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ABSTRACT

Polarization diversity radar measurements such as reflectivity factor, differential reflectivity, and differential
propagation phase are extensively used in rainfall estimation. Algorithms to estimate rainfall from polarimetric
radar measurements are based on a model for the raindrop shape as a function of drop diameter. Most of the
current algorithms use an equilibrium shape–size model for raindrops. Variation of the prevailing mean raindrop
shapes from an assumed model has a direct impact on the accuracy of radar rainfall estimates. This paper
develops composite algorithms to estimate rainfall from polarimetric radar data without an a priori assumption
about the specific form of mean raindrop shape–size model such as equilibrium shape model. The accuracy of
rainfall estimates is evaluated in the presence of random measurement errors as well as systematic bias errors.
The composite algorithms, independent of a prespecified raindrop shape model, were applied to radar parameters
simulated from disdrometer data collected over 3 months, and the corresponding rainfall estimates were found
to be in good agreement with disdrometer estimates. The composite algorithms were also tested with Colorado
State University CHILL radar observations of the 28 July 1997 Fort Collins (Colorado) flood event. The storm
total precipitation estimates based on the composite algorithms developed in this paper were in much better
agreement with rain gauge estimates in comparison with conventional algorithms.

1. Introduction

Polarization diversity radar measurements for rainfall
estimation have been studied for nearly two decades.
The research results to date have been sufficient to con-
sider polarimetric upgrades to operational WSR-88D ra-
dars (Doviak et al. 2000). The most commonly used
polarimetric radar measurements in rainfall estimation
are the reflectivity factor, usually at horizontal polari-
zation (Zh), differential reflectivity (Zdr), and specific
differential propagation phase (Kdp). Based on the above
three measurements, a number of algorithms have been
derived in the literature to estimate rainfall (Seliga and
Bringi 1976; Sachidananda and Zrnić 1987; Chandra-
sekar et al. 1990; Gorgucci et al. 1994; Ryzhkov and
Zrnić 1995; Gorgucci and Scarchilli 1997). These al-
gorithms have been derived assuming equilibrium rain-
drop shapes, described by a shape–size relationship
(Pruppacher and Beard 1970). The mean axis ratio ver-
sus size relation is crucial for deriving algorithms that
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use Zdr and Kdp (Jameson 1983, 1985). A recent study
by Keenan et al. (1997) indicates that Kdp-based polar-
imetric radar rainfall algorithms are influenced by de-
viation from the equilibrium shape of raindrops. Thus,
it would be important to derive an algorithm to estimate
rainfall rate that is made immune to variability in the
mean raindrop shape–size relationship. Gorgucci et al.
(2000a) demonstrated that the slope of a linear mean
raindrop shape–size relation can be estimated from po-
larimetric radar measurements. In principle, if the mean
shape–size relation for raindrops is known then the rain-
fall rate can be estimated accurately. Therefore, the goal
of this paper is to incorporate the results of Gorgucci
et al. (2000a) into rainfall estimation algorithms so that
the algorithms can be used for any prevailing mean
raindrop shape without any prior assumption of the
shape–size model. This paper presents composite al-
gorithms to estimate rainfall rate using polarimetric ra-
dar measurements that are independent of any variability
in the mean raindrop shape–size relations.

The paper is organized as follows: section 2 describes
the various polarimetric radar rainfall algorithms, sec-
tion 3 describes the effect of variability in the mean
raindrop shape on radar rainfall algorithms, and section
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FIG. 1. Normalized bias (NB) of R(Zh, Zdr), R(Kdp), and R(Kdp, Zdr)
as a function of b. The algorithms were derived for b 5 be 5 0.062,
however applied to all b. Note that when b 5 be bias is 0.

4 describes the development of radar rainfall algorithms,
which are independent of the mean raindrop shape–size
relationship. The performance of the new algorithms in
the presence of nonlinear models for the raindrop shape–
size relation is presented in section 5. The corresponding
error structure and sensitivity of the radar rainfall al-
gorithms developed in section 4 is described in section
6. Section 7 presents evaluation of the algorithms de-
veloped in this paper using disdrometer data collected
in Darwin (Australia) as well as radar and rain gauge
data collected in a flash flood producing storm using the
Colorado State University (CSU) CHILL (CSU–
CHILL) radar. Section 8 summarizes the important re-
sults of this paper.

2. Polarimetric radar measurements and rainfall
algorithms

The distribution of raindrop sizes and shapes deter-
mines the electromagnetic scattering properties of rain-
filled media. These effects, in turn, are embodied in
radar measurements such as, reflectivity factors (Zh,y ) at
h and y polarization states, differential reflectivity (Zdr),
which is the ratio of reflectivities at the two polarization
states (Seliga and Bringi 1976), and specific differential
phase (Kdp), which is due to the propagation phase dif-
ference between the two polarizations (Seliga and Bringi
1978; Sachidananda and Zrnić 1987). Both cloud mod-
els and measurements of raindrop size distributions
(RSD) at the surface and aloft show that a gamma dis-
tribution model adequately describes many of the nat-
ural variations in the RSD (Ulbrich 1983):

23 21N(D) 5 n f (D) (m mm ),c (1)

where N(D) is the number of the raindrops per unit
volume per unit size interval (D to D 1 DD), nc is the
concentration, and f (D) is the gamma probability den-
sity function (pdf ) given by

m11L
2LD mf (D) 5 e D ; m . 21, (2)

G(m 1 1)

where L and m are parameters of the gamma pdf and
G indicates gamma function (Abramovitz and Stegun
1970). The volume-weighted median diameter D0 can
be defined as

D `0

3 3D N(D) dD 5 D N(D) dD. (3a)E E
0 D0

The parameter N0 defined by Ulbrich (1983) is related
to nc by

N G(m 1 1)0n 5 . (3b)c m11L

An alternate form of normalizing the RSD with re-
spect to water content can be written as (Willis 1984;
Illingworth and Blackman 1999; Testud et al. 2000)

mD
N(D) 5 N f (m) exp(2LD), (4a)w 1 2D0

where
2mN 5 N f (m)D , and (4b)0 w 0

m146 (3.67 1 m)
f (m) 5 . (4c)

43.67 G(m 1 4)

The equilibrium shape of a raindrop is determined by
the balance between the forces due to surface tension,
hydrostatic pressure, and aerodynamic pressure from
airflow around the drop. Raindrop shapes have been
extensively studied (e.g., see the review by Pruppacher
and Klett 1997). A few relevant references are the the-
oretical studies by Green (1975) and Beard and Chuang
(1987), the experimental studies by Pruppacher and
Beard (1970), and axis ratio measurements in natural
rainfall using aircraft imaging probes by Chandrasekar
et al. (1988) and Bringi et al. (1998). All these studies
as well as polarimetric radar measurements show that
the raindrop shapes can be approximated by an oblate
spheroid with the axis ratio (b/a) given as

b
r 5 5 1.03 2 bD, (5)

a

where D is the equivolumetric spherical diameter (typ-
ically in units of mm); a and b are the major and minor
axes of the spheroid, respectively; and b is the slope
given by

dr
b 5 2 . (6)

dD
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FIG. 2. (a) The coefficients c1, a1, b1 of R(Zh, Zdr) algorithm given as a function of b. (b) The coefficients c2, a2 of R(Kdp) algorithm
given as a function of b. (c) The coefficients c3, a3, b3 of R(Kdp, Zdr) algorithm given as a function of b.

A commonly used value for b is 0.062, which is a linear
fit to the wind tunnel data of Pruppacher and Beard
(1970) (henceforth referred to as PB). When b 5 0.062
in (5), it corresponds to a representative approximation
of the equilibrium shape–size relation, and henceforth
is denoted by be. It should be noted here that some
raindrop shape models such as the one described by
Beard and Chuang (1987) (henceforth referred to as
BC), and the one described by Andsager et al. (1999)
(henceforth referred to as ABL) are not linear shape–

size relations but third degree polynomials of the drop
diameter. In particular, the ABL model attempts to syn-
thesize the effects of raindrop oscillations for drops in
the range 1–4 mm using both laboratory axis ratio data
as well as field measurements. In this paper, it is as-
sumed that the linear relation in (5) and the correspond-
ing slope b can effectively account for raindrop oscil-
lations.

The radar observables, namely, Zh,y , Zdr, and Kdp, can
be expressed in terms of the RSD as follows:
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4l
6 23Z 5 s (D)N(D) dD (mm m ), (7)h,y E h,y5 2p |k |

where sh,y represent the radar cross sections at hori-
zontal and vertical polarizations, respectively; l the
wavelength; and k 5 (er 2 1)/(er 1 2), where er is the
dielectric constant of water;

 
s (D)N(D) dDE h 

 Z 5 10 log and (8)dr

s (D)N(D) dD E y

 

180l
K 5 R [ f (D) 2 f (D)]N(D) dDdp E h yp

21(8 km ), (9)

where R refers to real part of a complex number and f h

and f y are the forward-scatter amplitudes at h and y
polarization, respectively. Radar measurements used in
polarization diversity radar estimates of rainfall rate are
Zh (mm6 m23), Zdr (dB), and Kdp (8 km21). A number of
algorithms have been introduced in the literature for es-
timation of rainfall using radar measurements from a po-
larization diversity radar operating in the linear polari-
zation basis. In this paper we focus on algorithms that
have been used extensively in the literature. These al-
gorithms can be broadly classified into three categories,
namely, (i) algorithms that use reflectivity and differential
reflectivity R(Zh, Zdr), (ii) algorithms that use differential
propagation phase R(Kdp), and (iii) algorithms that use
differential propagation phase and differential reflectivity
R(Kdp, Zdr). These algorithms have the form

a 2b Z1 1 drR(Z , Z ) 5 c Z 10h dr 1 H (10)

(Gorgucci et al. 1995),
a2R(K ) 5 c Kdp 2 dp (11)

(Sachidananda and Zrnić 1987; Chandrasekar et al.
1990), and

a 20.1b Z3 3 drR(K , Z ) 5 c K 10dp dr 3 dp (12)

(Seliga and Bringi 1978; Jameson 1991; Ryzhkov and
Zrnić 1995; Gorgucci and Scarchilli 1997).

3. Bias in rainfall algorithms due to varying mean
raindrop shape–size relation

It can be seen from (5) that raindrops become more
oblate with increasing size. Therefore, varying the shape–
size relation should change the values of Zdr and Kdp for
a given RSD. Gorgucci et al. (2000a) demonstrated that
Zh is fairly insensitive to varying b, whereas Zdr and Kdp

can vary significantly. Thus, the resulting rain-rate esti-
mates will be biased if the actual shape–size relation is
different from that assumed. The effect of varying the
shape–size relation is illustrated by the following anal-

ysis. For a given RSD, at S-band frequency of 2.8 GHz,
Zh, Zdr, and Kdp are calculated assuming b 5 be 5 0.062.
A large table of Zh, Zdr, and Kdp values is derived by
varying the parameters characterizing the gamma RSD
over a wide range, namely, 21 , m , 5, 3 , logNw ,
5, and 0.5 , D0 , 2.5. Nonlinear regression is then used
to estimate the coefficients (c, a, b) listed in (10)–(12);
note that the ‘‘true’’ rain rate R is obtained by integrating
y(D)D3N(D) where y(D) is the terminal velocity. Note
that the variation of the RSD parameters automatically
yields a distribution of R, which is typically large at low
rain rates and small at high rain rates. Subsequently, b
is varied between 0.02 to 0.1, the corresponding Zh, Zdr,
and Kdp are again calculated and, in turn, used in the
algorithms listed in (10)–(12) whose coefficients are only
valid for b 5 be. Figure 1 shows the biases of R(Zh, Zdr),
R(Kdp), and R(Kdp, Zdr), normalized with respect to the
respective estimates obtained at b 5 be. The following
observations can be made from Fig. 1. Among the three
algorithms, R(Kdp, Zdr) is the least sensitive to b, espe-
cially when b . be(be 5 0.062). Here R(Zh, Zdr) and
R(Kdp) are fairly sensitive to variation in b, resulting in
significant biases. The bias in R(Zh, Zdr) and R(Kdp) are
of opposite signs. In addition, the sign of the bias for
R(Zh, Zdr) and R(Kdp) changes when b goes from b #
be to b $ be. Thus, to avoid potentially large bias in
rainfall estimates, it is important to develop algorithms
that are immune to variability in raindrop shape–size re-
lations.

4. Development of polarimetric rainfall algorithm
immune to variation in shape–size relation

In order to develop rainfall algorithms that are in-
dependent of b, we need to evaluate the variation of
the coefficients of algorithms listed in (10)–(12) for dif-
ferent values of b. Using simulations of the radar mea-
surements as described in section 3, and nonlinear re-
gression analysis, the best coefficients of R(Zh, Zdr),
R(Kdp), and R(Kdp, Zdr) are evaluated for different values
of b under a gamma RSD model. The coefficient set
(c1, a1, b1), (c2, a2), and (c3, a3, b3) can change with
b as illustrated in Fig. 2. Figure 2a shows that the ex-
ponent (a1) of Zh is not very sensitive to b but the
coefficient (b1) multiplying Zdr varies considerably. This
is expected because variation of b impacts Zdr more than
Zh. In addition, the constant multiplier (c1) also varies
significantly with b. Similarly, Fig. 2b shows that the
multiplication constant (c2) adjusts itself to account for
varying b (or, Kdp), whereas a2 does not vary signifi-
cantly. Figure 2c shows the variation of c3, a3, and b3

where all the three parameters vary with b. In summary,
the prevailing b has a significant influence on the choice
of algorithm to estimate rainfall. Gorgucci et al. (2000a)
have shown that polarimetric radar observations can be
used to estimate and the estimator for b, at S bandb̂
(frequency of 2.8 GHz), is given by
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FIG. 3. (a) Scattergram of Rb(Zh, Zdr) algorithm vs R. (b) Scattergram of Rb(Kdp) algorithm vs R. (c) Scattergram of Rb(Kdp, Zdr) algorithm
vs R.

20.365 0.0965 Z 0.380drb̂ 5 2.08 3 Z 10 K .h dp (13)

Note that the above parameterization (13) is slightly
different from the equation given in Gorgucci et al.
(2000a), but yields similar results. Therefore, in prin-
ciple if b can be estimated then an appropriate algorithm
can be obtained from Fig. 2. However, in practice this
can get cumbersome. It is easier if the variability due
to b can be built into the algorithms. The following set
of parametric forms is derived incorporating b into the
radar rainfall algorithms as

a 20.1b Z1 1 drR (Z , Z ) 5 c Z 10b h dr 1 h (14)

where

0.865c 5 0.105b , (15a)1

a 5 0.93, (15b)1

20.703b 5 20.585b . (15c)1

Similarly,
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FIG. 4. The NB of Rb(Zh, Zdr), Rb(Kdp), and Rb(Kdp, Zdr) algorithms
as a function of b. Note that the bias is negligible in comparison to
the results of Fig. 1.

FIG. 5. Normalized standard error (NSE) of R(Zh, Zdr), R(Kdp),
R(Kdp, Zdr), Rb(Zh, Zdr), Rb(Kdp), and Rb(Kdp, Zdr) algorithms as a
function of R, when the prevailing shape–size relation is the BC
model. Note that in general Rb algorithms have less NSE.

FIG. 6. NSE of R(Zh, Zdr), R(Kdp), R(Kdp, Zdr), Rb(Zh, Zdr), Rb(Kdp),
and Rb(Kdp, Zdr) algorithms as a function of R, when the prevailing
shape–size relation is the ABL model. Note that Rb algorithms have
substantially lower NSE.

a2R (K ) 5 c K ,b dp 2 dp (16)

where
21.612c 5 0.440b , (17a)2

0.175a 5 1.596b , and (17b)2

a 20.1b Z3 3 drR (K , Z ) 5 c K 10 , (18)b dp dr 3 dp

where
21.795c 5 0.481b , (19a)3

0.117a 5 1.337b , and (19b)3

21.674b 5 20.014b . (19c)3

Thus, the above algorithms (14), (16), and (18) can be
used to estimate rainfall rate for arbitrary b, which can
be estimated by (13). It can be shown that the final
equations of the rainfall rate estimates exhibit a more
complicated power-law dependence.

5. Performance of the parameterization

The performance of the above three algorithms Rb(Zh,
Zdr), Rb(Kdp), and Rb(Kdp, Zdr) is evaluated in this section
based on gamma RSD simulations. Figure 3a shows a
scatterplot of Rb(Zh, Zdr) versus R for various RSD,
described in section 3, and b varying between 0.02 to
0.1. It can be seen from Fig. 3a that Rb(Zh, Zdr) estimates
R fairly well for all b in the assumed range. Similarly,
Fig. 3b shows the scatterplot of Rb(Kdp) versus R where-
as Fig. 3c shows the scatterplot of Rb(Kdp, Zdr) versus

R. Figures 3b and 3c show that Rb(Kdp, Zdr) performs
better than Rb(Kdp) for estimating R, for arbitrary b.
Quantitative analysis of these simulation results yielded
a normalized standard error (NSE) of about 11.9% for
Rb(Zh, Zdr), 25.1% for Rb(Kdp), and 12.4% for Rb(Kdp,
Zdr), where NSE is defined as
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FIG. 7. (a) NSE of Rb(Zh, Zdr), Rb(Kdp), and Rb(Kdp, Zdr) algorithms
in the presence of measurement error, when estimated over a 3-km
path, given as a function of R. (b) NSE of Rb(Zh, Zdr), Rb(Kdp), and
Rb(Kdp, Zdr) algorithms in the presence of measurement error, when
estimated over a 6-km path, given as a function of R.

2 1/2ˆ[^(R 2 R) &]b
NSE 5 , (20)

^R&

where R̂b indicates one of the estimators defined in (14),
(16), or (18), the angle brackets indicate averaged value
and R is the true rain rate.

The main objective of deriving Rb is to eliminate the
bias error in rainfall estimates due to different shape–
size relations. To demonstrate this, the bias in Rb is

computed for different b by varying the RSD over a
wide range as described in section 3. The normalized
bias in the various algorithms is computed as a function
of b. Normalized bias (NB) is defined as

ˆ^R 2 R&b
NB 5 . (21)

^R&

Figure 4 shows the normalized bias for Rb(Zh, Zdr),
Rb(Kdp), and Rb(Kdp, Zdr) as a function of b. It can be
seen from Fig. 4 that the bias due to variation in b is
negligible compared to that shown in Fig. 1.

The model presented in this paper makes a linear
approximation to the shape–size relationship. However,
as pointed out earlier in the introduction some com-
monly used models for shape–size relations are nonlin-
ear. The following analysis evaluates the performance
of Rb algorithms under this context. Zh, Zdr, and Kdp

values are simulated for widely varying RSD, assuming
that the raindrop shape follows the BC and ABL models.
Subsequently, Rb algorithms described by (14), (16),
and (18) are applied to the simulated observables Zh,
Zdr, and Kdp. Figures 5 and 6 show NSE of rainfall
estimates for two nonlinear shape–size models, namely,
the BC and ABL models, respectively, as a function of
rain rate. Figure 5 shows the NSE in R(Zh, Zdr), R(Kdp),
and R(Kdp, Zdr) based on the PB model as well as Rb(Zh,
Zdr), Rb(Kdp), and Rb(Kdp, Zdr). It can be seen from Fig.
5 that all the three polarimetric algorithms based on the
BC model have higher NSE, whereas the algorithms
derived in this paper have lower NSE. This feature is
clear for R(Kdp) and R(Kdp, Zdr), whereas for R(Zh, Zdr)
the improvement is significant only up to moderate rain
rates (R , 60 mm h21). This result is even more pro-
nounced when the ABL model is used. Figure 6 shows
the NSE in R(Zh, Zdr), R(Kdp), and R(Kdp, Zdr) as well
as Rb(Zh, Zdr), Rb(Kdp), and Rb(Kdp, Zdr), where all es-
timates based on the ABL model have uniformly higher
NSE than the algorithms based on (14), (16), and (18).
Thus, in summary, the composite algorithms developed
in this paper and the simulation results show that rain
rate can be accurately estimated, without having to as-
sume a specific shape–size relation such as the equilib-
rium mode.

6. Error structure and sensitivity of the rainfall
algorithms

The performance of the algorithms Rb(Zh, Zdr),
Rb(Kdp), and Rb(Kdp, Zdr) depend on the parameteriza-
tion as well as measurement errors. There are two types
of measurement errors, namely, random measurement
errors and systematic bias errors. The nature of the al-
gorithms Rb(Zh, Zdr), Rb(Kdp), and Rb(Kdp, Zdr) involves
estimation of b first, and therefore any error in any of
the three measurements, namely, Zh, Zdr, and Kdp will
affect all the three estimators.

Here Zh is based on absolute power measurement and
has a typical accuracy of 1 dB. The Zdr is a relative
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FIG. 8. (a) Contour plot of NB in Rb(Zh, Zdr) due to bias in Zh and Zdr. (b) Contour plot of NB in Rb(Kdp) due to bias in Zh and Zdr. Note
that Rb(Kdp) is affected by bias in Zh and Zdr through the estimation of b. (c) Contour plot of NB in Rb(Kdp, Zdr) due to bias in Zh and Zdr.
Though the algorithm explicitly does not use Zh, the algorithm is affected through the estimation of b.

power measurement. It can be estimated to an accuracy
of 0.2 dB. Here Kdp is the slope of the range profile of
differential propagation phase Fdp, which can be esti-
mated to an accuracy of 28–38. The subsequent estimate
of Kdp depends on the type of procedure used, such as,
a simple finite-difference scheme or a least squares fit.
Using a least squares estimate of the Fdp range profile
the standard deviation of Kdp can be expressed as (Gor-
gucci et al. 2000b)

s (F ) Ndp
s (K ) 5 Ï3 , (22)dp !NDr (N 2 1)(N 1 1)

where Dr is the range resolution of the Fdp estimate and
N is the number of range samples within the path. For
large N we can see that s(Kdp) decreases as N 3/2. For a
typical 150 m range spacing, and Fdp accuracy of 2.58,
Kdp can be estimated, over a path of 2.1 km, with a
standard error of 0.558 km21. Thus, the three measure-
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FIG. 9. NSE of R(Zh, Zdr), R(Kdp), R(Kdp, Zdr), Rb(Zh, Zdr), Rb(Kdp),
and Rb(Kdp, Zdr) algorithms computed from disdrometer simulations.
The axis ratio model used for simulation is the ABL model. Note
that Rb algorithms have significantly smaller NSE.

ments Zh, Zdr, and Kdp have completely different error
structure, and in addition, the measurement errors of Zh,
Zdr, and Kdp are nearly independent. Therefore, the three
measurements, when used in rainfall algorithms, result
in very different error structure of rainfall estimates. In
the following we use simulations to evaluate the error
structure of rainfall algorithms described by (14), (16),
and (18). The simulation is done as follows. Various
rain-rate values are simulated by varying the parameters
of the gamma RSD over a wide range as described in
section 3. For each RSD, the corresponding Zh, Zdr, and
Kdp are evaluated using (7)–(9) choosing a random value
of b between 0.02 and 0.1. Random measurement errors
are simulated using the procedure described in Chan-
drasekar et al. (1986). The principal parameters of our
simulation are as follows: (i) wavelength l 5 10.7 cm,
(ii) sampling time PRT 5 1 ms, (iii) number of sample
pairs M 5 64, (iv) Doppler velocity spectrum width sy

5 2 m s21, (v) copolar correlation between H and V
signals rhy 5 0.99, and (vi) Kdp is estimated as the slope
of the line obtained from a least squares fit to the Fdp

profile, with samples spaced 150 m.
The following analysis compares the performance of

the polarimetric radar rainfall algorithms under ideal
conditions of uniform rainfall over the path where Kdp

is estimated. Simulations were performed for uniform
rainfall path over 20 and 40 range bins corresponding
to 3- and 6-km path, respectively, in the presence of
measurement errors. Figures 7a and 7b show the nor-
malized standard error of Rb(Zh, Zdr), Rb(Kdp), and
Rb(Kdp, Zdr) as a function of R for 3- and 6-km path,
respectively. It can be seen from Fig. 7 that on the

average, the error in rain-rate estimate due to measure-
ment errors and parameterization in the algorithm is of
the order of 35% for 3-km path and 25% for 6-km path.
A comparison between Figs. 7a and 7b show that the
errors are less when the rain rate is estimated over a 6-
km path in comparison to a 3-km path. In addition to
radar measurement errors, systematic bias errors can be
present in Zh and Zdr. In a well-maintained radar system,
bias error in Zh and Zdr should be less than 1 and 0.15
dB, respectively. Figures 8a–c show the contours of
mean normalized standard errors for R b (Z h , Zdr ),
Rb(Kdp), and Rb(Kdp, Zdr), respectively, as a function of
bias errors in Zh and Zdr. It can be observed from Fig.
8 that for biases in Zh , 1 dB and Zdr , 0.15 dB, the
performance of the algorithms does not deteriorate sig-
nificantly. Note that in Fig. 8b even though the algorithm
is based on Kdp, the coefficient depends on Zh and Zdr.
Therefore, bias errors in Zh and Zdr will deteriorate the
performance of Rb(Kdp). The contour lines in the error
for all three algorithms are denser when the bias in Zh

is negative and Zdr is positive, indicating that a com-
bination of negative bias in Zh and positive bias in Zdr

is more detrimental to the algorithm than other com-
binations. Bias errors in Zh and Zdr with the same sign
tend to cancel the influence of each other, and do not
affect the performance significantly. Among the three,
Rb(Kdp, Zdr) performs the best.

7. Data analysis

a. Disdrometer analysis

The composite rainfall algorithms developed in this
paper are applied to Joss and Waldvogel (1967) disdro-
meter data collected during a rainfall season (covering
about three months) from Darwin (Australia). The da-
taset was collected by the BRMC. The dataset included
different rainfall types, with rain rates between 0 and
150 mm h21. More than 2000 1-min RSD samples were
available; the mean rain rate was 10 mm h21. For each
1-min RSD sample, the Zh, Zdr, and Kdp were computed
assuming ABL axis ratio model, with a Gaussian canting
angle distribution with mean zero and standard deviation
of 108. The simulated values of Zh, Zdr, and Kdp were
used in the composite rainfall algorithms (Rb) given by
(14), (16), and (18) for comparison against rain rate
derived from the disdrometer data. The performance of
the algorithms was characterized in terms of NSE given
by (20). The NSE of rainfall estimates derived under
the PB model were also computed. Figure 9 compares
the NSE of the six algorithms, namely, R(Zh, Zdr),
R(Kdp), and R(Kdp, Zdr) derived under the PB axis ratio
model, as well as Rb(Zh, Zdr), Rb(Kdp), and Rb(Kdp, Zdr).
The NSE is presented as a function of rain rate. Figure
9 shows that all algorithms using PB model have large
errors (of the order of 30%–50%). This is an expected
result, because the prevailing model is ABL. However,
by applying the algorithms (14), (16), and (18) devel-
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FIG. 10. (a) The contour of storm total precipitation (mm) computed by R(Kdp) based on the PB model [40.5(Kdp)0.85], from CSU–CHILL
radar observations for the 28 Jul 1997 flood event. (b) The contour of storm total precipitation (mm) computed by Rb(Kdp) from CSU–CHILL
radar observations for the 28 Jul 1997 flood event.

oped in this paper, the normalized standard errors are
fairly small in agreement with the theoretical results.
Among the three algorithms Rb(Kdp, Zdr) performs the
best based on the disdrometer analysis.

b. Radar–rain gauge comparison

On the evening of 28 July 1997, the city of Fort
Collins (Colorado) was hit by a flash flood, that caused
fatalities and extensive property damage. Mesoscale
analysis of this flood is described in Petersen et al.
(1999). During this event the Colorado Climate Center
documented rain gauge observations over Fort Collins.
Petersen et al. (1999) computed storm total precipitation
(STP) for this event, which was compared against cor-
responding observations from rain gauges. They con-
cluded that the R(Kdp) algorithm based on the PB model
[40.5(Kdp)0.85] significantly underestimated the storm to-
tal precipitation. They also reported that the storm ver-
tical structure was similar to that of tropical monsoon–
oceanic convection with warm rain (collision–coales-
cence) processes playing an important role in rainfall
production. Conditions may have been suitable for rain-
drop oscillations, which tends to reduce b from its equi-
librium value. The commonly used R(Kdp) algorithm
based on the PB model, and the composite algorithms
developed in this paper were applied to the 28 July 1997
flood case for rainfall estimation. Radar measurements
of Zh, Zdr, and Kdp from the CSU–CHILL radar were
interpolated to a Cartesian grid with horizontal and ver-
tical resolution of 0.5 km. Whenever Zh was more than
38 dBZ at any grid point on the z 5 1.0-km plane, the
composite rainfall algorithms based on (14), (16), and
(18) were applied; for Zh , 38 dBZ, a simple Z–R re-
lation was used (Z 5 140 R1.4; Petersen et al. 1999).
Figure 10a shows contours of STP obtained from the
R(Kdp) algorithm using the PB model, whereas Figs.
10b, 11, and 12 show contours of STP obtained from
Rb(Kdp), Rb(Zh, Zdr), and Rb(Kdp, Zdr). The peak STP
obtained from rain gauges for this event was 260 mm
(Petersen et al. 1999). First, the R(Kdp) algorithm using
the PB model significantly underestimated the peak STP
(156 mm vs gauge peak of 260 mm). The application
of the composite algorithm Rb(Kdp) as well as Rb(Zh,
Zdr) or Rb(Kdp, Zdr) improved the peak STP estimates
significantly (220–230 mm), but still slightly less than
the peak gauge estimates. One possible explanation
could be the time resolution of the radar data, which
was about 15 min. A simple analysis of the time records
of one of the rain gauges indicated a 15% underesti-
mation if sampled every 15 min. Therefore, adjusting
for 15% underestimation would match the gauge and

the radar observed peak STP. We refer to the article by
Petersen et al. (1999) for a detailed discussion of the
radar data during this event.

8. Summary and conclusions

Polarimetric radar rainfall algorithms currently in use
are derived assuming equilibrium shape–size relation-
ships. Previous research (e.g., Goddard and Cherry
1984; Beard 1984) as well as more recent studies have
indicated potential bias in rainfall estimates due to var-
iability in the shape–size relations. This paper presents
polarimetric rainfall algorithms that are immune to var-
iability in shape–size relation. Theoretical analysis was
used to demonstrate that conventional polarimetric radar
algorithms will be biased due to deviation of shape–
size relation from equilibrium shapes. The bias was
studied as a function of the slope (b) of a linear shape–
size relationship for raindrops. When b , be, R(Zh, Zdr)
overestimates the rain rate whereas R(Kdp) underesti-
mates it. When b . be, R(Zh, Zdr) underestimates the
rain rate whereas R(Kdp) overestimates it. R(Kdp, Zdr) is
less sensitive to b compared to the other two algorithms.
Polarimetric rainfall algorithms R(Zh, Zdr), R(Kdp), and
R(Kdp, Zdr) were derived for different b varying between
0.02 and 0.1. This analysis was used to demonstrate the
sensitivity of the coefficients in these polarimetric rain-
fall algorithms. This information was used, in turn, to
refine the algorithms to adjust themselves for varying
shape–size relation for raindrops as well as the polari-
metric radar rainfall algorithms. The algorithms devel-
oped in this paper were evaluated in the presence of
varying shape–size relations, and were found to be im-
mune to these variabilities. In addition, some commonly
used shape–size relations are nonlinear. The rainfall al-
gorithms were applied under both the Beard and Chuang
(1987) as well as the Andsager et al. (1999) models for
raindrop shapes, and simulations were used to demon-
strate the success of these algorithms. Subsequently, the
sensitivity and robustness of these algorithms to biases
and random measurement errors were studied. It was
found that the accuracy of the rainfall algorithms was
not significantly compromised due to measurement er-
rors. Bias in measurement of Zh and Zdr affected all three
rain-rate estimates Rb(Zh, Zdr), Rb(Kdp), as well as
Rb(Kdp, Zdr). However, if the bias in Zdr is less than 0.3
dB and the bias in Zh is less than 1 dB, then rain-rate
estimates were not significantly affected.

A total of six algorithms, namely, R(Zh, Zdr), R(Kdp),
R(Kdp, Zdr) obtained for the PB model, as well as the
algorithms developed in this paper that are immune to
variability in b, namely, Rb(Zh, Zdr), Rb(Kdp), and
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FIG. 11. The contour of storm total precipitation (mm) computed by Rb(Zh, Zdr) from CSU–CHILL radar observations for the 28 Jul 1997
flood event.

Rb(Kdp, Zdr), were evaluated, using disdrometer as well
as radar and gauge comparison. Disdrometer evaluation
of the composite algorithms developed in this paper
showed that they perform well, with low standard error.
The composite algorithms Rb(Zh, Zdr), Rb(Kdp), Rb(Kdp,
Zdr) were applied to Zh, Zdr, and Kdp simulated from
disdrometer observations using the ABL model for rain-
drop shape. The simulation results showed that all three
composite algorithms estimated rainfall fairly accurate-
ly, demonstrating the performance of the algorithms for
observed raindrop size distributions. Among the three
algorithms, Rb(Kdp, Zdr) yielded the lowest error. In ad-
dition, the application of rainfall algorithms based on
the PB model resulted in significant errors as expected.

Petersen et al. (1999) applied the commonly used
R(Kdp) 5 40.5 (Kdp)0.85 algorithm derived under the as-
sumption of the PB model to estimate storm total pre-
cipitation for the 28 July 1997 Fort Collins flood event
and found a significant underestimate in the peak ac-

cumulation when compared to rain gauge data. This
underestimate was due to an unusual tropical type en-
vironment that could have resulted in drop oscillation
resulting in departure from the equilibrium shape of
raindrops. The composite algorithms developed in this
paper were found to eliminate the bias caused by the
PB model. Application of the composite algorithms to
the Fort Collins flood data resulted in a substantial re-
duction of the difference between the radar and gauge
estimates of peak storm total precipitation, demonstrat-
ing the potential of the algorithms developed in this
paper. In summary, the composite algorithms developed
in this paper estimate rainfall without fixing a specific
a priori shape–size relation for raindrops, and allowing
it to have a general linear form whose slope can be
variable.
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FIG. 12. The contour of storm total precipitation (mm) computed by Rb(Kdp, Zdr) from CSU–CHILL radar observations for the 28 Jul
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