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Abstract

In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. To maximize
the performance of the system, it is essential to assign the resources to tasks (match) and order the execution of tasks on each resource (schedule)
to exploit the heterogeneity of the resources and tasks. Dynamic mapping (defined as matching and scheduling) is performed when the arrival
of tasks is not known a priori. In the heterogeneous environment considered in this study, tasks arrive randomly, tasks are independent (i.e., no
inter-task communication), and tasks have priorities and multiple soft deadlines. The value of a task is calculated based on the priority of the
task and the completion time of the task with respect to its deadlines. The goal of a dynamic mapping heuristic in this research is to maximize
the value accrued of completed tasks in a given interval of time. This research proposes, evaluates, and compares eight dynamic mapping
heuristics. Two static mapping schemes (all arrival information of tasks are known) are designed also for comparison. The performance of the
best heuristics is 84% of a calculated upper bound for the scenarios considered.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction requirements of varying task mixtures. The heterogeneity of

the resources and tasks in an HC system is exploited to max-

Heterogeneous computing (HC) is the coordinated use of
various resources with different capabilities to satisfy the
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imize the performance or the cost-effectiveness of the system
(e.g., [8,11,15]). To exploit the different capabilities of a suite
of heterogeneous resources, typically, a resource management
system (RMS) allocates the resources to the tasks and the tasks
are ordered for execution on the resources. In this research,
heuristics are proposed that can be used in such an RMS.

An important research problem is how to assign resources to
tasks (match) and order the execution of tasks on the resources
(schedule) to maximize some performance criterion of an HC
system. This procedure of matching and scheduling is called
mapping or resource allocation. Two different types of map-
ping are static and dynamic. Static mapping is performed when
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the applications are mapped in an off-line planning phase [7],
e.g., planning the schedule for a set of production jobs. Dynamic
mapping is performed when the applications are mapped in
an on-line fashion [25], e.g., when tasks arrive at unknown
intervals and are mapped as they arrive (the workload is not
known a priori). In both cases, the mapping problem has been
shown, in general, to be NP-complete (e.g., [10,12,18]). Thus,
the development of heuristic techniques to find near-optimal
solutions for the mapping problem is an active area of research
(e.g., [2,6,5,13,27,38]).

In this research, the dynamic mapping of tasks onto machines
is studied. Simulation is used for the evaluation and compar-
ison of the dynamic heuristics developed in this research. As
described in [25], dynamic mapping heuristics can be grouped
into two categories, immediate mode and batch mode. Each
time a mapping is performed (mapping event), immediate mode
heuristics only consider the new task for mapping, whereas
batch mode considers a subset of tasks for mapping, thus hav-
ing more information about the task mixture before mapping
the tasks. As expected, the study in [25] showed that the imme-
diate mode heuristics had shorter running times than those of
the batch mode heuristics, but the batch mode heuristics gave
higher performance. The heuristics proposed in this research
are batch mode schemes.

In this study we assume that tasks are independent (i.e.,
no inter-task communication). For example, these tasks can
be generated by different users. Furthermore, each task has a
priority level and multiple soft deadlines.

The target hardware platform assumed is a dedicated cluster
of heterogeneous machines (as opposed to a geographically
dispersed, loosely connected grid). Such a cluster may be found
in a military command post.

The HC environment considered is oversubscribed. While
most computing environments are designed to handle the ex-
pected computational load, there are important cases where this
is not possible. For example, this may occur in defense envi-
ronments where battle damage reduces the available resources
or in catastrophic events where requests greatly exceed the ex-
pected load. In these scenarios, it is important to have a mech-
anism by which a resource management scheme can determine
which tasks must be completed in a timely fashion. This study
attempts to reflect this by a weighted priority scheme in con-
junction with multiple soft deadlines, i.e., the value of a task
is determined by its priority level and when the task is com-
pleted with respect to its deadlines. This environment will be
useful when tasks have different importance and a task’s value
depends on when it is completed.

As an example of how priority schemes are used, consider
a military environment. High priority tasks may involve the
execution of defensive maneuvers, medium priority tasks may
involve the control of offensive weapons, and low priority tasks
may involve ordering supplies.

As an example of how multiple soft deadlines are used, con-
sider a disaster management scenario. In particular, if a tsunami
is reported (task) as soon as an earthquake is detected, then
it will have full value to the people where the tsunami is ex-
pected to hit (i.e., a lot of people can evacuate). If the tsunami is

reported when it is in visual range, then it will have some value
(i.e., only some people can take cover). However, if the peo-
ple of the area are warned as the tsunami hits the area it would
have very little value (i.e., there will be a lot of casualties).

The goal of a dynamic mapping heuristic in this research
is to maximize the sum of the values of completed tasks in
a given interval of time. We designed eight dynamic mapping
schemes to solve this problem. Two static heuristics are used
to provide benchmarks against which the performance of the
dynamic heuristics is compared. These two static methods are
based on simulated annealing (SA) and genetic algorithm (GA)
approaches.

The contributions of this research are: (1) the design of eight
dynamic mapping heuristics for the proposed HC system model,
(2) the comparison of the performance of the heuristics, and
(3) a method for calculating an upper bound (UB) on the per-
formance of a resource allocation, i.e., an UB on the maximum
possible sum of values of completed tasks in a given interval
of time.

The next section provides details of the problem statement.
In Section 3, the literature related to this work is discussed.
Section 4 presents the dynamic mapping heuristics studied in
this research. The static mapping heuristics used for comparison
to the performance of the dynamic methods are described in
Section 5. Section 6 presents the simulation setup and the results
of the simulation experiments are analyzed in Section 7. The
last section gives a brief summary of this research.

2. Problem statement
2.1. Task model

The tasks considered are assumed to be independent, i.e., no
communication or dependency between tasks. Each task has a
priority level (i.e., high, medium, and low) and soft deadlines.
The worth of a submitted task may degrade according to when
it completes execution. The performance metric is the sum of
the worth of tasks that complete in an interval of time.

The estimated time to complete (ETC) values of each task on
each machine is assumed to be known based on user-supplied
information, experiential data, task profiling and analytical
benchmarking, or other techniques (e.g., [1,15,16,21,26,40]).
Determination of ETC values is a separate research problem,
and the assumption of such ETC information is a common
practice in mapping research (e.g., [16,20,21,24,31,39]).

In the simulation experiments, the mapping heuristics only
have knowledge of the ETC values and these ETC values are
used to make the mapping decision. The ETC(i, j) is the esti-
mated execution time of task i on machine j, where i is the task
number and j is the machine number. These estimated values
may differ from actual times, e.g., actual times may depend on
input data. Therefore, for the simulation studies, the actual time
to complete (ATC) values are calculated using the ETC values as
the mean. The ATC values are used only for the evaluation of the
heuristics after the heuristics are used in the simulation of the
system. The details of the simulation environment and the cal-
culation and use of the ATC values are presented in Section 6.
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2.2. Performance metric

2.2.1. Priorities

Each task i has a priority level that indicates the importance of
a task relative to other tasks: high, medium, or low. To quantify
the relative importance of priority levels in our study, we use a
polynomial weighting scheme. The weights are used to compute
a task’s value. In particular, the weighted priority of task i is
pi, where

x2  for high priority tasks,
pi = { x for medium priority tasks,
1 for low priority tasks.

For this research, x = 2 or 4 (light or heavy priority weight-
ing schemes, respectively). The weighted priority of a task is
the maximum value it can contribute to the evaluation function.
Clearly, this is just one example of a method for assigning pri-
ority values, and a different set of values can be used depending
on the application domain.

2.2.2. Deadlines

The deadlines of a task reflect the importance of the response
time to the user. In this research, each task have three soft
deadlines (i.e., 100%, 50%, and 25% deadlines). The deadline
factor, d;, indicates the degradation scheme of the worth of a
task. In particular,

1.00 if task i finished at or before its 100% deadline,

0.50 if task i finished at or before its 50% deadline,

0.25 if task i finished at or before its 25% deadline,

0.05 if task i finished after its 25% deadline,

0 if task i is never started during the time period
evaluated.

2.2.3. Performance metric

The performance metric described in this section is used to
evaluate the performance of a heuristic designed for the en-
vironment described in Section 1 during a fixed time period
(referred to as the evaluation period). This performance metric
builds on the idea of the FISC measure in [23]. For the evalu-
ation, the tasks that partially execute within the evaluation pe-
riod are prorated. Let B denote the beginning of the evaluation
period and let E denote the end of the evaluation period. Let
j be the machine assigned to task i by the mapping heuristic.
The simulated actual execution time for task i on machine j is
ATC(i, j). The start time of task i on machine j is st(Z, j) and
the finish time of task i on machine j is ft(i, j). Then, b; gives
the boundary weighting for each task i, i.e.,

(fti, j) — B)/ATC(, j) if st(i, j) < B
and B < ft(i, j))<E,

1.00 if st(i, j)> B

and fi(i, )< E,
if B<st(i, j) < E

and ft(i, j) > E,
if st(i, j)<B

and fi(i, j) 2 E,
0 if ft(i, j)<Borst(i, j) 2 E.

bi= (E —st(i, j))/ATC(, j)

(E — B)/ATC(, j)

Let T be the total number of tasks that are mapped (i.e., the
total number of tasks in the ETC matrix). Then the evaluation
value, V used to evaluate each mapping is defined as

T-1

VZZpiXdiXbi.
i=0

Thus, the value associated with a mapping is the sum of the
weighted priority of tasks executed during the evaluation pe-
riod, reduced if the 100% deadline is not met and prorated if
tasks are not started and/or completed during the evaluation
period.

2.3. Upper bound (UB)

The UB on the evaluation value uses the arrival time of tasks,
priority of tasks, the deadline of the tasks, and the time interval
between the arrivals of tasks. The tasks that have arrived before
or at the mapping event are called selectable tasks. At any
mapping event, only the selectable tasks are considered for the
calculation of the UB. Let Q; be equal to the priority weighting
of task i divided by the minimum ATC(i, j) over all machines
(i.e., priority weight per unit actual computation time).

The UB starts by initializing all task’s remaining ATC values,
rATC(i, j), to the minimum ATC(i, j) over all machines. When
a new task arrives, the UB follows the procedure below.

(1) At a mapping event, determine the total aggregate com-
putation time (TACT) until the next task arrives. That is,
TACT = time interval between arrival times of the new
task and the next task multiplied by the number of ma-
chines.

(2) Put all selectable tasks with rATC(i, j) > 0 in a task list.

(3) Select the task a that has the highest Q; from the task list.

(4) If TACT <rATC(a, j)

add (Q, x TACT) to the evaluation value
subtract TACT from rATC(a, j)
done (i.e., TACT = 0)

if TACT > rATC(a, j)
add (Q, x rATC(a, j)) to the evaluation value
subtract rATC(a, j) from TACT
(this becomes the new TACT)
repeat steps 3 and 4.

(5) Repeat steps (1)—(4) until the end of evaluation period.

3. Related work

There have been many previous research studies concerned
with the dynamic mapping of independent tasks onto hetero-
geneous machines to minimize the completion time of the last
finishing task (e.g., [14,18,24,25]). Our research has a differ-
ent task model (with priorities and multiple deadlines) and a
different performance metric (described in Section 2.2.3) that
complicate the mapping problem.

The environment in [30] has randomly arriving tasks with
a hard deadline. The concept of moving a task if its deadline
may not be satisfied (presented in [30]) is used in one of the
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heuristics in our research. However, the environment in our
research is different because it includes task with priorities and
multiple deadlines, heterogeneous machines, and a more com-
plex performance metric, all of which complicate the schedul-
ing problem.

The DeSiDeRaTa project (e.g., [9,17,33-36]) focuses on dy-
namically reallocating resources for applications, but the sys-
tem model is very different. The system model in DeSiDeRaTa
includes sets of heterogeneous machines, sensors, applications,
and actuators. The applications in the DeSiDeRaTa project are
continuously running ones where data inputs to an application
are processed and output to another application or an actuator.
In contrast, the tasks in this research are independent, are ran-
domly arriving, have priorities, and have multiple deadlines.

The work in [41] focuses on the dynamic mapping of inde-
pendent tasks onto machines in an environment that is similar
to the one in this study (i.e., randomly arriving tasks, hetero-
geneous machines, and heterogeneous tasks). Our research and
the research in [41] include different heuristics based on Min—
Min and Max—Min from [18] designed for the particular envi-
ronments in the two different studies. The difference between
our study and the work in [41] is that the tasks in our study are
assigned a weighted priority, each task has multiple deadlines,
and the performance metric is the value of tasks completed in
an interval of time instead of completion rate, defined as the
number of tasks completed in an interval of time. The idea of
“fine-tuning” in [41] is used in two of the heuristics in our re-
search as “rescheduling” after tasks are mapped.

4. Dynamic mapping heuristics
4.1. Mapping event

Each dynamic mapping approach was designed to compute
the new mapping faster than the anticipated average arrival rate
of the tasks. Therefore, the heuristics that are developed have a
limit on the maximum time each computation of a new mapping
(mapping event) can take. A mapping event occurs when a new
task arrives in the system and the previous mapping event has
ended. If tasks arrive while a mapping event is in progress, the
current mapping event is not disturbed, but the next mapping
event includes any tasks that had arrived.

At any mapping event, the new task and the tasks in the
machine queues still awaiting execution are considered together
for machine assignment, i.e., previously mapped but unexecuted
tasks can be remapped. The exception is that the first task in
each machine’s wait queue is not considered for remapping. The
reason for this is to reduce the chance of a machine becoming
idle if during a mapping event the currently executing task
finishes. While it is still possible that a machine may become
idle, it is highly unlikely for the assumptions in this research
(the average execution time of a task is 180 s while the average
execution time of a mapping event is less than 0.5 s).

4.2. Max—Max

The Max—Max method is based on the Min—-Min (greedy)
concept in [18]. The Max—Max finds the “best” machine for

each task that is considered for mapping, and then among these
task/machine pairs it selects the “best” pair to map first. To
determine which machine or which task/machine pair is the
best, a fitness value is used. The fitness value for the task on a
given machine is the worth of the task divided by the estimated
execution time of the task on that machine, where the worth of
the task is the priority weighting of the task multiplied by the
deadline factor of the task.

Max—Max can be summarized by the following procedure,
which starts when a new task arrives and generates a mapping
event. The mappable tasks are tasks that are waiting to be
executed in the machine wait queue (except the first task) and
the new task. When the mapping event begins, it is assumed
that none of the mappable tasks are mapped, i.e., they are not
in any machine wait queue.

(1) Generate a task list that includes all the mappable tasks.

(2) For each task in the task list, find the machine that gives the
task its maximum fitness value (the first “Max”), ignoring
other tasks in the mappable task list.

(3) Among all the task/machine pairs found from above, find
the pair that gives the maximum fitness value (the second
“Max’).

(4) Remove the above task from the mappable task list and
map the task to its maximum fitness value machine.

(5) Update the machine available times.

(6) Repeat steps (2)—(5) until all tasks are mapped.

The availability status of the machine selected in step (3) is
updated in step (5) and then used in calculating the deadline
factors in the next iteration. The completion time for task i on
machine j is the sum of the machine available time (mat(j))
(i.e, the time machine j is available to execute task i), and
ETC(i, j). The deadline factor for a given task/machine pair
is determined using the task’s estimated completion time on
that machine. In step (2), the worth for a task/machine pair is
recalculated if the mat was updated for the machine.

4.3. Max—Min and Min—-Min

Part of the Max—Min heuristic also is based on the greedy
concept in [18]. This scheme finds the machine with the
minimum completion time for each task. Then, from these
task/machine pairs, the heuristic selects the pair that has the
maximum completion time. This method maps tasks that take
more time first because these tasks typically have a higher
probability of not completing before their deadline if not
mapped as soon as possible.

Max—Min can be summarized by the following procedure,
which starts when a new task arrives and generates a mapping
event. When the mapping event begins, it is assumed that none
of the mappable tasks are mapped, i.e., they are not in any
machine wait queue.

(1) Generate a task list that includes all the mappable tasks.

(2) For each task in the mappable task list, find the minimum
completion time machine (the “Min”), ignoring other tasks
in the mappable task list.
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(3) Among all the task/machine pairs found from above, se-
lect the pair that gives the maximum completion time (the
“Max”).

(4) Remove the task identified above from the mappable task
list and assigned to its minimum completion time machine.

(5) Update the machine available times to calculate the mini-
mum completion time in step (2).

(6) Repeat steps (2)—(5) until all the tasks are mapped.

(7) For each machine, if there are tasks in the machine wait
queue, reschedule these tasks in descending order accord-
ing to their worth.

The rescheduling of tasks in step (7) for each machine can
be summarized by the following procedure.

(a) Initialize the machine available time to the completion time
of the first task in the wait queue (i.e., assume that none of
the mappable tasks are mapped).

(b) Group the tasks using their priority levels.

(c) For the tasks in the high priority level group, keeping their
relative ordering from the machine wait queue, one by one,
in order, insert each task that can finish by its 100% deadline
into the machine wait queue. Once scheduled, a task is
removed from the group and the machine available time is
updated.

(d) Repeat step (c) for the 50% deadline and then the 25%
deadline.

(e) Repeat steps (c) and (d) for medium priority tasks and then
repeat for low priority tasks.

(f) High priority tasks that cannot finish by their 25% deadline
are added to end of the machine wait queue. Medium prior-
ity tasks that cannot finish by their 25% deadline are added
next and then low priority tasks are added to the machine
wait queue.

The Min—-Min heuristic, which is a variation of Max—Min,
was also implemented. The difference is in step (3), where in-
stead of selecting the pair that gives the maximum completion
time, the pair that gives the minimum completion time is se-
lected. The goal of this method is to attempt to complete as
many tasks as possible.

4.4. Percent Best

The first part of the Percent Best heuristic is a variation of the
k-percent best heuristic found in [25]. Let M be the total number
of machines within the HC suite. The idea behind Percent Best
is to, in general, assign a task to one of the m <M machines
with the best execution time. However, limiting the number of
machines to which a task can be mapped may cause the system
to become unbalanced, therefore the completion times are also
considered.

Percent Best can be summarized by the procedure below,
which starts when a new task arrives and generates a mapping
event. When the mapping event begins, it is assumed that none
of the mappable tasks are mapped, i.e., they are not in any
machine wait queue.

(1) Generate a task list that includes all the mappable tasks.
(2) Tasks are grouped according to their priority levels.

(3) For each task in the high priority level group, find the top
m = 3 machines that give the best execution time for that
task (the total number of machines used in the simulation
studies in this research is eight).

(4) For each task, find the minimum completion time machine
from the machines found in step (3) and the machines that
are idle.

(5) Map tasks with no contention (i.e., there are no other tasks
with the same minimum completion time machine) and
remove them from the group.

(6) For tasks with contention (tasks having the same minimum
completion time machine), map the task with the earliest
100% deadline and remove it from the group.

(7) Update the availability status of all machines assigned
tasks.

(8) Repeat steps (3)—(7) until all tasks in the group are mapped.

(9) Repeat steps (3)—(8) for tasks in the medium and low pri-
ority level groups, using m = 4 and 8, respectively. Note
that the values of m are determined experimentally.

4.5. Queueing Table

The Queueing Table heuristic uses a lookup table (see
Table 1) constructed based on priority, relative execution time
(RET), and urgency. The RET is the ratio of the average exe-
cution time of a task across all machines to the overall average
task execution time for all tasks across all machines in the HC
system. The Queueing Table heuristic uses the above definition
and a heuristic constant (RET cutoff) to classify tasks into one
of two categories: “slow” and “fast.” If a task’s RET>RET
cutoff, then it is considered to be slow; if a task’s RET <RET
cutoff, then it is considered to be fast. The RET cutoff was
determined experimentally.

Let 6 be the 100% deadline of a given task i minus the current
time. If 0 is positive then the urgency of a given task i equals
(average ETC(i, j) over all j)/4.

It is considered more urgent if the ratio is larger. If J is zero
or negative (i.e., the current time passes the 100% deadline

Table 1
The lookup table constructed based on priority, relative execution time, and
urgency for the Queueing Table heuristic

Queueing Priority Relative Urgency
rank level execution time

1 High Slow Sooner

2 High Fast Sooner

3 High Slow Later

4 High Fast Later

5 Med Fast Sooner

6 Low Fast Sooner

7 Med Fast Later

8 Low Fast Later

9 Med Slow Sooner
10 Med Slow Later
11 Low Slow Sooner
12 Low Slow Later
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of a task), the task’s urgency is set to negative infinity. The
method uses the above definition of urgency and a heuristic
constant (urgency cutoff) to classify task into two categories.
If a task’s urgency <urgency cutoff this indicates that the task
can be started “later”; if a task’s urgency>urgency cutoff, then
the task needs to be started “sooner.” The urgency cutoff was
determined experimentally.

Queueing Table can be summarized by the following pro-
cedure, which starts when a new task arrives and generates a
mapping event. In contrast to other heuristics, this method does
not generate a task list that includes all the mappable tasks and
initially maps only the new task to a machine. Steps (1)—(4) as-
sign the new task to a machine; steps (5)—(8) consider moving
any task that will miss its 100% deadline.

(1) For all mappable tasks, calculate the urgency.

(2) For the new task, calculate the RET.

(3) For each of the machines, compare the new task with the
tasks on that machine’s wait queue, starting from the front
of the queue (lowest rank number). If there are no tasks
with the same queueing rank as the new task, then the new
task’s position is in front of the first task with the higher
numbered queueing rank. If there are tasks with the same
queueing rank as the new task, then the new task’s position
is in front of the first task that is less urgent.

(4) Using the position on each machine wait queue found from
above, the completion time on all machines is calculated
and the new task is mapped to its minimum completion
time machine.

(5) For the first task in machine 1’s wait queue that will miss
its 100% deadline (if any), find machines where (a) the pri-
ority of the task >the highest priority of any task on that
machine, (b) moving the task to the front of that machine
wait queue does not cause any task to miss its 100% dead-
line (tasks already missing their 100% deadline are not
checked), and (c) the task can finish by its 100% deadline
on that machine.

(6) Among the machines identified above, find the machine
with the minimum completion time for the task and move
the task to the front of that machine’s wait queue. (If no
machines are found in step (5), the task is not moved.)

(7) Update the machine available times.

(8) Repeat steps (5)—(7) until all machines are checked (the
order in which the machines are checked is from machine
1 to machine M).

As indicated in step (8), the search of tasks missing their
100% deadline is done on all machines. This is because there
may be tasks in machine wait queues other than the one the
new task is mapped to that miss their 100% deadline. At any
mapping event, at most one task from each machine is allowed
to be moved to limit the heuristic execution time.

4.6. Relative Cost

The Relative Cost heuristic loosely builds on the sufferage
idea in [25] and the relative cost idea in [37] to map tasks. The
relative cost (RC) value calculated for this heuristic is similar

to the one in [37]. However, the Relative Cost heuristic in [37]
uses RC as the fitness value for a Min—Min type heuristic.

For each mappable task considered, the RC is calculated by
computing the minimum completion time of that task over all
machines divided by the average completion time of that task
on all machines. When the RC is high, the minimum comple-
tion time is similar to the average and most of the completion
times on all machines are similar. When the RC is low, the
minimum completion time is very different from the average.
Assume tasks a and b prefer the same machine (best machine)
for execution. Task a is considered to suffer more than task b,
when there is a larger difference between the completion times
of the best and the second best machines for task a than for task
b. The RC is an approximation of this difference. If a task’s RC
is high then there is a low probability that the task will suffer
more than a task with a low RC.

The RC method can be summarized by the following pro-
cedure, which starts when a new task arrives and generates a
mapping event. When the mapping event begins, it is assumed
that none of the mappable tasks are mapped, i.e., they are not
in any machine wait queue.

(1) Generate a task list that includes all the mappable tasks.

(2) For each task in the mappable task list calculate the RC.

(3) For all the tasks in the task list, calculate their worth (as
described below) and sort the tasks according to their worth
(highest first).

(4) Consider the tasks having the highest worth. Determine
the minimum completion time machines for each of these
tasks, ignoring other tasks on the mappable task list. If two
or more tasks have the same minimum completion time
machine then map the task with the lowest RC value to
its minimum completion time machine (i.e., tasks with a
unique minimum completion time machine are assigned
to that machine). Else, map all tasks to their minimum
completion time machine.

(5) Remove mapped task(s) from the mappable task list.

(6) Update the machine available times.

(7) Repeat steps (2)—(6) until all tasks are mapped.

In step (3), the deadline factor for each task is calculated
using the minimum completion time of that task over all ma-
chines found from the current mapping, the current time, and
the deadline for the tasks, ignoring other tasks in the mappable
task list. Using the deadline factor found for each task, the
worth is recalculated every time tasks are mapped. The avail-
ability status of machines selected for mapping are updated in
step (6) to calculate the completion time of all tasks on the
machines and the deadline factor.

4.7. Slack Sufferage

The Slack Sufferage heuristic also builds on the sufferage
concept in [25], as described in Section 4.6. However, rather
than using an RC value to capture the sufferage concept, this
method uses the percentage slack described below to determine
which task suffers most if it is not mapped onto its “best”
machine, where the slack is an indicator of how much the ATC
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entry can differ from the corresponding ETC entry without
violating the deadline.

The Slack Sufferage method can be summarized by the fol-
lowing procedure, which starts when a new task arrives and
generates a mapping event. When the mapping event begins, it
is assumed that none of the mappable tasks are mapped, i.e.,
they are not in any machine wait queue. In this heuristic, the
percentage slack for task i on machine j using a given deadline
d is defined as

PS(, j,d) =1— (ETC(, j)/(d — mat(j))).

(1) Generate a task list that includes all the mappable tasks.

(2) For each task in the mappable task list, for each machine
calculate the PS(i, j, d), where d is task i’s 100% dead-
line. PS(i, j, d) = —1 for a machine if the task misses its
deadline on that machine.

For a given task i, if PS(Z, j, d) < O for all machines
recalculate PS(i, j, d) for each machine using d = 50%
deadline
if PS(i, j, d) < O for all machines

recalculate PS(i, j, d) for each machine using

d = 25% deadline

if PS(i, j, d) < O for all machines
recalculate PS(i, j, d) for each machine using
d = end of evaluation period.

(3) For each task, determine the maximum percentage slack
machine.

(4) Sort tasks by their worth (worth is calculated using the
deadline factor associated with d).

(5) If there is more than one task with the current highest
worth, check if tasks have the same maximum percentage
slack machine (contention).

(6) If there is no contention, map all highest worth tasks. If
there is contention among the highest worth tasks, map the
most critical task (the task with the largest difference of
percentage slack between the best percentage slack and the
second best percentage slack machines).

(7) Remove mapped tasks from the task list.

(8) Update machine available times for step (2)’s calculation.

(9) Repeat steps (2)—(8) until all tasks are mapped.

4.8. Switching Algorithm

Part of the Switching Algorithm heuristic builds on the con-
cept underlying the switching algorithm in [25]. The basic idea
is to first try to map tasks onto their best machine according
to a metric. Then, when the load on the machines becomes un-
balanced, the strategy is changed to balance the load. After the
load becomes balanced then the mapping method is changed
back to the original scheme. Switching Algorithm can be sum-
marized by the following procedure, which starts when a new
task arrives and generates a mapping event. The load balance
ratio for the system in the heuristic is the ratio of the earli-
est machine available time over all machines to the latest ma-
chine available time. A high threshold and a low threshold were
determined experimentally for this ratio (high threshold>low
threshold). Initially, new tasks are mapped onto their minimum

completion time machine. Tasks are always inserted at the end
of the chosen machine wait queue and then they are moved if
necessary.

(1) Calculate the load balance ratio for the system.

(2) If the load balance ratio>high threshold, switch the method
to its minimum execution time machine to map the new
task.

If the load balance ratio<low threshold, switch the method
to map the new task to its minimum completion time ma-
chine.

If low threshold < load balance ratio < high threshold,
method to map the new task is not changed.

(3) The mappable tasks in the machine wait queue where the
new task is mapped are reordered using their priority. If
tasks have the same priority then order the tasks using their
100% deadlines (with earliest 100% deadline task coming
first).

5. Comparing the performance of dynamic mapping
heuristics to the static mapping heuristics

5.1. Overview

This research is a dynamic resource management research,
therefore the two static mapping techniques described in this
section are used to compare to the dynamic methods in Sec-
tion 4 only. These static techniques assume complete a priori
knowledge of when all tasks arrive and priority levels and dead-
lines of all tasks. Thus, these methods are not viable to solve
this mapping problem dynamically, as must be done.

5.2. Two phase simulated annealing

The SA technique is an iterative improvement process of lo-
cal search to obtain the global optimum of some given function.
The SA technique has proven to be quite effective in approx-
imating global optima and variations on the SA are used for
many different NP-hard combinatorial problems. The two phase
simulated annealing (TPSA) heuristic described here builds on
earlier SA research (e.g., [8,29]).

The TPSA technique starts with an initial temperature, a
function to decrease temperature, and an initial mapping so-
lution. In this research, the initial temperature was arbitrarily
selected to be 100,000 because the temperature had to be suf-
ficiently large at the start of the TPSA method so that the map-
ping solution does not converge quickly and fall into an early
local minimum. The temperature T was decreased at each iter-
ation using the formula, T = o x T, where « is set to 0.99. For
the initial mapping solution, a solution generated by the best
dynamic mapping heuristic for each scenario was used. The
machine assignment and the ordering of the tasks on a machine
wait queue were used to determine the start times and the fin-
ish times of the tasks. These start and finish times are used in
the calculation of the worth of each task.

At each iteration, (1) the current mapping solution is changed
to make a new mapping solution, (2) the new mapping is
compared to the current mapping, and (3) the temperature is
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lowered. If the new mapping solution has a higher evaluation
value V (from Section 2.2.3), then the new mapping is chosen
to be the current solution. When the new mapping is worse
than the current mapping, it is probabilistically chosen to be
the current mapping. The uphill probability is determined using

|valuenew —valuecyrrent |

e T , where the equation decides the probability
of going uphill. For example, if the equation = 0.2, then there
is a 20% chance that the new solution will be chosen over
the better current solution even though it is a worse solution.
The TPSA heuristic runs until it meets a certain predetermined
stopping criteria. The stopping criteria are when the temperature
goes below 10720, or when the current mapping solution is
unchanged for a predetermined number of iterations.

When generating a new mapping from the current mapping,
two methods are used. The first method randomly chooses a
task and maps it onto a randomly chosen machine and posi-
tion in the machine wait queue (mutation). The second method
randomly chooses two tasks and swaps their machine assign-
ments and queue positions in the machine wait queue (swap).
In TPSA, there are two phases. In the first phase, the mutation
method is used for the first 4000 iterations or until the solu-
tion does not change for 400 iterations. Then, in the second
phase the swap method is used until the mapping solution is not
changed for 1000 iterations or until the temperature is zero (i.e.,
10729). For each trial, the heuristic is run five times and the
mapping with the best solution is selected. The intuition behind
the TPSA method is that after some number of mutations, a
near-optimal number of tasks per machine will be found. Then
swapping two tasks will maintain the number of tasks on two
machines (or on a machine) while trying to search for a better
solution.

At every iteration, when the current solution is changed,
the machine assignment and/or the order of the tasks may be
changed. To compare the current solution and the new solution,
the new solution must be evaluated. To evaluate a solution, the
start times and the finish times of tasks must be determined.
The following method is used to determine the start and finish
times.

(1) For machine 1, move all tasks from the machine wait queue
into a task list, retaining the same ordering.

(2) One by one, the tasks are taken from this task list and
inserted to start as early as possible (e.g., at the task’s
arrival time or after another task).

(3) Determine the start and finish times of all tasks.

(4) Do for all machines.

Our research group also used a modified version of the TPSA
for a different HC environment in [22].

5.3. Genetic algorithm

The GA is based on biological evolution and is used for
searching large solution spaces. The GA method shown here is
based on [28] and [32]. The general GA starts by generating
an initial population and evaluating the population. Then while
the stopping criteria are not met, selection, crossover, mutation,
and evaluation are done in this order.

The GA implemented in this research starts with an initial
population of 100 chromosomes (possible solutions or map-
pings). One cycle of selection, crossover, mutation, and evalu-
ation is called a generation. The population size is maintained
at 100 for all generations. Each chromosome is a matrix that
has the assignment of tasks onto machines and the order of
the tasks to be considered for execution on each machine wait
queue. Among the 100 chromosomes, one chromosome is the
mapping from the best dynamic mapping solution for each sce-
nario (seeding) and the rest of the chromosomes are generated
randomly. When randomly generating the initial 99 chromo-
somes, with equal probability, a task is picked from the list of
tasks. Then, a machine is determined with equal probability
and the selected task is put at the end of the machine queue.
The process continues until all tasks are put into any of the
machines. The chromosomes are evaluated by the value func-
tion (V) shown at the end of Section 2.2.3. The starting and
stopping times of all tasks are determined using the method
discussed in Section 5.2.

In the selection phase, a rank-based roulette wheel scheme
[4] is used. This method probabilistically duplicates some chro-
mosomes while deleting others, where better solutions have a
higher probability of surviving the process and being dupli-
cated in the next generation. Elitism, the property of guaran-
teeing that the best chromosome remains in the population, is
implemented.

After the population for the next generation is determined,
the crossover operation is performed. Going through the popu-
lation once, parents are selected randomly with some probabil-
ity (determined empirically to be 90% in this research). When
two parents are determined (e.g., Fig. 1(a) and (b)), the two
parents are used for crossover. When a parent is selected, it is
used only that one time. Using a randomly chosen task, both
parents are divided into a head and a tail (Fig. 1(c) and (d)).
When determining the two children, the head of one parent,
the tail of the other parent, and the machine assignment and
the position information are used. When two tasks (one from
the head and the other from the tail) have the same machine
assignment and the same position in the machine wait queue,
the order of these tasks are randomly determined (shown in
Fig. 1(e) and (f) as two tasks in one position slot).

After the crossover is done, the mutation operation is per-
formed. Going through the population once, a chromosome is
considered for mutation with a probability of 20% (empirically
determined). For the chromosome that is selected, a random
task’s machine assignment and machine wait queue position
are randomly changed. For both crossover and mutation, ran-
dom operations select values from a uniform distribution. Fi-
nally, the chromosomes are evaluated and this completes one
generation of the GA.

The GA stops when any one of three conditions are met: (a)
1000 total generations, (b) no change in the elite chromosome
for 200 iterations, or (c) all chromosomes converge to the same
mapping. The stopping criteria that occurred most was (b) and
the second was (a). Even with an increase in the maximum total
generation allowed to 2000, there was no significant increase
(less than 1%) in the value of the best solution.
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Fig. 1. The crossover procedure starts by picking two parents: (a) parent 0 and (b) parent 1. A random task is picked (task 3) and the head and tail of the
two parents are determined in (c) and (d). The resulting two children are shown in (e) child 0 and (f) child 1.

6. Simulation setup

The simulated HC system is considered oversubscribed such
that not all tasks can finish by their 100% deadline. To model
such an environment, the arrival rates of tasks are determined
such that there are enough tasks in the system.

The system is simulated for a 250-min period. The period
from O to 10 min is the system start-up period, where the mean
task inter-arrival time is fast to populate the system (using a
Poisson distribution with a mean task inter-arrival time of 3.5 s).
The period between 10 and 250 min is the evaluation period
(i.e., the period where the heuristics’ performance is measured).
During this period the mean task inter-arrival time is 14s. In
addition, three (10 min) bursty periods are introduced randomly
during the evaluation period, where the arrival rate is increased.
These periods do not overlap with each other and have a mean
task inter-arrival time of 7s. The HC system consists of eight
machines and an average of 1276 tasks. A trial is defined as
one such simulation of the HC system.

The estimated execution times of all tasks taking heterogene-
ity into consideration are generated using the gamma distribu-
tion method described in [3]. Two different cases of ETC het-
erogeneities are used in this research, the high task and high
machine heterogeneity (high heterogeneity) case and the low
task and low machine heterogeneity (low heterogeneity) case.
For both heterogeneity cases, a task mean and coefficient of
variation (COV) are used. (The COV is defined as the standard
deviation divided by the mean.) The high heterogeneity cases
use a mean task execution time of 3 min and a COV of 0.9 (task
heterogeneity) to calculate the values for all of the elements
in a task vector (where the number of elements equal the total
number of tasks). Then using the ith element of the vector as
the mean and a COV of 0.9 (machine heterogeneity), the ETC
values for task i on all the machines are calculated. The low
heterogeneity cases use a mean task execution time of 3 min

and a COV of 0.3 for task heterogeneity and 0.3 for machine
heterogeneity.

The ATC values are generated for the purpose of determining
how well the heuristics perform when the actual task execution
times on the machines vary from the ETC values. When task
i starts executing on machine j, ATC(i, j) is used for the cal-
culation of the actual end time of that task. The calculation of
the machine available time of a machine is the actual end time
of the task that is executing plus the ETC values of tasks that
are waiting in the machine queue.

For a given ETC matrix, ATC(, j) is computed using
ETC(i, j) as the mean and a COV of 0.1. The average differ-
ence of the ETC values and ATC values is 8%. The minimum
difference is 0% and the maximum difference is 50%. Each
ETC/ATC pair corresponds to one trial.

There are two types of weightings that are assigned to high,
medium, and low priority level tasks, namely, 16, four, and
one for the heavy priority weighting and four, two, and one
for the light priority weighting. Of all the tasks that arrive,
approximately one third will be of each priority level.

The deadline of each task is calculated using the following
process. A deadline for a task is the arrival time of the task,
plus the median execution time of the task across all machines,
plus a multiplier times the median execution time of all tasks
(i.e., 2.4 min in this study). Two types of deadlines, i.e., loose
and tight, are used in the simulation. The multiplier was used to
differentiate between the two types of deadlines. For the loose
deadline, the multiplier is four, eight, and 12 for the 100%,
50%, and 25% deadlines, respectively. For the tight deadline,
the multiplier is one, two, and four for the 100%, 50%, and
25% deadlines, respectively.

A scenario is one combination of the two types of hetero-
geneity, two types of priority weighting, and two types of dead-
line. Therefore, there are a total of eight scenarios. For each of
the scenarios, 50 trials are run.
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7. Results scenarios (all combinations of high/low heterogeneity and
heavy/light priority weighting). Two static mapping heuristics

The simulation results are shown in Figs. 2 and 3 for the were run for comparison to the dynamic mapping heuristics.
two different types of deadlines. Each figure consists of four =~ The static mapping heuristics used the ATC matrices and all
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Fig. 2. The simulation results using loose deadlines for (a) high heterogeneity with the heavy priority weighting of 16, four, and one for high, medium, and low
priority levels, (b) high heterogeneity with the light priority weighting of four, two, and one for high, medium, and low priority levels, (c) low heterogeneity
with the heavy priority weighting of 16, four, and one for high, medium, and low priority levels, and (d) low heterogeneity with the light priority weighting
of four, two, and one for high, medium, and low priority levels.
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Fig. 3. The simulation results using tight deadlines for (a) high heterogeneity with the heavy priority weighting of 16, four, and one for high, medium, and low
priority levels, (b) high heterogeneity with the light priority weighting of four, two, and one for high, medium, and low priority levels, (c) low heterogeneity
with the heavy priority weighting of 16, four, and one for high, medium, and low priority levels, and (d) low heterogeneity with the light priority weighting

of four, two, and one for high, medium, and low priority levels.

the arrival information of the tasks. The averages over 50 trials
and the 95% confidence intervals [19] are shown (most of the
intervals are very close to the mean).

In Fig. 2, simulation results using loose deadlines are shown.
For the high heterogeneity cases, Max—Max performed the best
among the dynamic heuristics (86% and 83% of the UB for

heavy and light priority weightings, respectively), while Slack
Sufferage was the best in the low heterogeneity cases (84% and
81% of the UB for high and low priority weighting, respec-
tively) with the Max—Max heuristic a close second. The relative
performance among the rest of the heuristics was similar in all
the scenarios, with Max—Min performing the worst. In the high
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priority cases, there is less performance difference among all
heuristics (excluding Max—Min) than in the low priority cases.
This is because all heuristics map the high priority tasks that
can meet their 100% deadline first and if the weighting of the
high priority task is dominant, then there is less difference in
performance.

In Fig. 3, as can be expected, the performance of all heuris-
tics degraded as tasks are more likely to miss their deadlines
because of the tight deadlines. The relative performance among
the heuristics remained the same (i.e., Max—Max and Slack Suf-
ferage performed well) except for the Queueing Table method.
Queueing Table was the best in the low heterogeneity cases
and the performance of the Queueing Table heuristic degraded
the least from Figs. 2 to 3 for each of the scenarios. Queueing
Table is one of the heuristics that uses urgency to order the ex-
ecution of tasks in a machine wait queue and this accounts for
the limited degradation. Percent Best and Switching Algorithm
also use urgency to order the execution of tasks in a machine
wait queue (ties are broken using the method of earlier 100%
deadline first, see Sections 4.4 and 4.8), but they do not deter-
mine whether a task can finish before its 100% deadline or not.
In their mapping process, assuming tasks have the same pri-
ority weighting, tasks that cannot finish by their 25% deadline
may be scheduled to execute in front of a task that can meet its
100% deadline. This has a higher probability of occurring in
the scenarios that use the tight deadline than in those that use
the loose deadline, because tasks with the tight deadline have a
higher probability of violating their deadlines. However, in the
Queueing Table heuristic this will not happen because, if a task
misses its 100% deadline, then the urgency is set to negative
infinity.

It is interesting that the Max—Max and Slack Sufferage
heuristics generally perform comparably while the relative
performance of the two changes according to the heterogene-
ity. For both deadline types, in the high heterogeneity cases,
Max—Max performs better than Slack Sufferage. However, in
the low heterogeneity cases, Slack Sufferage performs better
than Max—Max.

The following is an example of a high heterogeneity case
where Max—Max will do better than Slack Sufferage. Assume
that there are two tasks (¢1 and ¢2) with the same priority and
two machines (m 1 and m?2), where the machine available times
are 5 and 155 s, respectively, and the estimated execution times
and deadlines are as shown in Table 2. Assume that when the
100% deadline is not met, the 50% deadline will be met.

Using the information from the previous paragraph, the two
tasks will miss their 100% deadline on m2. Thus, the deadline
factor will be 0.5 for both tasks on m?2 and the worth (priority
weighting multiplied by deadline factor) will be half of that
on m1. Therefore, after calculating the fitness value, Max—Max
will determine the two task/machine pairs t1/m1 and 2/m1
in the first phase and pick the 2/m1 pair first to map and then
pick the 71/m1 pair to map. Slack Sufferage will first calculate
the percentage slack for all task/machine pairs as shown in
Table 3. Because the best machine is the same for both tasks,
the task that is more critical is picked first. In this case, 1 is
picked and mapped to m 1. Another calculation of the percentage

Table 2
An example of tasks with high heterogeneity estimated execution times in
seconds

Tasks Machines 100% deadline
ml m2

t1 38 20 160

12 3 10 10

Table 3

The calculation of the percentage slack values using Table 2

Tasks Machines 100% deadline
ml m2

t1 0.75 —1 160

12 0.4 —1 10

Table 4

An example of tasks with low heterogeneity estimated execution times in
seconds

Tasks Machines 100% deadline
ml m2

t1 9 4.4 16

12 5 4 13

slack value for r2 after 71 is mapped indicates that 2 will
miss its 100% deadline on both m1 and m?2. The task ¢2 for
Slack Sufferage will violate its 100% deadline, while Max—
Max completes both tasks before their 100% deadline.

The following is a low heterogeneity case where Slack Suf-
ferage will do better than Max—Max. The ETC values of tasks
have a higher probability of being similar in low versus high
heterogeneity cases. The fitness value of a task on all machines
calculated by Max—Max may be similar. In the first phase of
Max—-Max, the task/machine pair that has the maximum fitness
value is determined. Assume that the worth is the same on all
machines (i.e., the deadline factor is the same for all machines).
In this example, selecting the machine with the higher percent-
age slack for a task may give the task a higher probability of
not violating its deadline rather than picking the most worth per
unit time machine. As an example of a low heterogeneity case
where Slack Sufferage does better than Max—Max, assume that
there are two tasks (¢1 and ¢2) with the same priority and two
machines (m1 and m2), where the machine available times are
4 and 8s, respectively, and that estimated execution times and
deadlines are as shown in Table 4. Assume that when the 100%
deadline is not met, the 50% deadline will be met.

Max—Max will determine the two task/machine pairs #1/m?2
and #2/m?2 in the first phase (the worth of both tasks on both
machines are the same) and pick the 12/m?2 pair first to map.
After mapping 12 and the machine available time is updated, if
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Table 5
The calculation of the percentage slack values using Table 4

Tasks Machines 100% deadline
ml m2

t1 0.25 0.45 16

t2 0.44 0.2 13

t1 is mapped on m1, it does not violate its 100% deadline and
if #1 is mapped on m2, it misses its 100% deadline. However,
the fitness value (calculated using the deadline factor of 0.5
for m2) is higher for 1 on m2. Therefore, ¢1 is mapped on
m?2. Slack Sufferage will first calculate the percentage slack for
all task/machine pairs as shown in Table 5. In this case, 1 is
mapped onto m2 and ¢2 is mapped onto m1. Slack Sufferage
finishes both tasks by their 100% deadline and by time 12.4.
Max—Max completes both tasks by time 16.4 and 71 misses its
100% deadline.

The reason for Max—Max generally outperforming the next
tier of heuristics (i.e., Percent Best, Queueing Table, Min—Min,
and Relative Cost) is because Max—Max uses the worth per
unit time fitness function to determine which task to map first.
Even if a task has very low worth it may still be picked to be
mapped first if its execution time is very fast. Other heuristics
use the worth or the weighted priority of the task as the main
factor for decision making.

The fastest heuristics are Queueing Table and Switching Al-
gorithm because these heuristics basically map only the new
task arriving in the system. The average execution times of a
mapping event for the heuristics Max—Max, Max—Min, Min—
Min, Percent Best, Queueing Table, Relative Cost, Slack Suf-
ferage, and Switching Algorithm are 0.11, 0.45, 0.35, 0.44,
0.0004, 0.36, 0.28, and 0.0002 s, respectively.

8. Summary

For the heterogeneous computing (HC) environment de-
scribed in this research, eight dynamic heuristics were de-
signed, developed, and simulated. Dynamically arriving tasks
with priorities and multiple deadlines were mapped using the
heuristics proposed in this research.

When loose deadlines were used, Max—Max and Slack Suf-
ferage were the two best dynamic approaches and performed
comparably. In many scenarios, these heuristics achieve over
80% of the upper bound (UB) that was derived. When tight
deadlines were used, the performance of all heuristics is de-
graded. In the high heterogeneity cases, Max—Max and Slack
Sufferage are still the heuristics of choice, however, in the low
heterogeneity cases, Queueing Table (that uses urgency in its
mapping process) performed the best. The fastest heuristics
were the Queueing Table and the Switching Algorithm.

Static heuristics (two phase simulated annealing (TPSA) and
genetic algorithm (GA)) were used to compare to the perfor-
mance of the dynamic mapping heuristics. The static heuristics
did improve the best solution found for each scenario. Both

heuristics performed comparably in most cases with the TPSA
doing slightly better in the low heterogeneity and low prior-
ity weighting scenarios (12.5% increase in performance over
the best mapping determined by the dynamic heuristics). The
execution time for GA was about 23.5 times that of TPSA.
An optimal mapping falls between the TPSA/GA solutions and
the UB.
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