0.6km 0.18 0.11 1.02 0.69 0.28 0.15 1.78 0.45 1.33 0.79 2.98 1.59 

(jlR 
0.7 0.07 0.o2 0.01 0.09 0.40 0.41 0.67 0.62 0.21 0.o? 0.10 0.51 K/km 

(jGASABS 3% 0.17 0.10 0.67 0.39 0.99 0.56 1.08 0.61 1.10 0.58 1.30 0.50 

(jl/QWTR 1% 0.01 0.00 0.01 0.01 0.01 0.ot 0.01 0.ot 0.04 0.02 0.08 0.04 

(jCLDHGT 1.0km 0.o? 0.04 0.18 0.09 0.16 0.08 0.15 0.o? 0.42 0.19 0.o? 0.17 

To1al 
M0<.lc l a MODEL 1.28 0.80 1.77 I. I I 1.48 0.97 2.35 1.17 2.30 1. 22 3.36 1.8 1 
RMS 
Error ( K ) 

Regarding sea surface temperatures , the standard deviation for a particular seven-

day period was found within 1 ° x 1 ° grid boxes spanning the global oceans using the 

39 



following equation applied to each grid box over the globe for each consecutive week of 

a three-month period: 

N 

d,·~ = - 1-"cssTi.j -01 SSTi,k )2 
Gnd N l L..J AMSR-E 
Box - j= l Daily 

(3.7) 

where dG~d is the standard deviation in grid box i over week k, N is the number of days 
Box 

in a week with valid daily AMSR-E SST retrievals, SST1·~sR-E is the daily global Remote 
Daily 

Sensing Systems AMSR-E SST retrieval averaged over grid box i for day j of the week, 

and 01 SSTi,k is the 1 ° x 1 ° Reynold' s Optimally Interpolated SST for grid box i and 

week k. Then, the global average SST standard deviation a ssr is computed by averaging 

dG!d over all weeks and all 1° x 1° grid boxes, giving the contribution to the retrieval 
Box 

error from using an SST value that is both spatially and temporally averaged. 

Errors in the calculation of sea surface emissivity ( a £Mis ) arise from the combined 

effects of neglecting the wind direction in the rough sea surface emissivity calculation, of 

errors in the permittivity model for specular emissivity computation, and of errors in the 

empirical rough sea surface model. Quantifying emissivity error is difficult to do since 

rough-surface emissivity model functions are based on a limited number of field 

experiments (particularly for foam effects on emissivity), are all empirical in nature, and 

are often in disagreement with one another. The total emissivity error a EMis is the 

combined contribution to the error computed by (a) calculating the standard deviation in 

emissivity using a model taking into account the azimuthal variation in emissivity with 

wind direction for a number of channels, (b) perturbing the specular emissivity value by 

the largest of either the experimental 3% error in permittivity data (Chapter 1) or the 
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difference between the permittivity measurements and model-fitted curve over a range of 

channels, and (c) perturbing the rough-sea surface emissivity calculation by 50%. While 

the last effect may seem large, the differences in model-computed rough-sea surface 

emissivities are significant. Details on some of the differences can be found in 

Padmanabhan et al. (2006). 

The errors in the computed zonal temperature lapse rates aLR and water vapor 

scale heights a scLHT as derived from ECMWF climatology were computed by finding the 

standard deviation of each parameter within each latitudinal band, given by 

aLa1 = 
Band 

l Ndays , ____ Icxj - -x-Zo-nal)2 
Ndays -1 j= I Mean 

(3 .8) 

where aLa1 is the standard deviation of the ECMWF derived zonal parameter in one 
Band 

latitude band of the ECMWF dataset, Ndays are the number of days used in the 

computation, X; is the temperature lapse rate or water vapor scale height computed daily 

for every ECMWF grid box i within the latitude band, and Xz.ona, is the zonal mean lapse 
Mean 

rate or scale height used in the retrieval algorithm. Then, the error source a50uRcE for 

both parameters is computed by averaging a Lat over all latitude bands. Thus, for the 
Band 

atmospheric lapse rate and water vapor scale height, a50uRcE represents the error due to 

using lapse rates and scale heights that are both globally and annually averaged. 

Details on the potential errors propagating into the retrieval due to use of the 

Rosenkranz (2003) gaseous absorption model and Rosenkranz-modified Liebe et al. 

(1991) cloud water absorption model can be found in Chapter l. For this study, it is 

assumed that there is approximately a 2% error in the atmospheric absorption coefficient 
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within the frequency band centered on the 22-GHz water vapor absorption line, and a 3% 

err r in the atmospheric absorption coefficient in the continuum region of the microwave 

spectrum. Using these values to perturb the absorption coefficients, the effect on the 

brightness temperatures aT8 is then computed. 

Regarding placement of the cloud layer in the forward model , a standard 

deviation a cwHGT of 1 km was chosen. This has a minimal impact on the forward model 

computed brightness temperatures. The temperature at which the cloud layer absorbs and 

emits changes as the altitude of the cloud layer is increased or decreased. Thus, the 

change in radiance a T8 emanating from the cloud is due to an assumed change in the 

radiating temperature of the cloud layer. 

In addition to forward model error described above, there are contributions to the 

values in SY from sources specific to the spacebome sensor being used. These sensor-

dependent errors are typically smaller than the errors attributed to the forward model. 

Nonetheless, in order to have representative error bars on the retrieved parameters, it is 

necessary that the sensor-dependent errors be taken into account. These errors are 

typically due to uncertainty in the sensor incidence angle with respect to Earth as well as 

sensor noise. The uncertainty that arises due to sensor noise is typically of a random 

nature. The error that arises due to incidence angle uncertainty can be both random and 

systematic. The total error (given by aMODEL+SENsoR), contained within the diagonal 

elements of .js;, contribute directly to the total retrieval error Sx. Tables 3.3, 3.4 and 3.5 

give the values used for AMSR-E, TMI and SSM/1, respectively. 
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Table 3.3. Magnitudes (Kelvin) of total error (model + sensor) for AMSR-E used in the 
optimal estimation retrieval. (H = horizontally polarized channel ; V = 
vertically polarized channel) 

CJTB (Kelvin) 

AMSR-E CJ SO URCE II H II V 18 H 18 V 23 H 23 V 37 H 37 V 89 H 89 V 

Forward 
aMODEl 1.28 0.80 1.74 1.07 1.68 1.20 2.30 1.2 1 3.47 1.87 Model Error 

Incidence 0.30 
Angle 0.32 0 .73 0.12 0 .72 0 .17 0.65 O.Q2 0.64 0.19 0.33 
Uncertainty 

Sensor Noise NE~T 0.60 0.60 0 .60 0 .60 0 .60 0.60 0 .60 0.60 I. IO 1.10 

To1al RMS a M ODEL+SENSOR 1.45 1.24 1.84 1.42 1.79 1.49 2.38 1.49 3.65 2. 19 Emir 

Table 3.4. Magnitudes of errors (in Kelvin) for each TMI channel. 

CJTB (Kelvin) 

TMI CJ SOURCE 11 H 11 V 19 H 19V 2 1 V 37 H 37 V 86 H 86 V 

Forward 
aMODEl 1.28 0 .80 1.77 I.II 0 .97 2.30 1.22 3.36 1.81 Model Error 

Inc idence 0.08° Angle 0.08 0.17 0.02 0.18 0 .17 0 .01 0 .16 0.04 0 .09 
Uncertainty 

Sensor Noise NE~T 0.54 0.63 0.47 0.50 0 .71 0 .31 0 .36 0.93 0.52 

To1al RMS a MODEL +SENSOR 1.39 1.03 1.83 1.23 1.2 1 2.32 1.28 3.49 1.89 Error 

Table 3.5. Magnitudes of errors (in Kelvins) for each SSM/1 channel. 

CJTB (Kelvin) 

SSM/1 CJ SOURCE 19 H 19 V 22 V 37 H 37 V 86 H 86 V 

Forward 
aMODEl 1.77 I.I I 1.1 7 2.30 1.22 3.36 1.8 1 Model Error 

Incidence 0.3° Angle 0.06 0.7 1 0 .63 0 .01 0.63 0 .19 0 .34 
Uncertainty 

Sensor Noise NE~T 0.60 0.60 0.60 0 .60 0.60 1.10 I.IO 

Total RMS 
0 MODEL+SENSOR un 1.45 1.46 2.:18 1.50 3.54 2. 15 Error 
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CHAPTER4 

RESULTS 

4.1 Geophysical Parameter Retrieval and Associated Errors 

The optimal a posteriori solution for x has been found when Eqn. (3.5) is 

minimized. For a moderately nonlinear retrieval, as in the case of the non-precipitating 

retrieval problem, there is typically only one minimum for all possible values of x. The 

criterion for which x is considered a solution is given by 

(4.1) 

where X; is the state vector at iteration i, x ;- i is the state vector at the previous iteration 

i- l, Sx is estimated retrieval error at iteration i and n is the number of parameters being 

retrieved. The retrieval error variance Sx is given by 

sx = cs~I + KT s;1Kr1 

where K , SY and Sa are defined and discussed in Chapter 3. The retrieval error is 

directly related to the errors specified in SY and Sa. 

(4.2) 

By examining Eqn. (4.1), when the difference between the state vectors for two 

subsequent iterations is an order of magnitude smaller than the estimated error, X ; is 

considered to be the optimal solution. Once convergence has been achieved, a standard 

chi-square (,,r2) test is used to determine whether the solution is significant. Given x, if 
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forward computed brightness temperatures agree with observations within the expected 

error variance range ( Sy), Term 2 of Eqn. (3.5) should roughly follow a z2 distribution 

with the degrees of freedom approximately equal to the number of channels in the 

observations vector. The results for the TPW, VSFC and LWP retrievals in the following 

sections satisfy these criteria. Additionally, the results for all sensors (AMSR-E, SSM/1, 

TMI) are shown since a goal of this study is to design a parametric retrieval algorithm 

applicable to all current and future sensors. 

4.1.1 Total Precipitable Water and Surface Wind 

The retrieved TPW versus integrated radiosonde observed (RAOB) column water 

vapor is shown in Figure 4.1 for all sensors (AMSR-E, SSM/ls, and TMI) used in this 

study. The results for the surface wind speed retrieval are shown in Figure 4.2. The 

black error bars ( .js;) show the one-sigma standard deviation retrieval error. As was 

discussed, optimal estimation provides an error for each element of the retrieved state 

vector. For plotting purposes, data were binned, and the mean .js; was plotted for each 

bin (5 mm bin size for TPW; 1 m s·1 bin size for VSFC). Comparing Figure 4.1 to Figure 

4.2, the scatter within the retrieved TPW dataset contributing to the total RMS error far 

exceeds the optimal estimation retrieval error ( .js;, given by the black error bars). This 

is not the case with the surface wind retrieval, as seen in Figure 4.2. One possible reason 

for this is related to the coincident match-up requirements. The requirements for 

matching retrieved TPW to RAOB TPW are much less stringent (0.50° x 0.50° and within 

1 hr of RAOB reported time) than they are for surface wind retrieval match-ups (0.25° x 

0.25° and within 5 min of buoy reported time), as explained in Chapter 3. Since this is 
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not accounted for in the calculation of -{s; , this could lead to additional RMS error when 

comparing the TPW retrieval to in-situ RAOB TPWs. 
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Figure 4.1. Retrieved TPW (ordinate) compared to RAOB TPW (abscissa) for AMSR-E, 
SSM/I Fl3, Fl 4, Fl5 and TMI (pre- and post-boost). The black error bars 
on the retrieved TPW are given by-{s;. 
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Figure 4.2. Retrieved VSFC (ordinate) compared to buoy VSFC (abscissa) for AMSR-E, 
SSM/1 F13, Fl4, Fl5 and TMI (pre- and post-boost) . The black error bars 
on the retrieved VSFC are given by {s;. 

Table 4.1 gives a breakdown of the statistics (mean bias, root-mean-square (RMS) 

error) corresponding to the TPW and VSFC retrieval for all five sensors used in this 

study. It is noted that the RMS errors shown in this table are the unadjusted RMS 

errors-that is, the biases are not removed when computing the measure of scatter 

between the retrievals and in-situ measurements. The number of in-situ co-locations for 
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Table 4.1. Non-precipitating retrieval performance for AMSR-E, SSM/1 F13, F14, F15 
and TMI. 

Sensor TPW VSFC 
Co- Bias RMS Error Co- Bias RMS Error 
Locations (mm) (mm) Locations (mis) (mis) 

AMSR-E 1164 +2.72 4.24 156060 +1.16 1.85 
SSM/1 3044 +0.63 5.87 21681 +1.85 2.58 
Fl3 
SSM/1 852 +0.81 4.70 20783 +2.38 3.04 
Fl4 
SSM/1 3909 +3.11 4.65 21087 +1.54 2.34 
Fl5 
TMI Pre- 6192 -0.17 5.27 20771 -0.66 1.63 
Boost 
TMIPost- 10571 +1.66 5.04 102551 -0.21 1.51 
Boost 

each sensor match-up is also provided in Table 4.1. As can be seen, for both TPW and 

VSFC, biases (retrieved minus observed) of differing magnitudes were found for each 

sensor. For TPW, biases range from -0.17 mm (for TMI Pre-Boost) to +3.11 mm (SSM/1 

Fl5). Additionally, RMS errors range from 4.24 mm (AMSR-E) to 5.87 mm (SSM/1 

F13). These values are in reasonable comparison to other microwave algorithms 

available. Jackson and Stephens (1995) performed an algorithm intercomparison for 

TPW retrievals using SSM/1 F08 and found RMS errors (compared to RAOBs) ranging 

from 4.66 mm (Alishouse et al. (1990a,b) statistical algorithm) to 5.08 mm (Greenwald et 

al. (1995) physical algorithm), with biases in some algorithms approaching 1 mm. For 

VSFC, biases range from -0.21 m s-1 (for TMI Post-Boost) to +2.38 m s-1 (SSM/1 F14). 

RMS errors range from 1.51 m s-1 (TMI Post-Boost) to 3.04 m s-1 (SSM/1 F14). This is 

also comparable to the 1.52 m s-1 RMS error for a retrieval of TMI surface wind speed 

(compared to buoy) found by Connor and Chang (2000). Furthermore, Chang and Li 

(1998) used the operational Goodberlet and Swift (1992) wind speed retrieval algorithm 

for SSM/1 Fl 1 and found an RMS error of approximately 2.3 m s-1
• Quantification of the 

48 



magnitudes and directions of the wind speed biases were not available in either study. 

Although the biases and RMS errors in the physical optimal estimation retrieval applied 

to a number of currently orbiting microwave radiometers are of comparable magnitude to 

other available microwave algorithms, the potential causes for the observed biases have 

not been explored. For this reason, exploration of the source of bias compared to in situ 

and among satellites is discussed in Chapter 5. 

4.1.2 Non-Precipitating Integrated Cloud Liquid Water 

The retrieved LWP (denoted by OE in this section) is compared to independent, 

microwave LWP retrieval products from both Remote Sensing Systems and the National 

Aeronautics and Space Administration Water Vapor Project (NV AP) for TMI (pre-boost) 

only. Since there is an absence of in-situ data or ground "truth" for LWP, an algorithm-

to-algorithm retrieval comparison is made. The results are shown in Figure 4.3. 

The NVAP LWP global dataset is a 1° x 1° daily-gridded product, as described in 

Chapter 2. While retrievals in this study are done at the pixel level, the LWPs are also 

gridded to the same resolution for more appropriate comparison. Additionally, RSS LWP 

retrievals are treated in the same manner. The relative frequency (y-axis) of a particular 

LWP is derived by computing the number of 1° x 1° LWP occurrences in a 0.05 mm bin 

and dividing by the total number of occurrences for all LWP bins over a three-month 

period (Jan - Mar 1998) for each retrieval product. The distributions are all in general 

agreement with one another. The maximum relative frequency occurrence occurs in the 

0.0 to 0.05 mm LWP bin for all products (ranging from 0.50 for NV AP to 0.74 for OE). 
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Figure 4.3. Relative frequency of retrieved non-precipitating LWP occurrences for Jan -
Mar 1998 from the optimal estimation (OE) algorithm, Remote Sensing 
Systems (RSS) and the National Aeronautics and Space Adminjstration 
Water Vapor Project (NV AP). Data are averaged into 1 ° x 1 ° grid boxes 
spanning 40°S to 40°N latitude and 180°W to 180°E longitude. 

There are few occurrences of L WP beyond the 0.25 to 0.30 mm bin for each product. In 

general, the distribution of NV AP LWPs is more significant at large LWPs than the 

others. Aside from differences in algorithms leading to systematic differences in results, 

there are also non-algorithm effects (e.g., differences in resolution of TMI (used in OE 

and RSS) versus the SSM/Is (used in NVAP), possible cloud liquid water beamfilling 

issues, and potential systematic effect on results due to diurnal sampling of TMI 

compared to the SSM/Is) all contributing to the net difference in results. Regardless, the 

three independent rrucrowave algorithms are in reasonable agreement. 
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4.2 Additional Retrieval Diagnostics 

Analysis of the error variances used in Sa and SY, as described in the previous 

chapter, is necessary so that the nature of the retrieved state vector x can be well 

understood. In addition to Sx providing useful information about the errors associated 

with the retrieved state, the z2 diagnostic and the averaging kernel matrix or model 

resolution function, termed Ax, characterizes the retrieved state further. 

The z 2 diagnostic (now focusing only on the z 2 component associated with 

simulated versus observed radiances) is defined as 

II 

x2 = ~)Y; - J;(x,b)] 2 s;i , 
i= I 

(4.3) 

where n is the number of radiometric channels used in the retrieval. The equation 

represents the sum of the differences between each of observed radiances Y; and forward 

model radiances J;(x,b) weighted by the inverse of the combined model and sensor 

errors (Chapter 3) for each channel i given by s;i. The degree to which forward model 

radiances f (x,b) for the solution x match the observations vector y within the expected 

error range ( SY) is related to how well the forward model assumptions and their 

associated error variances agree with the atmospheric scene being observed. If the sensor 

is truly viewing a non-raining, oceanic scene, the differences between computed and 

observed brightness temperatures weighted by the inverse of the covariance matrix SY 

should lie within the expected z2 range (see Section 4.1) for that particular 

measurements vector (assuming no unknown external influences are affecting the sensor, 

and thus affecting SY). If the scene under observation is not well-represented by the 
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forward model physics and forward model parameter assumptions, then x2 will 

consistently be larger than expected. 

The Ax diagnostic provides information on the contributions of the a priori state 

vector and model to each of the retrieved parameters (TPW, VSFC and LWP) in the final 

"true" state vector. From Rodgers (2000), Ax is defined as 

(4.4) 

where all terms have been previously defined in Chapter 3. Since s~• and S;' are both 

constant from scene to scene (see Chapter 3) in the non-precipitating retrieval algorithm, 

a proportionality relationship (describing the change of Ax from one scene to the next) 

(4.5) 

can be established. It can be seen that observed changes in Ax from one satellite pixel to 

the next are directly related to changes in the scene-dependent forward model sensitivities 

( ;J / dx ). Overall then, z2 can be thought of as an indicator of general agreement with 

sensor observations and validity of the retrieval while Ax describes the influence of the 

model on the final retrieved state as well as the model response to the scene under 

observation. 

For atmospheric scenes that have profiles different from those assumed in the 

non-precipitating model, such as in the case of raining systems, model computed 

radiances will not agree with the observed radiances as well, and z2 will be larger in 

magnitude than expected for the non-precipitating regime. The non-precipitating forward 

model contains the necessary physics to describe scenes in which only absorption and 

emission take place. The introduction of larger cloud droplets and precipitation-sized 

hydrometeors adds complexity to the radiative transfer through the atmosphere. Whereas 
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emission and absorption were the only processes dominating the radiative transfer, in the 

precipitating atmosphere scattering of microwave radiation becomes important, 

particularly at the higher frequency channels. The radiances arriving at the spacebome 

sensor are now the end result of all extinction processes including scattering. Because 

the forward model is incapable of describing scenes of this nature, it becomes 

increasingly difficult to find a combination of retrieved geophysical parameters that yield 

upwelling radiances that agree with the observations vector within the expected error 

range (and thus, within the expected z2 distribution). The differences between simulated 

and observed radiances become larger with increasing rain rates as the scattering 

signature at the higher frequency channels along with the emission signature at the lowest 

frequency channels becomes more evident. The relationship, then, between the increased 

contribution to the cost function (a higher z2
) and increasing rain rates is expected to be 

consistent globally and can be used to filter out scenes that are contaminated by 

precipitation. 

In addition to z2 responding in a predictable way to precipitation-sized 

hydrometeors and increasing rain rates, there is an expected change in the Ax diagnostic 

as well. Over the ocean, the relationship between upwelling radiances and rain rates 

includes a rapid increase of the lower-frequency brightness temperatures with rain rate. 

This increase continues up to a certain rainfall threshold at which point saturation is 

reached, and a slight decrease in brightness temperature occurs with an additional 

increase in rain rate. The rain rate threshold decreases with increasing frequency. 

Physically, this relationship is a result of emission processes from liquid cloud droplets 

and rain droplets dominating at the lower frequencies. From a radiance perspective, the 
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scene is noticeably warmer. As rainfall rate increases, scattering processes from ice 

above the rain layer begin to dominate and brightness temperatures are depressed for the 

highest frequencies. The greatest depression occurs for frequencies above 37 GHz. 

The expected global response of the non-precipitating retrieval to raining scenes 

is to increase the magnitude of the geophysical parameters to compensate for the 

warming atmospheric scene due to increased emission from increasing liquid and rain. 

The response should be most consistent for TPW and VSFC. There are a number of 

reasons for this. The lower frequency channels (including the channels near the water 

vapor absorption line) are weighted the most in the non-precipitating retrieval (see Table 

3.2). Furthermore, forward computed radiances are quite sensitive to changes in the state 

vector for these channels (Figure 3.1 ). While the nature of the optimal estimation 

algorithm ensures agreement among all channels, for the case of a scene where any 

combination of non-precipitating geophysical parameters do not yield radiances that 

match all observations (due to additional physics unable to be described by an 

absorption/emission model), the retrieval will respond by matching those sensitive 

channels that are weighted the most as this ensures that a minimum in the cost function 

will be reached. This requires an increase in TPW and VSFC. For the higher 

frequencies, scattering of upwelling microwave radiation again dominates as the rain rate 

continues to increase. An increase in the scattering of upwelling radiation leads to a 

decrease in brightness temperatures. Since the absorption coefficient due to LWP is 

greatest above 37 GHz, the non-precipitating retrieval will respond by decreasing L WP 

for increasing rainfall rates and increasing scattering processes aloft. However, before 

ice scattering dominates emission by liquid, it is to be expected that LWP will increase, 
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much like TPW and VSFC. Because of the expected consistent response of TPW and 

VSFC to increasing rain rates, the focus will be on the diagnostics associated with these 

two parameters. 

Figure 4.4 is a schematic of the general form of the curves for the simulated 

radiances f(x,b) as a function of increasing TPW (left panel) and VSFC (right panel). 

The schematic of the simulated radiance is not intended to represent any specific channel 

response or magnitude, but instead illustrates the trend of slope of the curves (if/ dx) as 

TPW and VSFC increases. The general form of the curves is consistent for all channels 

with significant sensitivities to the geophysical parameter in question. As can be seen in 

the schematic, if/ dx is greater than zero for the entire range of TPW and VSFC values 

generally thought to be physically possible. Of significance, however, is the changing 

magnitude of if/ dx as TPW and VSFC increase. 

TPW VSFC 

Figure 4.4. Schematic illustrating the general form of the forward computed radiance 
curves for TPW (left panel) and VSFC (right panel). Both TPW and VSFC 
increase to the right. 

For atmospheric scenes in which retrieved TPW is increasing, the magnitude of 

if/ dx decreases since the curve is concave-down ( ::{ < 0). Physically, this is the result 
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of the sensitive channels beginning to saturate (i.e., smaller increase in brightness 

temperature for same unit change in TPW) as absorption becomes so significant that 

there is less upwelling radiation arriving at the sensor for further increases in TPW. For 

scenes in which retrieved VSFC is increasing, the magnitude of cf/ dx increases since the 

curve is concave-up ( > 0). As surface winds increase, ocean surface roughening 

(large- and small-scale wave action) and foam coverage/magnitude increases, thus 

increasing the emissivity (see Chapter 2). However, the roughening processes are highly 

nonlinear and become increasingly significant (for the same amount of increase in surface 

wind) for higher wind speed regimes. Thus, the change in forward computed radiances 

per unit VSFC change is larger in regions in which higher wind speeds are retrieved. 

In summary, there is an expected consistent response in the optimal estimation 

diagnostics to the observed radiances upwelling from raining regions. The z 2 diagnostic 

is expected to increase significantly, indicating the inability of the non-precipitating 

model to simulate the radiative transfer through raining scenes. Furthermore, since the 

expected response of the retrieval is to increase TPW and VSFC in raining regions, and 

as was explained, this leads to a resultant decrease in the magnitude of cf/ dx for TPW 

and increase in cf/ dx for VSFC, then the Ax diagnostic should respond accordingly 

since it is directly proportional to cf/ dx. Thus, along with an increasingz2, there should 

be a decreasing Ax for TPW and an increasing Ax for VSFC for regions where rainfall is 

observed. Because of the unique, global response of these diagnostics to the radiometric 

signatures associated with raining systems, a rainfall screen can be developed. The 

viability of this application is discussed in Chapter 5. 
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5.1 Rainfall Screen 

CHAPTERS 

ADDITIONAL APPLICATIONS 

There is an expected unique, consistent response to radiances upwelling from 

raining systems both in z2 and in the elements of Ax associated with TPW and VSFC, as 

explained in Chapter 4. Fortunately, since TRMM has a precipitation radar (TRMM PR) 

in addition to a radiometer (TMI) on-board, the expected global response of the retrieval 

diagnostics to rainfall can be evaluated. The TRMM PR swath generally follows a track 

co-located with the center pixels of the TMI swath. A snapshot (for the entire TRMM 

observing region) of the optimal estimation z2 diagnostic is shown below in Figure 5.1 

(top panel) with the corresponding TRMM PR (2A25 dataset described in Chapter 2) 

retrieved near-surface rain rates (bottom panel). Only those TMI pixels within the PR 

swath are shown for easier visual comparison between the z2 and PR rain rate fields. 

Additionally, the optimal estimation retrieved state vector (TPW, VSFC and LWP), 

diagnostics (denoted X2
, ArPw and AvsFc ) and corresponding TRMM PR rain rates are 

shown below for a number of different atmospheric scenes (state vector in Figures 5.2a, 

5.4a and 5.5a; diagnostics in Figures 5.2b, 5.4b and 5.5b). The black lines extending 

across the center of the TMI swaths in the figures that follow outline the extent of the 
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TRMM PR swath. The purpose of this study is not to choose and advocate diagnostic 

thresholds below (beyond) which the scene is considered non-raining (raining) 
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Figure 5.1. 40°N-40°S latitude snapshot (February 6, 2000) of x2 diagnostic (top panel) 
and TRMM PR rain rates (bottom panel). Only TMI pixels falling within 
the PR swath are plotted. Blacked out regions in the z2 panel are those 
regions exceeding the currently considered operational no-rain threshold. An 
evaluation of these blacked out regions against the PR rain rates shows 
general global agreement between high x2 values and increasing PR rain 
rates. 
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since that is an operational exercise. However, for the purpose of illustrating the 

consistent response of the diagnostics to rainfall, thresholds are chosen so areas that 

exceed the currently considered operational thresholds are blacked out and evaluated 

against the corresponding PR near-surface rain rates. These blacked out regions are those 

for which the possibility of precipitation exists. Only regions lying within the TRMM PR 

swath are blacked out. Currently considered operational thresholds for determining non-

precipitating regions based on the optimal estimation diagnostics are: ArPw > 0.99, AvsFc 

< 0.96 and z2 < 40.0 (the z2 threshold is currently a crude function taking into account 

both retrieved L WP and z2
, although the average z2 over the range of L WPs is ~40.0). 

Thus, the possibility of precipitation based on these thresholds occurs when ArPw :S 0.99, 

A vsFc 0.96 and z2 40.0. The expected global response of z2 to raining regions as 

identified by TRMM PR is evident in Figure 5.1, indicating the consistent failure of the 

retrieval to find appropriate geophysical parameters and corresponding simulated 

radiances that match observed radiances in raining regions. Regions in Figure 5.1 , 

shaded gray, are those for which the z2 value falls below the currently considered rain 

threshold. 

5.1.1 Raining Scene 

Figures 5.2a and 5.2b show a scene for which TRMM PR indicated precipitation. 

The blacked out regions on the diagnostic panels of Figure 5.2b agree fairly well with the 

areas of precipitation according to TRMM PR. As expected, the agreement is best for 

those areas with higher rain rates (for example, PR rain rates exceeding~ 1 mm hr- 1
). 

This scene is unable to be explained by emission/absorption only and thus simulated 
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Figure 5.2a. Raining scene (according to 
TRMM PR) over the central Pacific Ocean 
on February 1, 2000 and the corresponding 
retrieved (TPW, VSFC, and LWP) 
parameters. 
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Figure 5.2b. The corresponding near-surface PR-retrieved rain rates and optimal 
estimation diagnostics for the raining scene. Regions blacked out for 
the AvsFC, ArPw and X2 panels are those pixels that are outside of the no-rain 
thresholds currently being considered for operational use. 
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radiances do not agree with observed radiances, as indicated by z2
• This scene illustrates 

the potential of the diagnostics to screen out regions contaminated by rainfall. 

5.1.2 Non-Raining Scene 

The motivation to investigate this scene arises from the discrepancy in rainfall 

when comparing the retrieved rain rates from two passive microwave algorithms 

(GPROF and RSS) and a TRMM PR rain rate retrieval, as seen in Figure 5.3. The 

Goddard profiling algorithm (GPROF) is the current operational rainfall algorithm for 

TMI (as well as AMSR-E). Both instantaneous rainfall rates and the vertical structure of 

rainfall are retrieved. The details of the algorithm can be found in Kummerow et al. 

(1996 and 2001). Remote Sensing Systems (RSS), described in Chapter 2, also retrieves 

surface rain rates, in addition to the non-precipitating parameters. The rain rate product 

from RSS is a daily gridded product (0.25° x 0.25°). As is observed in Figure 5.3, both 

passive algorithms retrieve rain in all three boxed regions (Region 1 centered on 

26.5°N/123°E, Region 2 centered on 29.5°N/130.75°E and Region 3 centered on 

31°N/133°E), while TRMM PR retrieves light rain rates only in Region 3. 

As can be seen in the bottom panel of Figure 5.4a, high cloud LWPs (approaching 

1 mm) were retrieved for the same three boxed regions shown in Figure 5.3 centered on 

approximately 26.5°N/123°E, 29.5°N/130.75°E and 31°N/133°E. Since these LWPs 

exceed the threshold for discriminating non-precipitating clouds from precipitating 

clouds in most passive microwave algorithms based on the physics of absorption and 

emission (Berg et al. 2006), including both the GPROF and RSS algorithms, these scenes 
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Figure 5.3. TRMM swath (February 1, 2000 over East China Sea) for which both the 
passive microwave algorithms (GPROF and RSS) indicate light rain rates in 
Regions 1 and 2 (up to 1-2 mm hr- 1

) and slightly heavier rain rates in Region 
3 (up to 3-4 mm hr-1

). No rain was retrieved using TRMM PR in Regions 1 
and 2, while only light rain rates were detected in a small section of Region 3 
(area average of ~l mm hf 1

) . 
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Figure 5.4a. Same as Figure 5.2a, except 
for a non-raining scene over the East 
China Sea on February 1, 2000. As can be 
seen, high cloud LWPs (up to 1 mm) were 
retrieved in areas corresponding to 
Regions 1, 2 and 3 of Figure 5.3. 

would be considered raining. However, according to the currently considered thresholds 

for Arpw, A vsFc andz2
, this scene is generaJly well-described by non-raining clouds 

containing high LWPs. Because z2 is quite smaJI for Regions 1 and 2, centered on 

26.5°N/123°E and 29.5°N/130.75°E, as seen in the bottom right panel of Figure 5.4b, 

simulated brightness temperatures agree with observed brightness temperatures and the 

scene is thus generally explained by high LWPs only. The z 2 diagnostic is larger in 

Region 3 centered on 31°N/133°E (the region with light rain rates detected by TRMM 

PR). Additionally, the optimal estimation Arpw does mask out a small area within 

Region 3, but overaJI, the diagnostics are not responding to the degree that is observed in 

more significant precipitating regions. Berg et al. (2006) hypothesizes that large 

concentrations of hygroscopic sulfate aerosols in this region of the East China Sea may 

allow for an increase in the number of smaller cloud drops for a given liquid water 

content, which in turn may lead to a decrease in the collision-coalescence processes 
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Figure 5.4b. The corresponding near-surface PR retrieved rain rates and optimal 
estimation diagnostics for the non-raining scene. Similar to 5.2b, regions 
blacked out for the A vsFc, ~Pw and X2 panels are those pixels that are 
outside of the no-rain thresholds currently being considered for operational 
use. 

and thus an increase in the amount of liquid water present in the atmosphere in the form 

of clouds before significant precipitation begins. Therefore, because this scene may be 

primarily explained by high-LWP, non-precipitating clouds, there is a clear advantage in 

considering all the available information from the optimal estimation diagnostics instead 

of using only a LWP threshold in a passive microwave rainfall algorithm when trying to 

di scriminate between precipitating and non-precipitating clouds. 
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5.1.3 Tropical System Scene 

Figure 5.5a shows a scene for which large values of TPW and VSFC exist outside 

of the precipitating regions-conditions potentially observed around a tropical cyclone. 

Since high values of retrieved TPW and VSFC are not unique to precipitating regions, the 

possibility exists that the response of the diagnostics (particularly ArPw andAvsFc ) in non-

precipitating regions will be similar to the response in precipitating regions, thus adding 

uncertainty to the discrimination process of rain versus no-rain. However, as is observed 

in Figure 5.5b, despite being in a region of relatively high background TPW and VSFC, 

the response of the optimal estimation diagnostics is still consistent with the PR-retrieved 

rain rate field. 
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Figure 5.5a. Super-Typhoon Chaba overpass on August 27, 2004. The scene is one for 
which relatively high surface winds and total precipitable water were 
retrieved outside of the precipitating regions. 
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In the bottom panel of Figure 5.5a, retrieved LWPs begin to decrease in regions of 

the tropical system where intense rain rates are detected by TRMM PR (top left panel of 

Figure 5.5b). This can easily be seen when looking at the region extending along 28°N 

latitude from approximately 134° to 136°E longitude. As explained in Chapter 4, for 

increasing rain rates, ice scattering becomes more evident, and the 37- and 85-GHz 

channels begin to decrease. In the non-precipitating retrieval , these channels (particularly 

the 85 GHz) are highly sensitive to changes in LWP. Thus, as the scattering of upwelling 

microwave radiation increases (as rain rates increase), the response of the non-

precipitating retrieval is to decrease the magnitude of the retrieved LWP in response to 

the decreasing magnitudes of the higher frequency channels. This is observed in the 

bottom panel of Figure 5.5a. 
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Figure 5.5b. The corresponding diagnostics for the Super-Typhoon Chaba overpass on 
August 27, 2004. The diagnostics are consistently exceeding the considered 
rain thresholds only in the raining regions observed by PR, despite being in 
a region of high total precipitable water and surface winds. 
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5.2 Assessment of Retrieval Biases 

5.2.1 Brightness Temperature Biases 

The TPW, VSFC and L WP retrievals for all sensors in Chapter 4 yield simulated 

radiances that agree with the observed radiances within the allotted error range given 

by SY. Reasonable agreement is ensured by using only those retrievals having z2 values 

that fall within the expected z2 range. An example comparison of simulated brightness 

temperatures to observed brightness temperatures for TMI is shown in Figure 5.6. 
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Figure 5.6. Simulated brightness temperatures compared to TMI brightness temperatures 
for Pre-Boost period (1998). 

67 



As expected, the scatterplots for all channels used in the TMI retrieval show good 

agreement between simulated and observed radiances. While it is an implicit assumption 

that all errors in SY are of a random nature, this is not necessarily the case. The value for 

,%2 does not indicate whether errors are random or systematic in nature. Upon closer 

inspection of the brightness temperature scatterplots, one can see that small brightness 

temperature biases do exist. Biases of similar magnitude exist for the other sensors as 

well. 

There are currently two SSM/I brightness temperature products available for use. 

The SSM/1 and AMSR-E Level lB (LIB) product contains the brightness temperatures 

for which the agency responsible for the instrument has basic responsibility and thus, it is 

the official product. There is an additional inter-calibrated product available for the 

SSM/1 instruments. For this product, the SSM/1 brightness temperatures are calibrated to 

TMI (common calibrated brightness temperature product, also known as the LlC 

product). With a multitude of microwave sensors in orbit and the upcoming 

Global Precipitation Measurement (GPM) Mission utilizing radiance data from multiple 

satellites, a consistent brightness temperature product inter-calibrated to a common 

standard (in this case, the TMI) is desired with the goal of ensuring consistency among 

rainfall products generated using different sensors. The method of inter-calibration 

involves storing co-located matches of SSM/1 and TMI and, for a particular channel, 

computing expected brightness temperature differences (as derived from forward model 

calculations) based on the difference in incidence angles between SSM/1 and TMI for 

non-precipitating regions . If the expected difference was in disagreement with the 

observed difference, an offset was added to the SSM/1 channel. It is important to note 
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that differences in spatial resolution and slight differences in frequency (for example, a 

shift from 22.235 GHz for SSM/1 to 21.3 GHz for TMI) will lead to slightly different 

brightness temperatures. Originally, the SSM/1 LIB product was used in the retrieval, 

and the original brightness temperature biases can be seen in Figure 5.7 compared to 

AMSR-E and TMI. 
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Figure 5.7. Simulated minus observed brightness temperatures, showing the biases for 
each of the sensors used in this study. For the SSM/1 instruments, the LIB 
product was used. 

The results of Chapter 4 are based on using the SSM/1 LlC inter-calibrated 

brightness temperature product. The magnitudes and directions of the biases for the 

similar microwave channels for each of the sensors (now using the LlC product for 

SSM/1) used in this study are shown in Figure 5.8. It is noted that the sensors do not all 

share the same channels. For example, the channel labeled 22V will be 23.8V GHz for 
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AMSR-E, 22.235V GHz for SSM/1 and 21.3V GHz for TMI. All other channels (except 

the 86-GHz channels, which include the AMSR-E 89-GHz channels) are much closer in 

frequency. 

As is to be expected, for brightness temperature products inter-calibrated to a 

reference standard (in this case, TMI), the resultant mean brightness temperature biases 

should be relatively similar in magnitude and direction. As is seen in Figure 5.8, there is 

indeed a decrease in the relative brightness temperature bias differences for each channel. 

It is noted that AMSR-E is currently not calibrated to TMI, despite the AMSR-E 

brightness temperature biases being similar to the other sensor biases. 
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Figure 5.8. Simulated minus observed brightness temperatures, showing the biases for 
each of the sensors used in this study. For the SSM/1 instruments, the LlC 
product was used. These brightness temperature biases are the ones that 
correspond to the geophysical parameter retrieval results in Chapter 4. 
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In Chapter 4, biases in the retrieved geophysical parameters (TPW and VSFC) 

compared to in-situ measurements (RAOB and buoy) were shown. Since there are biases 

in TPW and VSFC of varying magnitudes and directions for each sensor, it is not 

surprising that there are biases in simulated brightness temperatures when comparing to 

observed brightness temperatures, as seen in Figure 5.8. It is pointed out that the 

brightness temperature biases are of similar magnitude and direction for each sensor 

when comparing each similar channel. However, it is noted that there are still relative 

differences in magnitudes when comparing sensors. It is thought that the general trend is 

more representative of forward model bias while the relative differences in biases for 

each channel are more representative of effects that arise due to the sensor being used. 

The nature of a physical retrieval allows one to assess the differences between simulated 

and observed radiances after the geophysical parameter solution has been found. Thus, it 

becomes possible to quantify the biases that exist in each of the channels and assess 

potential calibration issues. The brightness temperature biases can either be added to the 

sensor observations or subtracted from the forward model channels with the final goal of 

running the retrieval again with the corrected brightness temperatures expecting even 

better agreement between the geophysical parameters/in-situ measurements and 

simulated/observed brightness temperatures. In this respect, it becomes possible to 

calibrate the forward model to the observations (or, the observations to the forward 

model). Figure 5.9 shows the resul ts of calibrating the forward model using this 

methodology (applied to SSM/1 F13). As expected, there is now better agreement 

between the retrieved parameters and in-situ observations and a general decrease in the 
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brightness temperature biases. The previous biases for TPW and VSFC (Table 4.1) were 

+0.63 mm and +1.85 m s-1
, respectively. 
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Figure 5.9. New TPW and VSFC retrievals in top two panels after brightness 
temperature offsets were added. The magnitudes of the biases in the two 
parameters decreased by 62% and 36% for TPW and VSFC, respectively. 
Bottom panel shows the new brightness temperature biases (black) compared 
to the previous F13 brightness temperature biases (red). Overall, brightness 
temperature biases have decreased as well. 

72 



After brightness temperature offsets were added to the forward model, the biases 

for TPW and VSFC decreased by 62% (now +0.24 mm) and 36% (now +1.19 m s- 1), 

respectively. The magnitudes of the brightness temperature biases, seen in the bottom 

panel of Figure 5.9, have decreased significantly. An approach of this nature, while 

offering improvement in the retrieval and a framework in which calibration offsets in 

either the forward model or sensor can be quantified, does not address the ultimate causes 

for the observed biases. It is not possible to determine whether the biases are the result of 

the forward model assumptions, microwave sensor effects (incidence angle assumptions, 

calibration issues, etc.), or both. In order to better understand the physics of the problem 

and to address the sources of possible biases, the impact of the forward model parameter 

and sensor assumptions used in the non-precipitating retrieval is investigated. 

5.2.2 Possible Sources of Retrieval Bias 

In Chapter 3, the error budgets ( a souRcE) for the forward model and sensor were 

discussed. The magnitudes of the brightness temperature biases that result from a change 

in the forward model components are given in Table 3.2. For variations in Earth 

incidence angle as well as the effect of sensor noise, the corresponding impacts on the 

simulated brightness temperatures are shown in Tables 3.3, 3.4 and 3.5. With respect to 

the forward model, the determination of whether asouRcE truly represents an error of 

random or systematic nature cannot be made, since the "truth" is not known for each of 

the forward model parameters. With respect to the spacebome sensor, while radiometric 

noise is considered to be random, variations in the incidence angle or the response of the 

sensor to external influences may be systematic. This is discussed below. While the 
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changes in the magnitudes of the simulated brightness temperature are shown for each 

a souRcE and are discussed in Chapter 3, the resulting impact on the retrieved parameters 

has not been discussed. This section explores the impact of both the forward model 

parameters and sensor Earth incidence angle on the retrieved geophysical parameters. 

It is a common practice to retrieve those geophysical parameters that are of 

greatest interest and fix other parameters that are needed for the forward model to 

compute upwelling radiances. Typically, the variables that are fixed are determined by 

the channels (and their sensitivities) used in the retrieval. In this study, both water vapor 

scale height and temperature lapse rate are fixed. The magnitudes of a scLHT and a LR are 

given in Table 3.2 as 0.6 km and 0.7 K km-1
, respectively. Additionally, the sensor-

specific incidence angle error, given as 0.3° for SSM/I, was subtracted from the global 

mean incidence angle. By perturbing the ECMWF derived water vapor scale heights and 

atmospheric lapse rates by these values, the impact on the retrieved geophysical 

parameters can be assessed. Since the discrepancies between the retrieved parameters 

and in situ were shown to be larger for the SSM/Is, the impact on the retrieval for SSM/I 

is shown in Figure 5.10. The top three panels of Figure 5.10 show the effects on the 

retrieved TPW when the water vapor scale height is decreased by 0.6 km. The middle 

three panels show the effects when the atmospheric lapse rate is decreased by 0.7 K km·1
, 

and the bottom three panels show the sensitivity of the retrieval to a change in the 

incidence angle assumption (in this case, a decrease of 0.3°). For all cases, the impact on 

the retrieval is significant, particularly for the retrieval of TPW and VSFC. Physically, 

by decreasing the water vapor scale height, for a given TPW, more water vapor is placed 

in the lower troposphere and thus will radiate at a higher brightness temperature. 
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Similarly, if the lapse rate is decreased, the troposphere is not cooling off as rapidly with 

height and both water vapor and cloud liquid water will emit at a higher brightness 

temperature, despite no change in the vertical distribution of either parameter. 
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Figure 5.10. Impact on non-precipitating geophysical parameters (TPW, VSFC and 
L WP) by perturbing the water vapor scale height (Scl Hgt), temperature 
lapse rate (LR) and sensor incidence angle (Inc Ang) by - 0.6 km, - 0.7 K 
km- 1 and - 0.3°, respectively. 

The simulated radiances are then different and the retrieval will arrive at a 

different solution. If one were to assume a mean water vapor scale height of 2.3 km and 
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mean atmospheric lapse rate of -6.0 K km-1
, then the perturbations for a sc LHT and a LR 

are large relative to their means (approximately 26% and 12%, respectively). However, 

of significance is the sensitivity of the retrieval to a relatively small change in the 

incidence angle (specifically, only a 0.6% change in the mean of 53.0°). Thus, the 

importance of knowing the incidence angle to a high degree is evident in the non-

precipitating retrieval. Figure 5.11 shows an example of variations in incidence angle for 

SSM/I (specifically, for DMSP satellite F8). As can be seen, Earth 
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Figure 5.11. Orbital variations of Earth incidence angle with pitch (-0.1) and roll (-0.4) 
for SSM/1 F08. There are approximately 3000 scans taken by SSM/I as the 
satellite orbits Earth. As can be seen, there are variations of earth incidence 
angle along each scan (on the order of 0.9° over the 128 pixels/scan) as well 
as variations from scan to scan (maximum of approximately 0.3° from Scan 
0 to Scan 2200). Image is from Poe and Conway (1990). 
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incidence angle variations exist as a function of both scan number (as the satellite orbits 

Earth) and position along scan. If both the height above the Earth's surface and the 

attitude of the satellite sensor (pitch and roll) are known, the angle of incidence can be 

computed. However, there are currently uncertainties regarding the pitch and roll 

characteristics of both the SSM/Is (Poe and Conway 1990, Colton and Poe 1999) and 

AMSR-E in orbit. Thus, an accurate incidence angle for these sensors cannot be 

computed at this time. Additionally, while the currently accepted mean incidence angles 

for these sensors are used in this study, they are more representative of the orbit around 

Earth as a whole. For example, since the TAO buoy array (Chapter 2) used for in-situ 

wind comparison is located near the Equator, the incidence angle representative of that 

area should be used because this would likely be different from the mean incidence angle 

representative of the entire orbit. Additionally, since the RAOB stations are all located 

between 60°N and 60°S latitude, an average incidence angle for that region would be 

required to decrease the amount of systematic error present in the geophysical parameter 

retrieval as well. The significant sensitivity of the non-precipitating retrieval to a small 

change in incidence angle requires the use of an incidence angle that is highly 

representative of the area being observed. 
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CHAPTER6 

CONCLUSIONS AND FUTURE WORK 

The objective of this study was to develop an oceanic, parametric, non-

precipitating physical retrieval applicable to all current spaceborne microwave sensors 

and flexible enough so that future spaceborne microwave sensors can be accommodated. 

The development of the retrieval within the optimal estimation framework ensures that 

the forward-model computed brightness temperatures corresponding to the retrieved 

geophysical parameters will always agree with observed brightness temperatures for non-

precipitating scenes (within expected error bounds) regardless of the sensor being used. 

Because this physical retrieval does not require sensor-specific or scene-specific 

adjustment parameters other than channel frequencies/polarizations and incidence angles, 

the addition of radiative-transfer physics in precipitating scenes would facilitate merging 

of cloud and precipitation retrievals, if so desired. 

The retrieved total precipitable water and surface wind speed were compared to 

in-situ measurements from radiosondes and buoys, respectively. RMS errors for total 

precipitable water ranged from 4.24 mm to 5.87 mm. For surface wind, RMS errors 

ranged from 1.51 m s·1 to 3.04 m s-1
• These were shown to be in agreement with the 

calculated RMS errors from other widely used non-precipitating algorithms as well. 

Because it is not possible to compare global cloud liquid water path retrievals to in-situ 
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measurements, a comparison to other microwave liquid water path retrieval algorithms 

(NV AP and RSS) was performed. The comparison was made using the liquid water path 

retrieval from TMI. The liquid water path retrieval using the optimal estimation 

algorithm agreed well with the RSS algorithm (also using TMI). There were greater 

differences when comparing to NV AP (using a number of SSM/Is), but the retrievals 

from each algorithm were in general agreement. 

The retrieval diagnostics respond in a consistent manner globally to atmospheric 

scenes that are not well-characterized by the forward model assumptions, such as raining 

scenes. Together, the diagnostics provide information on the scene being observed and 

indicate whether or not simulated radiances agree with observed radiances. Because of 

the consistent, expected response to scenes of this nature, the ability exists to filter out 

regions of precipitation that would contaminate the non-precipitating retrieval. 

Additionally, because the information contained within the optimal estimation 

diagnostics potentially provides a more powerful tool for screening out raining regions 

within the passive microwave algorithm framework as opposed to using a straight liquid 

water path threshold, as discussed in Chapter 4, a viable rainfall screen applicable to the 

global scene can be developed. 

A retrieval framework of this nature allows one to assess potential calibration 

issues related to either the sensor or forward model. Since this can be quantified, it 

becomes possible to calibrate the forward model to the observations and achieve better 

agreement between the retrieved parameters and in-situ observations. However, since 

this approach does not address the source of the brightness temperature biases, additional 

exploration is required. As a first step, the sensitivity of the retrieval to the fixed 
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assumptions (water vapor scale height and lapse rate) of the forward model was 

investigated. Since the retrieval was shown to be reasonably sensitive to these two 

parameters, future work requires the use of more regionally representative water vapor 

scale heights and lapse rates. Additionally, an investigation of the information content of 

the available radiances could shed light on the possibility of retrieving one or both of 

these parameters. 

The impact of a varying sensor-specific Earth incidence angle on the retrieved 

solution was evaluated as well. The impact on the non-precipitating retrieval is 

potentially significant. Thus, along with future improvements in the forward model, a 

complete representation of the incidence angle variations as a function of sensor scan 

position (and scan number, if possible) is necessary. 

While the impact of the other components of the forward model on the retrieval 

has not been discussed, future work on improving the forward model would include this. 

Additionally, any potential impacts directly attributed to sensor calibration issues or other 

external influences affecting the sensor have not been discussed. However, since the 

earth incidence angle variation had a maximum effect on forward computed brightness 

temperatures of approximately 0.7 K, a systematic bias in any sensitive radiometric 

channel of that magnitude or greater would have an impact on the retrieved solution 

similar to that of the incidence angle variation. Thus, these sensor-specific issues would 

need to be addressed in future work in conjunction with forward-model improvements so 

that a limit of retrievability would not be reached from a forward model perspective. The 

impact of differences in radiometer fields of view (FOV), both a function of sensor and 

diffraction limited, has not been assessed. While it can be assumed that total precipitable 
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water and surface wind are relatively uniform over the largest FOV, this may not be the 

case for cloud liquid water. Along with the nonlinear response of brightness 

temperatures to cloud liquid water, the impact of different radiometer FOVs on cloud 

liquid water retrievals would need to be explored in future studies. 
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