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A Least-Squares-Based 2-D Filtering Scheme for Stereo
Image Compression

Sang-Hoon Seo, Mahmood R. Azimi-Sadjadi, and Bin Tian

Abstract—A two-dimensional (2-D) least squares (LS)-based filtering
scheme for high fidelity stereo image compression applications is in-
troduced in this correspondence. This method removes the effects of
mismatching in a stereo image pair by applying the left image as the ref-
erence input to a 2-D transversal filter while the right image is used as the
desired output. The weights of the filter are computed using a block-based
LS method. A reduced order filtering scheme is also introduced to find
the optimum number of filter coefficients. The principal coefficients and
the disparity vectors are used together with left image to reconstruct
the right image at the receiver. The proposed schemes were examined
on a real stereo image pair for 3DTV applications and the results were
benchmarked against those of the block-matching method.

Index Terms—Least squares, stereo image compression, 2-D adaptive fil-
tering.

I. INTRODUCTION

Three-dimensional (3-D) video imaging has found applications in
numerous areas such as 3DTV, computer games, augmented reality
and surgical environments due to its capability in providing stereo-
scopic pictures with high resolution and great sensation of reality [1].
The compression schemes for stereo image sequences generally uti-
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lize the characteristics that there are strong spatial correlations between
the right and left images as well as between the current and previous
frames. The former correlation is exploited to reproduce pictures by
using either the right or left image and a small amount of informa-
tion that corresponds to the binocular parallax. This operation, which
is similar to motion compensation generally used to predict motion in
a sequence of images, is known as disparity estimation [2]–[9]. The
disparity (mostly limited to the horizontal direction) vector, which re-
quires considerably shorter length codes, will then be encoded. The
decoded disparity vector is then used in conjunction with one image to
generate the other one at the receiver.

Traditionally, motion estimation algorithms have been applied for
disparity estimation. However, the estimation of disparity vectors re-
quires greater accuracy compared with the estimation of motion vec-
tors, since human eyes can see still objects sharper than moving ones
and have higher resolution with 3-D images than with two-dimensional
(2-D) images. In addition, there are mismatching problems between the
left and right images that are caused by reflectivity/illumination differ-
ences, object occlusion, deformation,and noise that need to be compen-
sated for.

Block-matching method is used for both disparity estimation [2],
[3] as well as motion estimation [10], [11] due to its simplicity and
low encoding overhead requirements. However, for disparity estima-
tion this method has several shortcomings including blocking artifacts
and lack of compensation ability for the mismatched areas. Several
block-based methods were proposed [4]–[9] to provide better com-
pensation ability with accurate disparity and/or motion estimation. The
generalized block-matching method [4], [5] provides models of rota-
tions and deformations of blocks between two images by employing
the generalized spatial transformations such as affine, perspective and
bilinear coordinate transformations. The phase-based methods [6], [7]
use the characteristic that the phase difference in the phase domain can
be related to the displacement vector between two blocks or pixels.
Unlike the generalized block-matching method, these schemes are rel-
atively insensitive to changes in the intensity and can represent dis-
placement vector by subpixel accuracy using continuous phase infor-
mation. However, these methods can not compensate for the intensity
mismatching between two blocks. Baysian method [8], [9] attempts
to model motion or disparity map using Markov random fields with
the smoothness assumption among neighboring displacement vectors.
To take care of the discontinuity of displacement vector at the object
boundaries and occlusion, this method needs somea priori knowledge
about these regions. This method does not provide compensation ability
for intensity differences and further the computational effort to detect
the depth discontinuity is very high.

In this correspondence, a new scheme using 2-D filtering is pro-
posed which can be viewed as a modified version of the block-matching
scheme utilizing a 2-D transversal filter to represent the effects of mis-
matching in stereo image pairs prior to disparity estimation. To mini-
mize the number of filter coefficients for reconstructing the blocks, a
reduced order filtering scheme is also proposed. Simulation results are
presented which attest to the effectiveness of the proposed scheme in
compensating for the mismatching effects when compared with the re-
sults of the standard block matching method.

II. TWO-DIMENSIONAL FILTERING SCHEME

FOR DISPARITY ESTIMATION

The block diagram of the proposed system is shown in Fig. 1. In
this scheme, the right image is considered as the desired image and
the left image as the input image,X, to the 2-D transversal filter. The
function of the filter is to represent the effects of mismatching between

1057–7149/00$10.00 © 2000 IEEE
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Fig. 1. Two-dimensional filtering scheme for disparity estimation (block size: 3� 3, filter order: 2� 2).

the right and left images prior to disparity estimation. This guarantees
a better match for the right image within the search region of the left
image. This is accomplished by finding the optimum filter weights to
minimize the sum squared error between the right and the left filtered
images. The estimated disparity and some of the filter weights are then
used in conjunction with the encoded left image to reconstruct the right
image. As can be observed, this scheme is inherently similar to the
block matching method with the added compensation ability for the
mismatching areas.

Let us assume that the right image is partitioned into nonoverlapping
blocks of sizeK by L and the same displacement vector is assumed
for all the pixels within a block. The(k; l)th pixel of the(i; j)th right
image block is represented byDi;j(k; l) = D(iK + k; jL + l) and
the corresponding pixel in the left image relatively displaced by(p; q)
from Di;j(k; l) by Xi;j;p;q(k; l) = X(iK + p + k; jL + q + l).
The relative displacement,(p; q), is limited to the search region, i.e.,
(p; q) 2 Si;j . Note that the blocks in the right image move block-wise,
i.e., no overlapping, while the blocks within the search region in the
left image move pixel-wise, i.e., overlapping. Thus, the(i; j)th block
in the right image can be expressed byfDi;j(k; l); k 2 [0;K� 1]; l 2
[0; L � 1]g;8i; j and the candidate blocks in the search region of the
left image byfXi;j;p;q(k; l); k 2 [0; K � 1]; l 2 [0; L� 1]; (p; q) 2
Si;jg;8i; j. Now, letW p;q

i;j (m;n) andY p;q
i;j (k; l) be the weights and

output of the 2-D transversal filter, respectively, as shown in Fig. 1.
Then, the filter output block can be represented by

Y
p;q
i;j (k; l) =

M�1

m=0

N�1

n=0

W
p;q
i;j (m;n)Xi;j;p�m;q�n(k; l);

k 2 [0; K � 1]; l 2 [0; L� 1] (1)

where the filter support region of size(K +M � 1)� (L+N � 1)
is defined byRi;j;p;q = X(r; s); r 2 [iK + p �M + 1; iK + p +
K�1]; s 2 [jL+ q�N +1; jL+ q+L�1]. The disparity vector is
now estimated by searching the spatial location,(p; q) 2 Si;j , which
minimizes the sum squared error or matching criterion

d̂i;j = arg min
(p;q)2S

K�1

k=0

L�1

l=0

Di;j(k; l)� Y
p;q
i;j (k; l)

2
:

(2)

At d̂i;j = (p̂; q̂) for which the minimum is attained̂Di;j(k; l) =
Y
p̂;q̂
i;j (k; l); k 2 [0; K � 1]; l 2 [0; L� 1]; (p̂; q̂) 2 Si;j .
In contrast to the block-matching method where the original left

block image,Xi;j;p;q(k; l), is directly used in the matching process,
in this scheme the filter output,Y p;q

i;j (k; l), is compared to the desired
block,Di;j(k; l), hence providing better matching and more accurate
disparity estimation.

A. 2-D Optimum Block Filter

The minimum for the matching criterion is typically found by
performing pixel-by-pixel search of all the possible candidate blocks
within the search region and using (1) and (2) operations. This is a
very tedious and computationally demanding task. In order to decrease
the computational load of this so-called full-search algorithm, fast
search methods such as the three-step search [12] and cross-search
[13] may be used. In this section, a block-based filtering method using
the block implementation scheme [14] is devised, which estimates
the disparity vector using the criterion in (2), by computing the filter
weights once per block instead of once per pixel. In this method, the
optimal filter weights and the filter output are computed and all the
possible filter output blocks are compared to the desired block and the
relative displacement vector,(p; q), at which the filter output satisfies
the matching criterion is chosen as the disparity vector estimate.

Using the block implementation of 2-D transversal filters [14], a ma-
trix form of (1) can be achieved by arrangingY p;q

i;j (k; l)s and the asso-
ciatedW p;q

i;j (m;n)s in a row-ordered vector form to yieldyp;qi;j of size
KL� 1 andwp;q

i;j of sizeMN � 1, respectively, i.e.,

y
p;q
i;j = ŷ

p;q
i;j (0) ŷ

p;q
i;j (1) � � � ŷ

p;q
i;j (K � 1)

T
(3a)

where

ŷ
p;q
i;j (r) = Y

p;q
i;j (r; 0) Y

p;q
i;j (r; 1) � � � Y

p;q
i;j (r; L� 1) ;

r 2 [0; K � 1] (3b)

and

w
p;q
i;j = ŵ

p;q
i;j (0) ŵ

p;q
i;j (1) � � � ŵ

p;q
i;j (M � 1)

T
(4a)

where (see (4b) at the bottom of the page).

ŵ
p;q
i;j (r) = W

p;q
i;j (r; 0) W

p;q
i;j (r; 1) � � � W

p;q
i;j (r;N � 1) ; r 2 [0;M � 1]: (4b)
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Additionally,Xi;j;p;q(k; l)’s is arranged in a matrix form,Xi;j;p;q

of sizeKL �MN , i.e.,

Xi;j;p;q =

X̂iK+p; X̂iK+p�1 � � � X̂iK+p�M+1

X̂iK+p+1 X̂iK+p � � � X̂iK+p�M+2

...
...

...
...

...
...

...
...

X̂iK+p+K�1 X̂iK+p+K�2 � � � X̂iK+p�M+K
(5a)

where (see (5b) shown at the bottom of the page) andr 2 [iK + p �

M + 1; iK + p+K � 1]. Using this arrangement, (1) becomes

y
p;q
i;j = Xi;j;p;qw

p;q
i;j : (6)

The error vector,ep;qi;j , of sizeKL� 1 can be represented by

e
p;q
i;j = di;j � y

p;q
i;j = di;j �Xi;j;p;qw

p;q
i;j (7)

wheredi;j is the desired output vector of sizeKL� 1 defined by

di;j = d̂i;j(0) d̂i;j(1) � � � d̂i;j(K � 1)
T

(8a)

where

d̂i;j(r) = [Di;j(r; 0) Di;j(r; 1) � � � Di;j(r; L� 1)] ;

r 2 [0; K � 1]: (8b)

Then, (2) can be represented in matrix form as

d̂i;j = arg min
(p;q)2S

"
p;q
i;j (9)

where the sum squared error is"p;qi;j = (ep;qi;j )
Te

p;q
i;j . In this block-

based formulation, the relative displacement vector,(p; q), in the input
data matrix can be shifted by the filter size, i.e.,M rows and/orN
columns instead of pixel-by-pixel, since the support region of input
data matrix containsMN blocks of size(K+M �1)� (L+N �1)
and the filter is applied to all the pixels inside that area. In this case,
the displacement vector,(p; q), is represented by integer multiples of
M andN , respectively. Note that in stereo image compression, much
smaller filter order than the block size, i.e.,M � K andN � L is
required. This is different from the other image filtering applications
such as image smoothing and enhancement [14].

Having formulated the 2-D linear filter equations in matrix form, the
optimal filter weight vector,wp;q

i;j
�, for the input data matrix,Xi;j;p;q,

and the desired output vector,di;j , using the LS solution [15] is given
by

w
p;q
i;j

�
= �

�1
i;j;p;q�

p;q
i;j (10)

where�p;qi;j is the cross-correlation vector between the desired and input
blocks, i.e.,�p;qi;j = XT

i;j;p;qdi;j and�i;j;p;q is the input data auto-
correlation matrix given by�i;j;p;q = XT

i;j;p;qXi;j;p;q.

To reconstruct the(i; j)th right image block at the receiver, the dis-
parity vector estimate,̂di;j = (p̂; q̂), and the optimal filter weight
vector,w�

i;j = w
p̂;q̂
i;j

�

, need to be encoded and transmitted. Note that
the representative disparity vector can be defined by the filter lag at
which the maximum value of weightw�

i;j occurs. This scheme which
allocates the same filter order to each block will be referred to as the
“full-order” LS-based filtering scheme. Obviously, encoding several
filter weights for each block is not efficient in practice. The following
section describes a reduced order LS-based filtering scheme which uses
minimal number of weights in each block depending on the type of the
compensation needed.

B. Reduced Order Filtering Scheme

It is interesting to note that a large number of blocks in the right
image can be reconstructed by the representative disparity vector and
using the encoded reference left image without the need to use the filter
weights,w�

i;j , at all. This is due to the fact that these blocks are related
by simple translation. However, to remove the mismatching effects
some principal filter weights inw�

i;j should also be used for reconstruc-
tion of certain blocks. To determine these principal weights allocated in
each block and to reduce the number of filter weights needed for recon-
struction, a reduced order filtering scheme is introduced. A threshold
value representing the quality of the reconstructed image blocks is
chosen to be the block peak signal-to-noise ratio(PSNRblock), i.e.,

PSNRblock = 10 log10
2552

e
p;q
i;j

T
e
p;q
i;j KL

= 10 log10
2552

"
p;q
i;j KL

(11)

where the mean squared value of the error block,e
p;q
i;j , is used to ac-

count for the intensity mismatching problem between two blocks in-
stead of the variance,�2

"
.

The disparity vector and the filter weights are first estimated
using the full order filtering scheme. To estimate the quality of each
reconstructed block, thePSNRblock threshold value is specified.
If the (i; j)th right image block can be reconstructed with only the
representative disparity vector (lag of the largest weight of the full
order filter) satisfying the image quality threshold, only the disparity
vector is encoded, and the process moves to the next block in the
desired (right) image. Otherwise, a 1st order filter at the same lag
(position) will be used and the image quality threshold is computed
again. To reconstruct the block, the weight at this tap is re-estimated.
The filter order is increased until the image quality is satisfied or until
the full-order filter is reached.

C. Fast Filtering Scheme

To reduce the computational complexity even further, the standard
block-matching algorithm can first be used to estimate all the disparity
vectors. Then, the 2-D transversal filtering is applied only to those
blocks which suffer from mismatching problems. In this scheme, the
filtering is performed only on the support region of the block at which

X̂r =

X(r; jL+ q) X(r; jL+ q � 1) � � � X(r; jL+ q �N + 1)

X(r; jL+ q + 1) X(r; jL+ q) � � � X(r; jL+ q �N + 2)
...

...
...

...
...

...
...

...
X(r; jL+ q + L� 1) X(r; jL+ q + L� 2) � � � X(r; jL+ q �N + L)

(5b)



1970 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 11, NOVEMBER 2000

(a) (b)

(c) (d)

Fig. 2. (a) and (b) Original stereo image pair of “Chair.” (c) Reconstructed image using the standard block-matching. (d) Full-order (four weights) filtering.

the disparity is estimated. This is in contrast to the previous filtering
schemes where the filtering was applied to all the blocks inside the
search region.

Assume that the disparity vector for the(i; j)th right image block
is estimated aŝdi;j = (p̂; q̂) using the block-matching method. The
input matrix,Xi;j;p̂;q̂, is formed by (5a) and (5b) with support region,
Ri;j:p̂;q̂, given byRi;j:p̂;q̂ = X(iK + p̂�m+ k; jL + q̂ � n + l);
k 2 [0;K�1]; l 2 [0; L�1];m 2 [�M=2;M=2]; n 2 [�N=2; N=2],
where the filter order is(M + 1)� (N + 1). The 2-D block filtering
in (6) is then applied and the optimal filter weights are estimated using
the LS method in (10).

Although this scheme offers much faster filtering process, the com-
pensation ability is somewhat inferior to the previous scheme. Never-
theless, this scheme is very useful in practice as it adds compensation
ability to the block matching method without significantly increasing
the computational overhead.

III. SIMULATION RESULTS AND COMPARISON

The performance of the proposed schemes was compared to that
of the standard block-matching method on the stereo image pair,
“Chair,” shown in Fig. 2(a) and (b). This image pair involves several
mismatching problems, thus making it ideal to test the compensation

ability of the algorithms. To simplify the performance comparison of
the reconstructed images, the original left image is used here instead
of the encoded one. To estimate the performance of the reconstructed
image, the peak signal-to-noise (PSNR) is used, i.e.,

PSNR = 10 log10
2552

�2
(D�D̂)

(12)

where�2
(D�D̂)

is the variance of the difference or error image between
the original and the reconstructed right images.

The size of each image is 280� 320 with 256 grey levels. The block
size was chosen to be 8� 8 and the search region was defined as:
left margin 48, right margin 8, upper margin 8, and lower margin 8.
The standard block-matching scheme was examined first. The PSNR
of the reconstructed image shown in Fig. 2(c) was measured to be 27.93
dB. This image exhibits several problems that are not compensated for.
These include: occlusion on the left side of the chair and the upper part
of the top right object, blocking artifacts on the letter “B” on the front
container which appears as “K,” deformation of the objects as shown in
some of the black squares in the checker board pattern, and reflectivity
differences in the background in the top of the chair. The full-order
LS-based 2-D filtering scheme of order 2� 2 was then applied to this
image pair. As shown in Fig. 2(d), most of the blocks are reconstructed
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(a) (b)

Fig. 3. Reconstructed images of the “Chair” using (a) reduced order and (b) fast filtering schemes.

TABLE I
BLOCK NUMBERS AND PERCENTAGE OFEACH CLASS IN THE RECONSTRUCTED

IMAGE USING THEREDUCEDORDERFILTERING SCHEME FOR“CHAIR” (TOTAL

BLOCK NUMBER = 1 400)

very well. The characters on the container are much more legible. The
black squares in the checker board do not exhibit deformation and the
reflectivity problem on the chair top is almost compensated for. The
contour on the surface of the top right object looks more distinct. Most
of all, the occlusion around the left side of the chair was almost re-
moved. The PSNR for this case was found to be 31.80 dB. The PSNR
as well as the visual evaluation of the reconstructed image in Fig. 2(d)
clearly indicates the compensation ability of the filtering method for
the mismatched areas.

The reduced-order filtering scheme was then applied to this image
pair. The threshold value of the reconstructed block image was set to 30
dB in PSNRblock. The reconstructed image is shown in Fig. 3(a) for
which the PSNR was measured to be 30.88 dB. The quality of this re-
constructed image is obviously comparable to that of the corresponding
full order case with four weights in Fig. 2(d). Table I shows the number
of weights used to reconstruct this image. The blocks are separated into
five different classes depending on how a block was reconstructed. For
example, the blocks in class 1 were reconstructed with only the corre-
sponding disparity vector and the blocks in class 4 required three filter
weights as well. As can be seen, over 50% of the blocks do not require
any weights encoding while less than 20% require all the four weights
for reconstruction. Overall, an average of only 1.11 weights/block is
needed to reconstruct this image. It is very remarkable that the image
quality using this average weights/block is comparable to that of the
full order filtering scheme in Fig. 2(d).

Using the fast filtering scheme the disparity vector was first esti-
mated using the block-matching scheme. Then, the 2-D transversal
filter of size 2� 2 was applied to the blocks whosePSNRblock was
less than the threshold. In this case, thePSNRblock threshold was set
to 30 dB. The reconstructed image is shown in Fig. 3(b) for which the
PSNR was measured to be 30.60 dB. As expected, the quality is not as
quite good as the previous results, since the filtering is applied on the

TABLE II
PERFORMANCECOMPARISON OFRECONSTRUCTEDIMAGES USING

DIFFERENT DISPARITY ESTIMATION SCHEMES FOR“CHAIR” (TOTAL

BLOCK NUMBER = 1400)

blocks which are selected in advance by the standard block-matching
method using the reference image directly. Nonetheless, it is better
than that of the block-matching method. The processing time is very
much dependent on the size of the blocks and search region. How-
ever, the fast filtering scheme is substantially faster compared to the
other proposed schemes. Comparing to the standard block-matching
method, this method provides 2.67 dB PSNR improvement with 1.44
weights/block for applying the filter to 505 blocks among the total of
1400 blocks. This scheme can be used as an alternative to the full-order
LS-based filtering scheme where fast processing is needed.

Table II shows the number of blocks in the reconstructed images
for different PSNRblock in decibels depending on the disparity
estimation schemes. It is noted that while the numbers of blocks with
highPSNRblock (�34 dB) for both the full-order and reduced-order
filtering schemes are prominently more and those blocks with
PSNRblock (�22 dB) blocks are considerably less than those of
the block-matching method, the numbers of reconstructed blocks
whosePSNRblock is less than the predefined threshold (30 dB) in
the reduced-order filtering scheme are pretty much the same as those
of the full-order filtering scheme with four weights/block. In other
words, the efficiency in the reduced order filtering scheme to minimize
the number of filter coefficients for reconstruction is achieved by
compromising the number of blocks withPSNRblock � 30 dB.
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Fig. 4. Performance comparison of different schemes according to the average
weights/block.

Fig. 4 represents the PSNR performance comparison of the proposed
schemes with respect to the average weights/block. The plot for the
full-order filter is obtained for different filter orders up to the 2� 2
case, and the plots for the reduced-order and fast filtering schemes, on
the other hand, are generated for different filter orders based upon the
full-order 16-weight filter and the block-matching method. This is done
to provide a fair comparison of these schemes based upon the same
limits for the average weights/block. As can be seen from the plots,
the performance of the fast filtering scheme in terms of PSNR of the
reconstructed images to average weights/block is comparable to that of
the full-order filtering scheme. The reduced order filtering scheme is
the most effective scheme providing good quality reconstruction while
reducing the encoding overhead requirement.

IV. CONCLUSION

A 2-D LS-based filtering scheme is proposed for removing the mis-
matching effects in stereo images caused by illumination/reflectivity
differences, deformation, occlusion and noise. The compensation
ability in this scheme is provided by using a 2-D transversal filter
that models the effects of mismatching. The block implementation is
employed in conjunction with the block LS method to generate the
optimal weights for every block. A reduced order filtering scheme
was also proposed to minimize the number of filter weights for
reconstruction. Simulation results indicated the effectiveness of the
proposed filtering schemes in removing the effects of mismatching
problems. Future research [16] will consider development of an effi-
cient encoding method and bit assignment strategy for the proposed
filtering scheme.
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Scalable Image Coding Using Reversible Integer Wavelet
Transforms

Ali Bilgin, Philip J. Sementilli, Fang Sheng, and Michael W. Marcellin

Abstract—Reversible integer wavelet transforms allow both lossless and
lossy decoding using a single bitstream. We present a new fully scalable
image coder and investigate the lossless and lossy performance of these
transforms in the proposed coder. The lossless compression performance of
the presented method is comparable to JPEG-LS. The lossy performance
is quite competitive with other efficient lossy compression methods.

Index Terms—Integer wavelet transform, JPEG-2000, lossless, lossy,
scalable compression.

I. INTRODUCTION

The wavelet transform has been widely used in image compression.
However, until recently, its use has been limited to lossy compression
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