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ABSTRACT

ELEVATION HETEROGENEITY AND THE SPREAD OF WHITE-NOSE SYNDROME IN BATS

White-nose syndrome (WNS) has been decimating bat populations throughout North Amer-

ica since its discovery in New York during the winter of 2006-2007. The fungus responsible for

the disease, Pseudogymnoascus destructans, has since been confirmed as present in Washing-

ton, over 3,700 km from the epicenter. In 2012, a stochastic discrete-time dynamical system for

WNS spread was developed on a spatially structured network and used to predict the spread of

this wildlife epidemic. The model uses a variable for distance and two environmental variables

(cave density and winter duration) to generate spread probabilities between counties of the

contiguous United States. However, predictions from the 2012 model missed several recently

infected counties due to the use of a cave density variable. Major cave formations are both less

frequent and poorly documented in the western U.S. Furthermore, cave density may not serve

as an accurate proxy for bat hibernacula across the country considering the use of crevice and

cavity roosts in rock substrates west of the Great Plains. A Terrain Ruggedness Index (TRI) can

thus be calculated from elevation data and used in place of cave density to quantify elevation

heterogeneity and represent crevice-dwelling bat populations. Incorporating TRI into the net-

work spread model would generate more accurate WNS presence predictions and aid in more

effective management efforts to contain the spread of this deadly bat disease.
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Chapter 1

An Overview of White-Nose Syndrome in Bats

White-nose syndrome (WNS) is one of the most severe wildlife diseases ever documented,

as evidenced by the magnitude, duration, and potential damage to North America’s ecosystems

[1, 2]. WNS was discovered near Albany, New York during the winter of 2006-2007 after mass

mortality at Howe’s Cave. The most noticeable physical indication of WNS is a white fungus

on bats’ muzzles or other exposed skin areas [3]. Since its initial documentation in New York,

WNS has been confirmed in 32 U.S. states and 5 Canadian provinces. The causative fungus,

Pseudogymnoascus destructans, has been found in two additional states without the symptoms

or mortality associated with the disease [4]. Nine species have been documented with WNS:

big brown bat (Eptesicus fuscus), eastern small-footed bat (Myotis leibii), gray bat (Myotis gris-

escens), Indiana bat (Myotis sodalis), little brown bat (Myotis lucifugus), northern long-eared bat

(Myotis septentrionalis), tri-colored bat (Perimyotis subflavus), southeastern bat (Myotis aus-

troriparius), and Yuma myotis (Myotis yumanensis). Additionally, the causative fungus of WNS

has been isolated from seven other species: eastern red bat (Lasiurus borealis), silver-haired

bat (Lasionycteris noctivagans), Rafinesque’s big-eared bat (Corynorhinus rafinesquii), Virginia

big-eared bat (Corynorhinus townsendii virginiarnus), cave bat (Myotis velifer), Townsend’s big-

eared bat (Corynorhinus townsendii), and Mexican free-tailed bat (Tadarida brasiliensis). One

of these species is threatened and three are endangered [4].

Pseudogymnoascus destructans, previously named Geomyces destructans, is the psychrophilic

(cold-loving) fungus responsible for WNS that attacks the skin tissue of hibernating bats [1].

The fungus grows in temperatures below 20°C, making underground bat hibernacula and hi-

bernating bats suitable long-term reservoirs of the pathogen [5,6]. DNA evidence of this fungus

has been found on bodies of bats displaying clinical signs of WNS and locations of WNS mortal-

ity [6]. Laboratory studies have also confirmed that P. destructans creates skin lesions consistent

with WNS and causes death after two to three months of hibernation [5].
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Genetic evidence indicates that P. destructans was introduced from Europe to North Amer-

ica through an index site in New York [5]. However, the fungus responsible for WNS and massive

bat population declines in North America has not caused mass mortality in Europe [3]. Many

theories have been postulated and researched to explain the discrepancy in population effects

between the two continents. One theory claims the fungus is native to North America but re-

cently became pathogenic [6]. Alternatively, if the fungus were indeed translocated from Eu-

rope, P. destructans may represent a novel pathogen for bat species in North America while Eu-

ropean populations are resistant to the disease [3]. Wild bats in Europe display the skin lesions

characteristic of P. destructans, but European populations do not experience the mass mortality

from WNS. Nonetheless, a European isolate of P. destructans remains fatal to North American

little brown bats [5]. The longevity of the P. destructans presence in European bat hibernacula

implies that the fungus persists after establishment [3]. Isolates of the European fungus contain

a large amount of genetic variation, whereas isolates of the fungus in North America contain no

such genetic variation. This indicates that P. destructans is spreading clonally through North

America [2].

1.1 The Biology of White-Nose Syndrome

Hibernating bats conserve energy by lowering their body temperatures and suppressing

their metabolism, which allows them to live on stored fat for 6-8 months [6]. Throughout most

of the winter, body temperatures remain in torpor (below 10 °C) and are intermittently aroused

to euthermia (between 35 °C and 38 °C) [1]. This state of torpor is when bats are most sus-

ceptible to the physiological damage of P. destructans [6]. WNS alters arousal patterns which

reduces fat reserves, as evidenced by emaciated bats found in late winter. In fact, one arousal

for a little brown bat that is hibernating at 5°C consumes the same amount of energy as 67 days

in torpor [1]. The physiological functions of wing membranes may also be disrupted by skin

lesions from WNS, thus affecting the carefully maintained water balance of an affected bat [3].

Dehydration from the inability to maintain water balance could partially explain the increase
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in arousal frequency. One of the most heavily affected North American bat species, the little

brown bat, shows significantly higher rates of water loss than a hibernating congener of simi-

lar size from Europe. This discovery further evidences the theory that disrupted water balance

triggers more frequent arousals, causing fat depletion and ultimately death [5].

Behavioral signs of WNS in wild bats include forearm tremors while crawling, altered sen-

sory thresholds, flying during daylight hours, colliding with large stationary objects, and ex-

cessive thirst. Dehydrated bats may lick snow or fly over open water for excessive lengths of

time. Dehydration or electrolyte depletion may explain these behavioral markers [3]. Bats exit-

ing their hibernacula during winter could be escaping a fungal infestation and looking for more

suitable conditions elsewhere, but this phenomenon ultimately remains unexplained [6].

Recovery from WNS is possible but is physiologically demanding. Captive and wild bats

have exhibited the ability to overcome an infection and heal wing lesions after emerging from

their winter hibernacula. Recovery during winter is less probable. The healing process requires

euthermic body temperatures that bats are not equipped to maintain during hibernation [5].

Theoretically, a bat could survive WNS by arousing from hibernation and finding a warmer

habitat or a food source to combat the metabolic costs of euthermic body temperatures [6].

Unfortunately, being able to surviving the P. destructans infection through winter hibernation

may not be enough. Evidence now suggests that the immune response is delayed until spring

arousal. If the infection is significant, the inflammatory cell response may fatally overwhelm

the host rather than heal the site of infection [5].

Three factors must interact for successful disease occurrence and disease spread, as out-

lined by the epidemiologic triad. Disease requires a susceptible host (bats), a pathogen that can

facilitate spread to the susceptible hosts (P. destructans), and an environment that allows for

the existence and interaction of the host and the pathogen (hibernacula) [6]. The dynamics of

WNS spread depend on these variables and their interactions. To gain a deeper knowledge of

the spread within hibernacula and rate of disease progression, these interactions must be an-

alyzed [3]. This analysis reveals the possibility that the difference in effects of P. destructans in
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Europe and North America may not be dependent on the characteristics of the pathogen itself,

but rather the host susceptibility and habitat characteristics [5].

Environmental variables and their effects on bat traits may explain the discrepancy between

the broad pattern of infection and the restricted distribution of mass mortality [6]. A hibernat-

ing bat maintains body temperatures that satisfy the optimal growth range of P. destructans, the

bat’s immune function is diminished, and the bat’s hibernaculum provides a moist setting for

P. destructans to persist [6]. Fungal growth rate is likely governed by humidity and temperature

of hibernating bats’ skin surfaces since conidial fungi germination depends on surface mois-

ture. A bat’s optimal hibernaculum can vary in humidity and temperature based on the species.

P. destructans isolates display maximum growth rates in a climate from 12 to 16°C, with some

variation in growth rates between geographically distinct isolates. Field data has demonstrated

that humidity levels inside hibernacula connect to WNS susceptibility and that warmer hiber-

nacula experience higher mortality rates from WNS [5]. Bats in the northeast who have have the

highest susceptibility to WNS mortality also consistently use hibernacula with the highest hu-

midity levels [1]. Three of the species in North America less severely affected by WNS (Myotis so-

dalis, Myotis leibii, and Eptesicus Fuscus) are typically found in drier areas of their hibernacula.

Conversely, three of the most heavily affected species (Myotis lucifugus, Myotis septentrionalis,

and Perimyotis subflavus) tend to choose the wettest areas of their hibernacula and frequently

have visible condensation on their fur [1]. Because fungal ecology is inherently tied to WNS, the

effects of humidity and temperature within and among hibernacula is an integral factor in the

severity and extent of WNS [5].

In addition to climates within hibernacula, WNS spread and mortality could also be linked

to the winter climate outside hibernacula [6]. Higher chances of mortality exist in high eleva-

tion areas that are cold and seasonally variable [5]. The outside environment limits the survival

tactics a bat can employ after hibernation is disrupted and possibly extends the hibernation

period, when bats are most susceptible to WNS. Generally, bats in North America like hibernac-

ula with high humidity and temperatures between 3 and 15 °C, but the climate outside of those
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hibernacula vary greatly and can fluctuate throughout winter. In the northeastern Appalachian

mountains, where WNS has reduced bat populations most dramatically, winter conditions are

harsh compared to sites south or southwest, where bat populations found with P. destructans

have not suffered mass mortalities from WNS [6].

Even without the presence of P. destructans, bats are limited to specific winter lengths to

survive on their energy reserves [1]. The climate outside of a hibernaculum may directly affect

those bats who occasionally emerge during winter. Bats living in areas with short winter lengths

or higher winter temperatures have the opportunity to emerge during the hibernation period

and recharge energy reserves with food or water. This allows them to undergo an earlier eu-

thermic immune response and makes them more likely to survive a P. destructans infection [5].

Insects that compose most of the food supply for bats are typically not active in extreme cold

and a bat that emerges during winter must expend more energy to stay warm at colder tempera-

tures. Additionally, if the winter conditions outside of hibernacula are cold and dry, dehydrated

bats with WNS may not be able to locate water to drink [6].

To quantitatively capture these host-environment interactions, Flory et al. (2012) used a

species-environmental matching (SEM) model to statistically bind the presence of WNS mor-

tality to environmental predictors. The sites their model predicted to be most susceptible to

WNS mortality coincided with existing high mortality sites in the Appalachian region. The pre-

dictors with the most power were land use and cover type, precipitation frequency, and annual

temperature range. Elevation heterogeneity and a barren land classification (less than 15% veg-

etation cover) increased the probability of WNS mortality, but this result may simply be due to

the land type indicative of caves and abandoned mines rather than a biological characteristic

of the disease [6].

1.2 Spread Mechanisms

Direct contact between bats and with P. destructans spores on roosting sites are the two main

spread mechanisms. Bat species that hibernate in clusters, like the little brown bat, are partic-
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ularly at risk for contracting WNS through direct bat contact. Male bats use hibernacula during

the summer, thus they could be contracting the disease and spreading P. destructans to bats or

other hibernacula during fall swarming events. In fact, some bat species swarm at one hiber-

naculum but hibernate elsewhere, implying that those bats know the location of other hiber-

naculum. Bats in the later stages of WNS prematurely emerge from their hibernacula and could

reenter a new hibernaculum, spreading the fungus further. The amount of viable P. destructans

spores on an infected bat that has survived the winter has not been determined, therefore the

summer and fall spread likelihood is unknown. Human facilitated spread is also likely a major

factor in the large jump dispersal events that have contributed to the rapid spread of WNS. P.

destructans spores can latch onto clothing and gear and are durable enough to survive travel-

ing to a new site. Anthropogenic transmission via contaminated gear could explain the initial

introduction of P. destructans into North America [3].

P. destructans first appeared in the western United States on March 11th, 2016 in King County,

Washington. A dying little brown bat was discovered with symptoms of WNS and tested posi-

tive for P. destructans. The fungal isolate from this bat is most likely from eastern North America

and does not represent an independent introduction from Europe. The little brown bat was a

member of a subspecies with a distribution restricted to western North America, M. lucifugus

alascensis. These findings imply that the infected bat did not wander from an eastern habitat,

rather it contracted the disease in the west. The distance from the closest known site at the

time was unprecedented at over 2,100 km, from eastern Nebraska to King County. The total

spread radius by 2016 was roughly 1,900 km from the introduction site. The jump to Washing-

ton is inconsistent with previously observed spread patterns and the mechanism by which WNS

jumped is not clear. Anthropogenic spread could be a possible explanation for this event [2].

1.3 Research and Response Efforts

There are many confounding factors involved in the data collection necessary for WNS re-

search. The temporal gap between detecting visible fungus and a mass mortality event varies
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greatly [3]. Locating hibernacula is also difficult, as well as finding bats within a hibernacu-

lum [6]. Northern long-eared bats prefer roosting in deep cracks inside their hibernaculum,

making them difficult to find and count [3]. These issues lead to inaccurate bat censuses and

under-detection of WNS positive sites [6]. In the western U.S., management responses to WNS

could be delayed because hibernacula for western bat species are unknown or difficult to reach

[2]. Bat phenology can also affect winter surveys. Cold tolerant species are generally the last to

enter their hibernacula and the first to emerge, the timing of which is greatly affected by aver-

age ambient temperatures. Winter surveys of WNS-positive sites are usually performed close to

natural emergence times to minimize stress on bats, thus the early emerging species may have

already left the site. WNS also frequently causes roost location shifts and premature emergence.

Other data collection issues lie in site size, number of inaccessible passages, disturbances dur-

ing hibernation, and species misidentification (particularly when bats cluster in heterogeneous

groups of species or with species that have similar traits) [3].

The little brown bat is in serious danger for extinction from the northeast and WNS could

infect up to 25 bat species in North America [3]. The potential infection site in the northwest

could also introduce a second epicenter and catalyze spread through North America, which

would dramatically decrease the amount of time available to wildlife managers to develop and

enact a prevention or treatment plan [2]. The mortality differences between species has altered

and will continue to alter hibernating assemblage composition and general bat biodiversity [3].

WNS may cause a shift in genetic trends, as bats with larger body sizes and bats that hibernate

in drier or colder sites are more likely to avoid or survive a WNS threat [1].

Upon the discovery of an outbreak, many government entities have already developed re-

sponse plans to manage the disease. Eleven states have published response plans since 2010.

Alabama, Georgia, Kentucky, Michigan, Missouri, North Carolina, South Carolina, and Ten-

nessee are eight of these such states that lie east of the Great Plains. Colorado, New Mexico, and

Wyoming are the only states west of the Great Plains with a public response plan. The Canadian

Wildlife Health Cooperative published Canada’s national response plan, titled “A National Plan
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to manage White Nose Syndrome in bats in Canada" and is coordinating the country’s response

efforts [4].

The United States has published a national response plan as well via the U.S. Fish and

Wildlife Service, titled “A National Plan for Assisting States, Federal Agencies, and Tribes in Man-

aging White-Nose Syndrome in Bats" [4]. The U.S. national plan aims to guide federal, state, and

tribal agencies and their partners in the response to WNS. The plan provides an organized struc-

ture for action and defines the duties of individual parties. Oversight of plan implementation

is designated to two committees and seven elements of the action plan are outlined: commu-

nications, data and technical information management, diagnostics, disease management, re-

search, disease surveillance, and conservation and recovery [7]. A national plan provides struc-

ture to individual responses such that management is standardized. This will assure consistent

disease and population data collection for analysis and interpretation on a larger scale [4].

Because WNS is a relatively recent epidemic, there are many research areas in great need of

further development. Accurate data is one of the limiting resources in WNS research. Popula-

tion counts and P. destructans presence data is not available for all locations and the accuracy

of the data varies greatly [3]. As discussed previously, there are many confounding factors to

data collection and most data collection methods appear not to be standardized. Collecting

population data during the active season with acoustic surveys, counts at maternity colonies,

and trapping counts during fall swarming may improve the accuracy of the current population

counts and capture the population declines seen from WNS [3]. Along with accurate data col-

lection, mechanistic models that capture and predict spread and predict species most at risk

are in need for management and prevention efforts. Specifically, models relating P. destructans

growth to both temperature and humidity and relating fungal growth to hibernation arousal

frequency are in demand. Thus far humidity has only been incorporated into survival models

as a variable pertaining to evaporative water loss in infected bats, not as a factor influencing

humidity-dependent fungal growth rates [1].
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Examining western spread of the epidemic illuminates further knowledge gaps in more fun-

damental areas of bat information. Wintering strategies and hibernacula are frequently un-

known for bat populations west of the Great Plains and some species are thought to forage dur-

ing winter. These unknown behaviors may require new pathogen and disease impact surveil-

lance methods. Most importantly, more information and research is needed to determine how

the disease is spreading west, how it will impact western populations, and how these dynamics

differ from the observed epidemic in the eastern United States [2]. With more accurate models

and a more thorough understanding of western bats and WNS, management and conservation

can be focused on areas at high risk for WNS mortality to minimize the impact on bat popula-

tions as a whole [6].
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Chapter 2

A Network Model for Spread Prediction

Modeling White-Nose Syndrome poses a unique challenge to researchers. Two types of dis-

ease spread must be considered in this application: diffusive spread and jump dispersal. Diffu-

sive spread is expected in highly mobile hosts that transmit disease to susceptible individuals in

a spatially continuous manner. Jump dispersal occurs when host species are spatially clumped

together, thus creating two different dispersal rates within and between the host clusters. Cave

dwelling bats in the eastern states are a patchily distributed species, but can also transmit dis-

ease during migration or seasonal mixing [8].

Maher et al. explored the proportion of these two dispersion mechanisms using a maximum

likelihood estimation (MLE) on historical WNS spread [8]. They began with a simple diffusion

model and added complexity to create a stochastic discrete-time dynamical system built on

a spatially structured network. Spread was simulated for county i , where i = 1, . . . , N , using

a Bernoulli trial for predicting presence in each county, dependent on all previously infected

counties. The output of each Bernoulli trial, xi (t+1), yields a one if the county has been infected

with WNS or a zero if the county remains uninfected. Previously infected counties influence the

probability that county i becomes infected through a function, f (x1(t ), x2(t ), . . . , xN (t )), that

incorporates environmental or biological variables as parameters [8]. The Bernoulli model for

spread thus has the form

xi (t +1) ∼ Bernoulli
[

f (x1(t ), x2(t ), . . . , xN (t ))
]

. (2.1)

For the country-level expansion of this Bernoulli expression, Maher et al. used a compart-

mental setup for their spread model. This enabled them to test multiple spread kernels without

making assumptions about the inter-county spread mechanisms, as country-wide character-

istics were the intended focus for this model. Three geographic characteristics dominated the
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flow of disease in their most accurate model: distance, cave density, and winter duration. The

model that best fit WNS data was a moderate complexity kernel including covariates based on

cave density and winter duration [8].

The dispersal kernels, denoted p̃i j , are the main component of the function f in Equation

2.1 and represent the probability that county j does not infect county i in one time step. Maher

et al. modified these kernels to best capture the dynamics of WNS spread. The equation

p̃i j = [1+e−(β0+β1di j )]−1 (2.2)

describes the dispersal kernel for a simple diffusion model. The background infection rate is

denoted β0, the distance between the centroids of counties i and j is di j , and the scaling co-

efficient for the effects of distance is β1. Similar to most infectious diseases, distance has an

inverse relationship with WNS spread. The probability of spread decreased when Euclidean

distance between two counties increased. That is, new infections were more likely to occur

when in close proximity to a county that had already been infected [8].

To explore the effects of long-distance dispersal, the distance model in Equation 2.2 was

modified slightly by fitting an exponent to the distance term, β2. The modified dispersal kernel

reads

p̃i j = [1+e
−(β0+β1d

β2
i j )

]−1. (2.3)

The parameters in Equations 2.2 and 2.3 were fit to all counties, then fit once again using only

the counties with a cave density greater than zero [8].

The cave density and county area contributions to spread probability were considered using

a generalized gravity model approach. The gravity model format decreases the negative effects

of distance on disease spread with a weighted gravity term in the denominator. Maher et al.

compared the effects of cave density (ηi and η j ) using
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p̃i j =

1+e
−

(
β0+β1

di j

(ai a j )β2

)
−1

(2.4)

as the dispersal kernel and county area (ai and a j ) using

p̃i j =

1+e
−

(
β0+β1

di j

(ηi η j )β2

)
−1

(2.5)

as the dispersal kernel. Both were expressed as the product of those values for counties i and

j . The magnitude of these gravity terms were fixed for each model with the exponent β2. β0

remains the background infection rate and β1 is again a coefficient for the gravity model frac-

tion [8].

Winter length (τi ) was added to the model as an additional parameter, calculated as the

estimated number of days where the temperature dipped below 10°C. The kernel

p̃i j =

1+e
−

(
β0+β1

di j

(ηi η j )β2
+β3τi

)
−1

(2.6)

incorporates this variable. A coefficient to this term was also included for scaling, denoted β3.

All other parameters are included in Equation 2.5 and remain unchanged [8].

Spread kernels involving other variables were also compared to the above kernels for pre-

diction accuracy, with terms for northing, total bat species richness, and number of hibernating

bat species. After adding these additional covariates to the model, some of the covariates im-

proved the results compared to the simple dispersion kernel, but none of these alternates fit the

observed data better than the cave density and winter duration model [8].

Using the spread kernels, p̃i j , Maher et al. created a network model and placed a node at the

centroid of each county with an assigned binary WNS presence variable. The maximum likeli-

hood (ML) parameters in each kernel were fit using the Nelder-Mead algorithm and a Simulated

Annealing search [8]. Nelder-Mead algorithms are used for unconstrained multidimensional

optimization and do not require the use of derivatives [9]. Simulated Annealing optimization
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searches for optima along a Markov chain and is highly effective at avoiding converging to a

local optimum [10]. Disease presence was predicted in discrete one year time steps for each

county using the Bernoulli trial

xi (t +1) ∼ Bernoulli

[
1−exp

(∑
j

ln(1− p̃i j )

)]
(2.7)

based on the general form listed in Equation 2.1 where x1, ..., xN are the counties counties in-

fected by WNS at time t [8].

Spread simulations to evaluate the accuracy of each model used Schoharie county, NY as

the epicenter and predicted spread for 100 years. Spread was stochastically simulated 9,999

times to asses spread characteristics and develop a county-level infection time line [8]. To as-

sess the effects of error and the certainty of predictions, Maher et al. generated 9,999 parameter

sets from a multivariate normal distribution around the previously estimated parameters with

a Monte Carlo simulation, or repeated random sampling, to create sampling uncertainty (SU)

parameters [8, 11]. The cave density and winter duration model then used these 9,999 SU pa-

rameters to quantify uncertainty. Future spread predictions were calculated using both the ML

parameters and SU parameters for 95 years. The temporal predictions for each region of the

country were dictated by the initial time of infection within the boundary of the region, before

infection saturates the region.

White-nose syndrome presence data for 2011 was obtained from the U.S. Fish and Wildlife

Service. Year of infection was assigned as the first year of observed presence, where an epi-

demic year is designated as May through April of the following year [8]. Cave density data was

acquired from numerous sources for 37 of the contiguous states, and estimated for the remain-

ing 11 by magnifying a cave density figure in Culver et al. [12]. Cave density for these states is

probably underestimated because the cave location points in this figure overlap in high density

areas. Individual cave points became indistinguishable when there were more than roughly

15 caves in a county. There were 22 documented counties with WNS that did not have docu-

mented caves where abandoned mines served as hibernacula. Mine presence data is available
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but specific mine information is scarce. Abandoned mines were accounted for in the model by

adding a single cave into these counties. Only the United States was considered in this model

because cave data for Canada was unavailable [8]. Winter length averages for each county came

from temperature data between January 2006 and December 2009 from NOAA’s National Cen-

ters for Environmental Information [8, 13]. This data was interpolated to create a continuous

temperature map using anisotropic ordinary kriging in ArcGIS, which is a method that uses di-

rectionally dependent spatial correlation to explain surface variation [8, 14]. The mean of these

temperatures for each county became the winter length average [8].

Based on the observed WNS presence data, Maher et al. described the temporal and spatial

characteristics of spread using the number of newly infected counties, the maximum distance

and median distance of infected counties from the epicenter, and the convex hull area of in-

fected counties. Most new county-wide infections were within 500 km of previously infected

counties, indicating occurrences of exceedingly long distance dispersal is improbable [8].

When the model was restricted to counties with a nonzero cave density, simulations were

both more efficient and more accurate. Accuracy further increased when a generalized gravity

model for geographic heterogeneity and a climate covariate were incorporated. The gravity

model modifies pairwise interactions between counties based on distance and cave density,

while the climate covariate alters probability of infection with winter duration [8].

The negative log-likelihood (NLL) and Akaike information criterion (AIC) scores for each

kernel indicated that the best fit model was the gravity model including cave density and win-

ter length (Equation 2.6). Additionally, this was the only model that conformed to large-scale

spread measurements [8].

A possible source of error lies in the assumption that WNS presence is documented within

the first year of infection, but Maher et al. found the resulting bias levels from incomplete de-

tection simulations to be low. Under-detection will likely only affect the rate at which gaps are

filled within the convex hull of the infected region, not the outward spread to new geographic

regions. Delayed detection increased the speed of spread to western counties by less than five
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years and reduced predicted spread to southeastern and southwestern counties. This model

from 2012 predicted WNS to spread to the Rocky Mountains by 2017, then progress slowly to

the west coast, as is visually depicted in the following Figure [8].

Figure 2.1: Mean year of infection estimated with the cave density and winter length dispersal kernel
(Equation 2.5). Mean was calculated based on simulations using the ML parameter set and predictions
were made through year 2106 based on the 2010-2011 WNS presence data. Counties in gray either did
not have any reported caves or were not predicted to contract WNS within the time range [8].

Counties with caves in close proximity create geographic corridors that facilitate the spread

of WNS, causing a consistently positive coefficient on inter-county distance. The exponent on

the cave density term was always positive, indicating that spread is density-dependent. Higher

hibernacula availability suggests a larger bat population, which increases the probability of in-

fection. Additionally, colder counties were shown to have an increased probability of transmis-

sion, as evidenced by a negative coefficient on the winter length parameter. This trend may be

due to the biological traits of P. destructans or the effects of longer winters on infected bats. This
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corroborates the conclusion that WNS mortality can be predicted using environmental charac-

teristics [8].

As with all large scale stochastic spread models, localized predictions are not reliably ac-

curate. Anthropogenic hibernacula were not considered in the model by Maher et al., which

could facilitate spread through areas with low or non-existent cave density values. This effect

is likely minimal, as mines and other man-made hibernacula are not effective reservoirs of the

pathogen. As discussed previously, under-detection did not have a significant effect on the

model. Moreover, detection typically occurs within the first two years of infection due to high

WNS awareness [8].

The purpose of the Maher et al. model was to extrapolate beyond June 1, 2011 to explore

how WNS will spread using the most supported model (cave density and winter length) with

ML and SU parameter sets. These predictions provide insight into the general characteristics of

spread and can provide more specific county level predictions. Short term predictions are the

most accurate and relevant from a management perspective [8].

Models that describe the biological mechanisms controlling spread on an individual basis

would help refine large scale spread models, but the data and information needed to create

these models is underdeveloped. Using discrete-year time steps allows the Maher et al. model

to encapsulate the possibility of multiple spread mechanisms. Susceptible-Infected-Recovered

(SIR) models and further research into the effects of cave microclimates on fungus growth and

bat mortality could clarify some of these issues and remaining uncertainties not resolved by the

Maher et al. model [8].

The predictions in Figure 2.1 from Maher et al., [8], estimate county-level WNS spread through

the year 2106. Counties in gray either did not have any documented caves or were not pre-

dicted to contract the disease within a century of the first case of WNS. As shown in Figure

2.2, P. destructans was detected in Goshen County, Wyoming during 2018. Maher et al. pre-

dicted spread to Goshen County by 2031, thirteen years later than the actual year of occurrence.

Itasca, Becker, and Saint Louis counties in Minnesota all tested positive for the fungus between
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2015 and 2017. A proactive WNS screening of Badlands National Park in Jackson County, South

Dakota showed P. destructans presence in 2018. All three Minnesota counties listed and Jackson

County, SD were not predicted to contract WNS before 2106. Although many of the counties

infected after 2012 were captured in the Maher et al. model, the examples described above and

the examples evident between Figures 2.1 and 2.2 highlight an important flaw in this network

model.

Figure 2.2: WNS presence map from June 1, 2018 [4].

Depicted below is a map of documented caves in the U.S. from 1999, where each dot on the

map represents one cave [12]. The regions densely covered with dots include the Appalachian

Mountains, which span the eastern side U.S. and are home to the initial infection site of WNS,

along with most of the infection sites discovered since 2006. Notice the counties discussed
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previously in Minnesota and South Dakota that were not predicted to contract WNS. None of

these counties have any documented caves, which likely explains the lack of predicted infec-

tion. These results suggest that cave density is not well documented or cave density is not a

suitable proxy for bat hibernacula for all regions of the U.S., probably both. As numerical meth-

ods for filling gaps in cave presence data would presumably involve elevation or other geologi-

cal data, these problems can both be addressed through modifying the cave density variable.

Figure 2.3: Map of U.S. cave counts from Culver et al. (1999) [12]. The country is sectioned into counties
and each dot represents one cave.
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Chapter 3

Crevice and Cavity Roosting Bats

Of the forty five bat species in the United States, twenty seven are mostly found in the west-

ern U.S. and six are distributed throughout both the eastern and western U.S. However, bat

species distributions are shifting due to climate and habitat change, consequently altering these

numbers. Bat diversity has been linked to the level of roost variety such that a higher number of

distinct roost structures implies a higher number of bat species. This connection may explain

the high level of species diversity in the West compared to other regions of the U.S. Among those

described as western species, a substantial portion roost in crevices and cavities at some point

during their lives. A list of western species and their WNS status can be found in Table 3.1. Bat

roosts may be found in caves, crevices, and cavities in trees, tree bark, rocks, and man-made

structures. Species belonging to the vespertilionidae and molossidae families (known as the

evening bats and free-tailed bats, respectively) are highly likely to adopt crevice roosts in arid

and semiarid regions [15].

Solick et al., [16], defines a narrow fissure in rock substrate layers as a crevice and a gap in

an aggregation of at least three rocks as a cavity. Bats roosting in shallow rock crevices enjoy

warmer temperatures overall, but are more exposed to weather and a variable microclimate.

Deep crevice roosts are well buffered from the environment and host a consistent microclimate,

but generally maintain colder temperatures. An example of a crevice-dwelling species lies in

western long-eared bats (Myotis evotis), which inhabit a large range of western North America

and roost in crevices, cavities, or larger habitats (caves, mines, or man-made structures) during

the warmer months. Solick et al. studied the summer habitats of a rock-roosting population of

these bats in the Rocky Mountains of Alberta. All but six of the seventy nine roosts found in this

study were in rock crevices or cavities. The six other roosts were found in standing dead trees,

but the two females using the tree roosts also occupied rock roosts.
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Table 3.1: Western U.S. bat species known to use crevices or cavities at some point in their annual life
cycle [15], including their WNS status [4]. *Based on preliminary evidence. (T) Threatened.

Scientific Name Common name WNS Status

Antrozous pallidus Pallid Bat
Choeronycteris mexicana Mexican Long-tongued Bat
Corynorhinus townsendii Townsend’s Big-eared Bat Pd Positive
Eptesicus fuscus Big Brown Bat Confirmed
Euderma maculatum Spotted Bat
Eumops perotis Greater Mastiff Bat
Idionycteris phyllotis Allen’s Big-eared Bat
Lasionycteris noctivagans Silver-haired Bat Pd Positive
Leptonycteris curasoae Lesser Long-nosed Bat
Leptonycteris nivalis Greater Long-nosed Bat
Myotis auriculus Southwestern Bat
Myotis californicus California Bat
Myotis ciliolabrum Western Small-footed Bat Pd Positive
Myotis evotis Long-eared Bat
Myotis keenii Keen’s Bat
Myotis lucifugus Little Brown Bat Confirmed
Myotis occultus Occult Bat
Myotis septentrionalis Northern Long-eared Bat Confirmed (T)
Myotis thysanodes Fringed Bat
Myotis volans Long-legged Bat
Myotis yumanensis Yuma Bat Confirmed
Nyctinomops femorosaccus Pocketed Free-tailed Bat
Nyctinomops macrotis Big Free-tailed Bat
Pipistrellus hesperus Western Pipistrelle Bat
Tadarida brasiliensis Mexican Free-tailed Bat Pd Positive*
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3.1 Research Challenges

Understanding the roosting ecology of western bats is still a challenging endeavor. Under-

wood’s bonneted bat (Eumops underwood), Keen’s myotis (Myotis keenii), and cave myotis (My-

otis veliger) are all species known to use cliffside crevice roosts in the U.S., but count data of

these species inhabiting crevices are nonexistent. In fact, Bogan et al., [15], noted in 2003 that

bats using crevice and cavity roosts represented only 6% of 1,513 western bat observations in

the U.S. Geological Survey Bat Population Database (BPD). The paucity of crevice and cavity

roost data illuminates the longstanding emphasis on studying large groups of bats in caves or

mines as well as the physical and technical challenges of attempting to study small groups of

bats in rock crevices.

Some western hibernating bats are readily found in the summer, but entirely disappear in

the winter to unknown hibernacula [17]. Species known to roost in cavities and crevices may

utilize more spacious habitats during hibernation or remain in smaller crevice roosts. The warm

season roosts of the little brown bat are usually composed of crevices in rocks, trees, or build-

ings, yet the species hibernates in caves and mines. However, many species likely over-winter

in these cavity and crevice structures [15].

Even in the warm season, there are serious obstacles confounding attempts to monitor bat

populations that inhabit cavities or crevices. One of these obstacles is low roost fidelity. Most

bat species switch roosts at least once during a summer season. Roost fidelity directly relates to

roost permanency and inversely relates to roost availability. Thus, bat populations residing in

areas with a large quantity of temporary roosts would most likely display very low roost fidelity

whereas bat populations in areas with a small number of long-lasting habitats would show high

fidelity. Crevice-dwelling bats frequently use multiple roosts and switch between them, pre-

sumably due to the abundant and ephemeral nature of crevices and cavities. Fortunately for

researchers, bats that move among tree and rock crevices typically do so within a small area.

Exploring the roost characteristics common to the variety of structures inhabited by these bats
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could illuminate their low fidelity behavior and make future monitoring attempts more effi-

cient [15].

Bogan et al., [15], and Lewis et al., [18], agree that frequent roost switching may help curb

parasitic infestations in bat populations. Bats may desert an infested roost before parasite eggs

hatch, leaving the parasite with no food source. Similarly, low roost fidelity could decrease

white-nose syndrome mortality by enabling bats to abandon infected habitats and find a more

suitable roost. However, the case may also be made that lower roost fidelity will simply increase

the spread rate of WNS, as the fungus does not require a bat host to persist in a roost. Addition-

ally, Lewis et al. found that bat species with high roost fidelity occasionally visit other roosts,

allowing the bats to readily locate a new roost in the event that their old roost becomes unin-

habitable [18]. This behavior could easily catalyze WNS spread, as WNS may create uninhab-

itable roosts, pushing the current residents to new roosts, carrying large loads of P. destructans

spores. Although, as noted in chapter one, it is unknown how many viable spores are carried by

infected bats that have survived the winter, thus the magnitude of this spread mechanism may

be negligible.

Currently, abundance estimates for bats roosting in crevices or cavities require either look-

ing into the roost or counting the number of bats exiting the roost since bats roosting in these

locations typically cannot be seen from the outside. The least invasive method is a visual emer-

gence count. Visual counts are usually not highly accurate, however, due to the following rea-

sons: bats tend to emerge in the evening at low light levels, researchers are frequently posi-

tioned far away from the roost, counting a large group of emerging bats is difficult, and species

identification confirmation is impossible. Capture methods yield more precise data, as species

identification and colony demographics can be easily and accurately recorded, but these meth-

ods are very invasive and may affect future attempts at monitoring. Since the late 1950’s, most

of the life history information on bats roosting in crevices and cavities has come from captur-

ing those bats in mist nets positioned over water sources. In the western U.S., this method
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is particularly effective and popular because water sources are typically isolated, which likely

concentrates bat populations [15].

Miniature radio transmitters have revolutionized bat research and are commonly used to

track bat movement in roost studies. Bogan et al., [15], recommends exploring the uses of

integrated-transponder tags, infrared or thermal imaging cameras, ultrasonic bat detectors,

and miniaturized camera probes (for looking into roosts). More research in roosting habits of

crevice-dwelling bat populations in general is in high demand, but research on roosting habits

over extended periods of time would be exceptionally useful for studying the movements and

site fidelity of those species on a larger scale.
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Chapter 4

A Terrain Ruggedness Index

A key predictor variable for a species’ niche is terrain heterogeneity, which is often incor-

porated into habitat distribution models for wildlife dependent on relatively rough or smooth

landscapes [19]. Because crevice and cavity roosts are frequently located in rock faces or clus-

ters, terrain heterogeneity serves as a proxy for possible bat roosts and hibernacula. Incorpo-

rating a numerical representation for terrain heterogeneity could improve the Maher et al., [8],

model by allowing WNS to spread into and through mountainous or otherwise geologically

rough counties with a cave density value equal to zero. Much of the mountainous terrain in

western U.S. states has a sparse distribution of documented caves (Figure 2.3), yet support large

bat populations with a large variety of possible bat habitats. Using terrain heterogeneity in place

of or in addition to cave density may help capture westward WNS spread more accurately.

Riley et al., [19], developed a terrain ruggedness index (TRI) based on USGS digital elevation

models (DEMs) to quantify the terrain heterogeneity descriptor. Equation 4.1 below details the

calculation of this index. The TRI value is found for a group of nine cells using the Euclidean dis-

tance between the value of the center elevation cell (x00) and the values in the eight surrounding

cells, depicted in the grid to the left of Equation 4.1.

TRI =
√∑

i , j
(xi j −x00)2 (4.1)

Looping this calculation through a bounded region yields a dataset of geographical values

that highlights areas of high elevation variability. A map of TRI values can be displayed using
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GIS software for a visual representation of terrain heterogeneity or used in a computational

model as a terrain variable [19].

Figure 4.1 is an image of elevation data for all U.S. states west of the Great Plains from the

Shuttle Radar Topography Mission (SRTM) in 2007 with a pixel resolution of 30 meters [20].

This data was downloaded through Google’s Earth Engine Explorer and the image was gener-

ated using Esri’s ArcGIS Desktop. Note that in this image, elevation values appear relatively

continuous.

Figure 4.1: A digital elevation model (DEM) of U.S. states west of the Great Plains. Data is from the
Shuttle Radar Topography Mission at a 30 meter pixel resolution and was downloaded from the Google
Earth Engine Explorer [20]

.
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After applying Equation 4.1 to the DEM in Figure 4.1, TRI values for the western U.S. were

obtained and are displayed in Figure 4.2. This image highlights the mountain ranges discussed

previously and other areas with high elevation heterogeneity (areas appearing to be rippled or

cracked in Figure 4.1). The data in the TRI image also appears more coarse and discrete. This is

due to the intended separation of low terrain variability from high terrain variability.

Figure 4.2: Terrain Ruggedness Index values of U.S. states west of the Great Plains, calculated from the
elevation data in Figure 4.1 and the TRI algorithm in Equation 4.1.

Creating Figure 4.2 first required downloading elevation data for the region. During this

stage, each state was split into smaller sections with landmarks as reference points on Google’s

Earth Engine Explorer and downloaded individually. A Python script created by Yiran Li, [21],
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and modified for this project (see appendix) read in each DEM raster, applied Equation 4.1, and

output a raster of TRI values for that selection. After all DEM rasters for the western U.S. were

downloaded and transformed into TRI rasters, the regions were combined into one raster using

the "Mosaic to New Raster" tool in Esri’s ArcGIS Desktop with the mosaic operator set to mean.

To apply Equation 4.1 to the DEM pictured in Figure 4.1, elevation pixels are grouped into

overlapping grids of nine and Equation 4.1 is applied directly to those groups. This application

assigns TRI values to all of the center pixels in the grids, leaving the border of the chosen re-

gion blank at a width equivalent to the pixel resolution. In this DEM, pixels are 30 meters by

30 meters, thus this algorithm groups pixels into 90 meter square blocks and leaves an empty

boundary of 30 meter width. To compensate for this empty boundary, the DEM regions down-

loaded were intentionally selected with a significant overlap that prevented gaps in the final TRI

raster.
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Chapter 5

Future Directions

The Terrain Ruggedness Index outlined by Riley et al., [19], provides a promising alternative

or addition to the cave density metric used in the Maher et al., [8], network model for WNS

spread. In order to be compatible with the cave density and WNS presence data available, the

TRI raster displayed in Figure 4.2 must be converted into a county-level metric. Using an overlay

of U.S. county boundaries and the spatial analyst tool in Esri’s ArcGIS Desktop, TRI values can

be averaged for each county, producing a county-wide terrain heterogeneity value which could

be incorporated into the network model from Maher et al..

There are two paths that could be taken when implementing this modification. Cave density

could be replaced altogether by TRI data, which requires TRI values for all counties in the con-

tiguous U.S. While this approach may simplify the model, it may also decrease the accuracy of

spread through the eastern U.S. Alternatively, cave density could be used exclusively in eastern

states (ηi and η j ) and TRI in western states (γi and γ j ) through the dispersal kernel

p̃i j =
[

1+e
−

(
β0+β1

di j
hi h j

+β3τi

)]−1

(5.1)

where, for any i ,

hi = η
β2

i +γ
β4

i . (5.2)

In this scenario, calculated TRI values are assigned to western states and TRI values for east-

ern states are set to zero, while cave density values are assigned to eastern states and set to zero

for western states. For two counties that lie on the same side of the Great Plains, the same vari-

able in each h term becomes zero and Equation 5.1 simplifies to Equation 2.6. In contrast, if

county i and county j are on different sides of the Great Plains, the denominator of the gravity
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term in Equation 5.1 includes both metrics. The exponents on each cave density and TRI term

provide additional flexibility in the effects of the two hibernacula proxies.

Both methods of incorporating TRI discussed in this section present possible obstacles, but

with some experimentation and analysis, the discrepancy between eastern and western U.S.

terrain could be bridged. A model that includes terrain heterogeneity as a variable contribut-

ing to bat suitability would likely generate more accurate predictions of westward WNS spread.

More accurate spread predictions would help land and wildlife managers increase their pre-

paredness and efficiency to prevent and contain this deadly bat epidemic.
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Appendix A

Python Script for Terrain Ruggedness Index (TRI)

### T i t l e : Calculate Terrain Ruggedness Index ( TRI ) on DEM

### Author : Yiran Li

### Date : 2017

### Available at

### https : / /www. a r c g i s .com/home/ item . html? id

### =334346db638844039dc1c4abf5dd8d00

###

### Modified by Catherine Read on June 6 , 2018

import arcpy

import numpy as np

import numpy.ma as ma

import os

import math

# Set path and f i l e names f o r reading in DEM and outputting TRI f i l e s .

os . chdir ( "C: / Users/read/Documents/ArcGIS/DEMs/WUS_DEMs/CA" )

DEMin = os . path . join ( os . getcwd ( ) , "CA1 . t i f " )

TRIout = os . path . join ( os . getcwd ( ) , r "CA1 . t i f " )

# Dimension of square elevation grid used to c a l c u l a t e TRI values .

winsize = 3

try :
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demRaster = arcpy . Raster (DEMin)

arcpy . env . overwriteOutput = True

arcpy . env . outputCoordinateSystem = DEMin

arcpy . env . c e l l s i z e = DEMin

# Assign radius of elevation grid ( radius=1 here ) , dims of t o t a l region ,

# and min /max extent .

rad = int ( winsize /2)

demcols = demRaster . width

demrows = demRaster . height

mx = demRaster . extent . XMin

my = demRaster . extent . YMin

print ( "Reading the input DEM. . . " )

demArray = arcpy . RasterToNumPyArray ( demRaster , arcpy . Point (mx,my) ,

demcols , demrows)

maskDEMArray = ma. masked_where ( demArray == −9999.0 , demArray )

# I n i t i a l i z e blank array f o r TRI values .

newshape = ( int (np . c e i l (demrows/ winsize ) ) ,

int (np . c e i l ( demcols/ winsize ) ) )

TRIArray = np . zeros (newshape)

print ( " Calculating TRI index . . . " )

trirow = 0

# Calculate TRI f o r each c l u s t e r of c e l l s .
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for i in range ( rad , demrows−rad , winsize ) :

t r i c o l = 0

for j in range ( rad , demcols−rad , winsize ) :

d i f f = 0.0

i f maskDEMArray[ i , j ] i s ma. masked :

TRIArray [ trirow , t r i c o l ] = −9999.0

else :

winArray = maskDEMArray [ i−rad : i +rad +1 , j−rad : j +rad +1]

d i f f = ( winArray − maskDEMArray[ i , j ] )

d i f f =np . array ( d i f f , dtype= ’ int64 ’ )

squares = ( d i f f * * 2 )

sumDiff = np .sum( squares )

TRIArray [ trirow , t r i c o l ] = math . sqrt ( sumDiff )

t r i c o l = t r i c o l +1

trirow = trirow +1

# Save TRI values to a r a s t e r and output to . t i f f i l e .

print ( " Saving the TRI index map . . . " )

TRIRaster = arcpy . NumPyArrayToRaster ( TRIArray , arcpy . Point (mx,my) ,

winsize *demRaster . meanCellWidth ,

winsize *demRaster . meanCellHeight ,−9999.0)

TRIRaster . save ( TRIout )

del TRIRaster

del demRaster

print ( " A l l done ! " )

except arcpy . ExecuteError :
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print ( arcpy . GetMessages ( ) )

36


	Abstract
	An Overview of White-Nose Syndrome in Bats
	The Biology of White-Nose Syndrome
	Spread Mechanisms
	Research and Response Efforts

	A Network Model for Spread Prediction
	Crevice and Cavity Roosting Bats
	Research Challenges

	A Terrain Ruggedness Index
	Future Directions
	Bibliography
	Python Script for Terrain Ruggedness Index (TRI)

