DISSERTATION

STUDIES TOWARD THE TOTAL SYNTHESIS OF FUSARIN C

Submitted by
Christopher Sean Esslinger
Department of Chemistry

In partial Fulfillment of the requirements for the Degree of Doctor of Philosophy Colorado State University

Fort Collins, Colorado
Summer 1996

COLORADO STATE UNIVERSITY

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR SUPERVISION BY CHRISTOPHER SEAN ESSLINGER ENTITLED STUDIES TOWARD THE TOTAL SYNTHESIS OF FUSARIN C BE ACCEPTED AS FULFILLING IN PART THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

ABSTRACT OF DISSERTATION STUDIES TOWARD THE TOTAL SYNTHESIS OF FUSARIN C

The development of the synthesis of the heterocyclic proposed pharmacaphore of the natural mutagenic fungal metabolite fusarin C is discussed with the result of a short and elegant synthesis for this portion of the molecule. The structural integrity of this compound was studied giving rise to a method of diastereomeric preference. Studies to further the synthesis of the natural product are discussed which result in successful alkylation of the heterocycle. The alkylation procedure then produced two new non-natural products which when tested for mutagenic activity along with the heterocycle, may provide information as to the function of the penta-ene side chain of fusarin C in regard to mutagenic activity.

Christopher Sean Esslinger Department of Chemistry Colorado State University Fort Collins, Colorado 80523

Summer 1996

ACKNOWLEDGEMENTS

I would especially like to thank Professor Robert M. Williams for allowing me to perform my research independently, as this was a great learning experience. I would also like to thank him for putting up with me when I went the wrong way, both synthetically and personally.

I would also like to thank the fellow Williams' Group criminals. Not only were they open toward discussions, they helped make the lab an experience in itself.

Finally, I would like to thank my family and friends for all the advice (good or bad) and support during the ups and downs of graduate school.

DEDICATION

"Who has more fun than chemists?" - J. K. Stilli

TABLE OF CONTENTS

Page
List of Figures vii
List of Tables viii
Chapter
I. Introduction 1
The Fusarins 1
Cerulenin 5
II. Studies Toward the Total Synthesis of Fusarin C 11
Retrosynthetic Analysis of Fusarin C 11
The Proposed Synthesis of Fusarin C 13
Results and Discussion 18
Conclusion 62
III. Additional Synthetic and Biological Activity Studies 63
Efforts Toward the Synthesis of the Polyene
Chain of Fusarin C 63
Antibacterial/Antifungal Activity of Synthesized
Compounds 65
IV. Experimental Section 72
V. References 134
Appendices
A. Spectral Data of Synthesized Compounds 142
B. The Fusarins: Spectroscopic Data 199
C. Crystallographic Data for Compounds 50 and 59 205

List of Figures

Figure 1. The Natural Fusarins 2
Figure 2. Fusarin C Derivatives 3
Figure 3. Mutagenic Requirements 3
Figure 4. Synthetic Mutagenic Compounds 5
Figure 5. X-Ray Structure of Furan $\mathbf{5 0}$ 25
Figure 6. X-Ray Structure of Succinimide Derivative 59 30
Figure 7. Enantiomeric and Diastereomeric Pairs of
Epoxy-pyrrolidine-one 65 36
Figure 8. NOE Enhancements of cis and trans-Epoxy- pyrrolidine-one 65 36
Figure 9. Oxonium Decomposition 48
Figure 10. Solvent Cage Blocking Electrophilic Attack 52
Figure 11. Decahydro didemethyl fusarin C 56
Figure 12. Protected Synthetic Fusarin C Derivatives 61
Figure 13. Synthetic Fusarin C Analogues Containing
Varying Side Chains 62

List of Tables

Page
Table 1. Synthetic Efforts Toward Benzyloxybutyrolactone 36 via Lactone and Benzyl Groups 19
Table 2. Synthetic Efforts Toward Benzyloxybutyrolactone 36 via Chloroester 38 20
Table 3. Synthetic Efforts Toward Product 20 via Lactol 18 and Ketonitrile 14 22
Table 4. Trisubstituted Furan Formation 27
Table 5. Oxidation Attempts of Furan53 to Pyrroline-one 23 32
Table 6. NMR Data of Synthetic Epoxy Hemi-Amidal
Pyrrolidine-one 65 Compared to NMR
Data of Fusarin C 40
Table 7. Efforts to Synthesize X-Ray Quality Crystals of Epoxy-pyrrolidine-one 76 41
Table 8. Efforts to Synthesize Epoxy-pyrrolidine-one Phosphonate 77 via Ethyl Ketone 65 43
Table 9. Efforts to Synthesize Phosphonate Ester Furans 82 and 85 47
Table 10. Efforts to Incorporate Nitrogen in Phosphonate
Ester 86 to Form Furan 87 49
Table 11. Aldol Condensation Efforts Using Epoxy-pyrrolidine- one 65 and Hexadiene-al 51
Table 12. Dehydration Efforts 57

Chapter One

Introduction

The Fusarins

Fusarium monoliforme Sheldon is a pathogenic fungus found worldwide, infecting mostly corn but is also found on sugar cane and other crops. ${ }^{1}$ An isolate of this fungus has shown to be highly toxic, thought to induce leukoencephalomalacia in horses, ${ }^{2}$ and to be mutagenic. ${ }^{3}$ The mutagen identified as fusarin C 1 (Appendix 1) was a major component of the fungal metabolic isolates. It has been found that several other species of Fusarium also produce fusarin $\mathrm{C},{ }^{4}$ all of which are also cereal crop infecting pathogens. Fusarin C was found to be mutagenic by the Ames Salmonella mutagenicity assay, ${ }^{5}$ however the compound lacks carcinogenic activity. ${ }^{6}$

Fusarium monoliforme produces several different secondary metabolites. Of these isolates, five fusarins have been reported as being natural products: fusarin $C(1), 7,8 a$ fusarin $A(2), 8 a, b$ fusarin $D(3)^{8 a}$, recently fusarin $F(4), 9$ and fusarin $B(5){ }^{10}$ (Figure 1).

Fusarins A and D, which are structurally similar to fusarin C (Appendix B) and have an identical side chain, lack mutagenic activity. ${ }^{11}$ Thus the pharmacaphore of fusarin C is believed to arise from $\mathrm{C}-13, \mathrm{C}-14$ epoxide moiety that is not contained in fusarins A and D . Byproducts of fusarin C resulting from double bond isomerization by UV irradiation, compounds 5 (fusarin B), 6, and $\mathbf{7}$ (which contain the epoxy lactam of fusarin C), all possess

Fusarin C 1

Fusarin F 4

Fusarin A 2

Fusarin D 3

Fusarin B 5
Figure 1
mutagenic activity ${ }^{12}$ (Figure 2). This suggests that the pentaene chain is not directly responsible for mutagenic activity but may serve as a transport vehicle for passage through membranes, or acts as a possible intercalator in the minor groove binding domain to DNA delivering the reactive species proximal to the DNA bases. The carboxylic acid derivative of fusarin $C(8)$ is also mutagenic, but to a lesser extent. ${ }^{11}$ This again supports the hypothesis that the penta-ene chain is but a lipophilic portion to aid in transmembrane diffusion and the epoxy lactam is responsible for mutagenic activity.

6

7

8

Figure 2
Fusarin $F(4)$, an isomer of fusarin C (Appendix B) that presumably results from $\mathrm{C}-15$ hydroxyl attack on the C-14 epoxide carbon, lacks mutagenic activity. ${ }^{12}$ This result points to the $\mathrm{C}-13 \mathrm{C}$-14 epoxide in fusarin C as being crucial for mutagenic activity. To illustrate further the structural specificity required for activity, epi-fusarin C (compound 9) containing the C -15 hydroxyl and the C-13 C-14 epoxide cis, is inactive ${ }^{12}$. This again suggests that the C-13 C-14 epoxy C-15 trans hydroxy γ lactam (10) is responsible for the pharmacological effects (Figure 3).

Figure 3
Fusarin C, however, is not mutagenic itself. The compound must first be activated by the complete monooxygenase system to a highly reactive intermediate of undetermined structure. ${ }^{12}$ After incubation with liver fraction S-9 containing the complete monooxygenase system, fusarin C shows mutagenic activity over a wide range of concentrations when tested against
the base substitution strain Salmonella tryphimurium TA100 in the Ames mutagenic assay. Fusarin C was only weakly mutagenic against the frame shift tester strain Salmonella tryphimurium TA98 after S-9 incubation. ${ }^{13}$ In the absence of liver fraction oxidation, fusarin C lacked mutagenic activity with the tester strains in the Ames assay. From these results, it was hypothesized that a reactive intermediate forms a covalent bond with DNA. A precursor of specific structure (fusarin C) is oxidized to a more electrophilic compound of unknown structure. This intermediate is then attacked by a nucleophilic nitrogen lone pair on a DNA base giving a DNA-fusarin C adduct also of unknown structure. This adduct then interferes with normal DNA replication (Eq. 1).

The only previously reported synthetic work performed on fusarin C by Bjeldanes and Kim did not succeed in forming the heterocyclic diol of the natural product, but did produce compounds to probe the mutagenicity requirements of the heterocyclic portion of fusarin C. ${ }^{13}$ Of the compounds tested, three were substantially mutagenic against the tester strain TA100 after S-9 fraction incubation (although less mutagenic than fusarin C); two α, β epoxy lactones and the α, β-unsaturated lactone shown in Figure 4. Of the epoxy lactams tested, only weak mutagenic activity was observed. The significance of these findings as they relate to the mutagenic requirements of fusarin C is unclear. However, some speculation can be put forth; all three compounds contain a five-membered heterocycle with a 1,3-dicarbonyl moiety, reactive functionality is present in the α, β positions of the heterocycle,
and the penta-ene side chain may have a significant role in the mutagenic activity.

Synthetic mutagenic compounds
Figure 4

Since it is essential for pre-oxidation of the natural product to a more reactive form, a less obvious functionality may play a crucial role in the mechanism of mutagenesis and DNA interaction. As mentioned earlier, the unsaturated side chain may aid in bringing the reactive intermediate to the DNA via lipophilic interactions of the polyunsaturated side chain with the minor groove of DNA. The unsaturation (or other functionality) may undergo oxidation which, in conjunction with the trans hydroxy epoxide, forms the reactive intermediate. In the total synthesis of fusarin C , some of the required functionality for mutagenesis and the structural integrity of the molecule can be investigated. This may supply insight as to the nature of DNA-fusarin C interactions.

Cerulenin

A structurally related compound, cerulenin I, contains the epoxy-lactam moiety similar to that of the fusarin C . This compound exists as the open ring form in aprotic media, and as the lactam form in protic media 14, 23. Cerulenin, also a fungal metabolite (isolated from the culture filtrate of Cephalosporium caerulens), has attracted considerable attention due to the biological activity it possesses. Cerulenin is an antifungal antibiotic and has also been shown to inhibit lipid biosynthesis in E. coli by irreversibly binding β-ketoacyl
synthetase, the enzyme responsible for acylating a malonyl thioester in preparation for the chain lengthening reaction in fatty acid synthesis. The irreversible binding is thought to occur between the C-2 epoxy carbon of cerulenin and the cysteine SH of the enzyme in the active site.

Cerulenin I
Cerulenin has been the subject of several synthetic studies as the 1,4-dicarbonyl-2,3-epoxy moiety represents a significant synthetic challenge, as well as to aid in structural identification and study of the biological properties of the compound.

The first total synthesis 15 of racemic cerulenin involved an aldol condensation between the acetylenic anion and diene aldehyde followed by cis-reduction and epoxidation en route to the epoxy lactone II (Scheme A). This epoxy lactone (a common intermediate in these syntheses) was then subject to ammonolysis followed by hydroxyl oxidation to the ketone to yield racemic cerulenin I.

II

Scheme A
Shortly afterward a second racemic synthesis was published using the butenolide III as the key intermediate ${ }^{16}$. This approach was developed in order to control the stereochemistry of epoxidation to yield the epoxy lactone II, which was then carried on to cerulenin (Scheme B).

$+1$

$\frac{\mathrm{NaOCl}}{\mathrm{py}}$

III

Scheme B
A convergent synthesis of racemic cerulenin was published about the same time in which the diene chain was condensed with the epoxy anhydride IV to give, after esterification, the ester and pseudolactone V. These two products were then converted to cerulenin in a similar manner as performed previously ${ }^{17}$. This synthetic method was amendable to the synthesis of 14 C labled cerulenin starting with labled maleic anhydride (Scheme C).

Scheme C

Two stereoselective syntheses of (+)-cerulenin were then performed, both starting with D-glucose ${ }^{18,} 19$. These syntheses are similar in that chemical manipulation of the glucose ring gave the alkylated trans-hydroxy mesylate VI which, upon base treatment, yielded the epoxy-lactol VII of desired configuration (Scheme D and Scheme E). Ammonolysis of the lactol followed by oxidation to the ketone yielded chiral cerulenin I.

Scheme D

Scheme E
Further studies of cerulenin involved a chiral synthesis utilizing Sharpless' asymmetric epoxidation20 as the key step, and a stereoselective synthesis starting from D-tartaric acid (Scheme G)21. In this synthesis the C_{2} symmetric imide is alkylated with the diene side chain with subsequent tosylation of a later intermediate at the less hindered hydroxyl Ammonolysis of the hydroxy-tosyl lactone followed by epoxide formation and hydroxyl oxidation afforded chiral (+)-cerulenin I.

$R=$

(+)-cerulenin

Scheme G
One study altered the 4-keto-2,3-epoxy-amide portion of the molecule ${ }^{22}$. It was found that the $(2 R, 3 S)$ stereochemistry of the 2,3 -epoxide is crucial for biological activity. Substituting alkyl groups at the amide nitrogen retained mild activity, however, reduction of the C-4 ketone to the alcohol eliminated all activity. It was then hypothesized that the bioactive form of
cerulenin may be the hydroxy-lactam structure of the molecule, and a carbocyclic analogue replacing the nitrogen with a methylene was synthesized ${ }^{22}$. This cyclic compound VIII did exhibit biological activity, but at a much lesser extent than that of natural cerulenin.

$R=$

Recently a series of chiral cerulenin analogues have been synthesized by connecting the chiral epoxyaldehyde IX to a number of organolithium nucleophiles ${ }^{23}$ (Scheme H). In this manner a variety of cerulenin analogues containing side chains of varying lengths and degrees of saturation were synthesized to explore the contribution the side chain has on the biological activity of the molecule.

R= Variable
Scheme H

Chapter Two

Studies Toward the Total Synthesis of Fusarin C

Retrosynthetic Analysis of Fusarin C

On examination of the structure of fusarin C 1, the molecule can be seen as being comprised of two major pieces which can be joined in an aldol condensation/dehydration at the disconnection shown (Scheme 1).

The proposed pharmacophore (heterocycle 11) may be envisioned as coming from (before epoxidation) a ring opened ene-dione-amide 12. The ene-dione-amide could be synthesized using the β-keto nitrile furan derivative 13 arising from α-bromo- γ-butyrolactone and β-keto nitrile 14.

The tetraeneal ester 15 can be disconnected via organometallic transformations. The two pieces resulting from the retrosynthetic step are easily formed ene-ynes 16 and 17 from the starting alkynes propargyl alcohol and 2-butyne-1-ol.

Fusarin C 1

Scheme 1

Abstract

Proposed Synthesis of Fusarin C The actual proposed chemical steps to carry out the convergent synthesis are as follows (Scheme 2). Commercially available α-bromo- γ butyrolactone was to be converted to the hydroxy lactone ${ }^{24}$ followed by benzyl protection. Subsequent reduction of the lactone to the lactol 25 followed by methylation would provide the cyclic acetal 18. Lewis Acid mediated coupling ${ }^{26}$ of enol ether 19 and acetal 18 would afford the intermediate furan derivative 20. Hydrolysis of the nitrile to the primary amide followed by deprotection of the hydroxyl and oxidation to the ketone would give the diketo furan amide 21 which may spontaneously cyclize ${ }^{27}$ to the bicyclic furan pyrrolindine-one system 22. Treatment of this bicyclic system with base should afford the double bond with furan ring opening to give pyrroline-one diol 23. Epoxidation of the double bond will then afford the heterocyclic portion of fusarin C 11.

Proposed Synthesis of Pharmacophored 1

Scheme 2

The polyene chain synthesis was planned using existing organometallic methodology (Scheme 3). The convergent synthesis would start from propargyl alcohol on one side and 2-butyne-ol from the other side. Starting with propargyl alcohol, the hydroxyl would be protected via acid catalyzed addition of dihydropyran ${ }^{28}$ to give the tetrahydropyranyl ether 24. Hydrozirconation ${ }^{29}$ of the alkyne to the vinyl zirconate followed by halogen metal exchange would yield the E-vinyl iodide 25. Coupling of this vinyl iodide with trimethylsilyl trimethystannyl acetylene using the Stille coupling conditions ${ }^{30}$ (catalytic palladium(0)) followed by desilylation should produce the ene-yne 26.

Taking 2-butyne-ol from the other side of the chain, the alkyne, after treatment with tributyltin hydride followed by halogen metal exchange ${ }^{31}$ would
afford the Z vinyl iodide 27. Protection of the vinyl iodide 27 followed by Stille coupling ${ }^{30}$ with 1 -tributylstannyl propyne in the presence of catalytic palladium(0) would produce the ene-yne 28.

On treatment of ene-yne $\mathbf{2 8}$ with zirconocene hydrochloride followed by iodine-zirconium exchange yielding $\mathrm{E}-\mathrm{E}$ vinyliodo diene 29,29 and carbometalation of ene-yne 26 to give E-E vinyl aluminum diene $\mathbf{3 0}, 32$ the palladium catalyzed coupling ${ }^{33}$ of the two dienes should give the diether tetraene 31 in the all E configuration.

Further manipulation of both the heterocycle 11 and tetraene 31 should afford the precursors to the final coupling of the two pieces (Scheme 4). The heterocycle is to be protected as the acetonide ${ }^{34} 32$ followed by conversion to the phosphonate ${ }^{35} \mathbf{3 3}$. The silyl ether on the tetra-ene would be deprotected with subsequent oxidation ${ }^{36}$ and esterification to afford the tetra-ene methyl ester 34. Deprotection of the tetrahydropyranyl ether followed by Swern oxidation ${ }^{37}$ of the resulting primary alcohol would give the tetra-ene-al ester 15. Emmons-Wadsworth coupling ${ }^{38}$ of phosphonate 33 with aldehyde 15 followed by deprotection of the acetonide ${ }^{34}$ would yield the target compound fusarin C 1.

28

Proposed Synthesis of Tetra-ene
31
Scheme 3

11

32

33

31

1) HF
2) Swern
3) NaIO_{4}
4) $\mathrm{CH}_{2} \mathrm{~N}_{2}$

34

1) $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$
2) Swem

15

Fusarin C 1

Scheme 4

The synthetic plan is highly convergent, which aids in obtaining the target compound in the case of a low yielding reaction along the synthetic pathway. Most transformations involved in the synthesis are well established, and on examination the synthetic scheme, appears to be a reasonable plan of attack to the total synthesis of fusarin C.

Results and Discussion

As the synthetic approach to the polyene chain is fairly well established, efforts to synthesize the pharmacaphore of fusarin C (the epoxy pyrrolidineone diol 11) was first pursued. Thus, the initial target became the acetal 18.

Commercially available α-bromo- γ-butyrolactone was converted to α -hydroxy- γ-butyrolactone 35 in fair yield. ${ }^{24}$ Benzylation of the hydroxyl proved to be more difficult. Various attempts at alkylating the hydroxy anion gave only trace amounts of product 36 (Eq. 2, Table 1). Reversing the role of nucleophile and electrophile using various conditions ${ }^{39}$ (Eq. 3), also gave

only small amounts of product 36 (Table 1). As a starting point for a total synthesis, the low yields were unacceptable. At this point a different approach to acetal 18 was needed.

An alternative route to obtaining the α-benzyloxy- γ-butyrolactone 36 was designed (Eq. 4), which was equally unsuccessful in forming the product.

Table 1. Synthetic Efforts Toward α-benzyloxy- γ-butyrolactone 36 via Lactone and Benzyl Groups

$\underline{\text { X }}$	\underline{Y}	Conditions Y	Yield (\% 36)
OH	Br	KH, neat, R.T.	
OH	Br	KH, THF/DMF, R.T.	1
OH	Cl	$\mathrm{NaH}, \mathrm{THF}, \mathrm{R} . \mathrm{T}$.	--
OH	Cl	KH, neat, R.T.	--
Br	OH	$\mathrm{NaH}, \mathrm{DMSO}, \mathrm{R} . \mathrm{T}$.	--
Br	OH	$\mathrm{NaH}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{R} . \mathrm{T}$.	1
Br	OH	$\mathrm{NaH}, \mathrm{Et}_{2} \mathrm{O}$, reflux	3
Br	OH	$\mathrm{NaH}, \mathrm{KI}, \mathrm{DMF}, \Delta$	4
Br	OH	$\mathrm{Ag}_{2} \mathrm{O}$, neat, Δ	6

--- = no product observed

38

The intermediate chloroester 38 was synthesized in modest yield by esterification of the acid chloride 37 with chloroethanol. However, attempts to cyclize via intramolecular alkylation to produce the lactone 36 failed (Table 2).

Again, an alternative route to acetal 18 (or α-benzyloxy- γ-butyrolactone 36) was sought. Starting with benzyloxy acetic acid, the ethyl ester 39 was formed in good yield. Alkylation via Lewis Acid assistance then afforded the hydroxy ester 40, which suffered subsequent ring closure to give the desired α-benzyloxy- γ-butyrolactone 36 (Scheme 5). Reduction of the lactone to
lactol 2541 followed by methanol displacement of the hydroxyl group afforded the desired acetal 18. The five step sequence produces the acetal from

Table 2. Synthetic Efforts Toward α-Benzyloxy- γ-butyrolactone 36 via Chloroethyl Ester 38

38
Conditions Yield

NaH, DMF, $0^{\circ} \mathrm{C}$	--
$\mathrm{KH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$	--
$\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$	--
$\mathrm{KH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$	--
$\mathrm{LDA}, \mathrm{THF},-78^{\circ} \mathrm{C}$	--
LDA, THF/HMPA, $-78^{\circ} \mathrm{C}$	--

--- = no product observed

Scheme 5
benzyloxyacetic acid in 9% overall yield. The β-keto nitrile 14 must now be formed in order to carry out the proposed titanium mediated coupling. Methyl propionate was treated with acetonitrile in the presence of sodium amide to give the desired compound in fair yield (Eq. 5). 40 Attempts to couple the β keto nitrile 14 to acetal 18 (Eq. 6) were met with defeat as no coupled product 20 was found using a variety of conditions (Table 3).

After this synthetic scheme proved unfruitful, an alternative route to obtain the intermediate 12 was devised. In this manner the heterocyclic pharmacophore may still be reached from compounds previously synthesized. The benzyloxy hydroxy ester 40 was protected as the silyl ether 42 and subsequently reduced to the benzyloxy siloxy aldehyde 43.25 The aldol coupled product 44 obtained from aldehyde 43 and β-keto nitrile 14 (Scheme 6) could then be advanced to the desired epoxy-pyrrolidine-one as proposed in Scheme 2. Efforts to produce the aldol product 49 unfortunately were met with failure.

The common factor with the previous coupling reaction attempts was the β-keto nitrile, possibly being too unreactive. Treating the β-keto nitrile with

Table 3. Synthetic Efforts Toward Product 20 via Lactol 18 and β ketonitrile 14

Conditions Yield
TsOH xylene reflux

TMSOTf $\mathrm{CH}_{2} \mathrm{Cl}_{2}-78^{\circ} \mathrm{C}$

1) $\mathbf{1 4}+\mathrm{TMSOTf} / \mathrm{Et}_{3} \mathrm{~N}$
2) TMSOTf
3) $41+$

4) $\mathrm{AgOTf} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0^{\circ} \mathrm{C}$
$\mathrm{TiCl}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0^{\circ} \mathrm{C}$
$\mathrm{TiCl}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N} / 0^{\circ} \mathrm{C}$
$\mathrm{TiCl}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /-78^{\circ} \mathrm{C}$
5) $14+\mathrm{TBDMSCl} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0^{\circ} \mathrm{C}$---
6) $\mathrm{TiCl}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /-78^{\circ} \mathrm{C}$

Proposed Salvage Pathway for Synthesis of Pharmacaphore 11

Scheme 6
base followed by methyl iodide did not yield the α-methyl β-keto nitrile. As a control, ethyl acetoacetate was subjected to the same methylating conditions and did yield the methylated product. The β-keto nitrile approach was then abandoned.

As the β-keto nitrile proved unreactive, a β-keto amide was then needed for a similar coupling. Diketene was treated with ammonia to give acetoacetamide 47 in excellent yield (Eq. 7). Since the β-keto amide lacks a carbon as in Scheme 2, this easily accessible compound was used as a model for reactivity and product determination in the coupling with acetal 18. The required propionyl acetamide 48 was synthesized in fair yield by reaction of methyl propionylacetate with ammonium hydroxide (Eq. 8).

As the synthesis of acetal 18 was relatively long and low yielding for a key starting material, an alternative synthesis was sought. 2,3-Dihydrofuran was treated with m-chloroperbenzoic acid in the presence of methanol to afford the hydroxy acetal 45 in excellent yield. 41 Subsequent protection of the hydroxyl as the t-butyldimethyl silyl ether ${ }^{42}$ gave the protected methoxy acetal 46 in a two step sequence in 95\% overall yield (Eq. 9).

Titanium couplings using methoxy acetals are well established. ${ }^{26}$ The acetal 46 was coupled with β-keto amide 47 via titanium tetrachloride mediation in order to give the expected adduct 49 (Eq. 10). This was not the case however; extensive structural analysis including x-ray crystallography showed that the product of the reaction was the unexpected furan $\mathbf{5 0}$ (Figure 5 and Appendix C).

(Eq. 10)

To further investigate the utility of this reaction, ethyl acetoacetate, methyl propionylacetate, and propionylacetamide 48 were coupled to siloxy acetal 46 to give the corresponding furans 51,52 , and 53 (Eq. 11). Using

hydroxy acetal 45 in the coupling reaction with the four β-keto carbonyl compounds also gave the corresponding furans but in varying yields (Table 4). It was found that the unprotected hydroxy acetal $\mathbf{4 5}$ gave better yields of

Table 4. Trisubstituted Furan Formation

B $\quad \boldsymbol{Y} \quad$ Product \quad Yield (\%)

$\mathrm{H} \quad \mathrm{CH}_{3} \quad \mathrm{NH}_{2}$

TBDMS H OEt
TBDMS $\quad \mathrm{CH}_{3} \quad \mathrm{OMe}$

TBDMS $\quad \mathrm{CH}_{3} \quad \mathrm{NH}_{2}$

TBDMS $\mathrm{H} \quad \mathrm{NH}_{2}$

trisubstituted furans using the β-keto esters, but the siloxy acetal 46 produced the trisubstituted furans in higher yields using the β-keto amides. The reason for this preference is unclear.

The proposed mechanism for the formation of the trisubstituted furans is shown in Scheme 7. The initial adduct 54 spontaneously ring opens to the ene-diol 55 (or silyl ether). On methanol quench, silyl deprotection occurs ${ }^{28 b}$ followed by ring closer via the free hydroxyl attack on the ketone to give the intermediate hemi acetal 56. Elimination of water then gives the furan 57.

The unexpected furan product appeared to be a blockade toward the target epoxy pyrrolidine-one 11. It was envisioned that prior oxidation of the hydroxy acetal 45 to the keto acetal 58 may lead to intermediate 22 on titanium coupling with propionylacetamide (Scheme 8). This compound could then be carried on to the target as proposed in Scheme 2. The keto acetal 58 was formed in fair yield by Collins oxidation ${ }^{36 \mathrm{~b}}$ of the hydroxy

Scheme 8
acetal 45 (Eq.12). The coupling reaction gave, however, the highly unexpected succinimide derivative 59 (Eq. 13); the structure of which was determined by x-ray crystallography (Figure 6 and Appendix C). This compound could be converted in no obvious manner to the target 11 and was considered to be a dead end. The mechanism of the formation of imide 59 was not investigated.

Figure 6

On examination of the structure of the furan amide 53, it was noted that this compound has the correct number of carbons to proceed with the synthesis of heterocycle 11. It is known that furans on acidic hydrolysis give 1,4-diones ${ }^{43}$ (Eq. 14) and on oxidation give ene-diones ${ }^{44}$ (Eq. 15). Using

furan 53, it was envisioned that proper oxidation to the trans ene-dione ${ }^{44 \mathrm{~b}, f}$ would be followed by amide attack on the newly formed ketone to give the pyrroline-one 23. Epoxidation can then produce the pharmacophore of fusarin C 11 (Scheme 9).

spontaneous?

Scheme 9
Several attempts to oxidize the furan to the trans ene-dione 12 (and thus the pyrroline-one 23) were performed (Table 5). Of these experiments only the singlet oxygen oxidation ${ }^{45}$ gave a potential product (Scheme 10). However, silica gel column chromatography appeared to decompose this product and positive identification of the desired pyrroline-one 23 was not accomplished. Acid hydrolysis produced no products of recognizable structure. Oxidation gave aldehyde products resulting from primary alcohol oxidation with subsequent reaction to give complex mixtures of unknown products.

The free hydroxyl of furan 53 appeared to be the cause of some problems in the oxidation reactions. It became necessary to protect this hydroxyl, and the t-butyldimethylsilyl ether protection proceeded in excellent yield (Eq. 16).

A similar reaction was then performed using meta-chloroperbenzoic acid. This oxidant is known to give cis ene-diones ${ }^{44 e}, \mathrm{~g}$ in an electrocyclic ring opening fashion (Eq. 17). In the presence of light, the cis ene-dione $\mathbf{6 2}$ formed from amido furan 61 should isomerize to the trans ene-dione 63.46 This

Table 5. Oxidation Attempts of Furan 53 to Pyrroline-one 23

Conditions
1 N HCl (DDQ)
PCC

1) TBDMSCI, Im DMF
2) $P C C$
3) ${ }^{1} \mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
4) $\mathrm{Me}_{2} \mathrm{~S}$
5) ${ }^{1} \mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
6) $\mathrm{MeOH}, \mathrm{Ph}_{3} \mathrm{P}$
7) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{py}$
8) ${ }^{1 \mathrm{O}_{2}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
9) $\mathrm{Ph}_{3} \mathrm{P}$
$\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOCl}, \mathrm{MeOH}$
10) $\mathrm{Br}_{2} / \mathrm{MeOh}, \mathrm{Et}_{2} \mathrm{O},-35^{\circ} \mathrm{C}$
11) H^{+}
12) $A c_{2} O, p y$
13) H^{+}(DDQ)

CAN, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}$
mCPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

* $=$ product observed in crude, decomposition on purification
--- = no product observed
should then ring close to give the pyrroline-one 64 (Eq. 18). Using one equivalent of peracid gave a reaction, but again the pyrroline-one product could not be isolated. Surprisingly, using two equivalents of peracid, the initially formed pyrroline-one is epoxidized to give in one step from silyl protected hydroxy amido furan 61 the epoxy pyrrolidine-one 65 in fair yield (Eq. 19). This result supports the high reactivity of the initial pyrroline-one adduct 64; since m-chloroperbenzoic acid is an electrophilic reagent and should not epoxidize the highly electron deficient double bond.

12

Scheme 10

64

This key reaction of oxidative ring opening of the furan, isomerization of the double bond followed by ring closure, and subsequent epoxidation was further studied. The product 64 was formed consistently in 21% yield after 30 min. in the presence of light. No desired product was found with similar conditions excluding light, supporting the need for light induced isomerization of the double bond. On longer reaction time of 24 h the yield increased to 60%. Crude proton NMR of the 30 min . reaction showed a considerable amount of compound resembling furan 61, but the vinyl peak moved downfield to $\delta 7.0$ from $\delta 6.1$. This could be the intermediate pyrroline-one 64 . These results suggest the oxidation of the furan to the ene-dione 62 with subsequent isomerization of the double bond being relatively fast, while the epoxidation of the pyrroline-one is slow. It is unknown whether ring closure occurs before epoxidation or after, but the ring closure itself is interesting.

Amides do not usually act as nucleophiles because of the nitrogen lone pair being utilized in carbonyl resonance. The β-ketone may play a crucial role in increasing the nucleophilicity of the amide lone pair. The ene-dione amide 63 may undergo tautomerization to the ene-dione imine-ol 66 . This imine-ol can form a six membered ring via hydrogen bonding to stabilize this imine form. The lone pair on the nitrogen imine is no longer in resonance leaving it free to participate in nucleophilic attack on the carbonyl giving the pyrroline-imine 67. Tautomerization to the pyrroline-one 68 followed by epoxidation (or epoxidation occurring at a previous point) would give the desired epoxy hemi-amidal pyrrolidine-one 65 (Scheme 11). The deoxo eneone amide was not applied to the reaction in order to test this hypothesis.

Scheme 11
The reaction gives all four possible diastereomers of $\mathbf{6 5}$. Of these, two pairs of enantiomers are present to produce two sets of diastereomers (Figure 7), one pair with the epoxide and hydroxyl moieties trans, and one pair with these two moieties cis. The diastereomers produced were separable by chromatography in a two to one ratio. NOE data gave, using the methine
proton and hydroxyl proton, 4% enhancement on the major diastereomer versus a $.01 \%$ enhancement on the minor diastereomer (Figure 8).

Figure 7

65 A

$65 B$

Figure 8
Further studies of the epoxy hemi-amido pyrrolidine-one ethyl ketone product were performed to investigate the structure and structural integrity of the highly functionalized heterocycle. On treatment of the major diastereomer, diastereomer 65a, (where the epoxide and hydroxyl moieties are trans) with acid followed by resilylation gave almost exclusively the minor diastereomer 65b, in which the epoxide and hydroxyl moieties are cis (Eq. 20). Alternatively, treatment of the cis diastereomer 65b with aqueous carbonate gave the trans diastereomer 65a (Eq. 21).

These results (along with the fact that the diastereomers are separable) suggest that the equilibrium between the two cis and trans forms of heterocycle 65 (Eq. 22) is extremely slow at ambient non-aqueous

conditions. This stability may arise from hydrogen bonding of the hemi-amidal hydroxyl hydrogen to the hydroxyethyl (or siloxyethyl) oxygen. However, the epimerization at the hemi-amidal carbon in aqueous media is facile, resulting in an equilibrium mixture of the two diasteriomers. It is interesting to note that the differing conditions above result in two different compounds that are involved in the equilibria. The acidic conditions cleave the silyl group to give the diol, which then equilibrates to the more stable cis diastereomer. On the other hand, the silyl ether undergoes equilibration to afford the more stable trans diastereomer when exposed to aqueous media. In contrast to the more stable cis diol, the natural diol fusarin C , containing the pentaene side chain, is observed in the trans configuration. This would suggest a favorable
interaction between the side chain and the heterocycle to result in a more stable trans isomer of the natural product.

It is also very likely that this equilibrium between the cis and trans forms of the epoxy hemi-amidal is pH sensitive. This pH sensitivity becomes more clear on examining a feasible mechanism for the epimerization of the hemi-amidal carbon in both acidic media and basic media. In acidic media, the hydroxy pyrrolidine-one 65 loses water to give the imidate 69. On rehydration, the epoxide oxygen assists the delivery through hydrogen bonding and possible general base catalysis to give the cis diastereomer 65b via the intermediate 70 (Scheme 12). Basic media, however, would first give the keto-amide 72. Ring closure would then proceed via attack on the carbonyl face to give the electronically less sterically congested intermediate 74. The negative charge on the resulting hydroxyl would exert less electronic repulsion on the epoxide oxygen lone pairs in the trans intermediate 74 than in the cis intermediate 73 (Scheme 13).

Scheme 12

Scheme 13

Extensive NMR studies were performed on the product epoxy hemiamidal pyrrolidine-one ethyl ketone 65 . Two-dimensional proton and twodimensional proton-carbon spectra, along with proton decoupling, coupled carbon, and DEPT experiments gave data that match well with the structure assigned to 65, the t-butyldimethylsilyl ether of the heterocyclic pharmacophore of fusarin C (Table 6 and Appendix B).

Table 6. NMR Data of Synthetic Epoxy Hemi-Amidal Ethyl-Keto pyrrolidine-one 65 Compared to NMR Data of Fusarin C

Carbon atom	8C/ppm	$\left.x^{13} \mathrm{CH}\right) / \mathrm{Hz}$	¢H/ppm	$J(\mathrm{HH}) / \mathrm{Hz}$	Lit	8 C/ppm	$\left.f^{13} \mathrm{CH}\right) / \mathrm{Hz}$	8H/ppm	$\chi(\mathrm{HH}) / \mathrm{Hz}$
17	168.47Sd	-	-	-		170.27 S	-	--	--
13	60.70Sd	-	-	-		62.17Sd	-	\cdots	--
14	65.56 Dd	199.9	4.071 d	2.5		64.15Dd	197.1	4.061 d	2.1
15	84.65 Sm	-	-	-		85.92 S	-	\cdots	--
18	36.27Ts	127.8	2.042ddd	14.5, 5.0, 4.0		36.27 T	128.5	2.113 ddd	14.6, 8.3, 4.1
			1.945 ddd	$14.5,6.0,4.5$				2.059ddd	$14.6,6.0,3.7$
19	59.01 Ts	143.5	3.985 ddd	11.5, 6.0, 4.0		58.77Tt	144.0	4.050 ddd	11.1, 8.3, 3.7
			3.891ddd	11.5, 5.0, 4.5				3.935ddd	11.1, 6.0, 4.1
12	201.32Sd	-	-	-		190.17Sm	--	---	--
11	32.90 Td	126.0	2.576q	7.2		133.90S	-	\cdots	--
24	6.66Qd	124.5	1.035t	7.2		11.55Qd	128.6	1.981 d	1.3

The product 65 gave a crystalline solid, but not of x-ray quality (even after varying several recrystallization solvents and techniques). To obtain a crystal of x -ray quality, it was thought that varying the protecting group on the hydroxyethyl oxygen should be a convenient handle to prepare a crystalline solid of x -ray quality. In order to carry out this substitution to obtain the desired heterocyclic epoxide moiety, it was necessary to functionalize the hydroxy furan 53 with the desired protecting group with subsequent oxidation. Several different groups were attached to the furan followed by oxidation of the furan 75 to the epoxy hemi-amidal pyrrolidine-one ethyl ketone 76 (Eq. 23). The yields of the two transformations varied as shown in Table 7. Of the product epoxy heterocycles synthesized, none produced x -ray quality crystals.

As the synthesis of the heterocyclic portion of fusarin C was completed in the five step sequence in 47% overall yield from dihydrofuran (summarized
in Scheme 14), and the structure well established via spectroscopic techniques, the synthesis of fusarin C was continued.

The next step in the synthesis was to functionalize the methylene of the ethyl ketone moiety of the heterocycle. The plan from this point was to convert the heterocycle 65 to the phosphonate ester 77. The phosphonate ester could then be coupled via the Wadsworth-Emmons ${ }^{38,54}$ reaction with the tetra-ene aldehyde ester 15 to give, on deprotection, fusarin C (Scheme 15).

An extensive variety of conditions were used to synthesize the

Table 7. Efforts to Synthesize X-Ray Quality Crystals of Epoxy-PyrrolidineOne 76

B

B
 > | | Yield | Yield |
| :--- | :---: | :---: |
| Conditions | $(\% 75)$ | $(\% 76)$ |
 \section*{Conditions
 \section*{Conditions

 Yield Yield

 Yield Yield

 (\%75) (\%76)}

 (\%75) (\%76)}

75 A

$\mathrm{R}-\mathrm{Cl} /$ py $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad 15$ 20
$75 B$

R-Cl/py
40
37
$75 C$

R-Cl, Im, DMF
50
30

Fusarin C 1

Table 8. Efforts to Synthesize Epoxy-pyrrolidine-one Phosphonate 77 via Ethyl Ketone 65

Conditions

1) $\mathrm{NBS} / \mathrm{CCl}_{4}$ / reflux
2) $(\mathrm{EtO})_{3} \mathrm{P} / \mathrm{THF} / \mathrm{R} . \mathrm{T}$.
3) $\mathrm{NBS} / \mathrm{CCl}_{4} /$ reflux
4) $(\mathrm{EtO})_{3} P$ (neut) / R.T.
5) $\mathrm{NBS} / \mathrm{CCl}_{4} /$ reflux
6) $(\mathrm{EtO})_{3} \mathrm{P}$
7) $\mathrm{NaOH} / \mathrm{Br}_{2} / \mathrm{MeOH}$
8) $(\mathrm{EtO})_{3} \mathrm{P} / \mathrm{THF} /$ reflux
9) $\mathrm{NaOH} / \mathrm{I}_{2} / \mathrm{MeOH}$
10) $(\mathrm{EtO})_{3} \mathrm{P}$ (neut) $/ \Delta$
$\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} /$ tol $/ 0^{\circ} \mathrm{C} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
$\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} /-78^{\circ} \mathrm{C} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
$\mathrm{Li}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} /-78^{\circ} \mathrm{C}--40^{\circ} \mathrm{C} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
$\mathrm{K}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} / 0^{\circ} \mathrm{C} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
11) $\mathrm{TMSCI} / \mathrm{Et}_{2} \mathrm{~N} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$
12) $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
13) $\mathrm{I}_{2} / \mathrm{NaOH} / \mathrm{MeOH}$
14) $\mathrm{P}(\mathrm{OEt})_{3} / \mathrm{THF} / \mathrm{R} . \mathrm{T}$.
$\mathrm{NaH} / \mathrm{THF} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
halogenation of the α-ketone position followed by the Arbuzov reaction using triethyl phosphite would afford the desired phosphonate 77 (Eq. 24). Many problems existed in this approach. The amide nitrogen could be halogenated causing subsequent difficulties ${ }^{47}$ (Eq. 25). In radical reactions epoxides are

(Eq. 24)

prone to undergo rearrangement to ketones ${ }^{48}$ (Eq. 26). α-Halogenated ketones are shown to undergo the Perkow reaction ${ }^{49}$ to give enol phosphates rather than the Arbuzov reaction to result in the desired phosphonate ester (Eq. 27). The sum of these possible side reactions proved adequate for a lack of success in synthesizing the phosphonate ester 77, as no desired product was observed.

A different approach from the epoxy hemi-amido pyrrolidine-one ethyl ketone was investigated to form the desired phosphonate ester 77. It was envisioned that base induced enolate formation of the ketone moiety followed by quenching of the enolate with a chlorophosphate ${ }^{35}$ should produce the desired phosphonate ester 77 (Eq. 28). Again, no product was identified (Table 8).

65

77
The desired phosphonate ester 77 was then sought via an alternative synthetic route. Conceivably, the phosphonate ester 77 can be formed from the precursor phosphonate ester furan 82 via the oxidative procedure
established (Eq. 29). The desired position for functionalization is similar to a benzylic position, 50 and may react similarly.

Various conditions were utilized in the attempt to synthesize the phosphonate ester furan 82 (Table 9). Using the amido furan as the compound for phosphonate connection resulted in no product identified. This may be due to the added reactivity of the primary amide (Eq. 30). A step further back to the ester furan 84 was then the target for phosphonate functionalization (Eq. 31). This phosphonate ester furan 85 would then be

converted to the amide 82 and oxidized. Again, no desired product 85 was isolated (Table 9).

Table 9. Efforts to Synthesize Phosphonate Ester Furans 82 and 85

\underline{Y}	R	Conditions
NH_{2}	TBDMS	$\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} /-78^{\circ} \mathrm{C} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
NH_{2}	TBDMS	tBuLi $/ \mathrm{THF} /-78^{\circ} \mathrm{C} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
NH_{2}	TBDMS	$\mathrm{NBS} / \mathrm{CCl}_{4} /$ reflux (Arbuzov)
NH_{2}	Ac	$\mathrm{NBS} / \mathrm{CCl}_{4} /$ reflux (Arbuzov)
OMe	H	$\mathrm{NBS} / \mathrm{CCl}_{4} /$ reflux (Arbuzov)
OMe	Ac	$\mathrm{NBS} / \mathrm{CCl}_{4} /$ reflux (Arbuzov)
OMe	TBDMS	$\mathrm{nBuLi} / \mathrm{THF} /-78^{\circ} \mathrm{C} /(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$
OMe	TBDMS	$\mathrm{nBuLi} / \mathrm{THF} /$ R.T. $/(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{Cl}$

Another step back along the proposed synthetic pathway was taken, to the β-keto amido and β-keto ester, at which point the compound will be functionalized as the phosphonate ester. The γ-phosphonate β-keto ester (or amide) would then be coupled to the acetal to give the corresponding furans (Eq. 32). The γ-phosphonate β-keto ester 86 was formed in two steps via bromination at the γ position ${ }^{51}$ followed by a successful Arbuzov reaction ${ }^{52}$ using triethyl phosphite in acidic media (Eq. 33).

Conversion of the γ-phosphonate β-keto ester 86 to neither the furan 88 nor the amide 89 were successful (Eq. 34, Table 10). It is believed that the

titanium enolate of the phosphonate 90 either does not form or is not nucleophilic enough (a result of enolate delocalization) to attack the oxonium before oxonium decomposition (Figure 9), and no furan 88 is formed from the initial adduct. Various degrees of phosphoramide 91 may have been formed on treatment with ammonia which then could have reacted further (Eq. 35). From this result, the α-phosphonate ester epoxy hemi-amido pyrrolidine-one 77 approach to mediate coupling of the polyene chain was abandoned.

Figure 9

Table 10. Efforts to Incorporate Nitrogen in Phosphonate Ester 86 to Form Furan 87

91
Attention was then again directed toward the epoxy hemi-amido pyrrolidine-one 65 in an alternate approach to the coupling of the two pieces of fusarin C ; the aldol condensation. 53 Since efforts to protect the hemi-amidal alcohol failed, it was deemed necessary (Scheme 16) to form the di- or trianion of the ketone 92 in order to obtain the enolate. A multitude of conditions were applied using hexadieneal as a model for the final coupling (Table 11). The

Scheme 16
desired triene 94 was not isolated (Eq. 36), nor was the initial hydroxyl intermediate.

The rationale for the failure of this aldol condensation approach is that a second acid-base reaction occurs between the di- or trianion and the unsaturated aldehyde. This would create the enolate of the aldehyde 95

Table 11. Aldol Condensation Efforts Using Epoxy-pyrrolidine-one 65 and Hexadiene-al

Conditions

$$
\begin{aligned}
& \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} / 0^{\circ} \mathrm{C} \\
& \text { KN(SiMe3) } / \text { THF } / 0^{\circ} \mathrm{C} \\
& \mathrm{MeONa} / \mathrm{MeOH} / 0^{\circ} \mathrm{C} / \mathrm{CeCl}_{3} \\
& \mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} / \mathrm{O}^{\circ} \mathrm{C} / \mathrm{ZnCl}_{2} \\
& \text { 9BBN-OTf / } \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N} \\
& \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} /-78^{\circ} \mathrm{C} \\
& \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} / 0^{\circ} \mathrm{C} / \mathrm{ZnCl}_{2} \\
& \text { LDA / THF } /-78^{\circ} \mathrm{C} \\
& \text { LDA / THF } /-78^{\circ} \mathrm{C}-0^{\circ} \mathrm{C} / \mathrm{ZnCl}_{2} \\
& \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} /-78^{\circ} \mathrm{C}-0^{\circ} \mathrm{C} / \mathrm{ZnCl}_{2} \\
& \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF}-\mathrm{HMPA} / 0^{\circ} \mathrm{C} / \mathrm{CeCl}_{3} \\
& \text { tol / TsOH / R.T. } \\
& \text { tBuOK / THF/R.T. } \\
& \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} /-78^{\circ} \mathrm{C} / \mathrm{TiCl}_{4} \\
& \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{DMF} /-23^{\circ} \mathrm{C} \\
& \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} / \text { tol } / 0^{\circ} \mathrm{C}
\end{aligned}
$$

which would not be electrophilic toward enolate 92, and thus take the aldehyde out of the sphere of the reaction (Eq. 37).

Enolate formation of the heterocycle was then studied. Using methyl iodide as the electrophile, various conditions were used to form the enolate with subsequent methylation to give the isopropyl ketone derivative 96 (Eq.
38). Some hypotheses resulted from this study. One is that it appears that the trianion is indeed formed as the reaction shows considerable rate increase

with three equivalents of base. Another hypothesis is that in ethereal solvents, especially using lithium bases, a solvent cage is formed around the trianion, blocking attack of electrophiles (Figure 10). This was manifested in a slow

Figure 10
reaction rate in diethyl ether or tetrahydrofuran versus other solvents such as toluene (a weak coordinating solvent) or dimethyl formamide (a solvent which separates charge to aid in "naked"55 enolate formation). An observation from these experiments was the relatively high temperatures required to generate
reactive enolate 92. Quantitative recovery of the epoxy ketone 65 occurred at low $\left(-78^{\circ} \mathrm{C}\right)$ temperature, while at intermediate temperature $\left(-23^{\circ} \mathrm{C}\right)$ reaction occurred slowly and at high temperature $\left(0^{\circ} \mathrm{C}\right)$ reaction occurred faster. At higher temperatures $\left(>0^{\circ} \mathrm{C}\right)$ decomposition of the trianion became a major competing reaction.

To help support the methylated structure 96 from the enolate alkylation the compound was synthesized via an alternative route (Scheme 17).

Scheme 17
Coupling of the β-keto ester 97 with ketal 45 gave the isopropyl furan ester 98. Conversion of this ester to the amide 99, followed by hydroxyl protection and subsequent oxidation gave the corresponding isopropyl keto epoxy hemiamidal pyrrolidine-one 101 in low yield. Interestingly, the major product of the oxidation reaction was the ester product 102 resulting from Baeyer-Villager
oxidation ${ }^{56}$ of the ketone. The higher substitution of the α-keto position enhances the reactivity toward the Baeyer-Villager oxidation considerably, $57,53 \mathrm{~b}$ and this reaction pathway becomes a significant factor in product determination.

Compounds 96 from alkylation and 101 from furan oxidation/rearrangement should be the same compound. On examining the spectra of each (see Appendix A), it is clear they are not identical. However, the spectra are similar and these compounds could easily be another pair of diastereomers. Because of the differences in reaction conditions (and in aqueous pH on work-up), these two compounds should be the cis and trans isomers of the same structure. Extensive structural proof was not performed to determine which compound contains the hydroxyl epoxide cis. and which compound is trans.

As the α-keto position on the epoxy hemi-amido pyrrolidine-one 65 can be alkylated, an alternative approach to fusarin C was devised. The ethyl ketone moiety could be alkylated with the corresponding allylic bromo tetraene 103 followed by dehydrogenation to give the penta-ene of fusarin C (Scheme 18).

Fusarin C 1

Scheme 18

A model system beginning with readily available 2-butene was used for this study. Alkylation of the heterocycle proceeded in low yield (but exciting in the fact that product was isolated and characterized) to give the pentenyl methyl keto epoxy hemi-amidal pyrrolidine-one 106 (Eq. 39).

Extensive efforts to dehydrogenate ${ }^{58}$ the α, β-keto positions of 106 to give diene 107 (Table 12) resulted in failure (Eq. 40). Oxidation via dicyanodichloroquinone at elevated temlperatures for extended periods of
time may have produced minute quantities of desired diene 107, but the product was not fully characterized for lack of material and thus the reaction was not synthetically useful.

At this point it appeared that fusarin C was an unattainable target in the time available, and an alternative target was sought: decahydrodidemethyl fusarin C 108 (Figure 11). Upon completion of the synthesis of the saturated analogue of fusarin C, mutagenicity testing should reveal some

108

Figure 11

Table 12. Dehydrogenation Efforts

Conditions

DDQ / benzene / R.T.
PhSeCl / EtOAc / R.T.
(PhSe-) ${ }_{2} / \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} /-23^{\circ} \mathrm{C} / \mathrm{HO}_{2}$
(PhSe-) $)_{2} / \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{DMF} /-23^{\circ} \mathrm{C} / \mathrm{H}_{2} \mathrm{O}_{2}$
DDQ / Pd-carbon / EtOH / R.T.
DDQ / Pd-carbon / EtOH / reflux
$\mathrm{Br}_{2} / \mathrm{THF} /-78^{\circ} \mathrm{C}-\mathrm{DBU}$
($\mathrm{PhSe}-)_{2} / \mathrm{KH} / \mathrm{DMF} / \mathrm{R}$.T.
NBS / CHCl $/$ / R.T. / hv - py
TMSOTf / $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Pd}$ (II)
DDQ/THF/HOAc/R.T.
DDQ / dioxane / reflux
DDQ / benzene / HOAc / R.T. - reflux
$\mathrm{FeCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ R.T.
$\mathrm{PdCl}_{2} / \mathrm{tBuOH} /$ cat. $\mathrm{HCl} / 80^{\circ} \mathrm{C}$
DDQ / dioxane / HOAc / reflux
SeO_{2} / silica gel / EtOH / reflux
$\mathrm{MnO}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ R.T.
$\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right) / \mathrm{Pd}(\mathrm{OAc})_{2} /$ dioxane / R.T.
nBuLi / THF / $0^{\circ} \mathrm{C} / \mathrm{DDQ}$
nBuLi / THF / $0^{\circ} \mathrm{C} / \mathrm{PhSe}$-pthalimide
$\mathrm{NBS} / \mathrm{CCl}_{4}$ / reflux-DBU
insight as to the function of the polyene chain of fusarin C . If the side chain is merely a transport vehicle, the saturated analogue should exhibit similar mutagenic characteristics to those of fusarin C . In the case of the side chain of fusarin C associating with DNA to aid in docking the heterocycle to react with DNA, the saturated analogue should exhibit a reduced mutagenic activity, as the structural rigidity of the unsaturated chain is lost in the saturated chain.

The saturated chain was synthesized in the following manner. Methyl butyrate was alkylated with 7-tert-butyldimethylsiloxy-1-iodoheptane 109 (formed from silylation of the bromo alcohol followed by halogen exchange) to give the decane methyl ester silyl ether 110. The hydroxyl was deprotected to alcohol 111, followed by bromination to give the primary bromide 112. The bromide 112, however, did not undergo alkylation with the epoxy hemi-amidal ketone 65, thus the iodide 113 was formed using the Finkelstein reaction (Scheme 19).

Although the methylation of heterocycle 65 proceeded in fair yields, the saturated chain 113 did not couple as readily. Several different attempts were performed in order to obtain characterizable amounts of the target 114 (Table 13). The successful reaction conditions to give the silylated target 114 (Eq. 41) were not found, as no product was isolated in useful yields.

Scheme 19

65
(Eq. 41)

The explanation for the lack of productive reaction is the difference in reactivity of the electrophile. Even though both methyl iodide and the allylic bromide did successfully alkylate the heterocycle using the same reaction conditions as the iododecane ester 113 (albeit in low yields), no product was observed when the aliphatic iodide was the substrate. This is a result of the difference in reactivity of the alkyl halides (and thus reaction rate). There is an
approximate 100 fold decrease in reaction rate ${ }^{59}$ from the allylic bromide to the decyl-iodo ester. As the rate of alkylation became overwhelmingly slow, decomposition of the trianion became the only observed reaction.

With this result, it became apparent that a productive coupling between the heterocyclic epoxide and an alkyl chain required an allylic halide. A model for an aliphatic side chain to represent a non-rigid functionality capable of aiding passage through membranes was then chosen. Geranyl bromide, a ten carbon unit, eight carbons long, contains the allylic halide moiety required for productive coupling. This chain should contain the rotational freedom in order to test the function of the polyene chain of fusarin C while being lipophilic enough to aid in membrane transport. The coupling proceeded in low yield using the reaction conditions previously found (Eq. 42).

65
 $\frac{\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}}{\text { tol. }}$
(Eq. 42)

With the formation of the $\mathrm{C}-12$ chain ketone 115 , this gave three silated compounds with distinctly different chain lengths containing the proposed pharmacaphore of fusarin C (Figure 12). These three compounds were then desilated to give the corresponding diols. Using tetrabutylammonium fluoride as the desilating agent, the diols were produced in modest yields. The

©

106
115

Figure 12
requirement for acetic acid addition in the cases of compounds 106 and 115 containing the alkene moieties is unclear, but it appeared that there was transfer of the silyl group to the double bond in the absence of the mild acid (Eqs. 43, 44, and 45).

(Eq. 44)

(Eq. 45)

Conclusion

This research developed a short and elegant synthesis of the proposed pharmacaphore of fusarin C (summarized in Scheme 14). The synthesis is not stereoselective but has the potential for diastereoselective outcome. Although the crucial α, β-unsaturated ketone was not formed (thus preventing the total synthesis of the natural fungal metabolite fusarin C), three distinct non-natural analogues of fusarin C (Figure 13) were produced. These compounds contain

11

116

117

Synthetic Fusarin C Analogues
Figure 13
different side chains which should give the compounds varying degrees of hydrophobicity. The mutagenicity testing of these compounds may give insight to the function of the polyene chain of fusarin C as related to biological activity.

Chapter Three

Further Studies of Fusarin C and Other Heterocycles

Efforts Toward the Synthesis of the Polyene Chain of Fusarin C

As in the case of the heterocyclic portion of fusarin C, the synthesis of polyene chain began with the synthetic plan shown in Scheme 3. Propargyl alcohol was first protected as the tetrahydropyranyl ether in excellent yield (Eq. 46). This THP-propargyl ether 118 was then converted to the E-vinyl bromide 119 by treatment with zirconocene hydrochloride followed by bromidezirconium exchange (Eq. 47).

118

The E-vinyl bromide was then treated with trimethyl silyl acetylene in the presence of palladium(II) and copper(I) to give the ene-yne 120 (Eq. 48). This forms the ene-yne of one half of the poly-ene chain.

The other half of the poly-ene chain synthesis proceeded as follows. 2-Butyne-ol was treated with tributyltin hydride followed by iodine-tin exchange (Eq. 49). The hydroxy Z-iodo olefin was then coupled to the alkynyltin to give the other ene-yne 122 (Eq. 50), using catalytic palladium coupling conditions.

Further work to couple the two ene-ynes was not done. It was feared that the resulting tetra-ene would be unstable over time, and conditions were sought to first couple a model system to the heterocyclic portion of fusarin C. As the conclusion mentioned, conditions were not found for a successful coupling to produce the required α, β-unsaturated ketone.

Antibacterial / Antifungal Activity of Synthesized Compounds

The microbial tests were carried out on agar plates on which the microbe grow. Paper disks 7 mm in diameter with compound, applied by one drop of a solution of varying concentrations, was placed on the agar on initiation of growth. Zones of inhibition (in millimeters) is a representative number of the effectiveness of the compound to act as an antimicrobial agent; the larger the number the more effective the compound. The microbes are classified into gram positive bacteria $\left(\mathrm{G}^{+}\right)$, gram negative bacteria (G^{-}), and yeast representing fungi. My thanks to Rene Gallegos for performing these tests.

	G^{+}	
$\begin{array}{l}\text { Bacillus } \\ \text { subtilus }\end{array}$	$\begin{array}{l}\text { Staphylococcus } \\ \text { aureus }\end{array}$	$\begin{array}{l}\text { Micrococcus } \\ \text { luteus }\end{array}$

Compound

pound

$$
\begin{aligned}
& 14 \mathrm{~mm} \\
& 7.5 \mathrm{~mm}
\end{aligned}
$$

G			
E. coli Klebsiella	Serratia	Pseudomonas	

Microorganisms	
	Yeast
$\begin{array}{ll}\text { Candida } & \text { Saccharomyces }\end{array}$	

Yeast		G-			
Candida albicans	Saccharomyces cerevisiae	$\begin{aligned} & \text { E. coli } \\ & 22 \end{aligned}$	Klebsiella pneumoniae	Serratia marcescens	Psoudomonas aeruginosa
-	-	8 mm	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	NT	-	NT	-	-
-	-	-	-	-	-
-	-	-	-	--	-

Compound	G ${ }^{+}$		
	Bacillus subtilus	Staphylococcus aureus	Micrococcus luteus
	$\begin{aligned} & 15 \mathrm{~mm} \\ & 9 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \bullet 17 \mathrm{~mm} \\ & \cdot 10 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 14 \mathrm{~mm} \\ & 7.5 \mathrm{~mm} \end{aligned}$
	9mm 8 mm	NT NT	-
	10 mm	NT	-
	$\begin{aligned} & 10 \mathrm{~mm} \\ & 8.5 \mathrm{~mm} \end{aligned}$	$7.5 \mathrm{~mm}$	$\begin{aligned} & 10 \mathrm{~mm} \\ & 7.5 \mathrm{~mm} \end{aligned}$

G+			Yeast		G-			
Bacillus subtilus	Staphylococcus aureus	Micrococcus luteus	Candida albicans	Saccharomyces cerevisiae	$\begin{aligned} & \text { E. coli } \\ & 22 \end{aligned}$	Klebsiella pneumoniae	Serratia marcescens	Pseudomonas aeruginosa
-	-	-	-	-	-	-	-	-
--	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	--
-	14 mm	-	-	-	-	-	-	-
--	10 mm	-	-	-	-	-	-	-
-	8 mm	-	-	-	-	-	-	-

$\underset{\text { E }}{\text { E }}$
E 9 mm

| G | |
| :---: | :--- | :--- |
| E. coli Klebsiella Serratia | |

$\begin{array}{llll}\text { E. coli } & \begin{array}{l}\text { Klebsiella } \\ 22\end{array} & \text { Serratia } & \text { Pseudomonas } \\ \text { pneumiae } & \text { marcescens } & \text { aeruginosa }\end{array}$
1
11

	Yeast
$\begin{array}{ll}\text { Candida } \\ \text { albicans }\end{array}$	$\begin{array}{l}\text { Saccharomyces } \\ \text { cerevisiae }\end{array}$

	G^{+}
Bacillus Staphylococcus \quad Micrococcus	

sn!! ! qns
14 mm

14 mm
16 mm
20 mm
12 mm

$\underset{E}{E}$	E
E	
E	

แแ゙เ
10 mm
E
E E
E E E
N
E
11
111
11
خ
11
11

11

.
1

Compound

Psoudomonas
Serratia
Klebsiella
\%
แ゙ N
Saccharomyces

Candida
Micrococcus

Staphylococcus

烒

Compound

aureus
*- reduced growth
NT - not tested
Controls
Streptomycin
$(10 \mu \mathrm{~g})$ Penicillin
$(10 \mu \mathrm{~g})$

Nystatin 100

Chapter Four

Experimental Section

General. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were obtained on the following instruments: Bruker WP-270SY 270 MHz Spectrometer or Bruker AC300P NMR Spectrometer. Chemical shifts are reported in parts per million relative to residual CHCl_{3} in CDCl_{3} at $\delta 7.24$ for ${ }^{1} \mathrm{H}$, and 77.0 for CDCl_{3} for ${ }^{13} \mathrm{C}$.

Infrared spectra were obtained on Perkin-Elmer 1600 Series FTIR.
Low resolution mass spectra were obtained on a V.G. Micromass Ltd. Model 16F Spectrometer.

High resolution mass spectra were performed by Midwest Center for Mass Spectrometry, Lincoln, Nebraska.

Elemental analyses were performed by M-H-W Laboratories, Phoenix, Arizona, and by Spang Microanalytical Laboratory, Eagle Harbor, Michigan.

Uncorrected melting points were determined in an open-ended capillary tube on a "Mel-Temp" apparatus.

Chromatography was performed using Merck silica gel grade 60, 230400 mesh, $60 \AA$, or 0.25 mm E. Merck precoated silica gel glass plates.

Reagents and solvents were of commercial grade and used as supplied with the following exceptions. Tetrahydrofuran and diethyl ether were freshly distilled from sodium benzophenone. Carbon tetrachloride was freshly distilled over calcium hydride. Dimethylformamide, benzene, and toluene were dried over $4 \AA \AA$ molecular sieves.

35
α-Hydroxy- γ-butyrolactone 35. α-Bromo- γ-butyrolactone (1.0 g , $6.1 \mathrm{mmol}, 1 \mathrm{eq})$ and potassium carbonate ($1.2 \mathrm{~g}, 8.7 \mathrm{mmol}, 1.4 \mathrm{eq}$) in water $(20 \mathrm{ml})$ was refluxed for 1 h , at which time the mixture was concentrated to half volume and acidified with 10 N hydrochloric acid to pH 5 . The mixture was taken up in ethanol and distilled to a residue. The residue was purified by bulb-to-bulb distillation to give α-hydroxy- γ-butyrolactone 35 ($0.44 \mathrm{~g}, 72 \%$) as a clear colorless oil. IR matched that reported in the literature.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}\right) \delta 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}$, $1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOD}\right) \delta 178.0,66.7,53.9,30.8$.
IR (NaCl , neat) v 3380, $1760,1000 \mathrm{~cm}^{-1}$.

2-Chloroethyl benzyloxyacetate 38. To a solution of benzyloxyacetylchloride ($200 \mathrm{mg}, 1.08 \mathrm{mmol}, 60 \mathrm{eq}$) and 2-chloroethanol (90 $\mathrm{mg}, 1.11 \mathrm{~mol}, 1.03 \mathrm{eq}$) in dry tetrahydrofuran (10 ml) at $0^{\circ} \mathrm{C}$ was added dimethylaminopyridine ($134 \mathrm{mg}, 1.10 \mathrm{mmol}, 1.02 \mathrm{eq}$). After 15 min the reaction was diluted with methylene chloride (20 ml), washed with water, saturated sodium chloride solution, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 38 ($213 \mathrm{mg}, 86 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{t}, \mathrm{J}=$ $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.9,136.8,128.4,128.0,73.2,66.8$, 64.1, 41.3.

IR (NaCl , neat) v 3064, 3032, 2951, 1760, 1605, 1955, 1269, 1190, $1128 \mathrm{~cm}^{-1}$.

39

Ethyl benzyloxyacetate 39. Benzyloxy acetic acid ($2.1 \mathrm{~g}, 12.6$ mmol) was dissolved in 1 M hydrochloric acid in ethanol (30 ml) and refluxed for 4.5 h . The crude reaction was concentrated to an oil filtered through a plug of silica gel followed by methylene chloride (50 ml) and concentrated to give $39(2.2 \mathrm{~g}, 90 \%)$ as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl (α-benzyloxy-4-hydroxy)-butanoate 40. To a solution of ethyl benzyloxyacetate 39 ($102 \mathrm{mg}, 0.53 \mathrm{mmol}, 1 \mathrm{eq}$) in tetrahydrofuran (5 ml) at $-78^{\circ} \mathrm{C}$ under argon atmosphere was added trimethyl aluminum $(0.6 \mathrm{ml}, 2 \mathrm{M}$ in hexane, $1.2 \mathrm{mmol}, 2.3 \mathrm{eq}$) and lithium bistrimethylsilyl amide ($0.6 \mathrm{ml}, 0.6$ $\mathrm{mmol}, 1.1 \mathrm{eq}$). After 15 min ethylene oxide ($470 \mathrm{mg}, 10.7 \mathrm{mmol}, 20.3 \mathrm{eq}$) in tetrahydrofuran (4 ml) was added and kept at $-18^{\circ} \mathrm{C}$ for 10 h . The reaction was quenched with saturated ammonium chloride solution, extracted with diethyl ether, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude oil was then chromatographed on a silica gel column ($3: 2$ hexane/ethyl acetate) to give 40 ($33 \mathrm{mg}, 27 \%$) as a colorless oil.

IR (NaCl , neat) v 3440, 3020, 2960, 1750, 1580, $1440 \mathrm{~cm}^{-1}$.

α-Benzyloxy- γ-butyrolactone 3 . ${ }^{6}$. To ethyl (α-benzyloxy,4hydroxy)butanoate $40(12 \mathrm{mg}, 0.05 \mathrm{mmol})$ in benzene (10 ml) was added p toluene sulfonic acid monohydrate ($2 \mathrm{mg}, 0.001 \mathrm{mmol}$) and refluxed under Dean-Stark apparatus until 3 ml reaction mixture remained. The reaction was concentrated, taken up in diethyl ether, washed with saturated sodium chloride solution, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give $36(5.5 \mathrm{mg}, 57 \%)$ as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.83$ (dd, 2 H$), 4.38,4.17$ (m, 3H), 2.45 ($\mathrm{m}, 1 \mathrm{H}$), $2.29(\mathrm{~m}, 1 \mathrm{H})$.

IR (neat, NaCl) v $1775 \mathrm{~cm}^{-1}$.

α-Benzyloxy- γ-butyrolactol 41. To dry toluene (5 ml) was added benzyloxy- γ-lactone 36 ($76 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0 \mathrm{eq}$) and chilled to $0^{\circ} \mathrm{C}$ under argon atmosphere. Diisobutylaluminum hydride $(0.5 \mathrm{ml}$ of 1 M toluene solution, $0.5 \mathrm{mmol}, 1.25 \mathrm{eq}$) was added via syringe and stirred for 20 min . The reaction was quenched with saturated ammonium chloride solution (3 ml), diluted with diethyl ether (10 ml), and washed with 1 N hydrochloric acid (5 ml). The aqueous layer was extracted with diethyl ether ($3 \times 20 \mathrm{ml}$), and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 41 ($56 \mathrm{mg}, 73 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 5.42$ (s, 1H), 4.58 (s, 2H), $4.08(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.26\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exch.).

IR (NaCl , neat) $\mathrm{v} 3400,3025,2920,1600,1452 \mathrm{~cm}^{-1}$.

1-Methoxy-2-benzyloxytetrahydrofuran 18. To the benzyloxy γ lactol 41 ($68 \mathrm{mg}, 0.353 \mathrm{mmol}$) was added 1 M hydrochloric acid in methanol (5 ml) and refluxed for 2 h . The reaction was then concentrated to give methoxy benzyloxy acetal 18 (68 mg, 93\%) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~m}, 5 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$, 4.20-3.85 (m, 3H), 3.33 (s, 3H), 2.30-1.87 (m, 2H).

1-Thiopyridyl-2-benzyloxytetrahydrofuran 41A. To benzyloxy lactol 41 ($24 \mathrm{mg}, 0.12 \mathrm{mmol}, 1 \mathrm{eq}$) and mercaptopyridine ($25 \mathrm{mg}, 0.22 \mathrm{mmol}$, 1.8 eq) was added dry benzene (10 ml) and p-toluenesulfonic acid (2 mg , 0.001 mmol). The mixture was refluxed under Dean-Stark apparatus for 8 h at which time the crude reaction was concentrated and chromatographed (3:2 hexane/ethyl acetate) to give benzyloxy thioacetal 41A (22 mg and 12 mg , 97%) and a mixture of diastereomers.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H})$, $7.02(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}$, 1H), 2.08 ($\mathrm{m}, 1 \mathrm{H}$).
$m / e\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 288(\mathrm{M}+1), 219,194,175$.

1-Cyano-2-butanone 14. To 100 ml liquid ammonia at $-78^{\circ} \mathrm{C}$ under nitrogen was added sodium metal ($4.6 \mathrm{~g}, 200 \mathrm{mmol}, 2.0 \mathrm{eq}$) and iron trichloride ($100 \mathrm{mg}, 0.60 \mathrm{mmol}, 6 \times 10^{-3} \mathrm{eq}$) followed by dry acetonitrile (10.4 $\mathrm{ml}, 200 \mathrm{mmol}, 2.0 \mathrm{eq})$ in 10.4 ml dry diethyl ether dropwise. After 5 min methyl propionate ($8.8 \mathrm{~g}, 100 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added in diethyl ether (9.5 ml) dropwise and stirred for 1 h . Diethyl ether (100 ml) was added, the ammonia was allowed to evaporate, and the reaction mixture was poured over 500 g ice. The mixture was filtered through Celite, acidified with 6 N HCl to neutrality, and extracted with diethyl ether ($2 \times 100 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give $4.6 \mathrm{~g}(50 \%)$ orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.5(\mathrm{~s}, 2 \mathrm{H}), 2.7(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.8,114.2,35.5,31.6,7.4$.
IR (NaCl , neat) v 2240, $1750 \mathrm{~cm}^{-1}$.

Ethyl α-Benzyloxy(4-tert-butyldimethylsiloxy)butyrate 42. To dry methylene chloride (20 ml) was added ethyl benzyloxy 4-hydroxy butanoate 40 ($290 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.0 \mathrm{eq}$) followed by dimethylamino pyridine ($10 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.07 \mathrm{eq}$), triethylamine ($160 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.3 \mathrm{eq}$), and t butyldimethylsilyl chloride ($2.37 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.3 \mathrm{eq}$). The mixture was stirred at room temperature for 20 h , diluted with diethyl ether (15 ml), washed with water ($1 \times 10 \mathrm{ml}$) and saturated sodium chloride solution ($1 \times 10 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give ethyl 2-benzyloxy 4-siloxy butanoate 42 ($471 \mathrm{mg},>98 \%$) as an orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.55$ (dd, 2H), 4.20 ($\mathrm{q}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 0.90 (s, 9H), 0.02 (s, 6H).

IR (NaCl , neat) v 3100, 2940, 1740, $1590 \mathrm{~cm}^{-1}$.

α-Benzyloxy-(4-tert-butyldimethylsiloxy)butyraldehyde 43.
To ethyl 2-benzyloxy-4-siloxybutanoate 42 ($429 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added dry toluene (50 ml) and chilled to $-63^{\circ} \mathrm{C}$ (Dry ice/chloroform slurry) under argon atmosphere. Diisobutylaluminum hydride (1.8 ml of 1 M toluene solution, $1.8 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added dropwise via syringe and stirred at $-63^{\circ} \mathrm{C}$ for 30 min at which time methanol (5 ml) was added followed by addition of saturated ammonium chloride solution (5 ml). The reaction was warmed to room temperature and filtered through a plug of Celite, extracted with diethyl ether, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give 2-benzyloxy 4siloxybutanal 43 (263 mg, 72\%) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.70(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 4.60$ (dd, J = 11.6, 27.8Hz, 2H), $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}$, 9H), 0.01 (s, 6H).

IR (NaCl , neat) v 3100, 2940, 2840, 1725, $1450 \mathrm{~cm}^{-1}$.

1-Methoxy-2-hydroxytetrahydrofuran 45. To dihydrofuran (2.5 g , $36.7 \mathrm{mmol}, 1.5 \mathrm{eq}$) in dry methylene chloride (60 ml) was added methanol (35 ml) and chilled to $-78^{\circ} \mathrm{C}$. A slurry of m-chloroperbenzoate acid in methylene chloride (100 ml) was added to the stirred solution and allowed to slowly warm to room temperature. At 14 h the reaction was concentrated at $50^{\circ} \mathrm{C}$ on rotovap, taken up in methylene chloride (40 ml), and chilled to $0^{\circ} \mathrm{C}$. The mixture was filtered and the solid washed with methylene chloride (20 ml) at $0^{\circ} \mathrm{C}$. The organic solution was washed with 10% sodium carbonate (40 ml), the aqueous wash saturated with sodium chloride and extracted with methylene chloride ($3 \times 40 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude oil was chromatographed (3:2 hexane/ethyl acetate) to give acetate $45(2.85 \mathrm{~g}, 95 \%)$ as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H})$, 3.83 (m, 1H), 3.55 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.21 (s, 3H), 2.09 (m, 1H), 1.72 (m, 1 H).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.8,74.9,66.2,54.2,31.9$.
IR (NaCl , neat) v 3422, 2902, 1104, $1037 \mathrm{~cm}^{-1}$.

1-Methoxy-2-tert-butyIdimethylsiloxytetrahydrofuran 46. To acetal $45(4.02 \mathrm{~g}, 34.1 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry methylene chloride (50 ml) was added tert-butyldimethylsilyl chloride ($6.13 \mathrm{~g}, 40.9 \mathrm{mmol}, 1.2 \mathrm{eq}$) followed by triethylamine ($5.16 \mathrm{~g}, 51.1 \mathrm{mmol}, 1.5 \mathrm{eq}$) and dimethylaminopyridine (20 mg , catalytic amount). The mixture was stirred for 80 h at which time water (20 ml) was added and separated. The organic layer was washed with 0.05 N hydrochloric acid (10 ml), saturated sodium bicarbonate solution (10 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude oil was chromatographed ($3: 2$ hexane/ethyl acetate) to give silyl acetal 46 ($6.90 \mathrm{~g}, \sim 100 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H})$, 3.91 (m, 1H), 3.29 (s, 3H), 2.07 (m, 1H), 1.71 (m, 1H), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 109.8, $76.6,66.7,54.4,33.3,25.8,18.1$, -4.8.

IR (NaCl , neat) v 2930, 1472, 1124, 1051, $837 \mathrm{~cm}^{-1}$.
$m / e\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 250,233(\mathrm{M}+1), 218,201$.
Elem. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Si}$: C, $56.85 ; \mathrm{H}, 10.41$. Found: C, 56.57; H, 10.52.

Acetyl acetamide 47. To a stirred solution of diketene ($50 \mathrm{mg}, 0.6$ mmol) in dry THF (5 ml) under argon atmosphere at $-78^{\circ} \mathrm{C}$ was added ammonia gas (2 I). After 2 h of stirring while warming to room temperature, the reaction was concentrated to give acetoacetamide 47 ($55 \mathrm{mg}, 95 \%$) as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 6.44 (br s, 1 H , $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.36 (s, 2H), 2.19 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.2,168.8,49.8,30.8$.
IR (NaCl , neat) v $3430,3320,1700,1615,1555,1275,1032 \mathrm{~cm}^{-1}$.
$\mathrm{m} / \mathrm{e}\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 119,102,101(\mathrm{M}+), 86$.

$47 A$

Ethyl 3-tert-butyldimethylsiloxybutyrate-2-ene 47A. To a stirred solution of ethyl acetoacetate ($1.48 \mathrm{~g}, 11.38 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 50 ml THF at $0^{\circ} \mathrm{C}$ under argon was added sodium hydride [600 mg , (50% in oil), 12.52 mmol, 1.1 eq in 15 ml dry THF. The mixture was allowed to stir for 10 min followed by the addition of tert-butyldimethylsilyl chloride ($1.85 \mathrm{~g}, 12.3 \mathrm{mmol}$, $1.1 \mathrm{eq})$ and stirred for 2 h while warming to room temperature. The mixture was filtered through Celite, concentrated, and chromatographed (2:1 hexane/ethyl acetate) to give the silyl enol ether $47 \mathrm{~A}(1.68 \mathrm{~g}, 60 \%)$ as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.20$ $(\mathrm{s}, 3 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,167.8,100.4,59.2,25.6,20.6$, 18.1, 14.5, -4.4.
m/e ($\left.\mathrm{NH}_{3} \mathrm{Cl}\right) 244\left(\mathrm{M}^{+}\right)$186, 159.

Acetyl acetamide 47. To the silyl enol ether 47A ($796 \mathrm{mg}, 3.26$ mmol) was added 0.5 ml concentrated ammonium hydroxide and stirred at room temperature for 4 days. The mixture was extracted with diethyl ether (3 x $20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and chromatographed (2:1, hexane/ethyl acetate) to give acetoacetamide 47 ($250 \mathrm{mg}, 75 \%$) as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.45$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 5.23 (br s, 1 H , $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.35 (s, 2H), 2.18 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204,169,50,30$.
IR (NaCl , neat) v 3400, 3200, 1725, 1650, 1540, $116 \mathrm{~cm}^{-1}$.

48 A

Methyl 3-tert-butyldimethylsiloxypentanoate-2-ene 48A. To methyl propionylacetate ($1.38 \mathrm{~g}, 10.61 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry THF (50 ml) at $0^{\circ} \mathrm{C}$ under argon was added sodium hydride [611 mg (50% in oil), $12.74 \mathrm{mmol}, 1.2$ eq] in THF (10 ml) and stirred for 10 min . tert-Butyldimethylsilyl chloride (1.75 $\mathrm{g}, 11.67 \mathrm{mmol}, 1.1 \mathrm{eq}$) was then added and the mixture was allowed to stir while warming to room temperature for 2.5 h . The mixture was filtered through a plug of silica gel and concentrated to give the silyl enol ether 48A (2.3 g , 88%) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.00$ (s, 1H), 3.60 (s, 3H), 2.68 ($\mathrm{q}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H})$.

Propionylacetamide 48. To the silyl enol ether 48A ($244 \mathrm{mg}, 1$ mmol) was added concentrated ammonium hydroxide (5 ml) in THF (1 ml) and stirred at room temperature for 24 h . The mixture was then concentrated and chromatographed (EtOAc) to give propionyl acetamide 48 ($86 \mathrm{mg}, 75 \%$) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 6.40 (br s, 1 H , $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.36 (s, 2H), 2.50 ($q, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.05(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.6,168.8,48.7,36.7,7.2$.
$m / e\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 133,116,115(\mathrm{M}+), 100,74$.
m.p. $64-67^{\circ} \mathrm{C}$

Elem. Anal. calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2}: \mathrm{C}, 52.16 ; \mathrm{H}, 7.88 ; \mathrm{N}, 12.17$. Found: C , 51.94; H, 7.90; N, 12.22.

48

Propionylacetamide 48. To methyl propionyl acetate ($5.0 \mathrm{~g}, 38.5$ mmol) was added methanol (10 ml) followed by concentrated ammonium hydroxide (200 ml). The mixture was covered by a septum and stirred for 4 days. The mixture was concentrated and chromatographed (ethyl acetate) to give propionyl acetamide 48 ($2.65 \mathrm{~g}, 60 \%$) as a white solid. Spectral analysis matched that reported earlier for propionyl acetamide 48.

2-Methyl-3-amido-5-(2-hydroxy)ethyl
furan
50. acetoacetamide 47 ($625 \mathrm{mg}, 6.19 \mathrm{mmol}, 1.6 \mathrm{eq}$) and silyl acetal $46(810 \mathrm{mg}$, $3.97 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 25 ml dry methylene chloride at $-78^{\circ} \mathrm{C}$ under argon was added titanium tetrachloride ($905 \mathrm{mg}, 4.76 \mathrm{mmol}, 1.2 \mathrm{eq}$) in 2.5 ml dry methylene chloride over 5 min dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h then allowed to warm to room temperature over 2 h . The reaction was quenched with 25 ml methanol, concentrated, taken up in ethyl acetate and washed with water. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed on silica gel (3:1:4, ethyl acetate/methanol/methylene chloride) to give furan 50 ($530 \mathrm{mg}, 80 \%$) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.14(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.72$ (t, J = 6.7Hz, 2H), $2.44(\mathrm{~s}, 3 \mathrm{H})$; ($\left.\mathrm{d}_{6} \mathrm{DMSO}\right) \delta 7.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 4.72 (br s, 1H).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 169,157,152,117,106,61,32,13$.
IR (KBr) v 3370, 3292, 3188, 3102, 2961, 1669, 1608, 1584, 1235, 1051 cm^{-1}.
m/e $\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 186,169(\mathrm{M}+), 151,138$.
UV (MeOH) $\lambda_{\max }$ 207, 247 nm
m.p. $167-169^{\circ} \mathrm{C}$

Elem. Anal. calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 56.86 ; \mathrm{H}, 6.56 ; \mathrm{N}, 8.28$. Found: C, 56.83; H, 6.84; N, 8.59.

Ethyl 2-methyl-5-(2-hydroxyethyl)-3-furanoate 51. To silyl acetal 46 ($500 \mathrm{mg}, 2.45 \mathrm{mmol}, 1.0 \mathrm{eq}$) and ethyl acetoacetate ($644 \mathrm{mg}, 3.19$ $\mathrm{mmol}, 1.3 \mathrm{eq}$) in 50 ml dry methylene chloride at $-78^{\circ} \mathrm{C}$ under argon was added titanium tetrachloride ($600 \mathrm{mg}, 3.19 \mathrm{mmol}, 1.3 \mathrm{eq}$) neat via syringe and stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The mixture was allowed to warm to room temperature over 2 h followed by the addition of methanol (20 ml). The mixture was concentrated, taken up in ethyl acetate and water, and separated. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and chromatographed (3:2, hexane/ethyl acetate) to give furan 51 ($243 \mathrm{mg}, 50 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ (t, J = 6.2Hz, 2H), $2.84(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.36\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exch.), 1.31 (t, J = 6.9Hz, 3H).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164,158,150,114,107,61,60,31$, 14.5, 14.

IR (NaCl , neat) v 3450, 3120, 1725, 1690, $1617 \mathrm{~cm}^{-1}$.
$m / e\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 198(\mathrm{M}+) 167,153,139,121$.
Elem. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 60.60; $\mathrm{H}, 7.12$. Found: C, 60.67; H, 7.14.

Methyl 2-ethyl-5-(2-hydroxyethyl)-3-furanoate 52. To methyl propionyl acetate ($66 \mathrm{mg}, 0.51 \mathrm{mmol}, 1 \mathrm{eq}$) and silyl acetal 46 ($120 \mathrm{mg}, 0.51$ $\mathrm{mmol}, 1 \mathrm{eq}$) in dry methylene chloride (10 ml) at $-78^{\circ} \mathrm{C}$ under argon was added titanium tetrachloride ($100 \mathrm{mg}, 0.56 \mathrm{mmol}, 1.1 \mathrm{eq}$) neat via syringe over 1 min and stirred at $-78^{\circ} \mathrm{C}$ for 45 min . The mixture was then allowed to warm to room temperature over 1 h followed by the addition of methanol (5 ml). The mixture was stirred for 30 min , concentrated, taken up in ethyl acetate and washed with water. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (3:2, hexane/ethyl acetate) to give furan 52 ($9 \mathrm{mg}, 9 \%$) as a colorless film.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (s, 3H), 2.93 ($q, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.81 (t, J = 6.7Hz, 2H), 1.94 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 1.19 (t, J = $7.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,163.3,150.7,112.8,107.1,60.7$, 51.2, 31.3, 21.1, 12.2.

IR (NaCl , neat) v 3418, 2952, 1715, 1615, 1581, $1045 \mathrm{~cm}^{-1}$.
Elem. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 60.60 ; \mathrm{H}, 7.12$. Found: $\mathrm{C}, 60.71 ; \mathrm{H}$, 7.14.

2-Ethyl-3-amido-5-(2-hydroxyethyl) furan 53. To siloxy acetal $46(8.0 \mathrm{~g}, 34 \mathrm{mmol}, 1.0 \mathrm{eq})$ and propionyl acetamide $48(4.0 \mathrm{~g}, 34 \mathrm{mmol}, 1.0$ eq) in dry methylene chloride (200 ml) at $-78^{\circ} \mathrm{C}$ under argon atmosphere was added titanium tetrachloride ($7.3 \mathrm{~g}, 41 \mathrm{mmol}, 1.2 \mathrm{eq}$) dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then allowed to warm to room temperature over 2 h. Methanol (100 ml) was added and allowed to stir at room temperature for 45 min at which time the mixture was concentrated. The residue was taken up in water (100 ml) and extracted with ethyl acetate ($4 \times 100 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed ($3: 1: 4$, ethyl acetate/methanol/methylene chloride) to give furan 53 ($5.2 \mathrm{~g}, 84 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.13$ (s, 1H), 5.45 (br s, 2H, $\mathrm{D}_{2} \mathrm{O}$ exch.), $3.86(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 1.22 (t, J=7.6Hz, 3H).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.0,157.2,147.8,111.9,102.5,56.8$, 28.4, 17.6, 9.4.

IR (NaCl, film $)$ v $3347,3200,2937,1659,1603,1581,1415,1042 \mathrm{~cm}^{-1}$. m.p. $117-118^{\circ} \mathrm{C}$

Elem. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, $59.00 ; \mathrm{H}, 7.15 ; \mathrm{N}, 7.65$. Found: C, 59.07, H, 7.08; N, 7.65.

Ethyl 2-methyl-5-(2-hydroxyethyl)-3-furanoate $\underline{51}$. To ethyl aceto acetate ($69 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0 \mathrm{eq}$) and hydroxy acetal $45(83 \mathrm{mg}, 0.70$ $\mathrm{mmol}, 1.3 \mathrm{eq}$) in 10 ml dry methylene chloride at $-78^{\circ} \mathrm{C}$ under argon was dded titanium tetrachloride ($110 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.1 \mathrm{eq}$) neat via syringe over 1 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then allowed to warm to room temperature over 1 h followed by the addition of water (5 ml). The mixture was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (3:2, hexane/ethyl acetate) to give furan 51 ($91 \mathrm{mg}, 87 \%$) as a clear colorless oil. Spectral data matched that previously reported for furan 51.

Methyl 2-ethyl-5-(2-hydroxyethyl)-3-furanoate $5 \underline{52}$. To methyl propionyl acetate ($500 \mathrm{mg}, 3.84 \mathrm{mmol}, 1.0 \mathrm{eq}$) and hydroxy acetal $45(560 \mathrm{mg}$, $4.70 \mathrm{mmol}, 1.2 \mathrm{eq}$) in 20 ml dry mthylene chloride at $-78^{\circ} \mathrm{C}$ under argon was added titanium tetrachloride ($840 \mathrm{mg}, 4.70 \mathrm{mmol}, 1.2 \mathrm{eq}$) neat via syringe over 3 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then allowed to warm to room temperature over 4 h , at which time water (10 ml) was added. The mixture was separated, the organic layer dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and
chromatographed (3:2, hexane/ethyl acetate) to give furan 52 ($575 \mathrm{mg}, 76 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (s, 3H), 2.93 ($q, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.81(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.94$ (s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 1.19 (t, J = 7.6Hz, 3H).
${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,163.3,150.7,112.8,107.1,60.7$, 51.2, 31.3, 21.1, 12.2.

IR (NaCl , neat) v 3418, 2952, 1715, 1615, 1581, $1045 \mathrm{~cm}^{-1}$.
Elem. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 60.60; $\mathrm{H}, 7.12$. Found: $\mathrm{C}, 60.71 ; \mathrm{H}$, 7.14.

1-Methoxy-2-oxo-tetrahydrofuran 58. To dry methylene chloride $(400 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added pyridine ($28.3 \mathrm{~g}, 359 \mathrm{mmol}, 6.2 \mathrm{eq}$) followed by solid chromium trioxide ($17.3 \mathrm{~g}, 173 \mathrm{mmol}, 6.0 \mathrm{eq}$) and stirred for 20 min . Hydroxy acetal 45 ($3.4 \mathrm{~g}, 28.8 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added in dry methylene chloride (50 ml) and allowed to sit with periodic shaking for 20 h . The reaction mixture was filtered through Florisil, concentrated, and chromatographed ($3: 2$ hexane/ethyl acetate on alumina) to give keto acetal 58 ($2.07 \mathrm{~g}, 60 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.53$ (s, 1H), 4.25 (m, 2H), 3.37 (s, 3H), 2.43 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.8,97.8,63.8,55.2,33.6$.
IR (NaCl , neat) v 2950, $1770,1060 \mathrm{~cm}^{-1}$.

3-Ethyl-4-oxa-1,5,6-trihydrophthalimide 59. To keto acetal 58 ($685 \mathrm{mg}, 5.90 \mathrm{mmol}, 1.0 \mathrm{eq}$) and propionyl acetamide 47 ($863 \mathrm{mg}, 7.50 \mathrm{mmol}$, 1.3 eq) in dry methylene chloride (20 ml) at $-78^{\circ} \mathrm{C}$ under argon atmosphere was added titanium tetrachloride ($1.35 \mathrm{~g}, 7.10 \mathrm{mmol}, 1.2 \mathrm{eq}$) dropwise over 3 min. The mixture was stirred for 3 h while warming to room temperature, at which time methanol (10 ml) was added and the mixture stirred for 10 min . The mixture was concentrated, taken up in water (10 ml), and extracted with methylene chloride ($4 \times 10 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (3:1:4, ethyl acetate/methanol/methylene chloride) to give the succinimide derivative 59 ($71 \mathrm{mg}, 6 \%$) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09$ (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), $4.45(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.700(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,168.6,166.8,98.8,67.3,39.4$, 24.1, 21.8, 11.4.

IR (NaCl , neat) v 3199, 2974, 1730, 1703, 1643, 1449, 1343, $1233 \mathrm{~cm}^{-1}$.
$m / e\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 199,182(\mathrm{M}+1), 157$.
m.p. $178-179^{\circ} \mathrm{C}$

Elem. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 59.66 ; \mathrm{H}, 6.12 ; \mathrm{N}, 7.73$. Found: C , 59.71; H, 5.97; N, 7.66.

61

2-Ethyl-3-amido-5-(2-tert-butyldimethylsiloxyethyl) furan 61. To furan 53 ($175 \mathrm{mg}, 1.1 \mathrm{mmol}, 1 \mathrm{eq}$) in dry dimethyl formamide (10 ml) at room temperature were added tert-butyldimethyl silyl chloride ($805 \mathrm{mg}, 5.37$ mmol, 4.5 eq) and imidazole ($584 \mathrm{mg}, 8.6 \mathrm{mmol}, 7.5 \mathrm{eq}$) as solids. The mixture was stirred at room temperature for 24 h at which time water (10 ml) was added. The mixture was extracted with diethyl ether ($4 \times 10 \mathrm{ml}$) and the combined organic extracts washed with water $(3 \times 5 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (1:1, ethyl acetate/methylene chloride) to give silyl furan 61 ($305 \mathrm{mg}, 96 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.05(\mathrm{~s}, 1 \mathrm{H}), 4.45$ (s, 2H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.81 $(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,161.1,151.3,114.3,105.3,61.3$, 31.6, 25.8, 20.9, 18.1, 12.3, -5.5.

IR (NaCl , neat) v 3348, 3197, 3107, 2929, 1655, 1609, 1580, 1255, $1104 \mathrm{~cm}^{-1}$.

3-Propionyl-3,4-epoxy-5-hydroxy-5-(2-tert-butyldimethyl-

 siloxyethyl) pyrrolidine-2-one $\mathbf{6 5}$. To silyl amido furan 61 ($860 \mathrm{mg}, 2.89$ mmol, 1.0 eq) in dry methylene chloride (100 ml) was added solid metachloroperbenzoic acid [$2.0 \mathrm{~g}(55 \%), 6.37 \mathrm{mmol}, 2.2 \mathrm{eq}]$ and irradiated with white light for 5 h . The mixture was allowed to sit at room temperature for an additional 20 h at which time 10% sodium thiosulfate (20 ml) was added followed by washing with saturated sodium bicarbonate solution ($2 \times 30 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (1:1, ethyl acetate/methylene chloride) to give a mixture of epoxy pyrrolidine-ones 65 (2:1, A/B, $570 \mathrm{mg}, 60 \%$) as a white solid.65A: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.812$ (s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 5.317 (s , $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $4.071(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.985$ (ddd, $\mathrm{J}=11.5,6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.891 (ddd, J = 11.5, 5.0, 4.5Hz, 1H), 2.576 (q, J = 7.2Hz, 2H), 2.042 (ddd, J = $14.5,5.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.945 (ddd, $\mathrm{J}=14.5,6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.035 (t, J = 7.2Hz, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.3,168.5,84.8,65.6,60.7,59.0,36.2$, 32.9, 25.8, 6.7, -5.6.

65B: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.36$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 4.79 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $4.02(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}$, $2 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~m}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4,167.9,85.0,65.2,60.4,59.4,35.8$, 33.8, 25.8, 18.0, 6.8, -5.6.

IR (NaCl, neat $) ~ v 3328,2930,1739,1697,1407,1256,1096 \mathrm{~cm}^{-1}$.
m/e $\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 330,324,312,287$.
m.p. $107-109^{\circ} \mathrm{C}$

Elem. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Si}$: C, $54.68 ; \mathrm{H}, 8.26 ; \mathrm{N}, 4.25$. Found: C, 54.77; H, 8.14; N, 4.24.

65 A

1) H^{+}
2) $\mathrm{TBDMSCI} / \mathrm{Im}$ DMF/R.T.

$65 B$

3-Propionyl-3,4-epoxy-5-hydroxy-5-(2-tert-butyldimethyl-

 siloxyethyl) pyrrolidine-2-one 65B. To epoxy-pyrrolidine-one 65A (63 $\mathrm{mg}, 0.19 \mathrm{mmol}$) in methanol (5 ml) was added concentrated hydrochloric acid (1 drop) and stirred at room temperature for 10 min . At this time solid sodium bicarbonate (250 mg) was added and the mixture extracted with ethyl acetate ($4 \times 15 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a yellow solid (35 mg). This solid was then taken up in dry dimethylformamide (5 ml) followed by the addition of solid tertbutyldimethylsilyl chloride (100 mg) and solid imidazole (100 mg) and stirred at room temperature for 48 h . To themixture was added water (5 ml) and extracted with diethyl ether ($4 \times 10 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (1:1 ethyl acetate/methylene chloride) to give epoxy-pyrrolidine-one 65B ($53 \mathrm{mg}, 85 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR and TLC characteristics match that of epoxy-pyrroldine-one 65B.

3-Propionyl-3,4-epoxy-5-hydroxy-5-(2-tert-butyldimethyl-

 siloxyethyl) pyrrolidine-2-one 65A. To epoxy-pyrrolidine-one 65B (10 $\mathrm{mg}, 0.03 \mathrm{mmol}$) in methanol (2 ml) was added 10% sodium carbonate solution (2 ml) and stirred at room temperature for 30 min at which time the mixture was extracted with ethyl acetate ($4 \times 10 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give epoxy-pyrrolidine-one 65A ($9 \mathrm{mg}, 90 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR and TLC characteristics match that of epoxy-pyrrolidine-one 65A.

2-Ethyl-3-amido-5-(2-para-nitrobenzoylethyl) furan 75A. To furan 53 ($1.44 \mathrm{~g}, 7.87 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 100 ml dry methylene chloride at room temperature was added p-nitro benzoyl chloride ($1.75 \mathrm{~g}, 9.44 \mathrm{mmol}, 1.3 \mathrm{eq}$) followed by dry pyridine (3 ml). The mixture was stirred at room temperature for 24 h at which time was added water (20 ml) and separated. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (1:1, ethyl
acetate/methylene chloride) to give p-nitro benzoate furan 75A ($400 \mathrm{mg}, 15 \%$) as a white crystalline solid.
${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 5.73\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exch.), $4.57(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,164.4,161.6,150.6,149.5$, $135.2,130.7,123.5,114.6,105.8,63.4,27.5,20.9,12.3$.

IR (NaCl, film $) ~ v 3439,3180,3106,2965,1729,1656,1611,1530$, 1281, $1125 \mathrm{~cm}^{-1}$.
m.p. $145-145.8^{\circ} \mathrm{C}$

3-Propionyl-3,4-epoxy-5-hydroxy-5-(2-para-

nitrobenzoylethyl)-pyrrolidine-2-one 76A. To p-nitro benzoyl furan 75A ($300 \mathrm{mg}, 0.9 \mathrm{mmol}, 1.0 \mathrm{eq}$) in methylene chloride (20 ml) at room temperature was added 55% m-chloroperbenzoic acid $(1.13 \mathrm{~g}, 3.6 \mathrm{mmol}, 4.0$ eq) as a solid. The mixture was stirred at room temperature under fluorescent light for 24 h at which time it was washed with 10% sodium thiosulfate solution ($1 \times 10 \mathrm{ml}$), saturated sodium bicarbonate solution ($3 \times 10 \mathrm{ml}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The methylene chloride solution was concentrated and chromatographed (1:1, ethyl acetate/methylene chloride) to afford the epoxy pyrrolidine-one 75B ($70 \mathrm{mg}, 21 \%$) as a clear colorless glass.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, 2H), 4.61 (m, 2H), 3.97 (s, 1H), 3.16 (m, 2H), $2.56(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~m}, 3 \mathrm{H})$.

2-Ethyl-3-amido-5-(2-[1'-napthoylethyl])-furan 75B. To 1naphthoyl chloride ($690 \mathrm{mg}, 3.63 \mathrm{mmol}, 1.2 \mathrm{eq}$) in dry methylene chloride (10 ml) was added amido furan 53 ($550 \mathrm{mg}, 3.03 \mathrm{mmol}, 1.0 \mathrm{eq}$) followed by dry pyrridine (2 ml) and stirred at room temperature for 24 h . To the mixture was added water (5 ml), washed with 0.1 N hydrochloric acid ($1 \times 5 \mathrm{ml}$) and saturated sodium bicarbonate solution ($1 \times 5 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (1:1, ethyl acetate/methylene chloride) to give naphthoyl furan 75B ($400 \mathrm{mg}, 40 \%$) as a light yellow glass.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.80(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, 1 H), 7.93 (d, J = 8.1Hz, 1H), 7.79 (d, J = 8.1Hz, 1H), 7.51 (m, 3H), 6.60 (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 6.24 (s, 1 H), 6.20 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 4.56 (t, J = 6.4Hz, 2H), 3.00 ($q, J=7.4 \mathrm{~Hz} ; \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.4 \mathrm{H}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,166.5,161.3,149.6,133.5,133.3$, $131.0,130.1,128.3,127.5,126.6,126.0,125.4,124.2,114.5,105.7,62.4$, 27.4, 20.7, 12.1

IR (NaCl , neat) v 3353, 3198, 3053, 2973, 1714, 1660, 1651, 1580, 1243, 1036, $782 \mathrm{~cm}^{-1}$.

3,4-Epoxy-5-hydroxy-5-(2-[1'-naphthoylethyl])-pyrrolidine-2-

one 76B. To naphthoyl furan 75B ($270 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.0 \mathrm{eq}$) in methylene chloride (20 ml) was added solid meta-chloroperbenzoic acid [600 $\mathrm{mg}(55 \%)$, $1.76 \mathrm{mmol}, 2.2 \mathrm{eq}$] and irradiated with white light for 4 h followed by sitting at room temperature for an additional 10 h . The mixture was washed with 10% sodium thiosulfate solution ($1 \times 5 \mathrm{ml}$), saturated sodium bicarbonate solution ($2 \times 10 \mathrm{ml}$), dried $\left(\mathrm{NaSO}_{4}\right)$, concentrated, and chromatographed (1:1, ethyl acetate/methylene chloride) to give naphthoyl epoxy pyrrolidine-one 76B (114 $\mathrm{mg}, 37 \%$) as a light yellow glass.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 3 \mathrm{H}), 4.63(\mathrm{~m}, 2 \mathrm{H})$, $4.26(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,168.9,167.2,133.8,133.6,131.3$, 130.2, 128.5, 127.9, 126.9, 126.4, 125.8, 124.4, 84.0, 65.7, 61.2, 60.5, 34.2, 31.6, 6.5.

2-Ethyl-3-amido-5-(2-tert-butyIdiphenylsiloxyethyl)
75C. To furan 53 ($93 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 10 ml dry dimethylformamide at room temperature were added neat tert-butyldiphenylsilyl chloride (560 mg , $2 \mathrm{mmol}, 4.0 \mathrm{eq}$) and imidazole ($200 \mathrm{mg}, 3 \mathrm{mmol}, 6.0 \mathrm{eq}$). The mixture was stirred at room temperature for 48 h at which time water (10 ml) was added. The solution was extracted with diethyl ether ($4 \times 15 \mathrm{ml}$) and the combined ethereal extracts were washed with water ($3 \times 10 \mathrm{ml}$). The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (1:1, ethyl acetate/methylene chloride) to give silyl furan 75C (105 mg, 50\%) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 6.18$ (br s, 1 H , $\mathrm{D}_{2} \mathrm{O}$ exch.), 6.06 (s, 1H), 5.70 (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 3.89 (t, J = 6.5Hz, 2H), $2.94(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}$, 9 H).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,161.0,151.2,135.5,133.5,129.6$, 127.6, 114.4, 105.3, 62.0, 31.3, 26.8, 20.9, 19.1, 12.3

IR (NaCl , neat) v 3348, 3193, 3071, 2959, 1659, 1652, 1609, 1580, $1112,702 \mathrm{~cm}^{-1}$.

3-Propionyl-3,4-epoxy-5-hydroxy-5-(2-tert-butyldiphenyl-

 siloxyethyl)-pyrrolidine-2-one 76C. To silyl furan 75C (73 mg, 0.17 mmol, 1 eq) in methylene chloride (20 ml) was added m-chloroperbenzoic acid ($215 \mathrm{mg}, 68 \mathrm{mmol}, 4 \mathrm{eq}$) and stirred under fluorescent lamp irradiation (hood light) for 24 h at room temperature. The mixture was washed with 10% sodium thiosulfate solution ($1 \times 5 \mathrm{ml}$), saturated sodium bicarbonate (3×10 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The crude mixture was concentrated and chromatographed (1:1, ethyl acetate/methylene chloride) to give epoxy pyrrolidine-one $76 \mathrm{C}(27 \mathrm{mg}, 30 \%)$ as a clear colorless oil.${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 6 \mathrm{H}), 6.78$ (br s, 1 H , $\mathrm{D}_{2} \mathrm{O}$ exch.), 5.10 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.98 ($\mathrm{m}, 3 \mathrm{H}$), 2.65 (m, 2H), 2.03 (m , 2 H), 1.13 (m, 3H), $1.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.8,168.5,135.5,130.2,128.0,127.8$, 84.8, 65.9, 61.1, 59.4, 46.2, 34.7, 26.8, 19.1, 6.8 .

1-Ethyl-2-amido-4-(2-acetylethyl)-furan 53A. To hydroxy furan $53(1.09 \mathrm{~g}, 5.94 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry methylene chloride (50 ml) was added acetic anhydride (40 ml) followed by pyrridine ($516 \mathrm{mg}, 6.53 \mathrm{mmol}, 1.1 \mathrm{eq}$) and stirred at room temperature. After 3 h the mixture was washed with water ($1 \times 10 \mathrm{ml}$), 0.25 N hydrochloric acid ($1 \times 50 \mathrm{ml}$), and saturated sodium bicarbonate solution ($2 \times 30 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed (3:1:4, ethyl acetate/methanol/methylene chloride) to give acetyl furan $53 \mathrm{~A}(1.09 \mathrm{~g}, 82 \%$) as an orange solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.42$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 6.13 (s, 1 H), 5.94 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 4.25 (t, J=6.7Hz, 2H), 2.93 ($\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.88 $(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,166.4,161.2,149.6,114.5,105.5$, 61.9, 27.3, 20.8, 20.7, 12.2.

IR (NaCl, film) v 3411, 3151, 2978, 1714, 1681, 1582, 1416, 1254, 1042 cm^{-1}.
m.p. $87^{\circ} \mathrm{C}$

Elem. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$: $\mathrm{C}, 58.66 ; \mathrm{H}, 6.11 ; \mathrm{N}, 6.22$. Found: C, 58.71 ; H, 6.76; N, 6.13 .

Methyl 2-ethyl-5-(2-acetylethyl)-3-furanoate 52A. To furan 52 $(3.4 \mathrm{~g}, 17.2 \mathrm{mmol})$ in dry methylene chloride $(10 \mathrm{ml})$ at room temperature was added acetic anhydride ($5 \mathrm{ml}, 45 \mathrm{mmol}$) followed by pyridine (1 ml) and stirred at room temperature for 2 days. Water was added to the mixture (10 ml), separated, washed with $.5 \mathrm{~N} \mathrm{HCl}(1 \times 5 \mathrm{ml})$, saturated sodium bicarbonate solution ($2 \times 10 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give acetyl furan $52 \mathrm{~A}(4.5 \mathrm{~g}, 99 \%)$ as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.30(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.78$ (s, 3H), 2.94 (q, J = 7.6Hz, 2H), $2.98(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.4, 164.0, 162.9, 149.6, 112.6, 106.8, 61.6, 50.8, 27.2, 21.7, 20.5, 11.9.

Methyl 2-ethyl-5-(2-acetylethyl)-3-furanoate 52A. To furan 52 $(2.0 \mathrm{~g}, 10.1 \mathrm{mmol})$ was added acetic anhydride ($5 \mathrm{ml}, 45 \mathrm{mmol}$) followed by phosphoric acid (4 drops) and heated to $80^{\circ} \mathrm{C}$ for 5 min . The mixture was cooled, water (5 ml) was added followed by methylene chloride (50 ml). The organic layer was washed with saturated sodium bicarbonate solution (1×15 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give acetyl furan $52 \mathrm{~A}(2.4 \mathrm{~g}, 99 \%)$ as a light yellow oil.

87

Methyl 3-oxo-4-bromo-pentanoate 87. To methyl propionyl acetate ($8.5 \mathrm{~g}, 65 \mathrm{mmol}, 1.0 \mathrm{eq}$) in chloroform (100 ml) at room temperature was added bromine ($11.5 \mathrm{~g}, 72 \mathrm{mmol}, 1.1 \mathrm{eq}$) dropwise and the mixture stirred at room temperature for 20 h . At this time a stream of air was passed through the solution for 1.5 h , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give bromo methylpropionyl acetate 87 ($13.8 \mathrm{~g}, 99 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.57$ (q, J = $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (d, J = $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.47 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2,167.4,88.9,47.1,44.9,19.6$.

Methyl 3-oxo-4-diethylphosphono-pentanoate 86. To bromo methyl propionyl acetate 87 ($900 \mathrm{mg}, 4.28 \mathrm{mmol}, 1.0 \mathrm{eq}$) in tetrahydrofuran (30 ml) was added triethyl phosphite ($711 \mathrm{mg}, 4.28 \mathrm{mmol}, 1.0 \mathrm{eq}$) followed by acetic acid (2 drops) and refluxed for 30 min . The mixture was then cooled to room temperature and stirred for 8 h at which time it was concentrated and chromatographed ($3: 2$, hexane/ethyl acetate) to give phosphonate 86 (740 $\mathrm{mg}, 65 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.05(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}$, 4 H), 3.67 (s, 3H), 3.30 (s, 2H), 1.65 (d, J=7.2Hz, 3H), 1.31 (m, 6H).
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}) $\delta 169.9,191.1,113.9,64.2,52.0,39.9$, 15.9, 10.7.

IR (NaCl , neat) v 3480, 2986, 1743, 1698, 1268, $1027 \mathrm{~cm}^{-1}$.

3-Isobutyryl-3,4-epoxy-5-hydroxy-5-(2-tert-

 butyldimethylsiloxyethy)-pyrrolidine-2-one 96. To epoxy pyrrolidineone ethyl ketone $65(235 \mathrm{mg}, 0.71 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry toluene (12 ml) at $0^{\circ} \mathrm{C}$ under argon atmosphere was added 1 M solution of sodium hexamethyldisilazide in tetrahydrofuran ($2.2 \mathrm{ml}, 2.2 \mathrm{mmol}, 3.0 \mathrm{eq}$) followed by methyl iodide neat ($450 \mathrm{mg}, 3.2 \mathrm{mmol}, 4.5$ eq). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.75 h at which time saturated ammonium chloride (10 ml) was added. The aqueous layer was separated and extracted with ethyl acetate ($3 \times 15 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude mixture was chromatographed ($3: 2$ hexane/ethyl acetate) to give the epoxy pyrrolidine-one isopropyl ketone 96 ($36 \mathrm{mg}, 15 \%$) as a light yellow oil.${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.47$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 4.51 (s, 1 H , $\mathrm{D}_{2} \mathrm{O}$ exch.), $4.03(\mathrm{~m}, 1 \mathrm{HO}, 3.91(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H})$, 2.03 (m, 2H), 1.21 (m, 3H), 0.89 (s, 9H), 0.09 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.2,168.5,84.8,65.4,60.7,59.1,36.2$, 33.1, 25.8, 18.0, 6.7, -5.6.

IR (NaCl , neat) v $3333,2930,1733,1102,1004 \mathrm{~cm}^{-1}$.

Ethyl 2-isopropyl-5-(2-hydroxyethyl)-3-furanoate 98 . To ethyl isobutyryl acetate 97 ($2.00 \mathrm{~g}, 12.6 \mathrm{mmol}, 1.0 \mathrm{eq}$) and hydroxy acetal 45 (1.50 $\mathrm{g}, 12.6 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry methylene chloride (20 ml) at $-78^{\circ} \mathrm{C}$ under argon was added titanium tetrachloride ($2.88 \mathrm{~g}, 15.2 \mathrm{mmol}, 1.2 \mathrm{eq}$) neat. The mixture was allowed to warm to room temperature over 2 h , at which time water (10 ml) was added. The organic phase was separated and washed with saturated sodium bicarbonate solution ($1 \times 10 \mathrm{ml}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated and chromatographed ($3: 2$ hexane/ethyl acetate) to give furan $98(1.88 \mathrm{~g}, 66 \%)$ as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84$ (t, J = 6.3Hz, 2H), 3.69 (heptet, J=7.0Hz, 1H), $2.83(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.11 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.22(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,164.1,150.4,112.0,107.0,60.6$, 59.9, 31.2, 27.1, 20.6, 14.2.

IR (NaCl , neat) v 3436, 3123, 2974, 1715, 1614, 1577, 1237, $1062 \mathrm{~cm}^{-1}$.
Elem. Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$: C, 63.70; $\mathrm{H}, 8.02$. Found: C, 63.31; H , 7.93.

2-Isopropyl-3-amido-5-(2-hydroxyethyl)-furan $9 \underline{99}$ To ester furan 98 ($1.78 \mathrm{~g}, 7.88 \mathrm{mmol}$) in methanol (20 ml) was added concentrated ammonium hydroxide (200 ml) and stirred at room temperature for 48 h . The mixture was then concentrated and chromatographed (3:1:4 ethyl acetate/methanol/methylene chloride) to give amido furan 99 ($560 \mathrm{mg}, 36 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.13$ (s, 1H), 5.83 (br s, 2H, $\mathrm{D}_{2} \mathrm{O}$ exch.), $3.85(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.72$ (heptet, J=6.9Hz, 1H), $2.82(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62$ (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 1.21 (d, J=6.9Hz, 6H).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,164.7,150.7,113.3,105.5,60.5$, 31.3, 26.9, 20.9.

IR (NaCl , neat) v 3349, 3209, 2971, 1659, 1603, 1579, 1243, $1053 \mathrm{~cm}^{-1}$

2-Isopropyl-3-amido-5-(2-tert-butyldimethylsiloxyethyl)-furan 100. To amido furan 99 ($560 \mathrm{mg}, 2.8 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry dimethylformamide (5 ml) was added solid tert-butyldimethylsilyl chloride ($1.3 \mathrm{~g}, 8.5 \mathrm{mmol}, 3.0 \mathrm{eq}$) followed by solid imidazole ($1.0 \mathrm{~g}, 14 \mathrm{mmol}, 5.0 \mathrm{eq}$) and stirred at room temperature for 24 h . Water (5 ml) was then added and the mixture extracted with diethyl ether $(3 \times 20 \mathrm{ml})$. The etheral solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and chromatographed (1:1 ethyl acetate/methylene chloride) to give silyl amido furan 100 ($840 \mathrm{mg}, 97 \%$) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.62$ (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 6.06 (s, 1H), 5.97 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.75 (t, J = 6.6Hz, 2H), 3.70 (heptet, $\mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $2.69(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,163.8,150.7,113.4,105.3,61.1$, 31.5, 26.7, 25.7, 20.8, 18.1, -5.6.

IR (NaCl , neat) v 3351, 3195, 2957, 1651, 1608, 1580, 1104, $837 \mathrm{~cm}^{-1}$.
Elem. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}$: C, 61.69; $\mathrm{H}, 9.38 ; \mathrm{N}, 4.50$. Found: C, 61.69; H, 9.44; N, 4.50.

100

hv $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

101

102

3-Isobutyryl-3,4-epoxy-5-hydroxy-5-(2-tert-butyldimethyl-siloxyethyl)-pyrrolidine-2-one 101 and 3-Isopropyl formate-3,4-epoxy-5-hydroxy-5-(2-tert-butyIdimethylsiloxyethyl)-pyrrolidine-2one 102. To silyl amido furan $100(840 \mathrm{mg}, 2.7 \mathrm{mmol}, 1.0 \mathrm{eq})$ in methylene chloride (15 ml) was added solid m -chloroperbenzoic acid and irradiated for 3 h followed by sitting at room temperature for 8 h . The mixture was washed with saturated sodium bicarbonate solution ($2 \times 10 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude reaction mixture was then chromatographed to give epoxy ketone 101 ($53 \mathrm{mg}, 6.4 \%$) and epoxy ester 102 ($240 \mathrm{mg}, 25 \%$) both as light yellow oils.

101: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 4.91 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $4.03,3.88(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H})$, $2.03(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.3, 168.3, 85.2, 65.1, 60.4, 59.4, 38.1, 35.8, 25.8, 18.0, 17.7, -5.6.

IR (NaCl , neat) v 3348, 2930, 1733, 1697, $1098 \mathrm{~cm}^{-1}$.
HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+: 344.189328$
Found: 344.1882.
102: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.66$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 5.15 (heptet, $\mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.92 (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $4.05(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ $(\mathrm{m}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08$ (s, 6H).
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, CDCl_{3}) $\delta 167.1,162.9,85.0,70.7,64.3,62.7,59.3$, 35.8, 25.8, 21.6, 18.1, -5.6.

IR $\left(\mathrm{NaCl}\right.$, neat) v 3328, 2930, 1749, 1697, 1103, $836 \mathrm{~cm}^{-1}$. HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+: 360.184243$

Found: 360.1833.

3-(2-Methylpentoyl-4-ene)-3,4-epoxy-5-hydroxy-5-(2-tert-

 butyldimethylsiloxyethyl)-pyrrolidine-2-one 106. To keto epoxy pyrrolidine-one 65 ($107 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry toluene (4 ml) at $0^{\circ} \mathrm{C}$ under argon atmosphere was added 1 M solution of sodium hexamethyl disilazide in tetrahydrofuran ($.97 \mathrm{ml}, .97 \mathrm{mmol}, 3.0 \mathrm{eq}$) followed by crotyl bromide ($130 \mathrm{mg}, .97 \mathrm{mmol}, 3.0 \mathrm{eq}$) neat. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min at which time saturated ammonium chloride solution (5 ml) was added. The mixture was separated and the aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude reaction mixture was then chromatographed (3:2, hexane/ethyl acetate) to give the isohexenyl ketone 106 ($33 \mathrm{mg}, \mathbf{2 7 \%}$) as a mixture of diastereomers as a light yellow oil.${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $5.45(\mathrm{~m}, 1 \mathrm{H})$, 5.30 (m, 1H), 4.92 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 3.97 (m, 3H), 2.38 (m, 3H), 2.03 (m, 2 H), 1.61 ($\mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.06 ($\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.0, 168.3, 128.4, 127.8, 85.2, 65.2, 61.2, 59.4, 43.2, 35.6, 34.2, 25.8, 18.0, 15.7, 14.0, -5.6.

IR (NaCl , neat) v 3322, 3025, 2930, 1733, 1699, 1653, 1472, 1099, $1005 \mathrm{~cm}^{-1}$.
m/e $\left(\mathrm{NH}_{3} \mathrm{Cl}\right) 384(\mathrm{M}+1), 366,350,204$.
Elem. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Si}$: C, $58.89 ; \mathrm{H}, 8.58 ; \mathrm{N}, 3.61$. Found: C, 58.70; H, 8.78; N, 3.78.

7-tert-Butyldimethylsiloxy-1-bromoheptane 109A. To 7bromoheptanol ($1.09 \mathrm{~g}, 5.59 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry methylene chloride (6 ml) was added tert-butyl dimethyl silyl chloride ($1.00 \mathrm{~g}, 6.7 \mathrm{mmol}, 1.2 \mathrm{eq}$) followed by triethylamine ($1.09 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.9 \mathrm{eq}$) and stirred at room temperature for 72 h . The reaction mixture was then quenched with water (5 ml), diluted with methylene chloride (50 ml), washed with 0.1 N hydrochloric acid (10 ml) followed by saturated sodium bicarbonate (15 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude mixture was chromatographed ($3: 2$ hexane/ethyl acetate) to give tert-butyl dimethyl silyl-bromo-heptyl ether 109A (1.65 g, 96\%) as a light orange oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.53(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, 2 H), 1.78 (t, J = 7.6Hz, 2H), 1.35 (m, 8H), 0.82 (s, 9H), $-0.03(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.8,33.5,32.5,28.9,28.4,27.8,25.6$, 25.4, 18.0, -5.6.

1-lodo-7-(tert-butyldimethylsiloxy)heptane 109. To heptyl bromide 109A ($4.75 \mathrm{~g}, 15.4 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry acetone (50 ml) was added sodium iodide ($11.5 \mathrm{~g}, 77.0 \mathrm{mmol}, 5.0 \mathrm{eq}$) and stirred at room temperature for 16 h . The mixture was concentrated, taken up in ethyl acetate, filtered through a plug of silica gel, and concentrated. The crude oil was chromatographed (20:1, hexane/ethyl acetate) to give iodo-heptane $109(4.54 \mathrm{~g}, 83 \%)$ as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.56(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, 2H), 1.79 (m, 2H), 1.45 (m, 2H), 1.28 (m, 6H), 0.87 (s, 9H), 0.3 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 63.2,33.5,32.8,30.4,29.2,28.5,26.0$, 25.7, 18.3, -5.3.

110

3-Carbomethoxy-10-tert-butyIdimethyIsiloxy decane 110. To methyl butyrate ($240 \mathrm{mg}, 2.3 \mathrm{mmol}, 1.1 \mathrm{eq}$) in dry tetrahydrofuran (5 ml) under argon at $-78^{\circ} \mathrm{C}$ was added a 1 M solution of lithium hexamethyl disilazide in tetrahydrofuran ($2.5 \mathrm{ml}, 2.5 \mathrm{mmol}, 1.2 \mathrm{eq}$) and stirred for 5 min . At this time 1 -tert-butyldimethylsiloxy-7-iodo heptane 109 ($750 \mathrm{mg}, 2.1 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added in tetrahydrofuran (2 ml)/hexamethylphosphoramide (2 ml) mixture dropwise and stirred from $-78^{\circ} \mathrm{C}$ to $-10^{\circ} \mathrm{C}$ over 45 min . The mixture was quenched with saturated ammonium chloride solution (5 ml), diluted with diethyl ether (20 ml), washed with water ($2 \times 5 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude mixture was chromatographed ($20: 1$ hexane/ethyl acetate) to give siloxy ester 110 ($255 \mathrm{mg}, 26 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21$ (m, 1H), $1.44(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{~m}, 8 \mathrm{H}), 0.83(\mathrm{~s}, 12 \mathrm{H}),-0.02(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,70.9,63.2,51.1,47.2,32.8,32.0$, 29.4, 29.3, 27.4, 25.9, 25.4, 18.3, 11.8, -5.4.

IR (NaCl , neat) $\mathrm{v} 2930,1739,1463,1255,1100 \mathrm{~cm}^{-1}$.

3-Carbomethoxy-10-hydroxy decane 111. To siloxy decane $110(900 \mathrm{mg}, 2.5 \mathrm{mmol})$ in 0.5 M hydrochloric acid in methanol $(30 \mathrm{ml})$ at room temperature was stirred for 20 min . To the mixture was added solid sodium bicarbonate until bubbling ceased, then extracted with diethyl ether (3×20 $\mathrm{ml})$. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and chromatographed ($20: 1$, hexane/ethyl acetate) to give decanol ester 111 ($500 \mathrm{mg}, 93 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}$, $\mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.86 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.), 1.44 (m, 2H), $1.20(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,62.4,51.0,47.1,32.5,31.9,29.3$, 29.2, 27.2, 25.6, 25.3, 11.6.

IR (NaCl , neat) v 3418, 2929, 1738, 1462, 1258, 1196, 1169, $1098 \mathrm{~cm}^{-1}$

3-Carbomethoxy-10-bromo-decane 112. To decanol 111 (120 $\mathrm{mg}, 0.55 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry methylene chloride (15 ml) at $0^{\circ} \mathrm{C}$ was added neat phosphorous tribromide ($165 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.1 \mathrm{eq}$) and stirred for 4 h . The mixture was filtered through a plug of silica gel, washed with water (2×10 ml) and saturated sodium bicarbonate solution ($1 \times 10 \mathrm{ml}$), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated and chromatographed ($20: 1$, hexane/ethyl acetate) to give bromo-decane 112 ($85 \mathrm{mg}, 55 \%$) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.23$ $(\mathrm{m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

IR (NaCl , neat) v 2930, 1738, 1461, $1168 \mathrm{~cm}^{-1}$.

112

3-Carbomethoxy-10-iodo-decane 113. To bromo-decane 112 $(80 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry acetone (5 ml) was added sodium iodide ($215 \mathrm{mg}, 1.50 \mathrm{mmol}, 5.0 \mathrm{eq}$) in dry acetone (5 ml) at room temperature and stirred for 5 h . The mixture was concentrated, taken up in ethyl acetate, filtered through a plug of silica gel, and concentrated. The crude mixture was then chromatographed (20:1, hexane/ethyl acetate) to give iodo-decane 113 (46 $\mathrm{mg}, 47 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21$ $(m, 1 H), 1.73(m, 2 H), 1.53(m, 2 H), 1.19(m, 10 H), 0.82(t, J=7.4 H z, 3 H)$.

3-Propionyl-3,4-epoxy-5-hydroxy-5-(2-hydroxyethyl)-

pyrrolidine-2-one 11. To silyl epoxy pyrrolidine-one 65 (262 mg, 0.79 $\mathrm{mmol}, 1.0 \mathrm{eq}$) in tetrahydrofuran (15 ml) at room temperature was added 1 M solution of tetrabutylammonium fluoride in tetrahydrofuran ($0.8 \mathrm{ml}, 0.8 \mathrm{mmol}$, 1.0 eq) and of water (1 drop). The mixture was stirred at room temperature for 5 min , water (10 ml) was then added and the mixture extracted with ethyl acetate ($4 \times 15 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed ($3: 1: 4$, ethyl acetate/methanol/methylene chloride) to give epoxy pyrrolidine-one diol 11 ($53 \mathrm{mg}, 31 \%$) as a light yellow solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOD}$) $\delta 4.19$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 3.80(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H})$, $2.16(m, 1 H), 1.96(m, 1 H), 1.04(m, 3 H)$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOD} / \mathrm{CDCl}_{3}$) $\delta 200.8,167.8,84.4,65.3,60.5$, 58.3, 36.4, 33.0, 6.2.

IR (NaCl , neat) v 3302, 2920, 1718, 1697, 1457, $1090 \mathrm{~cm}^{-1}$.
HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 216.087199$.
Found: 216.0870.

3-(2-Methyl)pentoyl(4-ene)-3,4-epoxy-5-hydroxy-5-(2-hydroxyethyl)-pyrrolidine-2-one 116. To silyl epoxy isohexene-one 106 ($36 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0 \mathrm{eq}$) in tetrahydrofuran (3 ml) was added 1M acetic acid (1 drop) followed by 1 M tetrabutyl ammonium fluoride ($0.1 \mathrm{ml}, 0.1 \mathrm{mmol}$, 1.1 eq) in tetrahydrofuran and stirred at room temperature for 48 h . To the mixture was added 10% sodium carbonate (5 ml), and extracted with ethyl acetate ($4 \times 10 \mathrm{ml}$). The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and chromatographed ($1: 1$, ethyl acetate/methylene chloride) to give epoxy diol 116 ($14 \mathrm{mg}, 55 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $5.50(\mathrm{~m}, 1 \mathrm{H})$, 5.27 ($\mathrm{m}, 2 \mathrm{H}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $4.13(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.04(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~m}$, 1H), 3.03 (br s, 1H, D2O exch.), 2.85 (m, 1H), 2.37 (m, 1H), 2.03 (m, 3H), 1.62 (d, J = 6.5Hz, 3H), 1.16 ($\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.1,169.4,129.4,125.5,85.0,64.5$, 62.3, 58.1, 52.1, 39.1, 35.7, 19.7, 18.0.

IR (NaCl , neat) v 3351, 3024, 2927, 1727, 1695, 1651, 1455, 1090, 970 cm^{-1}.

HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 270.134149$
Found: 270.1340.

65

115

3-(2,6,9-Trimethyl-2,6-di-ene)decanoyl-3,4-epoxy-5-hydroxy-

 5-(2-tert-butyIdimethylsiloxyethyl)-pyrrolidine-2-one 115. To epoxy pyrrolidine-one $65(215 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.0 \mathrm{eq})$ in dry toluene (11 ml) at $0^{\circ} \mathrm{C}$ under argon was added geranyl bromide ($565 \mathrm{mg}, 2.6 \mathrm{mmol}, 4.0 \mathrm{eq}$) followed by 1 M solution of sodium hexamethyl disilazide ($1.75 \mathrm{ml}, 1.75 \mathrm{mmol}, 3.0 \mathrm{eq}$) in tetrahydrofuran. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , followed by the addition of saturated ammonium chloride solution (10 ml). The mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and chromatographed (3:2, hexane/ethyl acetate) to give the geranyl epoxy pyrrolidine-one 115 (75 $\mathrm{mg}, 25 \%$) as a light yellow oil.${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.81$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 5.04 (m, 3H, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), $4.04(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~m}$, $3 \mathrm{H}), 1.98$ (m, 6H), 1.64 (s, 3H), 1.56 (s, 6H), 1.18 (s, 3H), 0.88 (s, 9H), 0.09 (s, 6 H).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.4,169.1,138.2,131.4,124.2,119.2$, 85.1, 69.3, 62.3, 59.2, 52.7, 39.9, 35.9, 34.2, 26.6, 25.8, 25.7, 19.6, 18.0, 17.7, 16.3, -5.6.

IR (NaCl , neat) v 3352, 2929, 1733, 1699, 1682, $1102 \mathrm{~cm}^{-1}$.
HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{NO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]+: 466.298878$
Found: 466.3004.

115

3-(2,6,9-Trimethyl-2,6-diene)decanoyl-3,4-epoxy-5-hydroxy-5-(2-hydroxyethyl)-pyrrolidine-2-one 117. To silyl epoxy pyrrolidineone 115 ($25 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$) in tetrahydrofuran (5 ml) at room temperature was added acetic acid (1 drop) followed by 1 M solution of tetrabutyl ammonium fluoride ($0.10 \mathrm{ml}, 0.10 \mathrm{mmol}, 2.0 \mathrm{eq}$) in tetrahydrofuran and stirred at room temperature for 12 h . To the mixture was added saturated sodium bicarbonate solution (5 ml) and was extracted with ethyl acetate (3 x $10 \mathrm{ml})$. The organic solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and chromatographed (1:1, ethyl acetate/methylene chloride) to give diol 117 ($9 \mathrm{mg}, 48 \%$) as a clear colorless film.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 5.04 ($\mathrm{m}, 3 \mathrm{H}, 1 \mathrm{H}$ $\mathrm{D}_{2} \mathrm{O}$ exch.), $4.04(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 7 \mathrm{H}$, $1 \mathrm{H}_{2} \mathrm{O}$ exch.), 1.65 (s, 3H), 1.57 (s, 6 H), 1.03 ($\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.3,168.7,142.4,138.4,124.1,120.2$,
84.9, 65.1, 60.7, 58.2, 42.8, 39.8, 30.8, 29.7, 26.5, 25.7, 17.7, 16.1, 13.9.

IR (NaCl , neat) $\mathrm{v} 3309,3052,2925,1732,1654,1456,1094 \mathrm{~cm}^{-1}$.
HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 352.212399$
Found: 352.2109.

$$
\stackrel{\mathrm{HO}}{\mathrm{HCl} \text { (conc.) }} \stackrel{\mathrm{DHP}}{118} \mathrm{LHPO}_{\mathrm{HPO}} \equiv
$$

Tetrahydropyranyl propargyl ether 118. To dihydropyran (7.55 $\mathrm{g}, 89.9 \mathrm{mmol}, 1.1 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ was added concentrated hydrochloric acid (4 drops) followed by dropwise addition of propargyl alcohol $(4.57 \mathrm{~g}, 81.7 \mathrm{mmol}$, 1.0 eq). The mixture was stirred for 2 h and distilled ($30-40^{\circ} \mathrm{C} / 2 \mathrm{~mm}$) to give the tetrahydropyranyl propargyl ether $118(10.97 \mathrm{~g}, 96 \%)$ as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77(\mathrm{t}, \mathrm{J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, \mathrm{J}=2.4 \mathrm{~Hz}$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 96.7,79.7,73.9,61.9,53.9,30.1,25.2$, 18.9.

IR (NaCl , neat) v 3290, 2949, 2118, 1442, 1202, 1120, $1028 \mathrm{~cm}^{-1}$.

Tetrahydropyranyl-3-bromo-2-E-propenyl ether 119. To tetrahydropyranyl propargyl ether 118 ($5.02 \mathrm{~g}, 35.8 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry benzene (55 ml) under argon was added solid zirconocene hydrochloride (9.2 $\mathrm{g}, 35.8 \mathrm{mmol}, 1.0 \mathrm{eq}$) and stirred at room temperature for 8 h . The light yellow solution was then chilled to $0^{\circ} \mathrm{C}$ followed by the dropwise addition of bromine neat ($5.74 \mathrm{~g}, 35.8 \mathrm{mmol}, 1.0 \mathrm{eq}$). After bromine addition, the resulting solid was filtered and the filtrate washed with 10% sodium thiosulfate (15 ml), saturated sodium bicarbonate (15 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The crude mixture was concentrated and chromatographed (9:1 hexane/ethyl acetate) to give tetrahydropyranyl E-3-bromo-2-E-propenyl ether 119 ($4.02 \mathrm{~g}, 51 \%$) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.16$ (m, 2H), 4.53 (m, 1H), 3.86 (m, 2H), 3.73 (m, 1H), $3.49(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 129.0,128.2,98.8,74.3,62.1,30.7,25.5$, 19.4.

Tetrahydropyranyl-5-trimethylsilyl-pent-2-E-ene-4-yne-yl

ether 120. To tetrahydropyranyl E-3-bromo-2-propenyl ether 119 (4.01 g, $18.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) and trimethyl silyl acetylene ($1.80 \mathrm{~g}, 18.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added dry triethylamine ($8.71 \mathrm{~g}, 86.2 \mathrm{mmol}, 4.7 \mathrm{eq}$) followed by palladium(II) chloride ($320 \mathrm{mg}, 1.82 \mathrm{mmol}, 0.10 \mathrm{eq}$), triphenylphosphine (1.00 $\mathrm{g}, 3.64 \mathrm{mmol}, 0.20 \mathrm{eq}$), and copper(I) iodide (200 mg , catalytic amount) as solids. The rust colored mixture was stirred for 4 days at room temperature at which time water (20 ml) and diethyl ether (100 ml) were added. The mixture was separated, the aqueous washed with diethyl ether ($2 \times 20 \mathrm{ml}$), and the combined ethereal extracts dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated and chromatographed (9:1 hexane/ethyl acetate) to give ene-yne 119 (5.02 g, 95\%) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.21$ ($\mathrm{m}, 1 \mathrm{H}$), 5.72 ($\mathrm{m}, 1 \mathrm{H}$), 4.57 ($\mathrm{m}, 1 \mathrm{H}$), 4.20 (m, 1H), 3.98 (m, 1H), 3.78 (m, 1H), 3.45 (m, 1H), 1.52 (m, 6H), 0.14 (s, 1H).
${ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.6,111.0,103.1,97.7,66.3,61.9$, 53.4, 30.5, 25.3, 19.1, -0.2.

IR (NaCl , neat) v 3032, 2954, 2134, 1687, 1037, $844 \mathrm{~cm}^{-1}$.

1-Hydroxy-2-iodo-2-Z-butene 121. To 2-butyn-ol ($2.81 \mathrm{~g}, 40.2$ mmol, 1.2 eq) was added tributyltin hydride ($10.0 \mathrm{~g}, 39.4 \mathrm{mmol}, 1.0 \mathrm{eq}$) followed by azo-isobutyrylnitrile (40 mg). The mixture was heated to $85^{\circ} \mathrm{C}$ under argon for 2 h , then distilled under vacuum $\left(107^{\circ} \mathrm{C} / 0.2 \mathrm{~mm}\right)$. The vinyl stannane was dissolved in dry carbon tetrachloride (50 ml) followed by the addition of solid molecular iodine ($10.2 \mathrm{~g}, 40.2 \mathrm{mmol}, 1.2 \mathrm{eq}$) and stirred at room temperature for 30 min . The mixture was washed with 10% sodium thiosulfate $(2 \times 25 \mathrm{ml})$ and the organic solution dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ concentrated. The crude material was taken up in acetonitrile (100 ml) and extracted with hexane ($3 \times 75 \mathrm{ml}$) to separate the tin salts. The acetonitrile was concentrated and chromatographed (3:2, hexane/ethyl acetate) to give iodo-butene-ol 121 $(4.38 \mathrm{~g}, 55 \%)$ as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.94(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 2.08$ (br s, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exch.), 1.77 (d, J=6.4Hz, 3H).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.6,110.0,71.9,26.9$.

122

1-Hydroxy-2-(1-propyne-yl)-2-E-butene 122. To dry dimethyl formamide (8 ml) under argon was added bis-acetonitrile palladium (II) chloride ($20 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.05 \mathrm{eq}$) followed by vinyl iodide 121 (960 mg , $4.85 \mathrm{mmol}, 1.0 \mathrm{eq}$) and propyne-yl stannane ($1.59 \mathrm{~g}, 4.85 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry methyl formamide (3 ml). The black mixture was stirred for 4 days at room temperature at which time 10% ammonium hydroxide was added (15 ml) and the mixture extracted with diethyl ether ($3 \times 20 \mathrm{ml}$). The ethereal mixture was washed with water ($3 \times 10 \mathrm{ml}$), filtered through Celite, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude mixture was chromatogrpahed (3:2, hexane/ethyl acetate) to give ene-yne 122 ($105 \mathrm{mg}, \mathbf{2 0 \%}$) as a light yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88$ ($\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.02(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, 2 H), 1.99 (s, 3H), 1.81 (d, J = 6.7Hz, 3H), 1.76 (br s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exch.).
${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.9,124.2,91.6,71.6,66.4,15.6,4.4$. IR (NaCl , neat) $) 3457,3005,2922,2252,1653 \mathrm{~cm}^{-1}$.

Chapter Five

References

1. Lu, S.-J.; Ronai, Z.A.; Li, M.H.; Jeffrey, A.M. Carcinogenesis 1988, 9, 1523.
2. Thiel, P.G.; Gelderblom, W.C.A.; Marasas, W.F.O.; Nelson, P.E.; Wilson, T.M. J. Agric. Food Chem. 1986, 34, 773.
3. Gelderblom, W.C.A.; Thiel, P.G.; van der Merwe, K.J.; Marasas, W.F.O.; Spies, H.S.C. Toxicon 1983, 21, 467.
4. Farber, J.M.; Sanders, G.W. J. Agric. Food Chem. 1986, 34, 963.
5. Gelderblom, W.C.A.; Thiel, P.G.; Marasas, W.F.O.; van der Merwe, K.J. J. Agric. Food Chem. 1984, 32, 1064.
6. (a) Gelderblom, W.C.A.; Thiel, P.G.; Jaskiewicz, K.; Marasas, W.F.O. Carcinogenesis 1986, 7, 1899. (b) Gelderblom, W.C.A.; Marasas, W.F.O.; Jaskiewicz, K.; Combrinck, S.; van Schalkwyk, D.J. Carcinogenesis 1988, 9, 1405.
7. Gaddamidi, V.; Bjeldanes, L.F.; Shoolery, J.N. J. Agric. Food Chem. 1985, 33, 652.
8. (a) Gelderblom, W.C.A.; Marasas, W.F.O.; Steyn, P.S.; Thiel, P.G.; van der Merwe, K.J.; van Rooyen, P.H.; Vleggaar, R.; Wessels, P.L. J. Chem. Soc., Chem. Comm. 1984, 122. (b) Steyn, P.S.; Vleggaar, R. J. Chem. Soc., Chem. Comm. 1985, 1189.
9. Savard, M.E.; Miller, J.D. J. Nat. Prod. 1992, 55, 64.
10. Weibe, L.A.; Bjeldanes, L.F. J. Food. Sci. 1981, 46, 1424.
11. Gelderblom, W.C.A.; Thiel, P.G.; van der Merwe, K.J. Fd Chem. Toxic. 1988, 26, 31.
12. Gelderblom, W.C.A.; Thiel, P.G.; van der Merwe, K.J. Biochem. Pharm. 1984, 33, 1601.
13. Kim, I.S.; Bjeldanes, L. F. J. Agric. Food Chem. 1992, 40, 1625.
14. Ohta, T.; Tsuchiyam, H.; Nozoe, S. Heterocycles, 1986, 24, 1137.
15. Boeckman, R. K. Jr.; Thomas, E. W. J. Am. Chem. Soc., 1977, 99, 2805.
16. Jakubowski, A. A.; Guziec, F. S.; Tishler, M. Tet. Lett., 1977, 2399, Jakubowski, A. A.; Guziec, F. S.; Sugiura, M.; Tam, C. C.; Tishler, M. J. Org. Chem., 1982, 47, 1221.
17. Corey, E. J.; Williams, D. R. Tet. Lett., 1977, 3847.
18. Sueda, N.; Ohrui, H.; Kuzuhara, H. Tet. Lett., 1979, 2039.
19. Pietraszkiewicz, M.; Sinay, P. Tet. Lett., 1979, 4741.
20. Furukawa, J.; Funabashi, H.; Morisaki, N.; Iwasaki, S.; Okuda, S. Chem. Pharm. Bull., 1988, 36, 1229.
21. Yoda, H.; Katagiri, T.; Takabe, K. Tet. Lett., 1991, 32, 6771.
22. Shimazawa, R.; Ogawa, Y.; Morisaki, N.; Funabashi, H.; Kawaguchi, A.; Iwasaki, S. Chem. Pharm. Bull., 1992, 40, 2954.
23. Morisaki, N.; Funabashi, H.; Furukawa, J.; Shimazawa, R.; Kanematsu, A.; Ando, T.; Okuda, S.; Iwasaki, S. Chem. Pharm. Bull., 1992, 40, 2945.
24. Daremon, C.; Rambaud, R. Bull. Soc. Chim. France 1971, 294.
25. Winterfeldt, E. Synthesis 1975, 617.
26. For related Lewis acid mediated couplings to acetals, see: (a) Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 3248. (b) Ishihara, K.; Yamamoto, H.; Heathcock, C.H. Tetrahedron Lett. 1989,

30, 1825. (c) Lee, T.V.; Boucher, R.J.; Ellis, K.L.; Richardson, K.A. Tetrahedron Lett. 1988, 29, 685. (d) Fleming, I.; Iqbal, J.; Krebs, E-P. Tetrahedron 1983, 39, 841. (e) Trost, B.M.; Lee, D.C. J. Am. Chem. Soc. 1988, 110, 6556. (f) Stossel, D.; Chan, T.H. J. Org. Chem. 1988, 53, 4901. (g) Heathcock, C.H.; Davidsen, S.K.; Hug, K.T.; Flippin, L.A. J. Org. Chem. 1986, 51, 3027. (h) Mukaiyama, T.; Kobayashi, S.; Tamura, M.; Sagawa, Y. Chem. Lett. 1987, 491. (i) Kawai, M.; Onaka, M.; Izumi, Y. Chem. Lett. 1986, 1581.
27. For relevant synthetic work on a closely related heterocycle contained in cerulenin, see: (a) Corey, E.J.; Williams, D.R. Tetrahedron Lett. 1977, 3927. (b) Jakubowski, A.A.; Guziec, F.S.; Tishler, M. Tetrahedron Lett. 1977, 2399. (c) Boeckman, R.K.; Thomas, E.W. J. Am. Chem. Soc. 1977, 99, 2805. (d) Pietraszkiewicz, M.; Sinay, P. Tetrahedron Lett. 1979, 4741. (e) Ohta, T.; Tsuchiyama, H.; Nozoe, S. Heterocycles 1986, 24, 1137.
28. (a) Parham, W.E.; Anderson, E.L. J. Am. Chem. Soc. 1948, 70, 4187.
(b) Green, T.W. "Protective Groups in Organic Synthesis", Wiley, New York (1981).
29. Hart, D.W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115.
30. (a) Stille, J.K.; Simpson, J.H. J. Am. Chem. Soc. 1987, 109, 2138. (b) Crisp, G.T.; Scott, W.J.; Stille, J.K. J. Am. Chem. Soc. 1984, 106, 7500. (c) Echavarren, A.M.; Stille, J.K. J. Am. Chem. Soc. 1987, 109, 5478. (d) Stille, J.K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508. (e) Stille, J.K.; Groh, B.L. J. Am. Chem. Soc. 1987, 109, 813.
31. Ensley, H.E.; Buescher, R.R.; Lee, K. J. Org. Chem. 1982, 47, 404.
32. (a) Negishi, E-I.; Valente, L.F.; Kobayashi, M. J. Am. Chem. Soc. 1979, 102, 3298. (b) Okukado, N.; Negishi, E-I. Tetrahedron Lett. 1978,
2357. (c) Baba, S.; Negishi, E-I. J. Am. Chem. Soc. 1976, 98, 6729. (d) Negishi, E-I.; Van Horn, D.E. J. Am. Chem. Soc. 1976, 98, 3168. (e) Negishi, E-I.; Van Horn, D.E.; King, A.O.; Okukado, N. Synthesis 1979, 501. (f) Van Horn, D.E.; Negishi, E-I. J. Am. Chem. Soc. 1978, 100, 2252.
33. (a) Kobayashi, M.; Negishi, E-I. J. Org. Chem. 1980, 45, 5225. (b) Mutsushita, H.; Negishi, E-I. J. Am. Chem. Soc. 1981, 103, 2882. (c) Negishi, E-I.; Okukado, N.; King, A.O.; Van Horn, D.E.; Spiegel, B.I. J. Am. Chem. Soc. 1978, 100, 2254. (d) Negishi, E-I. Acc. Chem. Res. 1982, 15, 340. (e) Chorev, M.; Klausner, Y.S. J. Chem. Soc., Chem. Comm. 1976, 596.
34. Patel, D.V.; VanMiddlesworth, F.; Donaubauer, J.; Gannett, P.; Sih, C.J. J. Am. Chem. Soc. 1986, 108, 4603.
35. (a) Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87. (b) Corbel, B.; Medinger, L.; Haelters, J.P.; Sturtz, G. Synthesis 1985, 1048.
36. (a) Wiberg, K.B. "Oxidation in Organic Chemistry. Part A", Academic Press, New York (1965), pp. 69-72. (b) Collins, J.C.; Hess, W.W.; Frank, F.J. Tetrahedron Lett. 1968, 3363.
37. (a) Mancuso, A.J.; Huang, S-L.; Swern, D. J. Org. Chem. 1978, 43, 2480. (b) Roush, W.R. J. Am. Chem. Soc. 1980, 102, 1390.
38. (a) Wadsworth, W.S., Jr.; Emmons, W.D. J. Am. Chem. Soc. 1961, 83, 1733. (b) Stec, W.J. Acc. Chem. Res. 1983, 16, 411. (c) Bodalski, R.; Pietrusiewicz, K.M.; Monkiewicz, J.; Koszuk, J. Tetrahedron Lett. 1980, 21, 2287.
39. Kurtz, J.; Fasman, D.; Berger, A.; Katchalski, E. J. Am. Chem. Soc. 1958, 80, 393.
40. (a) Levine, R.; Hauser, C.R. J. Am. Chem. Soc. 1946, 68, 760. (b) Eby, C.J.; Hauser, C.R. J. Am. Chem. Soc. 1957, 79, 723. (c) Rasmussen, J.K.; Hassner, A. Synthesis 1974, 682.
41. (a) Sweet, F.; Brown, R.K. Can. J. Chem. 1966, 44, 1571. (b) Zajac, W.W., Jr.; Sweet, F.; Brown, R.K. Can. J. Chem. 1968, 46, 21.
42. (a) Klebe, J.F. "Advances in Organic Chemistry. Methods and Results", Vol. 8, E.C. Taylor (Ed.) Wiley Interscience, New York (1972), pp. 97178. (b) Corey, E.J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
43. Büchi, G.; Wüest, H. J. Org. Chem. 1966, 31, 977.
44. (a) Martin, S.F.; Gluchowski, C.; Campbell, C.L.; Chapman, R.C. J. Org. Chem. 1984, 49, 2512. (b) Piancatelli, G.; Scettri, A.; D'Auria, M. Tetrahedron Lett. 1980, 661. (c) Martin, S.F.; Gluchowski, C.; Campbell, C.L.; Chapman, R.C. Tetrahedron 1988, 44, 3171. (d) Farina, F.; Martin, M.V.; Paredes, M.C.; Ortega, M.C.; Tito, A. Heterocycles 1984, 22, 1733. (e) Kobayashi, Y.; Katsuno, H.; Sato, F. Chem. Lett. 1983, 1771. (f) Williams, P.D.; LeGoff, E. J. Org. Chem. 1981, 46, 4143. (g) DeShong, P.; Waltermire, R.E.; Ammon, H.L. J. Am. Chem. Soc. 1988, 110, 1901.
45. (a) Foote, C.S.; Wuesthoff, M.T.; Wexler, S.; Burstain, I.G.; Denny, R.; Schenck, G.O.; Schulte-elte, K-H. Tetrahedron 1967, 23, 2583. (b) Schenck, G.O. Angew. Chem. 1952, 1, 12. (c) Schenck, G.O. Angew. Chem. 1957, 18, 579. (d) Kwon, B-M.; Foote, C.S. J. Am. Chem. Soc. 1988, 110, 6582. (e) Graziano, M.L.; lesce, M.R. Synthesis 1984, 64. (f) Graziano, M.L.; lesce, M.R. Synthesis 1985, 1151. (g) Feringa, B.L. Rec. Trav. Chim. Pays-Bas 1987, 106, 469. (h) Graziano, M.L.; lesce, M.R.; Cimminiello, G.; Scarpati, R. J. Chem. Soc., Perkin Trans. 11989,
241. (i) Graziano, M.L.; lesce, M.R.; Cimminiello, G.; Scarpati, R. J. Chem. Soc., Perkin Trans. 1 1988, 1699. (j) Graziano, M.L.; lesce, M.R.; Chiosi, S.; Scarpati, R. J. Chem. Soc., Perkin Trans. 1 1983, 2071. (k) Graziano, M.L.; lesce, M.R.; Carli, B.; Scarpati, R. Synthesis 1983, 125.
46. (a) Sonnet Tetrahedron 1980, 36, 557. (b) Schulte-Frohlinde, G. Pure Appl. Chem. 1979, 51, 279.
47. Djerassi, C. Chem. Revs. 1948, 43, 271.
48. De Kimpe, N.; Verhe, R. "The Chemistry of α-Haloketones, α Haloaldehydes and α-Haloimines", Wiley-Interscience, New York (1988), pp. 1-120.
49. Ayres, J.S.; Osborne, G.O. Chem. Comm. 1968, 4, 195.
50. Fringvelli; Marino; Taticchi; Grandolini J. Chem. Soc., Perkin Trans. 2 1974, 332.
51. Svendsen, A.; Boll, P.M. Tetrahedron 1973, $29,4251$.
52. (a) Ford-Moore, A.H.; Perry, B.J. Org. Synth. 1963, IV, 325. (b) Arbuzov Pure Appl. Chem. 1964, 9, 307. (c) Bodalki, R.; Pietrusiewicz, K.M.; Monkiewicz, J.; Koszuk, J. Tetrahedron Lett. 1980, 21, 2287.
53. (a) Reeves, R.L. "Chemistry of the Carbonyl Group", S. Patai (Ed.), Interscience, New York (1966), pp. 580-593 and references therein. (b) House, H.O. "Modern Synthetic Reactions", 2nd Ed., W.A. Benjamin, Menlo Park, California (1972), pp. 629-682 and references therein. (c) Hatakeyama, S.; Sakurai, K.; Numata, H.; Ochi, N.; Takano, S. J. Am. Chem. Soc. 1988, 110, 5201. (d) Jung, M.E. Tetrahedron 1976, $32,3$.
54. (a) Schaumann, E.; Fittkau, S. Tetrahedron Lett. 1984, 25, 2325. (b) Tay, M.K.; Aboujaoude, E.E.; Collignon, N.; Savignac, Ph. Tetrahedron Lett. 1987, 28, 1263. (c) Nuzillard, J-M.; Boumendjel, A.; Massiot, G.

Tetrahedron Lett. 1989, 30, 3779. (d) Garbers, C.F.; Schneider, D.F.; van der Merwe, J.P. J. Chem. Soc. (C) 1968, 1982. (e) Birch, A.J.; Wright, J.J. Aust. J. Chem. 1969, 22, 2635. (f) Edwards, J.A.; Schwarz, V.; Fajkos, J.; Maddox, M.L.; Fried, J.H. J. Chem. Soc. (C) 1971, 292. (g) Pattenden, G. J. Chem. Soc. (C) 1970, 1404.
55. (a) Parker, A.J. Chem. Rev. 1969, 69, 1. (b) Jackman, L.M.; Lange, B.C. Tetrahedron 1977, 33, 2737. (c) Carey, F.A.; Sundberg, R.J. "Advanced Organic Chemistry", 2nd Ed, Part B: Reactions and Synthesis, Plenum Press, New York (1983), pp. 18-21.
56. Hassall, C.H. Org. React. 1957, 9, 73.
57. Carey, F.A.; Sundberg, R.J. "Advanced Organic Chemistry" 2nd Ed., Part B: Reactions and Synthesis, Plenum Press, New York (1983), pp. 520-522.
58. (a) Walker, P.; Hiebert, J.D. Chem. Rev. 1967, 67, 153. (b) Matsuura, S.; linuma, M.; Ishikawa, K.; Kagei, K. Chem. Pharm. Bull. 1978, 26, 305. (c) Cainelli, G.; Cardillo, G.; Ronchi, A.U. J. Chem. Soc., Chem. Comm. 1973, 94. (d) Caine, D.; DeBardeleben, J.F., Jr. Tetrahedron Lett. 1965, 4585. (e) Ladjama, D.; Riehl, J.J. Synthesis 1979, 504. (f) Reich, H.J.; Renga, J.M.; Reich, I.L. J. Am. Chem. Soc. 1975, 97, 5434. (g) Theissen, R.J. J. Org. Chem. 1971, 36, 752. (h) Reich, H.J.; Reich, I.L.; Renga, J.M. J. Am. Chem. Soc. 1973, 95, 5813. (i) Greene, A.E.; Luche, M-J.; Serra, A.A. J. Org. Chem. 1985, 50, 3957. (j) Wolff, S.; Agosta, W.C. Synthesis 1977, 240. (k) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011. (I) Mukaiyama, T.; Ohshima, M.; Nakatsuka, T. Chem. Lett. 1983, 1207. (m) Mincione, E.; Ortaggi, G.; Sirna, A. Synthesis 1977, 773. (n) Sharpless, K.B.; Gordon, K.M.; Lauer, R.F.; Patrick, D.W.; Singer, S.P.; Young, M.W. Chem. Scripta

1975, 8A, 9. (0) Sharpless, K.B.; Young, M.W.; Lauer, R.F. Tetrahedron Lett. 1973, 1979. (p) Reich, H.J. J. Org. Chem. 1974, 39, 428. (q) Zoretic, P.A.; Chambers, R.J. J. Org. Chem. 1985, 50, 2981. (r) Sharpless, K.B.; Michaelson, R.C. J. Am. Chem. Soc. 1973, 95, 6136.
59. March, J. "Advanced Organic Chemistry", 3rd Ed., Wiley-Interscience, New York (1985), p. 299.

Appendix A

Spectra of Synthesized Compounds

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 35 .

40

${ }^{1} \mathrm{H}$ NMR (270 MHz) for compound 40.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 36.

18

${ }^{1} \mathrm{H}$ NMR (270 MHz) for compound 18.

${ }^{1} \mathrm{H}$ NMR (270 MHz) and mass spectrum for compound 41A.

14

${ }^{1} \mathrm{H}$ NMR (270 MHz) of compound 14.

42

${ }^{1} \mathrm{H}$ NMR (270 MHz) for compound 42.

43

${ }^{1} \mathrm{H}$ NMR (270 MHz) for compound 43.

IR and mass spectrum for compound 46.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 47.

${ }^{1} \mathrm{H}$ NMR (270 MHz) and IR for compound 47 A .

 48 A

${ }^{1} \mathrm{H}$ NMR (270 MHz) for compound 48A.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 48.

${ }^{1} \mathrm{H}$ NMR ($\mathbf{2 7 0} \mathrm{MHz}$) and IR for compound $\mathbf{5 0}$.

${ }^{1} \mathrm{H}$ NMR (270 MHz) and IR for compound 51.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 52.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 53.

58

${ }^{1} \mathrm{H}$ NMR (270 MHz) and IR for compound 58.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 59.

61

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 61.

IR and mass spectrum of compound 65

cosy
trans
65 A

2D Homonuclear COSY for compound 65A.

trans
65 A

2D Heteronuciear HETCOR for compound 65A.

cis
65B

${ }^{1} \mathrm{H}$ NMR (300 MHz) for compound 65B.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 75A.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 75B.

$76 B$

${ }^{1} \mathrm{H}$ NMR (300 MHz) for compound 76B.

${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})$ for compound 76 C .

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 53A.

${ }^{1} \mathrm{H}$ NMR (300 MHz) for compound 52A.

${ }^{1} \mathrm{H}$ NMR (300 MHz) for compound 87.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 86.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 96.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 98.

99

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 99.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 102.

1H NMR (300 MHz) for compound 106.

IR and mass spectrum for compound 106.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 110.

109

${ }^{1} \mathrm{H}$ NMR (300 MHz) for compound 109.

111

IR for compound 111.

112

IR for compound 112.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 11.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 116.

115

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 115.

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 117.

118

${ }^{1} \mathrm{H}$ NMR (300 MHz) and IR for compound 118.

120

${ }^{1} \mathrm{H}$ NMR (300 MHz) for compound 120.

121

${ }^{1} \mathrm{H}$ NMR (270 MHz) for compound 121.

Appendix B

The Fusarins: Spectral Data

Fusarin C has been assigned different absolute stereochemistries in the epoxy-lactam portion of the molecule. From the numbering of fusarin C (Figure A 1), the $\mathrm{C}-13, \mathrm{C}-14$ epoxide and the $\mathrm{C}-15$ hydroxyl are opposite in the two representations. The adopted absolute stereochemistry in this paper complies with that shown from the perspective drawing of the crystalline $\mathrm{C}-8$, $\mathrm{C}-9 \mathrm{Z}$ isomer (names fusarin B) from which an x -ray diffraction pattern was obtained.

Fusarin C 1
Figure A1
According to homonuclear nuclear Overhauser enhancement, fusarin C exists in solution as an equilibrium between the s-cis and s-trans isomers from rotation of the C-5-C-6 single bond (Figure A2). Further NMR data of fusarins C 1, A 2, and F 4 are given in Tables A1 (proton NMR) and A2 (carbon NMR). Other spectroscopic data coilected on these compounds are given in Table A3.

A biosynthetic study was performed on Fusarium moniliforme metabolites. By the addition of both $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ acetate and $(2 \mathrm{~S})$-[methy- $\left.{ }^{13} \mathrm{C}\right]$ methionine, ${ }^{13} \mathrm{C}$ NMR data of fusarin A 2 suggest the carbon framework
derived from these two compounds as shown in Figure A3. These results suggest a C_{14}-polyketide chain formed ($\mathrm{C}-1, \mathrm{C}-13, \mathrm{C}-17$), starting with $\mathrm{C}-1, \mathrm{C}$ 2, from acetate units with subsequent methylation at the $\mathrm{C}-2$ of the acetate by methionine methyl addition. The origin of the heterocyclic structure of fusarin A (and fusarin C) is unknown. This biosynthetic hypothesis should also apply to the same portion of fusarin C .

Figure A2

Figure A3
Intact acetate units in Fusarin A^{*}-derived from $(2 \mathrm{~S})-\left[\right.$ methy $\left.| |^{13} \mathrm{C}\right]$ methioning

Table A1. Proton NMR of Fusarins C, A, and F

Fusain C					Fusarin A		Fusann F	
c	CDCl_{3}	$J(H z)$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	J(tz)	$\mathrm{CO}_{2} \mathrm{Cl}_{2}$	$\mathrm{J}(\mathrm{Hz}$)	CDC\%	$J(H z)$
1.	1.79d	7.2	1.773dd	7.2, 1.4	1.779dd	7.2, 1.5	1.77dd	7.2, 1.4
2	6.99q	7.2	6.957qd	7.2, 1.1	6.960ad	7.2, 1.2	6.96a	7.2
4	6.088		6.071qd	1.4, 1.1	6.085 m		6.06 bs	
6	6.29s		6.302sbr		6.328 sbr		6.27 bs	
8	6.80d	15.0	6.790 d	15.0	6.880d	15.0	6.76d	15
9	6.61 dd	12.0, 15.0	6.670 dd	15.0, 11.0	6.684 dd	15.0, 11.0	6.62 dd	15, 11.5
10	7.52d	12.0	7.492 dbr	11.0	7.512dq	11.0, 1.1	7.47d	11.7
14	4.02d	2.7	4.061d	2.1	4.351s	1.2	4.11d	2.4
					4.223d			
18	2.08m		2.059 ddd	14.6, 6.0, 3.7	2.365 ddd	12.8, 8.9. 8.6	2.22m	
			2.113 ddd	14.6, 8.3, 4.1	2.260 ddd	12.8, 6.5, 3.9	2.09 m	
19	4.0m		4.050 ddd	11.1, 8.3, 3.7	4.084 ddd	8.9, 8.6, 3.9		
					3.992ddd	8.9, 8.9, 6.5	3.99 m	
							3.92 m	
21	3.75s		3.715s		3.717s		3.73 s	
22	1.72s		1.729d	1.4	1.740d	1.4	1.72d	1.4
23	2.0 s		2.091d	1.3	2.108 d	1.3	2.07s	
24	2.09s		1.981d	1.3	1.970d	1.2	1.97s	

Table A2. ${ }^{13} \mathrm{C}$ NMR Data for Fusarins C, A, and F

	Fusarin C				Fusarin A		Fusarin F
C	CDCl_{3}	$J(H z)$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	$J(H z)$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	$J(H z)$	CDCl_{3}
1	16.04q	110	16.15q	127.3	16.12q	126.6	15.9
2	140.23d	155	140.33d	157.5	140.27d	157.3	140.1
3	130.29s		130.81s		130.86 s		130.4
4	126.20d	134	126.67d	157.5	126.63d	158.1	126.2
5	137.41s		137.81s		137.79s		137.4
6	140.95d	151	140.99d	151.3	140.96d	151.7	140.9
7	134.85s		135.42s		135.41 s		134.8
8	149.37d	132	149.15d	157.0	149.16d	152.9	149.2
9	123.29d	134	123.79d	154.4	124.01d	152.6	123.4
10	146.41d	128	145.73d	154.6	146.13ds	152.7	146.5
11	133.38s		133.90s		134.44s		133.5
12	190.36s		190.17s		197.70s		189.5
13	61.93s		62.17 s		57.19d	141.0	64.2
14	64.75d	175	64.15d	197.1	86.23d	160.1	62.4
15	85.43s		85.92s		94.95s		84.8
17	170.36s		170.27s		171.08s		168.2
18	35.97t	135	36.27 t	128.5	37.89t	133.2	39.2
19	58.05t	127	58.77 t	144.0	68.85t	148.4	57.6
20	167.65s		167.77s		167.73s		167.6
21	51.95q	125	52.07q	146.7	52.05q		51.9
22	18.79q	110	18.919	1271.1	18.92q	18.7	
23	14.09q	110	14.28q	127.5	14.31q		14.1
24	11.45q	110	11.55q	128.6	11.77q		11.3

Table A3. Spectroscopic Data of Fusarins C, A, and F

	Eusarinc		Eusarin A		Eusarin F
hrms	$\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{7}\right)$		415.1993		$\begin{aligned} & 431.1933 \\ & \left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{7}\right) \end{aligned}$
$\lambda_{\text {max }}$	358 nm (eOH) 3	352 nm ((eOH)	$370 \mathrm{~nm}\left(\mathrm{CHCl}_{3}\right)$
$1 \mathrm{R} \mathrm{cm}{ }^{-1}$	$\left(\mathrm{CHCl}_{3}\right)$	1720 ($\left(\mathrm{CHCl}_{3}\right)$	3410	3300
		1630		1710	3000
		1590		1625	2350
		3300-3600		1600	1710
		1735		1580	1580
		1725			1400
		1665			1250
					1200
					1030
					895
,					840
$[\alpha]^{23}+47.04(2.0 \% \mathrm{MeOH})$					
Rf_{f}					
PrOH:C	$\mathrm{Cl}_{3}(1: 9)$	0.38		0.56	0.30

Mutagenicity tests performed on Salmonella typhimurium TAIDO using fusarin C showed that fusarin C was non-mutagenic (compared to the controls) without oxidative activation (Table A4). In the presence of phenobarbitol
induced S9 liver fractions (PS9), the mutagenic activity of fusarin C greatly increased as histidine revertants (resulting from DNA mutation).

Table A4. Mutagenic Activity of Fusarin C using S. typhimurium TA100
Mutagen System
control
PS9
DMSO
"Fusarin C

- Fusarin C + PS9

Histidin Revertants/Plate
157 ± 10
179 ± 1
100 ± 8
279 ± 3
1123 ± 49

* Fusarin C concentration at 46 nmol/plate

APPENDIX C

Crystallographic Data for Compound 50

Mol formula
Formula wt
Crystal system
Space group
Lattice constants
a, \AA
b, \AA
c, \AA
α, deg
β, deg
γ, deg
V, \AA^{3}
Temperature, ${ }^{\circ} \mathrm{C}$
Z
$F(000)$
ρ (observed, $\mathrm{g} \mathrm{cm}^{-3}$)
ρ (calculated, $\mathrm{g} \mathrm{cm}^{-3}$
Crystal dimensions, mm
Radiation
Monochromator
μ, cm^{-1}
Scan type
Geometry
Scan speed, deg min $^{-1}$
2Θ range, deg
Index restrictions
Total no. of reflections
No. of unique, observed reflections
Observed reflection criterion
No. of least squares parameters
Data/parameter ratio
R
R_{w}
GOF
g (refined)
Slope, normal probability plot
$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}$ 169
Treclinic PT
7.3820(10)
7.6801(10)
$8.4691(21)$
77.655(16)
71.174(16)
66.660(10)
415.2

22
2
180

$$
1.35
$$

$0.18 \times 0.19 \times 0.28$
$\operatorname{MoK} \alpha(\lambda=0.7107 \AA)$
graphite
1.0

Wyckoff
Bisecting
variable 2 to 30
4 to 50
$0 \leq h \leq 9,-10 \leq k \leq 10$,
$-11 \leq 1 \leq 11$
1571
1257
$\left|F_{0}\right| \geq 2.5 \alpha$ (FF_{O})
124
10.14
0.043
0.048
1.65
0.00053
1.414

TABLE: Atami= =ardinates $\left(x 10^{4}\right)$ and isotrodie thermal darameters $\left(\dot{A}^{2} \times 10^{3}\right)^{a} \operatorname{tar} C_{a_{1}} H_{11} N_{3}(R W 2 D$ WILLIAMS/CARR

atom	\times	\checkmark	z	$U_{i 50}^{b}$
N1	3939(3)	11850(2)	6493(2)	47(1)*
01	1632(2)	10147(2)	$12102(2)$	45(1)*
02	4038(2)	8841 (2)	7056(2)	51(1)*
03	-2991(2)	14128(2)	$13148(2)$	49(1)*
C1	1400(3)	12056(3)	$11753(2)$	41(1)*
C2	2038(3)	12458(3)	10099(2)	39(1)*
C3	2716(3)	10711(2)	9344(2)	35(1)*
C4	2439(3)	9364 (3)	10618(2)	40(1)*
C5	3604 (3)	10400(3)	7564(2)	37(1)*
C6	2837(4)	7307(3)	10737(3)	55(1)*
C7	522(3)	13171(3)	13222 (3)	50(1)*
C8	-1627(3)	13247(3)	14182(2)	50(1)*

(a) Estimated standard deviations in the least sianitieant diaits are aiven in darentheses.
(b) For values with asterisks, the eauivalent isotrooie U is detined as $1 / 3$ at the trace of the $U_{i}{ }_{i}$ tensar.

TABLE 2 Bane lenates $(\dot{A})^{a}$ for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}$ (RW2O WILLIAMS/CARR

$\mathrm{N} 1-\mathrm{HA}$	$0.891(28)$	$\mathrm{N} 1-\mathrm{HB}$	$0.934(24)$
$\mathrm{N} 1-C 5$	$1.329(2)$	$01-C 1$	$1.384(2)$
$01-C 4$	$1.361(2)$	$02-C 5$	$1.244(3)$
$03-H C$	$0.848(34)$	$03-C B$	$1.419(3)$
$C 1-C 2$	$1.336(3)$	$C 1-C 7$	$1.481(3)$
$C 2-C 3$	$1.445(3)$	$C 3-C 4$	$1.350(2)$
$C 3-C 5$	$1.467(3)$	$C 4-C 6$	$1.475(3)$
$C 7-C B$	$1.515(3)$		

(a) Estimated standard deviations in the least sianitieant diaits are aiven in darentheses.

TABLE 3 Bana anales (deg) ${ }^{\text {a }}$ tor $C_{a} \mathrm{H}_{11} \mathrm{NO}_{3}$ (RWZO WILLIAMS/CARR

$H A-N 1-H B$	$119.1(21)$	$H A-N 1-C 5$	$121.3(14)$
$H B-N 1-C 5$	$119.3(15)$	$C 1-O 1-C 4$	$107.6(1)$
$H C-O 3-C a$	$107.7(17)$	$01-C 1-C 2$	$109.3(2)$
$O 1-C 1-C 7$	$115 . B(2)$	$C 2-C 1-C 7$	$134.8(2)$
$C 1-C Z-C 3$	$107 . D(2)$	$C 2-C 3-C 4$	$106.3(2)$
$C Z-C 3-C 5$	$127.9(2)$	$C 4-C 3-C 5$	$125.7(2)$
$O 1-C 4-C 3$	$109.8(2)$	$01-C 4-C 6$	$115.6(2)$
$C 3-C 4-C 6$	$134.6(2)$	$N 1-C 5-02$	$120.5(2)$
$N 1-C 5-C 3$	$117.6(2)$	$02-C 5-C 3$	$121.9(2)$
$C 1-C 7-C B$	$113.5(2)$	$O 3-C B-C 7$	$110.9(2)$

(a) Estimated standard deviations in the least sianiticant digits are given in oarentheses.

$$
\begin{aligned}
\text { TABLE } 4 \quad & \text { Anisctrooic thermal parameters }\left(\dot{A}^{2} \times 1 J^{3}\right) \text { a,b } \\
& \text { tor } C_{a} \mathrm{H}_{11} \mathrm{NO}_{3}(R W Z \square \text { WILLIAMS/CARR }
\end{aligned}
$$

atam	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$N 1$	$63(1)$	$38(1)$	$36(1)$	$-8(1)$	$-2(1)$	$-22(1)$
01	$57(1)$	$43(1)$	$36(1)$	$-3(1)$	$-11(1)$	$-19(1)$
02	$70(1)$	$41(1)$	$45(1)$	$-13(1)$	$-3(1)$	$-28(1)$
03	$60(1)$	$36(1)$	$54(1)$	$-6(1)$	$-13(1)$	$-19(1)$
$C 1$	$45(1)$	$40(1)$	$40(1)$	$-8(1)$	$-10(1)$	$-18(1)$
$C 2$	$42(1)$	$36(1)$	$38(1)$	$-6(1)$	$-9(1)$	$-15(1)$
$C 3$	$36(1)$	$33(1)$	$37(1)$	$-6(1)$	$-8(1)$	$-13(1)$
$C 4$	$42(1)$	$39(1)$	$40(1)$	$-7(1)$	$-11(1)$	$-14(1)$
$C 5$	$37(1)$	$35(1)$	$40(1)$	$-8(1)$	$-9(1)$	$-13(1)$
$C 6$	$73(1)$	$38(1)$	$53(1)$	$1(1)$	$-18(1)$	$-22(1)$
$C 7$	$62(1)$	$53(1)$	$41(1)$	$-12(1)$	$-13(1)$	$-22(1)$
$C B$	$67(1)$	$48(1)$	$32(1)$	$-7(1)$	$-4(1)$	$-23(1)$

(a) Estimated standard deviations in the least sianiticant digits are given in darentheses.
(b) The anisatrodic thermal oarameter exoonent takes the form:

$$
-2 \pi^{2}\left(h^{2} a{ }^{* 2} U_{11}+k^{2} b^{* 2} U_{22^{+}} \ldots+2 h k a^{*} b^{*} U_{12}\right)
$$

The Structure of

3-ethyl-4-oxa-1,5,6-trihydrophthalimide

Kevin A. Andersen and Oren P. Anderson*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA

Abstract. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3} ; M_{\mathrm{r}}=181.19$, monoclinic, $P_{2} / c, a=12.262$ (3) $\AA, b=$ 8.027 (2) $\AA, c=8.596$ (1) $\AA, \beta=92.36(2)^{\circ}, V=845.4$ (3) $\AA^{3}, Z=4, D_{x}=1.42 \mathrm{~g}$ $\mathrm{cm}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.7107 \AA, \mu=1.2 \mathrm{~cm}^{-1}, F(000)=384, T=-108^{\circ} \mathrm{C}, R=0.050$ ($w R=0.075$) for 1365 unique, observed reflections. The compound is a derivative of phthalimide substituted in the six-membered ring by an ether oxygen and an ethyl group.

1
Experimental. Crystals (coloriess prisms) of $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$ (hereafter 1) obtained from a ethyl acetate/hexane solution by Sean Esslinger and Professor Robert M. Williams (Colorado State University). Crystal size $0.47 \times 0.60 \times 0.44$
mm . Nicolet $R 3 \mathrm{~m}$ diffractometer, unit cell constants from least squares fit of setting angles for 25 reflections ($2 \theta_{\mathrm{av}}=31.40^{\circ}$). Data collected ($\theta / 2 \theta$ scans) to $(\sin \theta) / \lambda=0.5947 \AA,-11 \leq h \leq 11,0 \leq k \leq 10,0 \leq 1 \leq 15$. Three standard reflections $(400,020,005)$ every 97 , no trend in intensity observed; Lorentz and polarization corrections; no absorption correction applied due to low absorption coefficient; 1623 unique reflections, 1365 reflections with $F_{0}>4.0 \sigma\left(F_{0}\right)$ observed.

Structure solved by direct methods (SOLV); block diagonal (max. 103 parameters/block, 125 parameters total, data/parameters $=10.9$) weighted $[\mathrm{w}=$ $\left.\left(\sigma^{2}(F)+g F^{2}\right)^{-1}, g=1.37 \times 10^{-3}\right]$ least-squares refinement on F. H atoms in idelized positions ($C-H=0.96 \dot{A}, U(H)=1.2 \times U_{\text {iso }}(C)$) with exception of H atom on $\mathbf{N}(1)$ (located in difference map and refined with isotropic thermal parameters). Non-H atoms refined with anisotropic thermal parameters. At convergence $\left((\Delta / \sigma)_{\max }=0.036,(\Delta \sigma)_{\text {mean }}=0.011\right.$ for last 2 cycles $) R=0.050$, $w R=0.075, S=1.81$, slope of normal probability plot $=1.56,(\Delta \rho)_{\max }=0.40 \mathrm{e}$ $\AA^{-3},(\Delta \rho)_{\text {min }}=-0.32$ e \AA^{-3}. Neutral atom scattering factors and anomalous dispersion corrections used (International Tables for X-Ray Crystallography, 1974); all calculations performed using SHELXTL program library (Sheldrick, 1983). Table 1 gives atomic coordinates, Tables 2 and 3 give bond lengths and angles, respectively.* Fig. 1 shows the structure of 1, as well as the numbering scheme used.

[^0]Related literature. Phthalimide and five derivatives of phthalimide have been previously studied: phthalimide (Matzat, 1972), 5-methyl-1,3,4,6-tetraoxaperhydropyrrolo(3,4-c)pyridine (Amorese, 1982), 4-(4'-Ndiethylaminophenylazo)phthalimide (Golinski, 1985), 1,2,3,6tetrahydrophthalimide (Ki, 1976), pyromellitic di-imide (Bulgarovskaya, 1976), 3,4,5,6-tetrahydrophthalimide ($\mathrm{Ki}, 1975$).

We acknowiedge the support of the U.S. National Science Foundation for the purchase of the Nicolet $R 3 m$ diffractometer and computing system.

References

Amorese, A., Guvuzzo, E., Mazza, F., Casini, G. \& Ferappi, M. (1982). Acta Cryst. B, 38, 3145.

Bulgarovskaya, I. V., Novakovskaya, L. A., Federov, Y. G.\& Zvonkova, Z. V. (1976). Kristallografiya, 21, 515.

Golinski, B. (1985). Z. Kristallogr., 173, 1985.
International Tables for X-Ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Ki, A. (1975). Acta Cryst. B, 31, 2494.
Ki, A. (1976). Acta Cryst. B, 32, 1556.
Matzat, E. (1972). Acta Cryst. B, 28, 415.
Sheldrick, G. M. (1983). SHELTXTL, Rev. 5, Nicolet XRD Corp., Madison, Wisconsin, USA.

Table 1. Atomic coordinates and isotrodic thermal darameters $\left(\AA^{2} \times 10^{3}\right)$ for 1

	x	V		
	Z	U		
$O(1)$	$0.8387(1)$	$0.0476(2)$	$0.1339(2)$	$25(1) *$
$O(2)$	$0.4994(1)$	$0.1669(1)$	$-0.2315(1)$	$20(1) *$
$O(3)$	$0.7062(1)$	$0.5532(1)$	$0.0324(2)$	$28(1) *$
$N(1)$	$0.5860(1)$	$0.3846(2)$	$-0.1072(2)$	$18(1) *$
$H N(1)$	$0.5482(2)$	$0.4697(3)$	$-0.1693(3)$	$37(6)$
$C(1)$	$0.7610(1)$	$-0.0827(2)$	$0.0872(2)$	$22(1) *$
$C(2)$	$0.6892(1)$	$-0.0350(2)$	$-0.0535(2)$	$20(1) *$
$C(3)$	$0.6292(1)$	$0.1226(2)$	$-0.0094(2)$	$17(1) *$
$C(4)$	$0.5644(1)$	$0.2199(2)$	$-0.1312(2)$	$16(1) *$
$C(5)$	$0.6734(1)$	$0.4145(2)$	$0.0012(2)$	$17(1) *$
$C(6)$	$0.7096(1)$	$0.2496(2)$	$0.0534(2)$	$17(1) *$
$C(7)$	$0.8086(1)$	$0.2071(2)$	$0.1150(2)$	$19(1) *$
$C(8)$	$0.8971(1)$	$0.3259(2)$	$0.1676(2)$	$24(1) *$
$C(9)$	$1.0078(2)$	$0.2849(3)$	$0.1055(3)$	$37(1) *$

* Eauivalent isotrodic U defined as one third of the trace of the orthoconalised $U_{i f}$ tensor.

```
TABLE 2. Bond lenaths \((A)^{\text {a }}\) for 1
```

$O(1)-C(1)$	$1.459(2)$	$O(1)-C(7)$	$1.340(2)$
$O(2)-C(4)$	$1.227(2)$	$O(3)-C(5)$	$1.210(2)$
$N(1)-H N(1)$	$0.972(23)$	$N(1)-C(4)$	$1.363(2)$
$N(1)-C(5)$	$1.412(2)$	$C(1)-C(2)$	$1.515(2)$
$C(2)-C(3)$	$1.519(2)$	$C(3)-C(4)$	$1.507(2)$
$C(3)-C(6)$	$1.503(2)$	$C(5)-C(6)$	$1.460(2)$
$C(6)-C(7)$	$1.348(2)$	$C(7)-C(8)$	$1.501(2)$
$C(8)-C(9)$	$1.515(3)$		

(a) Estimated standard deviations in the least siqnificant diqits are qiven in oarentheses.

TABLE 3. Bond anales $(\mathrm{deq})^{\text {a }}$ for 1
$C(1)-O(1)-C(7)$
$\operatorname{HN}(1)-N(1)-C(5)$
$O(1)-C(1)-C(2)$
$C(2)-C(3)-C(4)$
$C(4)-C(3)-C(6)$
$O(2)-C(4)-C(3)$
$O(3)-C(5)-N(1)$
$N(1)-C(5)-C(6)$
$C(3)-C(6)-C(7)$
$O(1)-C(7)-C(6)$
$C(6)-C(7)-C(8)$
118.5(1)
125.1 (14)
112.9(1)
120.3(1)
102.6(1)
128.2(1)
122.6(1)
105.2(1)
$122.4(1)$
121.9(1)
125.9(2)

HN(1)-N(1)-C(4)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(5)$
$C(1)-C(2)-C(3)$
$C(2)-C(3)-C(6)$
$O(2)-C(4)-N(1)$
N(1)-C(4)-C(3)
$O(3)-C(5)-C(6)$
$C(3)-C(6)-C(5)$
C(5)-C(6)-C(7)
O(1)-C(7)-C(8)
C(7)-C(8)-C(9)
120.9(14)
113.7(1)
$106.4(1)$
109.7(1)
124.0(1)
107.7(1)
132.2(2)
108.6(1)
$127.4(2)$
112.2(1)
113.8(2)
(a) Estimated standard deviations in the least sianificant digits are given in parentheses.

[^0]: * Lists of anisotropic thermal parameters, H coordinates, and structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP
 \qquad (11 pp). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

