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ABSTRACT

SAE J1939-SPECIFIC CYBER SECURITY FOR MEDIUM AND HEAVY-DUTY VEHICLES

Medium and heavy-duty (MHD) vehicles are part of the US critical infrastructure. In modern

MHD vehicles, mechanical operations are regularly controlled by interconnected networks of elec-

tronic control units (ECU). Communication within and across these networks is typically governed

by the SAE J1939 standards. It has been established that similar to their lighter counterparts (pas-

senger vehicles), MHD vehicles expose remote and physically accessible interfaces through which

arbitrary messages can be sent to ECUs with the intent to control and/or disrupt the vehicle’s func-

tions. For physical transport of information between ECUs, SAE J1939 utilizes the Controller

Area Network (CAN) protocol. CAN is used extensively for in-passenger vehicle communication

and its security features have been analyzed frequently. Albeit, the same cannot be said about SAE

J1939. As such, in this dissertation, we investigate security methods for MHD vehicles that uti-

lize specifics of SAE J1939. First, we research cyber-attacks that exploit weaknesses in the SAE

J1939 standards. Along with the known attacks from related literature, these help in enhancing

the current threatscape. Next, we research network-based security solutions that make use of SAE

J1939 specifications. Prior work on in-vehicle security identifies the necessity for a multi-layered

security solution that can raise alarms even if the attack cannot be completely prevented. As such,

we provide security in two layers. In the first layer, we try to detect an ongoing attack and raise

alarms. The method is designed to function in an online manner in the dynamic networking envi-

ronment within an MHD vehicle. In the second layer, we try to identify attacker-injected messages

using user-provided rules in real time as the message is being transmitted. The method is designed

to classify a message (e.g. a command to unlock a door) as benign or malicious based on features

other than its content (e.g. whether the vehicle is in motion).
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Chapter 1

Introduction

1.1 Electronification of Medium and Heavy Duty Vehicles

Medium and Heavy-duty (MHD) vehicles are the lifeblood of the modern economy, delivering

critical food, supplies, and freight throughout the world. As of 2020, there were about 15,000,000

[1] registered trucks and buses in the United States only. In decades past, these vehicles were

heavy polluters with unchecked emissions. Modern technology has enabled more precise engine

and emission controls. The technological advancement has largely been facilitated by embedded

electronics and advanced communication methods. Figure 1.1 shows the mechatronic ecosystem

of a modern MHD vehicle. At the heart of this ecosystem are low-power, embedded Electronic

Control Units (ECU) that regulate the operations of the vehicle. ECUs read vehicle parameters

(e.g., accelerator pedal position, engine speed, etc.) from sensors and other ECUs, use them to

compute control signals (e.g. the duration for fuel injection), and effectuate the same through

actuators. ECUs communicate with each other within or across network segments that follow a bus

topology. The engine speed displayed on a vehicle’s instrument cluster, for example, is generally

obtained by communicating with an engine control unit on the powertrain network segment.

ECU-to-ECU communication within MHD vehicles is typically guided by a common set of

specifications made in the SAE J1939 [2] standards. The standards are partitioned into layers

based on the Open System Interconnect (OSI) [3] model. The common specifications allow vehicle

vendors to assemble heterogeneously manufactured devices on the same physical network without

worrying about interoperability, à la plug-and-play. Electronic data obtained on MHD vehicles

are exfiltrated for logistics optimization, asset management, regulation compliance, and improving

fuel economy. As such, many MHD vehicles have built-in wireless telematics devices, which

effectively connect them to the Internet [4, 5]. This allows for remote administration and assistance

when required.
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Figure 1.1: Mechatronic Ecosystem of a Medium and Heavy-duty (MHD) vehicle

1.2 Emerging Security Concerns

SAE J1939 refers to the Controller Area Network (CAN) specifications [6, 7] for transportation

of messages. CAN is used heavily in passenger vehicles and there has been extensive analysis of its

security [8]. Early research [9] recognized that physically proximate attackers can control and/or

disrupt the vehicle’s operations by injecting arbitrary messages on CAN through exposed entry

points like the mandatory onboard diagnostic (OBD)-II port. The gravity of the concerns was

amplified when it was discovered that physical access may not be required if one or more ECUs

exposed remotely exploitable vulnerabilities [10, 11]. Preliminary heavy vehicle security research

[5, 4] has confirmed that similar attack surfaces, as well as others such as exposed trailer wiring,

can be found on MHD vehicles (refer to Figure 1.1 for examples) and are increasingly being used

to facilitate better transportation management. With access to these attack surfaces, a malicious

intruder can launch a variety of attacks on the internal network with the intent to control and/or

disrupt the normal operations of an MHD vehicle. What’s more, the openness of the SAE J1939
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standards can be leveraged to ease the process of attack discovery [12, 13, 4]. Burakova et al.

[12] and Murvay et al. [13] have already demonstrated such attacks at the application and network

management layer of the SAE J1939 specifications.

To date, no known cyberattacks have been recorded on MHD vehicles, but professionals and

researchers have speculated that MHD vehicles can quickly become lucrative targets for cyber

attackers due to their daily involvement in societal and business-critical activities, as well as in-

creased exposure of intruder entry points and the use of openly available standards. Recently, the

perceived level of threat has been aggravated by a string of targeted cyberattacks [14] on truck

manufacturing companies.

1.3 Existing Security Solutions

To ensure defense-in-depth, preliminary investigations into MHD vehicle security [4, 5] have

recommended a combination of cryptographic authentication and intrusion detection and preven-

tion to protect the in-vehicle networks. Cryptographic authentication needs to be built into the

target and can be resource intensive [15]. It can incur communication overheads when exchaning

digital signatures over CAN which only allows 64 bits of data per message. There may also be

cases where ECUs process malicious messages irrespective of the sender’s identity and, in some

cases, a legitimate sender (like a body controller with wireless connectivity) may be compromised.

Intrusion detection and prevention (IDP) is a viable alternative and can be used to detect and pos-

sibly thwart malicious behavior, even from a legitimate but compromised sender. To date, two

IDP solutions [16, 17] have been published for SAE J1939 networks. The rest are designed for

CAN networks in passenger vehicles. Albeit, there may be an opportunity to adapt them for MHD

vehicles.

There are three types of IDP systems proposed for in-vehicle networks: anomaly-based, specification-

based, and rule-based. In general, anomaly-based IDP systems learn the normal behavior of the

network and label unknown behavior as malicious [18]. In this way, they can detect unknown

attacks but can also observe false alarms [19]. Existing in-vehicle anomaly-based IDP systems

3



learn normal behavior from data collected during past drive cycles. This data may not reflect the

different network configurations and use cases that the vehicle may go through during its life-cycle

[4, 20]. As such, they may need to be retrained frequently. Specification-based systems use man-

ufacturer specifications to build a reference model for the target system and, like anomaly-based

systems, detect deviations from the built model. Unfortunately, SAE J1939-specific attacks may

abide by specifications and still succeed. Rule-based systems compare information on the network

with pre-defined attack signatures and raise alarms if a match is found. Rule-based IDP systems

for in-vehicle networks can be designed to identify malicious messages and prevent the target

ECUs from processing them [21, 22]. Unfortunately, existing systems rely on signatures defined

on message content only and this may not be enough to detect cleverly crafted attacks on SAE

J1939 networks. For example, a message to unlock doors is perfectly normal but may be a safety

hazard if transmitted when the vehicle is in motion. Existing rule-based solutions will treat the

later situation as normal and let the message pass.

1.4 Research Questions

Given the status of the current research on SAE J1939-specific security for MHD vehicles and

the challenges to extending solutions from the passenger vehicle domain, this dissertation aims

to address questions related to both the offensive and defensive sides of security for SAE J1939

networks in MHD vehicles. In particular, the following three research questions are asked

• Given that current research of offensive technologies has focussed on the application and

network management layers of the SAE J1939 standards, this research asks: can weaknesses

in the data-link layer specifications of SAE J1939 be exploited to attack in-MHD vehicle

ECUs?

• Given that current research on anomaly-based intrusion detection techniques for CAN net-

works require frequent offline training, this research asks: can a system be designed to

detect network anomalies on an SAE J1939 network in an online manner?

4



• Given that current research on rule-based intrusion detection and prevention systems cannot

detect threatening SAE J1939 messages using message content only, this research asks: can

a rule-based system be designed to detect threatening SAE J1939 messages as they are

being transmitted using features other than message content only?

1.5 Dissertation Contributions

In general, this dissertation tries to elucidate the relatively new research topic of MHD vehicle

security. In a broader sense, it also provides an incentive for future research and demonstrates

that higher-level specifications on CAN (like SAE J1939) can be utilized for security research. In

particular, this dissertation makes the following three contributions

• Three denial-of-service attacks are introduced on ECUs by leveraging specifications made in

the SAE J1939 standards. For each attack, the research hypothesis is described, followed by

the results of testing the hypothesis on different testbeds and a discussion on their physical

impacts and possible defense strategies.

• An online anomaly-based intrusion detection system is presented that models network be-

havior through SAE J1939 specified concepts and flags abnormal deviations from normal

behavior as security infringements. In the process, two new features have been introduced

that model the network’s behavior through SAE J1939 parsed network data. A hypothesis

for attack detection is laid down based on these two features and an algorithm is presented

that implements the hypothesis and tries to detect attacks as messages are received on the

network.

• A rule-based intrusion detection and prevention system is presented that provides security

personnel with ways to flag messages in transit that can and cannot be identified solely on the

basis of their content. In the process, a novel rule structure is described that captures multiple

attack detection features, example rules are demonstrated to detect real-world attacks, and a
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scheme is presented to enforce user-specified rules in real time, i.e. as messages are being

transmitted.

1.6 Document Organization

Chapter 2 provides the background knowledge required to comprehend the content of the re-

maining chapters in this document. This includes a primer on SAE J1939 and CAN, an overview

of the trucks used for experimentation, a detailed description of the threat model, and the types

of attacks that can be executed on an SAE J1939 network within an MHD vehicle. In the same

chapter, a review of the existing directions in in-vehicle security is also presented.

In chapter 3, the first contribution of this dissertation is described: three denial-of-service at-

tacks that exploit weaknesses in the SAE J1939 data-link layer specifications.

In chapter 4, the second contribution of this dissertation is described: an online anomaly de-

tection system that models network behavior through SAE J1939 specified concepts and flags

abnormal deviations from normal behavior as security infringements.

In chapter 5, the third contribution of this dissertation is described: a rule-based intrusion

detection and prevention system that presents the security personnel with ways to flag messages in

transit that can and cannot be identified solely on the basis of their content.

In chapter 6, this dissertation is concluded with a summary of the accomplishments and future

directions of work.
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Chapter 2

Background

This chapter first provides a primer on SAE J1939 and Controller Area Network (CAN), the

two communication specifications that form the backbone of in-vehicle networking in MHD vehi-

cles. In the primer, fundamentals of message exchange, timing aspects of message transmission,

and critical J1939 protocols are discussed. Next, a brief description of the two trucks that have

been used (directly or indirectly through collected data) throughout this research is provided. Fol-

lowing this, a description of our threat model is provided along with the different types of attack

strategies on SAE J1939 networks. Finally, a review of the existing directions in in-vehicle secu-

rity is provided with an analysis of their ability to be adopted for SAE J1939 networks in MHD

vehicles.

2.1 Primer on SAE J1939 and Controller Area Network (CAN)

SAE J1939 [2] standard is organized in layers, much like the ISO/ISO standards [3] for IT

networking systems. Each layer is described through one or more standard documents as shown in

Table 2.1. This section describes information in these documents that is critical to understanding

the contents of this dissertation. It begins by describing the fundamentals of message processing

in SAE J1939. It then describes the low-level frame formats used in message exchange. This is

followed by a description of parameter placement in SAE J1939 messages as well a brief overview

of transmission scheduling. Finally, it describes three SAE J1939 specified protocols that are

referred to on multiple occasions in this dissertation.

2.1.1 Message Processing

Information on SAE J1939 networks is exchanged using messages. The structure of an SAE

J1939 message is shown in Figure 2.1. It consists of four fields. Starting from the right, the

data field carries a parameter group (PG). A PG is a collection of vehicle parameters that are
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Table 2.1: SAE J1939 Document Organization

SAE J1939 Documents Layer

SAE J1939-11,

SAE J1939-13,

SAE J1939-14,

SAE J1939-15,

SAE J1939-16

Physical

SAE J1939-21 Data-Link

SAE J1939-31 Network

SAE J1939-71,

SAE J1939-73,

SAE J1939-74,

SAE J1939-75,

SAE J1939 Digital Annex

Application

SAE J1939-81,

SAE J1939-82,

SAE J1939-84

Network management

Figure 2.1: SAE J1939 Message Format

related to the same function. For example, the vehicle cruise control function utilizes wheel-

based vehicle speed and cruise mode, among others, as defined in SAE J1939-71 under the Cruise

Control/Vehicle Speed parameter group. In SAE J1939 parameter groups are assigned an 18-bit

unique number called the Parameter Group Number (PGN) that is also present in the message.

Aside from this, the message also carries a source address (SA) and destination address (DA)

identifying its sender and receiver. CAN is a broadcast medium but nodes on an SAE J1939

network are assigned addresses. Every controller application connected to the bus must have a

unique 8-bit address, some of which are standardized by J1939. For example, the engine controllers
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Figure 2.2: SAE J1939 Message Processing

are assigned standard addresses of 0016 and 0116. Addresses can also be claimed dynamically at

vehicle startup time through the address claim protocol described later in section 2.1.4.

SAE J1939 messages are communicated on the CAN bus through J1939 protocol data units

(PDU) that are in turn placed into CAN frames as shown in Figure 2.2. The format of the J1939

PDU and CAN frame is described in the next subsection. CAN allows a maximum of 64 bits

of data to be transmitted at one time. As such, J1939 PDUs carry 64 bits of message data only.

If the size of the message is greater than 64 bits, SAE J1939 specifies the use of the transport

protocol (defined in the SAE J1939/21 document [23]) to split the data field into multiple PDUs and

communicate each PDU reliably from source to destination. Details on this protocol are described

later in section 2.1.4. Currently, only 9% of the non-proprietary messages defined in the SAE

J1939-71 document are allowed to have a size greater than 64 bits. These messages are typically
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Figure 2.3: SAE J1939 Protocol Data Unit Format

used to exchange configuration information, not physical parameters like speed, torque, etc. To

that end, this research does not consider messages of size greater than 64 bits, otherwise referred

to as “multipacket messages” [24]. It only considers messages whose data content is less than or

equal to 64 bits, including special messages used by the protocols described later in this section.

Usually, SAE J1939 messages are handled by the microcontroller unit of the ECU. The CAN

controller of the ECU handles CAN frames and ensures that CAN communication abides by the

specifications [6, 7]. The CAN controller communicates bits of the CAN frame with a transceiver

using non-return-to-zero (NRZ) line encoding as shown at the bottom of Figure 2.2. In CAN

terminology a 0 bit is referred to as dominant while a 1 bit is referred to as recessive. The width

of a bit depends on the baud rate of the CAN bus. For example, a baud rate of 250 kbps implies a

bit width of 1000
250

= 4 µsec. SAE J1939 recommended baud rates are 250 and 500 kbps. To ensure

time synchronization for bit sampling, a bit with the opposite polarity is always transmitted after

five consecutive bits with the same polarity. This procedure is referred to as bit stuffing.

2.1.2 Data-Link Frame Formats

Frames for communication between ECUs are mentioned in the data-link layer of the SAE

J1939 standards [23]. There are two levels of frames used, both of which have been introduced in

the previous subsection. The first is the SAE J1939 protocol data unit (PDU) which is shown in

Figure 2.3. The SAE J1939 PDU is further transmitted using the controller area network (CAN)

frames, the format for which is shown in Figure 2.4.
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Figure 2.4: CAN Frame Format

An SAE J1939 PDU consists of 6 fields namely priority(pr), extended data page (EDP), data

page (DP), PDU format (PF), PDU specific (PS), and source address (SA). (Pr)iority bits are used

for message arbitration described later in this subsection. EDP (Extended Data Page) and DP

(Data Page) are 1-bit values and can together assume only a pair of standardized values 002 and

012. These two fields consist the first two bits of the PGN from the most significant bit side. The

next eight bits of the PGN are transmitted in the PF field of the J1939 PDU. The PS field either

carries the last eight bits of the PGN or the destination address field depending on the value of the

PF. According to the SAE J1939 standards, if the value of the PF field is less than 240, PS is equal

to the DA of the message, else it is equal to the last eight bits of the PGN. This, in turn, implies that

messages with PGN 61440 to 65535 and 126976 and 131071 are not destination specific, i.e. they

are broadcasted. The rest can be sent to specific destinations identified by their address or to the

broadcast address 255. The SA field of the J1939 PDU carries the source address from the SAE

J1939 message, while the data field carries part or whole of the data content of the SAE J1939

message, depending on its length (refer back to the previous subsection).

The content of the SAE J1939 PDU is communicated on the CAN bus through the CAN data

frame, referred to hereafter simply as the CAN frame. The CAN frame begins with a recessive

11



Start-of-Frame (SOF) bit, followed by an eleven-bit identifier field. The identifier field carries the

SAE J1939 priority, the EDP and DP bits, as well as the first six bits (from the most significant

side) of the PF field of the SAE J1939 PDU. The Substitute Remote Request (SRR), Identifier

Extension Bit (IDE), and Remote Transmission Request (RTR) bits are always set to recessive,

while the bits r0 and r1 are always set to dominant [6]. The identifier ext. field carries the last

two bits of the PF field (from the most significant side) and the entirety of the PS and SA fields.

Together, the identifier and identifier ext. fields form the 29-bit CAN ID. The ID, SRR, IDE, and

RTR fields form the arbitration field for CAN. This field is critical for collision resolution on the

CAN bus. Usually, an ECU transmits on the CAN bus when at least 11 consecutive recessive bits

are seen consecutively. This indicates that the bus is idle. However, if two ECUs try to transmit at

the same time, a collision may ensue. In this case, the ECU that transmits a recessive bit (1) stops

transmitting and the ones that transmit dominant (0) keep transmitting. At the end of transmission

of the arbitration field, the ECU that sends the lowest value for CAN ID obtains exclusive access

to the bus. After this point, the control field is transmitted and contains the number of bytes (≤

8) in the data field. The trailer of the CAN frame contains a Cyclic Redundancy Check (CRC)

code for error checking, a CRC delimiter, and an Acknowledgment (ACK) field that is used to

acknowledge the correct receipt of the frame by at least one node on the network. Notice that

bit-stuffing, introduced in the previous subsection, is only done up to the CRC field of the frame.

The final field of the trailer is the End of Frame (EOF) and, as its name describes, signifies the end

of the frame. Together with 3 bits of interframe space (IFS), the EOF field and the second bit of

the ACK field denote the 11 consecutive recessive bits that signify an idle CAN bus.

2.1.3 Parameter Placement and Transmission Scheduling

All SAE J1939 parameter placement can be represented using the notation “R.x - S.w”. Here

R and S are byte positions and x and w are bit positions in the 64-bit data field. If R is equal to S,

then x is also equal to w. This signifies that the parameter is placed entirely in byte R starting from

bit x and ending at bit x + length -1, where length is the total number of bits that the parameter
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Figure 2.5: SAE J1939 Parameter Placement from Position R.x to S.w

occupies. If R is not equal to S, then the parameter occupies bits x through 8 of byte R, all bits

of bytes R+1 through S-1, and the remaining bits starting from bit w of byte S. This is shown in

Figure 2.5. Non-proprietary placement specifications are made in the SAE J1939 digital annex

[25]. An example placement representation from the digital annex is “4.6 - 6.7” for a parameter

that occupies 12 bits. This parameter is placed in bits 6 through 8 of byte 4, the entirety of byte

5, and bits 7 and 8 of byte 8. It must also be noted that SAE J1939 parameters are transmitted

least significant byte first but most significant bit first i.e. byte R is transmitted first on the network,

while byte S is transmitted last and within a byte, bit 8 is transmitted first while bit x is transmitted

last.

Before being placed into the aforementioned positions, parameters are transformed using an

SAE J1939 specified resolution and offset factor. In the transformation procedure, the offset is first

subtracted from the value of the parameter after which the result is divided by the resolution. At the

receiving end, the actual value is obtained by multiplying the resolution with the raw value obtained

from the message data field and adding the offset afterward. For alphanumeric parameters, SAE
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J1939 does not specify a resolution and offset. As such, this transformation procedure is not

required for those parameters.

An example of the SAE J1939 parameter parsing process is demonstrated below using a mes-

sage with CAN ID 18FDE13116.

ID (18FDE13116)→ 110
︸︷︷︸

p

pgn
︷ ︸︸ ︷

0
︸︷︷︸

edp

0
︸︷︷︸

dp

11111101
︸ ︷︷ ︸

pf

11100001
︸ ︷︷ ︸

ps

00110001
︸ ︷︷ ︸

sa

Data (64FDFFF....)→ 01100100
︸ ︷︷ ︸

spn2609

111111 01
︸︷︷︸

spn7853

11111111111111..

Since the value in the PF field is greater than 240, the PGN is calculated using values in the

EDP, DP, PF, and PS fields. In this case, the binary to hexadecimal conversion yields a PGN of

0FDE116. This PGN identifies the parameter group “Cab A/C Climate System Information" and

is associated with 2 separate SPNs:

• 2609 “Cab A/C Refrigerant Compressor Outlet Pressure" is conveyed in byte 1 (from left)

and calculated by multiplying the decimal equivalent with the resolution of 16 and adding to

it an offset of 0.

• 7853 “Air Conditioner Compressor Status" is conveyed in byte 2 (from left) bits 0 to 1 and

expressed in its raw binary form.

The actual value of the “Cab A/C Refrigerant Compressor Outlet Pressure" is calculated by mul-

tiplying the decimal equivalent of the extracted bits with the resolution and adding the offset to it

i.e. 011001002 ∗ 1610 + 010 → 10010 ∗ 1610 → 1600. The unit for this particular parameter is kilo

pascal (kPa). Similarly, the “Air Conditioner Compressor Status" is set to 1 which denotes that the

“Air Conditioner Compressor is ON".

Most of the messages on an SAE J1939 network are transmitted periodically from ignition on

to off [26]. SAE J1939 specifications provide default transmission intervals for most parameter

groups [25], even though manufacturers may opt for different transmission intervals. For example,

the parameter group carrying transmission controller information is specified to be transmitted at
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intervals of 10 milliseconds. SAE J1939 messages can also be transmitted on an ad hoc basis.

These include request responses, commands, parameter groups that must be reported on a change

of one or more parameter values, etc.

2.1.4 Protocols

This dissertation refers to three critical protocols that SAE J1939 specifies. These are used for

requesting parameters, transferring multipacket messages, and dynamic address allocation.

Parameter Requesting

While some parameter groups are transmitted programmatically, some may have to be re-

quested. A request is sent from one ECU to another using the SAE J1939 specified request mes-

sage. This message has a PGN of 59904 (0EA0016) and carries the requested PGN in reverse byte

order in the first three data bytes. Requests can be directed to a specific device or to the broadcast

domain.

A destination-specific request is answered by the receiver with the requested parameter group

and/or an acknowledgment. Acknowledgment messages in SAE J1939 are assigned the PGN

59392 (0E80016). As with the request messages, acknowledgments can be destination-specific

or broadcast. For use with requests, SAE J1939 specifies four types of acknowledgment: positive

acknowledgment (ACK), negative acknowledgment (NACK), access denied, and cannot respond.

The value in the first data byte of an acknowledgment message determines the type of acknowl-

edgment.

Multipacket Message Transfer

As already discussed, J1939 PDUs allow a maximum of 64 bits in the data field, but message

data can be larger than that. In those cases, message data is transported using a different set of

messages, each of which can fit into a J1939 PDU. In SAE J1939 terminology, this process is

referred to as the multipacket message transfer. Formats of messages used in multipacket message

transfer are given in Table 2.2. The actual protocol is shown in Figure 2.6 using standard UML
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Table 2.2: Formats of Messages Used in Multipacket Message Transfer

Label PGN
Parameter Placement in Data Bytes

1 2 3 4 5 6 7 8

Request

To Send

(RTS)

60416 16 Number of bytes to

send

Number of

packets to

send

Maximum

number

of packets

that can

be sent in

response

to one

CTS.

PGN of the

message

being trans-

ferred

Clear

to Send

(CTS)

60416 17 Number

of packets

that can be

sent

Next

packet

number

to send

FF16 PGN of the

message

being trans-

ferred

End of

Message

Ac-

knowl-

edgment

(EoMA)

60416 19 Number of bytes

received

Number of

packets re-

ceived

FF16 PGN of the

message

being trans-

ferred

Abort 60416 255 Reason for

abort

Role of

Sender

FF16 PGN of the

message

being trans-

ferred

Data

Transfer

(DT)

60160 Sequence

number

Data bytes to send
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Figure 2.6: Multipacket Message Transfer Protocol

2.5 sequence diagram notations [27]. In there, arrows represent messages, blocks opt and alt stand

for optional and alternative and block loop is self-explanatory. This dissertation does not deal with

multipacket transfers to the broadcast address.

At first, the sending party attempts to open a connection by sending a Request to Send (RTS)

message. An RTS message carries information about the total number of packets and the number

of bytes to be sent. At the receiver’s end, this information can be used to allocate resources to store

the incoming data. In response to the RTS, the receiver sends a Clear to Send (CTS) message. CTS

messages enforce flow control by limiting the number of packets that can be sent after each CTS
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Figure 2.7: Address Claim Protocol

is transmitted. Both RTS and CTS messages use a PGN of 0EC0016 and include the transported

PGN in the last three data bytes in reverse byte order. Upon receiving the CTS, the sender can send

message data using the data transfer (DT) messages until all data bytes are sent. The PGN of a DT

message is 0EB0016. The first byte of this message is reserved for a sequence number. Sequence

numbers are used to reassemble the incoming data bytes. The remaining seven bytes of data in a

DT message are used to transport the data bytes from the multipacket message being transferred.

The flow of DT messages can be aborted by optionally sending an Abort message that includes

information stating the reason for the abort. On successful completion of the transfer (i.e. if not

aborted), an End of Message Acknowledgment (EoMA) is sent by the receiver to indicate closure

of the connection.

Address Claiming

Every node on an SAE J1939 network is required to have a unique address and a unique name

which, as specified in the SAE J1939 network management layer standards, is a 64-bit value re-

ferred to as NAME. At startup, every node is required to execute the address claim protocol shown

in Figure 2.7.
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The address claim protocol requires an ECU to send an address claim message at startup show-

casing the address they claim in the SA field of the message. This message has a PGN of 60928

and carries the NAME parameter in the data field. In the SAE J1939 standards it is referred to an

the address claim message. After sending the message the ECU waits until a pre-specified timer

expires. During this period it may receive a contending address claim with the same value in the

SA field of the message. If the value of NAME in the contending claim is lower than the ECU’s

NAME, the current address is relinquished, a new address is chosen from a pool of addresses, and

the protocol is repeated from the start. Upon successful completion of this protocol, all ECUs on

the network are assigned unique addresses.

2.2 Research Trucks

This dissertation performs experiments on two trucks, directly or indirectly through collected

data logs. Both these trucks include(d) at least one SAE network. The first truck is a PACCAR PX-

7-powered 2014 Kenworth T270 which we currently have access to. There is a Cummins CM2350

engine ECU, Bendix EC-60 brake ECU, and Allison RDS-2000 transmission ECU on the truck.

All of these ECUs communicate with each other on a 250 kbps CAN bus. A picture of this truck

along with its dashboard is provided in Figure 2.8a. The picture of the dashboard was taken when

the truck was idling. As displayed, the idle engine speed is around 600 revolutions per minute

(RPM).

The second truck is a PACCAR MX-13-powered 2015 Kenworth T660. We did not have phys-

ical access to this truck. Instead, we have access to a log that was collected from a 250 kbps

CAN bus during 7 minutes of driving around an industrial block. During the drive, the driver

performed some hard brake maneuvers. Figure 2.8b shows a snapshot of the truck’s cabin from

a video recorded during the drive. From the data log collected the following observations can be

made

• There are 137318 messages in the log.
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(a) 2014 Kenworth T270 Truck with a Snapshot of the DashBoard

(b) 2015 Kenworth T660 Truck Cabin

Figure 2.8: Experimental Trucks
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Figure 2.9: Attacker Access Model

• There are 5 unique transmitters: an engine controller, a brake controller, an engine retarder,

a cab controller, and a diesel particulate filter controller.

• There are 41 unique parameter groups transmitted out of which 35 are periodic and 6 are

ad hoc. The ad hoc transmitted parameter groups include request messages, responses to

requests, broadcast announcement messages, and commands. The commands were sent to

the engine controller when the hard brake maneuvers were performed.

2.3 Threat Model

This section of the background chapter presents our threat model. In particular, it discusses

our assumptions about the attacker’s capabilities and the attack strategies they can resort to. The

intrusion detection and prevention techniques proposed in this dissertation try to defend against the

attacks described in this section as well as those introduced in chapter 3 of this dissertation.
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2.3.1 Attacker Capabilities

With physical access to the vehicle, the attacker can be considered as powerful as a trusted

insider. They can attach custom-built hardware to the target network and can also remove a secu-

rity device connected to it. To that end, this dissertation assumes that the attacker does not have

physical access to the vehicle, and breaks in through a remote access point as shown in Figure

2.9. After breaking in, the attacker can send CAN frames through the onboard CAN controller or

bypass it and send NRZ pulses (bits) directly to the transceiver. It has been shown that, in the latter

case, the attacker can manipulate bits of a CAN frame, shut down another ECU on the bus and

transmit on its behalf [28]. The success of this attack depends on multiple system pre-conditions

(like physical access to the vehicle and/or existing vulnerabilities on the CAN controller) that may

not be satisfied on the pivot device and, if launched successfully, such attacks can also be detected

[29]. Given this, this dissertation assumes that the attacker cannot (or does not) manipulate CAN

bits.

The attacker may be able to reprogram another ECU on the CAN bus and control the inputs

to its transceiver. In this case, though, they will require elevated privileges and possibly even

advanced social engineering skills. These types of elevated privileges are typically available with

the "insiders" [5]: garage personnel, drivers, owners, manufacturers, etc. An insider can easily

remove installed security devices or render them useless. It will be impossible to deploy any form

of security on an in-vehicle network without having a complete understanding of the insider’s

capabilities. Therefore, this dissertation assumes that insiders are trusted and the attacker does not

have insider capabilities.

As seen in Figure 2.9, this dissertation considers that the attacker’s target can be on the network

to which they have direct access or on a different network, in which case they can bypass gateway

firewalls if required. They can interpret and create SAE J1939 messages as well as spoof the source

address of another ECU while conducting an attack.
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2.3.2 Attack Strategies

With the ability to send CAN frames onto the network, the attacker can launch in-vehicle

cyberattacks. Attacks can be specific to MHD vehicles or can be extrapolated from the passenger

vehicle domain. This dissertation considers the following types of attacks :

High Volume Denial-of-service (HVDoS)

This type of attack tries to consume the resources available to the ECUs through rapid injection

of SAE J1939 messages.

Published Attacks

Network Overload Attack Miller et al. [30] have demonstrated that by rapidly injecting frames

with CAN ID 0 network bandwidth available to the ECUs can be consumed completely.

Recall from section 2.1.2 that in case of a collision, the CAN ID with the lowest value wins

bus arbitration. 0 is the lowest-valued ID and can be used to clog the entire bus even if a

collision occurs. Through experiments on the Kenworth T270 research truck, we observed

that this attack halts a running truck and prevents it from moving forward. Miller et al.

observed the same on a Ford Escape and Toyota Prius. This dissertation refers to this attack

as the “network overload attack”.

Low Volume Denial-of-service (LVDoS)

This type of attack tries to disable ECU services by injecting messages at a normal rate.

Published Attacks

Address Claim Attack Recall from section 2.1.4 that an ECU relinquishes its address if a con-

tending claim is received with a lower NAME value. Murvay et al. [13], leverage this

behavior to demonstrate that an ECU can be rendered defunct on the network by repeatedly

sending address claim messages with the target’s address in the SA field and all 0s in the

data field until all addresses in the ECU’s pool are claimed. This dissertation refers to this
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attack as the “address claim attack". Murvay et al. [13] did not conduct this attack on an

actual vehicle. We do so on the Kenworth T270 research truck and observe that it stops all

communication to and from the target ECU. If this ECU is the engine controller, it halts au-

tomatic transmission and safety-critical functions like anti-lock braking and traction control.

It also shows erroneous information on the dashboard.

Command and Control (CnC)

This type of attack tries to control the cyber-physical functions of ECUs by sending one or

more command messages defined in the SAE J1939 standards [31]. CnC attacks to open the doors

of the vehicle, activate the windshield wipers, etc. have been demonstrated on passenger vehicles

[32, 30] and MHD vehicle security researchers believe that the same can be executed with greater

ease on MHD vehicles due to the open availability of message formatting specifications made in

the SAE J1939 standards.

Published Attacks

Engine control Attack Burakova et al. have demonstrated that continuous control over the engine

can be established by sending SAE J1939 defined ad hoc messages with PGN 0000016. This

dissertation refers to this attack as the "engine control attack".

Retarder Jam Attack Burakova et al. [12] have demonstrated that the truck’s ability to use en-

gine braking (retardation) can be disabled by commanding 0% torque to the engine retarder

in messages with PGN 0000016 at speeds below 30 mph. This dissertation refers to this

attack as the "retarder jam attack".

Throttle Jam Attack In [12], Burakova et al. have also demonstrated that the driver’s input to

the accelerator pedal can be effectively cut off by sending very low torque requests to the

engine controller in messages with PGN 0000016. This dissertation refers to this attack as

the "throttle jam attack".
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Fuzzing

As a precursor to the above-mentioned attacks, the attacker may require random fuzzing to

determine the capabilities of the target ECU. Fuzzing involves sending random CAN ID and data

bytes sent at high rates [33]. In some cases fuzzing may even lead to unseen and possibly safety-

critical scenarios [34] on MHD vehicles.

Published Attacks There are no known instances of fuzzing attacks published in MHD vehicle

security literature. As such, we tried conducting such an attack and witnessed that the gauges on

the instrument cluster moved in an erratic manner. No effect was noticed on the motion of the

vehicle.

Fuzzing and HVDoS attacks on CAN networks have been reported on multiple occasions [15].

Albeit, to date, published LVDos and CnC attacks have been specific to SAE J1939. Replay at-

tacks, with or without data modification, have also been shown to work on CAN networks [30, 32].

A replay of periodic traffic inevitably leads to a violation of periodicity due to the retransmission

of the same PGN before the expiry of the period. This behavior has been shown to be easily de-

tectable [35, 36, 37, 38, 39] and in some cases has been used to shut off the attacker’s pivot point

[40, 41]. This dissertation assumes that the attacker tries to stay stealthy by not conducting a replay

attack.

2.4 Review of In-Vehicle Security Solutions

Researching security solutions for in-vehicle networks began when the first threats were per-

ceived. In general, there have been four directions of research: cryptography-based, anomaly-

based, specification-based, and rule-based. Although, the majority of it has focused on CAN

networks in passenger vehicles [55]. Only a handful of papers have been written for SAE J1939

network security in MHD vehicles. To that end, this section reviews the four general directions of

in-vehicle security research. A summary of this review is presented in Table 2.3.
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Table 2.3: Summary of Exiting In-Vehicle Security Solutions

Research

Direction

References Methodology Pros Cons

Cryptography-

based

[42, 43, 26,

13, 44]

Authenticate mes-

sages through

digital signatures

created using pre-

shared keys

No false positives • Resource inten-

sive

• Unable to de-

tect attacks from

legitimate but com-

promised senders

•Introduces com-

munication over-

head

• Key management

can be challenging

Anomaly-

based

[45, 46, 35,

36, 37, 38,

39, 47, 16,

17]

Learn normal be-

havior from offline

collected data and

flag abnormal devi-

ations from normal

as attack

Can detect un-

known (0-day)

attacks if it causes

significant devia-

tions from normal

behavior

Does not account

for normal be-

havior that is not

encountered during

the training phase

Specification-

based

[20, 48] Build reference

model for normal

behavior using

manufacturer spec-

ifications and flag

deviations from

normal as attack

Can detect un-

known (0-day)

attacks if they vio-

late specifications

Unable to detect

attacks that obey

specifications

Rule-based [49, 50, 51,

52, 21, 53,

41, 54]

Create a database

of attack patterns

based on CAN ID

and data and flag

frames as mali-

cious if matching

patterns are found

in the database

Low false positives Not all malicious

CAN frames can

be identified on the

basis of their ID

and data
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Cryptography-based In-Vehicle Security

There has been extensive research on cryptographic authentication for CAN networks in pas-

senger vehicles [42, 43], and lately, some papers have been published for SAE J1939 networks

in MHD vehicles [44, 26, 13]. Albeit, prior work has pointed out that cryptographic solutions

are difficult to deploy on in-vehicle networks due to their heavy computational requirement [15].

Even if such a deployment is made, it cannot defend against attacks from legitimate but compro-

mised transmitters or if the victim ECU processes malicious messages irrespective of the sender’s

identity. For example, on the Kenworth T270 research truck, the engine controller accepts engine

control commands from body controller units. Although there does not exist one in the Kenworth

T270 research truck, modern body controller units come with wireless connectivity [56] that can

be used to infiltrate into the in-vehicle network if remotely exploitable vulnerabilities are present

on the unit and they are exploited.

Aside from this, there can be two major roadblocks. Firstly, cryptographic solutions will incur

communication overheads if implemented on top of CAN. This is because CAN allows only 64 bits

of data per frame and most of this data is used for parameter placement. Transmission of digital

signatures will therefore require a change in the specifications or a separate message must be sent

with the digital signature. In the latter case, the recipient of the message must wait for the digital

signature to arrive. This will increase the processing time of a message and can be detrimental to

the performance of time-critical systems like MHD vehicles. Key management in the interoperable

SAE J1939 networking environment is a second issue. What happens when a trailer is attached to

a tractor? How should keys be shared with ECUs in the trailer? Dynamic key distribution can be

managed by key-granting servers which authenticate the requester before granting a key. However,

this increases the number of unanswered questions. How should the requester’s legitimacy be

established? What if an attacker poses as a legitimate trailer ECU and asks for a key in order to

communicate with their target ECU(s)? What if an ECU fails during a long haul? How should

key revocation be handled? Cryptographic key management for in-vehicle networks is an ongoing

field of research and may be a particularly hard problem for MHD vehicles [34].
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Anomaly-based In-Vehicle Security

Anomaly-based systems learn the normal behavior of the network and label unknown behavior

as malicious. In this way, they can detect unknown attacks but can also observe false alarms [19].

Current research on in-vehicle anomaly detection assumes that the normal behavior of the network

remains fairly static over the course of the vehicle’s lifecycle [4]. As such, it learns normal behavior

from data collected during a limited set of past drive cycles. This (training) data, however, may

not reflect the different network configurations and behavioral variations that the vehicle may go

through during its life-cycle [4, 20]. As such, current solutions for in-vehicle anomaly detection

may need to be retrained frequently.

In some cases [45, 46] researcher use features related to the transmitting voltage on the CAN

bus to fingerprint ECUs and compare the fingerprints with their runtime behavior. Albeit, voltage

characteristics of ECUs can change depending on the ambient temperature and supply voltage [57].

Voltage-based fingerprints will also need to be reevaluated if a new ECU (possibly belonging to a

trailer unit) is added or an existing one is replaced. In some other cases researchers rely on the fact

that traffic on the CAN bus is periodic [35, 36, 37, 38, 39] and abnormal variations in periodicity

can indicate attacks. Clearly, these techniques do not consider the transmission of ad hoc messages,

some of which may not even be present in the training data. Finally, although low in number, some

works [47, 16, 17] try to predict parameter values from historic data collected during past drive

cycles and compare the predicted value with the actual to detect intrusions. Clearly, the prediction

can be erroneous in some situations if the historic data is not available for those situations.

Specification-based In-Vehicle Security

Specification-based systems use manufacturer specifications to build a reference model for the

target system and, like anomaly-based systems, detect deviations from the built model. Studnia et

al. [20] model ECU behavior through a set of logical expressions constructed from manufacturer

specifications and propose implementing their solution on the ECUs. Larson et al. [48] model the

behavior of the network as deterministic finite automata and suggest deploying their solution on a

centralized intrusion detection system.
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The major issue with specification-based approaches is that SAE J1939-specific attacks may

abide by specifications and still succeed. For example, consider the engine control attack. Trans-

mission of a message with PGN 0000016 at a pre-specified rate can be enough to execute the attack.

This does not violate any specifications made in the SAE J1939 standards.

Rule-based In-Vehicle Security

Rule-based systems compare information on the network with pre-defined attack signatures

and raise alarms if a match is found. Rule-based intrusion detection and prevention systems for

in-vehicle networks can be designed to identify malicious messages and prevent the target ECUs

from processing them [21, 22]. Most rule-based techniques [49, 50, 51, 52, 21] suggest comparing

the received CAN ID with a predefined whitelist or blacklist of IDs and filter them accordingly.

This technique has also been adopted in commercial solutions like NXP’s secure TJA115x CAN

transceiver [53]. Some [41, 54] suggest inspecting the CAN data field bytes for specific patterns

that indicate malicious behavior.

Unfortunately, the content of a single message (ID or data) may not be enough to detect cleverly

crafted attacks on SAE J1939 networks. For example, a message to unlock doors is perfectly

normal but may be a safety hazard if transmitted when the vehicle is in motion. Existing rule-

based solutions will treat the later situation as normal and let the message pass.
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Chapter 3

Denial-of-Service Attacks on the SAE J1939

Transport Layer

Offensive research on SAE J1939 has discovered weaknesses in the application [12] and net-

work management layers [13] of the standards but there are layers in the standards whose security

has still not been analyzed. In this chapter, we investigate security weaknesses at the data-link layer

of the standards. To that end, we present three denial-of-service attacks that exploit weaknesses in

protocol specifications made in the SAE J1939 data-link layer document [23].

We begin by describing the testing setups used to conduct the experiments pertaining to the

attacks. Next, we describe the three attacks. For each attack, we state our research hypothesis, the

results of testing the hypothesis on the testbeds, and a discussion on the impact of the attacks and

possible defense strategies.

3.1 The Testing Setup

To ensure the consistency of the experiment results, we conducted our experiments on multiple

testbed configurations. The first set of experiments was conducted on a remote testbed setup at

the University of Tulsa. To revalidate the results, we conducted a second set of experiments on a

testbed set up locally. In this section, we describe the remote testbed and then the local setup.

3.1.1 Remote Testbed

The remote testbed is shown in Figure 3.1. It consisted of a single CAN backbone operating

at a baud rate of 250 kbps. The CAN backbone connected a Caterpillar ADEM 2000 Engine Con-

trol Module (ECM)and a Bendix Electronic Brake Controller (EBC) (address = 0B16). The ECM

hosted an engine controller (address = 0016) and a retarder controller (address = 0F16) applica-
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Figure 3.1: Remotely Accessible Experiment TestBed

tion. The testbed also included three custom-built BeagleBone Black1 node controllers that were

equipped with CAN controllers and provided access to the CAN network through the CAN-utils2

software installed on a 32-bit Linux distribution. We only made use of two of these devices that

we refer to as BB1 and BB2. For some attacks BB1 and BB2 were used as pivot points, and for

others, they were used as dummy targets. Along with these, there was a sensor simulator device

that forwarded all CAN traffic to and from the ECM and a telematics control unit that we did not

make use of.

Most traffic on the CAN network was transmitted periodically. The ECM was responsible for

the majority of the traffic volume (93.39%) in the testbed while the EBC was responsible for the

rest. Also, 30% of the traffic was high priority (3≥ SAE J1939 message priority≥ 0), all of which

was transmitted by the ECM.
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(a) Testbed 1 (b) Testbed 2

(c) Testbed 3 (d) Testbed 4

Figure 3.2: Four Different Testbed Configurations Setup Locally
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3.1.2 Local Testbed

The local testbed consisted of four different configurations (testbed 1, testbed 2, testbed 3,and

testbed 4) as shown in Figure 3.2. Each testbed configuration hosted a different ECM (engine

control module) from a different manufacturer: testbed 1 hosted a Cummins 870 ECM, testbed 2

hosted a Cummins 2350 ECM, testbed 3 hosted a Caterpillar ADEM 3 ECM, and testbed 4 hosted

a CaterPillar ADEM 4 ECM. Similar to the remote testbed, each testbed setup included a Bendix

Brake Controller and each ECM hosted an engine controller and a retarder. A CAN backbone

connected the ECM to an EBC (electronic brake controller) and a Linux laptop that was used to

capture and transmit CAN messages through a CAN to USB device accessed via the CAN-utils

software. The laptop was also used as the attacker’s pivot point and, in some cases, as benign nodes

that participated in the attack(s). One or more power supplies were also included.

Most traffic on the CAN network was transmitted periodically for each configuration. The

ECM was responsible for the majority of the traffic volume in each of the four cases (65.11% in

testbed 1, 66.31% in testbed 2, 62.56% in testbed 3, 70.76% in testbed 4) while the EBC was

responsible for the rest. In testbed 1, 44.18% of the traffic was high priority (3 ≥ SAE J1939

message priority ≥ 0) out of which 73.68% was transmitted by the ECM. In testbed 2, 31.28%

of the traffic was high priority out of which 78.63% was transmitted by the ECM. In testbed 3,

54.68% of the traffic was high priority out of which 77.47% was transmitted by the ECM. In

testbed 4, 43.46% of the traffic was high priority out of which 77.87% was transmitted by the

ECM.

3.2 The Request Overload Attack

The first of the three attacks was coined the name “Request Overload” as it involves overloading

the target ECU with requests for attacker-chosen parameter groups. This attack was conducted on

1https://beagleboard.org/black

2https://github.com/linux-can/can-utils
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Figure 3.3: Request overload attack

each of the testbed setups and had a noticeable effect on each of them. We noticed that it also had

a physical effect on the Kenworth T270 research truck.

3.2.1 Hypothesis

The SAE J1939/21 document specifies that all directed requests to an ECU must be processed.

An attack can thus be constructed to send a high volume of SAE J1939 requests to the target ECU

with the expectation that in an attempt to serve the sent requests, the ECU fails to perform regular,

more critical tasks like transmission of periodic messages (Figure 3.3).

3.2.2 Testing

Testing on the Remote Testbed

To validate the hypotheses, an experiment was conducted on the remote testbed described at

the beginning of this chapter. The ECM in the testbed was targeted with a high volume of requests

for the component identifier. The component identifier was chosen as the requested parameter

group because it is of a size greater than 64 bytes and will require the ECU to perform additional

processing to initiate the multi-packet transfer. It was observed that, towards the beginning, the

34



Figure 3.4: Request Overload Experiment Results on the Remote Testbed

ECM was able to handle the requests but gradually acknowledgment messages were being sent out

to convey its inability to respond to the rapidly sent requests (refer back to section 2 for a review

of acknowledgment messages in SAE J1939). There was also a significant drop in the count of

normal messages transmitted by the ECM. This is shown in Figure 3.4. The y-axis of the plot

shows the percentage reduction in high (3 ≥ priority ≤ 0) and low (7 ≥ priority ≤ 4) priority

periodic messages transmitted by the controllers (engine controller, retarder, and brake) on the

testbed network in one second. The percentage reduction is calculated as

(|messagess,pr before the attack| − |messagess,pr after the attack|) ∗ 100

messagess,pr before the attack

Here messagess,pr stands for the set of messages from sender s with priority pr, s ∈ {engine

controller, retarder, EBC} and pr ∈ {low,high}. The x-axis ticks are instances of the triple:

injecting source address in base 16, number of threads used to inject (∈ {1, 4, 8}), inter injection

interval in millisecond (∈ {0.4, 0.8, 1.2}). These three independent factors, with three values for

each, were chosen to see if the attack was successful in different settings. For all 27 combinations
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of factor values, a positive decrease was observed in ECM traffic. In contrast, additional messages

were transmitted by the EBC.

Testing on the Local Testbed

The experiment that was executed on the remote testbed had four shortcomings.

• Firstly, it was not investigated if the drop in count was because of a request overload or

messages losing arbitration to higher priority request messages.

• Secondly, it was not investigated if the rate of injection of the request messages had any

relation with the effect of the attack.

• Thirdly, it was not clear if the sensor simulator was dropping any messages while forwarding

traffic to and from the engine controller.

• Fourthly, it was not investigated if requesting a Parameter Group Number (PGN) that is not

present with the engine controller had any effect on the network traffic.

While conducting our experiments on the local testbed, we addressed these shortcomings. We

sent four different types messages on the CAN network with varying intervals of transmission: 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 milliseconds. The first type of message had a CAN ID

of 0000000016. This is the highest priority CAN frame and is expected to flood the entire bus if

sent at high rates (c.f. high-volume DoS attacks from section 2.3). The second type of message

had the lowest SAE J1939 priority (7), but a 0 PGN (Parameter Group Number), 0 DA (destination

address), and 0 SA (source address), i.e. the equivalent CAN ID was 1C00000016. The third

type of message had the same SAE J1939 priority (7) but was a request (PGN EA0016) from the

engine controller to itself i.e. it had a CAN ID of 1CEA000016. We did make sure that the engine

controller responded to this request. Also, this request was for the component identifier that was

present with all the ECMs used in the experiment. We refer to this as the valid request. Finally,

the fourth type of message was a request for a PGN FFFF16 that was not present with any engine

controller. We refer to this as the invalid request.
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(a) Request Overload Results on Local Testbed 1

(b) Request Overload Experiment Results on Local Testbed 2

(c) Request Overload Experiment Results on Local Testbed 3
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(d) Request Overload Experiment Results on Local Testbed 4

Figure 3.5: Request Overload Experiment Results on Different Configuration of the Local Testbed

The purpose of sending the invalid request was to address the final shortcoming. Because

there was no forwarding device attached to the ECM in the local testbed the third shortcoming

was addressed implicitly by the design. The different rates were chosen to address the second

shortcoming and the different CAN IDs were chosen to address the first shortcoming. As such,

our goal was to demonstrate that the while messages with CAN ID 0000000016 replace all normal

messages on the bus when transmitted at high rates, messages with CAN ID 1C00000016 which

only have a lower SAE J1939 priority, cannot replace any when transmitted at the same rates. If, on

the other hand, requests with CAN ID 1CEA000016 removed any normal messages transmitted by

the target ECU, we could conclude that request overload had an effect on the processing capability

of the target. This is simply because 1CEA000016 is greater than 1C00000016 and according

CAN 2.0 [6], frames with ID 1CEA000016 have lower arbitration priority than frames with ID

1C00000016. Therefore, if transmitted at the same rate, messages with CAN ID 1CEA000016

should not replace any normal messages on the network that messages with ID 1C00000016 cannot

unless request overload is successful.

As it can be seen from Figure 3.5, for all the test cases a drop in message count was observed

from all sources when the network was flooded with messages with CAN ID 0000000016. The

results were in accordance with observations made in related works [30, 33]. Then again, in all the
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Figure 3.6: Effect of Request Overload on the Kenworth T270 Truck’s Dashboard

cases of flooding with messages of CAN ID 1C00000016 almost no normal traffic was removed.

However, when the request overload attack was conducted, a certain percentage of normal mes-

sages transmitted by the ECM was removed. Albeit, the traffic volume from the brake controller

remains constant during request overloads, thus indicating that it only affected the performance of

the target. On testbed 1, about 50% of both high and low-priority traffic were removed by valid

request overloads up to 0.3 milliseconds, but invalid request overloads did not have any effect.

On testbed 2, all traffic transmitted by the ECM was removed by both valid and invalid request

overloads up to 0.3 milliseconds. On testbed 3, greater than 20% of both high and low-priority

traffic were removed by valid and invalid request overloads up to 0.2 milliseconds. On testbed 4,

about 75% of high and 25 % of low-priority traffic was removed by invalid request overloads up

to a millisecond but valid requests had no effect: it handled all valid requests promptly, initiating

a multi-packet transfer in all cases. Overall, we noticed that, in general, a request overload attack

launched at 0.3 milliseconds or below, had an effect on the target ECM, even when launched with

the lowest priority.

3.2.3 Discussion

This attack can be classified in the high-volume DoS category. We conducted this attack on

the Kenworth T270 research truck. This truck had the same ECM as used in the local testbed 2.
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Figure 3.7: Connection Exhaustion

As such, when a request overload attack was conducted at 0.3 milliseconds, all transmissions from

the ECM stopped. The physical effect could be seen in Figure 3.6 where the truck’s dashboard

displays erroneous information. Furthermore, the transmission did not shift gears and the engine

speed remained high while moving forward.

The apparent defense against this attack is straightforward: not to process more than a certain

number of requests in a millisecond. Albeit, this solution requires a change in the ECM firmware.

3.3 The Connection Exhaustion Attack

The second of the three attacks was coined the name “Connection Exhaustion” as it exhausts

the ability of the ECU to establish legitimate connections for multi-packet data transfer. This attack

was conducted on each of the testbed setups and had noticeable effect on most of them. We noticed

that even though the attack works on the Kenworth T270 research truck, it did not have a physical

impact on it.

3.3.1 Hypothesis

According to the J1939-21 standards, there can only be one established connection for multi-

packet transfer between a source ECU and a destination ECU at a time. It also states that after data
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has been transmitted a connection can be kept open for a maximum of 1250 milliseconds by not

sending the end of message acknowledgment. In addition, a CTS message can be sent to request

one or more packets that may have been sent already. Using these three specifications, an attack

can be crafted to deny legitimate connection attempts to an ECU by creating multiple spoofed

connections and keeping them open by periodically (typically of less than a second) sending a

CTS message but not the end of message acknowledgment (Figure 3.7).

3.3.2 Testing

Testing on the Remote Testbed

The attack was carried out on the remote testbed. The network trace obtained from the CAN

bus during the course of the attack is labeled and shown in Figure 3.8. In the beginning, BB1

establishes two connections by sending request and CTS packets from spoofed source addresses

1116 and 0B16. The data is then transferred to BB1 by the engine controller. After some time,

BB2, the honest party, attempts to connect to the engine controller but does not receive an RTS.

BB1 maintains its connection at the end of the trace by sending CTSs. As a result, any subsequent

connection attempts from BB2 are discarded, leaving BB2 in need of the required PGN.

Testing on the Local Testbed

The attack was carried also out on the local testbed. The results are shown in Figure 3.9.

Valid requests are transmitted periodically for 30 seconds. In response, valid RTSs are received

for as long as the malicious connections are not established. For this case, we only show the CTS

messages of the malicious connections that are sent periodically to keep connections alive. The

attack is only effective on the first three testbed setups; on the last testbed setup valid RTSs are sent

in response to the requests.

3.3.3 Discussion

We noticed that even though the attack works on the Kenworth T270 research truck, it did not

have a physical impact on it. Albeit, a quick investigation of the SAE J1939 digital annex [25]
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BB1->Engine-#1 request 00EA0011 EB FE 00 00 00 00 00 00

Engine-#1->BB1 RTS 18EC1100 10 2C 00 07 FF EB FE 00

BB1->Engine-#1 CTS 00EC0011 11 07 01 FF FF EB FE 00

BB1->Engine-#1 request 00EA000B EB FE 00 00 00 00 00 00

Engine-#1->BB1 RTS 18EC0B00 10 2C 00 07 FF EB FE 00

BB1->Engine-#1 CTS 00EC000B 11 07 01 FF FF EB FE 00

Engine-#1->BB1 Data Transfer 18EB1100 01 43 4D 4D 4E 53 2A 36

Engine-#1->BB1 Data Transfer 18EB1100 02 43 20 75 30 37 44 30

Engine-#1->BB1 Data Transfer 18EB1100 03 38 33 30 30 30 30 30

Engine-#1->BB1 Data Transfer 18EB1100 04 30 30 2A 30 30 30 30

Engine-#1->BB1 Data Transfer 18EB1100 05 30 30 30 30 2A 78 30

Engine-#1->BB1 Data Transfer 18EB1100 06 36 42 42 42 42 42 42

Engine-#1->BB1 Data Transfer 18EB1100 07 42 2A FF FF FF FF FF

Engine-#1->BB1 Data Transfer 18EB0B00 01 43 4D 4D 4E 53 2A 36

Engine-#1->BB1 Data Transfer 18EB0B00 02 43 20 75 30 37 44 30

Engine-#1->BB1 Data Transfer 18EB0B00 03 38 33 30 30 30 30 30

Engine-#1->BB1 Data Transfer 18EB0B00 04 30 30 2A 30 30 30 30

Engine-#1->BB1 Data Transfer 18EB0B00 05 30 30 30 30 2A 78 30

Engine-#1->BB1 Data Transfer 18EB0B00 06 36 42 42 42 42 42 42

Engine-#1->BB1 Data Transfer 18EB0B00 07 42 2A FF FF FF FF FF

BB2->Engine-#1 request 00EA0011 EC FE 00 00 00 00 00 00

BB2->Engine-#1 request 00EA000B EC FE 00 00 00 00 00 00

BB2->Engine-#1 request 00EA0011 EC FE 00 00 00 00 00 00

BB2->Engine-#1 request 00EA000B EC FE 00 00 00 00 00 00

BB2->Engine-#1 request 00EA0011 EC FE 00 00 00 00 00 00

BB2->Engine-#1 request 00EA000B EC FE 00 00 00 00 00 00

BB2->Engine-#1 request 00EA0011 EC FE 00 00 00 00 00 00

BB2->Engine-#1 request 00EA000B EC FE 00 00 00 00 00 00

BB1->Engine-#1 CTS 00EC0011 11 07 01 FF FF EB FE 00

BB1->Engine-#1 CTS 00EC000B 11 07 01 FF FF EB FE 00

Figure 3.8: Connection Exhaustion Network Trace

reveals that transport sessions are critical for diagnostic and proprietary communication over SAE

J1939. This attack can significantly hamper those operations. An example of this is shown in

Figure 3.10 where a Cummins proprietary diagnostic tool fails to connect to the ECM even though

messages are transmitted at regular intervals from it (as seen in the “message delta" dialog for the

“ECM1"). This can also be detrimental to the vehicle if data obtained from the session is used for

control purposes. For example, PGN 65251 carries engine configuration information that may be

required by more than one legitimate ECU. If this information is not received, those ECUs may

malfunction. We categorize this attack in the low-volume DoS category (c.f. section 2.3).
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(a) Connection Exhaustion Experiment Results on Local Testbed 1

(b) Connection Exhaustion Experiment Results on Local Testbed 2

(c) Connection Exhaustion Experiment Results on Local Testbed 3

(d) Connection Exhaustion Experiment Results on Local Testbed 4

Figure 3.9: Connection Exhaustion Experiment Results on Different Configuration of the Local Testbed
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Figure 3.10: Effect Of Connection Exhaustion on a Cummins Proprietary Diagnostic Tool

The apparent mitigation against this attack can be to not respond to more than a certain number

of CTS retransmit requests. Albeit, this solution requires a change in the ECM firmware.

3.4 The False Request To Send (RTS) Attack

The third of the three attacks was coined the name “False RTS” as it involves the attacker

falsifying an RTS message (first described in section 2) with an aim to crash the ECU firmware

when it receives data packets in a multi-packet transfer session. This attack could not be conducted

on any of the testbed setups since none of the ECUs accepted data packets without authentication

for which we did not have access to the proper credentials. Understandably, the same situation

was encountered on the Kenworth T270 research truck and, as such, we could not test the attack

on it. For proof-of-concept, we experimented on a simulation ECU firmware that implemented the

vulnerability.
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Figure 3.11: False RTS

3.4.1 Hypothesis

According to the SAE J1939/21 specifications, if multiple RTS messages are received from the

same source address, the most recently received shall be considered without notifying the sender of

the first RTS. Consider an ongoing connection in which a requester receives an RTS and allocates

a buffer to store multipacket data of the same size as that received in RTS data bytes 2 and 3. After

that, the requester sends a CTS. An attacker can spoof the original sender’s source address and send

a second RTS with a smaller data size to the requester. If the spoofed RTS’s receiver reallocates

the buffer and continues to receive data packets from the original sender, the allocated buffer may

overflow, causing the ECU firmware to crash.

3.4.2 Testing

For this attack to work on the ECUs in our testbed, they were required to accept data packets.

However, we noticed that upon receiving an RTS neither the ECM nor the EBC responded back

with a CTS. We suspected that this may be because of the requirement to be authenticated before

being able to write to ECU memory. At that time, we did not have the necessary tools and/or

secrets to authenticate with the ECUs. As such, given the existence of the specification flaw and

the severity of the eventual impact, we developed proof-of-concept software to demonstrate the

effect of the attack. The software binary is made available at https://github.com/j4l-Shvn/J1939_
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21_Transport_Vuln_POC. On BB1, the faulty software was run by the heap profiler Valgrind3 with

the option --leak-check set to yes. A summarized workflow of the program is shown below

Wait for RTS;

On receiving RTS allocate/reallocate buffer space

with size as obtained from bytes 2-3 of the RTS's data;

Record the number of packets to be received;

Send CTS;

Store data until all packets have been received;

Memory allocation and reallocation were performed on the heap. On BB2 we ran the attack script

as shown below

Sniff bus for CTS from attack target;

Send crafted RTS with lesser data size;

To simulate the attack an RTS was sent from a separate terminal on BB1 when both programs

were running. After a delay of 10 milliseconds, data packets were sent to overflow the allocated

buffer on the vulnerable recipient. It was observed that Valgrind reports a heap overflow while data

packets are received. This is shown in Figure 3.12.

3.4.3 Discussion

We categorize this attack in the low-volume DoS category (c.f. section 2.3). In theory, the

entire attack can be carried out without the need to wait for the first RTS. For this, the attacker

needs to send an RTS, and if the ECU responds with a CTS, send the malicious RTS, followed by

the data packets.

Because we did not find any evidence of this attack working on the real-world ECUs, we project

this attack as a warning. We tried executing the attack on the Kenworth T270 research truck but

faced the same authentication roadblock as on the testbeds.

3https://valgrind.org/
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Figure 3.12: False RTS Results on Vulnerable Firmware Simulation
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To defend against the attack, we emphasize that memory safety must be ensured by check-

ing for mismatching entries in the fields specifying the number of bytes and packets in the RTS

message. Additionally, the second (falsifiable) RTS can also be ignored.

3.5 Summary

In this chapter we answer the research question can weaknesses in the data-link layer specifi-

cations of SAE J1939 be exploited to attack in-MHD vehicle ECUs?. To that end, we demonstrate

three denial-of-service attacks that utilize protocol specifications made in the SAE J1939 stan-

dards. For each of these attacks, we observed noticeable impacts on network communication from

the target ECUs. We also, observed noticeable impact on a research truck upon execution of the

first two of these attacks: in the first case transmission shifts were impeded, and in the second case

a diagnostic tool malfunctioned.
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Chapter 4

Behavioral Anomaly-based Detection

Research on behavioral intrusion detection for in-vehicle networks has so far focussed on CAN

networks in passenger vehicles and has largely been based on machine learning of network logs

collected offline. As Stachowski et al. [4] have pointed out, such techniques are not fit to be

operated on networks within medium and heavy-duty (MHD) vehicles that exhibit dynamically

changing behavior. As such, in this section, we describe our research towards developing an on-

line anomaly detection system that models network behavior using SAE J1939 concepts and flags

abnormal deviations from normal behavior as security infringements. We begin by describing two

features that capture the network’s behavior. Next, we use some observations from a case study

on manually crafted attack traffic to describe how these feature values can be used to model the

behavior of the network. From these observations, we lay down our attack detection hypothesis.

We then present an algorithm that implements our hypothesis and tries to detect attacks as mes-

sages are received on the network. Following this, we analyze the performance of our algorithm

on real-world attack data collected from the Kenworth T270 research truck and present a summary

of our accomplishments.

4.1 Behavioral Feature Engineering

We model network behavior through a Report Precedence Graph (RPG). An RPG captures the

temporal relationships between the transmission of vehicular parameters on the CAN bus. Each

node of an RPG is a report.

Definition 1 (Report) Let mt be a message on the bus at time t and let pgnmt be its PGN and

samt be its sending source address. A report r is a collection of discretized parameter values

created from message mt, such that r = {(spn, d(vspn), pgnmt , samt)}, every spn is assigned to
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pgnmt in the SAE J1939 digital annex and d(vspn) represents the discretization of value vspn of the

parameter identified by spn transported in message mt.

Discretization is required to control the number the reports generated from continuous-valued

parameters like engine speed, vehicle speed, etc. For discrete-valued parameters (e.g. state of a

door lock) that can only assume a limited set of values, we set d(vspn) = vspn. For continuous-

valued parameters, discretization can be achieved through various means as described in [58] but

in this dissertation we set

d(vspn) = ⌊lengthspn ∗
(vspn − offsetspn)

(resolutionspn ∗ (2lengthspn − 1))
⌉

Here ⌊⌉ denotes the round operation and lengthspn, offsetspn and resolutionspn are the length,

offset and resolution of the parameter identified by Suspect Parameter Number (SPN) spn. This

sets the domain of d(vspn) to ≥0Z≤lengthspn for continuous-valued parameters. As an example,

wheel speed is a continuous-valued parameter that is assigned a length of 16, offset of 0 and

resolution of 1/256. After discretization, it assumes values integral between 0 and 16, inclusive of

both. Speeds 95 and 100 km/h are both discretized to 6 while speeds 105 km/h and 110 km/h are

discretized to 7.

An example of a report is {(597,002,65265,002),(598,012,65265,002)}. This report is generated

from a message associated with the PGN 65265 and transmitted by source 0016 i.e. the engine

control unit. It captures the state information (Brake pedal released, Clutch pedal

depressed). Using reports, we generate an RPG.

Definition 2 (Report Precedence Graph) The Report Precedence Graph (RPG) is a labeled di-

rected graph G = (R, T, L) where each node r ∈ R is a report and each edge 〈ri, rj〉 ∈ T denotes

report rj is transmitted after report ri (ri ≺ rj with no other rk such that ri ≺ rk and rk ≺ rj), a

total of li,j ∈ L number of times.

Figures 4.1a and 4.1b show simple RPGs built from a 15-second snapshot taken from the log

collected on the 2015 Kenworth T660 research truck (refer back to section 2.2 for a description
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(a) 15-second RPG Constructed from Normal Driving

Data
(b) Same 15-second RPG with Manually Injected mes-

sages

Figure 4.1: Example Report Precedence Graphs (RPG)

Table 4.1: Report Interpretations from RPG in Figure 4.1a and Figure 4.1b; SA = Source Address, PGN =

Parameter Group Number

Report Interpretation SA PGN

0 Accelerator pedal 1 in low idle condition 0016 61443

1 Brake pedal released 0016 65265

2 Proprietary retarder control mode 0F16 61440

3 Low idle governor retarder control mode 0F16 61440

4 Accelerator pedal 1 not in low idle condition 0016 61443

5 Brake pedal depressed 0016 65265

6 Request for high engine speed 0B16 0

of this log). Except, in Figure 4.1b we manually insert messages into the recorded traffic at a

50% probability for a period of 15 seconds. There are 4 distinct PGNs in the RPGs. These are

transmitted by the engine with source address (SA) = 0016, the retarder with SA = 0F16, and the

brake controller with SA = 0B16. Table 4.1 shows the interpretation of the reports (numbered 1

through 6) in the RPGs. The edge labels in the graph denote the number of times reporti precedes

reportj . We now describe two features to evaluate the shape of the RPG.

Normalized Graph Flux Capacity

Flux capacity was introduced by Martinez et al. [59] to quantify the amount of information

flow that passes through gene regulators. It is defined as the product of the in-degree and out-
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degree of a node. In this work, we use it to denote the number of two-edge paths passing through

a report r in an RPG.

fcri = |(rj, ri)| ∗ |(ri, rk)| ∀(rj, ri), (ri, rk) ∈ T

= din(ri) ∗ d
out(ri)

For example, the flux capacity of report 1 in Figure 4.1a is 2*2 = 4 and that of report 6 in Figure

4.1b is 6*6 = 36. This is essentially the number of two edge paths passing through these reports.

Using the concept of flux capacity we now define the concept of Normalized Graph Flux Capacity

(NGFC) as the average flux capacity of an RPG and express it as

NGFC =
1

|R|3

|R|
∑

i=1

fcri

Essentially, this is the cumulative flux capacity of all reports in the RPG, normalized to the cubic

power of the number of reports R. The choice of the cubic power in the denominator is motivated

by the extreme case, where, if an RPG is a complete graph having n nodes, NGFC will be of the

order of n3 (
∑n

i=1(n−1)∗ (n−1)). Thus, as chaotic precedences begin to be seen in the RPG and

every report becomes equally likely to be preceded by every other report, the NGFC value starts

approaching 1 (n
3

n3 ). This phenomenon can be observed in Figure 4.1b where report 6 preceded

every other report and the NGFC is calculated to be 0.27, almost double of what is calculated from

Figure 4.1a i.e 0.12. For an RPG with no edges, we set its NGFC to 1, assuming all self-loops.

Edge Weight Skewness (EWS)

Another important feature to observe from the RPG in Figure 4.1a and Figure 4.1b is the skew-

ness of the distribution of the edge weights (EWS). As observed from Figure 4.2, the distribution

of the edge weights under the attack becomes increasingly more right-skewed. In other words, the

level of positive skewness increases in Figure 4.2b as compared to Figure 4.2a. For this work, we

use Python Scipy’s skewness measure [60] which is calculated as m3

m
3/2
2

, where m3 and m2 are the
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(a) EWS for RPG Figure 4.1a (b) EWS for RPG Figure 4.1b

Figure 4.2: RPG Edge Weight Distributions (EWS)

third and second moments about the mean of the distribution. Using this formula, the skewness

of the distribution in Figure 4.2a is obtained as -0.113, and that for the distribution in Figure 4.2b

is obtained as 0.745. Due to the chaotic precedences observed after the introduction of report 6

in Figure 4.1b, the injected report interleaves with normal reports, and the original edge weights

in Figure 4.1a reduce, making room for new, less-weighted edges. For example, the weight for

edge 〈r0, r1〉 reduces from 63 to 54, and newer lower weight edges such as 〈r6, r5〉 and 〈r3, r6〉 are

introduced. This causes an increase in EWS. For an RPG with no edges, we set its EWS to 20 i.e.

a very high right skew.

4.2 Network Behavior Modelling Through Feature Value Time

Series

So far we have established that RPGs are useful in observing the temporal relationships be-

tween the transmission of vehicular parameters and the shape of an RPG can be evaluated through

the features NGFC and EWS. We now use a case study to describe how the values of these two
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features can characterize in-vehicle network behavior. From this description, we lay out our hy-

pothesis for attack detection.

Sampling Window NGFC and EWS are calculated on pre-built RPGs. In order to build an

RPG one needs to observe a set of SAE J1939 messages on the CAN bus for some period of

time. We refer to this period as sampling period after which NGFC and EWS values are sampled.

Calculating graph-based and statistical features can be time-consuming. If deployed in a resource-

constrained in-vehicle environment, processing large graphs in real time can lead to undesired

performance bottlenecks. It is therefore desirable to calculate NGFC and EWS in a small sampling

period (in the range of seconds), possibly while a new RPG is being built in parallel. Then again,

the sampling period should not be too small, as in that case, the RPG may not capture all the

parameter groups being transmitted on the network. Keeping these factors in mind, we decided to

choose a sampling period of 1 sec. As such, most SAE J1939 parameter groups are transmitted

at rates of 1 sec or lower. A sampling period of 1 sec would thus allow most capture of most

parameters on the bus in a single RPG, at least once.

NGFC and EWS values measured after the sampling period of 1 second are shown in Figure

4.3 as a pair of time series. The RPGs for this case were generated from the log collected on the

2015 Kenworth T660 research truck (refer back to section 2.2 for a description of this log). Attack

traffic was simulated by injecting messages for 7 seconds with a probability of 0.5 from the 197-

second mark. This portion is marked with a red box. While building the RPG from which these

NGFC and EWS values were calculated we considered every parameter that denotes the state of a

component of the vehicle. For example, the parameter “brake depressed” can assume the values 0

and 1 to denote the state of the brakes. With these time series, we now describe our observations

on the behavior of the network during normal driving, as well as at the time of malicious message

injection.

• Under normal driving During the periods of normal driving both time series appear to be

stationary i.e. they fluctuate around some base value. In some cases, they exhibit occasional
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Figure 4.3: Sampled NGFC and EWS Time Series

short trends (rising and falling), especially towards the beginning. The possible reason for

this could be the advent of new reports and low-weighted edges in the generated RPG. The

new additions begin to dissipate soon leading to an almost stationary time series. There is

also no evidence of seasonal patterns. The capture from which these time series are generated

includes legitimate command messages transmitted at the time of hard-braking events. These

events happened at around the 100-second and 300-second marks. Corresponding timelines

are labeled with blue boxes in Figure 4.3. No significant deviations are spotted in the time

series within the blue boxes.
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• Under attack The portion of the NGFC and EWS time series that show simultaneous sig-

nificant abrupt peaks denote some form of unnatural behavior. This section is marked by a

red box. This is the portion where malicious messages were injected into the recorded bus

traffic.

Given these observations, we hypothesize that under normal driving conditions NGFC and EWS

time-series are usually stationary with the possibility of short trends but upon malicious message

injections, they exhibit significant abrupt changes that can be detected. Although the aforemen-

tioned example shows abrupt increments only, we speculate that there may be abrupt decrements

as well.

4.3 Detecting Anomalous Behavior at Runtime

Algorithm 1 shows the methodology to detect abrupt changes in the NGFC and EWS time

series at runtime. Every time a message is received, an RPG is updated with reports generated from

it. Lines 5-11 show this process. In the getReport method the PGN of the message is obtained and

used to extract the parameter values following SAE J1939 specifications described in section 2. In

case a PGN is not found in the SAE J1939 digital annex or if any of the position, length, offset,

and resolution of a parameter is not defined, a default position of 0, length of 64, offset of 0, and

resolution of 1 are assumed. Extracted parameter values are grouped to form a report. In line 6,

the newly formed report is added to the RPG, and a new precedence edge 〈ri, rj〉 is added if it is

not a self-loop. li,j is also updated to maintain an up-to-date list of edge weights.

Every time the samplingWindow of 1 second expires, i.e. after receiving messages for a second,

the algorithm calculates NGFC and EWS values from the current RPG (line 13). Calculated values

are pushed into two circular queues NGQ and EWQ of size trainingSetSize (in lines 21-23) only if

no attack is detected. The RPG is reinitialized after that in lines 25-26.

Attack detection is performed as long as the queues are full, i.e. after the first trainingSetSize

number of windows have expired and every time after that. Following the hypothesis established

in the previous section, the algorithm aims to detect an attack by checking if both feature values
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Algorithm 1: Runtime Behavioral Anomaly Detection

/* Global variables */

1 rcurrent← null

2 startTime← 0, samplingWindow← 1

3 NGQ, EWQ= ∅ ⊲ Circular queues

4 RPG = (R,T,L), R,T,L← ∅
/* Beginning of algorithm */

Input: SAE J1939 Message, trainingSetSize, ADFConfidence, HoltsConfidence

5 ri← getReport(J1939 Message)

6 R← R ∪ ri
7 if ri 6= rcurrent ∧ rcurrent 6= null then

8 T← T ∪ 〈 rcurrent, ri 〉
9 Update L, set li,j ← li,j + 1

10 end

11 rcurrent← ri
12 if time ≥ startTime + samplingWindow then

13 NGFC← NFGC(R,T), EWS← EWS(L)

14 is_attack← False

15 if number of items queued = trainingSetSize then

16 is_attack← sig-inc(NGQ, NGFC) ∧ sig-inc(EWQ, EWS)

17 if is_attack then

18 RAISE ALARM

19 end

20 end

21 if is_attack = False then

22 NGQ.push(NFGC), EWQ.push(EWS)

23 end

24 startTime← time

25 R,T,L← ∅
26 rcurrent← null

27 end

1 Procedure sig-inc(buf, current)

2 has_trend← Augmented_Dickey–Fuller_test(buf).p-value ≤ (100 -

ADFConfidence)/100

3 forecast_interval← HoltWinters(buf,HoltsConfidence,has_trend)

4 return value 6∈ forecast_interval
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are significantly deviant from their most recent observations (lines 16-19). Brutlag et al. [61]

demonstrate a method that can be used to achieve this for a single feature. In their method, they

use a window of the most recent (at time t) feature values in a time series (vi)t−window−1≤i≤t−1

to predict an interval it from it. They then detect if the newly calculated value vt falls within the

boundaries of it. If not, they label it as significantly deviant.

Brutlag et al. [61] esimate the interval using the HoltWinters method. An understanding of the

HoltWinters method is not core to understanding the contributions made in this work. As such, we

do not describe it in detail but present a brief overview of the specific implementation provided

by the statistical platform R [62, 63] that we make use of. R’s implementation of HoltWinters

method predicts an interval it using four components namely, level (lt), trend (tt), seasonality (st),

and confidence (cf ). If the time series is graphed in an x-y plane and a line is passed through

its points, the level can be thought of as the intercept on the y-axis, while the trend is the slope

and the seasonality is any repeating pattern observed in the layout of the points. The size of the

interval is directly proportional to cf , i.e. (it[1] − it[0]) ∝ cf . In Algorithm 1, we refer to cf as

HoltsConfidence. R’s implementation allows us to exclude the trend and seasonality components

from the estimation if there are no distinctive signs of such activity in the input time series. As

observed from the previous section, our feature value time series do not observe seasonality but

can observe short trends. Therefore, we estimate the interval based on level and trend, if the time

series shows a trend. Otherwise, we use only the level. To determine if the time series exhibits a

trend we use the Augmented Dickey-Fuller (ADF) unit-root test [64]. The unit-root test returns a

p-value statistic that, if greater than (100 - ADFConfidence)/100, indicates that there is no trend.

This process is shown in procedure sig-inc in Algorithm 1 which is called twice in line 17, once

for each feature. If it returns true for both calls, an alarm is raised.

4.4 Performance Analysis

In this section, we analyze our solution with respect to real-world attack data collected from a

real vehicle under different circumstances. We begin by presenting a description of our experiment
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methodology. We then present our performance evaluations in two cases: under normal driving

and when attacks are being conducted.

4.4.1 Experiment methods

The experiments we ran for our analysis were designed with two objectives namely, to demon-

strate the efficacy of our solution and to find the optimum operating characteristics of the three

configuration factors of Algorithm 1: trainingSetSize, ADFConfidence and HoltsConfidence. To

that end, we configured a Python implementation of Algorithm 1 with different values of the three

factors and executed it on 30 seconds of network logs captured in different circumstances encom-

passing both normal driving and attack scenarios. Only 30 seconds of logs were captured to ensure

the safety of the driver in attack scenarios. Five out of the six attacks were conducted by periodi-

cally injecting messages for 7-10 seconds in accordance with the observations made in [12], while

one, the address claim attack, was conducted using a single message. All attacks were started at

around 15 seconds to allow enough time for filling of the feature values queues from Algorithm 1.

To ensure consistency of the results, Algorithm 1 was executed on two captures per circumstance.

Because the attacks were started at around 15 seconds, two values for trainingSetSize were

chosen: 5 and 10. ADFConfidence and HoltsConfidence were varied in intervals of 20, starting

from 10, i.e. 10%, 30%, 50%, 70%, and 90%. This was done to evaluate the performance of

Algorithm 1 across varied values of these parameters.

4.4.2 Evaluation Under Normal Driving Scenarios

The goal of this evaluation is to estimate the false-positive rate of our solution, i.e. the percent-

age of windows flagged as malicious in normal driving circumstances.

Data Collection

We captured normal driving logs from the 2014 Kenworth T270 research truck in two different

circumstances: first, while driving on an airstrip, and second, during a cross-country trip.
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Evaluation Metrics

Our metric for evaluation of performance on the normal driving logs was simple. We used the

metric (100*Number of flagged windows)/Total number of windows to determine the false-positive

rate.

Observations

The results are shown in Figure 4.4. Both time series do not demonstrate significant abrupt

changes. This supports our initial hypothesis. False positive rates are minimum for both logs when

the trainingSetSize is 10 and HoltsConfidence is 90%. This shows that higher trainingSetSize and

HoltsConfidence leads to reduced false positives. The actual minimum false positive rate obtained

on the log collected at the airstrip is 3.4% and that collected during the cross-country trip is 0%.

4.4.3 Evaluation Under Attacks

The goal of this evaluation is to estimate the efficacy of our solution in detecting cyber attacks

and discerning them from false alarms.

Data Collection

We captured attack logs by driving the Kenworth T270 Research truck on an airstrip and con-

ducting two instances of six different attacks on it. We chose these six attacks as they demonstrated

some effects on the truck. The six attacks and the means to conduct them are described in the fol-

lowing bullet points. Background knowledge about these attacks were already provided in section

2.3.

• We conducted an address claim attack by sending a message with PGN 0EA0016 and claim-

ing the address of the engine controller.

• We conducted a network overload attack by sending messages with CAN ID 0 at intervals

of 0.3 milliseconds. This flooded the bus and all normal traffic was removed for the duration

of the attack.
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(a) Feature Value Time Series For Normal Driving On an Airstrip

(b) Feature Value Time Series For Normal Driving On a Cross Country Trip

(c) False Positive Rates For Normal Driving On an Airstrip

(d) False Positive Rates For Normal Driving On a Cross Country Trip

Figure 4.4: Behavioral Intrusion Detection Results For Normal Driving
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• We conducted two variations of the fuzzing attack by sending messages with random CAN

ID. In the first variation, the data bytes were kept fixed and in the second variation, they

were varied randomly at every injection. In both variations, an inter-message interval of 0.5

milliseconds was chosen in accordance with prior literature [65].

• We conducted a request overload attack by sending requests for the engine controller’s com-

ponent ID at 0.5 milliseconds.

• We conducted an engine control attack by sending the SAE J1939 specified torque and speed

control message with a fixed request engine speed at intervals of 10 milliseconds.

Videos of the attacks and links to the corresponding log files are provided at https://projects-web.

engr.colostate.edu/cybersystems/j1939-attacks/.

Evaluation Metrics

Because the goal of this evaluation was to demonstrate the ability of our solution to detect cyber

attacks and differentiate them from false alarms, we chose to use precision as our evaluation metric.

We calculated precision as (100*Number of attack windows flagged)/Total number of windows

flagged. The start and end times of the attacks were noted in the collected logs and if a window

was flagged within this period, it was labeled as an attack window.

Observations

The results of executing Algorithm 1 on logs collected during the address claim attack, network

overload attack and the two variations of the fuzzing attack validate our hypothesis in a real-world

scenario. As seen in figures 4.5, 4.6, 4.7 and 4.8, the NGFC and EWS values show noticeable

changes during the timeframe of the attack. The HoltsWinter-based anomaly detection technique

detects the changes and in all cases, the best precision is obtained at 90% HoltsConfidence and

training window size of 10. That is to say that increasing the training window size and keeping the

HoltsConfidence at a high value increases the efficacy of our approach. In most of the cases, we

achieve 100% precision at those configuration values.
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(a) Feature Value Time Series for First Address Claim Attack (Attack Timeframe in Red Box)

(b) Feature Value Time Series for Second Address Claim Attack (Attack Timeframe in Red Box)

(c) Precision of Attack Detection for First Address Claim Attack

(d) Precision of Attack Detection for Second Address Claim Attack

Figure 4.5: Address Claim Attack Detection Results
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(a) Feature Value Time Series for First Network Overload Attack (Attack Timeframe in Red Box)

(b) Feature Value Time Series for Second Network Overload Attack (Attack Timeframe in Red Box)

(c) Precision of Attack Detection for First Network Overload Attack

(d) Precision of Attack Detection for Second Network Overload Attack

Figure 4.6: Network Overload Attack Detection Results
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(a) Feature Value Time Series for First Attack Without Data Fuzzing (Attack Timeframe in Red Box)

(b) Feature Value Time Series for Second Attack Without Data Fuzzing (Attack Timeframe in Red Box)

(c) Precision of Attack Detection for First Attack Without Data Fuzzing

(d) Precision of Attack Detection for Second Attack Without Data Fuzzing

Figure 4.7: Attack Without Data Fuzzing Detection Results
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(a) Feature Value Time Series for First Attack With Data Fuzzing (Attack Timeframe in Red Box)

(b) Feature Value Time Series for Second Attack With Data Fuzzing (Attack Timeframe in Red Box)

(c) Precision of Attack Detection for First Attack With Data Fuzzing

(d) Precision of Attack Detection for Second Attack With Data Fuzzing

Figure 4.8: Attack With Data Fuzzing Detection Results
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(a) Feature Value Time Series for First Request Overload Attack (Attack Timeframe in Red Box)

(b) Feature Value Time Series for Second Request Overload Attack (Attack Timeframe in Red Box)

(c) Precision of Attack Detection for First Request Overload Attack

(d) Precision of Attack Detection for Second Request Overload Attack

Figure 4.9: Request Overload Attack Detection Results
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(a) Feature Value Time Series for First Engine Control Attack (Attack Timeframe in Red Box)

(b) Feature Value Time Series for Second Engine Control Attack (Attack Timeframe in Red Box)

(c) Precision of Attack Detection for First Engine Control Attack

(d) Precision of Attack Detection for Second Engine Control Attack

Figure 4.10: Engine Control Attack Detection Results
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NGFC values show noticeable changes when the request overload and engine control attack

are conducted, even though the same cannot be said about EWS values for the same. For the re-

quest overload attacks the EWS values during the timeframe of the attacks barely deviate from

normal. For the engine control attacks, some deviations are seen but, because there are no com-

mon patterns, it cannot be inferred if the deviations are related to the attack or caused by normal

behavior from the ECUs not under attack. Even so, our solution detects attacks. This is because

the HoltsWinter-based anomaly detection technique detects the abnormal changes in NGFC values

and, any deviations in EWS values causes it to raise alarms. Similar to the first four attacks, the

best results are obtained at 90% HoltsConfidence and a training window size of 10. This substan-

tiates that increasing the training window size and keeping the HoltsConfidence at a high value

increases the efficacy of our approach. At those configuration values, we achieve 100% precision

for engine control attack detection, but about 80% precision for request overload attack detection.

4.5 Summary

In this chapter, we answer the research question can a system be designed to detect network

anomalies on an SAE J1939 network in an online manner? To that end we present a real-time SAE

J1939-based intrusion detection system that does not require offline training. Instead, it uses time

series forecasting using minimal historical data to predict an interval of expected behavioral feature

values and compares them with the latest values to flag anomalies. We evaluate our system on 30

seconds of real-world network traffic collected from the Kenworth T270 research truck in normal

driving circumstances, as well as under six different types of attack. The results indicate that, in

most cases, our attack detection hypothesis is true and can be used to flag behavioral anomalies

in SAE J1939 networks. According to the results, our system shows close to 100% precision in

detecting most cyber attacks when configured appropriately. It also, very low false positive rates

when tested on normal driving logs.

69



Chapter 5

Rule-based Detection and Prevention

Research on rule-based intrusion detection and prevention for in-vehicle networks has so far

relied on attack signatures defined on message content only and, as already discussed before, this

may not be enough to detect cleverly crafted attacks on SAE J1939 networks. In this chapter, we

present a rule-based intrusion detection and prevention system that presents users with ways to

flag messages in transit that can and cannot be identified solely on the basis of their content. In the

first section, we demonstrate how our system lets users define rules to capture SAE J1939-specific

attacks. In the process, we describe the structure of the rules and attack detection features it cap-

tures. We also present a set of example rules in the same section. Next, in the second section, we

describe a method to enforce user-specified rules in real-time, i.e. as messages are being transmit-

ted. Following this, we analyze the performance of our rule enforcement procedure in the worst

case. In there, we provide size estimates for sets of rules that can be processed with guarantee

by our real-time enforcement mechanism. Eventually, we present real-world demonstrations of

Controller Area Network (CAN) security for medium and heavy-duty (MHD) vehicles through the

enforcement of example rules composed on our system. We conclude this chapter with a summary

of our accomplishments.

5.1 Towards Rule-based Identification of Cyber Attacks on SAE

J1939 Networks

In this section, we demonstrate how our system lets users define rules to capture SAE J1939-

specific attacks. We first describe a set of features pertaining to SAE J1939 network messages that

can be leveraged to detect attacks. We then describe how rules can be defined through our system

to capture these features.
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5.1.1 Attack Detection Features

Invalid Identifier

As already described in the background section, an attacker can spoof the sender’s source

addresses while conducting any attack. Also, for fuzzing attacks they can inject messages with

random Parameter Group Numbers (PGN), some of which may not be valid for the network. These

types of attacks can be detected by detecting messages with invalid (unsupported) PGNs, invalid

(not present on the network) source addresses, or a combination of both. As an example, on

the Kenworth T270 research truck, the engine controller accepts commands for torque and speed

control (through messages with PGN = 0) from a body controller (with source address 33) but the

truck does not include a body controller. This is a case of using an invalid source address that can

be detected and acted upon. Abbot et al. [21] have also highlighted the importance of detecting

invalid CAN IDs on passenger in-vehicle CAN networks.

Hazardous Parameter Values

Certain parameter values can be hazardous if processed by the recipient Electronic Control

Unit (ECU). As an example, Burakova et al. [12] demonstrate an attack where, by sending a

very low (e.g. less than 0%) torque to the engine controller, the vehicle’s ability to accelerate

can be hampered. A message carrying such a parameter value can be detected and acted upon in

a security-critical manner. Lenard et al. [54] have also highlighted the importance of detecting

invalid data bytes in CAN frames within passenger vehicles.

Hazardous Transmission Interval

It has already been discussed in section 2.3, that messages inserted at very small intervals can

lead to denial-of-service. Network overload and request overload described before are examples

of such attacks. Clearly, these attacks cannot be successful if exploit messages are sent at intervals

higher than a certain value.

We conducted network and request overload attacks on the Kenworth T270 research truck and

the results are shown in Figure 5.1. It is evident that when messages with CAN ID 0 are sent at rates
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Figure 5.1: Effect of Network and Request Overload Attacks on the Kenworth T270 Research Truck

higher than (approximately) 1 millisecond there is no significant drop in network traffic. Similarly,

when request messages are sent at rates higher than (approximately) 1.5 milliseconds there is no

significant drop in traffic from the engine controller on the network. As such, messages with CAN

ID 0 that are sent at intervals lower than (approximately) 1 millisecond and request messages sent

at intervals lower than 1.5 milliseconds to a specific device (like the engine controller) can be

detected and acted upon in a security-critical manner.

Invalid or Hazardous Transmission Context

On an SAE J1939 network, ad hoc messages are transmitted occasionally. If an ad hoc message

is always transmitted in a specific context and information describing the context is available on

the network, it can be used to flag out-of-context injections as malicious. To better illustrate the

use of this feature, we consider four real-world scenarios (demonstrated through Figure 5.2) that

show the relationship between the transmission of ad hoc messages and contextual information.

The first scenario is related to address claiming. As already mentioned in section 2.1.4, address

claiming is performed before other communications are made on the network. Figure 5.2a validates

this by showing the transmission of the address claim messages before the vehicle speed parameter

is available on the network. However, address claim messages can be used to disable network

activity from the target ECU as described in the address claim attack. If executed when the vehicle
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(a) Address Claim in Context of Vehicle Speed on the Ken-

worth T270

(b) Transmission Control in Context of ABS Activity on

the Kenworth T270

(c) Torque and Speed Control Requests in Context of ABS

Activity on The Kenworth T660

(d) Torque and Speed Control Requests in Context of Shift

Activity on the Kenworth T270

Figure 5.2: Example Circumstances Depicting The Correspondence Between The Transmission of ad hoc

Messages and Vehicle Context

is in motion, this attack can lead to safety-critical scenarios (section 2.3). Given this, address claim

messages can be flagged as malicious if they are transmitted when the vehicle speed parameter is

at or above a certain non-zero value, e.g. 5 km/h.

Prior work on passenger vehicle security [32] has also identified messages that can be threat-

ening if transmitted when the vehicle is driven at speed, a command to unlock the doors being an

example. Messages similar are supported on SAE J1939 networks. These messages can be flagged

if transmitted when the vehicle is above certain speeds.

In Figures 5.2c and 5.2d, we show two cases where legitimate torque and speed control mes-

sages are sent to the engine controller by the anti-lock braking system (ABS) and the transmission

controller on two different trucks. In the first case, the messages are transmitted only when ABS is

active and in the second case the same happens when transmission shift is in process, i.e. they are

transmitted in certain context. For both cases, the context information is gathered from parameter

values transmitted on the network. Figure 5.2b shows a similar case where legitimate transmission
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control messages are transmitted by the anti-lock braking system (ABS) only when the value of

the parameter “ABS active" denotes that ABS is active. These observations can be leveraged to

flag out-of-context (e.g. when ABS is not active or transmission shift is not in process) torque and

speed control attempts and mitigate the attacks demonstrated by Burakova et al. [12].

In some cases, attacks may themselves be context-dependent. An example of such an attack is

the retarder jam attack where a safety-critical scenario can be created by commanding 0% torque

from the engine retarder only when the vehicle is being driven at speeds below 30 miles/h (48

km/h). Clearly, such a malicious activity can be detected (and possibly prevented from succeeding)

by identifying the message to the engine retarder carrying a 0% torque request in the context of the

vehicle speed being below 30 miles/h.

Given these observations, we propose that context can be used as an attack detection feature.

Formally, we define context as a collection of a range of values for distinct parameters. That is, if

C is a context then it is a set where ∀c ∈ C, c is a two tuple < p, V >, where V is a range of values

of parameter p and no parameter is repeated in C. We say that a parameter is active in a context C

if ∃c ∈ C such that the first element of c is the parameter whose latest transmitted value lies within

the second element c. We say that a context is active if all the constituent parameters are active.

An example context is: vehicle speed within [0,30] (km per hour) and electronic brakes pressed

i.e. set to 1. This context is active when parameters vehicle speed and the status of the electronic

brake switch are active i.e. when the vehicle speed is between 0-30 (km per hour) and the status of

the electronic brake switch is set to 1.

Hazardous Detection Count

While all of the above-mentioned features can be used to detect malicious messages, one may

need to observe multiple suspicious messages before acting in a security-critical manner. Consider,

the connection exhaustion attack described in section 3.3 of this dissertation. In this attack, a

connection can be kept alive by periodically sending Clear to Send (CTS) messages to a specific

target from a spoofed sender at intervals of less than 1250 ms. Given this, a user may determine
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Figure 5.3: Rule Structure

CTS transmissions to an ECU to be malicious if more than a certain number of them have been

transmitted from a specific sender in intervals of less than 1250 milliseconds.

5.1.2 Rule Description

Figure 5.3 shows the structure of rules using standard UML 2.5 notations [27]. In there, each

block is a class that has attributes, can be extended using arrows with empty arrowheads and

can contain other classes connected via lines that start with a black diamond and end with the

cardinality and names of the relationship.

As per Figure 5.3, we support three types of rule classes. The first is Rule and the second and

third are its extensions IRule and CRule. Each class is described next in this subsection.

Rule Objects

A Rule object can be used to detect messages with invalid PGN, DA, SA, and hazardous

parameter values. It identifies a message of interest using an MOI object. A message is considered

of interest to a rule object o if its PGN is equal to o.moi.PGN, its source address (SA) is equal

to o.moi.SA if o.moi.SA is defined, its destination address (DA) is equal to o.moi.DA if

o.moi.DA is defined and ∀ p ∈ o.moi.pfs the value of the parameter (carried in the message)

having Suspect Parameter Number (SPN) = p.SPN is ≤ p.Value[1] and ≥ p.Value[0].
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Table 5.1: Example Rules

Type Description
Thre

shold

Inte

rval

MOI/NetPFilter

Relation PGN DA SA
PFilter

SPN Value

Rule Engine control request from body

controller

1 N/A moi 0 0 33

Rule Very low torque request 1 N/A moi 0 0 518 [-125,-125]

IRule Request overload on engine con-

troller

1 5 moi 59904 0

IRule Connection exhaustion from a diag-

nostic tool on engine controller

5 1250 moi 60416 0 249 2556 [17,17]

IRule Network overload 1 5 moi 0 0 0

CRule
Address claim after vehicle speed

has reached 5 km/h
1 N/A

moi 60928

context 65265 255 0 84 [5,300]

CRule
Engine control request from ABS

when it is not active
1 N/A

moi 0 0 11

context 61441 255 11 563 [0,0]

CRule
0% torque request to engine

retarder when a low vehicle speed
1 N/A

moi 0 15 518 [0,0]

context 65265 255 0 84 [0,30]

We say that the message of interest triggers o. As such, a message of interest for Rule object r

is acted upon if it triggers r and the previous k messages of interest for r have all triggered it, k

being ≥ r.threshold -1.

The first two rows of Table 5.1 show examples of Rule objects.

• In the first example, a torque and speed control message (PGN = 0) to the engine controller

(DA = 0) transmitted by the body controller (SA = 33) is specified to be acted upon from its

first (Threshold = 1) transmission.

• In the second example, a torque and speed control message (PGN = 0) to the engine con-

troller (DA = 0) requesting a -125% (Value = [-125,-125]) torque (SPN = 518) is specified

to be acted upon from its first (Threshold = 1) transmission. This can be a possible defense

strategy against the throttle jam attack described in section 2.3.2.

IRule Objects

An IRule object can be used to detect messages transmitted at hazardous intervals. Being an

extension of the Rule class, it identifies messages of interest in the same manner, i.e. using the

included MOI object. As seen in figure 5.3, IRules allows specifying an interval greater than 0
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in the interval attribute. We say that a message of interest triggers an IRule object r if it is

transmitted at an interval of less than or equal to r.interval milliseconds from the previous

message of interest. A message of interest for IRule object r is acted upon if it triggers rule r

and the previous k message of interest for r have all triggered r, k being ≥ r.threshold -1.

The rows three, four, and five of Table 5.1 show examples of IRule objects.

• In the first example, request messages (PGN = 59904) to the engine controller (DA = 0)

are specified to be acted upon if they are transmitted within 5 milliseconds. This can be a

possible defense strategy against the request overload attack described in section 3.

• In the second example, back-to-back CTS messages (PGN = 60416 and first data byte oc-

cupied by the parameter with SPN 2556 = 17) sent to the engine controller (DA = 0) from

the onboard data logger (SA = 249) within 1250 milliseconds are specified to be acted upon

after 5 such transmissions. This can be a possible defense strategy against the connection

exhaustion attack described in section 3.

• In the third example, messages with PGN = 0, DA = 0, and SA = 0 are specified to be acted

upon if they are transmitted within 5 milliseconds. This can be a possible defense strategy

against the network overload attack described in section 2.3.2.

CRule Objects

A Crule object is used to detect out-of-context message injections. Being an extension of

the Rule class, it identifies messages of interest in the same manner, i.e. using the included MOI

object. As seen in figure 5.3, CRules allow specifying the context as a collection of NetPFilter

objects. Being an extension of the PFilter class, NetPFilter identifies a parameter using its

SPN and denotes the value range as a pair of integers. Parameters on the SAE J1939 network

can be transmitted in messages having different PGNs, DA, and SA. As such, a NetPFilter

object includes a PGN, DA, and SA attribute that helps in identifying the message from which the

parameter value must be read to verify if the context is active. We say that a message of interest

triggers an CRule object r if it is transmitted when the context is active. A message of interest
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for CRule object r is acted upon if it triggers rule r and the previous k message of interest for r

have all triggered r, k being ≥ r.threshold -1.

The rows six, seven, and eight of Table 5.1 show examples of CRule objects.

• In the first example, address claim messages (PGN = 60928) to the engine controller (DA =

0) are specified to be acted upon if they are transmitted when the vehicle speed (SPN = 84)

transmitted by the engine controller (SA = 0) in a message with PGN 65265 is greater than

5 km/h (Value = [5, 300]). This can be a possible defense strategy against the address claim

attack described in section 2.3.2.

• In the second example, torque and speed control messages (PGN = 0) to the engine controller

(DA = 0) from the ABS controller (SA = 11) are specified to be acted upon if they are

transmitted when the status of the ABS (SPN = 563), as transmitted by the ABS controller

(SA = 11) in messages with PGN 61441, is not active (Value = [0,0]). This can be a possible

defense strategy against the engine control attack described in section 2.3.2 launched by

spoofing the ABS controller’s source address.

• In the third example, torque and speed control messages (PGN = 0) carrying 0% torque

requests (SPN = 518) to the engine retarder (DA = 15) are specified to be acted upon if they

are transmitted when the vehicle speed (SPN = 84) transmitted by the engine controller (SA

= 0) in a message with PGN 65265 is less than 30 km/h (Value = [0, 30]). This can be a

possible defense strategy against the retarder jam attack described in section 2.3.2.

Rule Actions

Every rule in our system has a unique identifier and can be associated with one or more action

strategies by specifying the action strings. Although we do not explicitly specify the exact

actions to perform, we discuss some action strategies here. Each action string can be used as

an identifier for an action strategy. At runtime, we pass these strings to an abstract function that

should implement one or more action strategies and executes them based on the passed action

strings.
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Alarm Alarms can be raised to alert the driver or external monitors. Other devices on an SAE

J1939 network can also be alerted by sending proprietary alert messages.

Message disruption Prior work [21, 22, 40] has highlighted that it may be possible to disrupt

the transmission of a frame if attacks are detected in real-time i.e. as bits of the frame are

transmitted on the CAN network. We enforce rules in real-time and as such, this method

can be adopted as a possible action strategy. Recall from section 2.1.2 that CAN frames

are allowed to collide during the transmission of the ID but after that, the bus is allocated

exclusively to a specific transmitter. A frame is disrupted if a collision occurs after the bus

is allocated, i.e. if a recessive bit is overwritten with a dominant one after the transmission

of the ID is complete. If a rule specifies an action string that requires frame disruption,

a sequence of six dominant bits can be sent after the ID of the message of interest has been

transmitted. Because of bit stuffing, this will ensure that at least one recessive bit after the

CAN ID of the message of interest is overwritten by one of the six dominant bits, leading to

frame disruption.

Event logging Lenard et al. [54] suggest logging security events locally if an attack is detected on

the CAN network. The event log can be used later for digital forensics. Albeit, an attacker

can generate several security events and overflow the on-device storage. If event logging is

chosen, adequate on device space must be allocated and the data must be exfiltrated periodi-

cally to ensure the space can be reused. The amount of on-device space required will depend

on how often the logs are exfiltrated and must be estimated apriori.

Vehicle restart An action strategy to mitigate the attack can be to restart the vehicle. This will

allow the driver to take defensive actions as the injection of malicious messages is suspended.

Albeit, this should only be performed if the issuer of the rule that includes this action strategy

is confident that the action will be enforced only if an attack is detected, not in a benign

scenario.
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Rule Constraints

Our system enforces three constraints on the defined rules.

1. The first constraint states that, if a PGN is used in an MOI object, it cannot be used in a

NetPFilter object and vice-versa. A complicated situation may arise if a message that

carries parameters used in a context definition is also malicious. It raises the question, should

the parameter values be used to check if context definitions that use them are active? If the

message is disrupted, we may not be able to obtain all parameter values to compare with

context definitions. This work does not address this situation at this time. As such, we

enforce the aforementioned constraint.

2. The second constraint states that, for any MOI object if SA is specified, then so should DA.

This constraint is enforced to ensure the correct functionality of the rule enforcement proce-

dure described in the next section.

3. The third constraint states that no two rules of the same type can exist without PFilters but

with the same PGN, DA and SA. Since CRules always include PFilters, this constraint

only applies to objects of type Rule and IRule. Essentially, it prevents the same message

of interest to be acted upon by two different rules of the same type having no PFilters.

5.2 Rule Enforcement

In this section, we describe the method to enforce user-specified rules in real time, i.e. as mes-

sages are being transmitted. One way to approach this problem can be to buffer message bits until

the CAN data field is received fully and then search exhaustively through all the rules comparing

the PGN, DA, SA, and parameter values with the information specified in the rules. However, in

a real-world scenario, it is highly unlikely that the same PGN, DA, and SA combination will be

used in all rules. As such, we create an index from the PGN, DA, and SA used in rules and look

up the index as the bits of the CAN ID arrive. The lookup yields information related to the set

of rules that use the PGN, DA, and SA of the incoming message. This is expected to reduce the
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Figure 5.4: Low-Level Data Structure Used for Rule Enforcement

search space significantly. Moreover, we do not wait till the end of the CAN data field. Instead, we

wait until we have received the last byte of the CAN data field in which a parameter, used in a rule

from the retrieved set, is placed into. This allows us increased time to search through the already

reduced rule space.

In the first subsection of this section, we describe the preprocessing steps required to generate

the index and associated information from the user-provided rules. In the next subsection, we

describe how we look up the index in real-time and use the retrieved information to enforce the

rules.

5.2.1 Preprocessing

During the preprocessing phases, we convert user-provided rules into low-level objects whose

structure is shown in Figure 5.4 using standard UML 2.5 notations [27]. In there, each block is

a class that has attributes, can be extended using arrows with empty arrowheads and can contain

other classes connected via lines that start with a black diamond and end with the cardinality and
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Figure 5.5: Example Preprocessing of Rules

names of the relationship. Essentially, these objects represent the index and associated informa-

tion required to enforce user-provided rules in real time. An example process of generating these

objects is also elucidated in Figure 5.5.
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Preprocessing is done in three steps, which are detailed next.

Generating a Temporary Lookup Table from Rules

In the temporary lookup table, we map PGN, DA, and SA combinations to the rules and their

parts (MOI or NetPFilter) in which they are used in. To identify the parts, we use the name

(Relation in the temporary lookup table) of their relationship with the containing rule. This can

be moi or context. Additionally, to identify NetPFilter parts we use their indexes (Indexes

in the temporary lookup table) in the context associations. For MOI parts Indexes is set to an

empty list.

Generating CANRules from Rules

CANRule objects contain information that is updated from the network and compared to spec-

ifications made in the rules. We create one CANRule for each rule. Throughout the rest of this

chapter, we refer to a rule as the parent of an CANRule object if the latter is created using infor-

mation from the former. For the purpose of clarity, Figure 5.5 shows an ID that is assigned to each

CANRule to identify it and its parent rule. The ID is not used in the implementation.

Each CANRule object includes eight fields namely ncc, max_ncc, cth, threshold,

last_t, interval, moi and context. Fields ncc, cth, last_t and prevm are tem-

porary variables that are set to default values and updated at runtime to keep track of decisions

made during the rule enforcement procedure. At runtime, values of ncc, cth and last_t are

compared against values of max_ncc, threshold and interval respectively. max_ncc de-

notes the total number of the parameters used in the context definition provided by the parent rule

and is equal to the cardinality of the context association of a rule. By default, it is set to 0 if the

parent rule is not an instance of CRule. threshold and interval is directly copied from the

parent rule. interval is set to 0 if the parent rule is not of type IRule. One FieldFilter is

created for every PFilter used in the parent rule. The ith FieldFilter in the moi associa-

tion is created from the ith PFilter associated with the MOI object of the parent rule. Similarly,
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the ith FieldFilter in the context association is created from the ith NetPFilter in the

context association of the parent rule.

Because the SPN in a PFilter does not provide the neccessary information required to parse

parameter values out of messages, in the fields t_bytes, t_bits, t_masks and first_len-

gth a FieldFilter object carries that information. t_bytes, t_bits, t_masks and

first_length are assigned values by querying the SAE J1939 digital annex with the SPN used

in the original PFilter object. Fields t_bytes and t_bits hold the byte (R and S) and bit

(x and w) component of the SAE J1939 placement notation (position) “R.x - S.w". The t_masks

hold two-bit masks of length 8 each and first_length is the number of bits allocated in byte

R. If R = S (i.e. the parameter is placed entirely in byte R), bits x to x + l -1 of t_mask are set and

first_length is set to l, where l is the length of the parameter as obtained from the SAE J1939

digital annex. If R is not equal to S, in the first-bit mask, bits x to 8 are set, and in the second mask,

bits w to the last bit used by the parameter are set. For this case, first_length is set to 8 - x +

1. We suggest the reader refer back to section 2.1.3 for a review of J1939 parameter placement if

required.

The value of a FieldFilter object is produced by subtracting the offset from each end-

point of the original PFilter’s Value and dividing the results by the resolution. An example of

this transformation is shown in the third record of the CANRules table in Figure 5.5. The value

in that record is [400, 800] which is obtained by subtracting 0 from each of 50 and 100 and dividing

the results by 0.125, which, as seen in the snippet of the digital annex just above, is the resolution

for the parameter with SPN 898 used in rule R3. This transformation is done to avoid storing the

resolution and offset factors for use in parameter parsing at runtime.

Converting The Lookup Table into a Search Tree

The temporary lookup table can be used to look up information required for rule enforcement.

However, this means that the entire CAN ID needs to be available before PGN, DA, and SA can

be extracted from it and used for lookup. Furthermore, the lookup will be linear with respect to

the size of the table and can consume a significant amount of time that could instead be used for
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processing the looked-up information. Given this, we convert the PGN, DA, and SA combinations

in the temporary lookup table into arbitration field bit strings and create a radix search tree from

them. At runtime, we search in this tree as CAN ID bits become available. Prior work on IP

packet classification [66, 67, 68] has used prefix search trees for purposes similar, although, in

those cases, the search has been performed after the packet has been received completely. A radix

tree is a space-optimized version of the prefix tree.

An arbitration field bit string is the base 2 representations of the CAN arbitration field for a

given PGN, DA, and SA (refer back to section 2.1.2 for a review of the CAN frame’s format).

Each arbitration field bit string can be at most 28 bits long. It does not include the first three ID

bits that correspond to the priority field in the SAE J1939 protocol data unit (PDU) and the last bit

that corresponds to the CAN RTR field. These fields are not used explicitly in rule definition. For

the purpose of brevity and to showcase the common prefixes used in the radix tree, the arbitration

field bit strings in Figure 5.5 are shown as concatenations of base 2 and base 16 strings. In Figure

5.5, each node of the radix tree is labeled with a substring of an arbitration field bit string and can

be attached to a Target object. If a Target object is attached to a node n, the concatenation

of the node labels from the root to n is an arbitration field bit string. We say that a record in the

temporary lookup table corresponds to the target object if the PGN, DA, and SA in that record

is used to generate the arbitration field bit string. A node in our radix tree can have zero to two

children. The link between a parent and a child node is labeled with the first character of the

child’s label. A node is implemented using a RadixtrieNode object described in Figure 5.4.

The RadixtrieNode object has a length and value that respectively are equal to the length

and decimal equivalent of the label in the node. Links to the children are stored in the 0child and

1child attributes, 0 and 1 in the names denoting the label of the link. The process of creating a

radix tree from a set of strings is considered to be common knowledge and, hence, is not described

herein.

A Target object represents the association between the PGN, DA, SA triple and the Rule,

Relation, Indexes triples in its corresponding record of the temporary lookup table. It splits
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Figure 5.6: Rule Enforcement in Real-time

the set of Rule, Relation, Indexes triples into two sets and associates them with two at-

tributes. The first attribute np_canrules points to those CANrules whose parents appear in the

corresponding records but do not include any PFilters. The second attribute rlinks points

to the parts of those CANrules whose parents appear in the corresponding records but include

PFilters. This partitioning is done so rules with no PFilters can be evaluated before CAN

data is received. The Target object also includes a last_byte that denotes the last CAN data

byte that needs to be received before the CANRules pointed by rlinks can be processed. As

such, this is set to the maximum of the second element of t_bytes of all the FieldFilters

used in those CANRules. If the cardinality of the rlinks relation is 0, last_byte is set to 0

by default.
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5.2.2 Runtime Approach

To enforce the rules in real-time i.e. as messages are transmitted on the network, we need to

read in the bits of the message and use this information to make security decisions. In [69] Campo

et al. have shown that the Non-Return-To-Zero (NRZ) encoded output of a CAN transceiver can

be decoded using an interrupt-driven technique to obtain three pieces of information namely,

• Number of bits in the pulse that we refer to as pulse width or pw.

• Signal level of the pulse (0 or 1) that we refer to as signal level or sl.

• Index/position of the starting bit of the pulse in the CAN frame. We refer to this as pos. As

such, pos is 1 at start of frame (SOF).

In this work, we assume that such a method exists and outputs the above-mentioned three pieces

of information every time an NRZ pulse is received from the CAN transceiver. We also assume

the existence of a wrapper that executes after this method and enqueues these three pieces of

information in a queue. Our rule enforcement procedure runs in a loop and dequeues one item

at a time from the input queue. Using a queue ensures atomicity of the ongoing attack detection

process i.e. it finishes execution before acting on the next item in the queue.

Our system maintains the program state in a variable called state, which is initialized to

IDLE. In the IDLE state, the system waits for a new message by checking if the received pos is

1. If so, it sets the state of the system to TRACE and starts tracing the radix tree.

The tracing procedure is implemented using the trace_radix_tree function described in

Algorithm 2. The function takes as input three variables namely, pw, sl, and pos which have

already been described in the previous paragraph. It accesses a global variable node that points to

the current node in the radix tree being processed. At SOF, node is set to the root node of the tree.

It also computes two local variables endpos and node_endpos using pos and a global variable

nodepos. pos and endpos denote the start and end positions of the received bits (pulse) in the

CAN frame. nodepos and node_endpos denote the start and end positions of the bits (in the

CAN frame) that must be used for comparison with the value in node. Because the first four bits
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Algorithm 2: trace_radix_tree(pw, sl, pos)

1 Global variable: nodepos, node, val, targets, attack_detected

2 if pos = 1 then

3 node← root of the radix tree

4 nodepos← 5

5 targets← ∅
6 attack_detected← False

7 end

8 endpos← pos + pw -1

9 node_endpos← nodepos + node.length -1

10 overlap← min(endpos, node_endpos) - max(pos,nodepos) + 1

11 if overlap > 0 then

12 val← val << overlap | ((2overlap - 1)*sl)

13 end

14 if endpos ≤ node_endpos then

15 return

16 end

17 if node.value = val then

18 node← NULL

19 return

20 end

21 if node.target 6= NULL then

22 if check_for_attack_during_ID(node.target) then // refer to Alg. 3

23 attack_detected← True

24 end

25 if |node.target.rlinks| > 0 then

26 targets← targets ∪ node.target

27 end

28 end

29 if sl = 0 then

30 node← node.0child

31 end

32 else

33 node← node.1child

34 end

35 nodepos← nodepos + node.length

36 val← 0

37 if node 6= NULL then

38 trace_radix_tree(pw,sl,pos);

39 end

40 return
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of the CAN ID are not included in generating the arbitration bits string (refer to the documentation

of the preprocessing phase), at SOF we set nodepos to 5. overlap, calculated as one more

than the difference between the minimum of node_endpos and endpos and the maximum of

nodepos and pos, denotes the number of bits in the pulse that can be used for comparison with

the value in node. If overlap is greater than 0, we accumulate the overlapping bits in a global

variable val that is set to 0 every time node changes. For accumulation, we left shift val and

bitwise OR the bits in the pulse with it. If endpos is greater than nodepos, it indicates that

the incoming pulse carries bits that must be compared with the next node if there exists one. To

that end, we check if the accumulated bits match with the value in the current node. If not we

set node to NULL and return. Otherwise, we proceed to check for an attack. We check if the

node has a Target attached to it and if so, we check for an attack using np_canrules of the

Target. If the Target has at least one RLink associated with it, we accumulate it in a buffer

targets that is reset to empty at every SOF. At this point, we perform activities necessary for

node changeover in the radix tree. We select the next node depending on the signal level sl, reset

val to 0 and increment nodepos by the current node’s length such that it points to the starting

position of the bits (in the CAN frame) that must be used for comparison with the value in the

schanged node.

In Algorithm 3, for every CANRule pointed to by target.np_canrules we do the fol-

lowing. We first increment the cth counter of the CANRule object with the assumption that the

parent rule is triggered. If the interval of the CANRule object is a non-zero value we obtain the

current time in milliseconds and verify if the difference between the current time and the last time

of transmission (stored in last_t) is greater than interval specified in the CANRule object.

This indicates that the parent IRule is not triggered and, as such, we reset the cth counter of the

CANRule object. In this way, we keep a count of the consecutive number of triggers of the parent

rule. In line 8, we set the last_t attribute of the CANRule object to the latest obtained time. If

the cth equals or exceeds the threshold of the CANRule object, it implies that this and the

previous threshold - 1 messages of interest have all triggered the parent rule. Therefore, we act
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Algorithm 3: check_for_attack_during_ID(target)

1 forall canrule ∈ target.np_canrules do

2 canrule.cth ++

3 if canrule.interval > 0 then

4 time← get milliseconds from start

5 if time - canrule.last_t > canrule.interval then

6 canrule.cth← 0

7 end

8 canrule.last_t← time

9 end

10 if canrule.cth ≥ canrule.threshold then

11 act(canrule.action)

12 return True

13 end

14 end

15 return False

upon the message by calling the act function. We do not implement act in this work but keep it

abstract. We pass the action strings to it, so it can perform the necessary actions based on them.

If an attack is detected after the call to the trace_radix_tree function, the program goes

back to the IDLE state and waits for a new message. Otherwise, the tracing procedure continues

until no more nodes are available to trace, i.e. the variable node is NULL. In this case, targets

has a non-zero size. This implies that there is at least one element in targets whose correspond-

ing record contains rules that include parameters. As such, the system moves into the BUFFER

state where it buffers data bytes in a byte array until the kth byte has been received, where k =

max({t.last_byte|t ∈ targets}) At that point, it executes Algorithm 4 and processes the

retrieved targets with at least one rlinks.

In Algorithm 4, for every rlink in target.rlinks for every target in targetswe do

the following. If the relation to be processed is context we iterate through the FieldFilter

objects using rlink.indexes. For each FieldFilter object f, we check if the param-

eter value obtained from function get_value lies within f.value. We compare the result

of the check with the f.prevm and if they are different we increment or decrement the value

of rlink.canrule.ncc depending on the truth value of the check. The comparison with
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Algorithm 4: process_retrieved_targets(targets, buffered data bytes)

1 forall target ∈ targets do

2 forall rlink ∈ target.rlinks do

3 if rlink.relation = moi then

4 m← True

5 for ff ∈ rlink.canrule.moi do

6 m← m AND (ff.value[0] ≤ get_value(buffered data bytes, ff) ≤
ff.value[1]);

7 end

8 if m = True then

9 rlink.canrule.cth ++

10 if rlink.canrule.interval > 0 then

11 time← get milliseconds from start

12 if time - rlink.canrule.last_t > rlink.canrule.interval then

13 rlink.canrule.cth← 0;

14 end

15 rlink.canrule.last_t← time

16 end

17 if rlink.canrule.ncc < rlink.canrule.max_ncc then

18 rlink.canrule.cth← 0;

19 end

20 if rlink.canrule.cth ≥ rlink.canrule.threshold then

21 act(rlink.canrule.action)

22 return

23 end

24 end

25 end

26 else

27 for i in rlink.indexes do

28 m← (rlink.canrule.context[i].value[0] ≤ get_value(buffered data bytes,

29 ff) ≤ rlink.canrule.context[i].value[1])

30 if m 6= rlink.canrule.context[i].prevm then

31 rlink.canrule.ncc += (-1)(m+1)

32 rlink.canrule.context[i].prevm← m

33 end

34 end

35 end

36 end

37 end
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f.prevm ensures that rlink.canrule.ncc is updated only when the parameter value goes

outside or comes inside the range specified in f.value. In this way, rlink.canrule.ncc

keeps count of the active parameters in the context specified by the parent rule of rlink.canrul-

e. If the relation to be processed is moi, we first check if the message being transmit-

ted is of interest to the parent of rlink.canrule. This is done by extracting the param-

eter values from the get_value function and checking if they lie within the value of the

FieldFilters in rlink.canrule.moi. If they do, we first increment the cth counter

of the CANRule object with the assumption that the parent rule is triggered. Then, we proceed

to check the parent of rlink.canrule is not triggered. This is done in lines 10 through 19.

In lines 10 to 15, we check if the parent of rlink.canrule is of type IRule (by checking

if rlink.canrule.interval is greater than 0) and if so, whether the message of interest

is transmitted at an interval greater than rlink.canrule.interval. In lines 17 to 19, we

check if the parent of rlink.canrule is of type CRule and if so, whether the context specified

by it is not active. In either case, the rule is not triggered and hence we reset target.cth to 0,

thereby nullifying the effect of line 9. In this way, we keep a count of the consecutive number of

triggers of the parent rule. If the cth equals or exceeds the threshold of the CANRule object,

it implies that this and the previous threshold - 1 messages of interest have all triggered the

parent rule. Therefore, we act upon the message by calling the act function. Recall from before

that act is abstract and needs to be implemented using the passed rlink.canrule.action

strings.

In get_value()we first extract the parameter values from the CAN data field using t_byt-

es, t_bits, t_masks and first_length from the supplied instance of FieldFilter. If

the elements of t_bytes are same, i.e. R = S in the SAE J1939 parameter placement, we apply

t_masks[0] to the t_bytes[0]th data byte and return it after right shifting by t_bits[0] -1.

If the elements of t_bytes are not the same, i.e. R 6= S in the SAE J1939 parameter placement,

we first apply t_masks[1] to the t_bytes[1]th (i.e. Sth) data byte and assign it to a temporary

variable after right shifting by t_bits[1] -1. We then append (using left shift and bitwise OR
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like line 12 of Algorithm 2) the bits of bytes S -1 through R+1 to the temporary variable in that

order. Finally, we apply t_masks[0] to the t_bytes[0]th (i.e. Rth) data byte and append it

to the temporary variable after right shifting it by t_bits[0] -1 and left shifting the temporary

variable by first_length. This approach is followed to regard the reverse transmission byte

order obeyed by SAE J1939 parameters.

5.3 Performance Analysis

The goal of this section is to analyze the performance of the rule enforcement procedure (de-

scribed in Figure 5.6) in terms of the number of rules that can be enforced in real-time i.e. as

messages are being transmitted on the CAN bus. Our system enforces rules in two phases. Rules

without PFilters are enforced in Algorithm 3 when the program is in the TRACE state. Rules

with PFilters are enforced during the processing of the retrieved targets in Algorithm 4. All of

the other steps in the rule enforcement procedure are executed in constant time, independent of the

characteristics of the rule database.

In this section, we first describe the setup in which we conduct the experiments for our anal-

ysis. Next, we describe the performance of the enforcement procedure in the aforementioned two

phases.

5.3.1 Experiment Platform

For the purpose of analysis, we choose two embedded development boards designed for auto-

motive application development: Teensy 3.6 and Teensy 4.1. Teensy 3.6 hosts a 180MHz ARM

Cortex-M4 processor and 256 KB of RAM while Teensy 4.1 hosts a 600 MHz ARM Cortex-M7

processor and 1024 KB of RAM. Both boards support Arduino-based programming and can be in-

terfaced with CAN transceivers. For the purpose of testing, we implement the preprocessing phase

in Python on a desktop computer and the rule enforcement procedure (described in Figure 5.6) in

C on the development boards. Low-level data structures generated by the Python pre-processing

code are transferred to the development boards using a secure digital (SD) card.
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All timing measurements provided in this section are related to the rule enforcement procedure

and are made using the elapsedMicros [70] library function provided by the Teensy software

development kit. elapsedMicros measures the elapsed microseconds between two points of

execution in code.

5.3.2 Enforcing Rules Without PFilters

In Algorithm 3, we scan the CANRules linked through np_canrules of the retrieved Targ-

et objects. The cardinality of np_canrules is restricted to 2 because of the third rule constraint.

As such, Algorithm 3 is effectively constant in time. Algorithm 2, that calls Algorithm 3, is also

constant in time as it does not involve any loops.

On both the experimental development boards we noticed that all steps in the TRACE state

of the program finish execution in less than 2 microseconds when the longest execution path of

Algorithm 2 is executed i.e. the one that ends at line 39. This included the execution of Algorithm

3 with a Target input having 2 np_rules and four recursive calls to Algorithm 2. Note that

four is the worst case number of times Algorithm 2 can call itself at line 38. This is because the

minimum length of a node can be one and the maximum number of bits in a CAN pulse can be

five due to bit stuffing. The execution time is less than the width of a single bit (2 microseconds)

for the highest CAN baud rate (500 kbps) supported by SAE J1939. To that end, we posit that

trace_tradix_tree is executed in real-time on our experimental boards, irrespective of the

number of rules without PFilters. In other words, if executed on platforms similar to the exper-

imental development boards, our system can support any number of rules without PFilters as

long as they obey the rule constraints enumerated at the end of section 5.1.2.

5.3.3 Enforcing Rules With PFilters

Rules with PFilters are enforced in Algorithm 4: each rlink in line 2 pointing to an

CANRule, one of which is created per rule in the system. Therefore, the number of rules that can

be enforced by Algorithm 4 decides the number of executions of line 2. That is to say that the run-

time of the algorithm is directly proportional to the number of rules that can be enforced by it. As
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such, we can estimate the maximum number of rules by executing the algorithm with increasing

counts of target.rlinks and stopping when it finishes after the end of the CAN frame. The

execution of the algorithm, however, also depends on other attributes of the input Target objects

like the value of rlink.relation in line 3 and the cardinality of rlink.canrule.moi or

rlink.indexes in lines 5 and 27. The values for these attributes are dependent on the char-

acteristics of the input rule database, but, because we do not have access to real-world databases,

we estimate them in the worst case and conduct the experiments. To that end, our experiments

estimate the number of rules with PFilters that can be processed in the worst case as a message

is being transmitted.

Experiment Configuration

We create two Target objects t1 and t2, each containing n rlinks. In the first target object

t1, we set rlink.relation = moi and assign an CANRule object to rlink.canrule, ∀

rlink ∈ t1.rlinks. In the second target object t2, we set rlink.relation = context and

assign an CANRule object to rlink.canrule, ∀ rlink ∈ t2.rlinks. Next, we create a set

of p FieldFilter objects and assign them to rlink.canrule.moi. Similarly, we create a

set of p FieldFilter objects and assign them to rlink.canrule.context. p, here, is the

number of parameters that can be carried by a message and is, therefore, the worst-case number of

executions of lines 5-7 and 27-38 per execution of line 2. Also, in t2 we set rlink.indexes

= [0 .. p-1] to ensure that all elements of rlink.canrule.context are processed in lines

28-37. For each FieldFilter created above, we set value to 0, and at runtime, we pass all 0

data bytes. This ensures m is true at lines 8 and 29 and, as such, lines 9-23 and 30-36 are executed

at experiment time. For each CANRule object rlink.canrule, ∀ rlink ∈ t1.rlinks and

∈ t2.rlinks, we set rlink.canrule.max_ncc to 0, rlink.canrule.threshold to

1 and rlink.canrule.interval to 1. Also, at runtime, we enforce a delay of 2 milliseconds

before making a call to Algorithm 4. This ensures that the process always executes line 13 but not

lines 18 and 21 i.e. it executes the path in lines 3-25 with the most instructions and does not return

at line 22. For each FieldFilter used in the experimentation, we set t_bits, t_masks, and
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first_length to 0 as these attributes do not affect the runtime of the algorithm. However, we

set t_bytes to [0,l], where l = max({S − R|(R, S are the starting and ending message data

bytes occupied by parameter pm) ∧ (pm belongs to a group with p parameters )}). We obtain the

values for R and S from the SAE-J1939 digital annex. Because get_values processes each

byte from t_bytes[0] to t_bytes[1], this ensures that it consumes the worst-case execution

time when experimenting with a specific value of p.

Experiment Execution

As per the specifications, there can be a maximum of 32 parameters carried in an SAE J1939

message. As such, we run 32 experiments on each development board by incrementing p from 1 to

32. For each run, we increment n and call Algorithm 4 two times: once with the input targets

set to [t1] and once with the input targets set to [t2]. In the worst case Algorithm 4 needs

to be executed after all message data bytes have been received. This allows a maximum space

of 25 CAN bits that can be utilized for the completion of Algorithm 4. As such, we stop an

experiment when the runtime of the algorithm exceeds 96 microseconds, i.e. the time taken for the

transmission of the first 24 bits of the CAN frame after the data field on a 250 kbps bus. We do not

consider the 25th bits as it signifies the end of the frame and no action can be taken after that. We

record the value of n and plot it against p in Figure 5.7.

Observations

Figure 5.7 captures the number of rules with PFilters n that can be processed in the worst

case during the transmission of a message that carries p parameters. Because the maximum number

of parameters carried in a message can be 32, theoretically we can process 5 rules with PFilters

on Teensy 3.6 and 33 rules with PFilters on Teensy 4.1 in the worst case. Albeit, on real-

world networks the maximum number of parameters carried in a message can be much less than

32. On the Kenworth T270 research truck, we found a maximum of 17 parameters transmitted

in a message, and on the Kenworth T660 research truck this number was 12. In such a case, our

system can support more than 60 rules in the worst case on platforms similar to the Teensy 4.1
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(a) Results on Teensy 3.6

(b) Results on Teensy 4.1

Figure 5.7: Number of Rules Processed in the Worst Case Before Message Transmission Ends

development board. Finally, even though messages can carry more than one parameter, a quick

look at the example rules in Table 5.1 indicate that, in a real-world setting, all parameters in a

message may not be used in rule processing. As a matter of fact, for the rules defined in Table 5.1

only one parameter of a message will be used by Algorithm 4. In this case, our system can support

a significant number of rules with PFilters in the worst case: more than 70 on a Teensy 3.6 and

more than 450 on a Teensy 4.1
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5.4 Real-World Demonstration and Discussion

In this section, we demonstrate the ability of our system to enforce user-provided rules on real-

world network data. For this, we utilize the SAE J1939 attack detection rules specified in Table

5.1 and network data captured from CAN networks within the research trucks.

5.4.1 Implementation

To test the rule enforcement procedure, we designed a wrapper program that reads a CAN

frame from a log file, records the timestamp to be returned to lines 4 and 11 of algorithms 3 and

4, generates the corresponding NRZ pulse stream, calls the rule enforcement procedure for each

pulse in the stream and records if the act function is called from either algorithm. At the end of

execution, it outputs a log file in which each line contains ID and data of the CAN frame as well as

a boolean value indicating if the act function was called. Contents of this file are used to generate

the plots in Figure 5.8.

The wrapper program and the rule enforcement procedure are written in C, compiled into x86,

and executed on a 32-bit Windows platform. This is done because the number of rules in Table

5.1 is less than the minimum number Teensy 4.1 can support (as shown in the previous section)

and timing is not a concern as such. The rules are provided as Python objects and compiled into

low-level objects that are stored on disk as a text file. The simulated rule enforcement procedure

reads from this file at startup, loads the low-level objects into memory, and processes the input

pulses thereafter.

5.4.2 Data Collection

We captured normal driving logs from the Kenworth T270 research truck while driving on an

airstrip. We also used the normal driving logs captured from the Kenworth T660 research truck for

our experimentation. For the attack data, we performed 8 different attacks on the Kenworth T270

research truck. Each attack was conducted so it can be detected by a rule from Table 5.1. The

attacks are described below.
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Attack 1 We conducted an engine control attack spoofing the source address of the body controller

unit that was actually not present on the CAN network. The PGN, DA, and SA of the attack

messages were set to 0, 0, and 33 respectively. This attack should be detected by the first

rule in Table 5.1.

Attack 2 We conducted the throttle jam attack by sending a -125 % torque request in torque

and speed control messages to the engine controller. The PGN, DA, and SA of the attack

messages were set to 0, 0, and 13 respectively. This attack should be detected by the second

rule in Table 5.1.

Attack 3 We conducted the request overload attack by sending request messages at 3-millisecond

intervals to the engine controller. The PGN, DA, and SA of the attack messages were set to

59904, 0, and 249 respectively. This attack should be detected by the third rule in Table 5.1.

Attack 4 We conducted the connection exhaustion attack (as described in section 3.3) by sending

CTS messages within 1250 ms to keep a connection alive. The PGN, DA, and SA of the

attack messages were set to 60416, 0, and 249 respectively. This attack should be detected

by the fourth rule in Table 5.1.

Attack 5 We conducted the network overload attack by sending the highest priority messages at

intervals of 3 milliseconds. The PGN, DA, and SA of the attack messages were set to 0, 0,

and 0 respectively. This attack should be detected by the fifth rule in Table 5.1.

Attack 6 We conducted an address claim attack by sending a message with PGN 0EA0016 and

claiming the address of the engine controller when the vehicle was at speeds greater than 5

km/h. The PGN, DA, and SA of the attack message were set to 60928, 255, and 0 respec-

tively. This attack should be detected by the sixth rule in Table 5.1.

Attack 7 We conducted an engine control attack by spoofing the source address of the ABS unit

which was present on the CAN network. The PGN, DA, and SA of the attack messages were
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set to 0, 0, and 11 respectively. This attack should be detected by the seventh rule in Table

5.1.

Attack 8 We conducted the retarder jam attack by sending a 0 % torque request in a message with

PGN 0 to the engine retarder when the vehicle speed was less than 30km/h. The PGN, DA,

and SA of the attack messages were set to 0, 15, and 3 respectively. This attack should be

detected by the eighth rule in Table 5.1.

5.4.3 Observations and Discussion

The results of our experiments are shown in Figure 5.8. In all of the cases depicted therein,

attack messages are flagged. However, false alarms are observed when conducting the experiment

on normal traffic collected from the Kenworth T660 research truck, the results for which are shown

in Figure 5.8c. Ideally, red dots should not be present in this plot, however, they are present in one

case that is zoomed in on the plot. This is because ABS is not signaled to be active when the first

few torque and speed and control messages (PGN = 0) to the engine controller (DA = 0) are trans-

mitted by the ABS unit (SA = 11). If such a situation occurs and is discovered before deploying a

rule like the one in the seventh row of Table 5.1, we recommend a two-step solution. First, the rule

should be modified to increase the threshold. This will wait out a certain number of torque

and speed control messages before flagging them as malicious. As an example, on the Kenworth

T660 research truck the status of the “ABS active” parameter is transmitted periodically at 100 ms

intervals and torque and speed control messages are transmitted at intervals of 10 milliseconds.

In this case, the rule deployer may wish to wait out 10 torque and speed control messages before

verifying if ABS has been activated and acting accordingly on the next set of torque and speed

control messages. This is simply because, in the worst case, 100/10 = 10 torque and speed control

messages will be transmitted before ABS is signaled as active. Albeit, suppose that an attacker

conducts the engine control attack. Clearly, the first 10 messages will be passed before the sys-

tem begins acting on them. This will provide the attacker with a maximum of 100 milliseconds

of engine control. This is a very low time of control to cause any effect on the behavior of the
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(a) Detection Results on Normal Data Collected from the Kenworth T600 Research Truck

(b) Detection Results on Normal Data Collected from the Kenworth T270 Research Truck

(c) Detection Results for Attack 1

(d) Detection Results for Attack 2
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(e) Detection Results for Attack 3

(f) Detection Results for Attack 4

(g) Detection Results for Attack 5

(h) Detection Results for Attack 6
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(i) Detection Results for Attack 7

(j) Detection results for Attack 8

Figure 5.8: Detection Results on Real World Data; Legend: Red dots are flagged messages, Blue dots are

passed messages
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vehicle. However, this will increase the cth counter of the corresponding CANRule to above its

threshold and it will not be reset to 0 until the context is deactivated i.e. ABS is signaled to

be active. Any legitimate engine control attempt by the ABS during this period will be flagged,

even if the threshold is set to 10. To counter this scenario, we recommend that, in addition to

increasing the threshold, the rule action be set to vehicle restart such that the driver is alerted

and the situation is handled gracefully upon detecting the first illegitimate engine control attempt.

Another aspect of context-based detection is the assurance of the legitimacy of the context

information available on the network. Assume that the attacker transmits a message that indicates

that ABS is active immediately before sending a torque and speed control message to the engine

controller. In this case, they will successfully falsify the context and conduct the attack even

if rule 7 in Table 5.1 is deployed. To counter this scenario, we recommend using our solution

with a periodicity-based intrusion detection and prevention system as described in section 2.4. In

this type of system, a message can be flagged and even disrupted [40] if it is transmitted at an

interval that is different from its usual transmission period. If context information is obtained

from periodically transmitted messages, any attempt to spoof them will lead to a violation of

periodicity, and a periodicity-based intrusion detection and prevention system will immediately

act on it. Albeit, a context carrier CAN frame can still fail CRC check and or be negatively

acknowledged by the network. Our solution does not account for such cases but assumes that an

attacker-injected message does not occur between a failed transmission of a context carrier and its

correct retransmission.

5.5 Summary

In this chapter, we answer the research question: can a rule-based system be designed to detect

threatening SAE J1939 messages as they are being transmitted and mitigate their effect based on

features other than message content only? Our research reveals that there can be three features,

other than message content that can be leveraged to create a rule-based system to detect malicious

messages on an SAE J1939 network: inter-message transmission interval, the context of transmis-
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sion, and count of suspicious transmission. Our research also shows such a system can theoretically

enforce an unlimited number of rules in real time if they are based on the PGN, DA, and SA of the

message only. Otherwise, if the rules utilize information carried in parameters, then, at least 30 of

them can be enforced in real time in the worst case if deployed on commodity hardware such as a

Teensy 4.1 that hosts a 600 MHz ARM-Cortex M7 processor and 1024 Kb of RAM.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we investigated the cyber security of SAE J1939 networks in medium and

heavy duty. Our preliminary research showed that there are gaps in both offensive and defensive se-

curity research in our domain of concentration. As such, we investigated both areas of research and

tried to fill the gaps. For the offensive side, we investigated the security aspects of the SAE J1939

data-link layer specifications. Our research revealed three denial-of-service attacks on the SAE

J1939 data-link layer specifications. We observed noticeable impacts on network communication

for all of these attacks. We also observed a noticeable impact on a research truck upon execution of

two of these attacks. From the defensive side of research, we devised two solutions: a behavioral

intrusion detection system that does not require offline training and a rule-based intrusion detec-

tion prevention system that can detect malicious messages in real time based on features other than

message content. The first solution demonstrated that network behavior can be modeled through a

directed graph and features of the graph can be used by a time series forecasting technique to detect

significant deviations and flag them as intrusions. The second solution demonstrated that rules can

be created from features other than the content of the message namely, inter-message transmission

interval, the context of transmission, and the number of suspicious transmissions. The solution

also demonstrated that, depending on the platform of deployment, a certain number of rules can be

processed in real-time.

6.2 Future Work

In this section, we mention some future directions of work that can emanate from the research

done on this dissertation topic.
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Extending to Other Areas of Interest Although this dissertation utilizes specifics of SAE J1939,

there may be a possibility to extend its contributions to other areas of interest. The offensive re-

search presented in chapter 3 exploits protocol specifications made in the SAE J1939 data-link

layer document SAE J1939/21. This raises the question, can similar exploits be developed for

other documents in the SAE J1939 standards as well as other standards followed by medium and

heavy-duty vehicles? The defensive research presented in chapters 4 and 5 utilizes high-level infor-

mation presented in messages. As such, if messages are transmitted unencrypted on other types of

networks, it can be investigated if the intrusion detection techniques established in this dissertation

can be applied to those types of networks.

Remote Testbenches and Generation of Research Data Throughout this dissertation, several

experiments have been demonstrated: some on homegrown test benches while others on actual

trucks. The laboratory environment in which these experiments were carried out included the

necessary facilities. Such facilities may not be available to many research groups. As such, one

area of future research can be to outsource the equipment utilized in this dissertation and allow

remote access to them so that further experimentation can be carried out. A vital requirement

for this testbench will be reconfigurability so that network settings within different trucks can be

emulated. Research data generated from such a testbench can be disseminated for enhancement

of research, albeit while abiding by intellectual property restrictions. As a matter of fact, newer

attacks can be discovered on this testbench and their signatures can be used to form inputs to the

rule-based intrusion detection and prevention system presented in chapter 5 of this dissertation.

Hybrid Detection and Prevention Systems This dissertation presents two security systems,

the behavioral anomaly-based, and rule-based detection systems. In the future, a hybrid security

system can be designed from these two and this system can harvest the benefits of both worlds.

Using behavioral anomaly detection, the hybrid security system can detect unknown attacks while

using rule-based intrusion detection it can detect known attacks. In addition, the concept of context

(established in chapter 5) can be leveraged to reduce false alarms raised by the behavioral anomaly
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detection system. As an example, if false alarms are raised at the time of hard braking events, it

can be detected if the anti-lock braking is active and alarms can be suppressed.
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